JP2024020797A - Treatment for muscle atrophy - Google Patents

Treatment for muscle atrophy Download PDF

Info

Publication number
JP2024020797A
JP2024020797A JP2022123254A JP2022123254A JP2024020797A JP 2024020797 A JP2024020797 A JP 2024020797A JP 2022123254 A JP2022123254 A JP 2022123254A JP 2022123254 A JP2022123254 A JP 2022123254A JP 2024020797 A JP2024020797 A JP 2024020797A
Authority
JP
Japan
Prior art keywords
muscle
muscle atrophy
atrophy
receptor
therapeutic agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022123254A
Other languages
Japanese (ja)
Inventor
慶行 高橋
航太 渡邉
収彦 辻
雅也 中村
昌樹 依田
圭輔 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2022123254A priority Critical patent/JP2024020797A/en
Publication of JP2024020797A publication Critical patent/JP2024020797A/en
Pending legal-status Critical Current

Links

Images

Abstract

【課題】筋萎縮の予防、症状の改善等の治療を有効に行うことのできる筋萎縮の治療剤を提供する。【解決手段】IL-33、またはIL-33受容体のアゴニストもしくはリガンドを含有する、筋萎縮の治療剤である。【選択図】図6The present invention provides a therapeutic agent for muscle atrophy that can effectively prevent muscle atrophy and improve symptoms. A therapeutic agent for muscle atrophy containing IL-33 or an agonist or ligand for the IL-33 receptor. [Selection diagram] Figure 6

Description

本発明は、筋萎縮症等の治療や予防等に用いる、筋萎縮の治療剤に関する。 The present invention relates to a therapeutic agent for muscular atrophy, which is used for the treatment or prevention of muscular atrophy and the like.

筋肉組織には、外的要因や酷使による筋損傷、筋肉に関連する病的状態が生じることがある。筋肉はもともと再生能力に優れた組織であり、通常、これらの筋損傷や病的状態に置かれた後は、筋肉の幹細胞などの働きで筋再生、筋肥大を起こす。 Muscle tissue can undergo muscle damage and muscle-related pathologies due to external factors and overuse. Muscle is originally a tissue with excellent regenerative ability, and after muscle damage or pathological conditions, muscle stem cells and other factors normally cause muscle regeneration and muscle hypertrophy.

しかしながら対象の加齢、慢性的な病的状態、またこれらに伴う長期臥床などの状態では、充分または正常に筋再生、筋肥大が起こらず、その結果、筋萎縮や筋変性を起こす。筋萎縮や筋変性にともなう筋力低下は、対象の活動性、QOLの低下と関連している。すなわち、この筋萎縮、筋変性を防ぐことできれば、QOLの低下を防ぐことができると考えられる。特に、近年は高齢者における廃用性筋萎縮症が増加しており、超高齢化社会を迎えたわが国において、その対策は喫緊の課題といえる。 However, as the subject ages, has chronic pathological conditions, or is in bed for a long period of time associated with these conditions, muscle regeneration and muscle hypertrophy do not occur sufficiently or normally, resulting in muscle atrophy and muscle degeneration. Muscle weakness due to muscle atrophy and muscle degeneration is associated with a decline in the subject's activity and quality of life. In other words, if muscle atrophy and muscle degeneration can be prevented, it is thought that a decline in QOL can be prevented. In particular, the incidence of disuse muscular atrophy among the elderly has been increasing in recent years, and countermeasures against this disease are an urgent issue in Japan, which has become a super-aging society.

筋萎縮を防ぐ手段としては、運動療法での効果は多く報告されているが、内服、注射での実用的な薬はまだ確立していない。また、筋萎縮において起こっていることをより解明できれば、筋萎縮を予防、改善させる治療に役立てることができると考えられる。 As a means of preventing muscle atrophy, there are many reports of the effectiveness of exercise therapy, but no practical medication for oral administration or injection has yet been established. Furthermore, if we can better understand what happens in muscle atrophy, it may be useful for treatments that prevent or improve muscle atrophy.

筋肉内の主な細胞の働きについて、細胞の再生、肥大は衛星細胞、satellite cellが担っていることが知られている。衛星細胞は筋繊維の周囲にある幹細胞で、基底膜に局在しており、普段は休止状態で、筋損傷や運動により活性化し、自身の増殖や筋芽細胞へ分化する。一方で損傷や疾患などの影響で筋肉が脂肪変性、線維化をきたす。その原因については、Fibro-adipogenic-progenitors(FAPs)という間葉系前駆細胞が報告されている。またFAPSから分泌される因子を補うことで加齢した衛星細胞の機能が回復することや、FAPSを抑制したモデルで、衛星細胞の減少、筋繊維の萎縮がみられるという報告がされている。 Regarding the functions of the main cells within muscles, it is known that satellite cells are responsible for cell regeneration and hypertrophy. Satellite cells are stem cells surrounding muscle fibers, localized in the basement membrane, and are normally dormant, but become activated by muscle damage or exercise, and proliferate and differentiate into myoblasts. On the other hand, muscles undergo fatty degeneration and fibrosis due to injury or disease. As for the cause, mesenchymal progenitor cells called fibro-adipogenic-progenitors (FAPs) have been reported. It has also been reported that supplementing factors secreted by FAPS restores the function of aged satellite cells, and that a model in which FAPS is suppressed shows a decrease in satellite cells and atrophy of muscle fibers.

ここで、特許文献1には、特定のペプチドまたはその塩を有効成分として含有する骨格筋の損傷修復促進剤が開示されている。この技術では、本発明の骨格筋の損傷修復促進剤は、骨格筋の損傷部位において筋衛星細胞の活性化および/または分化を促進しようとするものである。 Here, Patent Document 1 discloses a skeletal muscle damage repair promoter containing a specific peptide or a salt thereof as an active ingredient. In this technique, the skeletal muscle damage repair promoter of the present invention is intended to promote the activation and/or differentiation of muscle satellite cells at the damaged site of skeletal muscle.

