JP2024021071A - 仮想停止線を生成する方法及び装置 - Google Patents

仮想停止線を生成する方法及び装置 Download PDF

Info

Publication number
JP2024021071A
JP2024021071A JP2023125664A JP2023125664A JP2024021071A JP 2024021071 A JP2024021071 A JP 2024021071A JP 2023125664 A JP2023125664 A JP 2023125664A JP 2023125664 A JP2023125664 A JP 2023125664A JP 2024021071 A JP2024021071 A JP 2024021071A
Authority
JP
Japan
Prior art keywords
pedestrian
interest
vehicle
region
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023125664A
Other languages
English (en)
Inventor
コ,チャンホ
Chan Ho Ko
ヤン,ジンス
Jin Soo Yang
ヨン,ギュファン
Kyu Hwan Yeon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
42Dot Inc
Original Assignee
42Dot Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220095813A external-priority patent/KR20240018048A/ko
Priority claimed from KR1020220095966A external-priority patent/KR20240018112A/ko
Priority claimed from KR1020220095965A external-priority patent/KR20240018111A/ko
Priority claimed from KR1020220105246A external-priority patent/KR20240019656A/ko
Priority claimed from KR1020220124413A external-priority patent/KR20240044888A/ko
Application filed by 42Dot Inc filed Critical 42Dot Inc
Publication of JP2024021071A publication Critical patent/JP2024021071A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/181Preparing for stopping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/53Road markings, e.g. lane marker or crosswalk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/402Type
    • B60W2554/4026Cycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/402Type
    • B60W2554/4029Pedestrians
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4041Position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4049Relationship among other objects, e.g. converging dynamic objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)

Abstract

【課題】本開示は、仮想停止線を生成する方法及び装置に関する。【解決手段】走行経路上の1つ以上の横断歩道の中からターゲット横断歩道を決定するステップと、ターゲット横断歩道に関する関心領域を設定するステップ2710と、前記関心領域内の歩行者の位置に基づいて仮想停止線を生成するか否かを決定するステップ2730とを含む、仮想停止線を生成する方法を提供する。【選択図】図27

