JP2024021045A - Prepreg, fiber-reinforced composite material, tubular body made from fiber-reinforced composite material, golf club shaft, and fishing rod - Google Patents

Prepreg, fiber-reinforced composite material, tubular body made from fiber-reinforced composite material, golf club shaft, and fishing rod Download PDF

Info

Publication number
JP2024021045A
JP2024021045A JP2023104742A JP2023104742A JP2024021045A JP 2024021045 A JP2024021045 A JP 2024021045A JP 2023104742 A JP2023104742 A JP 2023104742A JP 2023104742 A JP2023104742 A JP 2023104742A JP 2024021045 A JP2024021045 A JP 2024021045A
Authority
JP
Japan
Prior art keywords
epoxy resin
fiber
mass
reinforced composite
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023104742A
Other languages
Japanese (ja)
Inventor
康之 恩村
Yasuyuki Ommura
公則 平野
Kiminori Hirano
健太郎 佐野
Kentaro Sano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JP2024021045A publication Critical patent/JP2024021045A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a prepreg that is superior in both mechanical characteristics and weather resistance, and also exhibits superior strength in the non-fiber direction when made into a fiber-reinforced composite material, to provide the fiber-reinforced composite material made from the prepreg, and to provide a fishing rod or the like.
SOLUTION: A prepreg includes reinforced fibers and a resin composition. The resin composition includes the following components [A]-[C] and satisfies the following conditions (1)-(4). The components [A], [B], and [C] are respectively epoxy resins, a dicyandiamide, and a compound with a boiling point of 130°C or higher and a molecular weight (m) of 50 or more and 250 or less. (1) [A] includes 10-40 pts.mass of [A1] oxazolidone epoxy resin. (2) [A] includes 20-50 pts.mass of [A2] novolac epoxy resin. (3) [A] excludes [A3] glycidylamine epoxy resin or includes 10 pts.mass or less of glycidylamine epoxy resin. (4) the ratio of the molar number of active hydrogen (H) in [B] to the molar number of epoxy groups (E) (H/E) is 0.65≤H/E≤0.90.
SELECTED DRAWING: None
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、航空宇宙用途、一般産業用途およびスポーツ用途などの繊維強化複合材料に好適に用いられる、プリプレグ、繊維強化複合材料、繊維強化複合材料製管状体に関するものであり、また、該繊維強化複合材料製管状体を用いてなるゴルフクラブシャフト、釣り竿に関するものである。 The present invention relates to prepregs, fiber-reinforced composite materials, and tubular bodies made of fiber-reinforced composite materials, which are suitably used for fiber-reinforced composite materials such as aerospace applications, general industrial applications, and sports applications. The present invention relates to golf club shafts and fishing rods that use composite material tubular bodies.

炭素繊維やアラミド繊維などを強化繊維として用いた繊維強化複合材料は、その高い比強度、比弾性率を利用して、航空機や自動車などの構造材料や、テニスラケット、ゴルフクラブシャフト、釣り竿、自転車、筐体などのスポーツ、一般産業用途などに広く利用されている。この繊維強化複合材料に用いられる樹脂組成物としては、耐熱性や生産性の観点から主に熱硬化性樹脂が用いられ、中でも強化繊維との接着性などの力学特性の観点からエポキシ樹脂が好ましく用いられる。 Fiber-reinforced composite materials using carbon fibers, aramid fibers, etc. as reinforcing fibers take advantage of their high specific strength and specific modulus to be used as structural materials for aircraft and automobiles, tennis rackets, golf club shafts, fishing rods, and bicycles. It is widely used in sports, general industrial applications, etc., such as housings. As the resin composition used in this fiber-reinforced composite material, thermosetting resins are mainly used from the viewpoint of heat resistance and productivity, and epoxy resins are particularly preferred from the viewpoint of mechanical properties such as adhesion to reinforcing fibers. used.

近年、さらなる軽量化が求められるゴルフクラブシャフト、釣り竿、自転車等の用途へ繊維強化複合材料を適用するには各種物性の向上が求められるようになってきた。例えば、ゴルフクラブシャフトや釣り竿等の管状体において優れた曲げ強度を発現させるためには、用いる繊維強化複合材料に高い繊維方向強度および非繊維方向強度が必要となるが、それらはマトリックス樹脂として用いるエポキシ樹脂自体の強度や弾性率が大きく影響する。さらに、繊維強化複合材料表面をクリア塗装することによって強化繊維のクロス目等を意匠として用いる場合も増えている。そのため、マトリックス樹脂として用いられるエポキシ樹脂には、硬化物が優れた機械特性を示すことに加え、繊維強化複合材料を長期間屋外で使用しても変色しにくいように、硬化物の耐候性についても重要視されるようになってきた。 In recent years, improvements in various physical properties have been required in order to apply fiber-reinforced composite materials to applications such as golf club shafts, fishing rods, and bicycles, which require further weight reduction. For example, in order to develop excellent bending strength in tubular bodies such as golf club shafts and fishing rods, the fiber-reinforced composite materials used need to have high strength in the fiber direction and non-fiber direction, and these are used as matrix resins. The strength and elastic modulus of the epoxy resin itself have a major influence. Furthermore, the use of cross-cuts of reinforcing fibers as a design by clear coating the surface of fiber-reinforced composite materials is increasing. Therefore, the epoxy resin used as the matrix resin has to have excellent mechanical properties when cured, as well as weather resistance so that the fiber-reinforced composite material will not discolor even when used outdoors for a long time. has also come to be regarded as important.

特許文献1には、機械特性向上の観点から、硬化剤として用いるジシアンジアミドが溶け残って欠陥となるのを低減するために、ジシアンジアミドとの間に所定の溶解性を示す添加剤を配合し、樹脂強度の向上を図る手法が検討されている。また、特許文献2では、優れた機械特性を有する複合材料が得られることから、ビスフェノールF型エポキシ樹脂とノボラック型エポキシ樹脂、オキサゾリドン型エポキシ樹脂を配合した組成が検討されている。 Patent Document 1 discloses that, from the viewpoint of improving mechanical properties, an additive having a predetermined solubility with dicyandiamide is blended with dicyandiamide to reduce defects caused by undissolved dicyandiamide used as a hardening agent. Methods to improve strength are being considered. Further, in Patent Document 2, a composition in which a bisphenol F-type epoxy resin, a novolac-type epoxy resin, and an oxazolidone-type epoxy resin are blended is studied because a composite material having excellent mechanical properties can be obtained.

国際公開第2019/181402号公報International Publication No. 2019/181402 特開2001-302766号公報Japanese Patent Application Publication No. 2001-302766

しかし、特許文献1の技術を用いた場合、樹脂強度の向上効果が得られるが、耐候性について何ら考慮されておらず、優れた耐候性が安定的に得られるものではなかった。特許文献2では、樹脂硬化物の強度や弾性率が低く、繊維強化複合材料において必ずしも優れた機械特性が得られるものではなかった。また、特許文献2についても同様に耐候性について何ら考慮されていなかった。さらに、樹脂強度の向上効果が得られる特許文献1の技術と特許文献2を単に組み合わせたとしても、樹脂硬化物の強度や弾性率が不足しており、繊維強化複合材料の機械特性と耐候性の両立は困難であった。 However, when the technique of Patent Document 1 is used, although the effect of improving resin strength is obtained, no consideration is given to weather resistance, and excellent weather resistance cannot be stably obtained. In Patent Document 2, the strength and elastic modulus of the cured resin material were low, and excellent mechanical properties were not necessarily obtained in the fiber-reinforced composite material. Similarly, in Patent Document 2, no consideration was given to weather resistance. Furthermore, even if the technology of Patent Document 1 and Patent Document 2, which can improve resin strength, are simply combined, the strength and elastic modulus of the cured resin are insufficient, and the mechanical properties and weather resistance of fiber-reinforced composite materials are insufficient. It was difficult to achieve both.

そこで本発明は、強度や弾性率といった機械特性と、耐候性が共に優れ、かつ繊維強化複合材料とした時の非繊維方向強度にも優れるプリプレグ、ならびに該プリプレグを用いた繊維強化複合材料、繊維強化複合材料製管状体、ゴルフクラブシャフト、釣り竿を提供することを課題とする。 Therefore, the present invention aims to provide a prepreg that has excellent mechanical properties such as strength and elastic modulus, and excellent weather resistance, and also has excellent non-fiber direction strength when made into a fiber-reinforced composite material, as well as a fiber-reinforced composite material using the prepreg, and a fiber-reinforced composite material using the prepreg. An object of the present invention is to provide a tubular body, a golf club shaft, and a fishing rod made of reinforced composite materials.

本発明は、かかる課題を解決するために次のような手段を採用するものである。すなわち、本発明のプリプレグは、以下1~4の通りである。
1. 強化繊維と樹脂組成物とを含むプリプレグであって、該樹脂組成物は、下記構成要素[A]~[C]を含み、かつ、下記条件(1)~(4)を満たす、プリプレグ。
[A]:エポキシ樹脂
[B]:ジシアンジアミド
[C]:沸点が130℃以上、かつ、分子量mが50以上250以下の化合物であって、分子内にエポキシ基を有さず、かつエポキシ樹脂の硬化能を有さない化合物
(1):構成要素[A]として[A1]オキサゾリドン型エポキシ樹脂を、全エポキシ樹脂100質量部に対し、10~40質量部含む。
(2):構成要素[A]として[A2]ノボラック型エポキシ樹脂を、全エポキシ樹脂100質量部に対し、20~50質量部含む。
(3):構成要素[A]として[A3]グリシジルアミン型エポキシ樹脂を含まないか、含んだとしても全エポキシ樹脂100質量部に対し、10質量部以下である。
(4):構成要素[B]の活性水素のモル数(H)と、エポキシ樹脂組成物全体に含まれるエポキシ基のモル数(E)の比(H/E)が、0.65≦H/E≦0.90である。
2.構成要素[A]として[A4]分子中にエポキシ基を3個以上有する脂肪族エポキシ樹脂を、全エポキシ樹脂100質量部に対し、10~40質量部含む、上記1に記載のプリプレグ。
3. 前記[A3]を含まないか、含んだとしても全エポキシ樹脂100質量部に対し、1質量部以下である、上記1または2に記載のプリプレグ。
4. 構成要素[D]フェノキシ樹脂を含む、上記1~3のいずれかに記載のプリプレグ。
また、本発明の繊維強化複合材料および当該材料からなる成形品は、以下の通りである。
5. 上記1~4のいずれかに記載のプリプレグを硬化させてなる、繊維強化複合材料。
6. 上記1~4のいずれかに記載のプリプレグを成形してなる、繊維強化複合材料製管状体。
7. 上記6に記載の繊維強化複合材料製管状体を用いてなる、ゴルフクラブシャフト。
8. 上記6に記載の繊維強化複合材料製管状体を用いてなる、釣り竿。
The present invention employs the following means to solve this problem. That is, the prepregs of the present invention are as follows 1 to 4.
1. A prepreg containing reinforcing fibers and a resin composition, the resin composition containing the following constituent elements [A] to [C] and satisfying the following conditions (1) to (4).
[A]: Epoxy resin [B]: Dicyandiamide [C]: A compound with a boiling point of 130°C or higher and a molecular weight m of 50 or more and 250 or less, which does not have an epoxy group in the molecule, and which is an epoxy resin. Compound (1) without curing ability: Contains 10 to 40 parts by mass of [A1] oxazolidone-type epoxy resin as component [A] based on 100 parts by mass of the total epoxy resin.
(2): Contains 20 to 50 parts by mass of a novolac-type epoxy resin [A2] as component [A] based on 100 parts by mass of the total epoxy resin.
(3): [A3] Glycidylamine type epoxy resin is not included as component [A], or even if it is included, it is 10 parts by mass or less based on 100 parts by mass of the total epoxy resin.
(4): The ratio (H/E) of the number of moles of active hydrogen in component [B] (H) to the number of moles of epoxy groups (E) contained in the entire epoxy resin composition is 0.65≦H /E≦0.90.
2. The prepreg according to 1 above, which contains 10 to 40 parts by mass of an aliphatic epoxy resin having three or more epoxy groups in the molecule [A4] as the component [A], based on 100 parts by mass of the total epoxy resin.
3. The prepreg according to 1 or 2 above, which does not contain the [A3], or even if it does, it is 1 part by mass or less based on 100 parts by mass of the total epoxy resin.
4. Component [D] The prepreg according to any one of 1 to 3 above, comprising a phenoxy resin.
Further, the fiber-reinforced composite material of the present invention and a molded article made of the material are as follows.
5. A fiber-reinforced composite material obtained by curing the prepreg according to any one of 1 to 4 above.
6. A tubular body made of a fiber-reinforced composite material formed by molding the prepreg according to any one of 1 to 4 above.
7. A golf club shaft using the fiber-reinforced composite material tubular body according to 6 above.
8. A fishing rod using the fiber-reinforced composite material tubular body according to 6 above.