国際公開第2018/230535号International Publication No. 2018/230535

特許文献1の技術では、筋衛星細胞の活性化および/または分化を促進し、骨格筋の損傷、すなわち筋断裂、筋萎縮または筋変性を修復することができる旨が開示されている。しかしながら、この技術は、特定配列のペプチドが血管新生作用およびコラーゲン産生促進作用を有し、これらの作用でもって、骨および筋肉の組織を活性化させるものである。間葉系前駆細胞FAPsの機序、すなわち筋萎縮に関する特定の因子を解明し、特異的に筋萎縮の治療や予防を行うものではない。 The technique of Patent Document 1 discloses that activation and/or differentiation of muscle satellite cells can be promoted to repair damage to skeletal muscle, that is, muscle tear, muscle atrophy, or muscle degeneration. However, in this technique, a peptide with a specific sequence has an angiogenic effect and a collagen production promoting effect, and these effects activate bone and muscle tissues. This study does not aim to elucidate the mechanism of mesenchymal progenitor cell FAPs, that is, specific factors related to muscle atrophy, or to specifically treat or prevent muscle atrophy.

筋萎縮における機序、特に間葉系前駆細胞FAPsの作用を解明することで、筋萎縮の予防、改善などの治療、および、実用的な治療薬の確立に大きく寄与することができ、これらの解明や治療薬は強く求められている。 Elucidating the mechanisms of muscle atrophy, especially the effects of mesenchymal progenitor cells FAPs, will greatly contribute to the prevention and amelioration of muscle atrophy, as well as the establishment of practical therapeutic drugs. There is a strong need for explanations and treatments.

本発明はこのような背景に基づいてなされたものであり、その目的は、筋萎縮の予防、症状の改善等の治療を有効に行うことのできる筋萎縮の治療剤を提供することにある。 The present invention was made based on this background, and its purpose is to provide a therapeutic agent for muscle atrophy that can effectively prevent muscle atrophy and improve symptoms.

本発明は以下の態様を含む。
[1]IL-33、またはIL-33受容体のアゴニストもしくはリガンドを有効成分として含有する、筋萎縮の治療剤。
The present invention includes the following aspects.
[1] A therapeutic agent for muscle atrophy containing IL-33 or an agonist or ligand of the IL-33 receptor as an active ingredient.

[2]前記IL-33受容体がST2である、[1]に記載の筋萎縮の治療剤。 [2] The therapeutic agent for muscle atrophy according to [1], wherein the IL-33 receptor is ST2.

[3]前記筋萎縮は、筋組織において前記IL-33受容体の発現量が増加している、[1]または[2]に記載の筋萎縮の治療剤。 [3] The therapeutic agent for muscle atrophy according to [1] or [2], wherein the muscle atrophy is caused by an increase in the expression level of the IL-33 receptor in muscle tissue.

[4]前記筋萎縮が、廃用性筋萎縮症である、[1]~[3]のいずれか1に記載の筋萎縮の治療剤。 [4] The therapeutic agent for muscle atrophy according to any one of [1] to [3], wherein the muscle atrophy is disuse muscular atrophy.

[5]前記有効成分中に含まれる、前記IL-33、またはIL-33受容体のアゴニストもしくはリガンドの含有割合が、80質量%以上、90質量%以上、または100質量%である、[1]~[4]のいずれか1に記載の筋萎縮の治療剤。 [5] The content of the IL-33 or IL-33 receptor agonist or ligand contained in the active ingredient is 80% by mass or more, 90% by mass or more, or 100% by mass, [1 ] - [4] The therapeutic agent for muscle atrophy according to any one of [4].

本発明によれば、筋萎縮の予防、症状の改善等の治療を有効に行うことのできる筋萎縮の治療剤を提供することができる。 According to the present invention, it is possible to provide a therapeutic agent for muscle atrophy that can effectively prevent muscle atrophy and improve symptoms.

本実施例におけるFACS解析による細胞数の変化を示すグラフ図である。It is a graph diagram showing changes in cell number by FACS analysis in this example. 本実施例におけるTA(前脛骨筋)の断面から筋繊維断面積(CSA)を測定したグラフ図である。FIG. 2 is a graph showing the muscle fiber cross-sectional area (CSA) measured from the cross section of TA (tibialis anterior muscle) in this example. 本実施例におけるFAPsからのRNA抽出の概略図である。FIG. 2 is a schematic diagram of RNA extraction from FAPs in this example. 本実施例におけるRNA-seqおよびqPCRによる発現量の解析結果を示すグラフ図である。FIG. 2 is a graph diagram showing the analysis results of expression levels by RNA-seq and qPCR in this example. 本実施例における若齢マウスのIL-33およびST2投与群のCSAの結果を示すグラフ図である。FIG. 2 is a graph showing the CSA results of the IL-33 and ST2 administration groups of young mice in this example. 本実施例における老齢マウスのIL-33およびST2投与群のCSAの結果を示すグラフ図である。FIG. 2 is a graph showing the CSA results of IL-33 and ST2 administration groups of aged mice in this example.

以下、本発明に係る筋萎縮の治療剤について、実施形態を示して説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, the therapeutic agent for muscle atrophy according to the present invention will be described by showing embodiments. However, the present invention is not limited to the following embodiments.

[筋萎縮の治療剤]
本実施形態の筋萎縮の治療剤は、IL-33、またはIL-33受容体のアゴニストもしくはリガンドを有効成分として含有する。
[Treatment agent for muscle atrophy]
The therapeutic agent for muscle atrophy of the present embodiment contains IL-33 or an agonist or ligand of the IL-33 receptor as an active ingredient.

IL-33(インターロイキン33)は、インターロイキン1ファミリーに属する蛋白質である。インターロイキン1は、免疫の調節や炎症などにおける働きが知られているファミリーである。このうちIL-33は、IL-1ファミリーの受容体であるST2に特異的なリガンドであることが知られる。従来、IL-33によりST2が刺激されるとNF-κBおよびMAPKシグナル伝達経路が誘導されることが知られている。
IL-33は核因子及び炎症性サイトカインとしての機能を果たす二重機能タンパク質であり、核局在化及びヘテロクロマチンとの関連は、N末端ドメインによって媒介され、IL-33をNF-κB錯体のp65サブユニットの新規の転写調節因子として作用させる。C末端ドメインは、ST2受容体と結合し、かつ極性Th2細胞及びILC2細胞からの2型サイトカイン(例えばIL-5及びIL-13)の産生を活性化するとされる。
IL-33 (interleukin 33) is a protein belonging to the interleukin 1 family. Interleukin 1 is a family member known for its role in immune regulation and inflammation. Among these, IL-33 is known to be a specific ligand for ST2, which is a receptor of the IL-1 family. It has been known that NF-κB and MAPK signaling pathways are induced when ST2 is stimulated by IL-33.
IL-33 is a dual-function protein that functions as a nuclear factor and an inflammatory cytokine, and its nuclear localization and association with heterochromatin is mediated by its N-terminal domain, which connects IL-33 to the NF-κB complex. It acts as a novel transcriptional regulator of the p65 subunit. The C-terminal domain is said to bind to the ST2 receptor and activate the production of type 2 cytokines (eg, IL-5 and IL-13) from polarized Th2 cells and ILC2 cells.

