JP2024013685A - Air cleaner - Google Patents

Air cleaner Download PDF

Info

Publication number
JP2024013685A
JP2024013685A JP2022115963A JP2022115963A JP2024013685A JP 2024013685 A JP2024013685 A JP 2024013685A JP 2022115963 A JP2022115963 A JP 2022115963A JP 2022115963 A JP2022115963 A JP 2022115963A JP 2024013685 A JP2024013685 A JP 2024013685A
Authority
JP
Japan
Prior art keywords
air
ventilation passage
ultraviolet
ultraviolet rays
ventilation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022115963A
Other languages
Japanese (ja)
Inventor
浩一 生杉
Koichi Namasugi
佳成 堀本
Yoshinari Horimoto
隆文 大渕
Takafumi Obuchi
新一郎 和栗
Shinichiro Waguri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2022115963A priority Critical patent/JP2024013685A/en
Publication of JP2024013685A publication Critical patent/JP2024013685A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air cleaner that prevents ultraviolet ray in an amount harmful to a human body leaking into a space where a human being enters, and can reduce a lot of number of pathogenic organisms in a short time.
SOLUTION: An air cleaner 100 irradiates pathogens CV in the air with ultraviolet rays to reduce the number of pathogens. The air cleaner 100 includes a ventilation path 1 through which air passes, an ultraviolet light source 2, and a shielding body 4. The ultraviolet light source 2 irradiates ultraviolet light UV from an inner surface of a wall 11 of the ventilation passage 1 to the other inner surface of the wall 11 of the ventilation passage 1. The shielding body 4 receives and absorbs ultraviolet rays directed outside the irradiation area UA of ultraviolet rays UV and allows airflow to pass therethrough.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2024,JPO&INPIT

Description

特許法第30条第2項適用申請有り 令和3年8月27日に販売 令和4年1月26日に販売 令和4年1月27日に販売 令和4年3月23日に販売 令和4年3月24日に販売 令和4年3月28日に販売 令和4年4月23日に販売 令和4年4月25日に販売 令和4年4月26日に販売 令和4年5月28日に販売 令和4年7月6日に販売 令和3年9月1日に徳島県総合防災訓練に出品 令和3年12月8日から令和3年12月10日にヒカリと感染症対策エキスポに出品 令和4年3月15日から令和4年3月16日に2022年空気とみらいEXPO展に出品 令和4年7月17日から令和4年7月18日に日本臨床整形外科学会学術集会で公開 令和3年9月28日から日立造船株式会社 築港工場に展示 令和4年7月1日から日立造船株式会社 南港本社に展示Patent Act Article 30, Paragraph 2 application filed.Sold on August 27, 2021.Sold on January 26, 2020.Sold on January 27, 2020.Sold on March 23, 2020. Sales: Sold on March 24, 2020. Sold on March 28, 2020. Sold on April 23, 2020. Sold on April 25, 2020. On April 26, 2020. Sales: Sold on May 28, 2020. Sold on July 6, 2020. Exhibited at Tokushima Prefecture Comprehensive Disaster Prevention Drill on September 1, 2021. From December 8, 2021 to 2021. Exhibited at the Hikari and Infectious Disease Control Expo on December 10th Exhibited at the 2022 Air and Mirai EXPO from March 15, 2020 to March 16, 2020 Exhibited at the 2022 Air and Mirai EXPO Exhibition from July 17, 2020 Published at the academic meeting of the Japanese Society of Clinical Orthopedics on July 18, 2021 Exhibited at the Hitachi Zosen Corporation Chikko Factory from September 28, 2021 At the Nanko Head Office of Hitachi Zosen Corporation from July 1, 2021 exhibition

本発明は、空気中に浮遊する病原体に紫外線を照射して死滅させ、その数を減らすことで空気を浄化する、空気清浄装置に関する。 The present invention relates to an air purifying device that purifies the air by irradiating pathogens floating in the air with ultraviolet rays to kill them and reduce their number.

病原体は、人々の呼吸する空気中に浮遊している。人々は、一定の数以上の病原体を吸い込むと病気の諸症状を発症する。病気の諸症状は、人々の快適な生活を妨げるため好ましくない。したがって、人々が病気を発症することなく快適な生活を送るために、空気中に浮遊する病原体の数を減少させる必要がある。 Pathogens are suspended in the air that people breathe. When people inhale more than a certain number of pathogens, they develop symptoms of the disease. Symptoms of diseases are undesirable because they interfere with people's comfortable lives. Therefore, in order for people to live a comfortable life without developing diseases, it is necessary to reduce the number of pathogens floating in the air.

空気中を浮遊する病原体は、紫外線を照射されることで死滅し、その数が減少する。したがって、空気中に浮遊する病原体に紫外線を照射して、それら病原体の数を人々が病気の諸症状を発症しない程度の数に減少させる観点から空気を清浄にする、空気清浄装置が使用されている。空気清浄装置は、空気清浄装置の周囲の空気中に浮遊する病原体を、空気とともに装置内における通風路に導いて、その通風路内で病原体に紫外線を照射して死滅・減少させ、その後に空気とともに空気清浄装置の外部に排出している。これにより空気清浄装置の周囲に浮遊する病原体の数が減少すれば、その空間は、人々が病気に罹患しにくい快適な空間となる。 Pathogens floating in the air are killed by UV irradiation and their numbers are reduced. Therefore, air purification devices are used that purify the air by irradiating pathogens floating in the air with ultraviolet rays to reduce the number of pathogens to a level where people do not develop symptoms of the disease. There is. Air purifiers introduce pathogens floating in the air around the air purifier along with the air to a ventilation path inside the device, irradiate the pathogens with ultraviolet light in the ventilation path to kill and reduce the pathogens, and then remove the pathogens from the air. It is also discharged to the outside of the air purifier. If this reduces the number of pathogens floating around the air purification device, the space will become a comfortable space where people are less likely to get sick.

ところで、人体は、一定量以上の紫外線が照射されると、紫外線の照射された部位に火傷などの傷害を負う。したがって、空気清浄装置は、人の立ち入る空間に人体に有害な量の紫外線を漏洩させてはならない。特許文献1から特許文献3に開示されている空気清浄装置は、紫外線を遮光する部材(遮光部材)で紫外線光源を覆うことで、人体にとって有害な量の紫外線が人の立ち入る空間に漏洩することを防止している。 By the way, when the human body is irradiated with ultraviolet rays of a certain amount or more, injuries such as burns occur in the areas irradiated with the ultraviolet rays. Therefore, the air purifying device must not leak ultraviolet rays in an amount harmful to the human body into a space where people enter. The air purifying devices disclosed in Patent Documents 1 to 3 cover the ultraviolet light source with a member that blocks ultraviolet rays (shading member), thereby preventing the amount of ultraviolet rays harmful to the human body from leaking into spaces where people enter. is prevented.

特開平11-63592号公報Japanese Patent Application Publication No. 11-63592 特開平8-312977号公報Japanese Patent Application Publication No. 8-312977 特開平9-141054号公報Japanese Patent Application Publication No. 9-141054

しかしながら、特許文献1から特許文献3に開示されている空気清浄装置は、遮光部材、紫外線光源、または、それら両方が通風路の一部を塞ぐように配置されていた。したがって、通風路を通る空気流を遮光部材または紫外線光源が妨げてしまい、その分通風路を通過する空気流の量とともに空気流に運ばれて通風路内を移動し紫外線が照射される病原体の数が減り、多くの数の病原体を短時間で減少させることできないという問題があった。 However, the air cleaning devices disclosed in Patent Documents 1 to 3 are arranged such that the light shielding member, the ultraviolet light source, or both of them block a part of the ventilation path. Therefore, the light shielding member or the ultraviolet light source obstructs the airflow passing through the ventilation duct, which increases the amount of airflow passing through the ventilation duct, as well as pathogens that are carried by the airflow and move within the ventilation duct and are irradiated with ultraviolet rays. There was a problem that the number of pathogens decreased and it was not possible to reduce a large number of pathogens in a short time.

そこで、本発明は、人の立ち入る空間に人体にとって有害な量の紫外線が漏洩することを防止するとともに、多くの数の病原体を短時間で減少させることができる空気清浄装置を提供することを目的とする。 SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an air purifying device that can prevent a harmful amount of ultraviolet rays from leaking into a space where people enter, and can also reduce a large number of pathogens in a short time. shall be.

本発明の空気清浄装置は、空気の通る通風路と、前記通風路の壁の内面側から前記通風路の壁の他の内面に向けて紫外線を照射する紫外線光源と、前記紫外線の照射領域の外に向かう前記紫外線を受けて吸収するとともに、空気流を通す遮蔽体とを備えることを特徴とする。 The air purifying device of the present invention includes a ventilation passage through which air passes, an ultraviolet light source that irradiates ultraviolet rays from an inner surface side of a wall of the ventilation passage toward another inner surface of the wall of the ventilation passage, and an ultraviolet light source that irradiates an ultraviolet ray irradiation area. It is characterized by comprising a shielding body that receives and absorbs the ultraviolet rays directed to the outside and allows airflow to pass through.

本発明の空気清浄装置によれば、人の立ち入る空間に人体にとって有害な量の紫外線が漏洩することを防止するとともに、多くの数の病原体を短時間で減少させることができる。 According to the air purifying device of the present invention, it is possible to prevent a harmful amount of ultraviolet rays from leaking into a space where people enter, and to reduce a large number of pathogens in a short time.