Description

本開示は、仮想停止線を生成する方法及び装置を提供する。
情報通信技術と車両産業の融合により、車両のスマート化が急速に進んでいる。スマート化により、車両は単純な機械的装置からスマートカーに進化しており、特にスマートカーの中核技術として自律走行が注目されている。自律走行とは、運転者がハンドル、加速ペダル、ブレーキなどを操作しなくても車両が自ら目的地まで辿る技術である。
自律走行に関する様々な付加機能が開発され続けており、各種データを用いて走行環境を認知及び判断して自動車を制御することにより搭乗者及び歩行者の両方に安全な自律走行経験を提供する方法、並びに自律走行車両が歩行者を認識した場合に車両を制御及び減速する方法に関する研究が求められ続けている。
前述した背景技術は、発明者が本発明の導出のために保有していたか、又は本発明の導出過程で習得した技術情報であって、必ずしも本発明の出願前に一般公衆に公開された公知技術であるとはいえない。
本開示の目的は、仮想停止線を生成する方法及び装置を提供することにある。本開示が解決しようとする課題は、以上で述べられている課題に限定されず、述べられていない本開示の他の課題及び利点は、以下の説明により理解され、本開示の実施形態によりさらに明らかに理解されるであろう。また、本開示が解決しようとする課題及び利点は、特許請求の範囲に示されている手段及びその組み合わせにより実現できることが理解されるであろう。
本開示の第1態様は、走行経路上の1つ以上の横断歩道の中からターゲット横断歩道を決定するステップと、前記ターゲット横断歩道に関する関心領域を設定するステップと、前記関心領域内の歩行者の位置に基づいて仮想停止線を生成するか否かを決定するステップとを含む、仮想停止線を生成する方法を提供することができる。
本開示の第2態様は、少なくとも1つのプログラムが格納されたメモリと、前記少なくとも1つのプログラムを実行することにより動作するプロセッサとを含み、前記プロセッサは、走行経路上の1つ以上の横断歩道の中からターゲット横断歩道を決定し、前記ターゲット横断歩道に関する関心領域を設定し、前記関心領域内の歩行者の位置に基づいて仮想停止線を生成するか否かを決定する、仮想停止線を生成する装置を提供することができる。
本開示の第3態様は、(a)歩行者を認識して認識データ及び状態データを取得するステップと、(b)前記認識データ及び前記状態データの少なくとも1つにより前記歩行者が有し得る複数の意図の確率分布を推定して歩行者意図ベクトルを更新するステップと、(c)前記更新された歩行者意図ベクトルに基づいて次の時点の歩行者意図を推定するステップと、(d)前記次の時点の歩行者意図を考慮して前記車両の走行速度を決定するステップとを含む、走行速度を決定する方法を提供することができる。
本開示の第4態様は、少なくとも1つのプログラムが格納されたメモリと、前記少なくとも1つのプログラムを実行することにより動作するプロセッサとを含み、前記プロセッサは、歩行者を認識して認識データ及び状態データを取得し、前記認識データ及び前記状態データの少なくとも1つにより前記歩行者が有し得る複数の意図の確率分布を推定して歩行者意図ベクトルを更新し、前記更新された歩行者意図ベクトルに基づいて次の時点の歩行者意図を推定し、前記次の時点の歩行者意図を考慮して前記車両の走行速度を決定する、走行速度を決定する装置を提供することができる。
本開示の第5態様は、車両の走行経路前方の関心領域を取得するステップと、前記車両周辺の近接オブジェクトを検知し、前記関心領域に基づいて前記近接オブジェクトの前記車両との関連度を設定するステップと、前記関連度に基づいて参照位置プロファイルを決定するステップと、前記参照位置プロファイルに対応する最終位置プロファイルを決定するステップとを含む、走行速度を計画する方法を提供することができる。
本開示の第6態様は、少なくとも1つのプログラムが格納されたメモリと、前記少なくとも1つのプログラムを実行することにより動作するプロセッサとを含み、前記プロセッサは、車両の走行経路前方の関心領域を取得し、前記車両周辺の近接オブジェクトを検知し、前記関心領域に基づいて前記近接オブジェクトの前記車両との関連度を設定し、前記関連度に基づいて参照位置プロファイルを決定し、前記参照位置プロファイルに対応する最終位置プロファイルを決定する、走行速度を計画する装置を提供することができる。
本開示の第7態様は、(a)基準軌跡を取得するステップと、(b)1つ以上の制御入力による複数の予想軌跡を算出するステップと、(c)前記基準軌跡、前記複数の予想軌跡、及び前記1つ以上の制御入力の少なくとも1つに基づいてコスト関数を計算するステップと、(d)前記1つ以上の制御入力の中から前記コスト関数が最小になる最適制御入力を選択するステップとを含む、車両の軌跡を最適化する方法を提供することができる。
本開示の第8態様は、少なくとも1つのプログラムが格納されたメモリと、前記少なくとも1つのプログラムを実行することにより動作するプロセッサとを含み、前記プロセッサは、基準軌跡を取得し、1つ以上の制御入力による複数の予想軌跡を算出し、前記基準軌跡、前記複数の予想軌跡、及び前記1つ以上の制御入力の少なくとも1つに基づいてコスト関数を計算し、前記1つ以上の制御入力の中から前記コスト関数が最小になる最適制御入力を選択する、車両の軌跡を最適化する装置を提供することができる。
本開示の第9態様は、(a)基準軌跡を取得するステップと、(b)予測基準水平線及び制御周期を用いて現在時点を含む複数のモデル予測時点を決定するステップと、(c)前記複数のモデル予測時点のそれぞれにおける1つ以上の制御入力を生成し、前記1つ以上の制御入力による複数の予想軌跡を算出するステップと、(d)前記1つ以上の制御入力の中から最適予想軌跡に対応する最適制御入力を選択するステップとを含む、車両の軌跡を最適化する方法を提供することができる。
本開示の第10態様は、少なくとも1つのプログラムが格納されたメモリと、前記少なくとも1つのプログラムを実行することにより動作するプロセッサとを含み、前記プロセッサは、基準軌跡を取得し、予測基準水平線及び制御周期を用いて現在時点を含む複数のモデル予測時点を決定し、前記複数のモデル予測時点のそれぞれにおける1つ以上の制御入力を生成し、前記1つ以上の制御入力による複数の予想軌跡を算出し、前記1つ以上の制御入力の中から最適予想軌跡に対応する最適制御入力を選択する、車両の軌跡を最適化する装置を提供することができる。
第1態様、第3態様、第5態様、第7態様又は第9態様の方法をコンピュータで実行するためのプログラムを記録したコンピュータで読み取り可能な記録媒体を提供することができる。
それら以外にも、本発明を実現するための他の方法、他の装置、及び前記方法を実行するためのプログラムを記録したコンピュータで読み取り可能な記録媒体をさらに提供することができる。
上記以外の他の態様、特徴、利点は、添付の図面、特許請求の範囲、及び以下の発明の詳細な説明から明らかになるであろう。
前述した本開示の課題解決手段によれば、歩行者が突然横断歩道に進入した場合も車両が大きく減速することなく停車することができ、乗り心地を考慮した走行経験を提供することができる。
また、歩行者の絶対的な位置及び歩行者と車両の相対的な位置によって仮想停止線を生成するか否かを決定することにより、道路上での様々な環境に対応することができる。
一実施形態による自律走行方式を説明するための図である。 一実施形態による自律走行方式を説明するための図である。 一実施形態による自律走行方式を説明するための図である。 一実施形態による車両の走行経路周辺の環境を概略的に示す例示図である。 一実施形態による車両の走行経路周辺の環境を概略的に示す例示図である。 一実施形態によるターゲット横断歩道を決定する過程を説明するための図である。 一実施形態による関心領域を設定する過程を説明するための図である。 カーテシアンフレーム(Cartesian Frame)を示す図である。 フレネフレーム(Frenet Frame)を示す図である。 一実施形態による仮想停止線を生成するか否かを決定する方法のフローチャートである。 車両がターゲット横断歩道から遠距離にある場合の実現を示す例示図である。 車両がターゲット横断歩道から近距離にある場合の実現を示す例示図である。 車両がターゲット横断歩道から近距離にある場合の実現を示す例示図である。 一実施形態による歩行者意図推定を活用して走行速度を決定する方法の概念図である。 一実施形態による歩行者の第1~第3意図を説明するための図である。 一実施形態による最近接オブジェクトの挙動予測情報に基づいて車両の走行速度を計画する方法を説明するための図である。 一実施形態による近接オブジェクトの関連度に基づいて補正位置プロファイルを導出する過程を説明するための図である。 一実施形態による近接オブジェクトの関連度に基づいて補正位置プロファイルを導出する過程を説明するための図である。 一実施形態による複数の近接オブジェクトが存在する環境で参照位置プロファイルを決定する過程を示す図である。 一実施形態による複数の近接オブジェクトが存在する環境で参照位置プロファイルを決定する過程を示す図である。 一実施形態による最終位置プロファイルを示す例示図である。 一実施形態による車両の軌跡を最適化する過程を概略的に示す例示図である。 一実施形態による走行計画装置が予想軌跡を算出する過程を説明するための図である。 一実施形態による走行計画装置が最適制御入力を選択するための予測モデルを説明するための図である。 一実施形態による走行計画装置が最適制御入力を選択するための予測モデルを説明するための図である。 一実施形態による走行計画装置が制御周期を不均一に設定する過程を説明するための図である。 一実施形態による仮想停止線を生成する方法のフローチャートである。 一実施形態による仮想停止線を生成する装置のブロック図である。
本発明の利点及び特徴、並びにそれらを達成する方法は、添付の図面と共に詳細に説明される実施形態を参照することによって明らかになるであろう。しかし、本発明は、以下に提示される実施形態に限定されるものではなく、異なる様々な形態で実現することができ、本発明の思想及び技術範囲に含まれる全ての変換、均等物乃至代替物を含むものと理解されるべきである。以下に提示される実施形態は、本発明の開示を完全にし、本発明の属する技術の分野における通常の知識を有する者に発明の範疇を完全に理解させるために提供されるものである。本発明を説明するにあたり、関連する公知技術についての具体的な説明が本発明の要旨を不明にすると判断される場合、その詳細な説明を省略する。
本出願で用いられる用語は、単に特定の実施形態を説明するために用いられるものであり、本発明の限定を意図するものではない。単数の表現は、文脈上明らかに他の意味を表さない限り、複数の表現を含む。本出願において、「含む」や「有する」などの用語は、明細書に記載された特徴、数字、ステップ、動作、構成要素、部品、又はそれらの組み合わせが存在することを指定するものであり、1つ又はそれ以上の他の特徴、数字、ステップ、動作、構成要素、部品、又はそれらの組み合わせの存在や追加の可能性を予め排除するものではないと理解されるべきである。
本開示の一部の実施形態は、機能ブロック構成及び様々な処理ステップで示すことができる。そのような機能ブロックの一部又は全部は、特定の機能を実行する様々な数のハードウェア及び/又はソフトウェア構成で実現することができる。例えば、本開示の機能ブロックは、1つ以上のマイクロプロセッサにより実現するか、又は所定の機能のための回路構成により実現することができる。また、例えば、本開示の機能ブロックは、様々なプログラミング又はスクリプト言語で実現することができる。機能ブロックは、1つ以上のプロセッサで実行されるアルゴリズムで実現することができる。さらに、本開示は、電子的な環境設定、信号処理及び/又はデータ処理などのために従来技術を採用することができる。「メカニズム」、「要素」、「手段」、「構成」などの用語は広く用いることができ、機械的及び物理的な構成に限定されるものではない。
なお、図面に示す構成要素間の連結線又は連結部材は、機能的連結及び/又は物理的連結もしくは回路接続を例示的に示すものに過ぎない。実際の装置では、代替可能又は追加の様々な機能的連結、物理的連結又は回路接続により構成要素間の連結を示すことができる。
以下、「車両」とは、自動車、バス、バイク、キックボード又はトラックのように、機関を有して人や物を移動させるために用いられるあらゆる種類の運送手段を意味することができる。
以下、添付図面を参照して本開示を詳細に説明する。
図1を参照すると、本発明の一実施形態による自律走行装置は、車両に装着されて自律走行車両10を実現することができる。自律走行車両10に装着される自律走行装置は、周辺の状況情報を収集するための様々なセンサ(カメラを含む)を含んでもよい。一例として、自律走行装置は、自律走行車両10の前面に装着されたイメージセンサ及び/又はイベントセンサにより、前方を運行中の先行車両20の動きを検知することができる。自律走行装置は、自律走行車両10の前方はもとより、隣の車路を運行中の他の走行車両30や、自律走行車両10周辺の歩行者などを検知するためのセンサをさらに含んでもよい。
自律走行車両10周辺の状況情報を収集するためのセンサの少なくとも1つは、図1に示すように、所定の画角(FoV)を有することができる。一例として、自律走行車両10の前面に装着されたセンサが図1に示すような画角(FoV)を有する場合、センサの中央で検出される情報が相対的に高い重要度を有することができる。これは、センサの中央で検出される情報に、先行車両20の動きに対応する情報のほとんどが含まれているからである。
自律走行装置は、自律走行車両10のセンサが収集した情報をリアルタイムで処理して自律走行車両10の動きを制御する一方、センサが収集した情報の少なくとも一部はメモリ装置に保存することができる。
図2を参照すると、自律走行装置40は、センサ部41、プロセッサ46、メモリシステム47、車体制御モジュール48などを含んでもよい。センサ部41は、複数のセンサ(カメラを含む)42~45を含み、複数のセンサ42~45は、イメージセンサ、イベントセンサ、照度センサ、GPS装置、加速度センサなどを含んでもよい。
センサ42~45が収集したデータは、プロセッサ46に伝達されるようにしてもよい。プロセッサ46は、センサ42~45が収集したデータをメモリシステム47に保存し、センサ42~45が収集したデータに基づいて車体制御モジュール48を制御して車両の動きを決定することができる。メモリシステム47は、2つ以上のメモリ装置と、メモリ装置を制御するためのシステムコントローラとを含んでもよい。メモリ装置のそれぞれは、1つの半導体チップとして提供されるようにしてもよい。
メモリシステム47のシステムコントローラの他に、メモリシステム47に含まれるメモリ装置のそれぞれは、メモリコントローラを含んでもよく、メモリコントローラは、ニューラルネットワークなどの人工知能(AI)演算回路を含んでもよい。メモリコントローラは、センサ42~45又はプロセッサ46から受信したデータに所定の重みを与えて演算データを生成し、演算データをメモリチップに保存することができる。
図3は自律走行装置が搭載された自律走行車両のセンサ(カメラを含む)が取得した映像データの一例を示す図である。図3を参照すると、映像データ50は、自律走行車両の前面に装着されたセンサが取得したデータであってもよい。よって、映像データ50は、自律走行車両の前面部51、自律走行車両と同じ車路の先行車両52、自律走行車両周辺の走行車両53、背景54などを含むことができる。
図3に示す実施形態による映像データ50において、自律走行車両の前面部51及び背景54が表示される領域のデータは、自律走行車両の運行に影響を及ぼす可能性がほとんどないデータであり得る。言い換えれば、自律走行車両の前面部51及び背景54は、相対的に低い重要度を有するデータとみなすことができる。
それに対して、先行車両52との距離、走行車両53の車路変更の動きなどは、自律走行車両の安全な運行において非常に重要な要素であり得る。よって、映像データ50において、先行車両52や走行車両53などが含まれる領域のデータは、自律走行車両の運行において相対的に高い重要度を有することができる。
自律走行装置のメモリ装置は、センサから受信した映像データ50の領域毎に異なる重みを与えて保存することができる。一例として、先行車両52や走行車両53などが含まれる領域のデータには高い重みを与え、自律走行車両の前面部51及び背景54が表示される領域のデータには低い重みを与えることができる。
以下、様々な実施形態による動作は、自律走行装置又は自律走行装置に含まれるプロセッサにより行われるものと理解することができる。
自律走行車両が走行する車路は、様々なマーキングを含んでもよい。例えば、車路は、車線、横断歩道、停止線などのマーキングを含んでもよい。様々なマーキングのうち、横断歩道は、歩行者が車路を横切って渡るように車路上に設けられた道である。
自律走行車両は、車両の進行方向の車路信号が赤である場合は停止線で停止するように、車路信号が緑である場合は走行するように制御されることを基本にし、走行中に横断歩道の近くで歩行者が認識された場合は車路信号に関係なく減速又は停止するように制御されるが、そのような制御方式は、横断歩道の近くに該当する所定の領域が適切に設定されないと、減速が必要でない状況で急減速が発生して自律走行車両の後方に危ない状況が生じることや、減速が必要な状況で十分に減速しないことから自律走行車両の前方及び側方に危ない状況が生じることがある。さらに、歩行者認知情報が不正確であると、減加速が一貫して発生しなくなり、乗り心地を悪化させることがある。このような面から、本開示は、自律走行車両が横断歩道を通過する状況で車両と歩行者の安全性及び乗り心地の両方を考慮した仮想停止線を生成する方法、並びにそれにより車両を制御する方法を提供することができる。
以下、本発明の一実施形態による仮想停止線生成装置(以下、「走行計画装置」という)は自律走行車両を意味することができ、後述するように、車両の内部に組み込まれるか又は別に備えられる装置であってもよい。
図4及び図5は一実施形態による車両の走行経路周辺の環境を概略的に示す例示図である。
図4を参照すると、車両400の走行経路周辺には、横断歩道及び1つ以上の歩行者410、420、430、440が存在することがある。車両400が安全に走行するためには、歩行者410、420、430、440の挙動を考慮しなければならない。
図5を参照すると、車両500の走行経路510の前方には、横断歩道及び歩行者550だけでなく、車両520、530、540を含む様々なオブジェクトが存在することがある。車両500が安全に走行するためには、歩行者550の挙動だけでなく、他の車両520、530、540の走行状態を共に考慮しなければならない。
よって、本発明による走行計画装置は、車両500の走行において考慮すべき範囲を関心領域560に設定し、関心領域560に基づいて車両500の走行速度を決定することができる。しかし、走行計画装置は、関心領域560に含まれないオブジェクト550までも考慮して走行速度を決定することができ、走行計画装置が走行速度を決定するか又は車両500を制御するために考慮する範囲はそれに限定されない。
一実施形態において、走行計画装置は、走行経路510の前方の所定の領域である関心領域560を取得することができる。走行計画装置は、関心領域560に含まれるオブジェクト520、530、540のみを考慮して車両500の走行速度を決定することができる。図5には関心領域560に車両のみが含まれることが示されているが、関心領域560には歩行者が含まれることもある。言い換えれば、関心領域560に含まれるオブジェクト520、530、540は、車両だけでなく、歩行者も含むことができる。関心領域560を設定する方法については、図7を用いて後述する。
図6は一実施形態によるターゲット横断歩道を決定する過程を説明するための図である。