本発明によれば、強度や弾性率といった機械特性と、耐候性が共に優れ、かつ繊維強化複合材料とした時の非繊維方向強度にも優れるプリプレグ、ならびに該プリプレグを用いた繊維強化複合材料、繊維強化複合材料製管状体、ゴルフクラブシャフト、釣り竿が得られる。 According to the present invention, a prepreg that has excellent mechanical properties such as strength and elastic modulus and weather resistance, and also has excellent non-fiber direction strength when made into a fiber-reinforced composite material, and a fiber-reinforced composite material using the prepreg, A fiber-reinforced composite material tubular body, golf club shaft, and fishing rod are obtained.

以下、本発明について詳細に説明する。 The present invention will be explained in detail below.

本発明のプリプレグは、樹脂組成物と強化繊維とを含む。樹脂組成物と強化繊維とからなることが好ましい。樹脂組成物としてエポキシ樹脂組成物が用いられ、構成要素[A]~[C]を必須成分として含む。なお本発明において「構成要素」とは組成物に含まれる化合物を意味する。 The prepreg of the present invention includes a resin composition and reinforcing fibers. It is preferable to consist of a resin composition and reinforcing fibers. An epoxy resin composition is used as the resin composition, and contains constituent elements [A] to [C] as essential components. Note that in the present invention, "constituent element" means a compound contained in the composition.

本発明における構成要素[A]は、樹脂組成物に含まれるエポキシ樹脂である。構成要素[A]が1分子中にエポキシ基が2個以上のエポキシ樹脂である場合、樹脂組成物を加熱硬化して得られる硬化物のガラス転移温度が高くなり、耐熱性が高くなるため好ましい。本発明のエポキシ樹脂組成物や繊維強化複合材料の耐熱性や力学特性に著しい悪影響を及ぼさない範囲で、1分子中にエポキシ基が1個のエポキシ樹脂を配合してもよい。これらのエポキシ樹脂は単独で用いてもよいし、適宜配合して用いてもよい。 Component [A] in the present invention is an epoxy resin contained in the resin composition. When component [A] is an epoxy resin having two or more epoxy groups in one molecule, it is preferable because the glass transition temperature of the cured product obtained by heating and curing the resin composition becomes high and the heat resistance becomes high. . An epoxy resin having one epoxy group per molecule may be blended within a range that does not significantly adversely affect the heat resistance and mechanical properties of the epoxy resin composition and fiber reinforced composite material of the present invention. These epoxy resins may be used alone or in an appropriate combination.

かかるエポキシ樹脂としては、例えば、ビスフェノール型、オキサゾリドン型、イソシアヌル酸型、フェノールノボラック型、クレゾールノボラック型、ジシクロペンタジエン型、ジアミノジフェニルメタン型、ジアミノジフェニルスルホン型、アミノフェノール型、メタキシレンジアミン型、1,3-ビスアミノメチルシクロヘキサン型、ヒダントイン型、ソルビトール型、グリセロール型、トリメチロールプロパン型、ペンタエリスリトール型、トリスヒドロキシフェニルメタン型およびテトラフェニロールエタン型等のエポキシ樹脂が挙げられる。 Such epoxy resins include, for example, bisphenol type, oxazolidone type, isocyanuric acid type, phenol novolak type, cresol novolac type, dicyclopentadiene type, diaminodiphenylmethane type, diaminodiphenylsulfone type, aminophenol type, metaxylene diamine type, 1 , 3-bisaminomethylcyclohexane type, hydantoin type, sorbitol type, glycerol type, trimethylolpropane type, pentaerythritol type, trishydroxyphenylmethane type, and tetraphenylolethane type.

ビスフェノールA型エポキシ樹脂の市販品としては、“jER(登録商標)”825、828、834、1001、1002、1003、1003F、1004、1004AF、1005F、1006FS、1007、1009、1010(以上、三菱ケミカル(株)製)、“EPICLON(登録商標)”850(DIC(株)製)、“エポトート(登録商標)”YD-128(日鉄ケミカル&マテリアル(株)製)、および“D.E.R. (登録商標)”-331、332(以上、ダウ・ケミカル(株)製)などが挙げられる。 Commercially available bisphenol A epoxy resins include "jER (registered trademark)" 825, 828, 834, 1001, 1002, 1003, 1003F, 1004, 1004AF, 1005F, 1006FS, 1007, 1009, 1010 (all of which are manufactured by Mitsubishi Chemical). Co., Ltd.), "EPICLON (registered trademark)" 850 (manufactured by DIC Corporation), "Epotote (registered trademark)" YD-128 (manufactured by Nippon Steel Chemical & Materials Co., Ltd.), and "D.E. Examples include "R. (registered trademark)"-331 and 332 (manufactured by Dow Chemical Co., Ltd.).

ビスフェノールF型エポキシ樹脂の市販品としては、“アラルダイト(登録商標)”GY282(ハンツマン・アドバンスト・マテリアルズ(株)製)、“jER(登録商標)”806、807、4005P、4007P、4010P(以上、三菱ケミカル(株)製)、“EPICLON(登録商標)”830(DIC(株)製)および“エポトート(登録商標)”YD-170(日鉄ケミカル&マテリアル(株)製)などが挙げられる。 Commercially available bisphenol F-type epoxy resins include "Araldite (registered trademark)" GY282 (manufactured by Huntsman Advanced Materials Co., Ltd.), "jER (registered trademark)" 806, 807, 4005P, 4007P, 4010P (manufactured by Huntsman Advanced Materials, Inc.), and , manufactured by Mitsubishi Chemical Corporation), "EPICLON (registered trademark)" 830 (manufactured by DIC Corporation), and "EPOTOT (registered trademark)" YD-170 (manufactured by Nippon Steel Chemical & Materials Corporation). .

本発明において条件(1)を満たすためには、構成要素[A]として[A1]オキサゾリドン型エポキシ樹脂を含む必要がある。[A1]を含むことにより、樹脂硬化物の耐候性を損ねることなく、優れた機械特性を得ることができ、また、マトリックス樹脂と炭素繊維との接着性が向上することから、非繊維方向強度の高い繊維強化複合材料が得られる。 In order to satisfy condition (1) in the present invention, it is necessary to include [A1] oxazolidone type epoxy resin as component [A]. By including [A1], it is possible to obtain excellent mechanical properties without impairing the weather resistance of the cured resin product, and since the adhesiveness between the matrix resin and carbon fibers is improved, the strength in the non-fiber direction is improved. A fiber-reinforced composite material with high

樹脂組成物に含まれる全エポキシ樹脂100質量部に対し、[A1]を10~40質量部含むことが必要である。下限については15質量部以上であることが好ましく、20質量部以上であることがさらに好ましい。上限については35質量部以下であることが好ましく、30質量部以下であることがさらに好ましい。[A1]の含有量が、上記下限値以上であれば繊維強化複合材料の非繊維方向強度が優れ、上記上限値以下であれば樹脂硬化物の樹脂弾性率が損なわれることがない。つまり、[A1]をこの範囲で含むことにより、耐候性と機械特性のバランスが良好となる。 It is necessary to contain 10 to 40 parts by mass of [A1] based on 100 parts by mass of the total epoxy resin contained in the resin composition. The lower limit is preferably 15 parts by mass or more, more preferably 20 parts by mass or more. The upper limit is preferably 35 parts by mass or less, more preferably 30 parts by mass or less. If the content of [A1] is at least the above lower limit, the non-fiber direction strength of the fiber reinforced composite material will be excellent, and if it is at most the above upper limit, the resin modulus of the cured resin will not be impaired. That is, by including [A1] in this range, a good balance between weather resistance and mechanical properties can be obtained.

[A1]の市販品としては、AER4152、AER4151(以上、旭化成イーマテリアルズ(株)製)、“D.E.R. (登録商標)”852、858(以上、ダウ・ケミカル(株)製)、TSR-400(DIC(株)製)、ACR1348(ADEKA(株)製)等を使用することができる。 Commercially available products of [A1] include AER4152, AER4151 (manufactured by Asahi Kasei E-Materials Co., Ltd.), "D.E.R. (registered trademark)" 852, 858 (manufactured by Dow Chemical Co., Ltd.) ), TSR-400 (manufactured by DIC Corporation), ACR1348 (manufactured by ADEKA Corporation), etc. can be used.

また、本発明において条件(2)を満たすためには、構成要素[A]として[A2]ノボラック型エポキシ樹脂を含む必要がある。[A2]を含むことにより、樹脂硬化物の耐候性を損ねることなく、樹脂強度や樹脂弾性率が高くなり、優れた耐候性と機械特性を有する繊維強化複合材料が得られる。 Further, in order to satisfy condition (2) in the present invention, it is necessary to include [A2] novolac type epoxy resin as component [A]. By including [A2], the resin strength and resin modulus are increased without impairing the weather resistance of the cured resin material, and a fiber reinforced composite material having excellent weather resistance and mechanical properties can be obtained.

樹脂組成物に含まれる全エポキシ樹脂100質量部に対し、[A2]を20~50質量部含むことが必要である。下限については25質量部以上であることが好ましく、30質量部以上であることがさらに好ましい。上限については45質量部以下であることが好ましく、40質量部以下であることがさらに好ましい。[A2]をこの範囲で含むことにより、樹脂硬化物の耐候性と機械特性のバランスが良好となる。 It is necessary to contain 20 to 50 parts by mass of [A2] based on 100 parts by mass of the total epoxy resin contained in the resin composition. The lower limit is preferably 25 parts by mass or more, more preferably 30 parts by mass or more. The upper limit is preferably 45 parts by mass or less, more preferably 40 parts by mass or less. By including [A2] in this range, the cured resin product has a good balance between weather resistance and mechanical properties.

また、樹脂強度や樹脂弾性率などの物性のバランスを良いものとするため、ノボラック型エポキシ樹脂は、その軟化点が、下限については50℃以上であることが好ましく、60℃以上であることがさらに好ましい。上記軟化点は、上限については、120℃以下であることが好ましく、110℃以下であることがさらに好ましい。 In addition, in order to achieve a good balance of physical properties such as resin strength and resin modulus, the lower limit of the softening point of the novolak epoxy resin is preferably 50°C or higher, and preferably 60°C or higher. More preferred. The upper limit of the softening point is preferably 120°C or lower, more preferably 110°C or lower.

[A2]としては、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂が挙げられる。 Examples of [A2] include phenol novolac type epoxy resins and cresol novolac type epoxy resins.

フェノールノボラック型エポキシ樹脂の市販品としては、“jER(登録商標)”152、154(以上、三菱ケミカル(株)製)、EPPN-201(日本化薬(株)製)、“EPICLON(登録商標)”N-740、N-770(軟化点:70℃)、N-775(軟化点:75℃、以上、DIC(株)製)などが挙げられる。 Commercially available phenol novolac type epoxy resins include "jER (registered trademark)" 152, 154 (manufactured by Mitsubishi Chemical Corporation), EPPN-201 (manufactured by Nippon Kayaku Co., Ltd.), and "EPICLON (registered trademark)". )"N-740, N-770 (softening point: 70°C), N-775 (softening point: 75°C, manufactured by DIC Corporation), etc.