実施形態1に係る空気清浄装置を示す縦断面図である。1 is a longitudinal cross-sectional view showing an air cleaning device according to a first embodiment. 実施形態1に係る空気清浄装置を示す横断面図である。1 is a cross-sectional view showing an air cleaning device according to Embodiment 1. FIG. 実施形態1に係る空気清浄装置の縦断面図であり、通風路出口部分を拡大した図である。1 is a vertical cross-sectional view of the air purifying device according to Embodiment 1, and is an enlarged view of an outlet portion of a ventilation passage. 実施形態1に係る空気清浄装置の変形例1を示す縦断面図であり、通風路出口部分を拡大した図である。FIG. 7 is a vertical cross-sectional view showing Modification 1 of the air purifying device according to Embodiment 1, and is an enlarged view of the ventilation passage outlet portion. 実施形態1に係る空気清浄装置の変形例2を示す側面図である。FIG. 7 is a side view showing a second modification of the air purifying device according to the first embodiment. 実施形態1に係る空気清浄装置の変形例3を示す側面図である。FIG. 7 is a side view showing a third modification of the air purifying device according to the first embodiment. 実施形態1に係る空気清浄装置の変形例4を示す縦断面図であり、通風路出口部分を拡大した図である。It is a longitudinal sectional view showing modification 4 of the air purifying device according to Embodiment 1, and is an enlarged view of the ventilation passage outlet portion. 実施形態1に係る空気清浄装置の変形例5を示す横断面図である。7 is a cross-sectional view showing a fifth modification of the air purifying device according to the first embodiment. FIG. 実施形態2に係る空気清浄装置の縦断面図であり、通風路出口を拡大した図である。FIG. 3 is a vertical cross-sectional view of the air purifying device according to Embodiment 2, and is an enlarged view of the ventilation passage outlet. 実施形態2に係る空気清浄装置の変形例1を示す縦断面図であり、通風路出口を拡大した図である。It is a longitudinal sectional view showing modification 1 of the air purifying device according to Embodiment 2, and is an enlarged view of the ventilation passage outlet. 実施形態2に係る空気清浄装置の変形例2を示す縦断面図であり、通風路出口を拡大した図である。FIG. 7 is a vertical cross-sectional view showing a second modification of the air purifying device according to the second embodiment, and is an enlarged view of the ventilation passage outlet. 実施形態2に係る空気清浄装置の変形例3を示す縦断面図であり、通風路出口を拡大した図である。It is a longitudinal sectional view showing modification 3 of the air cleaning device according to Embodiment 2, and is an enlarged view of the ventilation passage outlet. 実施形態3に係る空気清浄装置を示す縦断面図である。FIG. 7 is a longitudinal cross-sectional view showing an air cleaning device according to a third embodiment. 実施形態5に係る空気清浄機を示す縦断面図である。FIG. 7 is a longitudinal cross-sectional view showing an air cleaner according to Embodiment 5. 実施形態5に係る空気清浄機を示す横断面図である。FIG. 7 is a cross-sectional view showing an air cleaner according to Embodiment 5. 実施形態5に係る空気清浄機における遮蔽体の遮蔽割合と、通風路内を通る空気流の量との関係を示すグラフである。7 is a graph showing the relationship between the shielding ratio of the shielding body and the amount of airflow passing through the ventilation path in the air cleaner according to the fifth embodiment.

[実施形態1]
以下、本発明の実施形態1に係る空気清浄装置100の概略について、図1を参照して説明する。
[Embodiment 1]
Hereinafter, an outline of an air purifying device 100 according to Embodiment 1 of the present invention will be described with reference to FIG. 1.

図1に示す空気清浄装置100は、空気清浄装置100の周囲の空気中に浮遊する病原体CVを空気清浄装置100の内部に入れた後に紫外線UVを照射して死滅させて空気清浄装置100の外部に排出する。空気清浄装置100の周囲を浮遊する病原体CVは、ファンなどの装置(図示せず)が発生させる風、または、自然に発生する風などの空気流Fに運ばれて移動し、空気清浄装置100の内部を通り抜ける。空気清浄装置100が周囲の病原体CVを死滅させて排出することで、空気清浄装置100の周囲に浮遊する病原体CVの数が減る。人々の周囲を浮遊する病原体CVの数が少ない程、人々が病気に罹患する確率が小さくなる。このため、空気清浄装置100は、空気清浄装置100の周囲の病原体CVの数を減らすことで、人々が病気に罹患しにくい環境を作っている。 The air purification device 100 shown in FIG. to be discharged. Pathogens CV floating around the air purifying device 100 are carried by air currents F such as wind generated by a device such as a fan (not shown) or naturally occurring wind, and move around the air purifying device 100. pass through the interior of. Since the air purifying device 100 kills and discharges the surrounding pathogen CV, the number of pathogen CV floating around the air purifying device 100 is reduced. The fewer the number of pathogenic CVs floating around people, the lower the probability that people will contract the disease. Therefore, the air purifying device 100 creates an environment in which people are less likely to contract diseases by reducing the number of pathogens CV around the air purifying device 100.

一方で、空気清浄装置100の内部で照射されている紫外線UVも、空気流Fの通る空間90を通って、空気清浄装置100の外部に向かう。従来の空気清浄装置では、空気流の通る空間を通って、紫外線が空気清浄装置の外部に漏洩することを防止するために、空気流を妨げる部材を空気流の通る空間に設置する構造となっていた。空気流を妨げる部材は、具体的には板構造部材である。そして、板構造部材は、その幅広の面で空気流を受けるように空気流の通る空間に配置されていた。空気清浄装置の内部を通り抜ける空気流は、上記の部材によって妨げられることで、時間当たりの空気流の通る量が減少する。すると、それとともに空気流の通る空間を移動する病原体の時間当たりの数も減るため、多くの数の病原体に短時間で紫外線を照射することができなかった。 On the other hand, the ultraviolet rays irradiated inside the air purifier 100 also pass through the space 90 through which the air flow F passes, and head toward the outside of the air purifier 100. Conventional air purifiers have a structure in which a member that obstructs the air flow is installed in the space where the air flow passes in order to prevent ultraviolet rays from leaking outside the air purifier through the space where the air flow passes. was. The member that obstructs the air flow is specifically a plate structural member. The plate structural member is placed in a space through which the airflow passes so that its wide surface receives the airflow. The airflow passing through the interior of the air purifying device is obstructed by the above-mentioned member, thereby reducing the amount of airflow per hour. As a result, the number of pathogens moving through the airflow space per hour also decreases, making it impossible to irradiate a large number of pathogens with ultraviolet light in a short period of time.

空気清浄装置100は、人体に有害な量の紫外線UVを遮蔽体4によって人々の立ち入る空間に漏洩させないようにしつつ、多数の病原体CVを短時間で減少させるために、遮蔽体4が中空構造になっている。遮蔽体4が中空構造となっていることで、従来の板構造部材などのような空気流を妨げる部材とは異なり、空気流Fが遮蔽体4の中空部分を通ることができる。 In the air purifying device 100, the shielding body 4 has a hollow structure in order to prevent a harmful amount of ultraviolet rays from leaking into a space where people enter through the shielding body 4, and to reduce a large number of pathogens CV in a short time. It has become. Since the shielding body 4 has a hollow structure, the airflow F can pass through the hollow portion of the shielding body 4, unlike a member that obstructs airflow, such as a conventional plate structural member.

一方で、中空構造の遮蔽体4は空気流を通しやすい反面、その中空部分を通って、人体に有害な量の紫外線UVが漏洩する危険性がある。このために、紫外線光源2の発した紫外線UVおよびその反射した紫外線UVが遮蔽体4の紫外線UVを受ける部分に照射される位置関係となるように、紫外線光源2および遮蔽体4が配置される。 On the other hand, although the hollow shield 4 allows air to pass through easily, there is a risk that ultraviolet rays harmful to the human body may leak through the hollow portion. For this purpose, the ultraviolet light source 2 and the shielding body 4 are arranged so that the ultraviolet light UV emitted by the ultraviolet light source 2 and the reflected ultraviolet UV are irradiated onto the portion of the shielding body 4 that receives the ultraviolet UV. .

また、紫外線UVを照射する紫外線光源2が後述するように空気流Fを妨げない位置に設けられており、空気流Fの通る空間90には、遮蔽体4以外の構造体がない。このため、空気清浄装置100は、従来よりも多くの量の空気流Fを通り抜けさせることができる。したがって、空気清浄装置100は、従来よりも多くの数の病原体CVに紫外線UVを照射することができる。よって、空気清浄装置100は、より多くの数の病原体CVを短時間で死滅させて、その数を減少させることができる。 Moreover, the ultraviolet light source 2 that irradiates ultraviolet rays UV is provided at a position that does not obstruct the airflow F, as will be described later, and there is no structure other than the shield 4 in the space 90 through which the airflow F passes. Therefore, the air purifying device 100 can allow a larger amount of air flow F to pass through than before. Therefore, the air purifying device 100 can irradiate a larger number of pathogens CV with ultraviolet rays than in the past. Therefore, the air purifying device 100 can kill a larger number of pathogens CV in a short time and reduce the number of pathogens CV.

実施形態1の空気清浄装置100の構造の詳細について、図1から図3を参照して説明する。 The details of the structure of the air purifying device 100 of Embodiment 1 will be described with reference to FIGS. 1 to 3.

図1に示すように、空気清浄装置100は、通風路1を備え、紫外線光源2と、反射体3と、遮蔽体4とを通風路1に備える。 As shown in FIG. 1, the air purifying device 100 includes a ventilation passage 1, and the ventilation passage 1 includes an ultraviolet light source 2, a reflector 3, and a shielding body 4.

通風路1は、空気流Fの通る空間90を壁11で囲んだ構造体であり、通風路1内部と通風路1外部とを連通する通風路入口12および通風路出口13を有する。通風路入口12は、通風路1外部の空気流Fが通風路1内部に入るために通風路1に設けられ開口であり、通風路出口13は、通風路1内部の空気流Fが通風路1外部に出るために通風路1に設けられた開口である。通風路1の形状は、図1および図2に示すように四角形断面の角筒形状であるが、四角形以外の多角形断面を有する角筒形状、円筒形状、または、通風路1の長手方向の中途の位置で折れ曲がる形状の角筒もしくは円筒などでもよい。通風路1の壁11の材料には、亜鉛メッキなどのメッキならびポリ塩化ビニルなどの樹脂によるコーティングで表面処理をした鋼板、ステンレス鋼板、またはグラスウールなどが使用される。なお、樹脂は、紫外線UVが照射されると劣化する。このため、通風路1の壁11が樹脂を含む材料より製造されている場合、通風路1の壁11において紫外線UVが照射される箇所には、耐光性の塗料の塗布、または樹脂を含まない部材で覆うなどして通風路1の壁11を紫外線UVから保護する必要がある。 The ventilation passage 1 is a structure in which a space 90 through which an air flow F passes is surrounded by a wall 11, and has a ventilation passage entrance 12 and a ventilation passage exit 13 that communicate the inside of the ventilation passage 1 and the outside of the ventilation passage 1. The ventilation passage inlet 12 is an opening provided in the ventilation passage 1 so that the air flow F outside the ventilation passage 1 enters inside the ventilation passage 1, and the ventilation passage exit 13 is an opening provided in the ventilation passage 1 so that the air flow F inside the ventilation passage 1 enters the inside of the ventilation passage 1. 1 This is an opening provided in the ventilation passage 1 for exiting to the outside. The shape of the ventilation passage 1 is a rectangular tube shape with a quadrangular cross section as shown in FIGS. It may also be a rectangular tube or a cylinder that is bent in the middle. As the material for the wall 11 of the ventilation passage 1, a steel plate, a stainless steel plate, or glass wool, which has been surface-treated with galvanizing or other plating or coating with a resin such as polyvinyl chloride, is used. Note that the resin deteriorates when it is irradiated with ultraviolet rays. For this reason, if the wall 11 of the ventilation passage 1 is manufactured from a material containing resin, the parts of the wall 11 of the ventilation passage 1 that are irradiated with ultraviolet rays should be coated with a light-resistant paint or do not contain resin. It is necessary to protect the wall 11 of the ventilation passage 1 from ultraviolet rays by covering it with a material or the like.

