JP2024020773A - powder composition - Google Patents
powder composition Download PDFInfo
- Publication number
- JP2024020773A JP2024020773A JP2022123212A JP2022123212A JP2024020773A JP 2024020773 A JP2024020773 A JP 2024020773A JP 2022123212 A JP2022123212 A JP 2022123212A JP 2022123212 A JP2022123212 A JP 2022123212A JP 2024020773 A JP2024020773 A JP 2024020773A
- Authority
- JP
- Japan
- Prior art keywords
- water
- powder
- powder composition
- insoluble
- soluble
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000843 powder Substances 0.000 title claims abstract description 177
- 239000000203 mixture Substances 0.000 title claims abstract description 99
- 239000004552 water soluble powder Substances 0.000 claims abstract description 24
- 150000001875 compounds Chemical class 0.000 claims abstract description 21
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 46
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 37
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 30
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims description 27
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 24
- 239000002245 particle Substances 0.000 claims description 19
- 239000011148 porous material Substances 0.000 claims description 17
- 238000001179 sorption measurement Methods 0.000 claims description 17
- 239000000377 silicon dioxide Substances 0.000 claims description 15
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims description 14
- 235000017557 sodium bicarbonate Nutrition 0.000 claims description 14
- 150000003839 salts Chemical class 0.000 claims description 10
- 229910000288 alkali metal carbonate Inorganic materials 0.000 claims description 7
- 150000008041 alkali metal carbonates Chemical class 0.000 claims description 7
- 238000003860 storage Methods 0.000 abstract description 7
- 239000007789 gas Substances 0.000 description 15
- 230000002378 acidificating effect Effects 0.000 description 12
- 238000011156 evaluation Methods 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 9
- 238000011068 loading method Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000004793 Polystyrene Substances 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 229920002223 polystyrene Polymers 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910021485 fumed silica Inorganic materials 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- -1 alkali metal hydrogen carbonates Chemical class 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000005909 Kieselgur Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000007373 indentation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 239000012047 saturated solution Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000004964 aerogel Substances 0.000 description 1
- 239000013040 bath agent Substances 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- MQRJBSHKWOFOGF-UHFFFAOYSA-L disodium;carbonate;hydrate Chemical compound O.[Na+].[Na+].[O-]C([O-])=O MQRJBSHKWOFOGF-UHFFFAOYSA-L 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 235000012489 doughnuts Nutrition 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910002011 hydrophilic fumed silica Inorganic materials 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 229910000031 sodium sesquicarbonate Inorganic materials 0.000 description 1
- 235000018341 sodium sesquicarbonate Nutrition 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- ZSDSQXJSNMTJDA-UHFFFAOYSA-N trifluralin Chemical compound CCCN(CCC)C1=C([N+]([O-])=O)C=C(C(F)(F)F)C=C1[N+]([O-])=O ZSDSQXJSNMTJDA-UHFFFAOYSA-N 0.000 description 1
- WCTAGTRAWPDFQO-UHFFFAOYSA-K trisodium;hydrogen carbonate;carbonate Chemical compound [Na+].[Na+].[Na+].OC([O-])=O.[O-]C([O-])=O WCTAGTRAWPDFQO-UHFFFAOYSA-K 0.000 description 1
- 238000004056 waste incineration Methods 0.000 description 1
Images
Landscapes
- Fire-Extinguishing Compositions (AREA)
- Treating Waste Gases (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
- Glanulating (AREA)
Abstract
Description
本発明は、粉体組成物に関する。 The present invention relates to powder compositions.
例えば炭酸水素ナトリウムなどの水溶性の粉体は、固結して塊状になると取り扱い難くなる。
特許文献1は、廃棄物の焼却処理時に発生する排ガス中の酸性成分を除去するための、炭酸水素ナトリウムを含む酸性成分除去剤に関する。粉体状の酸性成分除去剤をサイロに貯留し、ここから気体流を用いて搬送して排ガス中に供給し、排ガス中の酸性成分と反応させた後、バグフィルターへ送る装置において、粉体の流動性やバグフィルターでの圧力特性を改善するために、炭酸水素ナトリウムに、特定の膠質炭酸カルシウムと特定の疎水性ヒュームドシリカを添加した酸性成分除去剤の例が記載されている。
For example, water-soluble powders such as sodium hydrogen carbonate become difficult to handle when they solidify into lumps.
本発明者等の知見によれば、炭酸水素ナトリウムを含む酸性成分除去剤を、タンク(積み込み容器)を備えた粉粒体運搬車で輸送や保管をしたとき、タンクに積み込む際には問題がなくても、タンク内で固結や固着が生じて抜き出しが困難になる場合がある。
前記特許文献1は、排ガス処理設備の流路等における酸性成分除去剤の流動性等を改善するものであり、タンク(積み込み容器)内での状態変化の問題は考慮されていない。
本発明は、輸送中や保管中に固結や固着が生じ難い粉体組成物の提供を目的とする。
According to the findings of the present inventors, when an acidic component remover containing sodium bicarbonate is transported or stored in a powder transport vehicle equipped with a tank (loading container), there are problems when loading it into the tank. Even if it is not present, caking or sticking may occur inside the tank, making it difficult to extract it.
An object of the present invention is to provide a powder composition that is unlikely to cause caking or sticking during transportation or storage.
本発明者等は、粉体組成物を積み込み容器(以下、「容器」ともいう。)に積み込んだ後の環境変動に着目した。
例えば、温度が高い季節において、外気雰囲気下で粉体組成物を容器に積み込むと、積み込み直後の容器内の雰囲気は水分を多く含むが相対湿度はある程度低い状態である。しかし、輸送中又は保管中に環境が変化して容器内部の温度が低下すると、容器内の雰囲気の相対湿度が高い状態となるため、雰囲気中の水分が結露して水滴となり、粉体組成物に付着し、粉体組成物の固結および固着や粉体組成物と粉粒体運搬車のタンク内面との固着が生じて粉粒体運搬車のタンクからの抜き出しが困難になると考えられる。この現象は粉体組成物の水に対する溶解度が高いほど顕著となる。
これに対して、単純に吸湿性が高い非水溶性粉体を添加すると、積み込み時に非水溶性粉体が大気中の湿気を吸着してしまうため、輸送中や保管中の吸湿効果は充分に得られない。そこで、相対湿度が中程度の雰囲気中では粉体組成物の吸湿量が少なく、相対湿度が高い雰囲気中になると粉体組成物の吸湿量が増加するように非水溶性粉体を選定することで、密閉容器内での相対湿度の変動に伴う固結を抑制できることを見出して本発明に至った。
The present inventors focused on environmental changes after a powder composition is loaded into a loading container (hereinafter also referred to as "container").
For example, in a season of high temperatures, when a powder composition is loaded into a container under an open air atmosphere, the atmosphere inside the container immediately after loading contains a lot of moisture, but the relative humidity is low to some extent. However, when the environment changes during transportation or storage and the temperature inside the container decreases, the relative humidity of the atmosphere inside the container becomes high, and the moisture in the atmosphere condenses into water droplets, causing the powder composition to deteriorate. It is thought that the powder composition adheres to the powder composition, causing caking and adhesion of the powder composition, and adhesion between the powder composition and the inner surface of the tank of the powder transport vehicle, making it difficult to remove it from the tank of the powder transport vehicle. This phenomenon becomes more pronounced as the solubility of the powder composition in water increases.