クレゾールノボラック型エポキシ樹脂の市販品としては、“EPICLON(登録商標)”N-660(軟化点:66℃)、N-665(軟化点:70℃)、N-670(軟化点:73℃)、N-673(軟化点:78℃)、N―680(軟化点:87℃)、N-690(軟化点:93℃)、N-695(軟化点:95℃、以上、DIC(株)製)などが挙げられる。 Commercial products of cresol novolac type epoxy resin include "EPICLON (registered trademark)" N-660 (softening point: 66°C), N-665 (softening point: 70°C), N-670 (softening point: 73°C) , N-673 (softening point: 78°C), N-680 (softening point: 87°C), N-690 (softening point: 93°C), N-695 (softening point: 95°C, above, DIC Corporation) (manufactured by).

本発明において条件(3)を満たすためには、構成要素[A]として[A3]グリシジルアミン型エポキシ樹脂を含まないか、含んだとしても全エポキシ樹脂100質量部に対し、10質量部以下であることが必要である。また、[A3]を含んだとしても5質量部以下であることがより好ましく、1質量部以下であることがさらに好ましい。[A3]の配合量を10質量部以下にすることにより、樹脂硬化物の耐候性が向上し、優れた耐候性を有する繊維強化複合材料が得られる。 In order to satisfy condition (3) in the present invention, [A3] glycidylamine type epoxy resin must not be included as component [A], or even if it is included, it must be at most 10 parts by mass based on 100 parts by mass of the total epoxy resin. It is necessary that there be. Further, even if [A3] is included, it is more preferably 5 parts by mass or less, and even more preferably 1 part by mass or less. By controlling the blending amount of [A3] to 10 parts by mass or less, the weather resistance of the cured resin product is improved, and a fiber-reinforced composite material having excellent weather resistance can be obtained.

[A3]としては、芳香環を有するグリシジルアミン型エポキシ樹脂、脂肪族のグリシジルアミン型エポキシ樹脂があり、ジアミノジフェニルメタン型エポキシ樹脂、ジアミノジフェニルスルホン型エポキシ樹脂、アミノフェノール型エポキシ樹脂、メタキシレンジアミン型エポキシ樹脂、1,3-ビスアミノメチルシクロヘキサン型エポキシ樹脂などが挙げられる。 [A3] includes glycidylamine type epoxy resins having an aromatic ring, aliphatic glycidylamine type epoxy resins, diaminodiphenylmethane type epoxy resins, diaminodiphenylsulfone type epoxy resins, aminophenol type epoxy resins, metaxylene diamine type. Examples include epoxy resin and 1,3-bisaminomethylcyclohexane type epoxy resin.

ジアミノジフェニルメタン型エポキシ樹脂の市販品としては、ELM434(住友化学(株)製)、“アラルダイト(登録商標)”MY720、MY721、MY9512、MY9663(以上、ハンツマン・アドバンスト・マテリアルズ(株)製)、“エポトート(登録商標)”YH-434(日鉄ケミカル&マテリアル(株)製)、“jER(登録商標)”604(三菱ケミカル(株)製)などが挙げられる。 Commercially available diaminodiphenylmethane type epoxy resins include ELM434 (manufactured by Sumitomo Chemical Co., Ltd.), "Araldite (registered trademark)" MY720, MY721, MY9512, MY9663 (manufactured by Huntsman Advanced Materials Co., Ltd.), Examples include "Epotote (registered trademark)" YH-434 (manufactured by Nippon Steel Chemical & Materials Co., Ltd.) and "jER (registered trademark)" 604 (manufactured by Mitsubishi Chemical Corporation).

ジアミノジフェニルスルホン型エポキシ樹脂の市販品としては、TG3DAS(三井化学ファイン(株)製)などが挙げられる。 Commercially available diaminodiphenylsulfone epoxy resins include TG3DAS (manufactured by Mitsui Chemicals Fine Co., Ltd.).

アミノフェノール型エポキシ樹脂の市販品としては、ELM120、ELM100(以上、住友化学(株)製)、“jER(登録商標)”630(三菱ケミカル(株)製)、“アラルダイト(登録商標)”MY0500、MY0510、MY0600、MY0610(以上、ハンツマン・アドバンスト・マテリアルズ(株)製)などが挙げられる。 Commercially available aminophenol-type epoxy resins include ELM120, ELM100 (manufactured by Sumitomo Chemical Co., Ltd.), "jER (registered trademark)" 630 (manufactured by Mitsubishi Chemical Corporation), and "Araldite (registered trademark)" MY0500. , MY0510, MY0600, MY0610 (manufactured by Huntsman Advanced Materials, Inc.).

メタキシレンジアミン型エポキシ樹脂の市販品としては、“TETRAD(登録商標)” -X(三菱ガス化学(株)製)が挙げられる。 A commercially available meta-xylene diamine type epoxy resin includes "TETRAD (registered trademark)" -X (manufactured by Mitsubishi Gas Chemical Co., Ltd.).

1,3-ビスアミノメチルシクロヘキサン型エポキシ樹脂の市販品としては、“TETRAD(登録商標)” -C(三菱ガス化学(株)製)が挙げられる。 A commercially available 1,3-bisaminomethylcyclohexane type epoxy resin includes "TETRAD (registered trademark)" -C (manufactured by Mitsubishi Gas Chemical Co., Ltd.).

本発明において、構成要素[A]として[A4]分子中にエポキシ基を3個以上有する脂肪族エポキシ樹脂を含むことが好ましい。[A4]を含むと、樹脂硬化物の耐候性を高い水準で保ちながら、樹脂弾性率の向上が可能であるため好ましい。ただし、[A4]としてグリシジルアミン型エポキシ樹脂を用いると、耐候性を高い水準で保つことが困難となるため、[A4]にグリシジルアミン型エポキシ樹脂は含まれず、除かれるものとする。 In the present invention, it is preferable that [A4] contains an aliphatic epoxy resin having three or more epoxy groups in the molecule as component [A]. Including [A4] is preferable because it is possible to improve the resin modulus while maintaining the weather resistance of the cured resin product at a high level. However, if a glycidylamine type epoxy resin is used as [A4], it becomes difficult to maintain a high level of weather resistance, so the glycidylamine type epoxy resin is not included in [A4] and is excluded.

樹脂組成物に含まれる全エポキシ樹脂100質量部に対し、[A4]を10~40質量部含むことが好ましい。下限については15質量部以上であることがさらに好ましく、上限については35質量部以下であることがより好ましく、30質量部以下であることがさらに好ましい。[A4]をこの範囲で含むことにより、樹脂硬化物の耐候性と機械特性のバランスが良好となるため好ましい。
[A4]としては、ソルビトール型エポキシ樹脂、グリセロール型エポキシ樹脂、ジグリセロール型エポキシ樹脂、ポリグリセロール型エポキシ樹脂、トリメチロールプロパン型エポキシ樹脂、ペンタエリスリトール型エポキシ樹脂などが挙げられる。中でも、耐候性と樹脂弾性率のバランスが良いことから、ソルビトール型エポキシ樹脂やポリグリセロール型エポキシ樹脂であることが好ましい。
It is preferable that the resin composition contains 10 to 40 parts by mass of [A4] based on 100 parts by mass of the total epoxy resin contained in the resin composition. The lower limit is more preferably 15 parts by mass or more, the upper limit is more preferably 35 parts by mass or less, and even more preferably 30 parts by mass or less. Including [A4] in this range is preferable because the cured resin product has a good balance between weather resistance and mechanical properties.
Examples of [A4] include sorbitol-type epoxy resins, glycerol-type epoxy resins, diglycerol-type epoxy resins, polyglycerol-type epoxy resins, trimethylolpropane-type epoxy resins, pentaerythritol-type epoxy resins, and the like. Among these, sorbitol-type epoxy resins and polyglycerol-type epoxy resins are preferable because they have a good balance between weather resistance and resin elastic modulus.

ソルビトール型エポキシ樹脂の市販品としては、“デナコール(登録商標)”EX-612、EX-614、EX-614B、EX-622(以上、ナガセケムテックス(株)製)などが挙げられる。 Commercially available sorbitol-type epoxy resins include "Denacol (registered trademark)" EX-612, EX-614, EX-614B, and EX-622 (manufactured by Nagase ChemteX Co., Ltd.).

グリセロール型エポキシ樹脂の市販品としては、“デナコール(登録商標)”EX-313、EX-314(以上、ナガセケムテックス(株)製)などが挙げられる。ジグリセロール型エポキシ樹脂の市販品としては、“デナコール(登録商標)”EX-421(ナガセケムテックス(株)製)などが挙げられ、ポリグリセロール型エポキシ樹脂の市販品としては、“デナコール(登録商標)”EX-512、EX-521(以上、ナガセケムテックス(株)製)などが挙げられる。 Commercially available glycerol type epoxy resins include "Denacol (registered trademark)" EX-313 and EX-314 (manufactured by Nagase ChemteX Co., Ltd.). Commercial products of diglycerol type epoxy resin include "Denacol (registered trademark)" EX-421 (manufactured by Nagase ChemteX Co., Ltd.), and commercial products of polyglycerol type epoxy resin include "Denacol (registered trademark)" Trademark)" EX-512, EX-521 (manufactured by Nagase ChemteX Co., Ltd.).

トリメチロールプロパン型エポキシ樹脂の市販品としては、“デナコール(登録商標)”EX-321、EX-321L(以上、ナガセケムテックス(株)製)などが挙げられる。 Commercially available trimethylolpropane type epoxy resins include "Denacol (registered trademark)" EX-321 and EX-321L (manufactured by Nagase ChemteX Co., Ltd.).

ペンタエリスリトール型エポキシ樹脂の市販品としては、“デナコール(登録商標)”EX-411(ナガセケムテックス(株)製)、“ショウフリー(登録商標)”PETG(昭和電工(株)製)などが挙げられる。 Commercially available pentaerythritol type epoxy resins include "Denacol (registered trademark)" EX-411 (manufactured by Nagase ChemteX Co., Ltd.) and "Showfree (registered trademark)" PETG (manufactured by Showa Denko Co., Ltd.). Can be mentioned.

本発明のエポキシ樹脂組成物には、本発明の効果を損なわない範囲で、前記以外のエポキシ化合物も適宜配合することができる。 In the epoxy resin composition of the present invention, epoxy compounds other than those described above may also be appropriately blended within a range that does not impair the effects of the present invention.

本発明の構成要素[B]は、ジシアンジアミドである。ジシアンジアミドは、エポキシ樹脂硬化物に高い機械特性や耐熱性を与える点で優れており、種々のエポキシ樹脂の硬化剤として広く用いられている。また、エポキシ樹脂組成物の耐候性や保存安定性に優れることから、好適に使用できる。かかるジシアンジアミドの市販品としては、DICY7、DICY15(以上、三菱ケミカル(株)製)などが挙げられる。 Component [B] of the present invention is dicyandiamide. Dicyandiamide is excellent in providing high mechanical properties and heat resistance to cured epoxy resin products, and is widely used as a curing agent for various epoxy resins. Furthermore, since the epoxy resin composition has excellent weather resistance and storage stability, it can be suitably used. Commercially available products of such dicyandiamide include DICY7 and DICY15 (all manufactured by Mitsubishi Chemical Corporation).

樹脂硬化物の機械特性や耐候性のバランスが優れることから、[B]の含有量が全エポキシ樹脂100質量部に対し、6~11質量部であることが好ましい。下限については7質量部以上であることがさらに好ましく、上限については10質量部以下であることがさらに好ましい。 The content of [B] is preferably 6 to 11 parts by mass based on 100 parts by mass of the total epoxy resin, since the cured resin product has an excellent balance of mechanical properties and weather resistance. The lower limit is more preferably 7 parts by mass or more, and the upper limit is even more preferably 10 parts by mass or less.

