JP2024018783A - Metal mold for injection molding and resin molding method - Google Patents
Metal mold for injection molding and resin molding method Download PDFInfo
- Publication number
- JP2024018783A JP2024018783A JP2022122318A JP2022122318A JP2024018783A JP 2024018783 A JP2024018783 A JP 2024018783A JP 2022122318 A JP2022122318 A JP 2022122318A JP 2022122318 A JP2022122318 A JP 2022122318A JP 2024018783 A JP2024018783 A JP 2024018783A
- Authority
- JP
- Japan
- Prior art keywords
- space
- convex
- mold
- cavity
- molten resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011347 resin Substances 0.000 title claims abstract description 150
- 229920005989 resin Polymers 0.000 title claims abstract description 150
- 238000000465 moulding Methods 0.000 title claims abstract description 47
- 238000001746 injection moulding Methods 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims description 24
- 239000002184 metal Substances 0.000 title abstract description 5
- 238000002347 injection Methods 0.000 claims description 46
- 239000007924 injection Substances 0.000 claims description 46
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 230000015556 catabolic process Effects 0.000 abstract 1
- 238000006731 degradation reaction Methods 0.000 abstract 1
- 239000000243 solution Substances 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 description 17
- 230000006698 induction Effects 0.000 description 16
- 239000000463 material Substances 0.000 description 14
- 230000000694 effects Effects 0.000 description 11
- 238000005452 bending Methods 0.000 description 9
- 230000007547 defect Effects 0.000 description 8
- 230000002093 peripheral effect Effects 0.000 description 8
- 230000006866 deterioration Effects 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 238000007666 vacuum forming Methods 0.000 description 4
- 238000007599 discharging Methods 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000002845 discoloration Methods 0.000 description 2
- 230000003670 easy-to-clean Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 231100000517 death Toxicity 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Landscapes
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
Description
本発明は、射出成形用金型及び樹脂成形方法に関する。 The present invention relates to an injection mold and a resin molding method.
従来、例えば卵パック等、比較的肉厚の薄い各種の樹脂成形品(以下、単に「成形品」とも称する。)を成形する技術として、真空成形技術が知られている。真空成形技術は、予め樹脂素材を所定の肉厚を有するシート状に加工した樹脂材料を用いるため、肉厚の薄い成形品を成形することが比較的容易である。 Conventionally, vacuum forming technology has been known as a technology for molding various relatively thin resin molded products (hereinafter also simply referred to as "molded products"), such as egg cartons. Since vacuum forming technology uses a resin material that has been processed in advance into a sheet shape having a predetermined wall thickness, it is relatively easy to mold a thin molded product.
しかし、真空成形技術では、樹脂素材を予めシート状に加工する必要があり、従って、シート状に加工された状態で入手可能な樹脂素材に限定される問題がある。また、シート状樹脂材料を枠に張り渡して加熱し、真空吸着により型に張り付けて成形するため、成形品の屈曲部などが引き伸ばされて薄くなり脆弱化し易く、肉厚の寸法精度も維持が困難で、凹凸の多い複雑な形状の成形品では肉厚をあまり薄くできない等の問題がある。 However, in the vacuum forming technique, it is necessary to process the resin material into a sheet shape in advance, and therefore, there is a problem that the resin material is limited to resin materials that can be obtained in a sheet-like state. In addition, since the sheet-shaped resin material is stretched over a frame, heated, and attached to a mold using vacuum suction to form the product, the bent parts of the molded product are stretched and become thinner and brittle, making it difficult to maintain the dimensional accuracy of the wall thickness. This is difficult, and there are problems such as the difficulty of making the wall thickness very thin for molded products with complex shapes that have many irregularities.
また、樹脂成形品を成形する技術として、射出成形技術もよく知られている。射出成形技術は、樹脂素材を溶融し、金属ブロックに溶融樹脂流路等を設ける加工を施した射出成形用金型(以下、単に「金型」とも称する。)の内部に形成されている成形空間(以下、「キャビティ」とも称する。)に溶融樹脂を射出して充填し、冷却・固化した後、金型を構成している分離可能な金型部材を分離して成形空間を開き(以下、「型開き」とも称する。)、成形品を取り出すことによって成形品を成形する技術である。例えば、特許文献1には、金型として、ランナーから成形空間への入口であるゲート(ピンポイントゲート)が形成された金型が開示されている。 Injection molding technology is also well known as a technology for molding resin molded products. Injection molding technology is a mold formed inside an injection mold (hereinafter also simply referred to as a "mold"), which is made by melting a resin material and processing a metal block to provide a flow path for the molten resin. The space (hereinafter also referred to as "cavity") is injected and filled with molten resin, cooled and solidified, and then the separable mold members that make up the mold are separated to open the molding space (hereinafter referred to as "cavity"). , also referred to as "mold opening"), is a technique for molding a molded product by removing the molded product. For example, Patent Document 1 discloses a mold in which a gate (pinpoint gate) that is an entrance from a runner to a molding space is formed.
射出成形技術は、真空成形技術と比べ、屈曲部で引き伸ばされるようなことはなく、金型のキャビティ形状通りに成形され、寸法精度が高く、屈曲部において成形品の強度を損なうようなこともないという利点を有する。また、射出成形技術は、真空成形技術と異なり、使用できる樹脂素材の種類も多く、また、ポリプロピレン(PP)等の使用済樹脂材料でも回収して再溶融し、再利用できるので、環境への負荷を抑制できるという利点も有する。 Compared to vacuum forming technology, injection molding technology does not cause stretching at bent parts, it is molded according to the shape of the mold cavity, has high dimensional accuracy, and does not cause the strength of the molded product to be compromised at bent parts. It has the advantage of not being In addition, injection molding technology, unlike vacuum molding technology, can be used with many types of resin materials, and even used resin materials such as polypropylene (PP) can be collected, remelted, and reused, making it more environmentally friendly. It also has the advantage of being able to suppress the load.
ただ、射出成形技術は、溶融樹脂をキャビティの隅々まで流し込んで充填する必要があるため、成形の難易度が成形品の形状・寸法に依存する要素が多く、特に比較的肉厚が薄く寸法が大きい成形品や平面部と凹凸部が複雑に混在する複雑形状の成形品においては、溶融樹脂のスムーズな流動を妨げる要素が多く、成形品に欠陥や内部歪みなどを生じさせない状態で、溶融樹脂をキャビティの末端まで隙間無く充填することが比較的困難であるという問題がある。 However, with injection molding technology, it is necessary to pour molten resin into every corner of the cavity to fill it, so the difficulty of molding often depends on the shape and dimensions of the molded product, especially those with relatively thin walls and dimensions. For molded products with a large surface area or complex shapes with a complex mixture of flat parts and uneven parts, there are many factors that prevent the smooth flow of molten resin. There is a problem in that it is relatively difficult to fill the resin to the end of the cavity without any gaps.
また、特許文献2にも、射出成形技術における上記問題点の解決に繋がる提案が本発明者によってなされている。特許文献2には、金型を用いて成形される、平面部と凸部が混在する複雑形状の緩衝体が開示されている。 Further, in Patent Document 2, the present inventor has made a proposal that leads to solving the above-mentioned problems in injection molding technology. Patent Document 2 discloses a complex-shaped shock absorber that is molded using a mold and has a mixture of flat parts and convex parts.
特許文献2の緩衝体技術によれば、0.4mm程度の厚みを有する比較的肉厚の薄い成形品として成形可能であることが示されている。特許文献2の緩衝体に用いられる金型においては、ゲートから延びる誘導帯(成形品においてはリブ状となる部分)が緩衝体の凸部に相当するキャビティ部分を囲繞し、その誘導帯が更に分岐して凸部相当部分を這い上がるように形成されている。特許文献2の提案によれば、このような誘導帯がない場合に比べ、緩衝体凸部に相当する部分の溶融樹脂の流れが円滑になり、それに伴ってゲート数が節減でき、凸部に生じる成形不良を抑制する効果があるとされている。 According to the buffer technology disclosed in Patent Document 2, it has been shown that it is possible to form a relatively thin molded product having a thickness of about 0.4 mm. In the mold used for the buffer body of Patent Document 2, an induction band (a rib-shaped portion in the molded product) extending from the gate surrounds a cavity portion corresponding to the convex portion of the buffer body, and the induction band further extends from the gate. It is formed so as to branch out and climb up the portion corresponding to the convex portion. According to the proposal in Patent Document 2, compared to the case without such an induction band, the flow of molten resin in the portion corresponding to the convex part of the buffer body becomes smoother, the number of gates can be reduced accordingly, and the number of gates in the convex part can be reduced. It is said to have the effect of suppressing molding defects that occur.
しかし、本発明者によるその後の試作実験や研究を通じて、上記したような凸部に生じる成形不良を抑制する効果は、特許文献2の緩衝体構造のような特定の形状に対して得られることは確かめられたものの、更に肉厚が薄く、複雑な凸部を有する一般的な成形品形状に対しては、キャビティ内の凸部相当部分と誘導帯の最適な位置関係を定めることは容易ではないことが明らかになった。 However, through subsequent prototyping experiments and research by the present inventor, it has been found that the effect of suppressing molding defects occurring in convex portions as described above can be obtained for specific shapes such as the shock absorber structure of Patent Document 2. Although this has been confirmed, it is not easy to determine the optimal positional relationship between the part corresponding to the convex part in the cavity and the guide band for general molded product shapes with thin walls and complex convex parts. It became clear.
特許文献2においては、凸部を有する成形品の平面部と凸部の境界部分におけるキャビティ屈曲部の流路抵抗を低減する方法については何ら開示がなく、このため、特許文献2の提案する技術を用いても、誘導帯の配置も含めた適切な金型形状を確定するためには、試行錯誤を重ねることが求められ、コストが掛かるという問題が依然として残されている。 Patent Document 2 does not disclose any method for reducing the flow path resistance of the cavity bending portion at the boundary between the flat part of a molded product having a convex portion and the convex portion, and therefore, the technique proposed in Patent Document 2 Even if the method is used, there still remains the problem that repeated trial and error is required to determine the appropriate mold shape including the arrangement of the guide band, resulting in high costs.
本発明は上記した問題に着目して為されたものであって、比較的肉厚が薄く寸法が大きい成形品や平面部と凹凸部が複雑に混在する複雑形状の成形品であっても、ゲートの個数や配置を簡略化し、金型の作製コストを抑制し、かつ、成形品の品質低下も抑制できる金型及びそのような金型を用いて成形した成形品を提供することを目的とする。 The present invention has been made by focusing on the above-mentioned problem, and even if the molded product is relatively thin and large in size, or the molded product has a complex shape with a complex mixture of flat parts and uneven parts, The purpose of the present invention is to provide a mold that can simplify the number and arrangement of gates, suppress mold manufacturing costs, and suppress deterioration in the quality of molded products, as well as molded products molded using such molds. do.
本発明の態様1に係る射出成形用金型は、コア型とキャビティ型とを有し、前記コア型と前記キャビティ型とを重ね合わせ、前記コア型と前記キャビティ型との間に形成されるキャビティに溶融樹脂を注入することによって凸部と平面部とを有する樹脂成形品を成形する射出成形用金型であって、前記キャビティは、前記凸部を成形する凸部空間部と、前記凸部の周辺に前記平面部を成形する平面空間部と、前記凸部空間部及び前記平面空間部のうち少なくとも一方に形成され、前記凸部空間部及び前記平面空間部より肉厚が厚い誘導帯空間部とを備え、前記誘導帯空間部は、前記凸部空間部と前記平面空間部との境界部に接して前記境界部を巡る凸部周回誘導帯空間部を備え、前記キャビティ型は、溶融樹脂を注入するゲートを前記誘導帯空間部に備える。 The injection mold according to aspect 1 of the present invention has a core mold and a cavity mold, and the core mold and the cavity mold are overlapped, and the injection mold is formed between the core mold and the cavity mold. An injection mold for molding a resin molded product having a convex part and a flat part by injecting molten resin into a cavity, the cavity having a convex space part in which the convex part is molded, and a convex part space part in which the convex part is molded; a planar space forming the planar part around the part; and an induction band formed in at least one of the protrusion space and the planar space and having a wall thickness greater than that of the protrusion space and the planar space. a space, the guide band space includes a guide band space that goes around the convex part in contact with a boundary between the convex space and the planar space, and the cavity type includes: A gate for injecting molten resin is provided in the guide zone space.