図6を参照すると、走行計画装置は、走行経路上の1つ以上の横断歩道610、620を認識することができる。例えば、走行計画装置は、映像及び/又はビジョンセンサに基づいて1つ以上の横断歩道610、620を認識することができる。あるいは、走行計画装置は、交通情報を受信し、交通情報及び車両の位置に基づいて1つ以上の横断歩道610、620を認識することができる。
走行計画装置は、1つ以上の横断歩道610、620の中からターゲット横断歩道を決定することができる。
ターゲット横断歩道とは、走行計画装置が仮想停止線を生成するために最優先で考慮すべき横断歩道を意味することができる。例えば、ターゲット横断歩道とは、車両の前方の走行経路上で最も近接した横断歩道を意味することができる。
一実施形態において、走行計画装置は、車両の現在位置を基準としてどの横断歩道を通過しているかを判断し、ターゲット横断歩道を決定することができる。よって、走行計画装置は、車両が先に通過するか、又は車両の走行経路の前方で最も近接した横断歩道420をターゲット横断歩道として決定することができる。
図7は一実施形態による関心領域を設定する過程を説明するための図である。
図7を参照すると、車両が走行する環境は、走行経路700、ターゲット横断歩道720などを含むことができる。例えば、走行経路700は、車両が現在走行している車路の幅の中間地点を連結した経路であってもよい。あるいは、走行経路700は、交通情報の生成時に取得した走行経路ノードの開始ノード及び終了ノードの中間地点を連結した経路であってもよい。
一実施形態において、走行計画装置は、ターゲット横断歩道720との距離710を取得することができる。一例として、ターゲット横断歩道720との距離710は、車両の現在位置からターゲット横断歩道720又はターゲット横断歩道720に対応する停止線(図示せず)までの走行経路700上の距離に該当するものであってもよい。走行経路700が曲線である場合、走行経路700上の距離と絶対距離(直線距離)とは異なることがある。他の例として、ターゲット横断歩道720との距離710は、前記絶対距離(直線距離)を意味するものであってもよい。
さらに他の例として、ターゲット横断歩道720との距離710は、車両内のカメラ又はセンサが搭載された位置からターゲット横断歩道720までの距離に該当するものであってもよい。あるいは、ターゲット横断歩道720との距離710は、車両の最前端又は車両の最後端からターゲット横断歩道720までの距離に該当するものであってもよい。
一実施形態において、走行計画装置は、ターゲット横断歩道720の幅(width)721及びターゲット横断歩道720の横断長さ(crossing length)722を取得することができる。幅721は、ターゲット横断歩道720の広さに該当するものであってもよく、横断長さ722は、歩行者がターゲット横断歩道720を通って車路を横切って渡る長さに該当するものであってもよい。
図8及び図9はカーテシアンフレーム(Cartesian Frame)とフレネフレーム(Frenet Frame)を示す図である。
図8を参照すると、カーテシアンフレームとは、互いに直交する軸を用いて座標平面又は座標空間を示す座標系を意味する。道路の走行環境をカーテシアンフレームで構成する場合、道路の形状に関係なく、x軸(x-axis)及びy軸(y-axis)が形成されるようにすることができる。
図9を参照すると、フレネフレームとは、単位接線ベクトル(Unit Tangent Vector)、単位法線ベクトル(Unit Normal Vector)、従法線ベクトル(Binormal Vector)で定義された座標系を意味し、曲率を有する曲線の動きを描写することができる。道路の走行環境をフレネフレームで構成する場合、道路の形状の方向にs軸(s-axis)が形成され、道路に対して垂直方向にd軸(d-axis)が形成されるようにすることができる。すなわち、s座標は、走行長さを示し、d座標は、走行経路から横方向にどのくらい離れているかを示すことができる。図9においては、走行経路の開始点がs=0、d=0に設定されているが、それはフレームの設定に応じて変化させることができる。
フレネフレームは、走行長さがs軸座標で説明されるので、走行経路を数学的により簡単に表現することができ、直観的で便利である。また、フレネフレームは、軌道にカーテシアン座標系を割り当てることが複雑又は困難な場合に有用である。
再び図7に戻って、走行計画装置は、ターゲット横断歩道720の幅721及び横断長さ722をフレネフレーム(Frenet frame)ベースのパラメータにより取得することができる。例えば、走行計画装置は、フレネフレームをベースに表現されたターゲット横断歩道720を取得し、前記パラメータを用いて幅721及び横断長さ722を取得することができる。
走行計画装置は、ターゲット横断歩道720に関する関心領域730を設定することができる。関心領域730とは、ターゲット横断歩道720付近の所定の領域であって、車両が仮想停止線を生成する際に考慮すべき領域を意味することができる。例えば、走行計画装置は、関心領域730内の歩行者のみを考慮して仮想停止線を生成し、関心領域730外の歩行者は考慮しなくてもよい。
一実施形態において、走行計画装置は、ターゲット横断歩道720を用いて関心領域730のマージン(margin)741、742、751、752を設定し、それを用いて関心領域730を設定することができる。
関心領域730のマージン741、742、751、752は、関心領域730の大きさ及び位置を決定するための一要素であり、マージンを大きく設定するほど、関心領域730が広くなるので、安全性を高めることができ、マージンを小さく設定するほど、関心領域730が細くなるので、装置の演算量を減らして効率的な走行を可能にすることができる。本開示において、走行計画装置は、ターゲット横断歩道720との距離710に基づく関心領域730の設定により安全性、乗り心地及び効率性を図る方法を提示する。
一実施形態において、走行計画装置は、ターゲット横断歩道720との距離710が遠いほど、関心領域730のマージン741、742、751、752を大きく設定し、ターゲット横断歩道720との距離710が近いほど、関心領域730のマージン741、742、751、752を小さく設定することができる。
走行計画装置による歩行者及び歩行者の位置の認知は、車両の現在位置がターゲット横断歩道720から遠いほど比較的不正確であり、ターゲット横断歩道720に近いほど比較的正確である。よって、ターゲット横断歩道720との距離710に応じて関心領域730のマージン741、742、751、752が異なるように設定することにより、遠距離で予め仮想停止線を生成して急減速による乗り心地の低下を防止すると共に歩行者の位置誤差を考慮した安全性を図ることができ、近距離で関心領域730のマージン741、742、751、752を小さくして道路境界に歩行者が立っている場合に発生し得るデッドロック(Deadlock)を防止することで安全性及び走行効率性を図ることができる。
他の実施形態において、走行計画装置は、車両の速度が速いほど、関心領域730のマージン741、742、751、752を大きく設定し、車両の速度が遅いほど、関心領域730のマージン741、742、751、752を小さく設定することができる。車両の速度が速いほど、走行計画装置が関心領域730内の歩行者を認知することが比較的不正確であり、関心領域730のマージン741、742、751、752が大きくない場合、急減速することなく減速又は停止することが困難である。よって、車両の速度が速いほど、関心領域730のマージン741、742、751、752を大きく設定することにより、安全性及び乗り心地を高めることができる。
一実施形態において、関心領域730のマージン741、742、751、752は、縦方向マージン741、742及び横方向マージン751、752を含んでもよい。本実施形態において、縦方向とは、走行経路700と平行な方向を意味することができ、横方向とは、走行経路700と垂直な方向を意味することができる。よって、縦方向マージン741、742とは、ターゲット横断歩道720の縦方向の両端から関心領域730の縦方向の両端までのマージンを意味し、横方向マージン751、752とは、ターゲット横断歩道720の横方向の両端から関心領域730の横方向の両端までのマージンを意味する。
一実施形態において、走行計画装置は、ターゲット横断歩道720の幅721及びターゲット横断歩道720との距離710に基づいて縦方向マージン741、742を設定することができる。例えば、走行計画装置は、ターゲット横断歩道720との距離710に比例して縦方向マージン741、742を設定することができる。あるいは、走行計画装置は、ターゲット横断歩道720の幅721に比例して縦方向マージン741、742を設定することができる。
このとき、走行計画装置は、ターゲット横断歩道720への進入縦方向マージン741とターゲット横断歩道720からの進出縦方向マージン742とが異なるように設定することができる。
同様に、一実施形態において、走行計画装置は、ターゲット横断歩道720の横断長さ722及びターゲット横断歩道720との距離710に基づいて横方向マージン751、752を設定することができる。例えば、走行計画装置は、ターゲット横断歩道720との距離710に比例して横方向マージン751、752を設定することができる。あるいは、走行計画装置は、ターゲット横断歩道720の横断長さ722に比例して横方向マージン751、752を設定することができる。
このとき、走行計画装置は、ターゲット横断歩道720への進入横方向マージン751とターゲット横断歩道720からの進出横方向マージン752とが異なるように設定することができる。
一実施形態において、走行計画装置は、関心領域730を任意の形態に設定することができる。例えば、走行計画装置は、関心領域730を道路の地形及び走行経路700の少なくとも一方を用いて決定される任意の形態に設定することができる。あるいは、走行計画装置は、関心領域730を既に決定された特定の形態に設定することができる。
一方、走行計画装置は、関心領域730及び関心領域730のマージン741、742、751、752をフレネフレームをベースに設定することができる。具体的には、関心領域730は、車両の進行経路を基準として横方向マージン及び縦方向マージンを有するので、関心領域730をフレネフレームベースのパラメータにより取得し、関心領域730のマージン741、742、751、752もフレネフレームをベースに設定することができる。
図10は一実施形態による仮想停止線を生成するか否かを決定する方法のフローチャートである。
一実施形態において、走行計画装置は、車両周辺に存在する近接オブジェクトを検知することができる。近接オブジェクトは、関心領域内のオブジェクトであることもあり、関心領域外のオブジェクトであることもある。例えば、走行計画装置は、カメラ、イメージセンサ、レーダー(RADAR)センサ、ライダー(LIDAR)センサなどの様々な撮影装置又はセンサを含むか又は別に備えてもよく、それらは、単独で又は融合された形態で車両周辺の近接オブジェクトの検知及び車両周辺に関する情報の収集に用いることができる。よって、検知されたオブジェクトは、撮影された画像の形状だけでなく、イメージセンサなどにより取得された複数の測定ポイントに該当することができる。また、車両周辺に関する情報は、認識データ及び状態データを含むことができる。近接オブジェクトは、歩行者だけでなく、他の車両を含むことができる。
一実施形態において、走行計画装置は、関心領域内の歩行者の位置に基づいて仮想停止線を生成するか否かを決定することができる。走行計画装置が、歩行者が関心領域内にいるか否かのみで車両が減速又は停止するように制御すると、効率性が劣り、車路に車両が多い場合はかえって安全性を低下させることがある。後述する本開示においては、走行計画装置が関心領域内の歩行者に関するコスト関数を算出して仮想停止線を生成するか否かを決定するか、又はターゲット横断歩道との距離に基づいて仮想停止線を生成するか否かを決定することにより、制御安定性を高めることができる。
図10を参照すると、ステップ1010において、走行計画装置は、関心領域内の歩行者を認識することができる。
ステップ1020において、走行計画装置は、前記歩行者が第1領域又は第2領域に位置するか否かを判断することができる。例えば、走行計画装置は、歩行者が横断歩道内にいるか否かを判断することができる。
一実施形態において、走行計画装置は、歩行者が第1領域に位置すると判断したことに応答して、仮想停止線を生成すると決定することができる(ステップ1030)。第1領域とは、ターゲット横断歩道の内部領域を意味することができる。このとき、走行計画装置は、仮想停止線を生成して車両を減速するように制御することができる。
他の実施形態において、走行計画装置は、歩行者が第2領域に位置すると判断したことに応答して、ターゲット横断歩道との距離に基づいて仮想停止線を生成するか否かを再び決定することができる。第2領域とは、ターゲット横断歩道の外部領域と関心領域の内部領域の交集合に該当する領域を意味することができる。走行計画装置は、仮想停止線を生成するか否かの決定において、ターゲット横断歩道との距離が所定の距離以上である場合、仮想停止線を生成すると決定し、ターゲット横断歩道との距離が所定の距離未満である場合、仮想停止線を生成しないと決定することができる。すなわち、歩行者が関心領域内にいても、車両から近距離に位置する場合、仮想停止線を生成しないと決定することができる。
ステップ1040において、走行計画装置は、歩行者に関するコスト関数を算出して閾値と比較し、それに基づいて仮想停止線を生成するか否かを決定することができる。コスト関数は、走行経路に対する歩行者の垂直距離及び垂直速度の1つ以上に基づいて算出することができる。走行経路に対する歩行者の垂直距離及び垂直速度とは、走行経路が縦方向であると仮定したとき、歩行者の横方向距離及び横方向速度を意味することができる。すなわち、走行計画装置は、歩行者が走行経路から横方向にどのくらい離れているか、横方向にどのくらい速く移動するかを考慮して、コスト関数を算出することができる。
一実施形態において、走行計画装置は、走行経路に対する歩行者の垂直距離に応じたコスト及び走行経路に対する歩行者の垂直速度に応じたコストを考慮して、コスト関数を算出することができる。走行計画装置は、前記コスト以外の他の要素を考慮することができ、それに限定されるものではない。
一実施形態において、走行計画装置は、前記コストを考慮する上で、走行経路に対する歩行者の垂直距離を前述したフレネフレームベースのパラメータにより取得することができる。
一実施形態において、走行計画装置は、走行経路に対する歩行者の垂直距離に応じたコストの算出において、走行経路に対する歩行者の垂直距離及び垂直距離の分散の1つ以上を考慮することができる。また、走行計画装置は、走行経路に対する歩行者の垂直速度に応じたコストの算出において、歩行者の一般的な歩速(遅い歩速及び速い歩速)、走行経路に対する歩行者の垂直速度及び垂直速度の分散の1つ以上を考慮することができる。
一実施形態において、走行計画装置は、ガウス分布(Gaussian distribution)状にコスト関数を算出することができる。具体的には、走行計画装置は、走行経路に対する歩行者の垂直距離、走行経路に対する歩行者の垂直速度及びその他の要素に基づいて、ガウス分布状にコスト関数を算出することができる。
一実施形態において、走行計画装置は、コスト関数が閾値以上である場合、仮想停止線を生成し(ステップ1050)、コスト関数が閾値未満である場合、仮想停止線を生成しない(ステップ1060)ようにすることができる。
このように、走行計画装置がコスト関数に基づいて仮想停止線を生成するか否かを決定することにより、仮想停止線を生成して減速する方法に合理的な制限要素を加味するという効果がある。
図11~図13は一実施形態による関心領域を設定する方法及び仮想停止線を生成するか否かを決定する方法の実現を示す例示図である。
図11を参照すると、図10のステップ1020及びステップ1030で上述したように、走行計画装置は、歩行者1111が第1領域1112に位置すると判断したことに応答して仮想停止線1113を生成することができる。本発明の仮想停止線を生成する方法によれば、走行計画装置は、車両が歩行者1111から遠距離にあるときから予め仮想停止線1113を生成して減速しながら接近することになるので、歩行者1111が近距離で第1領域1112に位置すると判断して仮想停止線1113を生成した場合も急減速することなく停止することができる。
図12は車両がターゲット横断歩道から遠距離にある場合の実現を示す例示図であり、図13は車両がターゲット横断歩道から近距離にある場合の実現を示す例示図である。
以下、図12及び図13を比較して参照すると、走行計画装置は、ターゲット横断歩道との距離が遠いほど、関心領域のマージンを大きくし、その結果、関心領域が広くなることを確認することができる。また、走行計画装置は、関心領域内の第2位置、すなわちターゲット横断歩道の外部領域に位置する歩行者に対して、ターゲット横断歩道との距離が所定の距離以上である場合(遠距離)、仮想停止線を予め生成して接近し、ターゲット横断歩道との距離が所定の距離未満である場合(近距離)、仮想停止線を生成せず、ターゲット横断歩道を通過することを確認することができる。
一方、走行計画装置は、近距離にある場合でも、遠距離で予め仮想停止線を生成して減速したはずであるので、ターゲット横断歩道付近を高速で通過しなくなり、安全性を図ることができる。
再び図5に戻って、一実施形態において、走行計画装置は、最近接オブジェクト540を検知することができる。最近接オブジェクト540とは、走行経路510上で走行中の近接オブジェクトのうち車両500に最も近い近接オブジェクトであって、関心領域560内に存在するオブジェクトを意味する。
一方、走行計画装置は、近接オブジェクト520、530、540、550の検知において、近接オブジェクトの挙動予測情報を共に取得することができる。挙動予測情報とは、オブジェクトの位置情報及び速度情報の両方を考慮してオブジェクトの近い未来の挙動を予測した情報を意味する。
車両500の位置は最近接オブジェクト540の位置より先になることができないので、走行計画装置が車両500の走行速度を計画する上で、最近接オブジェクト540の位置及び挙動を必ず考慮しなければならない。よって、走行計画装置は、最近接オブジェクト540が検知されると、最近接オブジェクト540の挙動予測情報に基づいて車両500の走行速度を計画することができる。
一実施形態において、走行計画装置は、関心領域560に基づいて近接オブジェクト520、530、540、550の関連度を設定することができる。関連度は、車両500と近接オブジェクト520、530、540、550との相互連関性を反映する数値であり、走行計画装置が走行速度を計画する際に近接オブジェクト520、530、540、550の位置及び挙動をどのくらい考慮すべきかを示す指標となり得る。例えば、ある近接オブジェクト520の走行経路との距離521が近い場合、走行速度を計画する上で、当該近接オブジェクト520の位置及び挙動に重みを付けて反映する必要があるので、走行計画装置は、当該近接オブジェクト520の関連度を高く設定することができる。
同様に、ある近接オブジェクト550の走行経路との距離(図示せず)が遠い場合、又はある近接オブジェクト550が関心領域560に存在しない場合、走行計画装置は、走行速度を計画する上で、当該近接オブジェクト550の位置及び挙動を全く考慮しないか、非常に少ない重みを付けて反映することができる。よって、走行計画装置は、近接オブジェクト550が関心領域560内に存在しない場合、当該近接オブジェクト550の関連度を0に設定することができる。
一方、走行計画装置は、車両500及び近接オブジェクト520、530、540、550の幅(width)を反映して走行経路との距離522を取得することができる。例えば、走行計画装置は、各オブジェクト自体の体積が占める空間を除いて近接オブジェクト520の走行経路との距離522を取得することができる。