On the other hand, if water-insoluble powder with high hygroscopicity is simply added, the water-insoluble powder will adsorb moisture in the atmosphere during loading, so the moisture absorption effect during transportation and storage will not be sufficient. I can't get it. Therefore, water-insoluble powder should be selected so that the amount of moisture absorbed by the powder composition is small in an atmosphere with medium relative humidity, and increases in the amount of moisture absorbed in an atmosphere with high relative humidity. The present invention was based on the discovery that caking caused by fluctuations in relative humidity within a closed container can be suppressed.
本発明は、下記の態様を有する。
[1] 水溶性化合物の粉体である水溶性粉体と、非水溶性化合物の粉体である非水溶性粉体とを含む粉体組成物であって、温度30℃、相対湿度90%における、前記粉体組成物の1gあたりの、前記非水溶性粉体による水蒸気吸着量W90から、温度30℃、相対湿度50%における、前記粉体組成物の1gあたりの、前記非水溶性粉体による水蒸気吸着量W50を差し引いた差を表すW90-W50が、1.5cm3/g以上である、粉体組成物。
[2] 前記非水溶性粉体が、細孔容積が1.0mL/g以上である多孔質物質を含む、[1]に記載の粉体組成物。
[3] 前記多孔質物質が多孔質シリカを含む、[2]に記載の粉体組成物。
[4] 前記非水溶性粉体が、炭酸カルシウムを含む、[1]~[3]のいずれか一項に記載の粉体組成物。
[5] 前記粉体組成物の総質量に対して、前記非水溶性粉体の含有量が5質量%以下である、[1]~[4]のいずれか一項に記載の粉体組成物。
[6] 前記水溶性粉体が水溶性塩を含む、[1]~[5]のいずれか一項に記載の粉体組成物。
[7] 前記水溶性塩がアルカリ金属炭酸塩を含む、[6]に記載の粉体組成物。
[8] 前記アルカリ金属炭酸塩が炭酸水素ナトリウムを含む、[7]に記載の粉体組成物。
[9] 前記粉体組成物の平均粒径が3~20μmである、[1]~[8]のいずれか一項に記載の粉体組成物。
[10] 前記水蒸気吸着量W90が、2.0~10.0cm3/gである、[1]~[9]のいずれか一項に記載の粉体組成物。
The present invention has the following aspects.
[1] A powder composition containing a water-soluble powder, which is a powder of a water-soluble compound, and a water-insoluble powder, which is a powder of a water-insoluble compound, at a temperature of 30°C and a relative humidity of 90%. From the water vapor adsorption amount W by the water-insoluble powder per 1 g of the powder composition in 90 , the water-insoluble water vapor adsorption amount per 1 g of the powder composition at a temperature of 30 ° C. and a relative humidity of 50%. A powder composition in which W 90 - W 50 , which represents the difference after subtracting the amount of water vapor adsorption W 50 by the powder, is 1.5 cm 3 /g or more.
[2] The powder composition according to [1], wherein the water-insoluble powder includes a porous substance having a pore volume of 1.0 mL/g or more.
[3] The powder composition according to [2], wherein the porous substance contains porous silica.
[4] The powder composition according to any one of [1] to [3], wherein the water-insoluble powder contains calcium carbonate.
[5] The powder composition according to any one of [1] to [4], wherein the content of the water-insoluble powder is 5% by mass or less with respect to the total mass of the powder composition. thing.
[6] The powder composition according to any one of [1] to [5], wherein the water-soluble powder contains a water-soluble salt.
[7] The powder composition according to [6], wherein the water-soluble salt contains an alkali metal carbonate.
[8] The powder composition according to [7], wherein the alkali metal carbonate contains sodium hydrogen carbonate.
[9] The powder composition according to any one of [1] to [8], wherein the powder composition has an average particle size of 3 to 20 μm.
[10] The powder composition according to any one of [1] to [9], wherein the water vapor adsorption amount W 90 is 2.0 to 10.0 cm 3 /g.
本発明によれば、輸送時や保管時に固結が生じ難い粉体組成物が得られる。 According to the present invention, it is possible to obtain a powder composition that is unlikely to cause caking during transportation or storage.
以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
「~」で表される数値範囲は、~の前後の数値を下限値及び上限値とする数値範囲を意味する。
水溶性化合物とは、溶媒を水とする、20℃での飽和溶解液の濃度が1g/L以上となる化合物である。
非水溶性化合物とは、溶媒を水とする、20℃での飽和溶解液の濃度が1g/L未満となる化合物である。
多孔質物質の細孔容積は、窒素吸着法により測定した値である。窒素吸着法による細孔容積の測定は、比表面積・細孔分布測定装置(例えば、マイクロメリティック社製「トライスターII」等)を用いて実施できる。
粉体組成物の平均粒径は、レーザー回折散乱式粒度分布測定装置(例えば、日機装社製、マイクロトラックFRA9220)を用いて測定した体積基準の平均粒径である。
The following definitions of terms apply throughout the specification and claims.
The numerical range represented by "~" means a numerical range whose lower and upper limits are the numbers before and after ~.
A water-soluble compound is a compound whose concentration in a saturated solution at 20° C. is 1 g/L or more using water as a solvent.
A water-insoluble compound is a compound whose concentration in a saturated solution at 20° C. is less than 1 g/L when water is used as a solvent.
The pore volume of the porous material is a value measured by a nitrogen adsorption method. The pore volume can be measured by the nitrogen adsorption method using a specific surface area/pore distribution measuring device (for example, "Tristar II" manufactured by Micromeritic Co., Ltd.).
The average particle size of the powder composition is a volume-based average particle size measured using a laser diffraction scattering particle size distribution analyzer (for example, Microtrac FRA9220, manufactured by Nikkiso Co., Ltd.).
本実施形態の粉体組成物は、水溶性化合物の粉体である水溶性粉体と、非水溶性化合物の粉体である非水溶性粉体とを含む。
粉体組成物の平均粒径は3~20μmが好ましく、5~18μmがより好ましく、8~15μmがさらに好ましい。上記範囲の上限値以下であると、密閉容器内での相対湿度の変動に伴う固結がより生じやすく、本発明による効果が大きい点で好ましい。また、本発明の粉体組成物を酸性成分除去剤などのガスと反応させる用途に用いる場合、ガスとの反応効率が高い点で前記平均粒径の上限値以下であることが好ましい。上記範囲の下限値以上であると、良好な流動性が得られやすい。
The powder composition of this embodiment includes a water-soluble powder that is a powder of a water-soluble compound, and a water-insoluble powder that is a powder of a water-insoluble compound.