また本発明では、樹脂硬化物の樹脂強度や樹脂弾性率、耐候性のバランスが優れることから、[B]の活性水素のモル数(H)と、エポキシ樹脂組成物全体に含まれるエポキシ基のモル数(E)の比(H/E)が、0.65≦H/E≦0.90であることが必要である。下限については0.70以上であることが好ましく、0.75以上であることがさらに好ましい。上限については0.85以下であることが好ましい。ここでの[B]の活性水素のモル数(H)は、[B]の活性水素数を4として算出している。またこの時の活性水素のモル数(H)の範囲として、0.20≦H≦0.60であることが好ましく、下限については0.30以上であることがさらに好ましく、上限については0.50以下であることがさらに好ましい。エポキシ基のモル数(E)の範囲としては、0.30≦E≦0.70であることが好ましく、下限については0.40以上であることがさらに好ましく、上限については0.60以下であることがさらに好ましい。 In addition, in the present invention, since the resin cured product has an excellent balance of resin strength, resin elastic modulus, and weather resistance, the number of moles of active hydrogen (H) in [B] and the epoxy group contained in the entire epoxy resin composition are It is necessary that the ratio (H/E) of the number of moles (E) is 0.65≦H/E≦0.90. The lower limit is preferably 0.70 or more, more preferably 0.75 or more. The upper limit is preferably 0.85 or less. The number of moles (H) of active hydrogen in [B] here is calculated assuming that the number of active hydrogen in [B] is 4. Further, the range of the number of moles (H) of active hydrogen at this time is preferably 0.20≦H≦0.60, the lower limit is more preferably 0.30 or more, and the upper limit is 0.20≦H≦0.60. More preferably, it is 50 or less. The range of the number of moles (E) of the epoxy group is preferably 0.30≦E≦0.70, the lower limit is more preferably 0.40 or more, and the upper limit is 0.60 or less. It is even more preferable that there be.

本発明の構成要素[C]は、沸点が130℃以上、かつ、分子量mが50以上250以下の化合物であって、分子内にエポキシ基を有さず、かつ、エポキシ樹脂の硬化能を有さない化合物である。ここで、エポキシ樹脂と付加反応しうるアミンやフェノール、エポキシ樹脂と共重合しうる酸無水物、エポキシ樹脂の自己重合反応開始剤となり得るイミダゾール、芳香族ウレア化合物、三級アミン化合物などの化合物は、エポキシ樹脂の硬化能を有する化合物であり、構成要素[C]には含まれない。なおここで、「エポキシ樹脂の硬化能を有さない」とは、「実質的にエポキシ樹脂の硬化能を有さない」ことと同義であり、エポキシ樹脂と化学反応せず、かつ、エポキシ樹脂の自己重合に関与しない性質をいう。 Component [C] of the present invention is a compound having a boiling point of 130° C. or higher and a molecular weight m of 50 or more and 250 or less, which does not have an epoxy group in the molecule and has the ability to cure an epoxy resin. It is a compound that does not Here, compounds such as amines and phenols that can undergo addition reactions with epoxy resins, acid anhydrides that can be copolymerized with epoxy resins, imidazole, aromatic urea compounds, and tertiary amine compounds that can serve as self-polymerization reaction initiators for epoxy resins are , is a compound that has the ability to harden epoxy resins, and is not included in component [C]. Note that "not having epoxy resin curing ability" has the same meaning as "having substantially no epoxy resin curing ability", and does not chemically react with epoxy resin, and does not have epoxy resin curing ability. A property that does not involve self-polymerization.

構成要素[C]は、エポキシ樹脂とジシアンジアミドとが反応して形成される架橋構造において、架橋構造に取り込まれることなく、その空隙部に存在し、エポキシ樹脂の硬化後もその状態が保持されると考えられ、これにより、得られるエポキシ樹脂硬化物の弾性率が高くなると考えられる。また、驚くべきことに、構成要素[C]を配合することで、高弾性率のみならず、高伸度で高強度なエポキシ樹脂硬化物が得られる。 In the crosslinked structure formed by the reaction of the epoxy resin and dicyandiamide, the component [C] exists in the voids without being incorporated into the crosslinked structure, and this state is maintained even after the epoxy resin is cured. It is thought that this increases the elastic modulus of the obtained cured epoxy resin. Moreover, surprisingly, by blending component [C], a cured epoxy resin product having not only high elastic modulus but also high elongation and high strength can be obtained.

また、構成要素[C]の沸点が130℃以上、より好ましくは180℃以上であることで、エポキシ樹脂組成物が硬化する際の構成要素[C]の揮発を抑制でき、機械特性に優れた樹脂硬化物や繊維強化複合材料が得られる。さらに、得られる繊維強化複合材料におけるボイドの発生や機械特性の低下を抑制できる。また、構成要素[C]の沸点の上限は特にはないが、本発明に通常用いられる化合物の沸点は、400℃以下のものが多い。 In addition, since the boiling point of component [C] is 130°C or higher, more preferably 180°C or higher, volatilization of component [C] when the epoxy resin composition is cured can be suppressed, resulting in excellent mechanical properties. Cured resin products and fiber-reinforced composite materials can be obtained. Furthermore, generation of voids and deterioration of mechanical properties in the resulting fiber-reinforced composite material can be suppressed. Further, although there is no particular upper limit to the boiling point of component [C], the boiling points of the compounds commonly used in the present invention are often 400° C. or lower.

構成要素[C]の分子量mは50以上250以下であり、より好ましくは70以上120以下である。構成要素[C]の分子量をかかる範囲とすることで、構成要素[C]は、エポキシ樹脂とジシアンジアミドとが反応して形成される架橋構造の空隙部に適切に保持され、弾性率や強度、伸度に優れた硬化物が得られる。 The molecular weight m of component [C] is 50 or more and 250 or less, more preferably 70 or more and 120 or less. By setting the molecular weight of component [C] within this range, component [C] is appropriately retained in the voids of the crosslinked structure formed by the reaction of the epoxy resin and dicyandiamide, and improves elastic modulus, strength, A cured product with excellent elongation can be obtained.

本発明において、構成要素[C]は、分子内にアミド基、ケトン基、水酸基からなる群から選ばれる少なくとも1つの官能基を有する化合物であることが好ましい。構成要素[C]が分子内に上記のような高極性の官能基を有する場合、構成要素[A]と構成要素[B]から形成される架橋構造中の水酸基と構成要素[C]との間に強い分子間相互作用が働き、構成要素[C]が架橋構造の空隙部に適切に保持されやすくなるため、特に優れた伸度や強度の向上効果が得られる。 In the present invention, component [C] is preferably a compound having in its molecule at least one functional group selected from the group consisting of an amide group, a ketone group, and a hydroxyl group. When component [C] has a highly polar functional group as described above in the molecule, the relationship between the hydroxyl group in the crosslinked structure formed from component [A] and component [B] and component [C] A strong intermolecular interaction acts between them, making it easier for the component [C] to be appropriately retained in the voids of the crosslinked structure, resulting in a particularly excellent effect of improving elongation and strength.

かかる構成要素[C]としては、N-メチルホルムアミド、N-メチルアセトアミド、2-ピロリドン、N-メチルプロピオンアミド、N-エチルアセトアミド、N-メチルアセトアニリド、N,N’-ジフェニルアセトアミド等のアミド類、およびエタンジオール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ヘプタンジオール等のジオール類等が挙げられる。これらの化合物は単独で用いてもよいし、適宜配合して用いてもよい。 Such component [C] includes amides such as N-methylformamide, N-methylacetamide, 2-pyrrolidone, N-methylpropionamide, N-ethylacetamide, N-methylacetanilide, and N,N'-diphenylacetamide. and diols such as ethanediol, propanediol, butanediol, pentanediol, hexanediol, and heptanediol. These compounds may be used alone or in an appropriate combination.

構成要素[C]は、全エポキシ樹脂100質量部に対し、1~15質量部含まれることが好ましく、2~10質量部含まれることが好ましく、3~6質量部含まれることがさらに好ましい。 Component [C] is preferably contained in an amount of 1 to 15 parts by weight, preferably 2 to 10 parts by weight, and more preferably 3 to 6 parts by weight, based on 100 parts by weight of the total epoxy resin.

本発明のプリプレグに用いる樹脂組成物には、樹脂組成物の粘度や、プリプレグのタックをコントロールするという観点から、成分[D]フェノキシ樹脂を配合することが好ましい。フェノキシ樹脂は樹脂硬化物の耐候性を損ねることなく、樹脂組成物の粘度や、プリプレグのタックを向上させることができるため、取り扱い性に優れたプリプレグを作製する上で配合することが好ましい。 From the viewpoint of controlling the viscosity of the resin composition and the tack of the prepreg, it is preferable to blend component [D] a phenoxy resin into the resin composition used for the prepreg of the present invention. Since the phenoxy resin can improve the viscosity of the resin composition and the tack of the prepreg without impairing the weather resistance of the cured resin product, it is preferably blended in order to produce a prepreg with excellent handling properties.

フェノキシ樹脂の市販品としては、“フェノトート(登録商標)”YP-50、YP-50S、YP-70(以上、日鉄ケミカル&マテリアル(株)製)などが挙げられる。 Examples of commercially available phenoxy resins include "Phenotote (registered trademark)" YP-50, YP-50S, and YP-70 (manufactured by Nippon Steel Chemical & Materials Co., Ltd.).

本発明のプリプレグに用いる樹脂組成物には、硬化速度をコントロールするという観点から硬化促進剤を配合してもよい。硬化促進剤としては、ウレア化合物、イミダゾール化合物などが挙げられ、エポキシ樹脂組成物の保管安定性の観点から特にウレア化合物を好ましく用いることができる。 A curing accelerator may be added to the resin composition used for the prepreg of the present invention from the viewpoint of controlling the curing speed. Examples of the curing accelerator include urea compounds and imidazole compounds, and urea compounds are particularly preferably used from the viewpoint of storage stability of the epoxy resin composition.

ウレア化合物としては、3-(3,4-ジクロロフェニル)-1,1-ジメチルウレア、3-(4-クロロフェニル)-1,1-ジメチルウレア、フェニルジメチルウレア、トルエンビスジメチルウレアなどが挙げられる。また、芳香族ウレア化合物の市販品としては、DCMU99(保土ヶ谷化学工業(株)製)、“Omicure(登録商標)”24(ピィ・ティ・アイ・ジャパン(株)製)などを使用することができる。 Examples of the urea compound include 3-(3,4-dichlorophenyl)-1,1-dimethylurea, 3-(4-chlorophenyl)-1,1-dimethylurea, phenyldimethylurea, and toluenebisdimethylurea. In addition, as commercially available aromatic urea compounds, DCMU99 (manufactured by Hodogaya Chemical Industry Co., Ltd.), "Omicure (registered trademark)" 24 (manufactured by PTI Japan Co., Ltd.), etc. can be used. can.

本発明のプリプレグ及び繊維強化複合材料に用いる強化繊維としては、炭素繊維、黒鉛繊維、アラミド繊維、ガラス繊維等を好ましく挙げることができるが、炭素繊維が特に好ましい。強化繊維の形態や配列については限定されず、例えば、一方向に引き揃えられた長繊維、単一のトウ、織物、ニット、および組紐などの繊維構造物が用いられる。強化繊維として、2種類以上の炭素繊維や、ガラス繊維、アラミド繊維、ボロン繊維、PBO繊維、高強力ポリエチレン繊維、アルミナ繊維および炭化ケイ素繊維などを組み合わせて用いても構わない。 Preferred examples of reinforcing fibers used in the prepreg and fiber-reinforced composite material of the present invention include carbon fibers, graphite fibers, aramid fibers, and glass fibers, with carbon fibers being particularly preferred. The form and arrangement of the reinforcing fibers are not limited, and for example, fiber structures such as long fibers aligned in one direction, single tow, woven fabric, knit, and braided cord are used. As reinforcing fibers, two or more types of carbon fibers, glass fibers, aramid fibers, boron fibers, PBO fibers, high-strength polyethylene fibers, alumina fibers, silicon carbide fibers, and the like may be used in combination.