走行計画装置が車両の走行速度を計画する際に、単に関心領域に他のオブジェクトが含まれるか含まれないか2進法(Binary)的に判断して異質感のある感速/加速を行うのではなく、他のオブジェクトとの関連度を設定し、その連続的(Continuous)な関連度に応じてどのくらい感速/加速を行うかを決定する過程により、安全性及び乗り心地を改善することができる。
一実施形態において、走行計画装置は、近接オブジェクト520、530、540が関心領域560内に存在する場合、当該近接オブジェクト520、530、540の走行経路との距離に反比例するように関連度を設定することができる。例えば、図5において、特定の近接オブジェクト530の走行経路との距離(図示せず)が他の近接オブジェクト520の走行経路との距離521より近いので、走行計画装置は、各走行経路との距離に反比例するように、当該近接オブジェクト530の関連度を他の近接オブジェクト520の関連度より高く設定することができる。
一実施形態において、走行計画装置は、最近接オブジェクト540が検知されると、最近接オブジェクト540の関連度を1に設定することができる。こうすることにより、前述したように、最近接オブジェクト540の位置及び挙動を最大限に反映して最近接オブジェクト540との安全距離を維持するように、車両500の走行速度を計画することができる。
再び図4に戻って、一実施形態において、歩行者410、420、430、440は、それぞれに対応する歩行者意図ベクトル及び歩行者意図を有することができる。
歩行者意図ベクトルは、歩行者が有し得る複数の意図(intention)に関する確率分布を推定した、正規化された(Normalized)ベクトルであってもよく、複数の意図に対応する次元を有するベクトルである。また、歩行者意図は、歩行者410、420、430、440の意図の推定値であって、観測できず(Unobservable)、アクションの数が有限な不連続(Discrete)の空間で定義することができる。
一実施形態において、複数の意図は、車両400の走行経路を横断しようとする第1意図を含むことができる。例えば、走行計画装置は、任意の歩行者430の座標に応じた横位置、縦位置、横速度、縦速度などに基づいて歩行者430が車両400の走行経路を横断しようとする意図である確率が高いと判断すると、当該歩行者430の歩行者意図ベクトルの第1意図に高い数値を算定することができる。
一実施形態において、複数の意図は、車両400の走行経路を横断せずに待機しようとする第2意図を含むことができる。例えば、走行計画装置は、任意の歩行者410の座標に応じた横位置、縦位置、横速度、縦速度などに基づいて歩行者410が車両400の走行経路を横断せずに待機しようとする意図である確率が高いと判断すると、当該歩行者410の歩行者意図ベクトルの第2意図に高い数値を算定することができる。
一実施形態において、複数の意図は、第1意図及び第2意図を除く第3意図を含むことができる。例えば、走行計画装置は、任意の歩行者420、440の座標に応じた横位置、縦位置、横速度、縦速度などに基づいて歩行者420、440が車両400の走行経路を横断しようとする意図及び横断せずに待機しようとする意図を除く、車両400の走行に考慮する要素にならない意図である確率が高いと判断すると、当該歩行者420、440の歩行者意図ベクトルの第3意図に高い数値を算定することができる。
一実施形態において、走行計画装置は、歩行者意図ベクトルの最大値に対応する意図を歩行者意図として推定又は決定することができる。例えば、第1意図を「CROSSING」、第2意図を「WAIT」、第3意図を「NONE」とすると、歩行者意図ベクトルは、{CROSSING,WAIT,NONE}のように定義することができる。走行計画装置が車両400周辺のある歩行者430の歩行者意図を推定して車両400の走行経路を横断しようとする意図である確率が高いと判断したと仮定すると、当該歩行者430の歩行者意図ベクトルは{0.8,0.15,0.05}のように算出することができ、歩行者意図ベクトルの複数の意図(CROSSING,WAIT,NONE)の中から最大値0.8に対応する第1意図を当該歩行者430の歩行者意図として推定又は決定することができる。
図14は一実施形態による歩行者意図推定を活用して走行速度を決定する方法の概念図である。
図14を参照すると、走行計画装置は、認識モジュール(Observer)1410、歩行者意図推定モジュール(Pedestrian Intention Estimator)1420及び走行速度決定モジュール(Motion Planner)1430を含んでもよい。説明の便宜上、各モジュールが別の機能を実行することを述べるが、各モジュールは、同じ機能を実行するものであってもよく、分離されたモジュールではなくてもよい。
一実施形態において、認識モジュール1410は、車両周辺の歩行者を認識して認識データ1440及び状態データ1440を取得し、歩行者意図推定モジュール1420に送信することができる。
一実施形態において、認識モジュール1410は、車両周辺の他の車両及び歩行者を含むオブジェクトを検出し、検出されたオブジェクトの中から歩行者を識別することにより歩行者を認識し、認識データ1440及び状態データ1440を歩行者意図推定モジュール1420に送信することができる。
一実施形態において、認識モジュール1410は、状態空間(State space)で状態データ1440を取得することができる。状態データ1440とは、周辺環境の現在状態に関する全ての情報を意味する。すなわち、周辺環境と状態データ1440とは、1つの時点で同じ意味を示すことができる。例えば、状態空間は、歩行者の横位置及び縦位置を含む座標情報と、歩行者の横速度及び縦速度を含む速度情報とを含んでもよい。
また、状態空間は、歩行者の現在時点の歩行者意図(図示せず)を含んでもよい。具体的には、現在時点の歩行者意図(図示せず)とは、前の時点で走行計画装置が推定した歩行者意図を意味することができる。前の時点及び現在時点については後述する。
一実施形態において、認識モジュール1410は、認識(又は観測)空間(Observation space)で認識データ1440を取得することができる。認識データ1440は、状態データ1440の部分集合であって、状態データ1440と比較して一部の情報を有しないものであり得る。例えば、認識空間は、歩行者の横位置及び縦位置を含む座標情報と、歩行者の横速度及び縦速度を含む速度情報とを含んでもよい。一方、状態空間とは異なり、認識空間には、観測できず、不連続の空間で定義される歩行者意図は含まれない。
一実施形態において、歩行者意図推定モジュール1420は、認識モジュール1410から受信した認識データ1440及び状態データ1440の少なくとも1つにより、歩行者意図ベクトルを更新することができる。
一実施形態において、走行計画装置は、更新周期を決定することができる。更新周期とは、歩行者意図を更新して車両の走行速度を決定する周期を意味することができる。更新周期が決定されることにより、認識モジュール1410が認識データ1440及び状態データ1440を取得する時点が決定され、また、歩行者意図推定モジュール1420が歩行者意図ベクトルを更新するか又は歩行者意図1450を推定する時点が決定される。言い換えれば、認識モジュール1410が認識データ1440及び状態データ1440を取得するとは、現在時点の認識データ1440及び現在時点の状態データ1440を取得することを意味することができる。
一方、現在時点を基準として1回の更新周期が終わった時点を次の時点と定義することができ、現在時点を基準として1回の更新周期以前の時点を前の時点と定義することができる。よって、走行計画装置が更新周期を決定することにより、次の時点を取得することができる。
一実施形態において、歩行者意図推定モジュール1420は、更新周期に基づいて、現在時点の歩行者意図ベクトルを次の時点の歩行者意図ベクトルに更新することができる。
例えば、歩行者意図推定モジュール1420は、現在時点の歩行者意図ベクトルを次の時点の歩行者意図ベクトルに更新するために、ベイズの定理(Bayes’ Rule)を適用することができる。ベイズの定理は、2つの確率変数の事前確率と事後確率との関係を示す規則である。ベイズの定理を用いると、観測して値を求めることができる事前確率から、不確実性を内包する事後確率を算出することができる。よって、歩行者意図推定モジュール1420は、ベイズの定理を用いて現在時点の認識データ1440及び/又は現在時点の歩行者意図ベクトルから次の時点の歩行者意図ベクトルを算出し、現在時点の歩行者意図ベクトルを次の時点の歩行者意図ベクトルに更新することができる。
例えば、歩行者意図推定モジュール1420は、現在時点の認識データ1440を入力とする観測関数(Observation probability function)及び現在時点の状態データ1440を入力とする状態遷移関数(Transition probability function)に基づいて、次の時点の状態データが取得される確率を算出することができる。
状態遷移関数とは、現在時点の状態データ1440に対して次の時点の状態データが取得される確率を算出する関数を意味する。具体的には、状態遷移関数は、現在時点の状態データ1440を標本空間として次の時点の状態データが取得される条件付き確率を算出する関数であり得る。よって、状態遷移関数は、現在時点の状態データ1440及び現在時点の歩行者意図ベクトルに関する関数であり得る。
観測関数とは、次の時点の状態データに対して現在時点の認識データ1440が取得される確率を算出する関数を意味する。具体的には、観測関数は、次の時点の状態データを標本空間として現在時点の認識データ1440が取得される条件付き確率を算出する関数であり得る。
一実施形態において、状態遷移関数及び観測関数は、ガウス分布(Gaussian Distribution)を活用して体験的にデザインされた関数であり得る。あるいは、観測関数は、歩行者に対する認知性能、標準偏差、ノイズの程度など、認識モジュール1410の性能指標に基づいてデザインされた関数であり得る。
まとめると、歩行者意図推定モジュール1420は、現在時点の認識データ1440及び現在時点の歩行者意図ベクトルに対して、次の時点の状態データが取得される確率を算出することができる。
一実施形態において、歩行者意図推定モジュール1420は、前記算出した次の時点の状態データが取得される確率に基づいて、現在時点の歩行者意図ベクトルを次の時点の歩行者意図ベクトルに更新することができる。次の時点の歩行者意図ベクトルは、次の時点で歩行者が有し得る複数の意図の確率分布を推定したベクトルである。
一実施形態において、走行計画装置は、歩行者挙動モデル(Pedestrian behavior model)に基づいて、現在時点の歩行者意図ベクトルを次の時点の歩行者意図ベクトルに更新することができる。歩行者挙動モデルは、歩行者の特性及び行動パターンを分析し、現在時点の挙動に基づいて次の時点の挙動を予測するモデルである。具体的には、各歩行者意図に対応して存在する歩行者挙動モデルを用いると、歩行者意図ベクトルに対して次の時点の挙動を予測することができ、予測された挙動に基づいて状態遷移関数及び観測関数から複数の意図の確率を算出することができる。
走行計画装置は、歩行者挙動モデルに基づいて歩行者の次の時点での複数の意図のそれぞれの確率を決定することができ、それにより、歩行者意図ベクトルを更新することができる。すなわち、走行計画装置は、歩行者挙動モデルを活用して状態遷移関数をデザインし、歩行者意図ベクトルを更新することができる。
一実施形態において、歩行者意図推定モジュール1420は、更新された歩行者意図ベクトルに基づいて次の時点の歩行者意図1450を推定し、推定した次の時点の歩行者意図1450を走行速度決定モジュール1430に送信することができる。
例えば、歩行者意図推定モジュール1420は、更新された歩行者意図ベクトルの最大値に対応する意図を次の時点の歩行者意図1450として推定することができる。具体的には、歩行者意図ベクトルが{CROSSING,WAIT,NONE}に定義され、ある歩行者の次の時点の歩行者意図ベクトルが{0.8,0.15,0.05}である場合、当該歩行者の次の時点の歩行者意図1450は「CROSSING」であり得る。
図15は一実施形態による歩行者の第1~第3意図を説明するための図である。
走行計画装置は、車両1500の周辺で第1意図として推定される歩行者1530、第2意図として推定される歩行者1510、及び第3意図として推定される歩行者1520、1540を認識することができる。図15の車両1500及び歩行者1510、1520、1530、1540に関する説明のうち、図4の車両400及び歩行者410、420、430、440に関する説明と重複する説明は省略する。
搭乗者及び歩行者1510、1520、1530、1540の全てに安全な走行計画を提供するためには、走行計画装置が車両1500の走行速度を決定する上で、歩行者1510、1520、1530、1540の意図を考慮しなければならない。
第1意図として推定される歩行者1530は、歩行者1530の現在時点の横位置及び縦位置と歩行者1530の現在時点の横速度及び縦速度からみて、次の時点で車両1500の走行経路上に位置する確率が高いので、歩行者挙動モデルに基づいて算出した歩行者意図ベクトルのうち、第1意図が最大値を有することができる。
第2意図として推定される歩行者1510は、前述したように、歩行者1510の現在時点の情報からみて、次の時点で車両1500の走行経路上に位置する確率が低いが、走行経路との距離が近いか、近い時点で走行経路上に位置する所定の確率があるので、歩行者挙動モデルに基づいて算出した歩行者意図ベクトルのうち、第2意図が最大値を有することができる。
第3意図として推定される歩行者1520、1540は、歩行者1520、1540の現在時点の情報からみて、次の時点で車両1500の走行経路上に位置する確率がないか又は走行経路とは逆方向の速度を有し、車両1500の走行速度の計画に考慮する必要がないので、歩行者挙動モデルに基づいて算出した歩行者意図ベクトルのうち、第3意図が最大値を有することができる。
一実施形態において、走行計画装置は、歩行者意図ベクトルの最大値に対応する意図、すなわち歩行者1530の次の時点の歩行者意図を第1意図として推定し、歩行者1510の次の時点の歩行者意図を第2意図として推定し、歩行者1520、1540の次の時点の歩行者意図を第3意図として推定することができる。
一実施形態において、走行速度決定モジュールは、歩行者意図推定モジュールから受信した次の時点の歩行者意図を考慮して車両の走行速度を決定することができる。
例えば、走行速度決定モジュールは、推定された歩行者意図から歩行者1510、1520、1530、1540の重みを決定し、歩行者1510、1520、1530、1540の重みに基づいて車両の走行速度を決定することができる。
図15を参照すると、走行計画装置は、第1意図として推定される歩行者1530に第2意図として推定される歩行者1510よりさらに大きい重みを与えるように決定することができる。また、走行計画装置は、第2意図として推定される歩行者1510に第3意図として推定される歩行者1520、1540よりさらに大きい重みを与えるように決定することができる。
歩行者1510、1520、1530、1540に与えられる重みは、車両1500の走行速度の決定において当該歩行者の挙動をどのくらい反映するかを決定することができる。一実施形態において、第1意図として推定される歩行者1530に対しては、保守的に加速及び減速を決定することができ、第2意図として推定される歩行者1510に対しては、不確実性(uncertainty)を有して走行速度を決定することができ、第3意図として推定される歩行者1520、1540の挙動は、比較的少なく反映するか、ほとんど考慮せずに走行速度を決定することができる。
一実施形態において、走行計画装置は、更新周期に基づいて決定された各時点毎に、前述したステップ又は前述した実施形態を繰り返すことができる。例えば、走行計画装置は、各時点毎に歩行者1510、1520、1530、1540を認識して現在時点の認識データ及び現在時点の状態データを取得し、それにより、歩行者1510、1520、1530、1540が有し得る次の時点の複数の意図の確率分布を推定して歩行者意図ベクトルを更新し、更新された歩行者意図ベクトルに基づいて次の時点の歩行者意図を推定し、それを考慮して車両1500の走行速度を決定することができる。走行計画装置は、決定された走行速度で次の時点まで走行し、その後、次の時点で前記ステップを繰り返すことにより、現在時点を基準として2回の更新周期が経過した時点での車両1500の走行速度を決定することができる。こうすることにより、各時点毎に変化する歩行者1510、1520、1530、1540の意図が反映されるように走行速度を決定することができる。
一実施形態において、「CROSSING」とは第1意図を意味し、「WAIT」とは第2意図を意味し、「NONE」とは第3意図を意味すると仮定すると、走行計画装置は、第1意図として推定される歩行者に最も大きい重みを与えて走行速度を決定することができる。また、走行計画装置は、第2意図として推定される歩行者に第3意図として推定される歩行者よりさらに大きい重みを与えて走行速度を決定することができ、走行計画装置は、第3意図として推定される歩行者に最も小さい重みを与えて走行速度を決定することができる。言い換えれば、走行計画装置は、第1意図として推定される歩行者に対しては保守的な重みを与え、第3意図として推定される歩行者に対しては車両1500との距離が遠くなるほど急激に低くなる重みを与え、走行速度を決定することができる。しかし、走行計画装置が歩行者の重みを決定する方法はそれに限定されるものではない。
図16は一実施形態による最近接オブジェクトの挙動予測情報に基づいて車両の走行速度を計画する方法を説明するための図である。
図16を参照すると、関心領域内に車両1610の走行経路上で走行するオブジェクトのうち最も近い最近接オブジェクト1620が存在する場合を仮定することができる。このとき、一実施形態において、走行計画装置は、車両1610の標準位置プロファイル1630、最近接オブジェクト1620の挙動予測情報、及び最近接オブジェクト1620の関連度の少なくとも1つに基づいて、参照位置プロファイル1650を決定することができる。
具体的には、走行計画装置は、最近接オブジェクト1620が存在する場合、最近接オブジェクト1620の関連度又は挙動予測情報に基づいて標準位置プロファイル1630を補正することにより補正位置プロファイル1650を導出し、補正位置プロファイル1650を用いて参照位置プロファイル1650を決定することができる。図16による本実施形態においては、近接オブジェクト1620が1つであるので、補正位置プロファイル1650をそのまま参照位置プロファイル1650として決定することができる。
位置プロファイルとは、時間軸及び変位軸をそれぞれx軸(x-axis)及びy軸(y-axis)に設定し、任意のオブジェクトの時間に応じた変位の変化を反映したプロファイルを意味する。
一方、後述する近接オブジェクト、最近接オブジェクト及び第N周辺オブジェクトの位置プロファイルは、当該オブジェクトの挙動予測情報が時間-変位グラフで示された挙動予測プロファイルに対して、当該オブジェクトと車両との安全距離を反映して補正した位置プロファイルを意味することができる。例えば、図16において、最近接オブジェクト1620の位置プロファイル1640は、最近接オブジェクト1620の挙動予測情報が時間-変位グラフで示された最近接オブジェクト1620の挙動予測プロファイル1641に対して、車両1610と最近接オブジェクト1620との安全距離を反映して補正した位置プロファイルを意味することができる。