The average particle size of the powder composition is preferably 3 to 20 μm, more preferably 5 to 18 μm, and even more preferably 8 to 15 μm. If it is below the upper limit of the above range, caking is more likely to occur due to fluctuations in relative humidity within the closed container, which is preferable since the effect of the present invention is large. Furthermore, when the powder composition of the present invention is used for reacting with a gas such as an acidic component removing agent, it is preferable that the average particle size is equal to or less than the upper limit value of the average particle size in terms of high reaction efficiency with the gas. When it is at least the lower limit of the above range, good fluidity is likely to be obtained.
<水溶性粉体>
水溶性粉体として用いる水溶性化合物は、常温で固体であり、粉体として存在できるものであればよい。粉体組成物の用途に応じて選択できる。
水溶性化合物としては、水溶性塩、水溶性有機物が例示できる。排ガス中の酸性ガスとの高い反応性や保存安定性の点で水溶性塩が好ましい。
水溶性塩としては、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩、アルカリ土類金属水酸化物が例示できる。
アルカリ金属炭酸塩、アルカリ金属炭酸水素塩、アルカリ土類金属水酸化物としては、炭酸ナトリウム(Na2CO3)、炭酸ナトリウム水和物、炭酸水素ナトリウム(NaHCO3)、これらと水の複塩であるセスキ炭酸ソーダ(Na2CO3・NaHCO3・2H2O)、無水複塩であるウェグシャイダー塩(Na2CO3・3NaHCO3)、水酸化カルシウム(Ca(OH)2)及び水酸化ドロマイトが例示できる。
水溶性粉体として用いる水溶性化合物は1種でもよく、2種以上を併用してもよい。
<Water-soluble powder>
The water-soluble compound used as the water-soluble powder may be any compound that is solid at room temperature and can exist as a powder. It can be selected depending on the use of the powder composition.
Examples of water-soluble compounds include water-soluble salts and water-soluble organic substances. Water-soluble salts are preferred in terms of high reactivity with acidic gases in exhaust gas and storage stability.
Examples of water-soluble salts include alkali metal carbonates, alkali metal hydrogen carbonates, and alkaline earth metal hydroxides.
Examples of alkali metal carbonates, alkali metal hydrogen carbonates, and alkaline earth metal hydroxides include sodium carbonate (Na 2 CO 3 ), sodium carbonate hydrate, sodium hydrogen carbonate (NaHCO 3 ), and double salts of these and water. sodium sesquicarbonate (Na 2 CO 3 .NaHCO 3 .2H 2 O), Wegscheider salt (Na 2 CO 3 .3NaHCO 3 ) which is an anhydrous double salt, calcium hydroxide (Ca(OH) 2 ) and water. An example is oxidized dolomite.
One type of water-soluble compound may be used as the water-soluble powder, or two or more types may be used in combination.
例えば、粉体組成物の用途が排ガスの酸性成分除去剤である場合、水溶性粉体がアルカリ金属炭酸塩を含むことが好ましい。
特に、排ガスとの高い反応性の点で、水溶性粉体が炭酸水素ナトリウムを含むことが好ましい。
For example, when the powder composition is used as an agent for removing acidic components from exhaust gas, it is preferable that the water-soluble powder contains an alkali metal carbonate.
In particular, from the viewpoint of high reactivity with exhaust gas, it is preferable that the water-soluble powder contains sodium hydrogen carbonate.
<非水溶性粉体>
非水溶性粉体として用いる非水溶性化合物は、常温で固体であり、粉体として存在できるものであって、水溶性粉体と反応しないものであればよい。粉体組成物の用途に応じて選択できる。
非水溶性粉体として用いる非水溶性化合物は1種でもよく、2種以上を併用してもよい。粉体組成物の性能のバランスを調整しやすい点で2種以上の併用が好ましい。
<Water-insoluble powder>
The water-insoluble compound used as the water-insoluble powder may be any compound that is solid at room temperature, can exist as a powder, and does not react with the water-soluble powder. It can be selected depending on the use of the powder composition.
One type of water-insoluble compound may be used as the water-insoluble powder, or two or more types may be used in combination. It is preferable to use two or more types in combination because it is easy to adjust the balance of performance of the powder composition.
例えば、粉体組成物の用途が排ガスの酸性成分除去剤である場合、酸性成分除去剤に含有させる公知の非水溶性化合物を用いることができる。具体例としては、炭酸カルシウム、シリカ、ゼオライト、活性炭、塩基性炭酸マグネシウム、珪藻土、金属脂肪酸、タルク等が例示できる。
炭酸カルシウムとしては、前記特許文献1に記載されている膠質炭酸カルシウム、表面疎水化処理した炭酸カルシウム、軽質炭酸カルシウム、重質炭酸カルシウム等が例示できる。流動性付与の点で膠質炭酸カルシウムが好ましい。
シリカとしては、多孔質シリカ、前記特許文献1に記載されている疎水性ヒュームドシリカ、親水性ヒュームドシリカ、ヒューズドシリカ等が例示できる。
For example, when the powder composition is used as an acidic component remover for exhaust gas, a known water-insoluble compound to be included in the acidic component remover can be used. Specific examples include calcium carbonate, silica, zeolite, activated carbon, basic magnesium carbonate, diatomaceous earth, metallic fatty acids, and talc.
Examples of calcium carbonate include colloidal calcium carbonate, surface-hydrophobized calcium carbonate, light calcium carbonate, and heavy calcium carbonate described in
Examples of silica include porous silica, hydrophobic fumed silica described in
非水溶性粉体は、細孔容積が1.0mL/g以上である多孔質物質を含むことが好ましい。多孔質物質は粉体組成物の吸湿性に寄与し、固結や固着の防止に寄与する。
細孔容積が1.0mL/g以上であると、少量で吸湿量を高くすることができるため非水溶性粉体の添加量を低く抑えることが可能となる。そのため、粉体組成物において本来の機能を発現させる水溶性粉体の濃度を高くすることができる。
前記細孔容積は1.3mL/g以上が好ましく、1.5mL/g以上がより好ましく、2.0mL/g以上がさらに好ましい。上限は特に限定されないが、粒子強度の低下に伴う崩壊・微粉発生を抑制する観点から3.5mL/g以下が好ましく、3.0mL/g以下がより好ましく、2.5mL/g以下がさらに好ましい。
多孔質物質としては、多孔質シリカ、珪藻土、ゼオライト、エアロゲルが例示できる。入手の容易性、及び、大きな細孔容積を持つ点で多孔質シリカが好ましい。
The water-insoluble powder preferably includes a porous substance having a pore volume of 1.0 mL/g or more. The porous material contributes to the hygroscopicity of the powder composition and helps prevent caking and sticking.
When the pore volume is 1.0 mL/g or more, the amount of moisture absorbed can be increased even with a small amount, so the amount of water-insoluble powder added can be kept low. Therefore, it is possible to increase the concentration of the water-soluble powder that exhibits the original function in the powder composition.
The pore volume is preferably 1.3 mL/g or more, more preferably 1.5 mL/g or more, and even more preferably 2.0 mL/g or more. The upper limit is not particularly limited, but from the viewpoint of suppressing disintegration and generation of fine powder due to reduction in particle strength, it is preferably 3.5 mL/g or less, more preferably 3.0 mL/g or less, and even more preferably 2.5 mL/g or less. .