炭素繊維としては、具体的にはアクリル系、ピッチ系およびレーヨン系等の炭素繊維が挙げられ、特に引張強度の高いアクリル系の炭素繊維が好ましく用いられる。 Specific examples of the carbon fibers include acrylic, pitch, and rayon carbon fibers, with acrylic carbon fibers having particularly high tensile strength being preferably used.

炭素繊維の形態としては、有撚糸、解撚糸および無撚糸等を使用することができるが、有撚糸の場合は炭素繊維を構成するフィラメントの配向が平行ではないため、得られる炭素繊維強化複合材料の力学特性の低下の原因となることから、炭素繊維強化複合材料の成形性と強度特性のバランスが良い解撚糸または無撚糸が好ましく用いられる。 As for the form of carbon fibers, twisted yarns, untwisted yarns, untwisted yarns, etc. can be used, but in the case of twisted yarns, the orientation of the filaments constituting the carbon fibers is not parallel, so the obtained carbon fiber reinforced composite material Therefore, it is preferable to use untwisted yarn or non-twisted yarn, which has a good balance between formability and strength characteristics of the carbon fiber reinforced composite material.

炭素繊維は、引張弾性率が200~440GPaの範囲であることが好ましい。炭素繊維の引張弾性率は、炭素繊維を構成する黒鉛構造の結晶度に影響され、結晶度が高いほど弾性率は向上する。この範囲であると炭素繊維強化複合材料の剛性、強度のすべてが高いレベルでバランスするために好ましい。より好ましい弾性率は、230~400GPaの範囲内であり、さらに好ましくは260~370GPaの範囲内である。ここで、炭素繊維の引張弾性率は、JIS R7601(2006)に従い測定された値である。 The carbon fiber preferably has a tensile modulus in the range of 200 to 440 GPa. The tensile modulus of carbon fiber is influenced by the crystallinity of the graphite structure that constitutes the carbon fiber, and the higher the crystallinity, the higher the modulus of elasticity. This range is preferable because the carbon fiber reinforced composite material has both stiffness and strength balanced at a high level. A more preferable elastic modulus is within the range of 230 to 400 GPa, and even more preferably within the range of 260 to 370 GPa. Here, the tensile modulus of carbon fiber is a value measured according to JIS R7601 (2006).

本発明のプリプレグは、様々な公知の方法で製造することができる。例えば、有機溶媒を用いず、樹脂組成物を加熱により低粘度化し、強化繊維に含浸させるホットメルト法により、プリプレグを製造することができる。 The prepreg of the present invention can be manufactured by various known methods. For example, a prepreg can be produced by a hot melt method in which a resin composition is heated to lower its viscosity and impregnated into reinforcing fibers without using an organic solvent.

ホットメルト法では、加熱により低粘度化した樹脂組成物を、直接、強化繊維に含浸させる方法、あるいは一旦樹脂組成物を離型紙などの上にコーティングした樹脂フィルム付きの離型紙シートをまず作製し、次いで強化繊維の両側あるいは片側から樹脂フィルムを強化繊維側に重ね、加熱加圧することにより強化繊維に樹脂組成物を含浸させる方法などを用いることができる。 In the hot melt method, a reinforcing fiber is directly impregnated with a resin composition whose viscosity has been lowered by heating, or a release paper sheet with a resin film is first prepared by coating the resin composition on a release paper or the like. Next, a method can be used in which a resin film is placed on the reinforcing fiber side from both sides or one side of the reinforcing fiber, and the reinforcing fiber is impregnated with the resin composition by heating and pressing.

プリプレグ中の強化繊維の含有率は、好ましくは30~90質量%であり、より好ましくは35~85質量%であり、更に好ましくは65~85質量%である。繊維質量含有率が小さいと、樹脂の量が多すぎて、比強度と比弾性率に優れる繊維強化複合材料の利点が得られにくい。また、繊維強化複合材料の成形の際、硬化時の発熱量が高くなりすぎることがある。一方、繊維質量含有率が大きすぎると、樹脂の含浸不良が生じ、得られる複合材料はボイドの多いものとなる恐れがある。またプリプレグのタック性を損ねる恐れがある。 The content of reinforcing fibers in the prepreg is preferably 30 to 90% by mass, more preferably 35 to 85% by mass, and even more preferably 65 to 85% by mass. When the fiber mass content is small, the amount of resin is too large, making it difficult to obtain the advantages of a fiber reinforced composite material having excellent specific strength and specific modulus. Furthermore, when molding a fiber-reinforced composite material, the amount of heat generated during curing may become too high. On the other hand, if the fiber mass content is too large, poor resin impregnation may occur, and the resulting composite material may have many voids. Moreover, there is a possibility that the tackiness of the prepreg may be impaired.

本発明の繊維強化複合材料、または繊維強化複合材料製管状体は、上述した本発明のプリプレグを所定の形態で積層し、加圧・加熱して樹脂を硬化させる方法を一例として、製造することができる。ここで熱及び圧力を付与する方法には、プレス成形法、オートクレーブ成形法、バッギング成形法、ラッピングテープ法、内圧成形法等が採用される。 The fiber-reinforced composite material of the present invention or the tubular body made of fiber-reinforced composite material can be manufactured by, for example, the method of laminating the prepregs of the present invention described above in a predetermined form and curing the resin by applying pressure and heating. Can be done. Here, the method of applying heat and pressure includes a press molding method, an autoclave molding method, a bagging molding method, a wrapping tape method, an internal pressure molding method, and the like.

繊維強化複合材料製管状体の成形方法には、ラッピングテープ法が特に好ましく用いられる。ラッピングテープ法は、マンドレル等の芯金にプリプレグを巻いて、円筒状成形体を得る方法である。具体的には、マンドレルにプリプレグを巻着し、プリプレグの固定及び圧力付与のため、その外周に熱可塑性樹脂フィルムからなるラッピングテープを巻着し、オーブン中で樹脂を加熱硬化させた後、芯金を抜き去ることにより円筒状成形体を得る方法であり、ゴルフクラブシャフト、釣り竿等の管状体を作製する際に好適である。 A wrapping tape method is particularly preferably used as a method for forming the tubular body made of fiber-reinforced composite material. The wrapping tape method is a method in which a prepreg is wrapped around a core metal such as a mandrel to obtain a cylindrical molded body. Specifically, the prepreg is wrapped around a mandrel, a wrapping tape made of a thermoplastic resin film is wrapped around the outer periphery of the prepreg in order to fix the prepreg and apply pressure, and after the resin is heated and cured in an oven, the core is wrapped. This is a method of obtaining a cylindrical molded body by removing gold, and is suitable for producing tubular bodies such as golf club shafts and fishing rods.

本発明に係る樹脂組成物を用いると、その硬化物は優れた機械特性や耐候性を有することから、本発明の繊維強化複合材料製管状体は優れた曲げ強度や耐候性を発現する。 When the resin composition according to the present invention is used, the cured product thereof has excellent mechanical properties and weather resistance, so that the tubular body made of the fiber-reinforced composite material of the present invention exhibits excellent bending strength and weather resistance.

本発明の繊維強化複合材料、または繊維強化複合材料製管状体は、航空宇宙用途、一般産業用途およびスポーツ用途に広く用いることができる。より具体的には、一般産業用途では、自動車、船舶および鉄道車両などの構造体等に好適に用いられる。スポーツ用途では、ゴルフクラブシャフト、釣り竿、テニスやバドミントンのラケット用途に好適に用いられる。中でも、本発明の繊維強化複合材料製管状体は、ゴルフクラブシャフトや釣り竿に好適に用いることができる。 The fiber-reinforced composite material or the tubular body made of fiber-reinforced composite material of the present invention can be widely used in aerospace applications, general industrial applications, and sports applications. More specifically, in general industrial applications, it is suitably used in structures such as automobiles, ships, and railway vehicles. In sports applications, it is suitably used for golf club shafts, fishing rods, tennis and badminton rackets. Among these, the fiber-reinforced composite material tubular body of the present invention can be suitably used for golf club shafts and fishing rods.

以上に記した数値範囲の上限及び下限は、特に断りのない限り、任意に組み合わせることができる。 The upper and lower limits of the numerical ranges described above can be arbitrarily combined unless otherwise specified.

以下、本発明を実施例により詳細に説明する。ただし、本発明の範囲はこれらの実施例に限定されるものではない。なお、組成比の単位「部」は、特に注釈のない限り質量部を意味する。また、各種特性(物性)の測定は、特に注釈のない限り温度23℃、相対湿度50%の環境下で行った。 Hereinafter, the present invention will be explained in detail with reference to Examples. However, the scope of the present invention is not limited to these examples. Note that the unit of composition ratio "parts" means parts by mass unless otherwise noted. Furthermore, measurements of various properties (physical properties) were performed under an environment of a temperature of 23° C. and a relative humidity of 50% unless otherwise noted.

<実施例および比較例で用いられた材料>
(1)強化繊維
“トレカ(登録商標)”T1100G-24K(繊維数24000本、引張弾性率:324GPa、密度:1.8g/cm、東レ(株)製)。
<Materials used in Examples and Comparative Examples>
(1) Reinforcing fiber “Torayca (registered trademark)” T1100G-24K (24,000 fibers, tensile modulus: 324 GPa, density: 1.8 g/cm 3 , manufactured by Toray Industries, Inc.).

(2)構成要素[A]:エポキシ樹脂
・[A1]オキサゾリドン型エポキシ樹脂
[A1]-1 “D.E.R.(登録商標)”858(エポキシ当量:400、ダウ・ケミカル(株)製)
・[A2]ノボラック型エポキシ樹脂
[A2]-1 “EPICLON(登録商標)”N-775(フェノールノボラック型エポキシ樹脂、エポキシ当量:189、DIC(株)製)
[A2]-2 “EPICLON(登録商標)”N-695(クレゾールノボラック型エポキシ樹脂、エポキシ当量:214、DIC(株)製)
・[A3]グリシジルアミン型エポキシ樹脂
[A3]-1 “アラルダイト(登録商標)”MY0600(アミノフェノール型エポキシ樹脂、エポキシ当量:118、ハンツマン・アドバンスト・マテリアルズ(株)製)
・[A4]分子中にエポキシ基を3個以上有する脂肪族エポキシ樹脂
[A4]-1 “デナコール(登録商標)”EX-614B(ソルビトール型エポキシ樹脂、エポキシ当量:173、ナガセケムテックス(株)製)
[A4]-2 “デナコール(登録商標)”EX-512(ポリグリセロール型エポキシ樹脂、エポキシ当量:168、ナガセケムテックス(株)製)
[A4]-3 “デナコール(登録商標)”EX-321L(トリメチロールプロパン型エポキシ樹脂、エポキシ当量:130、ナガセケムテックス(株)製)
・[A5]その他のエポキシ樹脂
[A5]-1 “EPICLON(登録商標)”830(ビスフェノールF型エポキシ樹脂、エポキシ当量:172、DIC(株)製)。
(2) Component [A]: Epoxy resin/[A1] Oxazolidone type epoxy resin [A1]-1 “D.E.R. (registered trademark)” 858 (epoxy equivalent: 400, manufactured by Dow Chemical Co., Ltd.) )
・[A2] Novolac-type epoxy resin [A2]-1 “EPICLON (registered trademark)” N-775 (phenol novolac-type epoxy resin, epoxy equivalent: 189, manufactured by DIC Corporation)
[A2]-2 “EPICLON (registered trademark)” N-695 (cresol novolac type epoxy resin, epoxy equivalent: 214, manufactured by DIC Corporation)
・[A3] Glycidylamine type epoxy resin [A3]-1 “Araldite (registered trademark)” MY0600 (aminophenol type epoxy resin, epoxy equivalent: 118, manufactured by Huntsman Advanced Materials Co., Ltd.)
・[A4] Aliphatic epoxy resin having three or more epoxy groups in the molecule [A4]-1 “Denacol (registered trademark)” EX-614B (sorbitol type epoxy resin, epoxy equivalent: 173, Nagase ChemteX Co., Ltd.) made)
[A4]-2 “Denacol (registered trademark)” EX-512 (polyglycerol type epoxy resin, epoxy equivalent: 168, manufactured by Nagase ChemteX Co., Ltd.)
[A4]-3 “Denacol (registered trademark)” EX-321L (trimethylolpropane type epoxy resin, epoxy equivalent: 130, manufactured by Nagase ChemteX Co., Ltd.)
- [A5] Other epoxy resins [A5]-1 "EPICLON (registered trademark)" 830 (bisphenol F type epoxy resin, epoxy equivalent: 172, manufactured by DIC Corporation).

