JP2024013386A - Optical film and display device - Google Patents

Optical film and display device Download PDF

Info

Publication number
JP2024013386A
JP2024013386A JP2022115440A JP2022115440A JP2024013386A JP 2024013386 A JP2024013386 A JP 2024013386A JP 2022115440 A JP2022115440 A JP 2022115440A JP 2022115440 A JP2022115440 A JP 2022115440A JP 2024013386 A JP2024013386 A JP 2024013386A
Authority
JP
Japan
Prior art keywords
layer
group
optical film
meth
acrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022115440A
Other languages
Japanese (ja)
Inventor
貴大 森永
Takahiro Morinaga
佳子 石丸
Yoshiko Ishimaru
真也 石川
Shinya Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Holdings Inc
Original Assignee
Toppan Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Holdings Inc filed Critical Toppan Holdings Inc
Priority to JP2022115440A priority Critical patent/JP2024013386A/en
Priority to PCT/JP2023/019769 priority patent/WO2024018757A1/en
Publication of JP2024013386A publication Critical patent/JP2024013386A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical film which has good color correction function and endures a long period of use, and furthermore which can be manufactured with good productivity by a roll-to-roll method.
SOLUTION: An optical film 1 is provided, comprising a sheet-like transparent substrate 20, a pigmented layer 10 formed on the transparent substrate, and a function layer 30. In the optical film 1, the pigmented layer is comprised of a die (A), an energy ray curable compound (B), a photoinitiator (C), and a radical scavenger (D). The die (A) contains at least one of a first color material, a second color material, and a third color material. When A represents the infrared absorption spectrum peak intensity at 780-825 cm-1 of the pigmented layer, and B represents the infrared absorption spectrum peak intensity at 780-825 cm-1 of a pentaerythritol tetraacrylate, the ratio A/B is 0.01 to 0.25 inclusive. The ultraviolet shield factor of at least one of the transparent substrate and the function layer is 85% or more when measured in conformity with JIS L1925 standard.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、光学フィルムに関する。この光学フィルムを用いた表示装置についても言及する。 TECHNICAL FIELD The present invention relates to an optical film. A display device using this optical film will also be mentioned.

表示装置は、室内外を問わず、外光が入射する環境下で使用されることが多い。表示装置に入射した外光は、表示装置の表面で反射され、表示品質の低下を引き起こす。中でも有機発光表示装置等の自発光表示装置は、電極及びその他の多くの金属配線が外光を強く反射し、表示品位が低下しやすい。
表示装置を低反射率化し、外光反射を抑制するために、表示装置の表示面側に円偏光板を配置することがある。
Display devices are often used in environments where external light is incident, whether indoors or outdoors. External light incident on the display device is reflected by the surface of the display device, causing a reduction in display quality. Among these, in self-luminous display devices such as organic light emitting display devices, electrodes and many other metal wirings strongly reflect external light, and display quality tends to deteriorate.
In order to reduce the reflectance of a display device and suppress reflection of external light, a circularly polarizing plate is sometimes placed on the display surface side of the display device.

一方、表示装置には一般に、高い色純度が求められる。色純度とは、表示装置の表示可能な色の広さを示し、色再現範囲とも呼ばれる。よって高い色純度であることは、色再現範囲が広く、色再現性が良いことを意味する。色再現性の向上手段としては、例えば、表示装置の白色光源に対しカラーフィルタを用いて色分離する手法、単色光源をカラーフィルタで補正して半値幅を狭くする手法が知られている。しかしながら、色純度を向上させたカラーフィルタは概して透過率が低く、輝度効率を低下させやすい。 On the other hand, display devices are generally required to have high color purity. Color purity indicates the range of colors that can be displayed by a display device, and is also called color reproduction range. Therefore, high color purity means a wide color reproduction range and good color reproducibility. As means for improving color reproducibility, for example, a method of separating colors using a color filter for a white light source of a display device, and a method of correcting a monochromatic light source with a color filter to narrow the half width are known. However, color filters with improved color purity generally have low transmittance and tend to reduce luminance efficiency.

上記に鑑み、カラーフィルタを用いずに色純度を向上させる方法が提案されている。
特許文献1には、反射防止層及び電磁波遮断層を有するフィルム上に色補正層を設けたディスプレイフィルタが開示されている。このディスプレイフィルタは、反射防止フィルムに色補正層を設けた構成であるため、製造にフォトリソグラフィ工程は必要なく、輝度効率も低下しにくい。
特許文献2には、色補正層に適した色材が開示されており、特定の構造を有する第1の色材と、420~480nmの波長域に吸収極大を有する第2の色材とを含む光学フィルタが提案されている。
In view of the above, methods have been proposed for improving color purity without using color filters.
Patent Document 1 discloses a display filter in which a color correction layer is provided on a film having an antireflection layer and an electromagnetic wave blocking layer. Since this display filter has a structure in which a color correction layer is provided on an antireflection film, a photolithography process is not required for manufacturing, and luminance efficiency is less likely to decrease.
Patent Document 2 discloses a coloring material suitable for a color correction layer, which includes a first coloring material having a specific structure and a second coloring material having an absorption maximum in a wavelength range of 420 to 480 nm. Optical filters have been proposed that include.