Examples of porous substances include porous silica, diatomaceous earth, zeolite, and aerogel. Porous silica is preferred because it is easily available and has a large pore volume.
非水溶性粉体が、炭酸カルシウムを含むことが好ましい。炭酸カルシウムは粉体組成物の流動性に寄与する。
非水溶性粉体が、前記多孔質物質と炭酸カルシウムの両方を含むことが好ましく、前記多孔質シリカと炭酸カルシウムの両方を含むことがより好ましい。
Preferably, the water-insoluble powder contains calcium carbonate. Calcium carbonate contributes to the flowability of the powder composition.
The water-insoluble powder preferably contains both the porous substance and calcium carbonate, and more preferably contains both the porous silica and calcium carbonate.
粉体組成物の総質量に対して非水溶性粉体の合計の含有量は5質量%以下が好ましく、4質量%以下がより好ましく、3質量%以下がさらに好ましい。上記上限値以下であると、水溶性粉体の効果に優れる。前記非水溶性粉体の含有量の下限値は特に限定されないが、例えば0.1質量%以上が好ましく、0.2質量%以上がより好ましく、0.3質量%以上がさらに好ましい。
粉体組成物の総質量は、水溶性粉体の含有量と非水溶性粉体の含有量の合計である。
The total content of water-insoluble powders based on the total mass of the powder composition is preferably 5% by mass or less, more preferably 4% by mass or less, and even more preferably 3% by mass or less. When it is below the above upper limit, the effect of the water-soluble powder is excellent. The lower limit of the content of the water-insoluble powder is not particularly limited, but is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and even more preferably 0.3% by mass or more.
The total mass of the powder composition is the sum of the content of water-soluble powder and the content of water-insoluble powder.
<粉体組成物>
本実施形態の粉体組成物は、下記W90から下記W50を差し引いた差を表すW90-W50が1.5cm3/g以上である。
W90は、温度30℃、相対湿度90%における、粉体組成物の1gあたりの、非水溶性粉体による水蒸気吸着量である。言い換えると、温度30℃、相対湿度90%のときに、粉体組成物の1g中に存在する非水溶性粉体の全量によって吸着可能な水分量である。
W50は、温度30℃、相対湿度50%における、粉体組成物の1gあたりの、非水溶性粉体による水蒸気吸着量である。言い換えると、温度30℃、相対湿度50%のときに、粉体組成物の1g中に存在する非水溶性粉体の全量によって吸着可能な水分量である。
前記W90-W50の値が大きいことは、相対湿度が中程度の雰囲気中では粉体組成物の吸湿量が少なく、相対湿度が高い雰囲気中になると粉体組成物の吸湿量が増加することを表す。
前記W90-W50が1.5cm3/g以上であると、密閉容器内での相対湿度の変動に伴う固結を抑制する効果に優れる。
前記W90-W50は、1.7cm3/g以上が好ましく、2.0cm3/g以上がより好ましく、2.5cm3/g以上がさらに好ましい。前記W90-W50の値は大きければ大きいほどよいため上限は特に限定されないが、非水溶性粉体として使用する化合物の入手し易さ、取り扱いやすさ等を考慮し、非水溶性粉体を適切な添加量とするために、7cm3/g以下が好ましく、6cm3/g以下がより好ましく、5cm3/g以下がさらに好ましい。
<Powder composition>
In the powder composition of the present embodiment, W 90 −W 50, which represents the difference obtained by subtracting the following W 50 from the following W 90 , is 1.5 cm 3 /g or more.
W 90 is the amount of water vapor adsorbed by the water-insoluble powder per 1 g of the powder composition at a temperature of 30° C. and a relative humidity of 90%. In other words, it is the amount of water that can be adsorbed by the total amount of water-insoluble powder present in 1 g of the powder composition at a temperature of 30° C. and a relative humidity of 90%.
W 50 is the amount of water vapor adsorbed by the water-insoluble powder per 1 g of the powder composition at a temperature of 30° C. and a relative humidity of 50%. In other words, it is the amount of water that can be adsorbed by the total amount of water-insoluble powder present in 1 g of the powder composition at a temperature of 30° C. and a relative humidity of 50%.
A large value of W 90 - W 50 means that the amount of moisture absorbed by the powder composition is small in an atmosphere with medium relative humidity, and the amount of moisture absorbed by the powder composition increases in an atmosphere with high relative humidity. represents something.
When the W 90 −W 50 is 1.5 cm 3 /g or more, the effect of suppressing caking caused by fluctuations in relative humidity within a closed container is excellent.
The W 90 −W 50 is preferably 1.7 cm 3 /g or more, more preferably 2.0 cm 3 /g or more, and even more preferably 2.5 cm 3 /g or more. The higher the value of W 90 - W 50 , the better, so the upper limit is not particularly limited, but considering the ease of obtaining and handling of the compound used as the water-insoluble powder, In order to make the addition amount appropriate, the amount is preferably 7 cm 3 /g or less, more preferably 6 cm 3 /g or less, and even more preferably 5 cm 3 /g or less.
前記W90の値が大きいことは、相対湿度が高い雰囲気中における粉体組成物の吸湿量が多いことを表す。
前記W90は2.0~10.0cm3/gが好ましく、2.2~9.0cm3/gがより好ましく、2.5~8.0cm3/gがさらに好ましい。上記範囲の下限値以上であると湿度が50%よりも高い状態からの環境変化でも効能を発揮する。上限値以下であると湿度が50%よりも高い状態からの環境の変化に弱くなる。
A large value of W 90 indicates that the powder composition absorbs a large amount of moisture in an atmosphere with high relative humidity.
The W 90 is preferably 2.0 to 10.0 cm 3 /g, more preferably 2.2 to 9.0 cm 3 /g, even more preferably 2.5 to 8.0 cm 3 /g. If it is at least the lower limit of the above range, it will exhibit its effectiveness even when the environment changes from a state where the humidity is higher than 50%. If the humidity is below the upper limit, it will be vulnerable to changes in the environment from a state where the humidity is higher than 50%.
本発明の粉体組成物の総質量に対して、水溶性粉体の含有量は好ましくは95~99.5質量%が好ましく、96~99質量%がより好ましく、非水溶性粉体の含有量は0.5~5質量%が好ましく、1~4質量%がより好ましい。
粉体組成物中における水溶性粉体の含有量と非水溶性粉体の含有量の合計は100質量%である。
The content of water-soluble powder is preferably 95 to 99.5% by mass, more preferably 96 to 99% by mass, and the content of water-insoluble powder is preferably 95 to 99.5% by mass, based on the total mass of the powder composition of the present invention. The amount is preferably 0.5 to 5% by weight, more preferably 1 to 4% by weight.
The total content of water-soluble powder and water-insoluble powder in the powder composition is 100% by mass.