IL-33により、気道や関節炎の炎症が上昇することから、IL-33はこれらの部位の炎症に関連すると考えられている。IL-33は、心筋に対しては保護作用があることも知られている。 Since IL-33 increases inflammation in the airways and arthritis, it is thought that IL-33 is associated with inflammation in these areas. IL-33 is also known to have a protective effect on myocardium.

本実施形態の筋萎縮の治療剤の有効成分は、IL-33受容体のアゴニストもしくはリガンドでもあり得る。ここでIL-33受容体は、生体内でIL-33を受容し得る蛋白質成分を広く指す。
前記IL-33受容体は、特にST2であることが好ましい。ST2は、IL1RL1(インターロイキン1レセプターライク1)としても知られる、IL1受容体ファミリーの一種である。
The active ingredient of the therapeutic agent for muscle atrophy of this embodiment may also be an agonist or a ligand for the IL-33 receptor. Here, the term "IL-33 receptor" broadly refers to protein components that can accept IL-33 in vivo.
The IL-33 receptor is particularly preferably ST2. ST2 is a member of the IL1 receptor family, also known as IL1RL1 (interleukin 1 receptor-like 1).

前記IL-33受容体のアゴニストもしくはリガンドは、ヒトやマウス、ラットなど種々の動物由来のIL-33リコンビナント蛋白質や、IL-33受容体のアゴニストもしくはリガンドとして作用しうるあらゆる物質を含む。 The IL-33 receptor agonist or ligand includes IL-33 recombinant proteins derived from various animals such as humans, mice, and rats, and any substance that can act as an IL-33 receptor agonist or ligand.

本実施形態のIL-33、または、IL-33受容体のアゴニストもしくはリガンドは、これらの物質が化学修飾されたものでもよく、またこれらの物質と相同性を有する蛋白質であってもよい。さらに具体的には、後述するIL-33受容体と結合する活性を有する構造であることが好ましく、その範囲内で、適宜上述の物質の構造をもとに変更を加えることができる。 The agonist or ligand for IL-33 or the IL-33 receptor of the present embodiment may be a chemically modified substance, or a protein having homology to these substances. More specifically, it is preferable that the substance has a structure that has the activity of binding to the IL-33 receptor described below, and within this range, changes can be made as appropriate based on the structure of the substance described above.

本発明者らは、後述する実施例のように、IL-33の投与により筋萎縮が抑制されることを見出した。したがって、IL-33、またはIL-33と同様に、IL-33受容体と結合するアゴニストまたはリガンドは、筋萎縮の治療剤として、症状改善や予防を含む処置に用いることができる。 The present inventors found that muscle atrophy was suppressed by administering IL-33, as shown in the Examples described below. Therefore, IL-33, or an agonist or ligand that similarly binds to the IL-33 receptor, can be used as a therapeutic agent for muscle atrophy in treatments including symptom improvement and prevention.

筋萎縮の治療剤が用いる筋萎縮は、筋肉組織の萎縮を広く指す。筋萎縮としては、具体的には、傷病などによる筋肉の損傷、または、傷病や病的状態もしくはその治療経過に伴う筋肉組織の劣化・退行が生じ、その後、筋再生や筋肥大による回復が行われずまたは不十分により、筋肉が萎縮するものを指す。また、筋肉組織の萎縮が起こり得る各種疾病を指す。
筋再生や筋肥大による回復が行われずまたは不十分となる原因としては、遺伝や神経系統の傷病によるものや、加齢によるものが挙げられる。
筋萎縮は、サルコペニア(不動性の筋萎縮症)によるものであることも好ましい。サルコペニアは特に加齢による筋肉量の減少を指すことがあり、ヒトでは65歳以上で起こるものを指すことがある。
Muscle atrophy, which is used in therapeutic agents for muscle atrophy, broadly refers to the atrophy of muscle tissue. Muscle atrophy specifically refers to muscle damage caused by injury or disease, or deterioration or degeneration of muscle tissue due to injury, disease, or the course of treatment, followed by recovery through muscle regeneration or muscle hypertrophy. Refers to the atrophy of muscles due to lack or insufficiency. It also refers to various diseases that can cause atrophy of muscle tissue.
Causes of failure or insufficient recovery through muscle regeneration and muscle hypertrophy include genetics, injury to the nervous system, and aging.
Preferably, the muscle atrophy is due to sarcopenia (immobile muscle atrophy). Sarcopenia can refer specifically to the loss of muscle mass due to aging, and in humans it can refer to the loss of muscle mass that occurs after the age of 65.

前記筋萎縮は、筋組織において前記IL-33受容体の発現量が増加している状態であることも好ましい。 It is also preferable that the muscle atrophy is a state in which the expression level of the IL-33 receptor is increased in muscle tissue.

前記筋萎縮は、筋萎縮症によるものであることも好ましい。筋萎縮症は、筋萎縮の症状、またはその症状を示す疾病を指す。筋萎縮症には、前述したように遺伝性や神経系統の傷病その他の要因により筋萎縮の症状を示す場合や、筋肉の長期の不使用による筋萎縮症が挙げられる。 It is also preferable that the muscle atrophy is due to muscle atrophy. Muscle atrophy refers to symptoms of muscle atrophy or diseases that exhibit such symptoms. As mentioned above, muscular atrophy includes cases in which muscular atrophy symptoms are exhibited due to genetic factors, injuries to the nervous system, and other factors, and muscular atrophy due to long-term disuse of muscles.

また、前記筋萎縮症は、廃用性筋萎縮症であることも好ましい。廃用性筋萎縮症は、筋肉を長期間使用しないことで生じる筋肉組織の萎縮である。筋肉を長期間使用しない原因としては傷病やその治療経過、加齢による行動頻度の低下などが挙げられる。 Moreover, it is also preferable that the muscular atrophy is disuse muscular atrophy. Disuse muscular atrophy is atrophy of muscle tissue that results from prolonged disuse of muscles. Reasons for not using muscles for a long period of time include injury or illness, the course of its treatment, and a decline in activity frequency due to aging.