図1および図2に示す紫外線光源2は、紫外線UVを発する光源である。紫外線光源2の発する紫外線UVは、例えば、病原体CVの遺伝子を損傷させることで、それらを死滅させる。紫外線光源2は、深紫外線などの様々な波長の紫外線UVを発することができる。紫外線光源2の発する紫外線UVの波長の選択には、空気清浄装置100の設置環境などの条件が考慮される。紫外線光源2としては、例えば、発光ダイオード、または水銀ランプ、プラズマ発光体などを使用することができる。 The ultraviolet light source 2 shown in FIGS. 1 and 2 is a light source that emits ultraviolet UV. The ultraviolet light UV emitted by the ultraviolet light source 2 kills the pathogen CV by damaging its genes, for example. The ultraviolet light source 2 can emit ultraviolet rays of various wavelengths, such as deep ultraviolet rays. When selecting the wavelength of the ultraviolet light UV emitted by the ultraviolet light source 2, conditions such as the installation environment of the air cleaning device 100 are taken into consideration. As the ultraviolet light source 2, for example, a light emitting diode, a mercury lamp, a plasma light emitter, or the like can be used.

紫外線光源2は、通風路1の壁11における一つの内面側に設けられて、通風路1の壁11の他の内面に向けて紫外線UVを照射する。これにより、紫外線UVが通風路1内部に照射される。紫外線光源2を通風路1の内面側に設けるとは、図1および図2に示すように、紫外線光源2の一部が壁11の内面から通風路1の内部に向かって突出するように紫外線光源2を通風路1の壁11に設けることを意味する。その他に、紫外線光源2を通風路1内部と接するように通風路1の壁11の内面に設けること、紫外線光源2を通風路1の壁11において通風路1内部から外側に向かって凹んだ位置に設けること、および、紫外線光源2を保持するブラケットなどの保持部品により紫外線光源2を保持させて、紫外線光源2が通風路1内部に配置されるように通風路1の壁11に保持部品を設けることなども含む。図1および図2に示す紫外線光源2は、紫外線光源2が設けられた壁に対向する壁に向かって紫外線UVを照射する。図1および図2以外でも、例えば、紫外線光源2は、壁11のうち、紫外線光源2が設けられた壁と交差する壁に向かって紫外線UVを照射するように設けられてもよい。 The ultraviolet light source 2 is provided on one inner surface of the wall 11 of the ventilation passage 1 and irradiates the other inner surface of the wall 11 of the ventilation passage 1 with ultraviolet light. As a result, the inside of the ventilation passage 1 is irradiated with ultraviolet rays. Providing the ultraviolet light source 2 on the inner surface side of the ventilation passage 1 means that the ultraviolet light source 2 is provided on the inner surface side of the ventilation passage 1 so that a part of the ultraviolet light source 2 protrudes from the inner surface of the wall 11 toward the inside of the ventilation passage 1, as shown in FIGS. This means that the light source 2 is provided on the wall 11 of the ventilation passage 1. In addition, the ultraviolet light source 2 is provided on the inner surface of the wall 11 of the ventilation passage 1 so as to be in contact with the inside of the ventilation passage 1, and the ultraviolet light source 2 is located in a recessed position on the wall 11 of the ventilation passage 1 from the inside of the ventilation passage 1 toward the outside. The ultraviolet light source 2 is held by a holding part such as a bracket that holds the ultraviolet light source 2, and the holding part is attached to the wall 11 of the ventilation passage 1 so that the ultraviolet light source 2 is placed inside the ventilation passage 1. It also includes providing. The ultraviolet light source 2 shown in FIGS. 1 and 2 irradiates ultraviolet light UV toward a wall opposite to the wall on which the ultraviolet light source 2 is provided. In addition to FIGS. 1 and 2, for example, the ultraviolet light source 2 may be provided so as to irradiate ultraviolet light toward a wall of the wall 11 that intersects with the wall on which the ultraviolet light source 2 is provided.

反射体3は、あらかじめ設定される紫外線UVの照射される領域(紫外線UVの照射領域UA)に紫外線UVが照射されるように通風路1に設けられる。具体的には、反射体3は、通風路1の壁11の内面に設けられて、紫外線光源2からの紫外線UVを反射する。例えば、アルミニウムまたは鉄等の金属製で鏡面を有する板、フッ素樹脂製やシリコン樹脂製の板などが、反射体3となる。また、通風路1の壁11がアルミニウムまたは鉄等の金属製であれば、通風路1の壁11の内側表面を鏡面加工することによって、通風路1の壁11の内側表面を反射体3とすることができる。さらに、通風路1の壁11の内側表面に紫外線UVなどの光を反射するフッ素樹脂やシリコンなどのコーティングといった表面処理を施すことで、反射体3を構成してもよい。なお、紫外線光源2が、紫外線UVの照射領域UAの全域に紫外線UVを照射することができれば、反射体3を必ずしも通風路1に設けなくてもよい。 The reflector 3 is provided in the ventilation passage 1 so that the ultraviolet rays UV are irradiated onto a preset area to be irradiated with the ultraviolet rays (UV irradiation area UA). Specifically, the reflector 3 is provided on the inner surface of the wall 11 of the ventilation passage 1 and reflects the ultraviolet light UV from the ultraviolet light source 2. For example, the reflector 3 is a plate made of metal such as aluminum or iron and has a mirror surface, or a plate made of fluororesin or silicone resin. Furthermore, if the wall 11 of the ventilation passage 1 is made of metal such as aluminum or iron, the inner surface of the wall 11 of the ventilation passage 1 can be mirror-finished to form the reflector 3. can do. Furthermore, the reflector 3 may be configured by subjecting the inner surface of the wall 11 of the ventilation passage 1 to a surface treatment such as coating with a fluororesin, silicone, or the like that reflects light such as ultraviolet rays. Note that, as long as the ultraviolet light source 2 can irradiate the entire UV irradiation area UA with ultraviolet rays, the reflector 3 does not necessarily have to be provided in the ventilation path 1.

図1に示すように、遮蔽体4は、紫外線UVの照射領域UAの内外を分ける境界であって、紫外線UVの照射領域UAから人の立ち入る空間、および/または、紫外線UVにより劣化する部品が配置されている空間に向かう紫外線UVの通る空間に設けられる。具体的には、図1に示す遮蔽体4は、通風路入口12および通風路出口13に設けられている。したがって、遮蔽体4は、通風路入口12または通風路出口13を通って通風路1内部から通風路1外部に向かう紫外線UVを受け、紫外線UVを吸収することで、人体の有害な量の紫外線UVが紫外線UVの照射領域UAの外である通風路1外部に漏洩するのを防止できる。なお、図1に示す遮蔽体4は、通風路入口12および通風路出口13に設けられているが、紫外線UVの照射領域UAの外に向かう紫外線UVを受けることができれば、どのような位置の設けてもよい。例えば、通風路入口12および通風路出口13よりも、通風路1外部側の位置または通風路1内部側の位置に遮蔽体4を設けてもよい。 As shown in FIG. 1, the shielding body 4 is a boundary separating the inside and outside of the ultraviolet ray UV irradiation area UA, and is a space where people can enter from the ultraviolet ray UV irradiation area UA and/or parts that deteriorate due to ultraviolet rays UV. It is installed in a space through which ultraviolet rays pass toward the space in which it is placed. Specifically, the shield 4 shown in FIG. 1 is provided at the ventilation passage entrance 12 and the ventilation passage exit 13. Therefore, the shielding body 4 receives the ultraviolet rays that go from the inside of the ventilation duct 1 to the outside of the ventilation duct 1 through the ventilation duct entrance 12 or the ventilation duct exit 13, and absorbs the ultraviolet rays, thereby reducing the amount of ultraviolet rays that are harmful to the human body. It is possible to prevent UV from leaking to the outside of the ventilation passage 1, which is outside the UV irradiation area UA. Note that the shield 4 shown in FIG. 1 is provided at the ventilation duct entrance 12 and the ventilation duct exit 13, but if it can receive the ultraviolet rays directed outside the irradiation area UA of the ultraviolet rays, it can be placed at any position. It may be provided. For example, the shield 4 may be provided at a position outside the ventilation passage 1 or inside the ventilation passage 1 with respect to the ventilation passage entrance 12 and the ventilation passage exit 13.

遮蔽体4は、紫外線UVを受けるとともに空気流Fが通る空気通路AP(図3等参照)を有する構造体である。遮蔽体4には、図3に示すような複数の羽板40により構成されるルーバーがある。遮蔽体4がルーバーの場合、空気通路APは、ルーバーを構成する各羽板40の間の空間であり、通風路1内部と通風路1外部とをつなげる空間である。通風路1内部に照射された紫外線UVの一部は、遮蔽体4に向かい、遮蔽体4の空気通路APを通り抜けて、通風路1外部に出ようとする。遮蔽体4を構成する各羽板40は、空気通路APを通り抜けようとする紫外線UVを受ける。 The shielding body 4 is a structure that receives ultraviolet rays UV and has an air passage AP (see FIG. 3, etc.) through which the air flow F passes. The shield 4 includes a louver made up of a plurality of blades 40 as shown in FIG. When the shielding body 4 is a louver, the air passage AP is a space between each wing plate 40 that constitutes the louver, and is a space that connects the inside of the ventilation passage 1 and the outside of the ventilation passage 1. A part of the ultraviolet rays UV irradiated inside the ventilation passage 1 heads toward the shield 4, passes through the air passage AP of the shield 4, and tries to exit to the outside of the ventilation passage 1. Each wing plate 40 constituting the shielding body 4 receives ultraviolet rays UV that are about to pass through the air passage AP.