特開2007-226239号公報Japanese Patent Application Publication No. 2007-226239 特許第6142398号公報Patent No. 6142398

反射防止層などを有するフィルム上に色補正層を形成する場合、ロール・ツー・ロール方式で製造されるのが一般的である。この場合、製造工程内での傷つき防止のためある程度の表面硬度が必要になってくる。そのため一般にUV硬化材料などのエネルギー線硬化型化合物を含有する硬化物がバインダー材料として使用される。 When forming a color correction layer on a film having an antireflection layer or the like, it is generally manufactured by a roll-to-roll method. In this case, a certain degree of surface hardness is required to prevent damage during the manufacturing process. Therefore, a cured product containing an energy ray-curable compound, such as a UV-curable material, is generally used as the binder material.

一方、色補正層に用いる色材に含まれる機能性色素には、耐光性が高いとは言えないものが少なくない。本発明者らが検討した結果、エネルギー線硬化型化合物を含有する硬化物をバインダー材料に用いた色補正層の場合には、特に、機能性色素の耐光性が低下しやすいことがわかった。したがって、このような色補正層を有するディスプレイフィルタは、使用とともに機能性色素の機能が著しく低下し、色補正機能を十分に発揮できなくなる可能性がある。 On the other hand, many of the functional dyes contained in the coloring materials used in the color correction layer cannot be said to have high light resistance. As a result of studies conducted by the present inventors, it was found that in the case of a color correction layer using a cured product containing an energy ray curable compound as a binder material, the light resistance of the functional dye is particularly likely to deteriorate. Therefore, in a display filter having such a color correction layer, the function of the functional dye deteriorates significantly with use, and there is a possibility that the color correction function cannot be fully exhibited.

上述の事情を踏まえ、本発明は、色補正機能が良好で長期間の使用に耐え、さらにロール・ツー・ロール方式で生産性良く製造できる光学フィルムを提供することを目的とする。 In view of the above-mentioned circumstances, an object of the present invention is to provide an optical film that has a good color correction function, can withstand long-term use, and can be manufactured with high productivity by a roll-to-roll method.

本発明の第一の態様は、シート状の透明基材と、透明基材の第一面側に形成された着色層と、透明基材において、第一面と反対側の第二面上、または着色層上に形成された機能層とを備える光学フィルムである。
着色層は、色素(A)と、エネルギー線硬化型化合物(B)と、光重合開始剤(C)と、ラジカル捕捉剤(D)と、を含有する硬化物からなる。
色素(A)は、第一の色材、第二の色材、および第三の色材のうち少なくとも一つを含有する。第一の色材は、吸収極大波長が470~530nmの範囲内にあり、吸光スペクトルの半値幅が15~45nmである。第二の色材は、吸収極大波長が560~620nmの範囲内にあり、吸光スペクトルの半値幅が15~55nmである。第三の色材は、380~780nmの波長の範囲において最も透過率の低い波長が650~780nmの範囲内にある。
着色層の780~825cm-1における赤外線吸収スペクトルピーク強度をA、ペンタエリスリトールテトラアクリレートの780~825cm-1における赤外線吸収スペクトルピーク強度をBとしたとき、A/Bは0.01以上0.25以下である。
透明基材及び前記機能層の少なくとも一方の紫外線遮蔽率は、JIS L1925に準じた測定において85%以上である。
A first aspect of the present invention includes a sheet-like transparent base material, a colored layer formed on the first surface side of the transparent base material, and a second surface on the opposite side to the first surface of the transparent base material. Alternatively, it is an optical film including a functional layer formed on a colored layer.
The colored layer consists of a cured product containing a dye (A), an energy ray curable compound (B), a photopolymerization initiator (C), and a radical scavenger (D).
The dye (A) contains at least one of a first coloring material, a second coloring material, and a third coloring material. The first coloring material has an absorption maximum wavelength in the range of 470 to 530 nm, and a half width of the absorption spectrum of 15 to 45 nm. The second coloring material has an absorption maximum wavelength within the range of 560 to 620 nm, and a half width of the absorption spectrum of 15 to 55 nm. The third coloring material has the lowest transmittance within the wavelength range of 380 to 780 nm within the range of 650 to 780 nm.
When the infrared absorption spectrum peak intensity at 780 to 825 cm -1 of the colored layer is A, and the infrared absorption spectrum peak intensity at 780 to 825 cm -1 of pentaerythritol tetraacrylate is B, A/B is 0.01 or more and 0.25. It is as follows.
The ultraviolet shielding rate of at least one of the transparent base material and the functional layer is 85% or more when measured according to JIS L1925.

本発明の第二の態様は、第一の態様に係る光学フィルムを備える表示装置である。 A second aspect of the present invention is a display device including the optical film according to the first aspect.

本発明によれば、色補正機能が良好で長期間の使用に耐え、さらにロール・ツー・ロール方式で生産性良く製造できる光学フィルムを提供できる。 According to the present invention, it is possible to provide an optical film that has a good color correction function, can be used for a long period of time, and can be manufactured with high productivity using a roll-to-roll method.