前記有効成分に含まれる前記IL-33、またはIL-33受容体のアゴニストもしくはリガンドの含有割合が、80質量%以上、90質量%以上、または100質量%であることも好ましい。
本実施形態の筋萎縮の治療剤は、前記IL-33、またはIL-33受容体のアゴニストもしくはリガンド以外の成分も含むことができるが、前記IL-33、またはIL-33受容体のアゴニストもしくはリガンドのみを有効成分とする(単剤)でも効果を発揮することができる。
It is also preferable that the content of the IL-33 or the agonist or ligand of the IL-33 receptor contained in the active ingredient is 80% by mass or more, 90% by mass or more, or 100% by mass.
The therapeutic agent for muscle atrophy of the present embodiment may also contain components other than the above-mentioned IL-33 or IL-33 receptor agonist or ligand; however, the above-mentioned IL-33 or IL-33 receptor agonist or Effectiveness can be achieved even when the ligand is the only active ingredient (single agent).

[医薬組成物]
本実施形態の筋萎縮の治療剤は、筋萎縮の治療に好適に用いられる。すなわち、本実施形態の筋萎縮の治療剤に含まれる有効成分、または前記筋萎縮の治療剤は、筋萎縮の治療に使用される医薬組成物ということもできる。
また、筋萎縮の治療剤にその他の成分を含む医薬組成物とすることもできる。筋萎縮の治療のための医薬組成物は、その他、従来知られる医薬組成物が含有する各種の成分を適宜含んでいても良い。
[Pharmaceutical composition]
The therapeutic agent for muscle atrophy of this embodiment is suitably used for the treatment of muscle atrophy. That is, the active ingredient contained in the therapeutic agent for muscle atrophy of this embodiment or the therapeutic agent for muscle atrophy can also be referred to as a pharmaceutical composition used for treating muscle atrophy.
Furthermore, a pharmaceutical composition containing other ingredients in the therapeutic agent for muscle atrophy can also be prepared. The pharmaceutical composition for the treatment of muscle atrophy may appropriately contain various other components contained in conventionally known pharmaceutical compositions.

本実施形態の医薬組成物の形態は、特に限定されず、例えば、溶液、ゾル又はゲル等の分散体、粉末状とすることができる。前記医薬組成物は、例えば、錠剤、カプセル剤、エリキシル剤等の形態で経口的に、あるいは、注腸剤等の形態で非経口的に投与することができる。 The form of the pharmaceutical composition of this embodiment is not particularly limited, and may be, for example, a solution, a dispersion such as a sol or gel, or a powder. The pharmaceutical composition can be administered orally, for example, in the form of a tablet, capsule, elixir, etc., or parenterally, in the form of an enema, etc.

薬学的に許容される担体としては、通常医薬組成物の製剤に用いられるものを特に制限なく用いることができる。より具体的には、例えば、ゼラチン、コーンスターチ、トラガントガム、アラビアゴム等の結合剤;デンプン、結晶性セルロース等の賦形剤;アルギン酸等の膨化剤;水、エタノール、グリセリン等の溶剤等が挙げられる。 As the pharmaceutically acceptable carrier, those commonly used in the formulation of pharmaceutical compositions can be used without particular limitation. More specifically, examples include binders such as gelatin, cornstarch, gum tragacanth, and gum arabic; excipients such as starch and crystalline cellulose; leavening agents such as alginic acid; and solvents such as water, ethanol, and glycerin. .

医薬組成物は添加剤を含んでいてもよい。添加剤としては、ステアリン酸カルシウム、ステアリン酸マグネシウム等の潤滑剤;ショ糖、乳糖、サッカリン、マルチトール等の甘味剤;ペパーミント、アカモノ油等の香味剤;ベンジルアルコール、フェノール等の安定剤;リン酸塩、酢酸ナトリウム等の緩衝剤;安息香酸ベンジル、ベンジルアルコール等の溶解補助剤;酸化防止剤;防腐剤等が挙げられる。 Pharmaceutical compositions may also contain excipients. Additives include lubricants such as calcium stearate and magnesium stearate; sweeteners such as sucrose, lactose, saccharin, and maltitol; flavoring agents such as peppermint and red oil; stabilizers such as benzyl alcohol and phenol; phosphoric acid. Buffers such as salts and sodium acetate; solubilizing agents such as benzyl benzoate and benzyl alcohol; antioxidants; preservatives and the like.

医薬組成物は、上述したプロテアソーム阻害剤、上述した薬学的に許容される担体及び添加剤を適宜組み合わせて、一般に認められた製薬実施に要求される単位用量形態で混和することによって製剤化することができる。 Pharmaceutical compositions may be formulated by combining the above-mentioned proteasome inhibitors, the above-mentioned pharmaceutically acceptable carriers and excipients, as appropriate, in a unit dosage form as required by generally accepted pharmaceutical practice. Can be done.

医薬組成物の投与量は、患者の症状、体重、年齢、性別等によって異なり、一概には決定できないが、皮下投与の場合には、例えば、1日あたり、0.000001mg/kg体重~10mg/kg体重、好ましくは例えば0.00001~1mg/kg体重、より好ましくは0.0005~0.01mg/kg体重の有効成分を投与することが適切であると考えられる。 The dosage of the pharmaceutical composition varies depending on the patient's symptoms, body weight, age, sex, etc., and cannot be determined unconditionally, but in the case of subcutaneous administration, for example, 0.000001 mg/kg to 10 mg/kg body weight per day. It may be appropriate to administer the active ingredient at body weight, preferably eg 0.00001 to 1 mg/kg body weight, more preferably 0.0005 to 0.01 mg/kg body weight.

(本実施形態の効果)
本実施形態の筋萎縮の治療剤によれば、筋萎縮の予防、症状の改善等の治療を有効に行うことができる。
(Effects of this embodiment)
According to the therapeutic agent for muscle atrophy of the present embodiment, treatment such as prevention of muscle atrophy and improvement of symptoms can be effectively performed.

本発明者らは、実施例に示すように、FAPsが関与する骨格筋萎縮の分子機構の解明を試みた。具体的には、マウスを用いて、下肢固定モデルや、加齢モデルでの解析を行った。 As shown in the Examples, the present inventors attempted to elucidate the molecular mechanism of skeletal muscle atrophy involving FAPs. Specifically, we conducted analyzes using mice in a lower limb immobilization model and an aging model.