羽板40は、空気通路APを通り抜けようとする紫外線UVが、空気通路APを通り抜けたときに基準量以下となっているように、羽板40で受けた紫外線UVを吸収する。羽板40は、受けた紫外線UVを吸収するために、例えば、フッ素系塗料またはシリコン系塗料またはアクリル系塗料などからなる紫外線UVの吸収率が高い塗料が塗布されたり、黒アルマイトなど紫外線UVの吸収率が高いメッキ処理を表面に施したり、または、紫外線UVを乱反射させる目的で微細な凹凸加工の表面処理を施したりして作られる。このようにして作られた羽板40は、JIS-C-7550―2014の表3に記載されているような、人体に傷害を与える紫外線UVの照度を考慮して定められた基準量以下となるように、受けた紫外線UVを吸収する。なお、空気通路APを通り抜けたときの紫外線UVの基準量は、空気清浄装置100を使用する国や地域など考慮して定めてもよい。例えば、一般社団法人日本照明工業会などの定めるガイドラインに沿うように定めてもよい。 The slats 40 absorb the ultraviolet rays UV received by the slats 40 so that the amount of ultraviolet rays UV that is about to pass through the air passage AP is below a reference amount when passing through the air passage AP. In order to absorb the received ultraviolet rays, the wing plate 40 may be coated with a paint having a high absorption rate of ultraviolet rays such as fluorine-based paint, silicone-based paint, or acrylic paint, or coated with a material that absorbs ultraviolet rays such as black alumite. It is made by plating the surface with a high absorption rate, or by applying a surface treatment with fine irregularities for the purpose of diffusely reflecting ultraviolet rays. The feather board 40 made in this way has a level below the standard amount determined in consideration of the illuminance of ultraviolet rays that cause injury to the human body, as listed in Table 3 of JIS-C-7550-2014. It absorbs the UV rays it receives. Note that the reference amount of ultraviolet rays UV when passing through the air passage AP may be determined in consideration of the country or region where the air purifier 100 is used. For example, it may be determined in accordance with guidelines established by the Japan Lighting Industry Association, etc.

遮蔽体4は、羽板40が受けて基準量以下とならなかった紫外線UVを反射させ、それとは異なる羽板40で受けて基準量以下となるように吸収するような構造としてもよい。具体的には、図3に示すように、各羽板40は、紫外線UVを基準量以下となるまで吸収できる回数だけ紫外線UVを反射させることができるように、空気流Fの方向に沿った方向の羽板40の長さ、および、各羽板40の設けられる間隔が、決められる。紫外線UVを複数回受けて反射させるような構造の遮蔽体4は、一度受けただけの紫外線UVを基準量以下となるように吸収する遮蔽体4と比較して、安価な塗料、材料、または表面処理で作ることができる利点がある。 The shielding body 4 may have a structure in which the ultraviolet rays UV that are not received by the wing board 40 are reflected, and are received by a different wing board 40 and absorbed so that the amount is below the reference amount. Specifically, as shown in FIG. 3, each wing plate 40 is arranged along the direction of the air flow F so that the ultraviolet rays can be reflected as many times as the ultraviolet rays can be absorbed until the ultraviolet rays become below the reference amount. The length of the blades 40 in the direction and the interval at which each blade 40 is provided are determined. The shielding body 4, which has a structure that receives and reflects ultraviolet rays multiple times, is made of cheaper paint, materials, or It has the advantage that it can be made by surface treatment.

実施形態1の空気清浄装置100の動作について、図1から図3を参照して説明する。 The operation of the air purifying device 100 of Embodiment 1 will be described with reference to FIGS. 1 to 3.

図1および図2に示すように、紫外線光源2は、通風路1内部で紫外線UVを発し、紫外線UVの照射領域UAを形成する。紫外線UVの照射領域UAは、紫外線光源2の発した紫外線UVが到達する領域と、反射体3によって反射される紫外線UVが到達する領域とを含む。病原体CVは、紫外線UVの照射領域UAを通ることで紫外線UVが照射されて死滅し、その数が減少する。 As shown in FIGS. 1 and 2, the ultraviolet light source 2 emits ultraviolet light UV inside the ventilation passage 1, and forms an ultraviolet UV irradiation area UA. The ultraviolet ray UV irradiation area UA includes an area where the ultraviolet rays UV emitted by the ultraviolet light source 2 reach, and an area where the ultraviolet rays UV reflected by the reflector 3 reach. Pathogens CV are irradiated with ultraviolet rays by passing through the ultraviolet rays UV irradiation area UA and are killed, thereby reducing their number.

図1に示すように、通風路入口12および通風路出口13に設けられた遮蔽体4の羽板40は、図3に示す空気通路APを通り抜けようとする紫外線UVを受けて、一定量の紫外線UVを吸収する。羽板40が受けたが吸収しきれなった紫外線UVは、羽板40が反射させる。図3では、空気通路APを通り抜ける紫外線UVは、羽板40の構造上、少なくとも二度反射する。具体的には、羽板40で一度受けて吸収しきれずに反射した紫外線UV1は、それとは異なる羽板40でもう一度受けて吸収されて反射する。二度反射した後の紫外線UV2は、基準量以下となり、基準量以下となった紫外線UV2のみが通風路1を通り抜ける。したがって、人体にとって有害な量の紫外線UVが通風路1外部に漏洩することを遮蔽体4が防止している。 As shown in FIG. 1, the blades 40 of the shielding body 4 provided at the air passage inlet 12 and the air passage outlet 13 receive a certain amount of ultraviolet rays that are about to pass through the air passage AP shown in FIG. Absorbs UV rays. The ultraviolet rays received by the blades 40 but not completely absorbed are reflected by the blades 40. In FIG. 3, the ultraviolet rays UV passing through the air passage AP are reflected at least twice due to the structure of the wing plate 40. Specifically, the ultraviolet ray UV1 that is once received by the blade 40 and reflected without being completely absorbed is received once again by a different blade 40, absorbed, and reflected. After being reflected twice, the ultraviolet light UV2 becomes less than the reference amount, and only the ultraviolet light UV2 that is less than the reference amount passes through the ventilation passage 1. Therefore, the shield 4 prevents ultraviolet rays harmful to the human body from leaking to the outside of the ventilation passage 1.

一方で、空気清浄装置100の周囲の空気中を浮遊する病原体CVは、通風路1内部に向かう空気流Fに運ばれて移動し、通風路入口12に設けられた遮蔽体4の空気通路APを通って通風路1内部に入る。 On the other hand, the pathogen CV floating in the air around the air purifier 100 is carried by the air flow F toward the inside of the ventilation passage 1 and moves to the air passage AP of the shield 4 provided at the entrance 12 of the ventilation passage. It passes through and enters the inside of ventilation passage 1.

通風路1内部に入った病原体CVは、紫外線UVの照射領域UAを通るように空気流Fに運ばれて紫外線UVが照射される。通風路1内部には、紫外線光源2が通風路1の内面側に設けられており、従来のように紫外線光源2が通風路1内部に突出して設けられている場合よりも、紫外線光源2が通風路1内部に入り込んでいる部分が小さいため、紫外線光源2が通風路1内部に入り込んでいる部分により空気流Fが妨げられることが生じにくい。したがって、従来よりも時間当たりに多くの量の空気流Fが通風路1内部を通り抜けることができる。通風路1内部を通り抜ける空気流Fの量が多い程、空気流Fに運ばれる病原体CVの数も多くなるので、紫外線UVの照射領域UAには、従来よりも多くの数の病原体CVが運ばれる。したがって、従来よりも多くの数の病原体CVが、紫外線UVを照射されて死滅する。すなわち、時間当たりに減少する病原体の数が従来よりも多くなる。 The pathogen CV that has entered inside the ventilation passage 1 is carried by the air flow F so as to pass through the ultraviolet ray UV irradiation area UA, and is irradiated with ultraviolet rays UV. Inside the ventilation passage 1, an ultraviolet light source 2 is provided on the inner surface side of the ventilation passage 1, and the ultraviolet light source 2 is provided on the inner surface side of the ventilation passage 1. Since the portion where the ultraviolet light source 2 enters the inside of the ventilation path 1 is small, the airflow F is unlikely to be obstructed by the portion where the ultraviolet light source 2 enters the inside of the ventilation path 1. Therefore, a larger amount of airflow F can pass through the inside of the ventilation passage 1 per hour than in the past. The larger the amount of air flow F passing through the ventilation passage 1, the greater the number of pathogen CVs carried by the air flow F. Therefore, a larger number of pathogen CVs are carried to the ultraviolet UV irradiation area UA than before. It will be done. Therefore, a greater number of pathogen CVs than conventionally are irradiated with ultraviolet UV and killed. In other words, the number of pathogens reduced per hour is greater than before.

紫外線UVの照射領域UAで死滅した病原体CVは、空気流Fとともに通風路出口13に設けられた遮蔽体4の通風路1を通り抜けて通風路1外部に排出される。空気清浄装置100が死滅させる病原体CVの数が増え、空気清浄装置100の周囲を浮遊する病原体CVの数が減ることで、空気清浄装置100の周囲には人々が病気に罹患しにくい環境が形成される。前述のように、空気清浄装置100は、従来よりも時間当たりに多くの数の病原体CVを減少させることができる。したがって、空気清浄装置100は空気清浄装置100の周囲に人々が病気に罹患しにくい環境をより短時間で形成することができる。 The pathogen CV killed in the ultraviolet UV irradiation area UA passes through the ventilation passage 1 of the shield 4 provided at the ventilation passage outlet 13 together with the air flow F and is discharged to the outside of the ventilation passage 1. The number of pathogen CVs that the air purifier 100 kills increases and the number of pathogen CVs floating around the air purifier 100 decreases, creating an environment around the air purifier 100 in which people are less likely to contract diseases. be done. As mentioned above, the air purification device 100 can reduce a greater number of pathogen CVs per hour than conventionally. Therefore, the air purifying device 100 can create an environment around the air purifying device 100 in which people are less likely to get sick in a shorter time.

以下に、実施形態1に係る空気清浄装置100の変形例1から変形例4の構造について図4から図7を参照して説明する。実施形態1に係る空気清浄装置100の変形例1から変形例4の空気清浄装置100は、遮蔽体4の構造が、図3に示す遮蔽体4と異なる。したがって、実施形態1に係る空気清浄装置100の変形例1から変形例4の説明は、それぞれの遮蔽体4の構造について行う。遮蔽体4以外の部分については、図1から図3を参照して説明したので、説明を省略する。 Below, structures of Modifications 1 to 4 of the air purifying device 100 according to Embodiment 1 will be described with reference to FIGS. 4 to 7. In the air purifying apparatuses 100 of Modifications 1 to 4 of the air purifying apparatus 100 according to the first embodiment, the structure of the shielding body 4 is different from the shielding body 4 shown in FIG. 3 . Therefore, the structure of each shielding body 4 will be described in Modifications 1 to 4 of the air purifying device 100 according to the first embodiment. Since the parts other than the shield 4 have been described with reference to FIGS. 1 to 3, their description will be omitted.

[実施形態1の変形例1]
図4に示すように、変形例1の遮蔽体4は、図3の遮蔽体4とは異なる形状の羽板40を有するルーバーである。図4の遮蔽体4の羽板40は、通風路1の長手方向の任意の位置より後流側が、通風路1幅方向に折れ曲がった形状となっている。
[Modification 1 of Embodiment 1]
As shown in FIG. 4, the shielding body 4 of Modification 1 is a louver having a wing plate 40 of a different shape from that of the shielding body 4 of FIG. The blade 40 of the shielding body 4 in FIG. 4 has a shape in which the downstream side from an arbitrary position in the longitudinal direction of the ventilation passage 1 is bent in the width direction of the ventilation passage 1.