上記構成によれば、ゲートからキャビティの誘導帯空間部に注入された溶融樹脂は、凸部空間部や平面空間部より流路の肉厚が厚く、従って凸部空間部や平面空間部より流路抵抗が低い空間部を有する誘導帯空間部を介して、ゲートから離れた地点の平面空間部及び凸部空間部を周回する誘導帯空間部の末端まで素早く到達する。また、誘導帯空間部に沿った流路抵抗の低い流路の末端は流路抵抗の高い部分に接続されているため、溶融樹脂が誘導帯空間部の末端まで満たされた後、継続して加えられる注入圧力に応じて誘導帯空間内部の溶融樹脂に蓄圧が行われる。 According to the above configuration, the molten resin injected from the gate into the guide zone space of the cavity has a flow path thicker than the convex space or the plane space, and therefore flows more easily than the convex space or the plane space. Through the guide band space having a space with low road resistance, the end of the guide band space that goes around the plane space and the convex space at a point away from the gate is quickly reached. In addition, since the end of the flow path with low flow resistance along the guide zone space is connected to the high flow path resistance part, after the molten resin is filled up to the end of the guide zone space, the flow path continues. Pressure is accumulated in the molten resin inside the induction zone space in accordance with the applied injection pressure.
その結果、溶融樹脂は、比較的高い圧力の下で、誘導帯空間部に沿って横方向に隣接する平面空間部及び凸部空間部へ流入し、行き渡るので、誘導帯空間部がない金型と比較して、充填性がよく、その結果、ショート等の欠陥が生じ難く、品質の高い薄肉成形品を成形できる。 As a result, the molten resin flows under relatively high pressure into the horizontally adjacent planar space and convex space along the guide band space, and spreads around the mold without the guide band space. Compared to the above, the filling property is better, and as a result, defects such as short circuits are less likely to occur, and high-quality thin-walled molded products can be molded.
なお、上記構成において、誘導帯空間部は、流路抵抗の観点から、主として直線状の流路が比較的確保できる平面空間部に形成されるが、成形品の寸法形状に応じて、誘導帯空間部を凸部空間部に形成してもよく、又は、平面空間部及び凸部空間部の両方に形成してもよい。また、誘導帯空間部に溶融樹脂を注入するゲートも、ゲートを起点とした誘導帯網を効率よく配置する観点から、平面空間部に形成された誘導帯空間部の位置に設けることが望ましいが、成形品の寸法形状に応じて、誘導帯空間部の任意の位置に任意の個数を設けることができる。 In the above configuration, from the viewpoint of flow path resistance, the guide band space is mainly formed in a planar space where a relatively straight flow path can be secured, but depending on the dimensions and shape of the molded product, the guide band space may The space portion may be formed in the convex space portion, or may be formed in both the planar space portion and the convex space portion. Furthermore, from the viewpoint of efficiently arranging the guide band network starting from the gate, it is desirable to provide the gate for injecting the molten resin into the guide band space at the position of the guide band space formed in the planar space. Depending on the size and shape of the molded product, any number of guide strips can be provided at any position in the guide band space.
また、上記構成によれば、誘導帯空間部は、凸部麓部に接して凸部麓部を巡る凸部周回誘導帯空間部を備えることにより、この凸部周回誘導帯空間部が溶融樹脂溜まりとして働き、凸部周回誘導帯空間部の全長が凸部空間部へのフィルムゲートの役割を果たし、その結果、平面空間部から凸部空間部への溶融樹脂の流れを阻害して流路抵抗を増大させる要因である凸部麓部における流路屈曲部の流動阻害効果を減殺する。このため、このような凸部周回誘導帯空間部がない金型と比較して、凸部におけるショート等の欠陥が生じ難く、品質の高い薄肉成形品を成形できる。なお、前記流路屈曲部の角部は、内周壁面及び外周壁面共にR形状(丸み)を有していることが望ましい。 Further, according to the above configuration, the guide band space includes the convex part circumference guide band space part that is in contact with the convex part foot part and goes around the convex part foot part, so that the convex part circumference guide band space part is made of molten resin. The entire length of the guiding band space around the convex part plays the role of a film gate to the convex part space, and as a result, the flow of the molten resin from the plane space part to the convex part space is blocked and the flow path is blocked. This reduces the flow-inhibiting effect of the bending portion of the flow path at the base of the convex portion, which is a factor that increases resistance. Therefore, compared to a mold that does not have such a guide band space around the convex portion, defects such as short circuits in the convex portion are less likely to occur, and a thin-walled molded product of high quality can be molded. Note that it is desirable that the corners of the flow path bending portion have an R shape (roundness) on both the inner peripheral wall surface and the outer peripheral wall surface.
本発明の態様2に係る射出成形用金型は、前記態様1において、前記コア型及び前記キャビティ型のうち少なくとも一方には、前記凸部空間部の頂部から前記頂部に残留する残留ガスを排出する残留ガス排出部を備える。 In the injection molding mold according to Aspect 2 of the present invention, in Aspect 1, residual gas remaining in at least one of the core mold and the cavity mold is discharged from the top of the convex space. Equipped with a residual gas exhaust section.
上記構成によれば、誘導帯空間部が凸部麓部に接して巡る凸部周回誘導帯空間部を備えることにより、前記凸部空間部への溶融樹脂の充填性が向上することに加え、コア型及びキャビティ型のうち少なくとも一方は、凸部空間部の頂部から残留ガスを排出する残留ガス排出部を備えており、これにより、凸部空間部の頂部付近に滞留する残留ガスが残留ガス排出部により金型外部に適宜放出されるため、凸部空間部の頂部付近に集中した残留ガスが過度に圧縮され、高圧になって溶融樹脂の流動を阻害することが抑制され、凸部空間部への溶融樹脂の充填性が更に向上する。 According to the above configuration, by including the convex part circumference guide band space part in which the guide band space part goes around in contact with the base part of the convex part, in addition to improving the filling property of the molten resin into the convex part space part, At least one of the core type and the cavity type is equipped with a residual gas discharge part that discharges residual gas from the top of the convex space, and thereby the residual gas staying near the top of the convex space is removed. Since the discharge part discharges the residual gas to the outside of the mold as appropriate, the residual gas concentrated near the top of the convex space is suppressed from being excessively compressed and becomes high pressure, which obstructs the flow of the molten resin. The filling properties of the molten resin into the parts are further improved.
なお、本発明では、残留ガス排出部は、溶融樹脂が通過できず且つ残留ガスが通過できるキャビティから金型外部まで貫通するガス流路が形成されておればどのような構造、形状であってもよいが、例えば、コア型及びキャビティ型のうち少なくとも一方に設けられ金型外面から凸部空間部の頂部に達するガス抜き孔と、ガス抜き孔に着脱自在に差し込まれた栓部材とを有し、栓部材は、少なくとも凸部空間部の頂部に接する部分の外周面全体がガス抜き孔の内周面全体に密着する棒状部材であり、棒状部材の密着部分における外周面とガス抜き孔の内周面との間には、溶融樹脂が通過できず且つ残留ガスが通過できるガス流路が形成されているものであってもよい。 In the present invention, the residual gas discharge part may have any structure or shape as long as it has a gas flow path that penetrates from the cavity to the outside of the mold through which the molten resin cannot pass and through which the residual gas can pass. However, for example, it may include a gas vent hole provided in at least one of the core mold and the cavity mold and reaching the top of the convex space from the outer surface of the mold, and a plug member detachably inserted into the gas vent hole. The plug member is a rod-shaped member in which the entire outer peripheral surface of at least the portion that contacts the top of the convex space is in close contact with the entire inner peripheral surface of the gas vent hole, and the outer peripheral surface of the closely-contacted portion of the rod-shaped member and the gas vent hole are in contact with each other. A gas flow path may be formed between the inner circumferential surface through which the molten resin cannot pass, but through which residual gas can pass.
また、本発明では、残留ガス排出部としてガス抜き孔を用いた場合、ガス抜き孔の出口に真空装置を接続し、真空装置によって、ガス抜き孔から排出される残留ガスを吸引し、凸部空間部の頂部からの残留ガス排出を促進してもよい。 In addition, in the present invention, when a gas vent hole is used as the residual gas exhaust section, a vacuum device is connected to the outlet of the gas vent hole, and the residual gas discharged from the gas vent hole is sucked by the vacuum device. Evacuation of residual gas from the top of the space may be facilitated.
本発明の態様3として、前記態様1に記載の射出成形用金型を用いて樹脂成形品の成形を行う樹脂成形方法が構成されてもよい。前記構成における樹脂成形方法は、前記態様1に述べたように、成形品における歪み、充填不足、変色などによる品質低下が抑制された、高品質の樹脂成形品を提供できる。 As aspect 3 of the present invention, a resin molding method may be configured in which a resin molded article is molded using the injection mold described in aspect 1 above. As described in Aspect 1, the resin molding method having the above configuration can provide a high-quality resin molded product in which deterioration in quality due to distortion, insufficient filling, discoloration, etc. in the molded product is suppressed.
本発明によれば、凸部を有する薄肉成形品であっても、キャビティ内における溶融樹脂の流れが凸部に起因して阻害される程度が緩和され、これによって、溶融樹脂の注入圧力を低減しても良好なキャビティ充填性を得ることが可能となり、更には、この低圧成形によって、成形品内部に残留する圧力歪み又はバリの発生等も低減することが可能となる。 According to the present invention, even in a thin-walled molded product having a convex portion, the degree to which the flow of molten resin in the cavity is inhibited due to the convex portion is alleviated, thereby reducing the injection pressure of the molten resin. It becomes possible to obtain good cavity filling properties even when the molded product is molded, and furthermore, by this low-pressure molding, it becomes possible to reduce pressure distortion or burrs remaining inside the molded product.
また、このように成形条件に余裕が得られることにより、十分な充填性を確保するための金型試作回数も節減でき、金型の作製コストを抑制し、かつ、薄肉成形品であっても品質低下を抑制して成形することが可能な金型及び成形品を提供できる。 In addition, by providing leeway in the molding conditions in this way, it is possible to reduce the number of mold prototypes required to ensure sufficient filling properties, suppress mold manufacturing costs, and even with thin-walled molded products. It is possible to provide a mold and a molded product that can be molded while suppressing quality deterioration.
以下に本発明の実施形態を説明する。以下の図面の記載において、同一の部分及び類似の部分には、同一の符号又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各装置や各部材の厚みの比率等は現実のものとは異なる。よって、具体的な厚みや寸法は以下の説明を参酌して判定すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。 Embodiments of the present invention will be described below. In the description of the drawings below, the same or similar parts are denoted by the same or similar symbols. However, the drawings are schematic, and the relationship between the thickness and planar dimensions, the ratio of the thickness of each device and each member, etc. differ from the reality. Therefore, the specific thickness and dimensions should be determined with reference to the following explanation. Furthermore, the drawings include portions that differ in dimensional relationships and ratios.
<薄肉成形技術>
本実施形態に係る射出成形用金型の構成について説明する前に、まず、薄肉成形技術について説明する。
<Thin-wall molding technology>
Before explaining the configuration of the injection mold according to this embodiment, first, the thin-wall molding technique will be explained.
なお、以下における本発明の説明において、「キャビティ型」とは、金型内部の成形空間であるキャビティに溶融樹脂を充填し、冷却、固化した後に成形品をキャビティから取り出せせるように、金型が主として二つの部品に分割されているが、この金型部品の内、射出成形機の溶融樹脂注入ノズルに接続され、キャビティ内への溶融樹脂の吐出口であるゲートが設けられている方の金型部品を意味する。 In the following description of the present invention, the term "cavity mold" refers to a mold in which the molding space inside the mold is filled with molten resin, and the molded product can be removed from the cavity after it has cooled and solidified. is mainly divided into two parts. Of these mold parts, the one that is connected to the molten resin injection nozzle of the injection molding machine and has a gate that is the outlet for discharging the molten resin into the cavity. Means mold parts.
また、「コア型」とは、前記二つに分割された金型部品の内、「キャビティ型」に対置される方の金型部品を意味する。 Furthermore, the term "core mold" refers to the mold part that is opposed to the "cavity mold" among the two divided mold parts.