本発明の一実施形態に係る光学フィルムの断面図である。FIG. 1 is a cross-sectional view of an optical film according to an embodiment of the present invention. 本発明の他の態様に係る光学フィルムの断面図である。FIG. 3 is a cross-sectional view of an optical film according to another embodiment of the present invention. 本発明の他の態様に係る光学フィルムの断面図である。FIG. 3 is a cross-sectional view of an optical film according to another embodiment of the present invention. 本発明の他の態様に係る光学フィルムの断面図である。FIG. 3 is a cross-sectional view of an optical film according to another embodiment of the present invention. 本発明の他の態様に係る光学フィルムの断面図である。FIG. 3 is a cross-sectional view of an optical film according to another embodiment of the present invention. 本発明の他の態様に係る光学フィルムの断面図である。FIG. 3 is a cross-sectional view of an optical film according to another embodiment of the present invention. 実施例において有機EL光源及びカラーフィルタを通して出力された白色表示のスペクトルを示したグラフである。It is a graph showing the spectrum of white display output through an organic EL light source and a color filter in an example. 実施例において有機EL光源及びカラーフィルタを通して出力された赤色表示時、緑色表示時、青色表示時の各々のスペクトルのグラフである。It is a graph of each spectrum at the time of red display, the time of green display, and the time of blue display output through an organic EL light source and a color filter in an example.

以下では、本発明の実施形態について添付図面を参照して説明する。全ての図面において、実施形態が異なる場合であっても、同一又は相当する部材には同一の符号を付し、共通する説明は省略する。 Embodiments of the present invention will be described below with reference to the accompanying drawings. In all the drawings, even if the embodiments are different, the same or corresponding members are denoted by the same reference numerals, and common explanations will be omitted.

[光学フィルム]
以下、本発明の一実施形態に係る光学フィルムについて、図1に基づき詳細に説明する。
[Optical film]
EMBODIMENT OF THE INVENTION Hereinafter, the optical film based on one Embodiment of this invention is demonstrated in detail based on FIG.

図1に示すように、光学フィルム1は、着色層10と、透明基材20と、機能層30と、を有する。機能層30は、低屈折率層31と、ハードコート層32と、を有する。すなわち、光学フィルム1は、着色層10の一方の面に位置する透明基材20を有し、着色層10、透明基材20、ハードコート層32、低屈折率層31が、この順で積層された積層体である。 As shown in FIG. 1, the optical film 1 includes a colored layer 10, a transparent base material 20, and a functional layer 30. The functional layer 30 includes a low refractive index layer 31 and a hard coat layer 32. That is, the optical film 1 has a transparent base material 20 located on one side of the colored layer 10, and the colored layer 10, the transparent base material 20, the hard coat layer 32, and the low refractive index layer 31 are laminated in this order. It is a laminate made of

光学フィルム1の厚さは、例えば、10~140μmが好ましく、15~120μmがより好ましく、20~100μmがさらに好ましい。光学フィルム1の厚さが上記下限値以上であると、光学フィルム1の強度をより高められる。光学フィルム1の厚さが上記上限値以下であると、光学フィルム1をより軽量にできるだけでなく、表示装置の薄型化に有利である。
以下、光学フィルム1を構成する各層について説明する。
The thickness of the optical film 1 is, for example, preferably 10 to 140 μm, more preferably 15 to 120 μm, and even more preferably 20 to 100 μm. When the thickness of the optical film 1 is at least the above lower limit, the strength of the optical film 1 can be further increased. When the thickness of the optical film 1 is less than or equal to the above upper limit value, it is advantageous not only to make the optical film 1 more lightweight but also to make the display device thinner.
Each layer constituting the optical film 1 will be explained below.

≪着色層≫
着色層10は、色素(A)と、エネルギー線硬化型化合物(B)と、光重合開始剤(C)と、ラジカル捕捉剤(D)とを含有する着色層形成用組成物の硬化物である。
≪Colored layer≫
The colored layer 10 is a cured product of a colored layer-forming composition containing a dye (A), an energy ray-curable compound (B), a photopolymerization initiator (C), and a radical scavenger (D). be.

着色層10の厚さは、例えば、0.5~10μmが好ましい。着色層10の厚さが上記下限値以上であると、着色層10の外観に異常を発生させることなく色素を含有でき、色素の光吸収性により反射特性や色再現性を向上させることができる。着色層10の厚さが上記上限値以下であると、表示装置の薄型化に有利である。
着色層10の厚さは、光学フィルム1の厚さ方向の断面を顕微鏡等で観察することにより求められる。
The thickness of the colored layer 10 is preferably, for example, 0.5 to 10 μm. When the thickness of the colored layer 10 is equal to or greater than the above lower limit, the colored layer 10 can contain a pigment without causing any abnormality in appearance, and the light absorption properties of the pigment can improve reflection characteristics and color reproducibility. . When the thickness of the colored layer 10 is less than or equal to the above upper limit value, it is advantageous for making the display device thinner.
The thickness of the colored layer 10 is determined by observing the cross section of the optical film 1 in the thickness direction using a microscope or the like.

<色素(A)>
色素(A)は、以下に示す第一の色材、第二の色材、および第三の色材のうち、少なくとも一つを含有する。
第一の色材の吸収極大波長は、470~530nmの範囲内にあり、吸光スペクトルの半値幅は、15~45nmである。吸収極大波長は、上記下限値未満であると青色発光の輝度効率を低下させやすく、上記上限値超であると緑色発光の輝度効率を低下させやすい。吸光スペクトルの半値幅は、上記下限値未満であると外光に対する反射特性への抑制効果が小さく、上記上限値超であると外光に対する反射特性は向上しやすいが、輝度効率を低下させやすい。
<Dye (A)>
The dye (A) contains at least one of the first coloring material, second coloring material, and third coloring material shown below.
The absorption maximum wavelength of the first coloring material is within the range of 470 to 530 nm, and the half width of the absorption spectrum is 15 to 45 nm. When the maximum absorption wavelength is less than the above lower limit value, it tends to reduce the luminance efficiency of blue light emission, and when it exceeds the above upper limit value, it tends to reduce the luminance efficiency of green light emission. If the half-width of the absorption spectrum is less than the above lower limit value, the effect of suppressing the reflection characteristics against external light will be small, and if it exceeds the above upper limit value, the reflection characteristics against external light will tend to improve, but the luminance efficiency will tend to decrease. .