標準位置プロファイル1630は、車両1610の現在の走行速度が反映された位置プロファイルを意味することができる。あるいは、標準位置プロファイル1630は、車両1610周辺に近接オブジェクトがないか、又は関心領域内に近接オブジェクトがない場合、車両1610の走行に好ましい速度(例えば、走行中の道路に設定された最高制限速度の所定の割合に該当する速度)に対応する位置プロファイルを意味することができる。すなわち、標準位置プロファイル1630は、車両1610が希望速度(Desired speed)で走行する際の位置プロファイルを意味することができる。
補正位置プロファイル1650は、車両1610周辺に近接オブジェクト1620が存在する場合、各近接オブジェクト1620の挙動予測情報を反映して標準位置プロファイル1630を補正した位置プロファイルを意味する。すなわち、補正位置プロファイル1650は、各近接オブジェクトにより補正された位置プロファイルに該当するので、最近接オブジェクトを除く近接オブジェクトが複数である場合、前記近接オブジェクトの数に該当する複数の補正位置プロファイルを導出することができる。複数の補正位置プロファイルを導出する方法については図17及び図18に基づいて詳細に説明する。
参照位置プロファイル1650は、車両1610周辺に近接オブジェクト1620が存在する場合、近接オブジェクト1620全部の挙動予測情報を考慮して標準位置プロファイル1630を補正した位置プロファイルを意味する。一実施形態において、走行計画装置は、導出された補正位置プロファイル1650全部を用いて1つの参照位置プロファイル1650を決定することができる。
一実施形態において、走行計画装置は、車両1610の標準位置プロファイル1630を決定し、標準位置プロファイル1630を最近接オブジェクト1620の挙動予測情報に基づいて参照位置プロファイル1650を決定することができる。例えば、標準位置プロファイル1630と最近接オブジェクト1620の挙動予測情報から導出された最近接オブジェクト1620の位置プロファイル1640とが接する時点をtと定義すると、走行計画装置は、現在時点からtまでは標準位置プロファイル1630に一致し、t以降は最近接オブジェクト1620の位置プロファイル1640に一致するように、参照位置プロファイル1650を決定することができる。
このように決定された参照位置プロファイル1650を参照して後述する最終位置プロファイル(図示せず)を決定することにより、他のオブジェクトとの衝突のない安全な走行を可能にすることができる。
図17及び図18は一実施形態による近接オブジェクトの関連度に基づいて補正位置プロファイルを導出する過程を説明するための図である。
図17は走行計画装置が近接オブジェクトの関連度を0.4に設定したと仮定した場合、前記関連度に基づいて参照位置プロファイルを決定する過程を示す。
走行計画装置が車両の現在位置から20m前方に横方向に所定距離離れて停止している近接オブジェクトを見つけた場合、走行計画装置は、近接オブジェクトの位置プロファイル1711を図17のグラフのように取得することができる。このとき、走行計画装置は、標準位置プロファイルを近接オブジェクトの関連度に基づいて補正した補正位置プロファイル1710を導出することができる。
一実施形態において、走行計画装置は、標準位置プロファイルが近接オブジェクトの位置プロファイル1711に40%近接するように、補正位置プロファイル1710を導出することができる。例えば、標準位置プロファイルと近接オブジェクトの位置プロファイル1711とが接する時点をtと定義すると、走行計画装置は、現在時点からtまでは標準位置プロファイルに一致し、t以降は近接オブジェクトの位置プロファイル1711に40%近接するように、補正位置プロファイル1710を導出することができる。
関心領域内に存在する近接オブジェクトが1つであるので、走行計画装置は、前記導出した補正位置プロファイル1710を参照位置プロファイルとして決定することができる。
図18は走行計画装置が近接オブジェクトの関連度を0.8に設定したと仮定した場合、前記関連度に基づいて参照位置プロファイルを決定する過程を示す。
一実施形態において、走行計画装置が車両の現在位置から20m前方に横方向に所定距離離れて停止している近接オブジェクトを見つけた場合、走行計画装置は、近接オブジェクトの位置プロファイル1821を図18のグラフのように取得することができる。
このとき、走行計画装置は、標準位置プロファイルが近接オブジェクトの位置プロファイル1821に80%近接するように、補正位置プロファイル1820を導出することができる。例えば、標準位置プロファイルと近接オブジェクトの位置プロファイル1821とが接する時点をtと定義すると、走行計画装置は、現在時点からtまでは標準位置プロファイルに一致し、t以降は近接オブジェクトの位置プロファイル1821に80%近接するように、補正位置プロファイル1820を導出することができる。
関心領域内に存在する近接オブジェクトが1つであるので、走行計画装置は、前記導出した補正位置プロファイル1820を参照位置プロファイルとして決定することができる。
図19及び図20は一実施形態による複数の近接オブジェクトが存在する環境で参照位置プロファイルを決定する過程を示す図である。
走行計画装置は、車両1900の関心領域内で最近接オブジェクト1930を含む近接オブジェクト1910、1920、1930を検知することができる。以下、説明の便宜上、最近接オブジェクト1930を第1近接オブジェクトと定義し、最近接オブジェクト1930ではない近接オブジェクト1910、1920を第2近接オブジェクトと定義する。
一実施形態において、走行計画装置は、第1近接オブジェクト1930及び1つ以上の第2近接オブジェクト1910、1920の挙動予測情報及び関連度に基づいて標準位置プロファイル1901を補正することにより、1つ以上の補正位置プロファイル1911、1921を導出することができる。補正位置プロファイル1911、1921は、第2近接オブジェクト1910、1920のそれぞれに対応する。
走行計画装置は、第2近接オブジェクト1910に対応する補正位置プロファイル1911を導出するために、標準位置プロファイル1901、第2近接オブジェクト1910の位置プロファイル及び最近接オブジェクト1930の位置プロファイルを考慮する。よって、標準位置プロファイル1901と第2近接オブジェクト1910の位置プロファイルとが接する時点をtと定義し、標準位置プロファイル1901と最近接オブジェクト1930の位置プロファイルとが接する時点をtと定義する。
走行計画装置は、現在時点からtまでは標準位置プロファイル1901に一致し、tからtまでは第2近接オブジェクト1910の関連度に比例して第2近接オブジェクト1910の挙動予測情報に対応するように補正された位置プロファイルに対応し、t以降は最近接オブジェクト1930の挙動予測情報に対応するように、標準位置プロファイル1901を補正することにより、補正位置プロファイル1911を導出することができる。一実施形態において、第2近接オブジェクト1910の関連度が0.2である場合、tからtまでは第2近接オブジェクト1910の位置プロファイルに20%近接するように標準位置プロファイル1901を補正し、同時に、最近接オブジェクト1930の関連度が1である場合、t以降は最近接オブジェクト1930の位置プロファイルと第2近接オブジェクト1910の位置プロファイルに8:2の割合で対応するように標準位置プロファイル1901を補正することができる。
同様に、走行計画装置は、他の第2近接オブジェクト1920に対応する補正位置プロファイル1921を導出することができる。標準位置プロファイル1901と第2近接オブジェクト1920の位置プロファイルとが接する時点をtと定義し、標準位置プロファイル1901と最近接オブジェクト1930の位置プロファイルとが接する時点をtと定義する。
走行計画装置は、現在時点からtまでは標準位置プロファイル1901に一致し、tからtまでは第2近接オブジェクト1920の関連度に比例して第2近接オブジェクト1920の挙動予測情報に対応するように補正された位置プロファイルに対応し、t以降は最近接オブジェクト1930の挙動予測情報に対応するように、標準位置プロファイル1901を補正することにより、補正位置プロファイル1921を導出することができる。一実施形態において、第2近接オブジェクト1920の関連度が0.6である場合、tからtまでは第2近接オブジェクト1920の位置プロファイルに60%近接するように標準位置プロファイル1901を補正し、同時に、最近接オブジェクト1930の関連度が1である場合、t以降は最近接オブジェクト1930の位置プロファイルと第2近接オブジェクト1920の位置プロファイルに6:4の割合で対応するように標準位置プロファイル1901を補正することができる。
図20を参照すると、走行計画装置は、第1近接オブジェクト及び1つ以上の各第2近接オブジェクト2010、2020に対応する1つ以上の補正位置プロファイル2011、2021を用いて参照位置プロファイル2040を決定することができる。
図20を参照して補正位置プロファイル2011、2021を導出する実施形態によれば、各補正位置プロファイル2011、2021の任意の変位値は標準位置プロファイル2001の任意の変位値以下となることが分かる。このように、走行計画装置は、参照位置プロファイル2040の任意の変位値が各補正位置プロファイル2011、2021の任意の変位値より常に小さいか又は等しくなるように、参照位置プロファイル2040を決定することができる。
一実施形態において、各補正位置プロファイル2011、2021が接する時点をtと定義すると、走行計画装置は、t、t、t及びtを基準として時間を5つの区間に分け、各区間で標準位置プロファイル2001及び1つ以上の補正位置プロファイル2011、2021のうち最小の変位値を有する位置プロファイルに一致するように、参照位置プロファイル2040を決定することができる。
具体的には、走行計画装置は、現在時点からtまでは標準位置プロファイル2001に一致し、tからtまで及びtからtまでの区間では最小の変位値を有する補正位置プロファイル2011に一致し、tからtまで及びt以降の区間では最小の変位値を有する補正位置プロファイル2021に一致するように、参照位置プロファイル2040を決定することができる。
前述した実施形態を参照して、関心領域内で最近接オブジェクト(第1近接オブジェクト)及び1つ以上の第2近接オブジェクトが検知された場合を仮定し、走行計画装置が参照位置プロファイルを決定する方法について説明する。説明の便宜上、第2近接オブジェクト(proximate object)は、車両の前方から近い順に第1周辺オブジェクト(periphery object)、第2周辺オブジェクト、...、第N周辺オブジェクトとさらに定義し、第N周辺オブジェクトに対応する補正位置プロファイルを第N補正位置プロファイルと定義する。ここで、Nは、第2近接オブジェクトの数に該当する自然数である。
走行計画装置は、第N周辺オブジェクトの位置プロファイルと標準位置プロファイルとが接する時点からは第N周辺オブジェクトの関連度に比例して第N周辺オブジェクトの挙動予測情報に対応するように補正し、最近接オブジェクトの位置プロファイルと標準位置プロファイルとが接する時点以降からは最近接オブジェクトの挙動予測情報に対応するように補正することにより、第N補正位置プロファイルを導出することができる。
また、走行計画装置は、第N周辺オブジェクトの位置プロファイルと標準位置プロファイルとが接する1つ以上の時点及び1つ以上の第N補正位置プロファイルが接する時点(Nが1である場合、第N補正位置プロファイルが接する時点はないものとする)を基準として時間領域を複数の区間に分け、各区間で標準位置プロファイル、1つ以上の第N補正位置プロファイル、及び最近接オブジェクトの位置プロファイルのうち最小の変位値を有する位置プロファイルに一致するように、参照位置プロファイルを決定することができる。
一実施形態において、関心領域内で最近接オブジェクトが検知されない場合、走行計画装置は、第N周辺オブジェクトの位置プロファイルと標準位置プロファイルとが接する時点からは第N周辺オブジェクトの関連度に比例して第N周辺オブジェクトの挙動予測情報に対応するように補正することにより、第N補正位置プロファイルを導出することができる。
また、第N周辺オブジェクトの位置プロファイルと標準位置プロファイルとが接する1つ以上の時点及び1つ以上の第N補正位置プロファイルが接する時点(Nが1である場合、第N補正位置プロファイルが接する時点はないものとする)を基準として時間領域を分けた複数の区間のそれぞれで標準位置プロファイル及び1つ以上の第N補正位置プロファイルのうち最小の変位値を有する位置プロファイルに一致するように、参照位置プロファイルを決定することができる。
図21は一実施形態による最終位置プロファイルを示す例示図である。
一実施形態において、走行計画装置は、参照位置プロファイル2110に対応する最終位置プロファイル2120を決定することができる。
最終位置プロファイル2120は、車両2100が実際に走行する最終の走行速度を示す位置プロファイルを意味する。
一実施形態において、走行計画装置は、導出した参照位置プロファイル2110に基づいてコスト関数を計算することができる。コスト関数は、車両2100が走行する位置プロファイルから導出されるコストに関する変数との関係を示す関数である。コストに関する変数は、コスト関数の各項(term)から分かる。
一実施形態において、走行計画装置は、参照位置プロファイル2110との変位差に対応するエラー(error)コスト、車両2100の加速度に対応する加速度コスト、及び車両2100の加加速度度(jerk)に対応する加速度変化量コストに基づいて、コスト関数を計算することができる。
エラーコストは、参照位置プロファイル2110を比較し、車両2100が走行する位置プロファイルとの差によるコストに該当する。参照位置プロファイル2110は、周辺の近接オブジェクトと衝突することなく走行するための最小限の位置プロファイルであるので、差が大きくなるほど走行の安全性に影響を受ける。よって、エラーコストは、走行の安全性に関連する。
加速度コストは、車両2100が走行する位置プロファイルから導出される加速度によるコストに該当する。加速度の大きさが大きいとは、急加速、急減速することを意味するので、加速度コストは、走行の安全性だけでなく、乗り心地にも関連する。
加速度変化量コストは、車両2100の加加速度によるコストに該当する。加加速度は、時間に応じた加速度の変化を示すコストに該当する。車両2100が走行する際に、加速度の変化による瞬間衝撃量が発生し、加加速度が大きいほど瞬間衝撃量により乗り心地が低下する。よって、加速度変化量コストは、乗り心地に関連する。
一実施形態において、走行計画装置は、コスト関数を最小化する位置プロファイルを最終位置プロファイルとして決定することができる。例えば、走行計画装置は、コスト関数を最小化する位置プロファイルを得るために反復的な(iterative)計算を行うことができ、計算の結果で導出された解を最終位置プロファイルとして決定することができる。
一方、走行計画装置は、所定時間の間の参照位置プロファイル及び最終位置プロファイルを決定することができる。所定時間とは、走行速度を計画する特定時間を意味し、既に定められた時間であってもよく、車両の走行速度、周辺の近接オブジェクトの数などに基づいて変動する時間であってもよい。例えば、走行計画装置は、近接オブジェクトの数が多くなるほど、交通量が多くなり、走行速度計画の複雑性が高くなるので、所定時間を長く設定して走行の安定性を保証することができる。
図22は一実施形態による車両の軌跡を最適化する過程を概略的に示す例示図である。
図22を参照すると、本発明による車両の軌跡を最適化する環境は、基準軌跡2210、走行情報2220、MPC(Model Predictive Control)モジュール2230、制御入力2240及び車両2250を含むことができる。
基準軌跡2210とは、車両2250が走行すべき経路を意味することができる。すなわち、前述した実施形態により走行計画装置が決定した走行経路であってもよい。あるいは、前述した実施形態により走行計画装置が決定した走行速度に基づいて取得された走行経路であってもよい。
一実施形態において、基準軌跡2210は、車両2250の出発地から目的地までの経路に該当するグローバル経路、及び予想できない非固定的障害物を回避するための所定の前方経路に該当するローカル(local)経路を含んでもよい。
後述する最適制御入力2240又は最適軌跡とは、車両2250が基準軌跡2210から外れることなく走行するための制御入力又は軌跡を意味することができる。
一実施形態において、基準軌跡2210とは、ローカル経路を意味することができる。
走行情報2220は、車両2250の現在位置、現在制御状態、現在速度、受信した制御入力2240など、車両2250の走行状態に関する全ての情報を含むことができる。走行情報2220とは、車両2250の現在の状態変数を意味することができる。
制御入力2240とは、ハンドルの操舵角を制御する入力を意味する。車両2250に制御入力2240が入力されると、ハンドルを回転させるためのDCモータとハンドルの操舵角を読み出すためのエンコーダ(Encoder)がギヤで連結される。
MPCモジュール2230とは、車両2250に対する最適制御入力2240を決定するためのモジュールを意味する。MPCは、物体の動きと周辺環境条件をコスト関数に入力して最適化された制御命令を生成する最適制御(Optimal Control)の一方法である。MPCモジュール2230は、1つ以上の制御入力による複数の予想軌跡を算出し、コスト関数を計算することにより、最適制御入力2240を選択することができる。MPCモジュール2230は、最適制御入力2240の選択において、iLQRアルゴリズム(iterative Linear Quadratic Regulator)を用いることができる。
iLQRアルゴリズムは、テイラー近似により、線形関数でないものを線形関数に、2次関数でないものを2次関数に近似するアルゴリズムであって、効率的にコスト関数を最適化して初期状態から目標状態まで最適軌跡を計算することができる。
本発明において、走行計画装置は、車両2250の基準軌跡2210及び走行情報2220を取得又は決定し、MPCモジュール2230により決定した制御入力2240を車両2250に入力することができる。以下、図21~図23において、走行計画装置が車両の軌跡を最適化する方法を詳細に説明する。
図23は一実施形態による走行計画装置が予想軌跡を算出する過程を説明するための図である。
図23を参照すると、走行計画装置は、1つ以上の制御入力2310による複数の予想軌跡2301、2302、2303、2304を算出し、1つ以上の制御入力2310の中から最適制御入力を選択することができる。
一実施形態において、走行計画装置は、予測基準水平線(prediction horizon)2320及び制御周期2330を用いて、現在時点を含む複数のモデル予測時点を決定することができる。
予測基準水平線2320は、予測しようとする未来出力数を意味するものであり、モデルが予測できる未来期間である。予測基準水平線2320は、予測しようとする未来制御入力数(Control horizon)に対応する。
一実施形態において、走行計画装置は、制御周期2330に基づいて、現在時点に該当する第0時点乃至予測基準水平線2320の最後の時点に該当する第N時点を決定することができる。Nは2以上の自然数であり、制御周期2330とは各時点間の間隔を意味する。すなわち、走行計画装置は、現在時点に該当する第0時点乃至予測基準水平線2320の最後の時点に該当する第N時点を制御周期2330の間隔で決定することができる。ここで、Nは、予測基準水平線2320を制御周期2330で割った自然数に該当するものであってもよい。
走行計画装置は、複数のモデル予測時点に基づいて、複数の予想軌跡2301、2302、2303、2304を算出することができる。
複数のモデル予測時点での制御入力に応じて予想軌跡が異なるので、走行計画装置は、複数のモデル予測時点のそれぞれにおける1つ以上の制御入力2310を生成し、1つ以上の制御入力2310による複数の予想軌跡2301、2302、2303、2304を算出することができる。