また、「流路抵抗」とは、キャビティ内に注入される溶融樹脂の流体としての粘度等の物性的要因及びキャビティ内における溶融樹脂の流れに沿った距離、肉厚、屈曲、広狭変化等の形状的要因によって生じる溶融樹脂の流れを阻害する作用力を意味する。 In addition, "flow path resistance" refers to physical factors such as the viscosity of the molten resin injected into the cavity as a fluid, and physical factors such as the distance, wall thickness, bending, width change, etc. along the flow of the molten resin in the cavity. It refers to the acting force that obstructs the flow of molten resin due to shape factors.
また、「肉厚」とは、キャビティ又は成形品において、溶融樹脂の流路方向に垂直な断面の最短軸の寸法を意味する。また「薄肉」とは、キャビティ内における溶融樹脂の流れに沿った「流路抵抗」が大きいために、溶融樹脂が冷えて流動性を失うまでにキャビティ末端まで到達してキャビティ全体を充填することが比較的困難なキャビティ又は成形品における肉厚を意味し、特定の厚さ以下の肉厚であることを意味しない。 Moreover, "thickness" means the dimension of the shortest axis of a cross section perpendicular to the flow path direction of the molten resin in a cavity or a molded product. Also, "thin wall" means that because the "flow path resistance" along the flow of molten resin inside the cavity is large, the molten resin reaches the end of the cavity and fills the entire cavity before it cools and loses fluidity. This refers to the wall thickness in a cavity or molded product that is relatively difficult to use, and does not mean that the wall thickness is below a certain thickness.
また、「薄肉成形品」とは、肉厚が「薄肉」である成形品を意味する。また、「薄肉成形技術」とは、溶融樹脂の充填が比較的困難な「薄肉成形品」を安定して成形するために特に工夫を加えた樹脂成形技術を意味する。 Furthermore, the term "thin-walled molded product" means a molded product with a "thin" wall thickness. Furthermore, "thin-wall molding technology" refers to resin molding technology that has been specially devised to stably mold "thin-wall molded products" that are relatively difficult to fill with molten resin.
また、「誘導帯」とは、キャビティ内に注入された溶融樹脂が特定の方向に特に流路抵抗が低くなるようキャビティ内に設けられた帯状の流路であって、この流路部分のキャビティ厚がその周辺部のキャビティ厚に比べて厚くなっており、かつ、この流路部分の末端はキャビティ厚がこの流路部分より薄くなっている部分に接続して終わっているか又は金型壁面まで伸びて行き止まりになって終わっている流路を意味する(以下、この「誘導帯」の流路部分よりもキャビティ厚が薄くなっている部分を「薄肉部分」とも呼ぶ)。 In addition, the "induction zone" is a band-shaped flow path provided in the cavity so that the flow path resistance of the molten resin injected into the cavity is particularly low in a specific direction, and the cavity in this flow path portion The thickness is thicker than the cavity thickness at the surrounding area, and the end of this channel part is connected to a part where the cavity thickness is thinner than this channel part, or ends up to the mold wall surface. It means a channel that extends and ends at a dead end (hereinafter, the section where the cavity thickness is thinner than the channel section of this "guidance zone" is also referred to as the "thin wall section").
また、通常、ゲートは溶融樹脂を誘導帯流路に直接注入する位置に設けられ、誘導帯の流路は、このゲート位置を起点とし、流路に沿ってゲート位置から最も離れて薄肉部分に接続して終わっている位置を流路末端とする。従って、連続する誘導帯流路の中間にゲートが位置する場合には、そのゲート位置から両側に向けて2本の誘導帯流路が設けられていることになり、また、誘導帯流路は、途中で分岐することも、合流することも可能である。 In addition, the gate is usually provided at a position where the molten resin is directly injected into the induction zone flow path, and the induction zone flow path starts from this gate position and extends along the flow path to the thinner part farthest from the gate position. The position where the connection ends is the end of the flow path. Therefore, if a gate is located in the middle of continuous guide band channels, two guide band channels are provided from the gate position to both sides, and the guide band channels are , it is possible to branch or merge along the way.
また、「凸部」とは、成形品にあっては、成形品の主たる平面部に対して垂直方向に凹陷又は突出している部分を意味し、凹陷部又は突出部はその凹凸表面に沿った比較的薄い肉厚で形作られており、また、キャビティにあっては、キャビティ型とコア型の対応する凹凸部を重ねることで形成されるキャビティの凹凸形状のいずれかの部分を意味する。また、「凸部麓部」とは、成形品にあっては、凸部と平面部の境界部分を意味し、キャビティにあっては、凸部空間部と平面空間部の境界部分を意味する。また、「凸部周回誘導帯空間部」とは、凸部麓部に接して巡る誘導帯を形作っているキャビティ空間を意味する。 Furthermore, in the case of a molded product, the term "convex part" means a part that is concave or protrusive in a direction perpendicular to the main plane part of the molded product, and a concave part or a protruding part is a part that is concave or protrusive along the concavo-convex surface of the molded product. It is formed with a relatively thin wall thickness, and in the case of a cavity, it means any part of the uneven shape of the cavity formed by overlapping the corresponding uneven parts of the cavity mold and the core mold. In addition, "the base of a convex part" in the case of a molded product means the boundary part between the convex part and the flat part, and in the case of a cavity, it means the boundary part between the convex part space part and the flat part. . Furthermore, the term "protrusion-circling guide band space" means a cavity space that forms a guide band that is in contact with the base of the protrusion.
また、本発明において、「凸部」という言葉は、上述の定義で示されているように、成形品において規準となる平面部がある場合にあっては、その平面部に対して凹陷している部分及び突出している部分の総称として用いる。また、成形品を成形するためのキャビティにおいては、凹凸形状はキャビティ型とコア型の凹凸に応じて形成されるが、どちらを凹陷部とし、どちらを突出部とするかの定めはなく、従って、成形品の凹凸部と同様に、両者を区別せずに「凸部」を総称として用いる。 In addition, in the present invention, the term "convex part" means, as shown in the above definition, when a molded product has a flat part that serves as a reference, a concave part with respect to that flat part. Used as a general term for the part that is present and the part that protrudes. Furthermore, in a cavity for molding a molded product, the uneven shape is formed according to the unevenness of the cavity mold and the core mold, but there is no rule as to which is the recessed part and which is the protruding part. Similarly to the concave and convex portions of molded products, the term "convexities" is used generically without distinguishing between the two.
また、「残留ガス」とは、キャビティ内に溶融樹脂を充填する過程において、キャビティ内に存在するガスを意味し、最初からキャビティ内に存在する空気と溶融樹脂の注入が開始された段階で加わるランナーやスプルー内に存在していた空気及び樹脂の揮発成分などより成る。 In addition, "residual gas" refers to the gas that exists in the cavity during the process of filling the cavity with molten resin, and is added to the air that exists in the cavity from the beginning and when the injection of molten resin starts. It consists of the air and volatile components of resin that were present in the runner and sprue.
また、「ショート」とは、溶融樹脂をキャビティに注入して充填する際、溶融樹脂がキャビティ末端に届く前に冷えて凝固してしまう、又は、「残留ガス」の排出が遅れ、残留ガスの部分に溶融樹脂が充填されないまま凝固してしまう等の原因で、成形品の一部に充填不足が生じる現象を意味する。 In addition, "short" means that when molten resin is injected into a cavity to fill it, the molten resin cools and solidifies before it reaches the end of the cavity, or the discharge of "residual gas" is delayed and the residual gas This refers to a phenomenon in which a part of a molded product is insufficiently filled due to reasons such as solidification before the molten resin is filled into the part.
一般に、成形品の射出成形においては、キャビティ内には、残留ガスが存在し、ゲートから注入された溶融樹脂がキャビティ内を充填していくに伴い、残留ガスがゲートから遠ざかる方向に追いやられて圧縮され、その残留ガス圧が溶融樹脂の流れを押し止めるように働き、充填速度を低下させる一因となっている。 Generally, during injection molding of molded products, residual gas exists in the cavity, and as the molten resin injected from the gate fills the cavity, the residual gas is driven away from the gate. The residual gas pressure acts to stop the flow of the molten resin, which is one reason for reducing the filling speed.
一方、注入された溶融樹脂は、キャビティ内で低温の金型壁面に触れた部分から冷却され、遂には全く流動性を失って固化し、それ以上充填が進行しなくなる性質がある。このため、射出成形においては、キャビティに注入された溶融樹脂が固化するまでの時間と溶融樹脂が残留ガスを全て排出してキャビティを完全に充填する時間(以下、「キャビティ充填時間」とも呼ぶ。)の競争になり、後者の時間の方が長くなると充填不足の欠陥の一つであるショートが生じることになる。 On the other hand, the injected molten resin is cooled from the part that touches the low-temperature mold wall inside the cavity, and eventually loses its fluidity and solidifies, so that filling no longer progresses. For this reason, in injection molding, the time required for the molten resin injected into the cavity to solidify and the time required for the molten resin to exhaust all residual gas and completely fill the cavity (hereinafter also referred to as "cavity filling time"). ), and if the latter time is longer, a short circuit, which is one of the defects caused by insufficient filling, will occur.
キャビティ充填時間は、キャビティ内における溶融樹脂流路の始端となるゲートにおける注入圧力と流下する溶融樹脂先端が接する残留ガスの圧力の差(以下、この圧力差を「流動圧」とも称する。)が小さいほど長くなる。 The cavity filling time is determined by the difference between the injection pressure at the gate that is the starting end of the molten resin flow path in the cavity and the pressure of the residual gas in contact with the tip of the flowing molten resin (hereinafter, this pressure difference is also referred to as "flowing pressure"). The smaller the length, the longer it will be.
上述したような射出成形の一般的性質に加え、薄肉成形品の成形においては、肉厚の厚い製品に比べ、流路における単位幅当たりの断面積が狭く、残留ガスが高圧になり易く、また、流路抵抗が高くなることが、キャビティ充填時間を長くする要因の一つとなっている。 In addition to the general properties of injection molding as described above, when molding thin-walled products, the cross-sectional area per unit width of the flow path is narrower than that of thick-walled products, and the residual gas tends to be under high pressure. , the increase in flow path resistance is one of the factors that increases the cavity filling time.
従って、残留ガスの排出速度が遅いと、溶融樹脂の注入によって残留ガスが圧縮され高圧となり、流動圧が低くなり、充填の阻害要因となると共に、残留ガスの断熱圧縮により温度上昇し、溶融樹脂の発火点を超えて樹脂を焦がす恐れも生じる。このような流路抵抗と流動圧の振る舞いが相俟って、薄肉成形においては、肉厚の厚い成形品に比べ、キャビティ充填時間が長くなる傾向にある。このことが、薄肉成形の困難性を高くしている大きな原因となっている。 Therefore, if the discharge speed of the residual gas is slow, the residual gas will be compressed by the injection of the molten resin and become high pressure, which will lower the flow pressure and become a factor that inhibits filling.At the same time, the temperature will rise due to the adiabatic compression of the residual gas, and the molten resin will be There is also a risk of burning the resin by exceeding its ignition point. Due to the combination of flow path resistance and flow pressure behavior, the cavity filling time tends to be longer in thin-walled molded products than in thick-walled molded products. This is a major reason why thin-wall molding is difficult.
上述したように、薄肉成形においては、流路抵抗が高く、残留ガスが高圧になることは避けられないが、現在まで薄肉成形技術の開発が重ねられ、射出成形によって成形可能な薄肉成形品の範囲が、少しずつ広げられてきている。 As mentioned above, in thin-wall molding, it is unavoidable that the flow path resistance is high and the residual gas becomes high pressure. The scope is gradually being expanded.
そのような技術開発の一つとして誘導帯技術の開発がなされている。 As one such technological development, induction band technology has been developed.
誘導帯を用いて溶融樹脂をキャビティ内に充填する場合には、誘導帯を用いずに、流路抵抗の高い薄肉部分にゲート部から順次充填していく場合に比べ、ゲートから離れた部分の薄肉部分にも比較的短い遅れで溶融樹脂を到達させて充填でき、薄肉成形品を成形することが容易になる。 When filling a cavity with molten resin using an induction band, compared to the case where the molten resin is filled sequentially from the gate part into thin-walled parts with high flow path resistance without using an induction band, it is easier to fill the parts away from the gate. The molten resin can reach and fill thin-walled parts with a relatively short delay, making it easy to mold thin-walled molded products.