第二の色材の吸収極大波長は、560~620nmの範囲内にあり、吸光スペクトルの半値幅は、15~55nmである。吸収極大波長は、上記下限値未満であると緑色発光の輝度効率を低下させやすく、上記上限値超であると赤色発光の輝度効率を低下させやすい。吸光スペクトルの半値幅は、上記下限値未満であると外光に対する反射特性への抑制効果が小さく、上記上限値超であると外光に対する反射特性は向上しやすいが、輝度効率を低下させやすい。 The absorption maximum wavelength of the second coloring material is within the range of 560 to 620 nm, and the half width of the absorption spectrum is 15 to 55 nm. When the absorption maximum wavelength is less than the above lower limit value, it tends to reduce the luminance efficiency of green light emission, and when it exceeds the above upper limit value, it tends to reduce the luminance efficiency of red light emission. If the half-width of the absorption spectrum is less than the above lower limit value, the effect of suppressing the reflection characteristics against external light will be small, and if it exceeds the above upper limit value, the reflection characteristics against external light will tend to improve, but the luminance efficiency will tend to decrease. .

第三の色材は、380~780nmの波長の範囲において最も透過率の低い波長が650~780nmの範囲内にある。第三の色材の380~780nmの波長の範囲において最も透過率の低い波長が、上記下限値未満であると赤色発光の輝度効率を低下させやすく、上記上限値超であると外光に対する反射特性への抑制効果が小さくなる。 The third coloring material has the lowest transmittance within the wavelength range of 380 to 780 nm within the range of 650 to 780 nm. If the wavelength with the lowest transmittance in the wavelength range of 380 to 780 nm of the third coloring material is less than the above lower limit value, the luminance efficiency of red light emission will be likely to decrease, and if it exceeds the above upper limit value, it will be difficult to reflect external light. The suppressing effect on characteristics becomes smaller.

色素(A)は、ポルフィリン構造、メロシアニン構造、フタロシアニン構造、アゾ構造、シアニン構造、スクアリリウム構造、クマリン構造、ポリエン構造、キノン構造、テトラジポルフィリン構造、ピロメテン構造、インジゴ構造のいずれかを有する化合物、又はその金属錯体を含有することが好ましい。特に、ポルフィリン構造やピロメテン構造、フタロシアニン構造を有する金属錯体や、スクアリリウム構造を有する化合物を用いることが、信頼性に優れるため、より好ましい。色素(A)は、これらの化合物又はその金属錯体を1種単独で含有していてもよく、2種以上を含有していてもよい。これらの化合物又はその金属錯体は、第一の色材に含まれていてもよく、第二の色材に含まれていてもよく、第三の色材に含まれていてもよく、これらの色材の2種以上に含まれていてもよい。 The dye (A) is a compound having any of the following: a porphyrin structure, a merocyanine structure, a phthalocyanine structure, an azo structure, a cyanine structure, a squarylium structure, a coumarin structure, a polyene structure, a quinone structure, a tetradiporphyrin structure, a pyrromethene structure, or an indigo structure; or a metal complex thereof. In particular, it is more preferable to use a metal complex having a porphyrin structure, a pyrromethene structure, or a phthalocyanine structure, or a compound having a squarylium structure because of their excellent reliability. The dye (A) may contain one kind of these compounds or metal complexes thereof, or may contain two or more kinds thereof. These compounds or metal complexes thereof may be contained in the first coloring material, in the second coloring material, in the third coloring material, or in the third coloring material. It may be included in two or more types of coloring materials.

<エネルギー線硬化型化合物(B)>
エネルギー線硬化型化合物(B)は、紫外線、電子線等の活性エネルギー線の照射により重合して硬化する樹脂である。例えば、単官能、2官能又は3官能以上の(メタ)アクリレートモノマー、ウレタン(メタ)アクリレート等を使用できる。ここで、「(メタ)アクリレート」とは、「アクリレート」及び「メタクリレート」の双方又はいずれか一方を意味するものとする。
<Energy ray curable compound (B)>
The energy ray curable compound (B) is a resin that is polymerized and cured by irradiation with active energy rays such as ultraviolet rays and electron beams. For example, monofunctional, bifunctional, trifunctional or more functional (meth)acrylate monomers, urethane (meth)acrylate, etc. can be used. Here, "(meth)acrylate" means both or one of "acrylate" and "methacrylate".