フローサイトメトリーにて骨格筋内のFAPsを単離し,遺伝子発現プロファイルをRNA-seqにて解析した。その結果、下肢固定モデルにおいては、骨格内IL-33の遺伝子と、その下流に位置するST2遺伝子の発現が有意に上昇することが明らかとなった。ST2蛋白質は、IL-33蛋白質の受容体である。一方、IL-33遺伝子の発現上昇は老年マウスでは抑制されており、加齢による廃用性筋萎縮の悪化に寄与していることが示唆された。
そこで、IL-33蛋白質および、その阻害剤として機能する可溶型のST2の蛋白質をマウスに投与し、筋萎縮に対する作用を検討したところ,可溶型のST2蛋白質を投与した若年・老年マウスでは筋萎縮が悪化する一方、IL-33蛋白質を投与した老年マウスでは筋萎縮の抑制が観察された。
FAPs in skeletal muscle were isolated using flow cytometry, and gene expression profiles were analyzed using RNA-seq. As a result, it was revealed that in the lower limb immobilization model, the expression of the intraskeletal IL-33 gene and the ST2 gene located downstream thereof was significantly increased. ST2 protein is a receptor for IL-33 protein. On the other hand, increased expression of the IL-33 gene was suppressed in old mice, suggesting that it contributes to the worsening of disuse muscle atrophy due to aging.
Therefore, we administered IL-33 protein and soluble ST2 protein, which functions as an inhibitor, to mice and examined their effects on muscle atrophy.We found that young and old mice administered soluble ST2 protein While muscle atrophy worsened, muscle atrophy was suppressed in aged mice administered with IL-33 protein.

これらのその結果より、FAPsにおけるIL-33遺伝子シグナルは、筋萎縮を負に制御する(筋萎縮を抑制させる)ことが明らかとなった。また、老齢マウスではこのシグナルが低下しているため,廃用に伴う筋萎縮が過度に進行するものと考えられた。このことから、IL-33遺伝子は高齢者における廃用性筋萎縮症に対する有用な治療標的であることが示唆された。 These results revealed that the IL-33 gene signal in FAPs negatively regulates muscle atrophy (suppresses muscle atrophy). In addition, because this signal is reduced in aged mice, it was thought that muscle atrophy due to disuse progresses excessively. This suggested that the IL-33 gene is a useful therapeutic target for disuse muscular atrophy in the elderly.

[筋萎縮の治療方法]
本実施形態の筋萎縮の治療剤は、前記有効成分を患者に有効量投与することを含む筋萎縮の治療方法に用いることができる。
[Treatment method for muscle atrophy]
The therapeutic agent for muscle atrophy of this embodiment can be used in a method for treating muscle atrophy that includes administering an effective amount of the active ingredient to a patient.

筋萎縮の治療方法は、前記筋萎縮の対象を治療する方法の他、筋萎縮を予防する方法、筋肉に関連する疾患の予後の処置方法などを広く含む。患者としては、人間、その他の動物のうち、前述した筋萎縮の対象、予防または予後の処置を行う対象を広く含む。 Methods for treating muscle atrophy include a wide range of methods, including methods for treating the subject of muscle atrophy, methods for preventing muscle atrophy, methods for treating the prognosis of muscle-related diseases, and the like. Patients include a wide range of humans and other animals, including subjects suffering from muscle atrophy as described above, and subjects undergoing preventive or prognostic treatment.

治療対象となる動物としては、哺乳動物であることが好ましい。哺乳動物としては、例えば、ヒト、サル、マーモセット、ウシ、ウマ、ヒツジ、ブタ、ヤギ、シカ、アルパカ、イヌ、ネコ、ウサギ、ハムスター、モルモット、ラット、またはマウス等が挙げられる。中でも、ヒトが好ましい。 The animal to be treated is preferably a mammal. Examples of mammals include humans, monkeys, marmosets, cows, horses, sheep, pigs, goats, deer, alpacas, dogs, cats, rabbits, hamsters, guinea pigs, rats, and mice. Among these, humans are preferred.

前記有効成分を投与する有効量は、例えば、前述の医薬組成物としての投与量を目安に選ぶことができる。すなわち、有効量は患者の症状、体重、年齢、性別等によって異なり、一概には決定できないが、皮下投与の場合には、例えば、1日あたり、0.000001mg/kg体重~10mg/kg体重、好ましくは例えば0.00001~1mg/kg体重、より好ましくは0.0005~0.01mg/kg体重の有効成分を投与することが適切であると考えられる。 The effective amount of the active ingredient to be administered can be selected, for example, based on the dosage for the above-mentioned pharmaceutical composition. That is, the effective amount varies depending on the patient's symptoms, body weight, age, gender, etc. and cannot be determined unconditionally, but in the case of subcutaneous administration, it is, for example, 0.000001 mg/kg body weight to 10 mg/kg body weight per day, preferably. For example, it is considered appropriate to administer the active ingredient in an amount of 0.00001 to 1 mg/kg body weight, more preferably 0.0005 to 0.01 mg/kg body weight.

[本実施形態の他の側面]
本実施形態の他の側面は、筋萎縮の治療における使用のためのIL-33、またはIL-33受容体のアゴニストもしくはリガンドを含む前記有効成分である。
また、本実施形態の他の側面は、筋萎縮の治療剤を製造するためのIL-33、またはIL-33受容体のアゴニストもしくはリガンドを含む前記有効成分の使用である。
前記有効成分の構成及び使用方法としては、上述したものから選択できる。
[Other aspects of this embodiment]
Another aspect of this embodiment is the active ingredient comprising IL-33, or an agonist or ligand of the IL-33 receptor, for use in the treatment of muscle atrophy.
Another aspect of this embodiment is the use of the active ingredient, including IL-33, or an agonist or ligand of the IL-33 receptor, for producing a therapeutic agent for muscle atrophy.
The composition and method of use of the active ingredient can be selected from those described above.

以下、実施例を示す。なお、本発明は実施例に限定されるものではない。 Examples are shown below. Note that the present invention is not limited to the examples.

[筋組織からの単細胞の単離]
下肢固定モデルマウスの作成は、マウスの下肢をワイヤーで固定することにより行った。下肢固定モデルマウスは、3日または2週間固定したものを準備した。その後、各下肢固定モデルマウスから下肢筋を採取し、血管などの組織を除去、組織を切断基材(鋏などの手動等)でミンスした。37℃下で計70分間、酵素(コラゲナーゼType2)処理を行い、赤血球可溶化バッファーにて赤血球を除去、その後の洗浄を行い、細胞試料を得た。
[Isolation of single cells from muscle tissue]
A lower limb fixation model mouse was created by fixing the lower limbs of the mouse with wire. Lower limb immobilization model mice were prepared by immobilizing them for 3 days or 2 weeks. Thereafter, lower limb muscles were collected from each lower limb fixed model mouse, tissues such as blood vessels were removed, and the tissue was minced using a cutting base material (manually using scissors, etc.). Enzyme (collagenase Type 2) treatment was performed at 37°C for a total of 70 minutes, red blood cells were removed with red blood cell solubilization buffer, and subsequent washing was performed to obtain a cell sample.