[実施形態1の変形例2]
図5に示すように、変形例2の遮蔽体4は、格子状である。図5の遮蔽体4は、格子を構成する各枠44の間に設けられる空間が空気通路APとなっている。
[Modification 2 of Embodiment 1]
As shown in FIG. 5, the shielding body 4 of Modification 2 has a lattice shape. In the shielding body 4 of FIG. 5, the spaces provided between the respective frames 44 constituting the lattice serve as air passages AP.

[実施形態1の変形例3]
図6に示すように、変形例3の遮蔽体4は、多孔体である。具体的には、図6に示す遮蔽体4は、ハニカム構造体である。図6の遮蔽体4は、ハニカム構造体の各セル45の中空部分が空気通路APとなっている。
[Modification 3 of Embodiment 1]
As shown in FIG. 6, the shielding body 4 of Modification 3 is a porous body. Specifically, the shielding body 4 shown in FIG. 6 is a honeycomb structure. In the shielding body 4 of FIG. 6, the hollow portion of each cell 45 of the honeycomb structure serves as an air passage AP.

[実施形態1の変形例4]
図7に示すように、変形例4の遮蔽体4は、通風路1内部または通風路1内部の一部分を囲むように設けられる部材(囲み部材46)である。図7の遮蔽体4は、囲み部材46が通風路1内部を囲み、囲み部材46の囲む空間が空気通路APとなっている。囲み部材46には、通風路1の壁11とは別の部材、または紫外線UVを吸収する表面処理の施された通風路1の壁11が含まれる。
[Modification 4 of Embodiment 1]
As shown in FIG. 7, the shield 4 of Modification 4 is a member (enclosing member 46) provided to surround the inside of the ventilation path 1 or a part of the inside of the ventilation path 1. In the shielding body 4 of FIG. 7, an enclosing member 46 surrounds the inside of the ventilation passage 1, and a space surrounded by the enclosing member 46 serves as an air passage AP. The surrounding member 46 includes a member different from the wall 11 of the ventilation passage 1, or a wall 11 of the ventilation passage 1 that has been subjected to a surface treatment that absorbs ultraviolet rays.

[実施形態1の変形例5]
以下に、変形例5の構造について図8を参照して説明する。変形例5の空気清浄装置100は、通風路1の横断面構造を呈する少なくとも1つ以上の壁11に紫外線光源2がそれぞれ設けられている点が、図2に示す空気清浄装置100と異なる。図8に示す空気清浄装置100の紫外線光源2は、通風路1を構成する壁11の内、異なる2つの壁に設けられる。具体的には、一方の紫外線光源2が、他方の紫外線光源2の設けられる壁と交差する壁に設けられている。なお、図8に示す空気清浄装置100は、一方の紫外線光源2が、他方の紫外線光源2の設けられる壁と交差する壁に設けられているが、一方の紫外線光源2が、他方の紫外線光源2の設けられる壁と対向する壁に設けられてもよい。また、複数の紫外線光源2を1つの壁の異なる位置に設けてもよい。例えば、複数の紫外線光源2は、上下方向に沿って並ぶように1つの壁に設けられる。
[Modification 5 of Embodiment 1]
The structure of modification 5 will be described below with reference to FIG. 8. The air purifying device 100 of Modification 5 differs from the air purifying device 100 shown in FIG. 2 in that ultraviolet light sources 2 are provided on at least one or more walls 11 exhibiting a cross-sectional structure of the ventilation passage 1, respectively. The ultraviolet light sources 2 of the air purifying device 100 shown in FIG. 8 are provided on two different walls of the walls 11 forming the ventilation path 1. Specifically, one ultraviolet light source 2 is provided on a wall that intersects with the wall on which the other ultraviolet light source 2 is provided. Note that in the air purifying device 100 shown in FIG. 8, one ultraviolet light source 2 is provided on a wall that intersects with the wall on which the other ultraviolet light source 2 is provided; It may be provided on a wall opposite to the wall where No. 2 is provided. Further, a plurality of ultraviolet light sources 2 may be provided at different positions on one wall. For example, a plurality of ultraviolet light sources 2 are provided on one wall so as to be lined up along the vertical direction.

[実施形態2]
実施形態2の空気清浄装置200について、図9から図12を参照して説明する。
[Embodiment 2]
An air purifying device 200 according to a second embodiment will be described with reference to FIGS. 9 to 12.

図9から図12に示すように、実施形態2の空気清浄装置200は、遮蔽体4が、病原体CVを引き寄せて付着させる引き寄せ部41を有する点で、実施形態1の空気清浄装置100と異なる。実施形態2の説明は、実施形態1と主に異なる部分について行い、実施形態2と実施形態1との間で一致する部分については説明を省略する。 As shown in FIGS. 9 to 12, the air purifying device 200 of the second embodiment differs from the air purifying device 100 of the first embodiment in that the shielding body 4 includes a attracting portion 41 that attracts and attaches pathogen CV. . The second embodiment will be described mainly with respect to the parts that are different from the first embodiment, and the description of the parts that are the same between the second embodiment and the first embodiment will be omitted.

図9に示すように、遮蔽体4は、紫外線UVを受けて吸収するとともに病原体CVを引き寄せて付着させる、引き寄せ部41を有する。図9の遮蔽体4は、図3の遮蔽体4と同じ形状のルーバーであり、各羽板40が引き寄せ部41となっている。図3の遮蔽体4と同様にルーバーの各羽板40の間の空間は、空気通路APとなっている As shown in FIG. 9, the shielding body 4 has an attracting portion 41 that receives and absorbs ultraviolet rays, and also attracts and attaches pathogens CV. The shield 4 in FIG. 9 is a louver having the same shape as the shield 4 in FIG. Similar to the shield 4 in FIG. 3, the space between each louver blade 40 serves as an air passage AP.

一例として、引き寄せ部41は、放電する放電部(図示せず)と、帯電する帯電部(図示せず)とを有する。放電部は、放電することによって周辺の酸素をイオンに変化させる。イオンとなった酸素の作用で病原体CVは帯電する。帯電した病原体CVは、病原体CVと電気的に反対の極性で帯電する帯電部に引き寄せられる。そして、病原体CVは、帯電部に付着する。また、放電部と帯電部とを有する引き寄せ部41の代わりに、ゴムなどの絶縁材料製の引き寄せ部41を使用してもよい。絶縁材料製の引き寄せ部41は、接触する空気流Fとの摩擦により摩擦電気が生じて帯電し、引き寄せ部41と電気的に反対の極性で帯電した病原体CVを引き寄せて付着させるためである。 As an example, the attracting part 41 includes a discharging part (not shown) that discharges electricity and a charging part (not shown) that charges it. The discharge section changes surrounding oxygen into ions by discharging. The pathogen CV becomes electrically charged due to the action of ionized oxygen. The charged pathogen CV is attracted to the charged part that is electrically charged with the opposite polarity to the pathogen CV. The pathogen CV then adheres to the charged part. Moreover, instead of the attracting part 41 having a discharging part and a charging part, a attracting part 41 made of an insulating material such as rubber may be used. The attracting part 41 made of an insulating material is charged by frictional electricity generated by friction with the air flow F in contact with the attracting part 41, and is used to attract and attach the pathogen CV electrically charged with the opposite polarity to the attracting part 41.

また、引き寄せ部41は、病原体CVを引き寄せて付着させるのではなく、単に付着させるだけでもよい。病原体CVは、人々が咳またはくしゃみなどをして人々の体外に排出されるため、多くの数の病原体CVが、咳またはくしゃみなどで生じる飛沫、すなわち水分に包まれた状態で空気清浄装置200の周囲を浮遊している。水分に包まれた病原体CVを付着させるために、引き寄せ部41の表面に水分を付着させやすくする親水化処理を行ってもよい。引き寄せ部41の表面を親水化処理することで、病原体CVを包む水分と一緒に病原体CVを親水化処理された引き寄せ部41の表面に付着させることができる。また、引き寄せ部41は、表面を微小な凹凸形状とすることで、その凹凸部分に病原体CVを引っ掛けて付着させてもよい。 Further, the attracting portion 41 may simply cause the pathogen CV to adhere to it instead of attracting it to the pathogen CV. Pathogen CV is excreted from people's bodies when people cough or sneeze, so a large number of pathogen CV is collected in the air purifier 200 while being wrapped in droplets, that is, moisture, generated by coughing or sneezing. floating around. In order to attach the pathogen CV wrapped in moisture, a hydrophilic treatment may be performed to make it easier to attach moisture to the surface of the attracting portion 41. By subjecting the surface of the attracting portion 41 to hydrophilic treatment, the pathogen CV can be made to adhere to the hydrophilic surface of the attracting portion 41 together with the moisture surrounding the pathogen CV. Further, the attracting portion 41 may have a surface with minute irregularities so that the pathogen CV may be caught and attached to the irregularities.

引き寄せ部41が通風路1内部の有害な病原体CVを付着させることで、通風路1内部の病原体CVは、通風路1内部の紫外線UVの照射領域UAに留まる。このため、紫外線UVの照射領域UAを通り抜けようとする病原体CVが死滅するまで、その病原体CVを紫外線UVの照射領域UAに留めて紫外線UVを照射し続けることができる。したがって、通風路1外部に排出される病原体CVの数が引き寄せ部41を設けない場合よりも減り、短時間で病原体CVの数を減少させるのに寄与する。 The attracting portion 41 causes the harmful pathogens CV inside the ventilation passage 1 to adhere, so that the pathogen CV inside the ventilation passage 1 remains in the ultraviolet ray UV irradiation area UA inside the ventilation passage 1. Therefore, it is possible to keep the pathogen CV in the ultraviolet UV irradiation area UA and continue irradiating it with ultraviolet rays UV until the pathogen CV that tries to pass through the ultraviolet ray UV irradiation area UA is killed. Therefore, the number of pathogens CV discharged to the outside of the ventilation path 1 is reduced compared to the case where the attracting part 41 is not provided, and this contributes to reducing the number of pathogens CV in a short time.

以下に、実施形態2に係る空気清浄装置200の変形例1から変形例3の構造について図10から図12を参照して説明する。 Below, structures of modified examples 1 to 3 of the air purifying device 200 according to the second embodiment will be described with reference to FIGS. 10 to 12.