一実施形態において、走行計画装置は、1つ以上の制御入力2310を予測モデルに入力して複数の予想軌跡2301、2302、2303、2304を生成することができる。一実施形態において、iLQRベースのMPCモジュールは、反復的な(iterative)最適化計算によりコスト関数が最小になる最適制御入力を選択することができ、このとき、車両の未来の動きは予測モデルを用いて把握することができる。よって、以下、図24及び図25を参照して、一実施形態による予測モデルについて詳細に説明する。
図24及び図25は一実施形態による走行計画装置が最適制御入力を選択するための予測モデルを説明するための図である。
図24は制御点が後輪の車軸にある運動学的自転車モデル(Kinematic Bicycle Model)であり、図25は制御点が前輪の車軸にある運動学的自転車モデルである。ほとんどの車両の走行速度において、回転半径が車両の車輪よりはるかに大きいため、自転車モデルを用いることができる。
図24を参照すると、制御点が後輪の車軸にある場合、走行計画装置は、瞬間回転中心(ICR,Instantaneous Center of Rotation)を適用し、制御点に対して状態変化率を計算することができる。具体的には、走行計画装置は、自転車モデルの回転率、回転半径、長さなどによりハンドルの操舵角(Steering angle)を導出し、それにより、制御点に対して状態変化率を計算することができる。
同様に、図25を参照すると、制御点が前輪の車軸にある場合も、走行計画装置は、制御点に対して状態変化率を計算することができる。このとき、図24とは異なり、制御点の違いにより、状態変化率は異なり得る。
その他、予測モデルは、制御点が重心にある場合の運動学的自転車モデルに該当するものであってもよく、予測モデルは、運動学的自転車モデルに限定されるものではない。
図26は一実施形態による走行計画装置が制御周期2610、2620を不均一に設定する過程を説明するための図である。
一実施形態において、走行計画装置は、制御周期2610、2620を不均一に設定し、複数のモデル予測時点を決定することができる。例えば、走行計画装置は、基準時間2650を決定し、基準時間2650に基づいて制御周期2610、2620を不均一に設定することができる。
一般に、ローカル経路の予測基準水平線のうち、近接前方に対しては、走行の安定性のためにより高い制御性能が要求される。しかし、制御周期2610、2620が短くなるほど演算量が多くなるため、比較的遠距離に対しては、制御周期2610、2620を短く設定することが効率的でないことがある。よって、本実施形態によれば、超近接前方に対しては、短い制御周期2610を設定し、その後の予測基準水平線に対しては、長い制御周期2620を設定することにより、合理的な軌跡最適化を達成することができる。
基準時間2650とは、制御周期2610、2620が変更される時点を意味する。基準時間2650は、要求される制御性能及び演算量に応じた効率性に基づいて設定することができる。
一実施形態において、走行計画装置は、非均一制御周期2610、2620において、基準軌跡2630を速度プロファイルを用いて再生性する必要があるので、基準軌跡2630は、ローカル経路を速度プロファイルで補間して生成される軌跡であってもよい。例えば、走行計画装置は、第i時点に関する時間情報を計算し、第i時点で車両が計算した時間情報により移動する距離を計算し、当該距離を用いて基準軌跡を生成することができる。よって、基準軌跡は、車両の速度プロファイルが反映された軌跡であってもよい。
一実施形態において、走行計画装置は、車両が制御性能が閾値以上要求される環境に進入したと決定したことに応答して、基準時間2650を調整することができる。一例として、走行計画装置は、車両が未舗装道路のように予想できない障害物が多いか険しい地形に進入したと決定すると、基準時間2650をさらに長く調整することができる。他の例として、走行計画装置は、交通量が非常に多く、混雑した道路に進入したと決定すると、基準時間2650をさらに長く調整することができる。こうすることにより、予測基準水平線上のさらに遠い時点まで高い制御性能を適用し、予想できない事故を予防することができる。
他の実施形態において、走行計画装置は、グローバル経路を分析して制御性能が閾値以上要求されるグローバル経路を走行すると判断したことに応答して、基準時間2650を調整することができる。例えば、走行計画装置は、出発地から目的地までの経路に該当するグローバル経路の分析時、経路に未舗装道路又は険しい地形があり、高い制御性能が要求されると判断すると、走行前に基準時間2650をさらに長く調整することができる。
走行計画装置は、第0時点から基準時間2650までは短い制御周期2610を設定し、基準時間2650以降から第N時点までは長い制御周期2620を設定することができる。例えば、図26を参照すると、予測基準水平線の一時点である基準時間2650hshortを基準として、制御周期2610、2620がdtshort、dtlongに設定されて均一でないことを確認することができる。よって、現在時点である第0時点から基準時間2650hshortまでは短い制御周期2610であるdtshort間隔の制御入力による複数の予想軌跡2640を算出し、基準時間2650hshortから第N時点までは長い制御周期2620であるdtlong間隔の制御入力による複数の予想軌跡2640を算出することができる。
一実施形態において、走行計画装置は、車両が制御性能が閾値以上要求される環境に進入するか、制御性能が閾値以上要求されるグローバル経路を走行すると決定したことに応答して、制御周期2610、2620を調整することができる。例えば、前述したように、走行計画装置は、グローバル経路が障害物が多いか険しい地形もしくは混雑した道路に該当するか、又は該当環境に進入したと決定すると、制御周期2610、2620をさらに短く調整することができる。
再び図23に戻って、走行計画装置は、基準軌跡2303、複数の予想軌跡2301、2302、2303、2304、及び1つ以上の制御入力2310の少なくとも1つに基づいて、コスト関数を計算することができる。
1つ以上の制御入力2310のうち、コスト関数が最小の値を有する際の制御入力を最適制御入力として決定するので、コスト関数は、車両の軌跡を最適化する過程でどのように設定するかが非常に重要である。よって、乗り心地及び安全性の両方を保証できるコスト関数を設定する必要がある。
一実施形態において、コスト関数は、エラーコスト、入力コスト及び変化量コストを含んでもよい。
具体的には、走行計画装置は、エラーコストを基準軌跡2303に基づいて計算することができる。エラーコストは、車両が走行すべき基準軌跡2303と比較して実際に走行する軌跡との差によるコストに該当するものであってもよい。基準軌跡2303と走行する軌跡との差が大きいと運転者及び歩行者の安全に影響があるので、安全のためには、基準軌跡2303との差を最小化する方向が好ましい。例えば、走行計画装置は、基準軌跡2303と予想軌跡との差に基づいてエラーコストを計算することができる。
また、走行計画装置は、入力コストを制御入力に基づいて計算することができる。入力コストは、制御入力の入力によるコストに該当するものであってもよい。走行中にハンドルの操舵角を制御すると乗り心地に影響があるので、乗り心地のためには、制御入力を最小化する方向が好ましい。例えば、走行計画装置は、制御入力自体に基づいて入力コストを計算することができる。
さらに、走行計画装置は、変化量コストを制御入力の変化量に基づいて計算することができる。変化量コストは、ハンドルの操舵角によるコストに該当するものであってもよい。ハンドルの操舵角が大きいほど乗り心地に影響があるので、乗り心地のためには、制御入力の変化量を最小化する方向が好ましい。
一実施形態において、走行計画装置は、前記エラーコスト、入力コスト及び変化量コストのそれぞれの重みを考慮してコスト関数を計算することができる。重みは、走行の安全性及び乗り心地のうちどちらにより大きな比重を置くかを考慮して設定することができる。
一実施形態において、エラーコスト、入力コスト及び変化量コストの重みは、車両の挙動に応じて適応的に変化することができる。例えば、車両の速度が遅い場合と速い場合とにおいて制御入力2310による予想軌跡2301、2302、2303、2304、安全性及び乗り心地が異なるので、前記重みは、定数ではなく、車両の速度など、車両の挙動に応じてリアルタイムに及び/又は適応的に変化可能な関数であってもよい。
一実施形態において、コスト関数は、制御入力及び/又は制御入力の変化量に関する制約条件をさらに含んでもよい。
一実施形態において、走行計画装置は、1つ以上の制御入力2310の中から最適制御入力を選択することができる。例えば、走行計画装置は、予測モデルを用いて複数の予想軌跡を算出し、複数の予想軌跡のそれぞれのコスト関数を計算し、前記コスト関数が最小になる予想軌跡を最適予想軌跡2301として選択することができる。ここで、最適予想軌跡2301が算出される制御入力が最適制御入力に該当することができる。
一方、図20で説明したように、走行計画装置は、前記予測モデル及びコスト関数を用いて最適制御入力を選択する上で、iLQRアルゴリズムを用いることができる。
一実施形態において、走行計画装置は、車両の軌跡を最適化するために、前述したステップを各制御周期2330毎に繰り返すことができる。例えば、走行計画装置は、第M時点(Mは1以上、N-1以下の自然数)で最適制御入力を選択したことに応答して、第(M+1)時点乃至第N時点での制御入力を削除することができる。こうすることにより、走行計画装置は、各時点毎に新たに最適制御入力を選択することができ、優れた制御性能を発揮することができる。
図27は一実施形態による仮想停止線を生成する方法のフローチャートである。
図27に示す仮想停止線を生成する方法は前述した実施形態に関連するものであるので、以下で省略された内容であるとしても、前述した内容は図27の方法にも適用することができる。
図27に示す動作は、前述した自律走行装置により実行することができる。具体的には、図27に示す動作は、前述した自律走行装置に含まれるプロセッサにより実行することができる。
ステップ2710において、装置は、走行経路上の1つ以上の横断歩道の中からターゲット横断歩道を決定することができる。
一実施形態において、装置は、前記走行経路の前方で最も近接した横断歩道を前記ターゲット横断歩道として決定することができる。
ステップ2720において、装置は、ターゲット横断歩道に関する関心領域を設定し、関心領域のマージンを用いて関心領域を設定することができる。
一実施形態において、装置は、ターゲット横断歩道を用いて関心領域のマージンを設定することができる。関心領域のマージンは、縦方向マージン及び横方向マージンを含んでもよい。
一実施形態において、装置は、ターゲット横断歩道との距離を取得し、ターゲット横断歩道の幅及び横断長さを取得し、幅及びターゲット横断歩道との距離に基づいて縦方向マージンを設定し、横断長さ及びターゲット横断歩道との距離に基づいて横方向マージンを設定することができる。
一実施形態において、ターゲット横断歩道との距離が遠いほど、関心領域のマージンを大きく設定し、ターゲット横断歩道との距離が近いほど、関心領域のマージンを小さく設定することができる。
ステップ2730において、装置は、関心領域内の歩行者の位置に基づいて仮想停止線を生成するか否かを決定することができる。
一実施形態において、第1領域は、ターゲット横断歩道の内部領域に対応し、第2領域は、ターゲット横断歩道の外部領域と関心領域の内部領域の交集合に対応する場合、装置は、歩行者が第1領域に位置すると判断したことに応答して、仮想停止線を生成すると決定し、歩行者が第2領域に位置すると判断したことに応答して、ターゲット横断歩道との距離に基づいて仮想停止線を生成するか否かを決定することができる。
一実施形態において、装置は、ターゲット横断歩道との距離が所定の距離以上である場合、仮想停止線を生成すると決定し、ターゲット横断歩道との距離が所定の距離未満である場合、仮想停止線を生成しないと決定することができる。
一実施形態において、装置は、歩行者に関するコスト関数を算出し、コスト関数と閾値とを比較し、比較の結果に基づいて仮想停止線を生成するか否かを決定することができる。
一実施形態において、コスト関数は、走行経路に対する歩行者の垂直距離及び垂直速度の1つ以上に基づいて算出することができる。
図26は一実施形態による仮想停止線を生成する装置のブロック図である。
一実施形態において、仮想停止線を生成する装置とは、前述した走行計画装置と同じ装置を意味することができる。
図28を参照すると、仮想停止線を生成する装置(以下、「装置」という)2800は、通信部2810、プロセッサ2820及びDB2830を含んでもよい。図28の装置2800には、実施形態に関連する構成要素のみ示されている。よって、図28に示す構成要素に加えて他の汎用の構成要素をさらに含み得ることは、当該技術分野における通常の知識を有する者であれば理解するであろう。
通信部2810は、外部サーバ又は外部装置との有線/無線通信を可能にする1つ以上の構成要素を含んでもよい。例えば、通信部2810は、近距離通信部(図示せず)、移動通信部(図示せず)及び放送受信部(図示せず)の少なくとも1つを含んでもよい。一実施形態において、通信部2810は、交通情報を受信して走行経路上の横断歩道を認識するのに用いることができる。
DB2830は、装置2800内で処理される各種データを保存するハードウェアであって、プロセッサ2820の処理及び制御のためのプログラムを保存することができる。
DB2830は、DRAM(dynamic random access memory)、SRAM(static random access memory)などのRAM(random access memory)、ROM(read-only memory)、EEPROM(electrically erasable programmable read-only memory)、CD-ROM、ブルーレイ又は他の光ディスクストレージ、HDD(hard disk drive)、SSD(solid state drive)、又はフラッシュメモリを含んでもよい。
プロセッサ2820は、装置2800の全般的な動作を制御する。例えば、プロセッサ2820は、DB2830に保存されたプログラムを実行することにより、入力部(図示せず)、ディスプレイ(図示せず)、通信部2810、DB2830などを全般的に制御することができる。プロセッサ2820は、DB2830に保存されたプログラムを実行することにより、装置2800の動作を制御することができる。
プロセッサ2820は、図1~図27において上述した自律走行装置及び/又は走行計画装置の動作の少なくとも一部を制御することができる。
プロセッサ2820は、ASICs(application specific integrated circuits)、DSPs(digital signal processors)、DSPDs(digital signal processing devices)、PLDs(programmable logic devices)、FPGAs(field programmable gate arrays)、コントローラ(controllers)、マイクロコントローラ(micro-controllers)、マイクロプロセッサ(microprocessors)、その他の機能の実行のための電気ユニットの少なくとも1つを用いて実現することができる。
一実施形態において、装置2800は、移動性を有する電子デバイスであってもよい。例えば、装置2800は、スマートフォン、タブレットPC、PC、スマートテレビ、PDA(personal digital assistant)、ラップトップ、メディアプレーヤ、ナビゲーション、カメラ付きデバイス、及びその他のモバイル電子デバイスで実現することができる。また、装置2800は、通信機能及びデータ処理機能を備えた時計、メガネ、ヘッドバンド、指輪などのウェアラブルデバイスで実現することができる。
他の実施形態において、装置2800は、車両に組み込まれる電子デバイスであってもよい。例えば、装置2800は、製造過程後にチューニング(tuning)により車両に挿入される電子デバイスであってもよい。その場合、装置2800及び上述した車両(又は自律走行車両)の位置は同じであってもよい。
さらに他の実施形態において、装置2800は、車両の外部に位置するサーバであってもよい。サーバは、ネットワークを介して通信を行って命令、コード、ファイル、コンテンツ、サービスなどを提供するコンピュータ装置又は複数のコンピュータ装置で実現することができる。サーバは、車両に搭載された装置から仮想停止線を生成するために必要なデータを受信し、受信したデータに基づいて仮想停止線を生成することができる。
さらに他の実施形態において、装置2800で実行されるプロセスは、移動性を有する電子デバイス、車両に組み込まれる電子デバイス、及び車両の外部に位置するサーバの少なくとも一部により実行することができる。
本発明による実施形態は、コンピュータ上で様々な構成要素により実行できるコンピュータプログラムの形態で実現することができ、このようなコンピュータプログラムは、コンピュータで読み取り可能な媒体に記録することができる。ここで、媒体には、ハードディスク、フロッピーディスク、磁気テープなどの磁気媒体、CD-ROM、DVDなどの光記録媒体、フロプティカルディスク(floptical disk)などの光磁気記録媒体(magneto-optical medium)、ROM、RAM、フラッシュメモリなどのプログラム命令を記憶して実行するように特別に構成されたハードウェア装置が含まれる。
一方、前記コンピュータプログラムは、本発明のために特別に設計及び構成されたものであってもよく、コンピュータソフトウェア分野の当業者に公知されて使用可能なものであってもよい。コンピュータプログラムの例には、コンパイラにより生成されるような機械語コードだけでなく、インタプリタなどを用いてコンピュータにより実行される高級言語コードも含まれる。
一実施形態によれば、本開示の様々な実施形態による方法は、コンピュータプログラム製品(computer program product)に含まれて提供されるようにしてもよい。コンピュータプログラム製品は、商品として販売者と購入者との間で取引されるようにしてもよい。コンピュータプログラム製品は、機器で読み取り可能な記憶媒体(例えば、compact disc read only memory(CD-ROM))の形態で配布されるか、又はアプリケーションストア(例えば、プレイストアTM)を介して、もしくは2つのユーザ装置間で直接、オンラインで配布(例えば、ダウンロード又はアップロード)されるようにしてもよい。オンライン配布の場合、コンピュータプログラム製品の少なくとも一部は、メーカーのサーバ、アプリケーションストアのサーバ、又は中継サーバのメモリなどの機器で読み取り可能な記憶媒体に少なくとも一時的に記憶されるか、一時的に生成されるようにしてもよい。
本発明による方法を構成するステップに関して、明白な順序の記載又はそれに反する記載がなければ、上記ステップは適切な順序で行うことができる。本発明は、必ずしも上記ステップの記載順序に限定されるものではない。本発明における全ての例又は例示的な用語(例えば、など)の使用は、単に本発明を詳細に説明するためのものであり、特許請求の範囲により限定されない限り、上記例又は例示的な用語により本発明の範囲が限定されるわけではない。また、当業者は、様々な修正、組み合わせ及び変更が加えられた特許請求の範囲又はその均等物の範疇内で設計条件及び要因に応じて構成できることを理解するであろう。
よって、本発明の思想は、上述した実施形態に限定されて定められてはならず、添付の特許請求の範囲だけでなく、その特許請求の範囲と均等な又はそれから等価的に変更された全ての範囲は、本発明の思想の範疇に属するといえる。