ついで、前記細胞試料を細胞数1×10~3×10/溶液100μlの条件で抗体により染色した。抗体はFITC-CD31、FITC-CD45、PE-Pdgfra、PE/Cy7-Sca1、biotin-SM/C2.6(色素-抗原)を用い、FACS解析を行った。FACSのゲーティングでは死細胞除去、血球・内皮細胞除去、ダブレット除去の操作を順次行った。SM/C.2.6で単離した衛星細胞と、PdgfraとSca1で染色したFAPsを分離し、FAPsを中心に解析した。 Next, the cell sample was stained with an antibody at a concentration of 1×10 6 to 3×10 6 cells/100 μl of solution. FACS analysis was performed using antibodies FITC-CD31, FITC-CD45, PE-Pdgfra, PE/Cy7-Sca1, and biotin-SM/C2.6 (dye-antigen). In FACS gating, operations for removing dead cells, blood cells/endothelial cells, and doublets were performed sequentially. SM/C. The satellite cells isolated in 2.6 and FAPs stained with Pdgfra and Sca1 were separated, and the FAPs were mainly analyzed.

図1に、細胞数の変化の結果を示した。図1(a)にcell/weight FAPS(PDGFRα+、Sca-1+)、図1(b)にcell/weight SCsを示した。それぞれ♂♀混合、N=3-6、*=p<0.05である。横軸のNはコントロール(非固定)、3Dは3日固定、2Wは2週間固定の下肢固定モデルマウスを指す。また、8W、50W、80Wは、それぞれマウスの週齢であり、8週齢は若いマウスのサンプル、50週齢および80週齢は老齢のマウスのサンプルとした。 Figure 1 shows the results of changes in cell number. Figure 1(a) shows cell/weight FAPS (PDGFRα+, Sca-1+), and Figure 1(b) shows cell/weight SCs. Male and female mixture, N=3-6, *=p<0.05, respectively. On the horizontal axis, N indicates a control (non-fixed) mouse, 3D indicates a model mouse with lower limbs fixed for 3 days, and 2W indicates a lower limb fixation model mouse fixed for 2 weeks. Furthermore, 8W, 50W, and 80W are the ages of the mice, respectively; 8 weeks old was a sample of a young mouse, and 50 weeks old and 80 weeks old were samples of an old mouse.

図の結果より、下肢固定の週に応じてFAPsが増加し、Nと2Wでは有意差があるという結果がみられた。下肢固定によって筋萎縮が生じるので、筋萎縮に応じて、幹細胞の重量当たりの数が増加するという結果が得られた。また、若齢、老齢とも、筋萎縮により増加していた。また、加齢により数が減少しているという結果が得られた。 From the results shown in the figure, FAPs increased depending on the week of lower limb immobilization, and there was a significant difference between N and 2W. Since muscle atrophy occurs due to lower limb immobilization, the number of stem cells per weight increases in response to muscle atrophy. In addition, it increased due to muscle atrophy in both young and old age. The results also showed that the number decreased with age.

[筋線維断面積測定]
前記と同様にNはコントロール(非固定)、3Dは3日固定、2Wは2週間固定の下肢固定モデルマウスを準備し、TA(前脛骨筋)を採取して凍結した。TAの近位端から2 mm遠位で10μmの断面の切片を作成した。ラミニンにより線維周囲を染色し、蛍光顕微鏡で撮影し画像解析ソフトフェア(Image J)にて断面に含まれる筋繊維断面積(CSA)を測定した。測定範囲は100-10000μmとした。
[Muscle fiber cross-sectional area measurement]
In the same manner as described above, a lower limb fixation model mouse was prepared in which N was a control (non-fixed), 3D was fixed for 3 days, and 2W was fixed for 2 weeks, and TA (tibialis anterior muscle) was collected and frozen. Sections of 10 μm cross section were made 2 mm distal to the proximal end of the TA. The area around the fibers was stained with laminin, photographed using a fluorescence microscope, and the cross-sectional area of the muscle fibers (CSA) included in the cross section was measured using image analysis software (Image J). The measurement range was 100-10000 μm2 .

図2に、TA(前脛骨筋)の断面から測定した、筋繊維の断面積のヒストグラムを示す。固定日数が大きいほど筋繊維の断面積が減少することが確認できる。すなわち、固定日数により筋萎縮が生じていることが確認できた。 FIG. 2 shows a histogram of the cross-sectional area of muscle fibers measured from a cross section of TA (tibialis anterior). It can be confirmed that the longer the number of days of immobilization, the more the cross-sectional area of muscle fibers decreases. In other words, it was confirmed that muscle atrophy occurs depending on the number of fixed days.

[FAPsからのRNA抽出]
前記組織から抽出した細胞を用いて、FAPsからのRNA抽出を行った。
図3(a)は解析の概略を示す。若齢(8W)、老齢(80W)の、それぞれnormal(非固定)、2Wは2週間固定の下肢固定モデルマウスを準備し、FAPsからRNAを抽出し、次世代RNAシークエンスにて解析した。
図3(b)は解析結果の概略を示す。Normalと2Wの間で、Log2で2以上(すなわち、4倍量以上)の変化を起こしているRNAを抽出すると、8Wのマウスについて611種、80Wのマウスについて985種のRNAが変化していた。8Wと80Wのマウスについて変化が重複しているRNA、すなわち若齢、老齢とも、筋萎縮により発現量が増加するRNAは、205種であった。
このうち、筋萎縮により増加しているRNAには、IL-33レセプターであるST2が含まれていた。
[RNA extraction from FAPs]
RNA was extracted from FAPs using cells extracted from the tissue.
FIG. 3(a) shows an outline of the analysis. Young (8W) and old (80W) normal (unfixed) and 2W lower limb fixation model mice were prepared for 2 weeks, and RNA was extracted from FAPs and analyzed using next-generation RNA sequencing.
FIG. 3(b) shows an outline of the analysis results. When we extracted the RNAs that had changed by 2 or more (i.e., 4 times or more) in Log2 between Normal and 2W, we found that 611 types of RNA had changed in the 8W mouse and 985 types had changed in the 80W mouse. . There were 205 types of RNAs that had overlapping changes in 8W and 80W mice, that is, RNAs whose expression levels increased due to muscle atrophy in both young and old mice.
Among these, the RNA that increased due to muscle atrophy included ST2, which is an IL-33 receptor.