<粉体組成物の設計方法>
前記W90-W50の値、及び前記W90の値は、非水溶性粉体の種類及び添加量によって調整できる。
粉体組成物の組成を設計するには、予め、各非水溶性粉体について、温度30℃において、水の飽和蒸気圧(P0)に対する相対圧力(P/P0)が0.9のときの非水溶性粉体の1gあたりの水蒸気吸着量V(標準状態換算)を求め、V0.9(単位:cm3(STP)/g)とする。V0.9は、温度30℃、相対湿度90%の時に、非水溶性粉体1gが吸着可能な水分量を表す。
また、各非水溶性粉体について、温度30℃において、水の飽和蒸気圧(P0)に対する相対圧力(P/P0)が0.5のときの非水溶性粉体の1gあたりの水蒸気吸着量V(標準状態換算)を求め、V0.5(単位:cm3(STP)/g)とする。V0.5は、温度30℃、相対湿度50%の時に、非水溶性粉体1gが吸着可能な水分量を表す。
<Method of designing powder composition>
The value of W 90 −W 50 and the value of W 90 can be adjusted depending on the type and amount of the water-insoluble powder.
To design the composition of the powder composition, in advance, for each water-insoluble powder, at a temperature of 30°C, the relative pressure (P/P 0 ) to the saturated vapor pressure (P 0 ) of water is 0.9. The water vapor adsorption amount V (standard state conversion) per 1 g of the water-insoluble powder is determined and set as V 0.9 (unit: cm 3 (STP)/g). V 0.9 represents the amount of water that can be adsorbed by 1 g of water-insoluble powder at a temperature of 30° C. and a relative humidity of 90%.
In addition, for each water-insoluble powder, at a temperature of 30°C, the water vapor per 1 g of the water-insoluble powder when the relative pressure (P/P 0 ) to the saturated vapor pressure (P 0 ) of water is 0.5. The adsorption amount V (standard state conversion) is determined and set as V 0.5 (unit: cm 3 (STP)/g). V 0.5 represents the amount of water that can be adsorbed by 1 g of water-insoluble powder at a temperature of 30° C. and a relative humidity of 50%.
V0.9及びV0.5は以下の方法で測定できる。
測定対象の非水溶性粉体を200℃、3時間の条件で真空乾燥したものを試料とし、蒸気吸着量測定装置を用い、吸着ガスをH2O、吸着温度を30℃として、P/P0と水蒸気吸着量V(標準状態換算、単位:cm3(STP)/g)との関係を表す水蒸気吸着等温線を測定する。得られた水蒸気吸着等温線において、(P/P0)が0.9のときのVを読み取りV0.9とする。(P/P0)が0.5のときのVを読み取りV0.5とする。
V 0.9 and V 0.5 can be measured by the following method.
The water-insoluble powder to be measured was dried under vacuum at 200°C for 3 hours as a sample, and using a vapor adsorption measurement device, the adsorbed gas was H 2 O and the adsorption temperature was 30°C, and P/P was measured. 0 and the water vapor adsorption amount V (standard state conversion, unit: cm 3 (STP)/g) is measured. In the obtained water vapor adsorption isotherm, V when (P/P 0 ) is 0.9 is read and defined as V 0.9 . Read V when (P/P 0 ) is 0.5 and set it as V 0.5 .
粉体組成物の組成は、各非水溶性粉体のV0.9-V0.5の値に基づいて、W90-W50が1.5cm3/g以上となるように、さらに好ましくはW90が2.0~10.0cm3/gとなるように、非水溶性粉体の種類と添加量を選定することで設計できる。 The composition of the powder composition is more preferably such that W 90 -W 50 is 1.5 cm 3 /g or more based on the value of V 0.9 - V 0.5 of each water-insoluble powder. can be designed by selecting the type and amount of water-insoluble powder to be added so that W 90 is 2.0 to 10.0 cm 3 /g.
例えば、粉体組成物が、第1の非水溶性粉体をa質量%含有し、かつ第2の非水溶性粉体をb質量%含有する場合、W90-W50、及びW90は、それぞれ下記式(I)、(II)で求められる。
W90-W50=(V0.9
1-V0.5
1)×(a/100)+(V0.9
2-V0.5
2)×(b/100)・・・(I)
W90=(V0.9
1)×(a/100)+(V0.9
2)×(b/100)・・・(II)
上記式(I)、(II)において、以下を表す。
V0.9
1:第1の非水溶性粉体のV0.9
V0.9
2:第2の非水溶性粉体のV0.9
V0.5
1:第1の非水溶性粉体のV0.5
V0.5
2:第2の非水溶性粉体のV0.5
前記式(I)で求められるW90-W50が、1.5cm3/g以上となるように、非水溶性粉体の種類(V0.9
1、V0.5
1、V0.9
2、V0.5
2)及び添加量(a、b)を選択して、粉体組成物の組成を設計する。
非水溶性粉体が3種以上の場合も同様にして設計できる。
For example, when the powder composition contains a mass % of the first water-insoluble powder and b mass % of the second water-insoluble powder, W 90 −W 50 and W 90 are , are determined by the following formulas (I) and (II), respectively.
W 90 - W 50 = (V 0.9 1 - V 0.5 1 ) x (a/100) + (V 0.9 2 - V 0.5 2 ) x (b/100)... (I )
W 90 = (V 0.9 1 ) x (a/100) + (V 0.9 2 ) x (b/100)... (II)
In the above formulas (I) and (II), the following is represented.
V 0.9 1 : V 0.9 of the first water-insoluble powder
V 0.9 2 :V 0.9 of the second water-insoluble powder
V 0.5 1 : V 0.5 of the first water-insoluble powder
V 0.5 2 : V 0.5 of the second water-insoluble powder
The type of water-insoluble powder (V 0.9 1 , V 0.5 1 , V 0 . 9 2 , V 0.5 2 ) and the addition amounts (a, b) to design the composition of the powder composition.
A similar design can be performed when there are three or more types of water-insoluble powders.
例えば、V0.9からV0.5を差し引いた差であるV0.9-V0.5(単位:cm3(STP)/g)の値が大きい非水溶性粉体を用いると、所望のW90-W50を得るための非水溶性粉体の添加量が少なくて済む点で好ましい。
V0.9-V0.5の値が大きい非水溶性粉体としては、前記細孔容積が1.0mL/g以上である多孔質物質が好ましい。
For example, if a water-insoluble powder with a large value of V 0.9 - V 0.5 (unit: cm 3 (STP)/g), which is the difference obtained by subtracting V 0.5 from V 0.9 , is used, This is preferable because the amount of water-insoluble powder added to obtain the desired W 90 -W 50 can be small.
The water-insoluble powder having a large value of V 0.9 - V 0.5 is preferably a porous material having a pore volume of 1.0 mL/g or more.