(3)構成要素[B]:ジシアンジアミド
[B]-1 DICY7(ジシアンジアミド、三菱ケミカル(株)製)。
(3) Component [B]: dicyandiamide [B]-1 DICY7 (dicyandiamide, manufactured by Mitsubishi Chemical Corporation).

(4)構成要素[C]:沸点が130℃以上、かつ、分子量mが50以上250以下の化合物であって、分子内にエポキシ基を有さず、かつ、エポキシ樹脂の硬化能を有さない化合物
[C]-1 1,2-プロパンジオール(沸点:188℃、分子量m:76g/mol、東京化成工業(株)製)
[C]-2 2-ピロリドン(沸点:245℃、分子量m:85g/mol、東京化成工業(株)製)
(5)成分[D]:フェノキシ樹脂
[D]-1 “フェノトート(登録商標)”YP-70(日鉄ケミカル&マテリアル(株)製)
(6)硬化促進剤
DCMU99(3-(3,4-ジクロロフェニル)-1,1-ジメチルウレア、保土ケ谷化学工業(株)製)。
(4) Component [C]: A compound with a boiling point of 130°C or higher and a molecular weight m of 50 or more and 250 or less, which does not have an epoxy group in the molecule and has the ability to cure an epoxy resin. Compound [C]-1 1,2-propanediol (boiling point: 188°C, molecular weight m: 76 g/mol, manufactured by Tokyo Kasei Kogyo Co., Ltd.)
[C]-2 2-pyrrolidone (boiling point: 245°C, molecular weight m: 85 g/mol, manufactured by Tokyo Chemical Industry Co., Ltd.)
(5) Component [D]: Phenoxy resin [D]-1 “Phenotote (registered trademark)” YP-70 (manufactured by Nippon Steel Chemical & Materials Co., Ltd.)
(6) Curing accelerator DCMU99 (3-(3,4-dichlorophenyl)-1,1-dimethylurea, manufactured by Hodogaya Chemical Industry Co., Ltd.).

<エポキシ樹脂組成物の調製方法>
(1)硬化剤マスターの調製
液状の構成要素[A]:エポキシ樹脂([A4]-1、[A4]-2、[A4]-3、[A5]-1がこれにあたる)を10質量部(全てのエポキシ樹脂100質量部に対して10質量部)用意した。これに構成要素[B]:ジシアンジアミドをそれぞれ添加し、室温で混練した。混合物を三本ロールミルに2回通すことで、硬化剤マスターを調製した。
<Method for preparing epoxy resin composition>
(1) Preparation of hardening agent master Liquid component [A]: 10 parts by mass of epoxy resin ([A4]-1, [A4]-2, [A4]-3, [A5]-1 correspond to this) (10 parts by mass based on 100 parts by mass of all epoxy resins) was prepared. Component [B]: dicyandiamide was added thereto, and kneaded at room temperature. A hardener master was prepared by passing the mixture twice through a three roll mill.

(2)エポキシ樹脂組成物の調製
上記(1)で使用した液状の構成要素[A]:エポキシ樹脂10質量部を除いた、構成要素[A]90質量部をビーカーに投入した。混練しながら、150℃まで昇温した後、[D]:フェノキシ樹脂を投入し、150℃の温度で1時間加熱混練を行い、溶解させた。次いで、混練を続けたまま55~65℃の温度まで降温した後、前記(1)で調製した硬化剤マスターと構成要素[C]、硬化促進剤を投入し、同温度で30分間混練することで、エポキシ樹脂組成物を得た。表1に各実施例および比較例のエポキシ樹脂組成を示した。
(2) Preparation of epoxy resin composition Liquid component [A] used in the above (1): 90 parts by mass of component [A] excluding 10 parts by mass of the epoxy resin was put into a beaker. After raising the temperature to 150° C. while kneading, [D]: Phenoxy resin was added and heated and kneaded at 150° C. for 1 hour to dissolve. Next, after cooling down to a temperature of 55 to 65°C while continuing kneading, add the curing agent master prepared in (1) above, component [C], and curing accelerator, and knead at the same temperature for 30 minutes. An epoxy resin composition was obtained. Table 1 shows the epoxy resin composition of each example and comparative example.

<エポキシ樹脂硬化物の作製方法>
上記<エポキシ樹脂組成物の調製方法>に従い調製したエポキシ樹脂組成物を真空中で脱泡した後、2mm厚の“テフロン(登録商標)”製スペーサーにより厚み2mmになるように設定したモールド中で、30℃から速度1.7℃/分で昇温して、90℃の温度に到達してから1時間保持した後、速度2.0℃/分で昇温して、135℃の温度に到達してから2時間硬化させ、厚さ2mmの板状の樹脂硬化物を得た。
<Method for producing cured epoxy resin>
After degassing the epoxy resin composition prepared according to the above <Method for Preparing an Epoxy Resin Composition> in a vacuum, it was placed in a mold set to a thickness of 2 mm using a 2 mm thick "Teflon (registered trademark)" spacer. , the temperature was raised from 30°C at a rate of 1.7°C/min, and after reaching a temperature of 90°C, it was held for 1 hour, and then the temperature was raised at a rate of 2.0°C/min to a temperature of 135°C. After reaching the temperature, the resin was cured for 2 hours to obtain a plate-shaped cured resin product with a thickness of 2 mm.

また、耐候性評価用には、1mm厚の“テフロン(登録商標)”製スペーサーにより厚み1mmになるように設定したモールド中で、上記硬化反応を行い、厚さ1mmの板状の樹脂硬化物を得た。 In addition, for weather resistance evaluation, the above curing reaction was carried out in a mold set to a thickness of 1 mm with a 1 mm thick "Teflon (registered trademark)" spacer, and a 1 mm thick plate-shaped cured resin product was formed. I got it.

<プリプレグの作製方法>
上記<エポキシ樹脂組成物の調製方法>に従い調製したエポキシ樹脂組成物を、ナイフコーターを用いて離型紙上に塗布して、樹脂目付が31g/mの樹脂フィルムを2枚作製した。次に、繊維目付が125g/mのシート状となるように一方向に配列させた炭素繊維の両面のそれぞれに、上記樹脂フィルムを重ねて、温度110℃、最大圧力2MPaの条件で加熱加圧してエポキシ樹脂組成物を含浸させ、プリプレグを得た。
<Method for producing prepreg>
The epoxy resin composition prepared according to the above <Method for Preparing Epoxy Resin Composition> was applied onto release paper using a knife coater to produce two resin films having a resin basis weight of 31 g/m 2 . Next, the resin film was placed on each side of carbon fibers arranged in one direction so as to form a sheet with a fiber basis weight of 125 g/ m2 , and heated at a temperature of 110°C and a maximum pressure of 2 MPa. A prepreg was obtained by pressing to impregnate the epoxy resin composition.

<繊維強化複合材料の90°の定義>
JIS K7017(1999)に記載されているとおり、一方向繊維強化複合材料の繊維方向を軸方向とし、軸方向を0°軸と定義したときの軸直交方向を90°と定義した。
<Definition of 90° for fiber reinforced composite materials>
As described in JIS K7017 (1999), the fiber direction of the unidirectional fiber-reinforced composite material was defined as the axial direction, and when the axial direction was defined as the 0° axis, the direction orthogonal to the axis was defined as 90°.

<各種評価方法>
(1)エポキシ樹脂硬化物の3点曲げ測定
上記<エポキシ樹脂硬化物の作製方法>に従い作製した厚さ2mmの樹脂硬化物から、幅10mm、長さ60mmの試験片を切り出し、インストロン万能試験機(インストロン社製)を用い、スパンを32mm、クロスヘッドスピードを2.5mm/分、サンプル数n=6とし、JIS K7171(1994)に従って3点曲げを実施した時の、弾性率および強度の平均値をそれぞれ樹脂硬化物の曲げ強度、曲げ弾性率とした。
<Various evaluation methods>
(1) Three-point bending measurement of cured epoxy resin product A test piece with a width of 10 mm and a length of 60 mm was cut out from a 2 mm thick cured resin product prepared according to the above <Method for Preparing a Cured Epoxy Resin Product>, and was subjected to an Instron universal test. Elastic modulus and strength when three-point bending was performed using a machine (manufactured by Instron) with a span of 32 mm, a crosshead speed of 2.5 mm/min, and the number of samples n = 6 according to JIS K7171 (1994). The average values were taken as the bending strength and bending elastic modulus of the cured resin material, respectively.

(2)エポキシ樹脂硬化物の耐候性試験
上記<エポキシ樹脂硬化物の作製方法>に従い作製した厚さ1mmの樹脂硬化物から、幅37mm、長さ68mmの試験片を切り出した。この試験片を対象として、促進耐候性試験機(スーパーキセノンウェザーメーターSX―75、スガ試験機(株)製)を用い、強度180W/m、ブラックパネル温度63℃、湿度50%RHの条件で、水噴射なしの照射102分間と、強度180W/m、槽内温度28℃、湿度99%RHの条件で、水噴射しながらの照射18分間とを1サイクルとし、これを12回(すなわち24時間)繰り返す耐候性試験を行った。
(2) Weather resistance test of cured epoxy resin product A test piece with a width of 37 mm and a length of 68 mm was cut out from a cured resin product with a thickness of 1 mm produced according to the above <Method for Preparing a Cured Epoxy Resin Product>. This test piece was tested using an accelerated weathering tester (Super Xenon Weather Meter SX-75, manufactured by Suga Test Instruments Co., Ltd.) under conditions of strength 180 W/m 2 , black panel temperature 63°C, and humidity 50% RH. One cycle consisted of 102 minutes of irradiation without water jetting and 18 minutes of irradiation with water jetting under the conditions of intensity 180 W/m 2 , chamber temperature 28°C, and humidity 99% RH, and this cycle was repeated 12 times ( A repeated weathering test (i.e., 24 hours) was conducted.

耐候性の評価は、耐候性試験前後での硬化物の色差(ΔE)を多光源分光測色計MSC―P(スガ試験機(株)製)を用いて測定することで行った。D65光源、10°視野、正反射光を除くd/8の光学条件による反射法によって三刺激値(L、a、b)を求め、耐候性試験前後での三刺激値の差分(ΔL、Δa、Δb)を用いて、下記の式(I)により色差(ΔE)を算出した。 Weather resistance was evaluated by measuring the color difference (ΔE) of the cured product before and after the weather resistance test using a multi-light source spectrophotometer MSC-P (manufactured by Suga Test Instruments Co., Ltd.). The tristimulus values (L * , a * , b * ) were determined by the reflection method using a D65 light source, 10° field of view, and d/8 optical conditions excluding specular reflection light, and the difference in tristimulus values before and after the weather resistance test ( The color difference (ΔE) was calculated using the following formula (I) using ΔL * , Δa * , Δb * ).

ΔE={(ΔL+(Δa+(Δb1/2 ・・・(I) 。 ΔE={(ΔL * ) 2 +(Δa * ) 2+ (Δb * ) 2 } 1/2 ...(I).