[実施形態2の変形例1]
図10に示すように、実施形態2に係る空気清浄装置200の変形例1の遮蔽体4は、紫外線UVを反射させるとともに病原体CVを引き寄せて付着させる引き寄せ部41と、引き寄せ部41よりも上流側または下流側に設けられ、紫外線UVを受けて吸収する遮光部42とを有する。引き寄せ部41は、遮光部42よりも通風路1内部側に設けられる。具体的には、図10に示す遮蔽体4は、図3に示す遮蔽体4と同じ形状のルーバーである。図示しないが、通風路入口12に遮蔽体4が設けられる場合、ルーバーを構成する各羽板40の上流側が遮光部42となり、各羽板40の下流側が引き寄せ部41となる。一方で、図10に示すように、通風路出口13に遮蔽体4が設けられる場合、各羽板40の上流側が引き寄せ部41となり、各羽板40の下流側が遮光部42となる。
[Modification 1 of Embodiment 2]
As shown in FIG. 10, the shielding body 4 of the first modification of the air purifying device 200 according to the second embodiment includes an attracting part 41 that reflects ultraviolet rays UV and attracts and attaches pathogens CV, and an attracting part 41 upstream of the attracting part 41. It has a light shielding part 42 that is provided on the side or downstream side and receives and absorbs ultraviolet rays. The drawing part 41 is provided closer to the inside of the ventilation passage 1 than the light shielding part 42 is. Specifically, the shield 4 shown in FIG. 10 is a louver having the same shape as the shield 4 shown in FIG. 3. Although not shown, when the shielding body 4 is provided at the air passage entrance 12, the upstream side of each blade 40 forming the louver becomes the light shielding part 42, and the downstream side of each blade 40 becomes the drawing part 41. On the other hand, as shown in FIG. 10, when the shielding body 4 is provided at the ventilation path outlet 13, the upstream side of each blade 40 becomes the drawing part 41, and the downstream side of each blade 40 becomes the light shielding part 42.

遮光部42は、実施形態1にて説明した遮蔽体4と同様に、空気通路APを通り抜けようとする紫外線UVが、空気通路APを通り抜けたときに基準量以外となっているように、受けた紫外線UVを吸収する。さらに、遮光部42は、一度受けて基準量以下とならなかった紫外線UVをある部位で反射させ、遮光部42の別の部位で受けて基準量以下となるように吸収する。 Similar to the shielding body 4 described in Embodiment 1, the light shielding part 42 receives ultraviolet rays so that the amount of ultraviolet rays trying to pass through the air passage AP is other than the reference amount when passing through the air passage AP. absorbs UV rays. Furthermore, the light shielding part 42 reflects the ultraviolet rays that have not been received below the reference amount at a certain part, and receives them at another part of the light shielding part 42 and absorbs them so that the amount becomes below the reference quantity.

実施形態2の変形例1の引き寄せ部41は、紫外線UVを反射するので、引き寄せ部41に付着した病原体CVには、引き寄せ部41が受ける紫外線UVに加えて、引き寄せ部41が反射させた紫外線UVが照射される利点がある。そして、引き寄せ部41が反射させた紫外線UVであって、遮蔽体4の空気通路APを通り抜けようとする紫外線UVは、遮光部42が受けて、基準量以下となるように吸収される。 Since the attracting part 41 of the first modification of the second embodiment reflects ultraviolet rays UV, the pathogen CV adhering to the attracting part 41 receives not only the ultraviolet rays UV that the attracting part 41 receives, but also the ultraviolet rays reflected by the attracting part 41. It has the advantage of being irradiated with UV. Then, the ultraviolet rays reflected by the attracting part 41 and attempting to pass through the air passage AP of the shielding body 4 are received by the light shielding part 42 and absorbed so as to be below a reference amount.

[実施形態2の変形例2]
図11に示すように、変形例2の遮蔽体4は、図10に示す遮蔽体4と同じように、病原体CVを引き寄せて付着させる引き寄せ部41および紫外線UVを受けて吸収する遮光部42を有し、引き寄せ部41が遮光部42よりも通風路1内部側に設けられる。しかし、遮光部42の数が引き寄せ部41の数よりも多い点で、図10に示す遮蔽体4と異なる。具体的には、図11に示す引き寄せ部41および遮光部42は両方とも複数の羽板40により構成されるルーバーであるが、引き寄せ部41のルーバーの羽板40の数よりも遮光部42のルーバーの羽板40の数の方が多い。
[Modification 2 of Embodiment 2]
As shown in FIG. 11, the shielding body 4 of Modification 2, like the shielding body 4 shown in FIG. The drawing part 41 is provided closer to the inside of the ventilation passage 1 than the light shielding part 42 is. However, it differs from the shield 4 shown in FIG. 10 in that the number of light shielding parts 42 is greater than the number of attracting parts 41. Specifically, although both the drawing part 41 and the light shielding part 42 shown in FIG. The number of louver blades 40 is greater.

[実施形態2の変形例3]
図12に示すように、変形例3の遮蔽体4の羽板40は、紫外線UVを反射する反射部43と、病原体CVを引き寄せて付着させる引き寄せ部41とを有する。ある羽板40の引き寄せ部41は、空気通路APを挟んで設けられた他の羽板40の反射部43と対向している。具体的には、遮蔽体4は、複数の羽板40により構成されるルーバーであり、各羽板40は2つの空気通路APに挟まれている。そして、一方の空気通路AP側に引き寄せ部41があり、他方の空気通路AP側に遮光部42がある。
[Modification 3 of Embodiment 2]
As shown in FIG. 12, the wing plate 40 of the shielding body 4 of Modification 3 has a reflecting part 43 that reflects ultraviolet rays UV, and an attracting part 41 that attracts and attaches the pathogen CV. The attracting portion 41 of one wing plate 40 faces the reflecting portion 43 of another wing plate 40 provided across the air passage AP. Specifically, the shield 4 is a louver made up of a plurality of blades 40, and each blade 40 is sandwiched between two air passages AP. There is a drawing part 41 on one air passage AP side, and a light shielding part 42 on the other air passage AP side.

実施形態2の変形例3では、引き寄せ部41が空気通路APを挟んで反射部43と対向するように設けられているので、空気通路APに入った病原体CVは、引き寄せ部41の空気通路APに面する部分に付着して反射部43で反射した紫外線UVに照射される。つまり、空気通路APに入った病原体CVにも、紫外線UVを照射することができる。このため、通風路1外部に排出される病原体CVの数を減らすことができる。 In the third modification of the second embodiment, the attracting part 41 is provided so as to face the reflecting part 43 across the air passage AP, so that the pathogen CV that has entered the air passage AP is transferred to the air passage AP of the attracting part 41. It is irradiated with ultraviolet rays that adhere to the portion facing the surface and reflected by the reflecting portion 43. In other words, the pathogen CV that has entered the air passageway AP can also be irradiated with ultraviolet rays. Therefore, the number of pathogens CV discharged to the outside of the ventilation path 1 can be reduced.

[実施形態3]
実施形態3の空気清浄装置300について、図13を参照して説明する。
[Embodiment 3]
An air purifying device 300 according to Embodiment 3 will be described with reference to FIG. 13.

図13に示すように、実施形態3の空気清浄装置300は、実施形態1の空気清浄装置100とは、通風路1の構造が異なる。詳細には、空気清浄装置300の通風路1は、紫外線UVの照射領域UAでの空気流FUAの速度が、紫外線UVの照射領域UAよりも上流側および/または下流側の空気流の速度よりも遅くなるような構造である。実施形態3の説明は、実施形態1および実施形態2と主に異なる部分について行い、実施形態3と実施形態1および実施形態2との間で一致する部分については説明を省略する。 As shown in FIG. 13, the air purifier 300 of the third embodiment differs from the air purifier 100 of the first embodiment in the structure of the ventilation passage 1. Specifically, in the ventilation passage 1 of the air purifying device 300, the speed of the airflow FUA in the ultraviolet ray UV irradiation area UA is higher than the speed of the airflow on the upstream side and/or downstream side of the ultraviolet ray UV irradiation area UA. The structure is such that it is also slow. Embodiment 3 will mainly be described with respect to parts that are different from Embodiments 1 and 2, and descriptions of parts that are the same between Embodiment 3 and Embodiments 1 and 2 will be omitted.

図13に示すように、実施形態3の空気清浄装置300の通風路1は、通風路入口12から通風路1内部に入った空気流F12が減速する減速領域DAと、減速領域DAの後流側にある紫外線UVの照射領域UAと、紫外線UVの照射領域UAを通った空気流FUAを増速させる増速領域AAとを有する。減速領域DAは、通風路1内部において、上流側よりも下流側が、流路断面積が大きくなる領域である。流路断面積は、壁11に囲まれた空気流Fの通る空間90の断面積を意味する。紫外線UVの照射領域UAは、具体的には、通風路1内部の紫外線光源2を有する空間であって、通風路1の壁11と遮蔽体4とで囲まれた領域である。増速領域AAは、通風路1内部において、上流側よりも下流側が、流路断面積が小さくなる領域である。なお、図13では、紫外線UVの照射領域UAは、流路断面積が上流側と下流側とで同じとして図示しているが、紫外線UVの照射領域UAの上流側および下流側の流路断面積は異なってもよい。また、図13の空気清浄装置300は、減速領域DAおよび増速領域AAの両方を有するが、用途によっては、減速領域DAまたは増速領域AAの何れか一方のみを有する構造としてもよい。 As shown in FIG. 13, the ventilation passage 1 of the air purifying device 300 of the third embodiment has a deceleration area DA where the air flow F12 entering the inside of the ventilation passage 1 from the ventilation passage entrance 12 is decelerated, and a downstream area of the deceleration area DA. It has an ultraviolet ray UV irradiation area UA on the side and an acceleration area AA that accelerates the air flow FUA passing through the ultraviolet ray UV irradiation area UA. The deceleration region DA is a region in which the cross-sectional area of the flow path is larger on the downstream side than on the upstream side within the ventilation path 1. The cross-sectional area of the flow path means the cross-sectional area of the space 90 surrounded by the wall 11 and through which the air flow F passes. Specifically, the ultraviolet irradiation area UA is a space having the ultraviolet light source 2 inside the ventilation passage 1, and is an area surrounded by the wall 11 of the ventilation passage 1 and the shielding body 4. The speed increasing area AA is an area where the cross-sectional area of the flow path is smaller on the downstream side than on the upstream side inside the ventilation path 1. In addition, in FIG. 13, the ultraviolet ray UV irradiation area UA is illustrated with the flow path cross-sectional area being the same on the upstream and downstream sides, but the flow path cross-sectional area on the upstream and downstream sides of the ultraviolet ray UV irradiation area UA is The areas may be different. Further, although the air purifying device 300 in FIG. 13 has both the deceleration area DA and the acceleration area AA, depending on the application, it may have a structure having only either the deceleration area DA or the acceleration area AA.