エネルギー線硬化型化合物(B)に含むことができる単官能の(メタ)アクリレート化合物の例としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、グリシジル(メタ)アクリレート、アクリロイルモルフォリン、N-ビニルピロリドン、テトラヒドロフルフリールアクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、リン酸(メタ)アクリレート、エチレンオキサイド変性リン酸(メタ)アクリレート、フェノキシ(メタ)アクリレート、エチレンオキサイド変性フェノキシ(メタ)アクリレート、プロピレンオキサイド変性フェノキシ(メタ)アクリレート、ノニルフェノール(メタ)アクリレート、エチレンオキサイド変性ノニルフェノール(メタ)アクリレート、プロピレンオキサイド変性ノニルフェノール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシプロピレングリコール(メタ)アクリレート、2-(メタ)アクリロイルオキシエチル-2-ヒドロキシプロピルフタレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルハイドロゲンフタレート、2-(メタ)アクリロイルオキシプロピルハイドロゲンフタレート、2-(メタ)アクリロイルオキシプロピルヘキサヒドロハイドロゲンフタレート、2-(メタ)アクリロイルオキシプロピルテトラヒドロハイドロゲンフタレート、ジメチルアミノエチル(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ヘキサフルオロプロピル(メタ)アクリレート、オクタフルオロプロピル(メタ)アクリレート、2-アダマンタン、アダマンタンジオールから誘導される1価のモノ(メタ)アクリレートを有するアダマンチルアクリレート等のアダマンタン誘導体モノ(メタ)アクリレート等が挙げられる。ここで、「(メタ)アクリロイル」とは、「アクリロイル」及び「メタクリロイル」の双方又はいずれか一方を意味するものとする。 Examples of monofunctional (meth)acrylate compounds that can be included in the energy beam curable compound (B) include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 2-hydroxybutyl (meth)acrylate. ) acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, t-butyl (meth)acrylate, glycidyl (meth)acrylate, acryloylmorpholine, N-vinylpyrrolidone, tetrahydrofurfuryl acrylate, cyclohexyl (meth)acrylate Acrylate, 2-ethylhexyl (meth)acrylate, isobornyl (meth)acrylate, isodecyl (meth)acrylate, lauryl (meth)acrylate, tridecyl (meth)acrylate, cetyl (meth)acrylate, stearyl (meth)acrylate, benzyl (meth)acrylate Acrylate, 2-ethoxyethyl (meth)acrylate, 3-methoxybutyl (meth)acrylate, ethyl carbitol (meth)acrylate, phosphoric acid (meth)acrylate, ethylene oxide modified phosphoric acid (meth)acrylate, phenoxy (meth)acrylate , ethylene oxide modified phenoxy (meth)acrylate, propylene oxide modified phenoxy (meth)acrylate, nonylphenol (meth)acrylate, ethylene oxide modified nonylphenol (meth)acrylate, propylene oxide modified nonylphenol (meth)acrylate, methoxydiethylene glycol (meth)acrylate, Methoxypolyethylene glycol (meth)acrylate, methoxypropylene glycol (meth)acrylate, 2-(meth)acryloyloxyethyl-2-hydroxypropyl phthalate, 2-hydroxy-3-phenoxypropyl (meth)acrylate, 2-(meth)acryloyl Oxyethyl hydrogen phthalate, 2-(meth)acryloyloxypropyl hydrogen phthalate, 2-(meth)acryloyloxypropyl hexahydrohydrogen phthalate, 2-(meth)acryloyloxypropyl tetrahydrohydrogen phthalate, dimethylaminoethyl (meth)acrylate, tri Monovalent mono(meth)acrylate derived from fluoroethyl (meth)acrylate, tetrafluoropropyl (meth)acrylate, hexafluoropropyl (meth)acrylate, octafluoropropyl (meth)acrylate, 2-adamantane, adamantanediol. Examples include adamantane derivative mono(meth)acrylates such as adamantyl acrylate. Here, "(meth)acryloyl" shall mean either or both of "acryloyl" and "methacryloyl."

エネルギー線硬化型化合物(B)に含むことができる2官能の(メタ)アクリレート化合物の例としては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート、エトキシ化ヘキサンジオールジ(メタ)アクリレート、プロポキシ化ヘキサンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エトキシ化ネオペンチルグリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート等のジ(メタ)アクリレート等が挙げられる。 Examples of bifunctional (meth)acrylate compounds that can be included in the energy ray-curable compound (B) include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, butanediol di(meth)acrylate, and hexane. Diol di(meth)acrylate, nonanediol di(meth)acrylate, ethoxylated hexanediol di(meth)acrylate, propoxylated hexanediol di(meth)acrylate, diethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, Tripropylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, ethoxylated neopentyl glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, hydroxypivalic acid neo Examples include di(meth)acrylates such as pentyl glycol di(meth)acrylate.

エネルギー線硬化型化合物(B)に含むことができる3官能以上の(メタ)アクリレート化合物の例としては、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、トリス2-ヒドロキシエチルイソシアヌレートトリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート等のトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート等の3官能の(メタ)アクリレート化合物や、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジトリメチロールプロパンペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンヘキサ(メタ)アクリレート等の3官能以上の多官能(メタ)アクリレート化合物や、これら(メタ)アクリレートの一部をアルキル基やε-カプロラクトンで置換した多官能(メタ)アクリレート化合物等が挙げられる。 Examples of trifunctional or higher functional (meth)acrylate compounds that can be included in the energy beam curable compound (B) include trimethylolpropane tri(meth)acrylate, ethoxylated trimethylolpropane tri(meth)acrylate, and propoxylated trimethylacrylate. Tri(meth)acrylates such as methylolpropane tri(meth)acrylate, tris-2-hydroxyethyl isocyanurate tri(meth)acrylate, glycerin tri(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol tri(meth)acrylate Trifunctional (meth)acrylate compounds such as acrylate, ditrimethylolpropane tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol tetra(meth)acrylate, etc. Trifunctional or higher functional polyfunctional (meth)acrylate compounds such as erythritol penta(meth)acrylate, ditrimethylolpropane penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, ditrimethylolpropane hexa(meth)acrylate, and these ( Examples include polyfunctional (meth)acrylate compounds in which a portion of meth)acrylate is substituted with an alkyl group or ε-caprolactone.