<射出成形用金型の構成>
図1に示すように、本実施形態に係る射出成形用金型10は、コア型12とキャビティ型14とを有する射出成形用金型10である。コア型12とキャビティ型14とを重ね合わせ、コア型12とキャビティ型14との間に形成されるキャビティ13(成形空間部)に溶融樹脂を注入することによって凸部と平面部とを有する成形品が成形される。また、射出成形用金型10は、ゲート16と、残留ガス排出部18と、を有する。
<Configuration of injection mold>
As shown in FIG. 1, the injection molding die 10 according to this embodiment is an injection molding die 10 having a core mold 12 and a cavity mold 14. The core mold 12 and the cavity mold 14 are overlapped, and molten resin is injected into the cavity 13 (molding space) formed between the core mold 12 and the cavity mold 14, thereby forming a mold having a convex part and a flat part. The product is molded. The injection mold 10 also includes a gate 16 and a residual gas exhaust section 18 .
(キャビティ)
本実施形態に係るキャビティ13は、凸部空間部13Aと、平面空間部13Bと、誘導帯空間部13Cとを備える。本実施形態では、キャビティ13の厚さは、0.4mm程度であるが、本発明では、適宜変更できる。凸部空間部13Aは、成形品の凸部を成形する。平面空間部13Bは、樹脂成形品の凸部の周辺に平面部を成形する。誘導帯空間部13Cは、帯状であり、凸部空間部13A及び平面空間部13Bに形成され、凸部空間部13A及び平面空間部13Bより肉厚が厚い空間部を有する。なお、本発明では、誘導帯空間部は、凸部空間部及び平面空間部のいずれか一方に設けてよい。また、本実施形態において、誘導帯空間部13Cは、図1及び図2に示すように、凸部空間部13Aの裾部と頂上部との中間部まで形成されているが、本発明では、凸部空間部に誘導帯空間部を設ける場合、凸部の形状等に応じて、凸部空間部の裾部から頂上部までの任意の位置まで形成してよい。
(cavity)
The cavity 13 according to this embodiment includes a convex space 13A, a plane space 13B, and a guide band space 13C. In this embodiment, the thickness of the cavity 13 is about 0.4 mm, but it can be changed as appropriate in the present invention. The convex space portion 13A forms a convex portion of the molded product. The planar space portion 13B forms a planar portion around the convex portion of the resin molded product. The guide band space 13C has a band shape, is formed in the convex space 13A and the plane space 13B, and has a space that is thicker than the convex space 13A and the plane space 13B. In the present invention, the guide band space may be provided in either the convex space or the plane space. In addition, in this embodiment, the guide band space 13C is formed up to the middle part between the bottom and the top of the convex space 13A, as shown in FIGS. 1 and 2, but in the present invention, When the guide band space is provided in the convex space, it may be formed at any position from the bottom to the top of the convex space depending on the shape of the convex.
(凸部周回誘導帯空間部)
本実施形態に係る凸部周回誘導帯空間部13Xは、誘導帯空間部13Cから分岐し、凸部空間部13Aと平面空間部13Bの境界部分である凸部麓部に接して、凸部麓部を巡っている。凸部周回誘導帯空間部13Xは、それぞれの凸部空間部13Aの凸部麓部全周を巡るように配置されている。なお、本発明では、凸部周回誘導帯空間部は、肉厚や凸部高さなどを考慮して、適宜、凸部麓部の一部分だけを巡るようにしてもよく、また、凸部麓部を複数箇所に分けて巡るよう配置してもよい。
(Protrusion surrounding guidance zone space)
The protrusion-circulating guide band space 13X according to the present embodiment branches from the guide band space 13C, contacts the base of the protrusion that is the boundary between the protrusion space 13A and the planar space 13B, and is located at the base of the protrusion. Going around the department. The convex part circumference guide band space 13X is arranged so as to go around the entire circumference of the convex part foot of each convex part space part 13A. In addition, in the present invention, the convex part circumference guiding band space may be made to go around only a part of the base of the convex part, taking into consideration the wall thickness, the height of the convex part, etc. The section may be divided into multiple locations and arranged to go around.
図2に示すように、キャビティ型14のコア型に対向する表面は、凸部空間部13Aに対応する凸部空間対応部14A、平面空間部13Bに対応する平面空間対応部14B、誘導帯空間部13Cに対応する誘導帯空間対応部14C、及び、凸部周回誘導帯空間部13Xに対応する凸部周回誘導帯空間対応部14Xを有する。なお、図2中では凸部空間対応部14Aの個数が4つである場合が例示されているが、本発明では、凸部空間対応部の個数は1個以上、適宜変更できる。 As shown in FIG. 2, the surface of the cavity mold 14 facing the core mold includes a convex space corresponding portion 14A corresponding to the convex space portion 13A, a planar space corresponding portion 14B corresponding to the planar space portion 13B, and a guide band space. It has a guide band space corresponding part 14C corresponding to the part 13C, and a convex part circulating guide band space corresponding part 14X corresponding to the convex part circulating guide band space part 13X. Although FIG. 2 shows an example in which the number of convex space corresponding parts 14A is four, in the present invention, the number of convex space corresponding parts can be changed to one or more as appropriate.
また、本発明では、凸部周回誘導帯空間部を備えることにより、この凸部周回誘導帯空間部が溶融樹脂溜まりとして働き、凸部周回誘導帯空間部の全長が凸部空間部へのフィルムゲートの役割を果たし、その結果、平面空間部から凸部空間部への溶融樹脂の流れを阻害して流路抵抗を増大させる要因である凸部麓部における流路屈曲部の流動阻害効果を減殺する。また、凸部麓部の屈曲及び凸部周回誘導帯空間部が凸部麓部に接することによってキャビティに生じる角部は、角部の流動阻害要因を減殺する上で、アール加工を施してあることが望ましい。 Further, in the present invention, by providing the convex part surrounding guide band space, this convex part surrounding guide band space functions as a molten resin pool, and the entire length of the convex part surrounding guide band space part is the film to the convex part space. The flow inhibiting effect of the curved part of the flow path at the base of the convex part, which plays the role of a gate and, as a result, obstructs the flow of molten resin from the planar space to the convex part, increasing the flow resistance. Reduce the number of deaths. In addition, the corners formed in the cavity due to the bending of the base of the convex part and the contact of the convex circumferential guide band space with the base of the convex part are rounded to reduce the flow-disturbing factors at the corners. This is desirable.
(ゲート)
本実施形態では、ゲート16は、誘導帯空間部13Cに溶融樹脂を注入する。ゲート16の形式は、ピンゲートである。なお、本発明では、トンネルゲート等、他の種類のゲートが採用されてもよい。
(Gate)
In this embodiment, the gate 16 injects molten resin into the guide zone space 13C. The type of gate 16 is a pin gate. Note that in the present invention, other types of gates such as tunnel gates may be employed.
(残留ガス排出部)
本実施形態では、残留ガス排出部18は、ガス抜き孔18Aと栓部材18Bである。なお、本発明では、残留ガス排出部は、これに限定されない。例えば、残留ガス排出部としてパーティング面が使用されてもよい。具体的には、成形品の形状によるが、パーティングラインが凸部の頂点を通るように金型を設計し、パーティング面を残留ガスの排出口として使うことができる。
(Residual gas discharge part)
In this embodiment, the residual gas discharge section 18 is a gas vent hole 18A and a plug member 18B. In addition, in this invention, a residual gas discharge part is not limited to this. For example, the parting surface may be used as a residual gas outlet. Specifically, depending on the shape of the molded product, the mold can be designed so that the parting line passes through the apex of the convex portion, and the parting surface can be used as an outlet for residual gas.
また、本実施形態では、残留ガス排出部18は、キャビティ型14とコア型12との両方に形成される。なお、本発明では、残留ガス排出部18は、コア型12のみに形成されてもよいし、キャビティ型14のみに形成されてもよい。また、本発明では、残留ガス排出部は必須ではない。 Further, in this embodiment, the residual gas discharge portion 18 is formed in both the cavity mold 14 and the core mold 12. In the present invention, the residual gas discharge part 18 may be formed only in the core mold 12 or only in the cavity mold 14. Further, in the present invention, the residual gas discharge section is not essential.
(ガス抜き孔)
本実施形態に係るガス抜き孔18Aは、金型外部から凸部空間部13Aの頂部まで貫通する孔で、その一端が凸部空間部13Aの頂部に開口する。
(Gas vent hole)
The gas vent hole 18A according to this embodiment is a hole that penetrates from the outside of the mold to the top of the convex space 13A, and one end thereof opens at the top of the convex space 13A.
ただし、本発明では、ガス抜き孔の開口位置を、凸部空間部の頂部とゲートとの間の任意の位置に配置することを妨げない。本実施形態に係るガス抜き孔18Aは、凸部空間部13Aの頂部から残留ガスを排出する。 However, in the present invention, the opening position of the gas vent hole may be arranged at any position between the top of the convex space and the gate. The gas vent hole 18A according to this embodiment discharges residual gas from the top of the convex space 13A.
本実施形態では、成形品に対向するガス抜き孔18Aの開口部の形状は、2.0mm程度の径を有する円形状である。なお、本発明では、開口部の寸法、形状を適宜変更できる。ガス抜き孔の形状は、例えば、多角形状、楕円形状等、任意の幾何学形状に設定できる In this embodiment, the opening of the gas vent hole 18A facing the molded product has a circular shape with a diameter of about 2.0 mm. Note that in the present invention, the dimensions and shape of the opening can be changed as appropriate. The shape of the gas vent hole can be set to any geometric shape, such as a polygon or an ellipse.
(栓部材)
本実施形態に係る栓部材18Bは、ガス抜き孔18Aに着脱自在に差し込まれた状態で設けられる。栓部材18Bは、ガス抜き孔18Aの内周に密着する円柱材である。栓部材18Bは、軸部と、軸部より拡径された頭部(鍔部)と、を有する。頭部は、図示を省略するが、金型に対してネジ等により脱着自在に固定出来るようになっている。栓部材18Bの円柱材の軸部の外径は、ガス抜き孔18Aの内径に略等しい。なお、本発明では、栓部材の形状は、円柱状に限定されず、ガス抜き孔の形状に応じて、角柱状等、他の形状であってもよい。
(Plug member)
The plug member 18B according to this embodiment is provided in a state in which it is detachably inserted into the gas vent hole 18A. The plug member 18B is a cylindrical member that is in close contact with the inner periphery of the gas vent hole 18A. The plug member 18B has a shaft and a head (flange) whose diameter is larger than the shaft. Although not shown, the head can be detachably fixed to the mold using screws or the like. The outer diameter of the cylindrical shaft of the plug member 18B is approximately equal to the inner diameter of the gas vent hole 18A. In the present invention, the shape of the plug member is not limited to a cylindrical shape, but may be other shapes such as a prismatic shape depending on the shape of the gas vent hole.
本実施形態に係る栓部材18Bは、ガス抜き孔18Aから取り外すことが可能なため、非成形時に、栓部材18B及びガス抜き孔18Aを掃除し易い。 Since the plug member 18B according to this embodiment can be removed from the gas vent hole 18A, it is easy to clean the plug member 18B and the gas vent hole 18A when not molded.
本実施形態に係る栓部材18Bの円柱材の外周面には、溶融樹脂が通過できず且つ残留ガスが通過できる開口径を有するガス流路20が形成される。本実施形態に係る開口径は、100分の2mm程度である。なお、本発明では、開口径はそれに限らず、成形に用いられる樹脂材料の種類、溶融樹脂の温度、注入圧力等の成形条件、ガス流路の長さ・屈曲性等によって適正な開口径が異なり、金型設計時に、これらの要素を考慮して適切な開口径を任意に定めることができる。 A gas flow path 20 having an opening diameter through which the molten resin cannot pass and which allows the residual gas to pass is formed on the outer circumferential surface of the cylindrical material of the plug member 18B according to this embodiment. The opening diameter according to this embodiment is approximately 2/100 mm. In addition, in the present invention, the opening diameter is not limited to this, and an appropriate opening diameter may be determined depending on the type of resin material used for molding, the temperature of the molten resin, molding conditions such as injection pressure, the length and flexibility of the gas flow path, etc. In contrast, when designing a mold, an appropriate opening diameter can be arbitrarily determined by taking these factors into consideration.