(3)繊維強化複合材料の90°引張強度測定
一方向プリプレグの繊維方向を揃えて20プライ積層し、オートクレーブにて0.7MPaの圧力下、30℃から速度1.7℃/分で90℃まで昇温して、90℃の温度で60分間保持した後、速度2.0℃/分で135℃まで昇温して、135℃の温度で120分間成形して、厚み2mmの一方向材のCFRP板を作製した。90°引張強度は、JIS K7073(1988)に従い測定した。このCFRP板から、長さ150±0.4mm、幅20±0.2mm、厚さ2±0.2mmであって、長さ方向が繊維方向と直交し、幅方向が繊維方向である一方向90°引張試験片(一方向に繊維の向きが揃えられている、90°引張強度測定用の試験片)を作製した。試験片引張試験機のクロスヘッドスピードは1mm/分として測定した。サンプル数n=5として測定し、平均値を90°引張強度とした。
(3) Measurement of 90° tensile strength of fiber-reinforced composite materials 20 plies of unidirectional prepregs were laminated with the fiber directions aligned, and in an autoclave under a pressure of 0.7 MPa, from 30°C to 90°C at a speed of 1.7°C/min. After raising the temperature to 90°C and holding it for 60 minutes, the temperature was raised to 135°C at a rate of 2.0°C/min, and molded at 135°C for 120 minutes to form a unidirectional material with a thickness of 2 mm. A CFRP board was produced. The 90° tensile strength was measured according to JIS K7073 (1988). From this CFRP board, the length is 150±0.4mm, the width is 20±0.2mm, and the thickness is 2±0.2mm, and the length direction is perpendicular to the fiber direction, and the width direction is the fiber direction. A 90° tensile test piece (a test piece for measuring 90° tensile strength in which the fibers are oriented in one direction) was prepared. The crosshead speed of the specimen tensile tester was 1 mm/min. Measurements were made with the number of samples n=5, and the average value was taken as the 90° tensile strength.

(4)繊維強化複合材料の耐候性試験
(3)に記載の方法で作製した厚み2mmの一方向材のCFRP板から、幅37mm、長さ68mmの試験片を切り出した。この試験片を、屋根がなく太陽が出ている間は日陰にならない屋外の場所に設置し、2ヶ月間放置することで耐候性試験を行った。耐候性試験前後の試験片を横に並べ、10人の被験者に色の違いをヒアリングし、10人中8人以上の被験者が「色の変化がない」、または、「色の変化がわからない」と答えた場合を「〇」、3人以上の被験者が「色の変化がある」と答えた場合を「×」とし、表中の「コンポジット特性」の欄に結果を記入した。
(4) Weather resistance test of fiber reinforced composite material A test piece with a width of 37 mm and a length of 68 mm was cut out from a 2 mm thick unidirectional CFRP board produced by the method described in (3). This test piece was placed in an outdoor location with no roof and no shade while the sun was out, and left to stand for two months to perform a weather resistance test. The test pieces before and after the weather resistance test were lined up side by side and 10 subjects were asked about the difference in color. More than 8 out of 10 subjects said there was "no change in color" or "I couldn't tell the change in color." If three or more subjects answered that there was a color change, it was marked as "x", and the results were entered in the column of "composite characteristics" in the table.

<実施例1>
構成要素[A]:エポキシ樹脂の内、成分[A1]として“D.E.R.(登録商標)”858を30質量部、成分[A2]として“EPICLON(登録商標)”N-775を35質量部、分子中にエポキシ基を3個以上有する脂肪族エポキシ樹脂[A4]として“デナコール(登録商標)”EX-614Bを15質量部、“その他のエポキシ樹脂[A5]として“EPICLON(登録商標)”830を20質量部、構成要素[B]:ジシアンジアミドとしてDICY7を8.3質量部(H/E=0.85)、構成要素[C]として1,2-プロパンジオールを5質量部、成分[D]:フェノキシ樹脂として“フェノトート(登録商標)”YP-70を6質量部、硬化促進剤としてDCMU99を3質量部用い、上記<エポキシ樹脂組成物の調製方法>に従ってエポキシ樹脂組成物を調製した。
<Example 1>
Component [A]: Of the epoxy resin, 30 parts by mass of "D.E.R. (registered trademark)" 858 as component [A1] and "EPICLON (registered trademark)" N-775 as component [A2]. 35 parts by mass, 15 parts by mass of "Denacol (registered trademark)" EX-614B as aliphatic epoxy resin having three or more epoxy groups in the molecule [A4], "EPICLON (registered trademark)" as "other epoxy resin [A5]" Component [B]: 8.3 parts by mass of DICY7 as dicyandiamide (H/E = 0.85), 5 parts by mass of 1,2-propanediol as component [C] , Component [D]: Using 6 parts by mass of "Phenotote (registered trademark)" YP-70 as a phenoxy resin and 3 parts by mass of DCMU99 as a curing accelerator, an epoxy resin composition was prepared according to the above <Method for preparing an epoxy resin composition>. I prepared something.

得られた樹脂組成物から、<エポキシ樹脂硬化物の作製方法>に従って、エポキシ樹脂硬化物を作製した。このエポキシ樹脂硬化物について曲げ強度、曲げ弾性率、耐候性(色差ΔE)を測定したところ、曲げ強度は191MPa、曲げ弾性率は4.5GPa、ΔEは6.9であり、樹脂硬化物の物性と耐熱性は良好であった。 A cured epoxy resin product was produced from the obtained resin composition according to <Method for producing cured epoxy resin product>. When the bending strength, bending elastic modulus, and weather resistance (color difference ΔE) of this cured epoxy resin were measured, the bending strength was 191 MPa, the bending elastic modulus was 4.5 GPa, and ΔE was 6.9. The heat resistance was good.

また、得られた樹脂組成物から<プリプレグの作製方法>に従ってプリプレグを作製し、<各種評価方法>の(3)、(4)に従い測定したところ、繊維強化複合材料の90°引張強度の値は94MPaで、優れた非繊維方向強度を示し、耐候性についても優れた性能を発現した。 In addition, a prepreg was produced from the obtained resin composition according to <Method for Preparing Prepreg> and measured according to (3) and (4) of <Various Evaluation Methods>, and the 90° tensile strength value of the fiber reinforced composite material was was 94 MPa, showing excellent non-fiber direction strength and excellent weather resistance.

<実施例2~14>
樹脂組成を表1に示したように変更した以外は、実施例1と同じ方法でエポキシ樹脂硬化物、プリプレグを作製した。各実施例について、エポキシ樹脂硬化物の曲げ強度、曲げ弾性率、耐候性(色差ΔE)、繊維強化複合材料の90°引張強度、耐候性は表1に記載の通りであり、いずれも良好であった。
<Examples 2 to 14>
A cured epoxy resin and a prepreg were produced in the same manner as in Example 1, except that the resin composition was changed as shown in Table 1. For each example, the bending strength, bending elastic modulus, weather resistance (color difference ΔE) of the cured epoxy resin, 90° tensile strength of the fiber reinforced composite material, and weather resistance are as shown in Table 1, and all were good. there were.

<比較例1>
表2に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂硬化物、プリプレグを作製した。物性評価結果は表2に併せて示した(以降の比較例において同様)。エポキシ樹脂硬化物の曲げ強度、曲げ弾性率、耐候性、繊維強化複合材料の耐候性は良好であった。しかし、全エポキシ樹脂100質量部中[A1]の含有量が10質量部に満たず、条件(1)を満たさないため、繊維強化複合材料の90°引張強度が実施例9に比べて低かった。
<Comparative example 1>
Using the resin composition shown in Table 2, a cured epoxy resin and prepreg were produced in the same manner as in Example 1. The physical property evaluation results are also shown in Table 2 (the same applies to subsequent comparative examples). The flexural strength, flexural modulus, and weather resistance of the cured epoxy resin and the weather resistance of the fiber-reinforced composite material were good. However, the content of [A1] in 100 parts by mass of the total epoxy resin was less than 10 parts by mass, which did not satisfy condition (1), so the 90° tensile strength of the fiber-reinforced composite material was lower than that of Example 9. .

<比較例2>
表2に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂硬化物、プリプレグを作製した。エポキシ樹脂硬化物の耐候性、繊維強化複合材料の90°引張強度、耐候性は良好であった。しかし、全エポキシ樹脂100質量部中[A1]の含有量が40質量部を超え、条件(1)を満たさないため、エポキシ樹脂硬化物の曲げ強度、曲げ弾性率が実施例11に比べて低かった。
<Comparative example 2>
Using the resin composition shown in Table 2, a cured epoxy resin and prepreg were produced in the same manner as in Example 1. The weather resistance of the cured epoxy resin, the 90° tensile strength of the fiber-reinforced composite material, and the weather resistance were good. However, the content of [A1] in 100 parts by mass of the total epoxy resin exceeded 40 parts by mass and did not satisfy condition (1), so the flexural strength and flexural modulus of the cured epoxy resin were lower than in Example 11. Ta.

<比較例3>
表2に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂硬化物、プリプレグを作製した。エポキシ樹脂硬化物の耐候性、繊維強化複合材料の90°引張強度、耐候性は良好であった。しかし、全エポキシ樹脂100質量部中[A1]の含有量が40質量部を超え、条件(1)を満たさないため、エポキシ樹脂硬化物の曲げ強度、曲げ弾性率が全実施例に比べて低かった。
<Comparative example 3>
Using the resin composition shown in Table 2, a cured epoxy resin and prepreg were produced in the same manner as in Example 1. The weather resistance of the cured epoxy resin, the 90° tensile strength of the fiber-reinforced composite material, and the weather resistance were good. However, the content of [A1] in 100 parts by mass of the total epoxy resin exceeded 40 parts by mass and did not satisfy condition (1), so the flexural strength and flexural modulus of the cured epoxy resin were lower than in all Examples. Ta.

<比較例4>
表2に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂硬化物、プリプレグを作製した。エポキシ樹脂硬化物の耐候性、繊維強化複合材料の耐候性は良好であった。しかし、全エポキシ樹脂100質量部中[A2]の含有量が20質量部に満たず、条件(2)を満たさないため、エポキシ樹脂硬化物の曲げ強度や曲げ弾性率、繊維強化複合材料の90°引張強度が実施例11に比べて低かった。
<Comparative example 4>
Using the resin composition shown in Table 2, a cured epoxy resin and prepreg were produced in the same manner as in Example 1. The weather resistance of the cured epoxy resin product and the fiber reinforced composite material were good. However, the content of [A2] in 100 parts by mass of the total epoxy resin is less than 20 parts by mass, and condition (2) is not satisfied. °The tensile strength was lower than that of Example 11.

<比較例5>
表2に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂硬化物、プリプレグを作製した。エポキシ樹脂硬化物の曲げ弾性率、耐候性、繊維強化複合材料の耐候性は良好であった。しかし、全エポキシ樹脂100質量部中[A2]の含有量が50質量部を超え、条件(2)を満たさないため、エポキシ樹脂硬化物の曲げ強度や、繊維強化複合材料の90°引張強度が実施例9に比べて低かった。
<Comparative example 5>
Using the resin composition shown in Table 2, a cured epoxy resin and prepreg were produced in the same manner as in Example 1. The flexural modulus and weather resistance of the cured epoxy resin and the weather resistance of the fiber reinforced composite material were good. However, since the content of [A2] in 100 parts by mass of the total epoxy resin exceeds 50 parts by mass and does not satisfy condition (2), the bending strength of the cured epoxy resin and the 90° tensile strength of the fiber reinforced composite material are It was lower than that in Example 9.

<比較例6>
表3に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂硬化物、プリプレグを作製した。エポキシ樹脂硬化物の耐候性、繊維強化複合材料の耐候性は良好であった。しかし、構成要素[B]の活性水素のモル数(H)と、エポキシ樹脂組成物全体に含まれるエポキシ基のモル数(E)の比(H/E)が0.65に満たず、条件(4)を満たさないため、エポキシ樹脂硬化物の曲げ強度や曲げ弾性率、繊維強化複合材料の90°引張強度が実施例11や実施例12に比べて低かった。
<Comparative example 6>
Using the resin composition shown in Table 3, a cured epoxy resin and prepreg were produced in the same manner as in Example 1. The weather resistance of the cured epoxy resin product and the fiber reinforced composite material were good. However, the ratio (H/E) of the number of moles of active hydrogen in component [B] (H) to the number of moles of epoxy groups (E) contained in the entire epoxy resin composition was less than 0.65, and the conditions Since (4) was not satisfied, the flexural strength and flexural modulus of the cured epoxy resin and the 90° tensile strength of the fiber reinforced composite material were lower than those of Examples 11 and 12.