その他、エネルギー線硬化型化合物(B)に含むことができる樹脂として、ウレタン(メタ)アクリレートも使用できる。ウレタン(メタ)アクリレートとしては、例えば、ポリエステルポリオールにイソシアネートモノマー、もしくはプレポリマーを反応させて得られた生成物に水酸基を有する(メタ)アクリレートモノマーを反応させることによって得られるものを挙げることができる。 In addition, urethane (meth)acrylate can also be used as a resin that can be included in the energy ray curable compound (B). Examples of urethane (meth)acrylate include those obtained by reacting a (meth)acrylate monomer having a hydroxyl group with a product obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer. .

ウレタン(メタ)アクリレートの例としては、ペンタエリスリトールトリアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー、ジペンタエリスリトールペンタアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー、ペンタエリスリトールトリアクリレートトルエンジイソシアネートウレタンプレポリマー、ジペンタエリスリトールペンタアクリレートトルエンジイソシアネートウレタンプレポリマー、ペンタエリスリトールトリアクリレートイソホロンジイソシアネートウレタンプレポリマー、ジペンタエリスリトールペンタアクリレートイソホロンジイソシアネートウレタンプレポリマー等が挙げられる。 Examples of urethane (meth)acrylates include pentaerythritol triacrylate hexamethylene diisocyanate urethane prepolymer, dipentaerythritol pentaacrylate hexamethylene diisocyanate urethane prepolymer, pentaerythritol triacrylate toluene diisocyanate urethane prepolymer, dipentaerythritol pentaacrylate toluene diisocyanate Examples include urethane prepolymer, pentaerythritol triacrylate isophorone diisocyanate urethane prepolymer, dipentaerythritol pentaacrylate isophorone diisocyanate urethane prepolymer.

上述したその他エネルギー線硬化型化合物(B)に含むことができる単官能、2官能又は3官能以上の(メタ)アクリレートモノマー、ウレタン(メタ)アクリレート等は、1種を単独で用いてもよく、2種以上を併用してもよい。また、一部が重合したオリゴマーであってもよい。 The other monofunctional, bifunctional, trifunctional or higher functional (meth)acrylate monomers, urethane (meth)acrylates, etc. that can be included in the energy ray curable compound (B) mentioned above may be used alone, Two or more types may be used in combination. Alternatively, it may be a partially polymerized oligomer.

エネルギー線硬化型化合物(B)の含有量は、着色層形成用組成物の総質量に対して、20~80質量%が好ましく、30~70質量%がより好ましい。エネルギー線硬化型化合物(B)の含有量が上記下限値以上であると、退色抑制効果をより高められる。エネルギー線硬化型化合物(B)の含有量が上記上限値以下であると、着色層形成用組成物の取扱い性をより高められる。 The content of the energy ray-curable compound (B) is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, based on the total mass of the composition for forming a colored layer. When the content of the energy ray-curable compound (B) is at least the above lower limit, the effect of inhibiting discoloration can be further enhanced. When the content of the energy ray curable compound (B) is below the above upper limit, the handleability of the colored layer forming composition can be further improved.

<光重合開始剤(C)>
光重合開始剤(C)は、例えば、活性エネルギー線として紫外線を用いる場合、紫外線が照射された際にラジカルを発生するものである。
光重合開始剤(C)としては、例えば、ベンゾイン類(ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル等のベンゾインアルキルエーテル類等)、フェニルケトン類[例えば、アセトフェノン類(例えば、アセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン等)、2-ヒドロキシ-2-メチルプロピオフェノン等のアルキルフェニルケトン類;1-ヒドロキシシクロヘキシルフェニルケトン等のシクロアルキルフェニルケトン類等]、アミノアセトフェノン類{2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノアミノプロパノン-1、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1等}、アントラキノン類(アントラキノン、2-メチルアントラキノン、2-エチルアントラキノン、2-t-ブチルアントラキノン、1-クロロアントラキノン等)、チオキサントン類(2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジイソプロピルチオキサントン等)、ケタール類(アセトフェノンジメチルケタール、ベンジルジメチルケタール等)、ベンゾフェノン類(ベンゾフェノン等)、キサントン類、ホスフィンオキサイド類(例えば、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド等)等が挙げられる。これらの光重合開始剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
<Photopolymerization initiator (C)>
For example, when ultraviolet rays are used as active energy rays, the photopolymerization initiator (C) generates radicals when irradiated with ultraviolet rays.
Examples of the photopolymerization initiator (C) include benzoins (benzoin, benzoin alkyl ethers such as benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether), phenyl ketones [e.g., acetophenones (e.g., acetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, etc.), 2- Alkylphenyl ketones such as hydroxy-2-methylpropiophenone; cycloalkylphenyl ketones such as 1-hydroxycyclohexylphenyl ketone], aminoacetophenones {2-methyl-1-[4-(methylthio)phenyl]- 2-morpholinoaminopropanone-1, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1, etc.}, anthraquinones (anthraquinone, 2-methylanthraquinone, 2-ethylanthraquinone, 2- t-butylanthraquinone, 1-chloroanthraquinone, etc.), thioxanthones (2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone, 2,4-diisopropylthioxanthone, etc.), ketals (acetophenone dimethyl ketal, benzyl dimethyl ketal, etc.), benzophenones (benzophenone, etc.), xanthones, phosphine oxides (eg, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, etc.), and the like. These photopolymerization initiators may be used alone or in combination of two or more.