(ガス流路)
図1中に例示されたガス流路20は、栓部材18Bの外面とガス抜き孔18Aの内面を密着させ、ガス抜き孔18Aの内面と、栓部材18Bの軸部の外面との間に形成されている。
(Gas flow path)
The gas flow path 20 illustrated in FIG. 1 is formed by bringing the outer surface of the plug member 18B into close contact with the inner surface of the gas vent hole 18A, and between the inner surface of the gas vent hole 18A and the outer surface of the shaft portion of the plug member 18B. has been done.
本実施形態において、ガス抜き孔18Aの内面に対向する栓部材18Bの軸部の外面に設けられたガス流路20は、図1に示すように、栓部材18Bの軸方向に平行な平面状の隙間とされている。栓部材18Bの軸部の外面に設けられたガス流路20が軸方向に平行な平面状の隙間である場合、素材としての円柱材を軸方向に平行な平面で所定の厚さ切削することによって、本実施形態に係る栓部材18Bを容易に作製できる。 In this embodiment, the gas flow path 20 provided on the outer surface of the shaft portion of the plug member 18B facing the inner surface of the gas vent hole 18A has a planar shape parallel to the axial direction of the plug member 18B, as shown in FIG. It is said that there is a gap between When the gas flow path 20 provided on the outer surface of the shaft portion of the plug member 18B is a planar gap parallel to the axial direction, the cylindrical material as the material is cut to a predetermined thickness on a plane parallel to the axial direction. Accordingly, the plug member 18B according to this embodiment can be easily manufactured.
なお、本発明では、図3に示すように、ガス流路20は、例えば、円柱材の軸方向に沿って延びる直線状の複数の縦溝18B1によって構成されてもよい。また、本発明では、ガス流路は、軸方向に沿った平面状若しくは円筒状の隙間又は直線状の縦溝に限定されず、例えば、円柱材の外周面にサンドブラストを施して、ランダムに曲折する複数の流路が組み合わされたガス流路が形成されてもよい。 In addition, in the present invention, as shown in FIG. 3, the gas flow path 20 may be configured by, for example, a plurality of linear vertical grooves 18B1 extending along the axial direction of the cylindrical material. In addition, in the present invention, the gas flow path is not limited to a planar or cylindrical gap along the axial direction or a linear vertical groove, but for example, the outer peripheral surface of a cylindrical material is sandblasted and randomly bent. A gas flow path may be formed by combining a plurality of flow paths.
なお、図3に示すように、栓部材の頭部は、本発明では、必須ではなく、軸部のみを有する栓部材であってもよい。 Note that, as shown in FIG. 3, the head of the plug member is not essential in the present invention, and the plug member may have only a shaft portion.
また、本発明では、図3中に例示されたガス流路20としての縦溝18B1の溝幅は、残留ガスの入口部分が溶融樹脂は通過できず且つ残留ガスは通過できるサイズとなっておればよく、それ以降のガス流路の形状寸法は任意で、例えば、残留ガスの出口である外部に向かって広がるようにそれぞれ拡径してもよく、或いは、外周に沿った溝によってそれぞれの縦溝が連通していてもよい。 Furthermore, in the present invention, the groove width of the vertical groove 18B1 as the gas flow path 20 illustrated in FIG. The shapes and dimensions of the subsequent gas flow paths may be arbitrary. For example, the diameters of each gas flow path may be expanded to expand toward the outside, which is the outlet of the residual gas, or each vertical groove may be formed by a groove along the outer periphery. The grooves may be in communication.
(エア噴射機構)
また、図示を省略するが、本実施形態に係る射出成形用金型10では、ガス抜き孔18Aの出口には、他端がエア噴射装置(不図示)に接続された流路が連通されている。射出成形工程で、溶融樹脂の冷却・固化が完了し、型開きを行った後、エア噴射装置を起動し、ガス抜き孔18Aの出口から成形品の凸部の外面に向けて空気を噴射することにより、空気の圧力でコア型12又はキャビティ型14に貼り付いている成形品を押し出して離型することができる。
(Air injection mechanism)
Although not shown, in the injection mold 10 according to the present embodiment, a flow path whose other end is connected to an air injection device (not shown) is connected to the outlet of the gas vent hole 18A. There is. In the injection molding process, after cooling and solidification of the molten resin is completed and the mold is opened, the air injection device is activated and air is injected from the outlet of the gas vent hole 18A toward the outer surface of the convex part of the molded product. By doing so, the molded product stuck to the core mold 12 or the cavity mold 14 can be extruded and released from the mold using air pressure.
なお、本発明では、ガス抜き孔とは別に、その一端がエア噴射装置に接続された流路が連通されているエア噴射孔を、コア型及びキャビティ型のうち少なくとも一方の任意の位置に任意の個数設け、空気の圧力でコア型又はキャビティ型に貼り付いている成形品を押し出して離型することができる。なお、このようなエア噴射孔は、成形品の形状、金型分割面の選び方等に応じて定まる型開き時に成形品が貼り付く側であるコア型又はキャビティ型に設けられる。 In addition, in the present invention, in addition to the gas vent hole, an air injection hole, one end of which is connected to an air injection device and communicates with a flow path, can be arbitrarily placed at an arbitrary position of at least one of the core mold and the cavity mold. The molded product stuck to the core mold or cavity mold can be pushed out and released from the mold using air pressure. Note that such air injection holes are provided in the core mold or the cavity mold, which is the side to which the molded product sticks when the mold is opened, which is determined depending on the shape of the molded product, the selection of the mold dividing surface, and the like.
(パイパス路機構)
また、本実施形態に係る射出成形用金型10では、ガス抜き孔18Aがコア型及びキャビティ型14に形成されており、コア型12及びキャビティ型14の内部には、図示を省略するが、ガス抜き孔18Aの途中から分岐するパイパス路が形成されている。すなわち、パイパス路の一端がガス抜き孔18Aと密着している栓部材18Bの頭部より少し上流の位置でガス流路20に連通すると共に、パイパス路の他端が金型の外部に連通し、残留ガスを外気に排出する。
(Bypass path mechanism)
Further, in the injection molding die 10 according to the present embodiment, gas vent holes 18A are formed in the core mold and the cavity mold 14, and inside the core mold 12 and the cavity mold 14, although not shown, there are A bypass path is formed that branches off from the middle of the gas vent hole 18A. That is, one end of the bypass passage communicates with the gas flow passage 20 at a position slightly upstream of the head of the plug member 18B that is in close contact with the gas vent hole 18A, and the other end of the bypass passage communicates with the outside of the mold. , exhaust residual gas to the outside air.
また、バイパス路は、ガス抜き孔18Aの途中からコア型及びキャビティ型14の側面方向に向かって分岐した状態で設けられている。なお、本発明では、バイパス路を適宜設けることにより、残留ガスの外気への排出口を凸部の頂部の位置に限定せず、任意の位置に設けることができる。 Moreover, the bypass path is provided in a state where it branches toward the side surface direction of the core mold and cavity mold 14 from the middle of the gas vent hole 18A. In addition, in the present invention, by appropriately providing a bypass path, the outlet for discharging the residual gas to the outside air is not limited to the position of the top of the convex portion, but can be provided at any position.
(樹脂成形品)
本実施形態に係る射出成形用金型10を用いることによって、凸部と、凸部の下部周辺に形成された平面部と、を備えた成形品を成形できる。成形された成形品の凸部の頂部には金型に設けられたガス抜き孔の跡が形成され、平面部にはゲート16の跡が形成される。また、射出成形用金型10を用いて行われる樹脂成形方法によって成形された成形品には、凸部と平面部の境界部に接し、且つ、境界部に沿って巡る誘導帯(凸部周回誘導帯空間部13X)の跡であるリブが形成される。
(Resin molded product)
By using the injection molding die 10 according to the present embodiment, a molded product including a convex portion and a flat portion formed around the lower portion of the convex portion can be molded. The mark of the gas vent hole provided in the mold is formed on the top of the convex part of the molded product, and the mark of the gate 16 is formed on the flat part. In addition, the molded product molded by the resin molding method performed using the injection mold 10 has an induction band (circulating around the convex part) that touches the boundary between the convex part and the flat part and runs along the boundary part. A rib is formed as a trace of the guide band space 13X).
(作用効果)
本実施形態に係る射出成形用金型10によれば、溶融樹脂は、先ず、凸部空間部13Aや平面空間部13Bより流路の厚さが厚く、従って凸部空間部13Aや平面空間部13Bより流路抵抗が低い空間部を有する誘導帯空間部13Cの位置に設けられたゲート16からキャビティ13に注入される。注入された溶融樹脂は、続いて、ゲート16から離れた地点の誘導帯空間部13Cの末端(すなわち、それ以降は流路の流路抵抗が高くなっている所)まで素早く到達する。
(effect)
According to the injection mold 10 according to the present embodiment, the molten resin first has a flow path thicker than the convex space 13A and the plane space 13B, so that the molten resin flows into the convex space 13A and the plane space 13B. It is injected into the cavity 13 through the gate 16 provided at the position of the guide band space 13C, which has a space with a lower flow path resistance than 13B. The injected molten resin then quickly reaches the end of the guide zone space 13C at a point away from the gate 16 (that is, the point where the flow path resistance of the flow path is high thereafter).
一方、溶融樹脂が誘導帯空間部Cの末端に到達した時点では、誘導帯空間部13Cに隣接する流路抵抗の高い平面空間部13B及び凸部空間部13Aは、溶融樹脂があまり充填されていない状態にある。しかし、溶融樹脂が誘導帯空間部Cの末端に到達した時点で、溶融樹脂の流れが流路抵抗の高い領域で堰き止められる結果、誘導帯空間部C内部の溶融樹脂圧が蓄圧され、蓄圧された溶融樹脂が誘導帯空間部Cに沿って隣接する平面空間部13B及び凸部空間部13Aへ略同時に浸透して行き渡るので、誘導帯空間部13Cがない金型と比較して、品質の高い薄肉成形品を成形できる。 On the other hand, at the time when the molten resin reaches the end of the guide band space C, the planar space 13B and the convex space 13A, which have high flow path resistance and are adjacent to the guide band space 13C, are not filled with much molten resin. There is no state. However, when the molten resin reaches the end of the guide zone space C, the flow of the molten resin is blocked in an area with high flow path resistance, and as a result, the molten resin pressure inside the guide zone space C is accumulated. The molten resin penetrates and spreads along the guide band space C to the adjacent plane space 13B and convex space 13A at the same time, so the quality is improved compared to a mold without the guide band space 13C. Capable of molding high-quality thin-walled products.
また、本実施形態によれば、ゲート16から平面空間部13Bに隣接する誘導帯空間部13Cに注入された溶融樹脂は、平面空間部13Bに隣接する誘導帯空間部13Cを流下し、平面空間部13Bと凸部空間部13Aの境界部分である凸部麓部に至って、誘導帯空間部13Cから分岐した凸部周回誘導帯空間部13Xに流入し、そこから凸部空間部13Aを頂部に向かって充填していく。 Further, according to the present embodiment, the molten resin injected from the gate 16 into the guide band space 13C adjacent to the planar space 13B flows down the guide band space 13C adjacent to the planar space 13B, and flows down the guide band space 13C adjacent to the planar space 13B. It reaches the base of the convex part, which is the boundary between the part 13B and the convex space part 13A, and flows into the convex part surrounding guide band space part 13X branched from the guide band space part 13C, and from there flows into the convex part space part 13A to the top. Go ahead and fill it up.
凸部周回誘導帯空間部13Xが平面空間部13Bと凸部空間部13Aが成している屈曲部に接して設けられているため、平面空間部13Bと凸部空間部13Aが成している屈曲部の流路を拡張する働きがあり、流路の屈曲に伴う流路抵抗を低減する効果がある。 Since the convex part surrounding guiding band space part 13X is provided in contact with the bent part formed by the plane space part 13B and the convex part space part 13A, the plane space part 13B and the convex part space part 13A are formed. It has the function of expanding the flow path at the bent portion, and has the effect of reducing flow path resistance due to bending of the flow path.