<比較例7>
表3に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂硬化物、プリプレグを作製した。エポキシ樹脂硬化物の耐候性、繊維強化複合材料の耐候性は良好であった。しかし、比較例6と同様、H/Eが0.65に満たず、条件(4)を満たさないため、エポキシ樹脂硬化物の曲げ強度や曲げ弾性率、繊維強化複合材料の90°引張強度が全実施例に比べて低かった。
<Comparative example 7>
Using the resin composition shown in Table 3, a cured epoxy resin and prepreg were produced in the same manner as in Example 1. The weather resistance of the cured epoxy resin product and the fiber reinforced composite material were good. However, as in Comparative Example 6, H/E is less than 0.65 and condition (4) is not satisfied, so the flexural strength and flexural modulus of the cured epoxy resin and the 90° tensile strength of the fiber reinforced composite material are It was lower than all the examples.

<比較例8>
表4に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂硬化物、プリプレグを作製した。エポキシ樹脂硬化物の曲げ弾性率は良好であった。しかし、H/Eが0.90を超え、条件(4)を満たさないため、エポキシ樹脂硬化物の曲げ強度や耐候性、繊維強化複合材料の90°引張強度、耐候性が実施例7に比べて低かった。
<Comparative example 8>
Using the resin composition shown in Table 4, a cured epoxy resin and prepreg were produced in the same manner as in Example 1. The flexural modulus of the cured epoxy resin was good. However, since H/E exceeds 0.90 and does not satisfy condition (4), the bending strength and weather resistance of the cured epoxy resin, the 90° tensile strength and weather resistance of the fiber reinforced composite material are lower than those of Example 7. It was low.

<比較例9>
表3に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂硬化物、プリプレグを作製した。エポキシ樹脂硬化物の耐候性、繊維強化複合材料の耐候性は良好であった。しかし、構成要素[B]が配合されていないため、エポキシ樹脂硬化物の曲げ強度や曲げ弾性率、繊維強化複合材料の90°引張強度が実施例11や実施例12に比べて低かった。
<Comparative example 9>
Using the resin composition shown in Table 3, a cured epoxy resin and prepreg were produced in the same manner as in Example 1. The weather resistance of the cured epoxy resin product and the fiber reinforced composite material were good. However, since component [B] was not blended, the flexural strength and flexural modulus of the cured epoxy resin product and the 90° tensile strength of the fiber reinforced composite material were lower than those of Examples 11 and 12.

<比較例10>
表4に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂硬化物、プリプレグを作製した。エポキシ樹脂硬化物の曲げ強度や曲げ弾性率、繊維強化複合材料の90°引張強度は良好であった。しかし、全エポキシ樹脂100質量部中[A3]の含有量が10質量部を超え、条件(3)を満たさないため、樹脂硬化物の耐候性、繊維強化複合材料の耐候性が実施例7や実施例13に比べて不良であった。
<Comparative example 10>
Using the resin composition shown in Table 4, a cured epoxy resin and prepreg were produced in the same manner as in Example 1. The flexural strength and flexural modulus of the cured epoxy resin and the 90° tensile strength of the fiber reinforced composite material were good. However, since the content of [A3] in 100 parts by mass of the total epoxy resin exceeds 10 parts by mass and does not satisfy condition (3), the weather resistance of the cured resin material and the fiber reinforced composite material are lower than that of Example 7. It was poorer than Example 13.

<比較例11>
表3に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂硬化物、プリプレグを作製した。エポキシ樹脂硬化物の耐候性、繊維強化複合材料の耐候性は良好であった。しかし、構成要素[C]が配合されていないため、エポキシ樹脂硬化物の曲げ強度や曲げ弾性率、繊維強化複合材料の90°引張強度が実施例11に比べて低かった。
<Comparative example 11>
Using the resin composition shown in Table 3, a cured epoxy resin and prepreg were produced in the same manner as in Example 1. The weather resistance of the cured epoxy resin product and the fiber reinforced composite material were good. However, since component [C] was not blended, the flexural strength and flexural modulus of the cured epoxy resin and the 90° tensile strength of the fiber reinforced composite material were lower than those of Example 11.

<比較例12>
表4に示した樹脂組成について、実施例1と同じ方法でエポキシ樹脂硬化物、プリプレグを作製した。エポキシ樹脂硬化物の曲げ弾性率は良好であった。しかし、H/Eが0.90を超え、条件(4)を満たさないため、エポキシ樹脂硬化物の曲げ強度や耐候性、繊維強化複合材料の90°引張強度、耐候性が実施例7に比べて低かった。
<Comparative example 12>
Using the resin composition shown in Table 4, a cured epoxy resin and prepreg were produced in the same manner as in Example 1. The flexural modulus of the cured epoxy resin was good. However, since H/E exceeds 0.90 and does not satisfy condition (4), the bending strength and weather resistance of the cured epoxy resin, the 90° tensile strength and weather resistance of the fiber reinforced composite material are lower than those of Example 7. It was low.

Figure 2024021045000001
Figure 2024021045000001

Figure 2024021045000002
Figure 2024021045000002

Figure 2024021045000003
Figure 2024021045000003

Figure 2024021045000004
Figure 2024021045000004

Claims (8)

強化繊維と樹脂組成物とを含むプリプレグであって、該樹脂組成物は、下記構成要素[A]~[C]を含み、かつ、下記条件(1)~(4)を満たす、プリプレグ。
[A]:エポキシ樹脂
[B]:ジシアンジアミド
[C]:沸点が130℃以上、かつ、分子量mが50以上250以下の化合物であって、分子内にエポキシ基を有さず、かつエポキシ樹脂の硬化能を有さない化合物
(1):構成要素[A]として[A1]オキサゾリドン型エポキシ樹脂を、全エポキシ樹脂100質量部に対し、10~40質量部含む。
(2):構成要素[A]として[A2]ノボラック型エポキシ樹脂を、全エポキシ樹脂100質量部に対し、20~50質量部含む。
(3):構成要素[A]として[A3]グリシジルアミン型エポキシ樹脂を含まないか、含んだとしても全エポキシ樹脂100質量部に対し、10質量部以下である。
(4):構成要素[B]の活性水素のモル数(H)と、エポキシ樹脂組成物全体に含まれるエポキシ基のモル数(E)の比(H/E)が、0.65≦H/E≦0.90である。
A prepreg containing reinforcing fibers and a resin composition, the resin composition containing the following constituent elements [A] to [C] and satisfying the following conditions (1) to (4).
[A]: Epoxy resin [B]: Dicyandiamide [C]: A compound with a boiling point of 130°C or higher and a molecular weight m of 50 or more and 250 or less, which does not have an epoxy group in the molecule, and which is an epoxy resin. Compound (1) without curing ability: Contains 10 to 40 parts by mass of [A1] oxazolidone-type epoxy resin as component [A] based on 100 parts by mass of the total epoxy resin.
(2): Contains 20 to 50 parts by mass of a novolac-type epoxy resin [A2] as component [A] based on 100 parts by mass of the total epoxy resin.
(3): [A3] Glycidylamine type epoxy resin is not included as component [A], or even if it is included, it is 10 parts by mass or less based on 100 parts by mass of the total epoxy resin.
(4): The ratio (H/E) of the number of moles of active hydrogen in component [B] (H) to the number of moles of epoxy groups (E) contained in the entire epoxy resin composition is 0.65≦H /E≦0.90.
構成要素[A]として[A4]分子中にエポキシ基を3個以上有する脂肪族エポキシ樹脂を、全エポキシ樹脂100質量部に対し、10~40質量部含む、請求項1に記載のプリプレグ。 The prepreg according to claim 1, comprising 10 to 40 parts by mass of an aliphatic epoxy resin having three or more epoxy groups in the molecule [A4] as the component [A], based on 100 parts by mass of the total epoxy resin. 前記[A3]を含まないか、含んだとしても全エポキシ樹脂100質量部に対し、1質量部以下である、請求項1に記載のプリプレグ。 The prepreg according to claim 1, wherein the prepreg does not contain the [A3], or even if it does, the amount is 1 part by mass or less based on 100 parts by mass of the total epoxy resin. 構成要素[D]フェノキシ樹脂を含む、請求項1に記載のプリプレグ。 The prepreg according to claim 1, comprising component [D] a phenoxy resin. 請求項1~4のいずれかに記載のプリプレグを硬化させてなる、繊維強化複合材料。 A fiber-reinforced composite material obtained by curing the prepreg according to any one of claims 1 to 4. 請求項1~4のいずれかに記載のプリプレグを成形してなる、繊維強化複合材料製管状体。 A fiber-reinforced composite material tubular body formed by molding the prepreg according to any one of claims 1 to 4. 請求項6に記載の繊維強化複合材料製管状体を用いてなる、ゴルフクラブシャフト。 A golf club shaft comprising the fiber-reinforced composite material tubular body according to claim 6. 請求項6に記載の繊維強化複合材料製管状体を用いてなる、釣り竿。 A fishing rod using the fiber-reinforced composite material tubular body according to claim 6.
JP2023104742A 2022-08-02 2023-06-27 Prepreg, fiber-reinforced composite material, tubular body made from fiber-reinforced composite material, golf club shaft, and fishing rod Pending JP2024021045A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022123192 2022-08-02
JP2022123192 2022-08-02

Publications (1)

Publication Number Publication Date
JP2024021045A true JP2024021045A (en) 2024-02-15

Family

ID=89854255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023104742A Pending JP2024021045A (en) 2022-08-02 2023-06-27 Prepreg, fiber-reinforced composite material, tubular body made from fiber-reinforced composite material, golf club shaft, and fishing rod

Country Status (1)

Country Link
JP (1) JP2024021045A (en)

Similar Documents

Publication Publication Date Title
JP5061813B2 (en) Prepreg and golf club shaft
KR101819842B1 (en) Epoxy resin composition, and film, prepreg, and fiber-reinforced plastic using same
KR101836960B1 (en) Tubular body made of carbon fiber-reinforced composite material and golf club shaft
JP5747763B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
US11034810B2 (en) Epoxy resin composition, prepreg, and carbon fiber-reinforced composite material
EP2947109A1 (en) Epoxy resin composition, prepreg, and carbon-fiber-reinforced composite material
JP7172995B2 (en) Prepregs and fiber reinforced composites
WO2014030636A1 (en) Epoxy resin composition and film, prepreg, and fiber-reinforced plastic using same
JP6776649B2 (en) Epoxy resin composition, and films, prepregs and fiber reinforced plastics using it.
JP5747762B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
JP6977560B2 (en) Prepreg and fiber reinforced composites
KR101950627B1 (en) Epoxy resin composition, and film, prepreg, and fiber-reinforced plastic using same
WO2019021613A1 (en) Prepreg and carbon-fiber-reinforced composite material
JP2014167102A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP6782553B2 (en) How to make prepreg
JP5573650B2 (en) Epoxy resin composition, cured epoxy resin, prepreg and fiber reinforced composite material
US20210253843A1 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP2024021045A (en) Prepreg, fiber-reinforced composite material, tubular body made from fiber-reinforced composite material, golf club shaft, and fishing rod
WO2024029233A1 (en) Prepreg, fiber-reinforced composite material, tubular body made of fiber-reinforced composite material, golf club shaft, and fishing rod
WO2021177089A1 (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
WO2023157507A1 (en) Prepreg, fiber-reinforced composite material, tubular body made of fiber-reinforced composite material, golf club shaft, and fishing rod
WO2021095627A1 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
CN111372978B (en) Prepreg and fiber-reinforced composite material
WO2021095628A1 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP2023049239A (en) Prepreg and fiber-reinforced composite material