例えば、好ましい態様として以下が挙げられる。
(態様1)
水溶性粉体が炭酸水素ナトリウムを含み、非水溶性粉体が炭酸カルシウム及び細孔容積が1.0mL/g以上である多孔質シリカを含み、
粉体組成物の総質量に対して、前記炭酸水素ナトリウムの含有量が95~99.9質量%、好ましくは96~99質量%であり、前記炭酸カルシウムの含有量が0.5~4.5質量%、好ましくは1~4質量%であり、前記多孔質シリカの含有量が0.1~4.5質量%、好ましくは0.1~4.5質量%であり、W90-W50が1.5cm3/g以上である粉体組成物。
態様1において、前記炭酸水素ナトリウムの含有量と、前記炭酸カルシウムの含有量と、前記多孔質シリカの含有量の合計は97~100質量%が好ましく、99~100質量%がより好ましい。
For example, preferred embodiments include the following.
(Aspect 1)
The water-soluble powder contains sodium hydrogen carbonate, the water-insoluble powder contains calcium carbonate and porous silica having a pore volume of 1.0 mL/g or more,
The content of the sodium bicarbonate is 95 to 99.9% by mass, preferably 96 to 99% by mass, and the content of calcium carbonate is 0.5 to 4.9% by mass, based on the total mass of the powder composition. 5% by mass, preferably 1 to 4% by mass, the content of the porous silica is 0.1 to 4.5% by mass, preferably 0.1 to 4.5% by mass, and W 90 -W A powder composition in which 50 is 1.5 cm 3 /g or more.
In
<粉体組成物の製造方法>
本実施形態の粉体組成物は、水溶性粉体および非水溶性粉体を混合した後に粉砕する方法、又は粉砕と同時に混合する方法で製造できる。
粉砕を行なう時間の大部分において水溶性粉体および非水溶性粉体が共存していることが好ましい。このため、両者を混合してその混合物を粉砕機に供給するか、又は水溶性粉体と非水溶性粉体をほぼ同時に粉砕機に供給して粉砕することが好ましい。
<Method for producing powder composition>
The powder composition of this embodiment can be produced by mixing a water-soluble powder and a water-insoluble powder and then pulverizing them, or by mixing them simultaneously with pulverization.
It is preferable that the water-soluble powder and the water-insoluble powder coexist for most of the time during the grinding. For this reason, it is preferable to mix the two and supply the mixture to a pulverizer, or to supply the water-soluble powder and the water-insoluble powder to a pulverizer almost simultaneously and pulverize them.
粉砕手段としては、衝撃式粉砕機(高速回転する羽根等による粉砕機)、ジェットミル(衝突気流による粉砕機)、ボールミルが例示できる。細かい粒子が得られやすい点で、衝撃式粉砕機又はジェットミルがより好ましい。 Examples of the crushing means include an impact crusher (a crusher using blades rotating at high speed), a jet mill (a crusher using colliding airflow), and a ball mill. An impact pulverizer or jet mill is more preferable because fine particles can be easily obtained.
粉砕手段で粉砕した粉砕物を分級手段で分級してもよい。分級手段で分級された粒径が50μmを超える粒子を前記粉砕手段に戻す方法で粉体組成物を製造してもよい。前記粒径が50μmを超える粒子を分級手段で分級した後、粉砕手段に戻し、繰り返し粉砕する手法を用いることでも、平均粒径を3~20μmに調整できる。 The pulverized material pulverized by the pulverizing means may be classified by the classifying means. The powder composition may be produced by a method in which particles having a particle size exceeding 50 μm that have been classified by the classification means are returned to the crushing means. The average particle size can also be adjusted to 3 to 20 μm by classifying the particles having a particle size exceeding 50 μm using a classifying means, returning the particles to the crushing means, and repeatedly crushing the particles.
本実施形態の粉体組成物は、後述の実施例に示されるように、密閉容器内での相対湿度の変動に伴う固結や固着を抑制できる。したがって、輸送中や保管中の環境変動に伴う固結や固着が生じ難い。 As shown in the Examples below, the powder composition of this embodiment can suppress caking and sticking due to fluctuations in relative humidity within a closed container. Therefore, caking or sticking due to environmental changes during transportation or storage is unlikely to occur.
<用途>
本実施形態の粉体組成物の用途として、例えば、水溶性粉体が炭酸水素ナトリウムを含む場合、排ガスの酸性成分除去剤、発泡剤、中和剤、入浴剤、消火剤、食品用添加物、洗浄剤、ブラスト材が挙げられる。
<Application>
Applications of the powder composition of this embodiment include, for example, when the water-soluble powder contains sodium hydrogen carbonate, as an acid component remover of exhaust gas, a foaming agent, a neutralizing agent, a bath agent, a fire extinguisher, and a food additive. , cleaning agents, and blasting materials.
以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。 The present invention will be explained in more detail below using Examples, but the present invention is not limited to these Examples.
<測定方法・評価方法>
[非水溶性粉体のV0.9、V0.5]
蒸気吸着量測定装置(マイクロトラック・ベル社製、BELSORP maxII)を用、前述の方法で水蒸気吸着等温線を測定し、V0.9、V0.5、V0.9-V0.5(単位:cm3(STP)/g)を求めた。
<Measurement method/evaluation method>
[V 0.9 , V 0.5 of water-insoluble powder]
Using a vapor adsorption measurement device (BELSORP max II, manufactured by Microtrac Bell Co., Ltd.), the water vapor adsorption isotherm was measured by the method described above, and the results were V 0.9 , V 0.5 , V 0.9 - V 0.5 (Unit: cm 3 (STP)/g) was determined.
[耐湿性試験(60℃)]
下記の工程で、密閉容器内で粉体組成物を60℃飽和水蒸気の雰囲気に暴露した後、密閉容器ごと5℃の雰囲気へ移動し、気相中の水蒸気が結露する状態を模擬した状態をつくり、これに暴露した時の固結の状態を調べた。
(工程1)図1に示すように、有底中空の円筒状(内径146mm、高さ90mm)のポリスチレン製容器1に、粉体組成物の試料2を30.0g収容した。前記試料2は、容器1の底面のうち、中央部の円形部分(直径約40mm)を除くドーナツ状に置いた。ドーナツ状の試料2の厚みは約5mmであった。
前記中央部の円形部分は、後述の工程3において蒸留水が入ったビーカー3を設置する部分である。
(工程2:初期化)底部に粒状シリカゲルを備えた箱型デシケータ(大きさ:幅550mm、奥行き580mm、高さ700mm)を用意した。前記試料2を収容した前記容器1を、開口部を閉じない開放状態で前記箱型デシケータに入れ、24時間保存した。デシケータ内は温度23℃、相対湿度20%RHであった。
(工程3:60℃飽和水蒸気の雰囲気への暴露)
前記箱型デシケータ内に24時間保存した後、前記容器1を前記箱型デシケータから取り出した。図1に示すように、5mLの蒸留水を入れたビーカー(外径34mm、高さ60mm)3を、容器1の底面中央部の前記試料2が無い部分に置いた後、容器1の開口部を、軟質ポリエチレン製の蓋4で覆って密閉した。前記蓋4で密閉した容器1を60℃恒温槽に入れ、1時間保存した。
(工程4:5℃飽和水蒸気の雰囲気への暴露)
前記60℃恒温槽内に1時間後保存した後、密閉状態を維持しつつ容器1を恒温槽から取り出し、続いて5℃冷蔵庫に入れ、30分間保存した。
(工程5:固着状態の評価)
前記冷蔵庫に30分間保存した後、前記蓋4で密閉した容器1を冷蔵庫から取り出し、蓋4を取り外し、前記ビーカー3を取り出した後、容器1内の試料2の固着状態を目視で観察した。固着の状態を下記の基準(評価値1~4)で評価した。評価値3以上のものを、密閉容器内での相対湿度の変動の影響を受け難い良好な試料であると判定した。
(評価基準)
評価値4:固着無し。
評価値3:ポリスチレン容器の内壁に僅かに固着有り、底面に固着無し。
評価値2:ポリスチレン容器の底面に固着有り。
評価値1:ポリスチレン容器の底面で激しく固着有り。
[Moisture resistance test (60°C)]
In the following process, the powder composition was exposed to an atmosphere of saturated steam at 60°C in a closed container, and then the whole sealed container was moved to an atmosphere at 5°C to simulate a state in which water vapor in the gas phase condensed. The state of solidification when exposed to this was investigated.