更に、凸部周回誘導帯空間部13Xが凸部麓部を巡って設けられており、且つ、凸部周回誘導帯空間部13X内の溶融樹脂が蓄圧されて略ゲート位置での液圧に近い状態になるため、凸部周回誘導帯空間部13Xが恰も凸部空間部13Aに対するフィルムゲートのような働きをし、凸部空間部の充填性が向上するので、凸部麓部に接する凸部周回誘導帯空間部13Xがない場合に比べ、品質の高い薄肉成形品を成形できる。 Further, a protrusion-circling guide band space 13X is provided around the base of the protrusion, and the pressure of the molten resin in the protrusion-circling guide band space 13X is accumulated to be approximately close to the liquid pressure at the gate position. As a result, the convex part surrounding guide band space 13X acts like a film gate for the convex part space 13A, and the filling property of the convex part space is improved, so that the convex part in contact with the base part of the convex part A thin-walled molded product of high quality can be molded compared to the case where there is no circulating guide band space 13X.
また、本実施形態によれば、残留ガスを排出する残留ガス排出部18が凸部空間部13Aの頂部に位置する。このため、溶融樹脂の流動圧によってキャビティ13内部の残留ガスがこの凸部空間部13Aの頂部に集中し易いが、この頂部に集中したキャビティ内の残留ガスが、残留ガス排出部18を抜けて、金型外部へ放出される。その結果、残留ガスに起因する成形品のガス焼け、ショート、反り等による品質低下を抑制できる。 Further, according to the present embodiment, the residual gas discharge part 18 that discharges residual gas is located at the top of the convex space 13A. Therefore, the residual gas inside the cavity 13 tends to concentrate at the top of the convex space 13A due to the flow pressure of the molten resin, but the residual gas inside the cavity concentrated at the top passes through the residual gas discharge section 18. , released to the outside of the mold. As a result, it is possible to suppress deterioration in quality of the molded product due to gas burning, short-circuiting, warping, etc. caused by residual gas.
また、本実施形態によれば、残留ガスが残留ガス排出部18により金型外部に適宜放出されることにより、凸部空間部13Aの頂部に集中した残留ガスが過度に加圧されることが抑制される。これに伴って溶融樹脂をキャビティ内に充填させるために要する成形圧力も低くすることが可能となり、成形機への圧力負担も軽くなる結果、小型成形機を用いることが可能となり、コストダウンにも寄与できる。 Further, according to the present embodiment, the residual gas is appropriately discharged to the outside of the mold by the residual gas discharge section 18, so that the residual gas concentrated at the top of the convex space 13A is prevented from being excessively pressurized. suppressed. Along with this, the molding pressure required to fill the cavity with molten resin can also be lowered, reducing the pressure burden on the molding machine, making it possible to use a smaller molding machine, and reducing costs. I can contribute.
また、本実施形態によれば、ゲート16は、凸部空間部13Aの頂部の位置でなく、平面空間部13Bに隣接して設けられた誘導帯空間部13Cに配置される。このため、例えば、キャビティ13内では、1つのゲート16から伸びる誘導帯空間部13Cで形成される流路を同じく誘導帯空間部で形成される複数の流路に分岐させ、分岐した流路の下流側に複数の凸部空間部13Aを配置することができる。 Further, according to the present embodiment, the gate 16 is arranged not at the top of the convex space 13A but at the guide band space 13C provided adjacent to the plane space 13B. For this reason, for example, in the cavity 13, a flow path formed by the guide zone space 13C extending from one gate 16 is branched into a plurality of flow paths also formed by the guide zone space, and the branched flow paths are A plurality of convex space portions 13A can be arranged on the downstream side.
すなわち、それぞれの凸部空間部13Aの頂部にゲート16を設ける従来方法に比べ、成形品に複数の凸部が設けられる場合であっても、凸部の個数に合わせて複数のゲート16を金型に配置する必要がない。従って、ゲート16に溶融樹脂をバランスよく供給するためのランナーの構成も比較的単純となり、金型の設計、製作のコストを低減できる。 That is, compared to the conventional method in which a gate 16 is provided at the top of each convex space 13A, even if a molded product has a plurality of convex portions, a plurality of gates 16 are provided in accordance with the number of convex portions. No need to place it in a mold. Therefore, the configuration of the runner for supplying the molten resin to the gate 16 in a well-balanced manner is relatively simple, and the cost of designing and manufacturing the mold can be reduced.
また、本実施形態によれば、樹脂の種類や残留ガスの多寡に応じ、残留ガス排出性能の異なる栓部材18Bを適宜取り替えて用いることで、適切なガス抜きが行える。また、残留ガスの排出路は、溶融樹脂の揮発成分がタール状となって次第に汚れ、詰まるので随時掃除が必要であるが、上記構成によれば、随時栓部材18Bを抜いてガス流路20を掃除することが容易である。 Further, according to the present embodiment, appropriate degassing can be performed by appropriately replacing and using plug members 18B having different residual gas discharge performance depending on the type of resin and the amount of residual gas. In addition, the residual gas discharge path needs to be cleaned from time to time because the volatile components of the molten resin become tar-like and gradually become dirty and clogged. It is easy to clean.
また、本実施形態によれば、ガス抜き孔18Aの出口にエア噴射装置に接続された流路を連通させることによって、型開き工程が終了した後、空気の風圧によって成形品を射出成形用金型10から押し出して離型することができる。 Further, according to the present embodiment, by communicating the flow path connected to the air injection device with the outlet of the gas vent hole 18A, after the mold opening process is completed, the molded product is moved into the injection molding mold by the wind pressure of the air. It can be extruded from the mold 10 and released.
また、本実施形態によれば、成形品のガス抜き孔18Aを利用して空気噴射圧による成形品の離型を行う場合、エジェクタピンを用いて離型する場合に比べ、離型の際に成形品に機械的衝撃を与えて傷つけることがない。 Further, according to the present embodiment, when releasing the molded product by air injection pressure using the gas vent hole 18A of the molded product, compared to the case of releasing the molded product using an ejector pin, it is easier to release the molded product. The molded product will not be damaged by mechanical impact.
また、本実施形態によれば、ガス抜き孔18Aの出口に真空装置に接続された流路(図示せず)を連通させることによって、ガス抜き孔18Aからキャビティ13内の残留ガスを吸引することが可能となる。その結果、キャビティ内の残留ガス排出効率が向上し、残留ガスに起因する成形品のガス焼け、ショート、反り等による品質低下を抑制できる。 Further, according to the present embodiment, residual gas in the cavity 13 can be sucked from the gas vent hole 18A by communicating a flow path (not shown) connected to a vacuum device with the outlet of the gas vent hole 18A. becomes possible. As a result, the efficiency of exhausting residual gas in the cavity is improved, and deterioration in quality of the molded product due to gas burns, short circuits, warping, etc. caused by residual gas can be suppressed.
また、本実施形態に係る射出成形用金型10を用いた樹脂成形方法によれば、薄肉の成形品であっても、効率よく且つ高品質に成形することができる。 Further, according to the resin molding method using the injection mold 10 according to the present embodiment, even a thin molded product can be molded efficiently and with high quality.
<付記>
上記のとおり説明した本実施形態に基づき、本発明について改めて以下に付記として追加説明する。
<Additional notes>
Based on the present embodiment described above, the present invention will be additionally explained below as an additional note.
(先行技術の検討)
一般に、キャビティ内には、残留ガスが存在し、キャビティ内の残留ガスの圧力は、溶融樹脂を注入し始めた段階ではほぼ大気圧であるが、溶融樹脂の注入が進行するに伴い、圧力が上昇する。一方、キャビティ内の空間を溶融樹脂が占めていくため、この溶融樹脂に押されて、キャビティ内の残留ガスの一部が金型のパーティング面などに存在する僅かな隙間を通って金型外部に排出される。
(Consideration of prior art)
Generally, residual gas exists inside the cavity, and the pressure of the residual gas inside the cavity is approximately atmospheric pressure at the stage when the injection of molten resin begins, but as the injection of the molten resin progresses, the pressure increases. Rise. On the other hand, as the molten resin occupies the space inside the cavity, some of the residual gas in the cavity is pushed by the molten resin and passes through the small gap that exists on the parting surface of the mold, and enters the mold. It is discharged to the outside.
しかし、金型の隙間は溶融樹脂が漏出できない程度に非常に狭く、従って、残留ガスの排出速度も比較的遅いのが通常である。このため、キャビティ内の残留ガスの圧力は、最終的に残留ガスが完全に排出されるまで或いは溶融樹脂の注入が停止されるまでほぼ上昇し続けることになる。また、このキャビティ内における残留ガスの圧力は、注入された溶融樹脂のキャビティ内における流れを押し止める力として働く。 However, the gap between the molds is very narrow to the extent that the molten resin cannot leak out, and therefore the rate of discharge of residual gas is usually relatively slow. Therefore, the pressure of the residual gas in the cavity will continue to increase until the residual gas is finally completely exhausted or until the injection of the molten resin is stopped. Further, the pressure of the residual gas within the cavity acts as a force to stop the flow of the injected molten resin within the cavity.
このような残留ガスの内圧上昇は、キャビティ内における溶融樹脂の流れを阻害し、充填が不十分になり、部分的な肉厚不足や肉厚のムラが発生し、或いは、全く溶融樹脂が充填されない部分であるショートが発生する一因となる。また、残留ガスが断熱圧縮されて圧力が上がるとガス温度も上昇し、遂には溶融樹脂の発火点を超えて樹脂表面が焦げる現象も発生する。すなわち、薄肉成形品の品質が低下するという問題も生じる。 This increase in the internal pressure of the residual gas obstructs the flow of molten resin within the cavity, resulting in insufficient filling, resulting in partial wall thickness shortages, uneven wall thickness, or not being filled with molten resin at all. This is a cause of short circuits, which are the parts that do not occur. Further, when the residual gas is adiabatically compressed and the pressure increases, the gas temperature also rises, and eventually exceeds the ignition point of the molten resin, causing the surface of the resin to burn. That is, there also arises a problem that the quality of the thin-walled molded product deteriorates.
成形品を射出成形する際のキャビティ内における溶融樹脂の流路の抵抗や残留ガスの影響に関し、特許文献1には何ら開示されていない。このため、特許文献1の技術だけでは、射出成形における流路の抵抗が高いことや残留ガスの排出遅れに起因する成形品の品質低下の問題を解決できない。 Patent Document 1 does not disclose anything regarding the resistance of the flow path of molten resin in the cavity and the influence of residual gas when injection molding a molded product. Therefore, the technique of Patent Document 1 alone cannot solve the problem of deterioration in quality of molded products caused by high flow path resistance in injection molding and delayed discharge of residual gas.
また、特許文献2の技術に関し、本発明者が検討したところ、キャビティ内に、誘導帯を設けることによって、射出成形時の溶融樹脂の充填性を高めることが可能であることが確認できた。しかし、肉厚の薄さや凸部の個数といった成形品の形状寸法によっては、十分な品質が得られない場合が生じ得ることが分かった。 Further, as a result of study by the present inventor regarding the technique of Patent Document 2, it was confirmed that it is possible to improve the filling property of the molten resin during injection molding by providing an induction band within the cavity. However, it has been found that sufficient quality may not be obtained depending on the shape and dimensions of the molded product, such as the thinness of the wall and the number of convex portions.
特許文献2に示されるような凸部を有する成形品の射出成形において、凸部に相当するキャビティ部分における残留ガスの高圧化を抑制する方法として、例えば、溶融樹脂の流れの起点となるゲートを、凸部の頂部に対応する金型位置に配置する方法が考えられる。 In injection molding of a molded product having a convex part as shown in Patent Document 2, as a method of suppressing the increase in pressure of residual gas in the cavity portion corresponding to the convex part, for example, a gate that is the starting point of the flow of molten resin is used. , a method of arranging the mold at a position corresponding to the top of the convex portion is conceivable.