光重合開始剤(C)の含有量は、着色層形成用組成物の固形分に対して、0.01~20質量%が好ましく、0.01~5質量%がより好ましい。光重合開始剤(C)の含有量が上記下限値未満であると、硬化性が不足する。光重合開始剤(C)の含有量が上記上限値超であると、未反応の光重合開始剤(C)が残留し、耐熱性等の信頼性が悪化する。 The content of the photopolymerization initiator (C) is preferably 0.01 to 20% by mass, more preferably 0.01 to 5% by mass, based on the solid content of the composition for forming a colored layer. If the content of the photopolymerization initiator (C) is less than the above lower limit, curability will be insufficient. When the content of the photopolymerization initiator (C) exceeds the above upper limit value, unreacted photopolymerization initiator (C) remains and reliability such as heat resistance deteriorates.

<ラジカル捕捉剤(D)>
ラジカル捕捉剤(D)としては、アミン構造を有する樹脂が挙げられる。ここで、「アミン構造」とは、アンモニアの水素原子を炭化水素基又は芳香族原子団で置換した構造をいう。アミン構造としては、第一級アミン、第二級アミン、第三級アミンが挙げられ、第四級アンモニウムカチオンであってもよい。
<Radical scavenger (D)>
Examples of the radical scavenger (D) include resins having an amine structure. Here, the "amine structure" refers to a structure in which the hydrogen atom of ammonia is replaced with a hydrocarbon group or an aromatic atomic group. Examples of the amine structure include primary amines, secondary amines, and tertiary amines, and may also be quaternary ammonium cations.

ラジカル捕捉剤(D)は、色素(A)が酸化劣化する際のラジカルを捕捉し、自動酸化を抑制する働きを持ち、色素劣化(退色)を抑制する。ラジカル捕捉剤(D)として使用できるアミン構造を有する樹脂としては、分子量が2000以上のヒンダードアミン構造を有する樹脂が挙げられる。ヒンダードアミン構造を有する樹脂の分子量が2000以上であると、高い退色抑制効果が得られる。これは、着色層10内に留まる分子が多く、充分な退色抑制効果が得られるためであると考えられる。
ヒンダードアミン構造を有する樹脂の分子量は、例えば20万程度であるが、上限値は特に限定されない。
本明細書において、「分子量」とは、ゲル浸透クロマトグラフィー(GPC)でポリスチレンを標準物質として測定される「質量平均分子量」を意味する。
The radical scavenger (D) has the function of capturing radicals when the dye (A) undergoes oxidative deterioration, suppressing autooxidation, and suppressing dye deterioration (fading). Examples of the resin having an amine structure that can be used as the radical scavenger (D) include resins having a hindered amine structure having a molecular weight of 2000 or more. When the molecular weight of the resin having a hindered amine structure is 2000 or more, a high fading suppressing effect can be obtained. This is considered to be because many molecules remain in the colored layer 10, and a sufficient effect of suppressing fading can be obtained.
The molecular weight of the resin having a hindered amine structure is, for example, about 200,000, but the upper limit is not particularly limited.
As used herein, "molecular weight" means "mass average molecular weight" measured by gel permeation chromatography (GPC) using polystyrene as a standard substance.

本実施形態におけるラジカル捕捉剤(D)は、ラジカル捕捉能を有するアミン構造含有ポリマーであり、下記式(i)で表される構造単位を含む。 The radical scavenger (D) in this embodiment is an amine structure-containing polymer having radical scavenging ability, and includes a structural unit represented by the following formula (i).