(Step 1) As shown in FIG. 1, 30.0 g of
The circular part at the center is where a
(Step 2: Initialization) A box-shaped desiccator (size: width 550 mm, depth 580 mm, height 700 mm) equipped with granular silica gel at the bottom was prepared. The
(Step 3: Exposure to 60°C saturated steam atmosphere)
After being stored in the box desiccator for 24 hours, the
(Step 4: Exposure to 5°C saturated steam atmosphere)
After being stored in the 60° C. constant temperature bath for 1 hour, the
(Step 5: Evaluation of adhesion state)
After storing it in the refrigerator for 30 minutes, the
(Evaluation criteria)
Evaluation value 4: No sticking.
Evaluation value 3: Slight adhesion to the inner wall of the polystyrene container, no adhesion to the bottom surface.
Evaluation value 2: Adherence to the bottom of the polystyrene container.
Evaluation value 1: Severely stuck to the bottom of the polystyrene container.
[流動性試験:フローファンクション(ffc)の測定]
JIS Z 8835(2016年)、「一面せん断試験による限界状態線(CSL)及び壁面崩壊線(WYL)の測定方法」の附属書A(参考)「一面せん断試験の詳細及び特徴」に記載されている下部セル直動型のせん断試験にて粉体物性を測定、評価した。
下部セル直動型の測定が可能な装置(株式会社ナノシーズ社製、粉体層せん断力測定装置NS-S500)にて、上部から荷重(押し込み荷重)をかけて圧縮した粉体層に水平方向の荷重をかけた際の、押し込み荷重、底面荷重、水平せん断距離、粉体層厚みの変化を測定し、垂直応力とせん断応力との相関を求めた。なお、上部からの荷重の設定を50N、100N、150N、200N、又は250Nとし、各々の条件で測定を実施した。すなわち、1検体について条件を変えて5回測定を実施した。
前記垂直応力とせん断応力との相関から、単軸崩壊応力(σc)と最大主応力(σ1)を求め、σcに対するσ1の比であるフローファンクション(ffc)を求めた。ffcは次の式(1)で定義される。ffc=σ1÷σc・・・(1)
ffcの値が大きいほど、例えばσ1が同一であるときのσcが小さいほど、粉体粒子の付着力が小さいことになるため、粉体層が崩れやすく、流れやすい粉体となる、と評価できる。
以下の例においては、σ1=100(kPa)のときのσcの値を用いてffc(100)の値を求めた。一般に、流動性の目安は以下の通りである。
1<ffc<2:非常にながれにくい。
2<ffc<4:やや流れにくい。
4<ffc<10:流れやすい。
ffc>10:非常に流れやすい。
(評価基準)
例7のffcと例10のffcの平均値を基準値とし、ffc(100)の値に基づいて、下記の基準で流動性を評価した。
○:ffc(100)が「基準値×0.9」以上。基準値と同等以上。
△:ffc(100)が「基準値×0.7」以上、「基準値×0.9」未満。基準値よりやや劣る。
×:ffc(100)が「基準値×0.7」未満。基準値より劣る。
[Flowability test: measurement of flow function (ffc)]
JIS Z 8835 (2016), “Measurement method of limit state line (CSL) and wall failure line (WYL) by one-plane shear test”, Annex A (reference) “Details and characteristics of one-plane shear test” The physical properties of the powder were measured and evaluated using a lower cell direct-acting type shear test.
Using a device capable of direct-acting lower cell measurement (Powder bed shear force measuring device NS-S500, manufactured by Nano Seeds Co., Ltd.), a load (indentation load) is applied from the top to the compressed powder bed in the horizontal direction. The changes in indentation load, bottom load, horizontal shear distance, and powder layer thickness were measured when a load was applied, and the correlation between vertical stress and shear stress was determined. Note that the load from above was set to 50N, 100N, 150N, 200N, or 250N, and measurements were performed under each condition. That is, one sample was measured five times under different conditions.
From the correlation between the normal stress and shear stress, the uniaxial collapse stress (σ c ) and the maximum principal stress (σ 1 ) were determined, and the flow function (ffc), which is the ratio of σ 1 to σ c , was determined. ffc is defined by the following equation (1). ffc=σ 1 ÷σ c ...(1)
The larger the value of ffc is, for example, the smaller σ c is when σ 1 is the same, the smaller the adhesion force of the powder particles, which makes the powder layer more likely to collapse and the powder to flow more easily. It can be evaluated.
In the example below, the value of ffc(100) was determined using the value of σ c when σ 1 =100 (kPa). Generally, the guidelines for liquidity are as follows.
1<ffc<2: Very difficult to flow.
2<ffc<4: Slightly difficult to flow.
4<ffc<10: Easy to flow.
ffc>10: Very easy to flow.
(Evaluation criteria)
Using the average value of ffc in Example 7 and ffc in Example 10 as a reference value, fluidity was evaluated based on the value of ffc (100) using the following criteria.
○: ffc(100) is equal to or greater than "reference value x 0.9". Equivalent to or higher than the standard value.
Δ: ffc(100) is greater than or equal to "reference value x 0.7" and less than "reference value x 0.9". Slightly inferior to the standard value.
x: ffc(100) is less than "reference value x 0.7". Inferior to standard value.
<原料>
[水溶性粉体]
・炭酸水素ナトリウム(平均粒径:9μm)。
[非水溶性粉体]
・炭酸カルシウムA(膠質炭酸カルシウム、白石カルシウム社製品名「カルライトKT」)。
・炭酸カルシウムB(膠質炭酸カルシウム、竹原化学社製品名「ネオライトVT」)。
・シリカA(多孔質シリカ、水澤化学社製品名「ミズカシルP-78D」、細孔容積2.2mL/g)。
・シリカB(疎水性ヒュームドシリカ、トクヤマ社製品名「REOLOSIL CP-102」)。
各非水溶性粉体について、上記の方法でV0.9、V0.5、V0.9-V0.5を求めた。結果を表1に示す。
<Raw materials>
[Water-soluble powder]
- Sodium hydrogen carbonate (average particle size: 9 μm).