しかし、この方法によれば、ゲートが凸部の頂部に対応する金型位置に全て配置する必要があるため、凸部の個数が増えるに従って、ゲートの個数も増加することになる。例えば、成形品が卵パックである場合には、通常、1つの成形品の中に凸部が10個以上必要とされる場合が多く、蓋部も一体成形する場合には、その2倍近いゲート数が必要となる。これに伴って、ゲートの配置に応じてランナーを張り巡らせる必要が生じ、ゲート間の射出バランスが難しくなり、また、金型が複雑になって金型の加工負担が大きくなる。その結果、金型の作製コストが増大してしまうという問題がある。 However, according to this method, it is necessary to arrange all the gates at mold positions corresponding to the tops of the convex portions, so as the number of convex portions increases, the number of gates also increases. For example, if the molded product is an egg carton, ten or more protrusions are usually required in one molded product, and if the lid is also integrally molded, nearly twice that number is required. The number of gates is required. Along with this, it becomes necessary to stretch runners according to the arrangement of the gates, which makes it difficult to balance the injection between the gates, and also makes the mold complex and increases the processing burden of the mold. As a result, there is a problem in that the manufacturing cost of the mold increases.
(凸部周回誘導帯空間部)
本発明では、発明者の試作・研究により、薄肉で凹凸のある複雑形状の成形品の射出成形において、その形状に応じたキャビティ内の末端部まで溶融樹脂を充填しようとすると、流路断面積に比して流路が長く、また、流路の屈曲部が多いことにより流路抵抗が高いことが充填性を低下させていることが分かった。
(Protrusion surrounding guidance zone space)
In the present invention, as a result of prototype production and research by the inventor, in injection molding of a thin-walled molded product with a complex shape with irregularities, when trying to fill the molten resin to the end of the cavity according to the shape, the cross-sectional area of the flow path It was found that the passage resistance was high due to the passage being longer than that of the previous one, and the passage having many bends, which reduced the filling performance.
従って、先ず、ゲートを平面空間部の一部に形成された誘導帯空間部に設け、その誘導帯空間部を擬似的なランナーとして、溶融樹脂を最大の屈曲部である凸部麓部の近傍まで導き、更に凸部麓部に接して巡る凸部周回誘導帯空間部を設け、望ましくは凸部麓部全周に設けるが、成形品の形状に応じて誘導帯空間部を設ける余地がない場合などでは、凸部麓部の一部に凸部周回誘導帯空間部を設けることでもよく、この凸部周回誘導帯空間部によって凸部麓部の周囲に溶融樹脂を導き、その凸部周回誘導帯空間部を擬似的なフィルムゲートとして、凸部周回誘導帯空間部内に蓄圧された溶融樹脂を、凸部壁面を構成する薄肉部分に凸部麓部から注入するという構成になるよう、金型のキャビティ構造を設計する。 Therefore, first, a gate is provided in the guide band space formed in a part of the planar space, and the guide band space is used as a pseudo runner to spread the molten resin near the base of the convex part, which is the largest bending part. Further, a guide band space around the convex part is provided, which is preferably provided around the entire circumference of the base of the convex part, but depending on the shape of the molded product, there is no room to provide a guide band space part. In some cases, a convex circumference guide band space may be provided in a part of the convex base, and this convex circumference guide band space guides the molten resin around the convex base, and the convex circumference is guided by the convex circumference guide band space. The guide band space is used as a pseudo film gate, and the molten resin accumulated in the guide band space surrounding the convex part is injected into the thin wall part of the convex part from the foot of the convex part. Design the cavity structure of the mold.
なお、この凸部周回誘導帯空間部の配置においては、凸部が大きくて凸部薄肉部に対する溶融樹脂の充填が不足するような場合には、凸部周回誘導帯空間部から分岐して凸部側壁に這い上がる誘導帯空間部を設けることも自由である。 In addition, in the arrangement of the convex part surrounding guide band space, if the convex part is large and the molten resin is insufficiently filled into the thin part of the convex part, the convex part is branched from the convex part surrounding guide band space part. It is also possible to provide a guide band space that climbs up the side wall of the section.
また、凸部周回誘導帯空間部は、凸部麓部に接するように形成され、望ましくは凸部壁面にまで跨がって形成され、更に望ましくは凸部周回誘導帯空間部と凸部壁面の境界部は角部を有さず、滑らかな曲面で接続しているように形成される。また、成形品形状に応じて凸部周回誘導帯空間部を凸部麓部に接して設けることができない場合には、凸部周回誘導帯空間部から凸部麓部までの間隔が、その間隔における流路抵抗が凸部に溶融樹脂を充填するための大きな障害とならない程度に十分近接しておればよい。 Further, the convex part surrounding guide band space is formed so as to be in contact with the base part of the convex part, and desirably is formed astride the convex part wall surface, and more preferably, the convex part surrounding guide band space part and the convex part wall surface are formed. The boundaries between the two do not have corners and are connected by smooth curved surfaces. In addition, if it is not possible to provide the convex circumference guiding band space in contact with the convex base depending on the shape of the molded product, the distance from the convex circumferential guiding band space to the convex base should be It is sufficient that the convex portions are sufficiently close to each other so that the flow path resistance in the convex portions does not become a major hindrance to filling the convex portions with the molten resin.
このような金型構造にすることによって、ゲートから凸部先端までの流路の流路抵抗が、凸部周回誘導帯空間部を用いない場合に比べ、格段に低くなり、薄肉成形において、特に凸部の充填性が低下するという問題の解決手段が与えられる。 By adopting such a mold structure, the flow path resistance of the flow path from the gate to the tip of the convex part is significantly lower than that when the convex part surrounding guide band space is not used, which is particularly effective in thin-wall molding. A means for solving the problem of poor filling of the convex portions is provided.
また、溶融樹脂の充填時における流路抵抗が低くなると、溶融樹脂の注入圧力も下げることができ、従って、溶融樹脂の液圧も低くなり、低圧成形の状態となるので、残留ガスを金型外部に排出する工夫も相俟って、残留ガスの高圧化が抑制される効果もある。 In addition, when the flow path resistance during filling with molten resin is lowered, the injection pressure of the molten resin can also be lowered, and therefore the liquid pressure of the molten resin is also lowered, resulting in a state of low-pressure molding, so residual gas is removed from the mold. Combined with the idea of discharging the gas to the outside, this has the effect of suppressing the build-up of residual gas pressure.
また、残留ガスの圧力があまり高くならなければ、残留ガスの温度が断熱圧縮で溶融樹脂の発火点を越えることもなく、ガス焼け不良も抑制でき、高圧による歪みが成形品に残ることも抑制され、また、圧力負担が減少することにより、小型の成形機でも成形できるようになり、コスト低減の効果がある。 In addition, if the pressure of the residual gas does not become too high, the temperature of the residual gas will not exceed the ignition point of the molten resin due to adiabatic compression, which will prevent gas burning defects and prevent distortions caused by high pressure from remaining in the molded product. Furthermore, since the pressure burden is reduced, molding can be performed using a small molding machine, which has the effect of reducing costs.
また、凸部の頂点に残留ガスの排気孔を併せて設けることにより、更に残留ガスの圧力を下げることが可能となり、結果として、残留ガスの反発力が低下することになり、流路抵抗を下げた場合と同様に、充填性が向上すると共に、低圧成形が可能となり、ガス焼け、歪みの抑制、成形機の小型化などの効果が得られる。 In addition, by providing a residual gas exhaust hole at the top of the convex portion, it is possible to further reduce the pressure of the residual gas, and as a result, the repulsive force of the residual gas is reduced, reducing the flow path resistance. As in the case where the pressure is lowered, filling properties are improved, low-pressure molding becomes possible, and effects such as suppression of gas burns and distortion and miniaturization of the molding machine can be obtained.
本発明の要点である凸部麓部に凸部周回誘導帯空間部を接して設ける提案は、凸部屈曲部の流路抵抗を改善する技術であり、また、凸部の頂点にガス抜き孔を設ける提案は、凸部における残留ガスの排出を改善する技術であり、いずれも凸部の充填性を向上すると共に、キャビティ内全体における残留ガスの高圧化を抑制する効果がある。 The key point of the present invention, which is to provide a convex circumferential guiding band space in contact with the base of the convex part, is a technique for improving the flow path resistance of the bent part of the convex part. The proposal to provide the above is a technique for improving the discharge of residual gas in the convex portion, and both of them have the effect of improving the filling performance of the convex portion and suppressing the increase in pressure of the residual gas in the entire cavity.
なお、残留ガスの高圧化が抑制されることで得られる効果としては、上記した効果に加え、残留ガス圧に起因するバリ発生が抑制されること、溶融樹脂の注入圧力を低く抑えることが出来ること、樹脂が固化する際に掛かるストレスも軽減され、成形品のソリや変形も抑制されること、ソリや変形を矯正するために設けられた冷却時間も短くすることができ、成形サイクルを短縮できること、注入圧力低下により射出成形機の小型化が可能となり、コストダウンができること、同じく注入圧力低下により型締力を小さくでき、パーティング面からの残留ガスの排出能力が高まり、益々残留ガスの圧力を低く抑えることができること、などの効果が得られる。 In addition to the above-mentioned effects, the effects obtained by suppressing the high pressure of the residual gas include suppressing the generation of burrs due to the residual gas pressure, and suppressing the injection pressure of molten resin to a low level. In addition, the stress applied when the resin solidifies is reduced, warping and deformation of the molded product is also suppressed, and the cooling time required to correct warp and deformation can be shortened, shortening the molding cycle. The lower injection pressure makes it possible to downsize the injection molding machine and reduce costs.The lower injection pressure also reduces the mold clamping force, increasing the ability to discharge residual gas from the parting surface, which further reduces the amount of residual gas. Effects such as being able to keep the pressure low can be obtained.
本明細書からは、以下の態様1から態様3までに述べられる態様が概念化され、本発明に含まれる。 From this specification, the aspects described in the following aspects 1 to 3 are conceptualized and included in the present invention.
本発明の態様1に係る射出成形用金型は、コア型とキャビティ型とを有し、前記コア型と前記キャビティ型とを重ね合わせ、前記コア型と前記キャビティ型との間に形成されるキャビティに溶融樹脂を注入することによって凸部と平面部とを有する樹脂成形品を成形する射出成形用金型であって、前記キャビティは、前記凸部を成形する凸部空間部と、前記凸部の周辺に前記平面部を成形する平面空間部と、前記凸部空間部及び前記平面空間部のうち少なくとも一方に形成され、前記凸部空間部及び前記平面空間部より肉厚が厚い誘導帯空間部とを備え、前記誘導帯空間部は、前記凸部空間部と前記平面空間部との境界部に接して前記境界部を巡る凸部周回誘導帯空間部を備え、前記キャビティ型は、溶融樹脂を注入するゲートを前記誘導帯空間部に備える。 The injection mold according to aspect 1 of the present invention has a core mold and a cavity mold, and the core mold and the cavity mold are overlapped, and the injection mold is formed between the core mold and the cavity mold. An injection mold for molding a resin molded product having a convex part and a flat part by injecting molten resin into a cavity, the cavity having a convex space part in which the convex part is molded, and a convex part space part in which the convex part is molded; a planar space forming the planar part around the part; and an induction band formed in at least one of the protrusion space and the planar space and having a wall thickness greater than that of the protrusion space and the planar space. a space, the guide band space includes a guide band space that goes around the convex part in contact with a boundary between the convex space and the planar space, and the cavity type includes: A gate for injecting molten resin is provided in the guide zone space.
上記構成によれば、ゲートからキャビティの誘導帯空間部に注入された溶融樹脂は、凸部空間部や平面空間部より流路の肉厚が厚く、従って凸部空間部や平面空間部より流路抵抗が低い空間部を有する誘導帯空間部を介して、ゲートから離れた地点の平面空間部及び凸部空間部を周回する誘導帯空間部の末端まで素早く到達する。また、誘導帯空間部に沿った流路抵抗の低い流路の末端は流路抵抗の高い部分に接続されているため、溶融樹脂が誘導帯空間部の末端まで満たされた後、継続して加えられる注入圧力に応じて誘導帯空間内部の溶融樹脂に蓄圧が行われる。 According to the above configuration, the molten resin injected from the gate into the guide zone space of the cavity has a flow path thicker than the convex space or the plane space, and therefore flows more easily than the convex space or the plane space. Through the guide band space having a space with low road resistance, the end of the guide band space that goes around the plane space and the convex space at a point away from the gate is quickly reached. In addition, since the end of the flow path with low flow resistance along the guide zone space is connected to the high flow path resistance part, after the molten resin is filled up to the end of the guide zone space, the flow path continues. Pressure is accumulated in the molten resin inside the induction zone space in accordance with the applied injection pressure.