IL-33およびST2の発現量について、TPMlog2変換の条件でRNA-seqを用いて解析した。
図4(a)に、IL-33について、図4(b)にIL1rL1(ST2)についてRNA-seqによる発現量の解析結果を示す。IL-33、ST2のいずれも、3Dにおいて発現量が上昇し、2WでもNormalに比べると上昇している。また、若齢(8W)、老齢(80W)の比較では、ST2は両方上昇しているが、IL-33は若齢の上昇がより大きかった。
The expression levels of IL-33 and ST2 were analyzed using RNA-seq under TPMlog2 conversion conditions.
FIG. 4(a) shows the analysis results of the expression level of IL-33, and FIG. 4(b) shows the analysis results of the expression level of IL1rL1 (ST2) by RNA-seq. The expression levels of both IL-33 and ST2 are increased in 3D, and are also increased in 2W compared to Normal. Furthermore, when comparing the young (8W) and old (80W) subjects, both ST2 levels increased, but the increase in IL-33 was greater in the young subjects.

また、IL-33およびST2の発現量について、採取したTAからRNAを抽出し、cDNAを合成した後、Applied Biosystems 7300の機器でqPCRを用いて解析した。
図4(c)に、IL-33およびST2について、qPCRによる発現量の解析結果を示す。固定日数が3D~2Wの筋萎縮が起こっているマウスにおいて、有意差(N=2)をもって発現量の上昇が確認できた。
これらの結果から、IL-33およびその受容体であるST2は筋萎縮に強くかかわっていることが示唆された。
Furthermore, the expression levels of IL-33 and ST2 were analyzed using qPCR using an Applied Biosystems 7300 device after RNA was extracted from the collected TA and cDNA was synthesized.
FIG. 4(c) shows the analysis results of the expression levels of IL-33 and ST2 by qPCR. In mice with muscle atrophy that had been immobilized for 3D to 2W, an increase in the expression level was confirmed with a significant difference (N=2).
These results suggested that IL-33 and its receptor ST2 are strongly involved in muscle atrophy.

[下肢固定モデルマウスへの薬剤投与試験]
筋萎縮のモデルである下肢固定モデルマウスに対して、IL-33およびST2を投与し、その影響を調べた。
IL-33投与群:recombinant IL-33 2μg/PBS100μl/回
sST2投与群:recombinant sST2 5μg/PBS100μl/回
Negative control群:PBS100μl
となるよう投与した。ここでsST2は可溶型としたST2を指し、血中などでIL-33をトラップすることでIL-33のアンタゴニストとして働くタンパク質である。
それぞれの群、また若齢(8W)と老齢(80W)の下肢固定モデルマウスに対して、週2回、上記の投与を行い、2週間(合計4回投与)の後、sacrificeした。
評価方法としてはTA(前脛骨筋)のCSA(筋線維断面積)測定を行った。
[Drug administration test to lower limb immobilization model mouse]
IL-33 and ST2 were administered to lower limb immobilization model mice, which is a model of muscle atrophy, and their effects were examined.
IL-33 administration group: recombinant IL-33 2 μg/PBS 100 μl/time sST2 administration group: recombinant sST2 5 μg/PBS 100 μl/time Negative control group: PBS 100 μl
It was administered so that Here, sST2 refers to soluble ST2, which is a protein that acts as an antagonist of IL-33 by trapping IL-33 in the blood.
The above administration was carried out twice a week for each group, as well as young (8W) and old (80W) lower limb immobilization model mice, and sacrificed after 2 weeks (total of 4 administrations).
As an evaluation method, CSA (muscle fiber cross-sectional area) of TA (tibialis anterior muscle) was measured.

図5(a)に若齢マウスのIL-33投与群のCSAの結果のグラフ図を示す。図5(b)に若齢マウスのST2投与群のCSAの結果グラフ図を示す。図はTA(前脛骨筋)の断面から測定した、筋繊維の断面積のヒストグラムである。筋繊維面積で100μm毎の区切りで分類し、区切りごとの線維数の全体に対する割合を表す(NC: negative control N=3, IL-33, ST2投与群 N=4)。
全体的に、下肢固定によりいずれもCSAが減少することが確認できる。ここで、コントロール(NC)と投与群との比較については、若齢マウスではIL-33投与による効果は見られず、ST2投与では減少傾向にあるという結果となった。
FIG. 5(a) shows a graph of the CSA results of the IL-33 administration group of young mice. FIG. 5(b) shows a graph of the CSA results of the ST2 administration group of young mice. The figure is a histogram of the cross-sectional area of muscle fibers measured from a cross section of TA (tibialis anterior). The muscle fiber area is classified into 100μm2 sections, and the ratio of the number of fibers in each section to the total is expressed (NC: negative control N=3, IL-33, ST2 administration group N=4).
Overall, it can be confirmed that CSA is reduced by lower limb immobilization. Here, regarding the comparison between the control (NC) and the administration group, the results showed that in young mice, no effect was observed due to IL-33 administration, and there was a tendency to decrease after ST2 administration.

図6(a)に老齢マウスのIL-33投与群のCSAの結果のグラフ図を示す。図6(b)に老齢マウスのST2投与群のCSAの結果グラフ図を示す。上記同様、図はTA(前脛骨筋)の断面から測定した、筋繊維の断面積のヒストグラムである。筋繊維面積で100μm毎の区切りで分類し、区切りごとの線維数の全体に対する割合を表す(NC: negative control N=3, IL33, ST2投与群 N=4)。
全体的に、下肢固定によりいずれもCSAが減少することが確認できる。ここで、2週間固定を行い(2W)PBSのみ投与したネガティブコントロールと、IL-33、ST2投与群との比較については、老齢マウスではIL-33投与による筋萎縮の予防効果が、ST2投与では筋萎縮が増悪するという効果がみられた。
FIG. 6(a) shows a graph of the CSA results of the IL-33 administered group of aged mice. FIG. 6(b) shows a graph of the CSA results of the ST2 administration group of old mice. Similarly to the above, the figure is a histogram of the cross-sectional area of muscle fibers measured from a cross section of TA (tibialis anterior muscle). The muscle fiber area is classified into sections of 100 μm2 , and the ratio of the number of fibers in each section to the total is expressed (NC: negative control N=3, IL33, ST2 administration group N=4).
Overall, it can be confirmed that CSA is reduced by lower limb immobilization. Here, regarding the comparison between the negative control in which only PBS was administered after 2 weeks of immobilization (2W) and the IL-33 and ST2 administration group, it was found that in old mice, IL-33 administration had a preventive effect on muscle atrophy, whereas ST2 administration had a preventive effect on muscle atrophy. The effect of worsening muscle atrophy was observed.