通風路1が減速領域DAを有することで、紫外線UVの照射領域UAでの空気流FUAの速度が、通風路入口12での空気流F12の速度よりも遅くなる。したがって、紫外線UVの照射領域UAに病原体CVが入ってから出るまでの時間が、減速領域DAを設けない場合よりも長くなり、より長い時間病原体CVに紫外線UVが照射される。死滅する病原体CVの数は、紫外線UVを照射する時間が長くなる程多くなるため、減速領域DAを設けることで、より多くの数の病原体CVを死滅させることができる。 Since the ventilation path 1 has the deceleration area DA, the speed of the airflow FUA in the ultraviolet ray UV irradiation area UA is slower than the speed of the airflow F12 at the ventilation path entrance 12. Therefore, the time from when the pathogen CV enters the ultraviolet UV irradiation area UA to when it exits becomes longer than in the case where the deceleration area DA is not provided, and the pathogen CV is irradiated with ultraviolet rays UV for a longer time. The number of pathogen CVs killed increases as the time for irradiation with ultraviolet UV increases, so by providing the deceleration area DA, a larger number of pathogen CVs can be killed.

通風路1が増速領域AAを有することで、通風路出口13での空気流F13の速度が、紫外線UVの照射領域UAでの空気流FUAの速度よりも速くなる。したがって、空気流Fの速度が一定以上であることを要求する機器等にも清浄化した空気流Fを供給するように空気清浄装置300を接続することができる。 Since the ventilation path 1 has the speed increasing area AA, the speed of the airflow F13 at the ventilation path exit 13 becomes faster than the speed of the airflow FUA in the ultraviolet UV irradiation area UA. Therefore, the air purifier 300 can be connected to devices that require the speed of the air flow F to be above a certain level so as to supply the purified air flow F.

[実施形態4]
実施形態4は、ビルなどの建物内の換気、建物内での空気の循環、または建物の室内の温度調整の用途のダクト(建物用ダクト)に接続され、図示しないが、上述の実施形態1の空気清浄装置100から実施形態3の空気清浄装置300までの何れかを有するダクト(空気清浄ダクト)である。空気清浄ダクトは、図1から図13に示す通風路1内部に建物用ダクトを流れる空気が通るように建物用ダクトの途中または出口部分に蛇腹状のホースなどの接続部材(図示せず)を介して接続される。このように空気清浄ダクトを建物用ダクトに接続すると、建物用ダクトを流れる空気が通風路1内部の紫外線UVの照射領域UAを通るため、建物用ダクトを流れる空気とともに運ばれる病原体CVが照射領域UAで紫外線UVに照射されて死滅し、その数が減少する。したがって、建物用ダクトは、病原体CVの数が少ない清浄化された空気を建物の部屋などに供給することができる。
[Embodiment 4]
Embodiment 4 is connected to a duct (building duct) for ventilation in a building such as a building, air circulation in a building, or temperature adjustment inside a building, and is similar to Embodiment 1 described above, although not shown. This is a duct (air cleaning duct) having any one of the air cleaning device 100 of Embodiment 3 to the air cleaning device 300 of Embodiment 3. The air purifying duct has a connecting member (not shown) such as a bellows-shaped hose in the middle or at the outlet of the building duct so that the air flowing through the building duct passes inside the ventilation path 1 shown in FIGS. 1 to 13. Connected via. When the air purifying duct is connected to the building duct in this way, the air flowing through the building duct passes through the ultraviolet UV irradiation area UA inside the ventilation duct 1, so pathogens CV carried with the air flowing through the building duct are exposed to the irradiation area. In UA, they are irradiated with ultraviolet light and killed, and their number decreases. Therefore, the building duct can supply purified air containing a small number of pathogens CV to a room of the building or the like.

一般的に、建物用ダクト内を通る空気流の量は、建物用ダクトの用途に応じた基準により空気流の速度の範囲で定められている。空気流の速度の範囲の基準は、例えば、建築設備設計基準令和3年度版に示されているが、基準で定められた空気流の速度が、紫外線UVの照射領域UAを通る空気流に乗った病原体CVの数を十分に減少させるのに必要となる一定値以下のゆっくりとした空気流の速度よりも速い場合が多い。したがって、図1に示す通風路入口12、通風路1内部、および通風路出口13の流路断面積が同じである空気清浄装置100を建物用ダクトに接続すると、建物用ダクトを流れる空気が減速されることなく、そのままの速度で通風路1内部を通り抜ける。このため、多くの数の病原体CVが死滅せずに紫外線UVの照射領域UAを通り抜けてしまう場合がある。 Generally, the amount of airflow passing through a building duct is determined by a range of airflow speeds based on standards depending on the use of the building duct. The standard for the range of airflow speed is, for example, shown in the Building Facility Design Standards 2021 edition, but the airflow speed specified by the standard is not the same as the airflow passing through the ultraviolet UV irradiation area UA. It is often faster than the slow air flow rate below a certain value required to sufficiently reduce the number of pathogen CVs carried. Therefore, when the air purifier 100 in which the cross-sectional areas of the ventilation duct entrance 12, the inside of the ventilation duct 1, and the ventilation duct exit 13 shown in FIG. 1 are the same is connected to a building duct, the air flowing through the building duct is decelerated. It passes through the inside of the ventilation passage 1 at the same speed without being affected. Therefore, a large number of pathogens CV may pass through the ultraviolet UV irradiation area UA without being killed.

多くの病原体CVが紫外線UVの照射領域UAを通り抜けることを防止するために、実施形態4の空気清浄ダクトは、実施形態3の空気清浄装置300(図13参照)のように、減速領域DAと増速領域AAとを備えることが特に好ましい。なお、図13の空気清浄装置300は、減速領域DAおよび増速領域AAは通風路1の一部として説明したが、減速領域DAおよび増速領域AAを通風路1とは別の部材としてもよい。具体的には、減速領域DAを有する接続部材(図示せず)および増速領域AAを有する接続部材(図示せず)を、それぞれ通風路入口12および通風路出口13に接続してもよい。 In order to prevent many pathogens CV from passing through the ultraviolet UV irradiation area UA, the air purifying duct of the fourth embodiment has a deceleration area DA and It is particularly preferable to include a speed increasing area AA. Note that in the air purifying device 300 in FIG. 13, the deceleration area DA and the speed increase area AA have been described as part of the ventilation passage 1, but the deceleration area DA and the speed increase area AA may also be members separate from the ventilation passage 1. good. Specifically, a connection member (not shown) having the deceleration area DA and a connection member (not shown) having the speed increase area AA may be connected to the ventilation passage inlet 12 and the ventilation passage outlet 13, respectively.

[実施形態5]
実施形態5は、上述の実施形態1の空気清浄装置100から実施形態3の空気清浄装置300までの何れかを有する空気清浄機400である。図14には、実施形態3の空気清浄装置300の形状を少し変更した空気清浄装置301を有する空気清浄機400を示す。実施形態5の空気清浄機400は、空気清浄装置301に加えて、通風路1内部を通る空気流Fを発生させる送風装置6を少なくとも有し、その他、通風路1内部に入る空気に浮遊する粉塵を捕集するフィルタなども使用する環境に応じて設けられる。
[Embodiment 5]
Embodiment 5 is an air cleaner 400 having any one of the air cleaner 100 of Embodiment 1 to the air cleaner 300 of Embodiment 3 described above. FIG. 14 shows an air cleaner 400 having an air cleaner 301 that is a slightly modified shape of the air cleaner 300 of Embodiment 3. In addition to the air purifier 301, the air cleaner 400 of Embodiment 5 has at least a blower device 6 that generates an air flow F passing through the ventilation path 1, and other components that float in the air entering the ventilation path 1. Filters to collect dust are also installed depending on the environment in which the device is used.

図13の空気清浄装置300で説明した減速領域DAおよび増速領域AAは、図14に示すように、それぞれ空気清浄機400の通風路入口12および通風路出口13の後流側の領域に設けられる。具体的には、空気清浄機400の通風路入口12の流路断面積は、通風路1内部の紫外線UVの照射領域UAでの流路断面積よりも小さくなっている。したがって、通風路1内部に入る空気流F22は、通風路入口12を通って、紫外線UVの照射領域UAに至る際に減速する。また、空気清浄機400には、通風路出口13から出た空気流F23を案内する案内部材15が通風路出口13の後流側に設けられている。案内部材15によって構成される空気流F23の通路15Pの流路断面積は、通風路1内部の紫外線UVの照射領域UAでの流路断面積よりも小さくなっている。したがって、通風路出口13を出た空気流F23は、空気流F23の通路15Pで増速する。 As shown in FIG. 14, the deceleration area DA and the acceleration area AA described in the air purifier 300 of FIG. It will be done. Specifically, the passage cross-sectional area of the ventilation passage entrance 12 of the air cleaner 400 is smaller than the passage cross-sectional area in the ultraviolet UV irradiation area UA inside the ventilation passage 1. Therefore, the air flow F22 entering the ventilation passage 1 is decelerated when passing through the ventilation passage entrance 12 and reaching the ultraviolet UV irradiation area UA. Further, the air cleaner 400 is provided with a guide member 15 on the downstream side of the ventilation passage outlet 13 for guiding the air flow F23 coming out of the ventilation passage outlet 13. The cross-sectional area of the passage 15P of the air flow F23 formed by the guide member 15 is smaller than the cross-sectional area of the passage in the ultraviolet UV irradiation area UA inside the ventilation passage 1. Therefore, the airflow F23 that has exited the ventilation passage outlet 13 increases its speed in the passageway 15P of the airflow F23.

送風装置6は、空気清浄装置100の通風路1内部に設けられる。送風装置6が空気流Fを発生させると、空気清浄機400の周囲の空気が病原体CVとともに通風路入口12を通って通風路1内部に入る。通風路1内部に入った病原体CVは、空気流Fに運ばれて移動し、紫外線UVの照射領域UAを通り紫外線UVを照射されて死滅した後に、通風路出口13を通って、空気清浄機400の外部に排出される。このように、空気清浄機400が周囲の病原体CVをその内部に入れて死滅させた後に外部に排出することで、空気清浄機400の周囲の病原体CVの数が減り、人々が病気に罹患しにくい環境が形成される。 The blower device 6 is provided inside the ventilation path 1 of the air purifying device 100. When the blower device 6 generates the air flow F, the air around the air cleaner 400 enters the inside of the ventilation path 1 through the ventilation path entrance 12 along with the pathogen CV. The pathogen CV that has entered the inside of the ventilation duct 1 is carried by the air flow F, moves, passes through the UV irradiation area UA, is irradiated with ultraviolet rays and is killed, and then passes through the ventilation duct outlet 13 and is transferred to the air purifier. 400 is discharged to the outside. In this way, the air purifier 400 kills the surrounding pathogens CV and then discharges them to the outside, which reduces the number of pathogens CV around the air purifier 400 and prevents people from getting sick. A difficult environment is created.