Claims (11)

  1. 仮想停止線を生成する方法において、
    走行経路上の1つ以上の横断歩道の中からターゲット横断歩道を決定するステップと、
    前記ターゲット横断歩道に関する関心領域を設定するステップと、
    前記関心領域内の歩行者の位置に基づいて仮想停止線を生成するか否かを決定するステップとを含む、方法。
  2. 前記ターゲット横断歩道を決定するステップは、
    前記1つ以上の横断歩道を認識するステップと、
    前記走行経路の前方で最も近接した横断歩道を前記ターゲット横断歩道として決定するステップとを含む、請求項1に記載の方法。
  3. 前記関心領域を設定するステップは、
    前記ターゲット横断歩道を用いて前記関心領域のマージン(margin)を設定するステップと、
    前記関心領域のマージンを用いて前記関心領域を設定するステップとを含む、請求項1に記載の方法。
  4. 前記関心領域のマージンは、縦方向マージン及び横方向マージンを含み、
    前記関心領域のマージンを設定するステップは、
    前記ターゲット横断歩道との距離を取得するステップと、
    前記ターゲット横断歩道の幅(width)及び横断長さ(crossing length)を取得するステップと、
    前記幅及び前記ターゲット横断歩道との距離に基づいて前記縦方向マージンを設定するステップと、
    前記横断長さ及び前記ターゲット横断歩道との距離に基づいて前記横方向マージンを設定するステップとを含む、請求項3に記載の方法。
  5. 前記関心領域のマージンを設定するステップは、
    前記ターゲット横断歩道との距離が遠いほど、前記関心領域のマージンを大きく設定し、前記ターゲット横断歩道との距離が近いほど、前記関心領域のマージンを小さく設定するステップを含む、請求項3又は請求項4に記載の方法。
  6. 前記仮想停止線を生成するか否かを決定するステップは、
    前記歩行者が第1領域に位置すると判断したことに応答して、前記仮想停止線を生成すると決定するステップと、
    前記歩行者が第2領域に位置すると判断したことに応答して、前記ターゲット横断歩道との距離に基づいて前記仮想停止線を生成するか否かを決定するステップとを含み、
    前記第1領域は、前記ターゲット横断歩道の内部領域に対応し、前記第2領域は、前記ターゲット横断歩道の外部領域と前記関心領域の内部領域の交集合に対応するものである、請求項1に記載の方法。
  7. 前記仮想停止線を生成するか否かを決定するステップは、
    前記ターゲット横断歩道との距離が所定の距離以上である場合、前記仮想停止線を生成すると決定し、
    前記ターゲット横断歩道との距離が前記所定の距離未満である場合、前記仮想停止線を生成しないと決定するステップを含む、請求項6に記載の方法。
  8. 前記仮想停止線を生成するか否かを決定するステップは、
    前記歩行者に関するコスト関数を算出するステップと、
    前記コスト関数と閾値とを比較するステップと、
    前記比較の結果に基づいて前記仮想停止線を生成するか否かを決定するステップとを含む、請求項1又は請求項6に記載の方法。
  9. 前記コスト関数は、
    前記走行経路に対する前記歩行者の垂直距離及び垂直速度の1つ以上に基づいて算出される、請求項8に記載の方法。
  10. 仮想停止線を生成する装置において、
    少なくとも1つのプログラムが格納されたメモリと、
    前記少なくとも1つのプログラムを実行することにより動作するプロセッサとを含み、
    前記プロセッサは、
    走行経路上の1つ以上の横断歩道の中からターゲット横断歩道を決定し、
    前記ターゲット横断歩道に関する関心領域を設定し、
    前記関心領域内の歩行者の位置に基づいて仮想停止線を生成するか否かを決定する、装置。
  11. 請求項1に記載の方法をコンピュータで実行するためのプログラムを記録したコンピュータで読み取り可能な記録媒体。
JP2023125664A 2022-08-02 2023-08-01 仮想停止線を生成する方法及び装置 Pending JP2024021071A (ja)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
KR10-2022-0095813 2022-08-02
KR10-2022-0095965 2022-08-02
KR1020220095813A KR20240018048A (ko) 2022-08-02 2022-08-02 차량의 궤적을 최적화하는 방법 및 장치
KR1020220095966A KR20240018112A (ko) 2022-08-02 2022-08-02 차량의 궤적을 최적화하는 방법 및 장치
KR1020220095965A KR20240018111A (ko) 2022-08-02 2022-08-02 가상 정지선을 생성하는 방법 및 장치
KR10-2022-0095966 2022-08-02
KR20220096457 2022-08-03
KR10-2022-0096457 2022-08-03
KR10-2022-0105246 2022-08-23
KR1020220105246A KR20240019656A (ko) 2022-08-03 2022-08-23 미래의 주행속도를 계획하는 방법 및 장치
KR10-2022-0124413 2022-09-29
KR1020220124413A KR20240044888A (ko) 2022-09-29 2022-09-29 보행자 의도 추정을 활용하여 주행속도를 결정하는 방법 및 장치