これらの結果から、若齢マウスではIL-33投与による効果は見られず、ST2投与では筋萎縮傾向がみられた。一方、老齢マウスではIL-33投与で萎縮の予防効果、sST2投与で萎縮の増悪を示唆された。ST2はIL-33の受容体であり、IL-33の阻害剤としても機能している。
これらの相互の関係から、加齢によるIL-33シグナルの低下が筋萎縮の増悪につながる可能性が示唆された。
IL-33、または類似の活性を持つ物質(例えばST2のリガンド、アゴニスト)は、外傷後や内科疾患での不動による筋萎縮予防への応用が考えられる。
From these results, no effect of IL-33 administration was observed in young mice, and a tendency towards muscle atrophy was observed in ST2 administration. On the other hand, in old mice, it was suggested that IL-33 administration had a preventive effect on atrophy, while sST2 administration worsened atrophy. ST2 is a receptor for IL-33 and also functions as an inhibitor of IL-33.
These mutual relationships suggested that age-related decline in IL-33 signals may lead to exacerbation of muscle atrophy.
IL-33, or a substance with similar activity (for example, an ST2 ligand or agonist), may be applied to prevent muscle atrophy due to immobility after trauma or in medical diseases.

本発明によれば、筋萎縮の予防、症状の改善等の治療を有効に行うことのできる筋萎縮の治療剤が得られる。 According to the present invention, a therapeutic agent for muscle atrophy that can effectively prevent muscle atrophy, improve symptoms, etc. can be obtained.

Claims (5)

IL-33、またはIL-33受容体のアゴニストもしくはリガンドを有効成分として含有する、筋萎縮の治療剤。 A therapeutic agent for muscle atrophy containing IL-33 or an agonist or ligand of the IL-33 receptor as an active ingredient. 前記IL-33受容体がST2である、請求項1に記載の筋萎縮の治療剤。 The therapeutic agent for muscle atrophy according to claim 1, wherein the IL-33 receptor is ST2. 前記筋萎縮は、筋組織において前記IL-33受容体の発現量が増加している、請求項1に記載の筋萎縮の治療剤。 2. The therapeutic agent for muscle atrophy according to claim 1, wherein the muscle atrophy is caused by an increase in the expression level of the IL-33 receptor in muscle tissue. 前記筋萎縮が、廃用性筋萎縮症である、請求項1に記載の筋萎縮の治療剤。 The therapeutic agent for muscle atrophy according to claim 1, wherein the muscle atrophy is disuse muscular atrophy. 前記有効成分に含まれる前記IL-33、またはIL-33受容体のアゴニストもしくはリガンドの含有割合が、80質量%以上、90質量%以上、または100質量%である、請求項1に筋萎縮の治療剤。 Claim 1, wherein the content of the IL-33 or the agonist or ligand of the IL-33 receptor contained in the active ingredient is 80% by mass or more, 90% by mass or more, or 100% by mass. therapeutic agent.
JP2022123254A 2022-08-02 2022-08-02 Treatment for muscle atrophy Pending JP2024020797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022123254A JP2024020797A (en) 2022-08-02 2022-08-02 Treatment for muscle atrophy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022123254A JP2024020797A (en) 2022-08-02 2022-08-02 Treatment for muscle atrophy

Publications (1)

Publication Number Publication Date
JP2024020797A true JP2024020797A (en) 2024-02-15

Family

ID=89854097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022123254A Pending JP2024020797A (en) 2022-08-02 2022-08-02 Treatment for muscle atrophy

Country Status (1)

Country Link
JP (1) JP2024020797A (en)

Similar Documents

Publication Publication Date Title
JP2021063107A (en) Use of myostatin inhibitors and combination therapies
CA2949644A1 (en) Composition for treating or preventing metabolic disease, containing, as active ingredient, extracellular vesicles derived from akkermansia muciniphila bacteria
CN109072186B (en) Compositions and methods for muscle regeneration using prostaglandin E2
JP2022095884A (en) Pharmaceutical composition for preventing or treating rheumatoid arthritis comprising isolated mitochondria
JP2008518026A (en) Adrenocorticotropic hormone analogs and related methods
US9878010B2 (en) Methods of treating metabolic disorders
JP2018519366A (en) Novel therapeutic use of FGF19
US20170340588A1 (en) Modulation of regulatory t cells via g-coupled protein receptor 43
Carlson et al. Chronic treatment with agents that stabilize cytosolic IκB-α enhances survival and improves resting membrane potential in MDX muscle fibers subjected to chronic passive stretch
US20190112608A1 (en) Methods of using smad7 antisense oligonucleotides
Yang et al. Interleukin-9 aggravates isoproterenol-induced heart failure by activating signal transducer and activator of transcription 3 signalling
JP2010506897A (en) Methods of treating disorders associated with fat storage
KR20170031245A (en) Methods and compositions for diagnosing and treating inflammatory bowel disorders
EP4054564A1 (en) Treatment of autoinflammatory disorders
US11733232B2 (en) Method for producing disease modeling non-human animal, disease modeling non-human animal, and method for screening drug and method for determining risk of disease using the same
JP2024020797A (en) Treatment for muscle atrophy
EP3870180B1 (en) Combination comprising sildenafil for use in the treatment of osteoarthritis
US20140235527A1 (en) Composition for treatment or prevention of erectile dysfunction including dkk2 protein or dkk2 gene thereof and use of the composition
Zhao et al. Leptin Reduction as a Required Component for Weight Loss
Kovac et al. Current strategies for prevention and treatment of equine postoperative ileus: a multimodal approach
KR102544211B1 (en) Natural killer cells with activated Metabotropic glutamate receptor 5 and uses thereof
US11851490B2 (en) Methods and compositions for treating, inhibiting, and/or preventing heterotopic ossification
US20210346328A1 (en) Compositions and methods for treating metabolic disorders
Hauck Mineralocorticoid Receptor Signaling in Acute and Chronic Muscle Injury
Hardy Understanding the Role of Lipids Derived from the Gut Microbes in a Mouse Model of Obesity-Induced Peripheral Pain