実施形態5の空気清浄機400も、図1から図13の空気清浄装置100と同様に、通風路1内部を流れる空気の量が多い程、その分多くの数の病原体CVを短時間で死滅させて、その数を減少させることができる。通風路1内部を通る空気流Fの量は、送風装置6の種類または性能と、図15に示すように通風路出口13での流路断面積EAにおいて遮蔽体4に塞がれている流路断面積MAの割合(遮蔽割合)により定まる。遮蔽割合が大きい程、図14に示す通風路1内部を通る空気流Fの量が少なくなる。 Similarly to the air purifier 100 of FIGS. 1 to 13, the air cleaner 400 of the fifth embodiment also kills more pathogens CV in a shorter time as the amount of air flowing inside the ventilation path 1 increases. The number can be reduced by The amount of air flow F passing through the ventilation passage 1 depends on the type or performance of the blower 6 and the flow blocked by the shield 4 in the passage cross-sectional area EA at the ventilation passage outlet 13, as shown in FIG. It is determined by the ratio of the road cross-sectional area MA (shielding ratio). The larger the shielding ratio is, the smaller the amount of airflow F passing through the inside of the ventilation path 1 shown in FIG. 14 is.

遮蔽割合と、空気流の量との関係について図16を参照して説明する。図16は、送風装置6がブロワの場合における、遮蔽割合と、遮蔽割合が50%での通風路1を通る空気流の量を1.0とした場合における、通風路1を通る空気流の量FRとの関係を示したグラフである。図16に示す遮蔽割合と、遮蔽割合が50%での通風路1を通る空気流の量FRとの関係は、各遮蔽割合における通風路1内部に生じる圧力損失の計測値と、ブロワのカタログに記載されたブロワの性能のデータとから算出した。 The relationship between the shielding ratio and the amount of airflow will be explained with reference to FIG. 16. FIG. 16 shows the shielding ratio and the airflow passing through the ventilation passage 1 when the shielding ratio is 50% and the amount of airflow passing through the ventilation passage 1 is 1.0 when the blower device 6 is a blower. It is a graph showing the relationship with quantity FR. The relationship between the shielding ratio shown in Fig. 16 and the amount of airflow FR passing through the ventilation passage 1 when the shielding ratio is 50% is based on the measured value of the pressure loss occurring inside the ventilation passage 1 at each shielding ratio and the blower catalog. It was calculated from the blower performance data described in .

図16に示すように、遮蔽割合が0%のときの空気流の量FRは、1.1程度である。しかし、空気流の量FRは、遮蔽割合が大きくなるにしたがって少なくなる。遮蔽割合が50%の場合、空気流の量FRは、遮蔽割合が0%のときと比較して、10%程度低くなる。そして、遮蔽割合が50%よりも大きくなると空気流の量FRはさらに少なくなり、多くの数の病原体CVを短時間で死滅させることができなくなる。したがって、多くの数の病原体CVを短時間で死滅させるために、遮蔽体4は、遮蔽割合が50%以下となるように設けることが好ましい。また、図16では、送風装置6がブロワである場合について例示したが、送風装置6が、例えば、ブロワ以外の遠心式送風機、軸流ファンなどの軸流式送風機、またはクロスフローファンなどの横流送風機の場合も遮蔽割合が50%よりも大きくなると通風路1を通る空気流の量がブロワと同等またはブロワよりも少なくなるため、遮蔽割合が50%よりも大きくならないように、遮蔽体4を設けることが好ましい。 As shown in FIG. 16, the airflow amount FR when the shielding ratio is 0% is about 1.1. However, the amount of airflow FR decreases as the shielding ratio increases. When the shielding ratio is 50%, the airflow amount FR is approximately 10% lower than when the shielding ratio is 0%. When the shielding ratio becomes greater than 50%, the airflow amount FR becomes even smaller, making it impossible to kill a large number of pathogens CV in a short period of time. Therefore, in order to kill a large number of pathogens CV in a short time, it is preferable that the shield 4 is provided so that the shielding ratio is 50% or less. Further, in FIG. 16, the case where the blower device 6 is a blower is illustrated, but the blower device 6 is, for example, a centrifugal blower other than a blower, an axial blower such as an axial fan, or a cross-flow blower such as a cross-flow fan. In the case of a blower, if the shielding ratio is greater than 50%, the amount of airflow passing through the ventilation path 1 will be equal to or less than that of the blower, so the shielding body 4 should be It is preferable to provide one.

以上、本発明の実施形態について説明したが、本発明の実施形態は、上述の実施形態に限られるものではなく、紫外線光源2が通風路1の内面側の位置に配置され、紫外線UVの照射領域UAの外に向かう紫外線UVが漏洩することを防止する遮蔽体4が空気流を通す構造であり、遮蔽体4が病原体CVを付着させる引き寄せ部41を有し、通風路1が、通風路1内部の上流側および/または下流側を通る空気流の速度よりも紫外線UVの照射領域UAを通る空気流の速度の方が遅くなる構造を有するという本発明の趣旨を逸脱しない範囲で適宜変更を加えることができる。 Although the embodiments of the present invention have been described above, the embodiments of the present invention are not limited to the above-described embodiments. A shielding body 4 that prevents leakage of ultraviolet rays directed outside the area UA has a structure through which airflow passes, and the shielding body 4 has an attracting part 41 to which pathogens CV adhere, and the ventilation passage 1 1. Modifications may be made as appropriate without departing from the spirit of the present invention, which has a structure in which the speed of airflow passing through the ultraviolet UV irradiation area UA is slower than the speed of airflow passing through the upstream side and/or downstream side of the interior. can be added.

1 :通風路
2 :紫外線光源
3 :反射体
4 :遮蔽体
6 :送風装置
41 :引き寄せ部
46 :囲み部材
100 :空気清浄装置
200 :空気清浄装置
300 :空気清浄装置
400 :空気清浄機
CV :病原体
UA :紫外線の照射領域
1: Ventilation path 2: Ultraviolet light source 3: Reflector 4: Shielding body 6: Air blower 41: Attraction section 46: Enclosing member 100: Air purifier 200: Air purifier 300: Air purifier 400: Air purifier CV: Pathogen UA: UV irradiation area

Claims (4)

空気中の病原体に紫外線を照射して前記病原体の数を減少させる空気清浄装置であって、
前記空気の通る通風路と、
前記通風路の壁の内面側から前記通風路の壁の他の内面に向けて紫外線を照射する紫外線光源と、
前記紫外線の照射領域の外に向かう前記紫外線を受けて吸収するとともに、空気流を通す遮蔽体と
を備える、空気清浄装置。
An air purifying device that reduces the number of pathogens in the air by irradiating them with ultraviolet light,
a ventilation passage through which the air passes;
an ultraviolet light source that irradiates ultraviolet light from an inner surface of a wall of the ventilation passage toward another inner surface of the wall of the ventilation passage;
An air purifying device comprising: a shielding body that receives and absorbs the ultraviolet rays directed outside the irradiation area of the ultraviolet rays, and allows airflow to pass through.
前記遮蔽体は、帯電することによって前記病原体を引き寄せる引き寄せ部を有し、
前記引き寄せ部は、前記紫外線を反射させる、請求項1に記載の空気清浄装置。
The shield has an attracting part that attracts the pathogen by being electrically charged,
The air purifying device according to claim 1, wherein the attracting portion reflects the ultraviolet rays.
前記通風路の前記紫外線の照射領域での断面積が、前記通風路の上流側および/または下流側の空気流の速度よりも、前記紫外線の照射領域での空気流の速度が遅くなる大きさである、請求項1に記載の空気清浄装置。 The cross-sectional area of the ventilation passage in the ultraviolet irradiation area is such that the speed of airflow in the ultraviolet ray irradiation area is slower than the speed of airflow on the upstream and/or downstream sides of the ventilation passage. The air cleaning device according to claim 1. 前記遮蔽体は、ルーバー、格子、多孔体、ハニカム構造体、または前記通風路内部の空気の通る空間を囲む囲み部材である、請求項1から請求項3の何れか一項に記載の空気清浄装置。
The air cleaner according to any one of claims 1 to 3, wherein the shield is a louver, a lattice, a porous body, a honeycomb structure, or an enclosing member that surrounds a space through which air passes inside the ventilation path. Device.
JP2022115963A 2022-07-21 2022-07-21 Air cleaner Pending JP2024013685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022115963A JP2024013685A (en) 2022-07-21 2022-07-21 Air cleaner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022115963A JP2024013685A (en) 2022-07-21 2022-07-21 Air cleaner

Publications (1)

Publication Number Publication Date
JP2024013685A true JP2024013685A (en) 2024-02-01

Family

ID=89718394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022115963A Pending JP2024013685A (en) 2022-07-21 2022-07-21 Air cleaner

Country Status (1)

Country Link
JP (1) JP2024013685A (en)

Similar Documents

Publication Publication Date Title
US11648331B2 (en) Systems, apparatus and methods for purifying air
US5656242A (en) Air purifier device
RU2280473C2 (en) Method and device for purifying air
EP0220050A2 (en) Apparatus for purifying air by ultraviolet radiation
KR102171915B1 (en) Ultraviolet Air Purifier
JP2006231007A (en) Ultraviolet ray horizontal irradiation type air sterilization apparatus, and method thereof
KR101654160B1 (en) Apparatus for sterilizing air
RU189481U1 (en) Installation for air disinfection
CN111256249A (en) Anti-aerosol virus central air-conditioning sterilization device and air-conditioning system
JP2018162898A (en) Air conditioning device
RU183709U1 (en) Air disinfection unit
JP6913983B1 (en) UV sterilizer and indoor reflux type UV sterilizer
JP2024013685A (en) Air cleaner
US20230158197A1 (en) Uv-light air purifying apparatus
KR20230009548A (en) UV-C LED Air Sterilization Apparatus
CN211011714U (en) Anti-aerosol virus central air-conditioning sterilization device and air-conditioning system
KR102625401B1 (en) Air sterilizer with uv-c blocking apparatus
RU161228U1 (en) AIR CONDITIONING DEVICE FOR RAILWAY CAR
RU160323U1 (en) AIR CONDITIONING DEVICE FOR RAILWAY CAR
RU161173U1 (en) AIR CONDITIONING DEVICE FOR RAILWAY CAR
RU214092U1 (en) Bactericidal irradiator for air disinfection
RU2744143C1 (en) Semi-open device for air disinfection in an air-conditioned room
KR102601645B1 (en) Air conditioning system with silencer module
US20230272928A1 (en) Pollution Control Devices Methods and Systems
RU161641U1 (en) AIR CONDITIONING DEVICE FOR RAILWAY CAR

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20220810