Publications (1)

Publication Number Publication Date
JP2024021071A true JP2024021071A (ja) 2024-02-15

Family

ID=89575462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023125664A Pending JP2024021071A (ja) 2022-08-02 2023-08-01 仮想停止線を生成する方法及び装置

Country Status (3)

Country Link
US (1) US20240043006A1 (ja)
JP (1) JP2024021071A (ja)
DE (1) DE102023120479A1 (ja)

Also Published As

Publication number Publication date
US20240043006A1 (en) 2024-02-08
DE102023120479A1 (de) 2024-02-08

Similar Documents

Publication Publication Date Title
EP3524934B1 (en) Systems and methods for determining a projection of an obstacle trajectory onto a reference line of an autonomous vehicle
US10948919B2 (en) Dynamic programming and gradient descent based decision and planning for autonomous driving vehicles
US10996679B2 (en) Method to evaluate trajectory candidates for autonomous driving vehicles (ADVs)
US10754339B2 (en) Dynamic programming and quadratic programming based decision and planning for autonomous driving vehicles
EP3517893B1 (en) Path and speed optimization fallback mechanism for autonomous vehicles
US10515321B2 (en) Cost based path planning for autonomous driving vehicles
US10775801B2 (en) Determining speeds along a path for autonomous driving vehicles
JP2020015494A (ja) 自動運転車両のための経路に沿った速度の調整
CN110728014A (zh) 使用具有加权几何成本的分段螺旋曲线的参考线平滑方法
US11055540B2 (en) Method for determining anchor boxes for training neural network object detection models for autonomous driving
US11353878B2 (en) Soft-boundary based path optimization for complex scenes for autonomous driving vehicles
WO2022182556A1 (en) Graph neural networks with vectorized object representations
US11586209B2 (en) Differential dynamic programming (DDP) based planning architecture for autonomous driving vehicles
US20220227391A1 (en) Systems and methods for scenario dependent trajectory scoring
CN112232104A (zh) 使用相对距离表示消失点
CN112146680A (zh) 基于特征图确定消失点
EP4237300A1 (en) Collision avoidance planning system
KR102179835B1 (ko) 무선통신을 포함한 차량센서 기반의 객체선정 알고리즘 및 주변차량 주행 의도를 고려한 경로 예측 방법 및 시스템
JP6838769B2 (ja) 周辺環境認識装置、表示制御装置
JP2024021071A (ja) 仮想停止線を生成する方法及び装置
JP7256812B2 (ja) 自動運転車両の動的コスト関数の実現方法
US11970164B1 (en) Adverse prediction planning
CN113494923B (zh) 基于微分动态规划的路径轨迹规划方法及系统
US20240174256A1 (en) Vehicle trajectory tree search for off-route driving maneuvers
CN112149484B (zh) 基于车道线确定消失点

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230831