その結果、溶融樹脂は、比較的高い圧力の下で、誘導帯空間部に沿って横方向に隣接する平面空間部及び凸部空間部へ流入し、行き渡るので、誘導帯空間部がない金型と比較して、充填性がよく、その結果、ショート等の欠陥が生じ難く、品質の高い薄肉成形品を成形できる。 As a result, the molten resin flows under relatively high pressure into the horizontally adjacent planar space and convex space along the guide band space, and spreads around the mold without the guide band space. As a result, defects such as short circuits are less likely to occur, and high-quality thin-walled molded products can be molded.
なお、上記構成において、誘導帯空間部は、流路抵抗の観点から、主として直線状の流路が比較的確保できる平面空間部に形成されるが、成形品の寸法形状に応じて、誘導帯空間部を凸部空間部に形成してもよく、又は、平面空間部及び凸部空間部の両方に形成してもよい。また、誘導帯空間部に溶融樹脂を注入するゲートも、ゲートを起点とした誘導帯網を効率よく配置する観点から、平面空間部に形成された誘導帯空間部の位置に設けることが望ましいが、成形品の寸法形状に応じて、誘導帯空間部の任意の位置に任意の個数を設けることができる。 In the above configuration, from the viewpoint of flow path resistance, the guide band space is mainly formed in a planar space where a relatively straight flow path can be secured, but depending on the dimensions and shape of the molded product, the guide band space may The space portion may be formed in the convex space portion, or may be formed in both the planar space portion and the convex space portion. Furthermore, from the viewpoint of efficiently arranging the guide band network starting from the gate, it is desirable to provide the gate for injecting the molten resin into the guide band space at the position of the guide band space formed in the planar space. Depending on the size and shape of the molded product, any number of guide strips can be provided at any position in the guide band space.
また、上記構成によれば、誘導帯空間部は、凸部麓部に接して凸部麓部を巡る凸部周回誘導帯空間部を備えることにより、この凸部周回誘導帯空間部が溶融樹脂溜まりとして働き、凸部周回誘導帯空間部の全長が凸部空間部へのフィルムゲートの役割を果たし、その結果、平面空間部から凸部空間部への溶融樹脂の流れを阻害して流路抵抗を増大させる要因である凸部麓部における流路屈曲部の流動阻害効果を減殺する。このため、このような凸部周回誘導帯空間部がない金型と比較して、凸部におけるショート等の欠陥が生じ難く、品質の高い薄肉成形品を成形できる。なお、前記流路屈曲部の角部は、内周壁面及び外周壁面共にR形状(丸み)を有していることが望ましい。 Further, according to the above configuration, the guide band space includes the convex part circumference guide band space part that is in contact with the convex part foot part and goes around the convex part foot part, so that the convex part circumference guide band space part is made of molten resin. The entire length of the guiding band space around the convex part plays the role of a film gate to the convex part space, and as a result, the flow of the molten resin from the plane space part to the convex part space is blocked and the flow path is blocked. This reduces the flow-inhibiting effect of the bending portion of the flow path at the base of the convex portion, which is a factor that increases resistance. Therefore, compared to a mold that does not have such a guide band space around the convex portion, defects such as short circuits in the convex portion are less likely to occur, and a thin-walled molded product of high quality can be molded. Note that it is desirable that the corners of the flow path bending portion have an R shape (roundness) on both the inner peripheral wall surface and the outer peripheral wall surface.
本発明の態様2に係る射出成形用金型は、前記態様1において、前記コア型及び前記キャビティ型のうち少なくとも一方には、前記凸部空間部の頂部から前記頂部に残留する残留ガスを排出する残留ガス排出部を備える。 In the injection molding mold according to Aspect 2 of the present invention, in Aspect 1, residual gas remaining in at least one of the core mold and the cavity mold is discharged from the top of the convex space. Equipped with a residual gas exhaust section.
上記構成によれば、誘導帯空間部は、凸部麓部に接して巡る凸部周回誘導帯空間部を備えており、これにより、前記凸部空間部への溶融樹脂の充填性が向上し、また、コア型及びキャビティ型のうち少なくとも一方は、凸部空間部の頂部から残留ガスを排出する残留ガス排出部を備えており、凸部空間部への溶融樹脂の充填性が更に向上する。 According to the above structure, the guide band space includes a convex part circumference guide band space that comes into contact with the base of the convex part, thereby improving the filling performance of the molten resin into the convex part space. In addition, at least one of the core mold and the cavity mold is provided with a residual gas exhaust part that discharges residual gas from the top of the convex space, which further improves the filling performance of the molten resin into the convex space. .
なお、本発明では、残留ガス排出部は、例えば、コア型及びキャビティ型のうち少なくとも一方に設けられ金型外面から凸部空間部の頂部に達するガス抜き孔と、ガス抜き孔に着脱自在に差し込まれた栓部材とを有し、栓部材は、少なくとも凸部空間部の頂部に接する部分の外周面全体がガス抜き孔の内周面全体に密着する棒状部材であり、棒状部材の密着部分における外周面とガス抜き孔の内周面との間には、溶融樹脂が通過できず且つ残留ガスが通過できるガス流路が形成されているものであってもよい。 In addition, in the present invention, the residual gas discharge part is, for example, a gas vent hole that is provided in at least one of the core mold and the cavity mold and reaches the top of the convex space from the outer surface of the mold, and a gas vent hole that is detachably attached to the gas vent hole. The plug member is a rod-shaped member whose entire outer circumferential surface, at least in the portion that contacts the top of the convex space, is in close contact with the entire inner circumferential surface of the gas vent hole, and the close contact portion of the rod-shaped member is A gas flow path may be formed between the outer circumferential surface and the inner circumferential surface of the gas vent hole through which the molten resin cannot pass, but through which residual gas can pass.
また、本発明では、残留ガス排出部としてガス抜き孔を用いた場合、ガス抜き孔の出口に真空装置を接続し、真空装置によって、ガス抜き孔から排出される残留ガスを吸引し、凸部空間部の頂部からの残留ガス排出を促進してもよい。 In addition, in the present invention, when a gas vent hole is used as the residual gas exhaust section, a vacuum device is connected to the outlet of the gas vent hole, and the residual gas discharged from the gas vent hole is sucked by the vacuum device. Evacuation of residual gas from the top of the space may be facilitated.
本発明の態様3として、上記の態様1に記載の射出成形用金型を用いて樹脂成形品の成形を行う樹脂成形方法が構成されてもよい。
上記構成における樹脂成形品は、態様1に述べたように、成形品における歪み、充填不足、変色などによる品質低下が抑制された、高品質の樹脂成形品を提供できる。
As aspect 3 of the present invention, a resin molding method may be configured in which a resin molded article is molded using the injection mold described in aspect 1 above.
As described in aspect 1, the resin molded product having the above configuration can provide a high quality resin molded product in which deterioration in quality due to distortion, insufficient filling, discoloration, etc. in the molded product is suppressed.
<その他の実施形態>
本発明は上記の開示した実施の形態によって説明されたが、この開示の一部をなす論述及び図面は、本発明を限定するものであると理解すべきではない。本発明は、上記に記載した実施形態のそれぞれを適宜組み合わせた実施の形態及び上記に記載していない様々な実施の形態等を含むと共に、本発明の技術的範囲は、上記の説明から妥当な特許請求の範囲の発明特定事項によってのみ定められるものである。
<Other embodiments>
Although the present invention has been described by the embodiments disclosed above, the statements and drawings that form part of this disclosure should not be understood as limiting the present invention. The present invention includes embodiments in which each of the embodiments described above is appropriately combined, and various embodiments not described above, and the technical scope of the present invention can be understood from the above description. It is determined only by matters specifying the invention in the claims.
10 射出成形用金型
12 コア型
13 キャビティ
13A 凸部空間部
13B 平面空間部
13C 誘導帯空間部
13X 凸部周回誘導帯空間部
14 キャビティ型
14A 凸部空間対応部
14B 平面空間対応部
14C 誘導帯空間対応部
14X 凸部周回誘導帯空間対応部
16 ゲート
18 残留ガス排出部
18A ガス抜き孔
18B1 縦溝
18B 栓部材
20 ガス流路
10 Injection mold 12 Core mold 13 Cavity 13A Convex space 13B Planar space 13C Guide band space 13X Convex circumferential guide band space 14 Cavity mold 14A Convex space corresponding part 14B Planar space corresponding part 14C Induction band Space corresponding part 14X Convex part circumferential guide band space corresponding part 16 Gate 18 Residual gas discharge part 18A Gas vent hole 18B1 Vertical groove 18B Plug member 20 Gas flow path
Claims (3)
前記キャビティは、前記凸部を成形する凸部空間部と、前記凸部の周辺に前記平面部を成形する平面空間部と、前記凸部空間部及び前記平面空間部のうち少なくとも一方に形成され、前記凸部空間部及び前記平面空間部より肉厚が厚い誘導帯空間部とを備え、
前記誘導帯空間部は、前記凸部空間部と前記平面空間部との境界部に接して前記境界部を巡る凸部周回誘導帯空間部を備え、
前記キャビティ型は、溶融樹脂を注入するゲートを前記誘導帯空間部に備える、
射出成形用金型。 It has a core mold and a cavity mold, and the convex part and the flat part are formed by overlapping the core mold and the cavity mold and injecting molten resin into the cavity formed between the core mold and the cavity mold. An injection mold for molding a resin molded product having
The cavity is formed in a convex space part in which the convex part is formed, a plane space part in which the flat part is formed around the convex part, and at least one of the convex part space part and the planar space part. , comprising a guiding band space having a thickness thicker than the convex space and the plane space,
The guide band space includes a convex-circling guide band space that is in contact with a boundary between the convex space and the planar space and goes around the boundary;
The cavity type includes a gate in the guide zone space for injecting molten resin.
Mold for injection molding.
請求項1に記載の射出成形用金型。 At least one of the core mold and the cavity mold is provided with a residual gas exhaust part that discharges residual gas remaining at the top from the top of the convex space.
The injection mold according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022122318A JP2024018783A (en) | 2022-07-29 | 2022-07-29 | Metal mold for injection molding and resin molding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022122318A JP2024018783A (en) | 2022-07-29 | 2022-07-29 | Metal mold for injection molding and resin molding method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024018783A true JP2024018783A (en) | 2024-02-08 |
Family
ID=89808061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022122318A Pending JP2024018783A (en) | 2022-07-29 | 2022-07-29 | Metal mold for injection molding and resin molding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2024018783A (en) |
-
2022
- 2022-07-29 JP JP2022122318A patent/JP2024018783A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101242058B1 (en) | Diecasting molding | |
CN105108977A (en) | Injection mold and light guide plate manufacturing device | |
PT104229B (en) | METHOD OF INJECTION MOLDING AND INJECTION MOLDING EQUIPMENT | |
US7654305B2 (en) | Die for die casting, method of manufacturing cast product, and cast product | |
JP2024018783A (en) | Metal mold for injection molding and resin molding method | |
JP2022067042A (en) | Ventilator for casting mold | |
JP7229605B1 (en) | Injection mold, resin molded product and resin molding method | |
JP5722390B2 (en) | Injection mold equipment | |
KR101326606B1 (en) | Injection mold with a gas venting core | |
JP4773555B2 (en) | Die casting mold | |
JP5776299B2 (en) | Injection molding method and injection mold used therefor | |
CN208881094U (en) | A kind of exhaust structure for insert | |
JP2013132656A (en) | Chill vent | |
JP2010184401A (en) | Molding mold for counter-pressure method | |
KR101404997B1 (en) | Apparatus for injection moulding | |
JP2010194845A (en) | Method for manufacturing injection-molded product, and injection molding apparatus | |
KR101016614B1 (en) | Ejecting apparatus of forging mold | |
JP2010082967A (en) | Injection molding die and manufacturing method of thermoplastic resin molding | |
CN216831800U (en) | Plastic tray mould slide block structure | |
JP2012206423A (en) | Injection molding method, and injection molding die | |
JP2009090539A (en) | Multi-cavity injection mold | |
JP5420886B2 (en) | Injection mold | |
JP2011235622A (en) | Gas venting square core pin in injection molding | |
JP2015196165A (en) | Molding die and molding apparatus | |
JP2006035630A (en) | Injection molding method |