[Water-insoluble powder]
- Calcium carbonate A (colloidal calcium carbonate, Shiraishi Calcium Co. product name "Callite KT").
- Calcium carbonate B (colloid calcium carbonate, Takehara Chemical Co. product name "Neolite VT").
- Silica A (porous silica, Mizusawa Chemical Co., Ltd. product name "Mizukasil P-78D", pore volume 2.2 mL/g).
- Silica B (hydrophobic fumed silica, Tokuyama product name "REOLOSIL CP-102").
For each water-insoluble powder, V 0.9 , V 0.5 , and V 0.9 -V 0.5 were determined by the above method. The results are shown in Table 1.
(例1~11)
例1~6は実施例、例7~11は比較例である。
なお、例7及び例10は炭酸水素ナトリウム97.5質量%と膠質炭酸カルシウム2.5質量%の混合物である点で、上記特許文献1の表4の例5と配合が共通する。例9は炭酸水素ナトリウム97.7質量%と膠質炭酸カルシウム2質量%と疎水性ヒュームドシリカ0.3質量%の混合物である点で上記特許文献1の表4の例1と配合が共通する。
(Examples 1 to 11)
Examples 1 to 6 are examples, and Examples 7 to 11 are comparative examples.
Note that Examples 7 and 10 have the same formulation as Example 5 in Table 4 of
表2に示す配合で水溶性粉体と非水溶性粉体を混合した後、風力式分級機を備えた衝撃式粉砕機(ホソカワミクロン社製品名「ACMパルベライザACM-10A型」)を用い、平均粒径が9μmの粉体組成物を得た。
上記式(I)、(II)及び表1の測定値を用いて、粉体組成物のW90-W50及びW90を求めた。結果を表2に示す。
得られた粉体組成物について、上記の方法で耐湿性試験(60℃)及び流動性試験を行った。結果を表2に示す。
After mixing water-soluble powder and water-insoluble powder with the composition shown in Table 2, using an impact crusher equipped with a wind classifier (Hosokawa Micron's product name "ACM Pulverizer ACM-10A type"), the average A powder composition having a particle size of 9 μm was obtained.
Using the above formulas (I) and (II) and the measured values in Table 1, W 90 -W 50 and W 90 of the powder composition were determined. The results are shown in Table 2.
The obtained powder composition was subjected to a moisture resistance test (60° C.) and a fluidity test using the methods described above. The results are shown in Table 2.
上記耐湿性試験は、密閉空間に収容された状態で、温度低下による結露が生じやすい条件での過酷試験である。
表2の結果に示されるように、W90-W50が1.5cm3/g以上である例1~6は、耐湿性試験の評価値が3以上であり、固結防止性に優れる。
例1~6のなかでも、特に、炭酸カルシウムA又はBと、シリカAとを含む例1~4及び例6は、流動性も基準値(例7、9)と同程度に良好であった。
The above moisture resistance test is a severe test in which the product is housed in a closed space and condensation is likely to occur due to a drop in temperature.
As shown in the results in Table 2, Examples 1 to 6 in which W 90 -W 50 is 1.5 cm 3 /g or more have an evaluation value of 3 or more in the moisture resistance test and are excellent in anti-caking properties.
Among Examples 1 to 6, especially Examples 1 to 4 and Example 6 containing calcium carbonate A or B and silica A had good fluidity comparable to the standard value (Examples 7 and 9). .
1 ポリスチレン製容器(容器)
2 試料
3 蒸留水が入ったビーカー
4 蓋
1 Polystyrene container (container)
2
Claims (10)
温度30℃、相対湿度90%における、前記粉体組成物の1gあたりの、前記非水溶性粉体による水蒸気吸着量W90から、
温度30℃、相対湿度50%における、前記粉体組成物の1gあたりの、前記非水溶性粉体による水蒸気吸着量W50を差し引いた差を表すW90-W50が、1.5cm3/g以上である、粉体組成物。 A powder composition comprising a water-soluble powder that is a powder of a water-soluble compound and a water-insoluble powder that is a powder of a water-insoluble compound,
From the water vapor adsorption amount W 90 by the water-insoluble powder per 1 g of the powder composition at a temperature of 30 ° C. and a relative humidity of 90%,
At a temperature of 30° C. and a relative humidity of 50%, W 90 −W 50 , which represents the difference obtained by subtracting the water vapor adsorption amount W 50 by the water-insoluble powder per 1 g of the powder composition, is 1.5 cm 3 / A powder composition having a weight of at least 100 g.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022123212A JP2024020773A (en) | 2022-08-02 | 2022-08-02 | powder composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022123212A JP2024020773A (en) | 2022-08-02 | 2022-08-02 | powder composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024020773A true JP2024020773A (en) | 2024-02-15 |
Family
ID=89854120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022123212A Pending JP2024020773A (en) | 2022-08-02 | 2022-08-02 | powder composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2024020773A (en) |
-
2022
- 2022-08-02 JP JP2022123212A patent/JP2024020773A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6020757B1 (en) | Oxygen scavenger and method for producing the same | |
JP4821692B2 (en) | Method for producing oxygen scavenger composition | |
JP3948075B2 (en) | Acid component removal agent and acid component removal method | |
JP6759755B2 (en) | Oxygen scavenger and its manufacturing method | |
TW202208059A (en) | Oxygen absorber composition and method for producing same | |
JP5045102B2 (en) | Method for producing sodium hydrogencarbonate crystal particles having low caking properties | |
JP2024020773A (en) | powder composition | |
JP7020270B2 (en) | Oxygen scavenger and oxygen scavenger packaging, as well as food packaging | |
JP4840139B2 (en) | Sodium bicarbonate crystal particles having low caking properties and method for producing the same | |
JP2003144113A (en) | Free-oxygen absorber | |
JP4453797B2 (en) | Oxygen absorber composition | |
Purwanto et al. | SMOKE CLEARING METHOD USING ACTIVATED CARBON AND NATURAL ZEOLITE. | |
JP3204273B2 (en) | Oxygen absorber | |
TWI618576B (en) | Moisture adsorbent and manufacturing method thereof | |
JP6275197B2 (en) | Oxygen scavenger and method for producing the same | |
JP2018027063A (en) | Freshness preservative of vegetable and fruit | |
JP6834282B2 (en) | Oxygen scavenger, method of manufacturing oxygen scavenger, oxygen scavenger package and food package | |
JP7286946B2 (en) | Oxygen absorber manufacturing method, oxygen absorber, oxygen absorber package, and food package | |
JP6759754B2 (en) | Oxygen scavenger and its manufacturing method | |
JP6879445B2 (en) | Oxygen scavenger composition | |
JP7571393B2 (en) | Oxygen absorber, oxygen absorber package, and food package | |
JP7238913B2 (en) | Oxygen absorber, method for producing oxygen absorber, oxygen absorber package, and food package | |
JP7571392B2 (en) | Method for determining the oxygen absorption capacity of oxygen absorbers | |
JP7326840B2 (en) | oxygen scavenger | |
JP7263989B2 (en) | Oxygen absorber, oxygen absorber package and food package |