Figure 2024013386000002
Figure 2024013386000002

上記式(i)において、R12は、水素原子、ハロゲン原子、カルボキシル基、スルホ基、シアノ基、ヒドロキシ基、炭素数10以下のアルキル基、炭素数10以下のアルコキシカルボニル基、炭素数10以下のアルキルスルホニルアミノカルボニル基、アリールスルホニルアミノカルボニル基、アルキルスルホニル基、アリールスルホニル基、炭素数10以下のアシルアミノスルホニル基、炭素数10以下のアルコキシ基、炭素数10以下のアルキルチオ基、炭素数10以下のアリールオキシ基、ニトロ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、炭素数10以下のアシルオキシ基、炭素数10以下のアシル基、カルバモイル基、スルファモイル基、炭素数10以下のアリール基、置換アミノ基、置換ウレイド基、置換ホスホノ基、又は複素環基を表し、R13は、水素原子又は炭素数30以下のアルキル基を表し、Xは、単結合、エステル基、炭素数30以下の脂肪族アルキル鎖、芳香族鎖、ポリエチレングリコール鎖、又はこれらを組み合わせてなる連結基を表し、いずれもスピロジオキサン環を含んでもよい。 In the above formula (i), R 12 is a hydrogen atom, a halogen atom, a carboxyl group, a sulfo group, a cyano group, a hydroxy group, an alkyl group having 10 or less carbon atoms, an alkoxycarbonyl group having 10 or less carbon atoms, or 10 or less carbon atoms. Alkylsulfonylaminocarbonyl group, arylsulfonylaminocarbonyl group, alkylsulfonyl group, arylsulfonyl group, acylaminosulfonyl group with 10 or less carbon atoms, alkoxy group with 10 or less carbon atoms, alkylthio group with 10 or less carbon atoms, 10 carbon atoms The following aryloxy groups, nitro groups, alkoxycarbonyloxy groups, aryloxycarbonyloxy groups, acyloxy groups with 10 or less carbon atoms, acyl groups with 10 or less carbon atoms, carbamoyl groups, sulfamoyl groups, aryl groups with 10 or less carbon atoms, Represents a substituted amino group, a substituted ureido group, a substituted phosphono group, or a heterocyclic group, R13 represents a hydrogen atom or an alkyl group having 30 or less carbon atoms, and X represents a single bond, an ester group, or a It represents an aliphatic alkyl chain, an aromatic chain, a polyethylene glycol chain, or a linking group consisting of a combination thereof, and any of them may contain a spirodioxane ring.

12としては、水素原子、ヒドロキシ基、炭素数10以下のアルキル基が好ましい。アルキル基の炭素数としては、1~6が好ましく、1~3がより好ましい。
13としては、水素原子、炭素数10以下のアルキル基が好ましい。アルキル基の炭素数としては、1~6が好ましく、1~3がより好ましい。
Xとしては、単結合又は炭素数30以下の脂肪族アルキル鎖が好ましい。脂肪族アルキル鎖の炭素数としては、10以下が好ましく、1~6が好ましく、2~4がより好ましい。
R 12 is preferably a hydrogen atom, a hydroxy group, or an alkyl group having 10 or less carbon atoms. The number of carbon atoms in the alkyl group is preferably 1 to 6, more preferably 1 to 3.
R 13 is preferably a hydrogen atom or an alkyl group having 10 or less carbon atoms. The number of carbon atoms in the alkyl group is preferably 1 to 6, more preferably 1 to 3.
As X, a single bond or an aliphatic alkyl chain having 30 or less carbon atoms is preferable. The number of carbon atoms in the aliphatic alkyl chain is preferably 10 or less, preferably 1 to 6, and more preferably 2 to 4.

本実施形態において、ラジカル捕捉剤(D)は、上記式(i)で表される構造単位と、以下に記す繰り返し単位のいずれかを有する共重合成分との共重合体を主な成分(成分のうち、質量%が最も多いもの)としてもよい。共重合体であることにより、その他成分との相溶性を制御することができる。 In this embodiment, the radical scavenger (D) is mainly composed of a copolymer of a structural unit represented by the above formula (i) and a copolymer component having any of the repeating units described below. Among them, the one with the highest mass %) may be used. By being a copolymer, compatibility with other components can be controlled.

繰り返し単位としては、例えば、(メタ)アクリレート系繰り返し単位、オレフィン系繰り返し単位、ハロゲン原子含有繰り返し単位、スチレン系繰り返し単位、酢酸ビニル系繰り返し単位、ビニルアルコール系繰り返し単位等が挙げられる。 Examples of repeating units include (meth)acrylate repeating units, olefin repeating units, halogen atom-containing repeating units, styrene repeating units, vinyl acetate repeating units, vinyl alcohol repeating units, and the like.

(メタ)アクリレート系繰り返し単位としては、例えば、直鎖または分岐アルキル基を側鎖に有する(メタ)アクリレート系モノマー由来の繰り返し単位、水酸基を側鎖に有する(メタ)アクリレート系モノマー由来の繰り返し単位等が挙げられる。 Examples of (meth)acrylate repeating units include repeating units derived from (meth)acrylate monomers having a linear or branched alkyl group in their side chains, and repeating units derived from (meth)acrylate monomers having a hydroxyl group in their side chains. etc.

上記直鎖または分岐アルキル基を側鎖に有する(メタ)アクリレート系モノマー由来の繰り返し単位としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸s-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル、(メタ)アクリル酸ミリスチル、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル等のモノマー由来成分が挙げられる。これらは単独でまたは2種以上併用してもよい。上記の中でも炭素数が1以上4以下の直鎖または分岐アルキル基を側鎖に有する(メタ)アクリレート系繰り返し単位を好適に用いることができる。 Examples of repeating units derived from (meth)acrylate monomers having a linear or branched alkyl group in their side chains include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, and ) Isopropyl acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, s-butyl (meth)acrylate, t-butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate , heptyl (meth)acrylate, octyl (meth)acrylate, isooctyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, nonyl (meth)acrylate, isononyl (meth)acrylate, (meth)acrylic acid Decyl, Isodecyl (meth)acrylate, Undecyl (meth)acrylate, Dodecyl (meth)acrylate, Tridecyl (meth)acrylate, Tetradecyl (meth)acrylate, Myristyl (meth)acrylate, Pentadecyl (meth)acrylate , hexadecyl (meth)acrylate, heptadecyl (meth)acrylate, and octadecyl (meth)acrylate. These may be used alone or in combination of two or more. Among the above, (meth)acrylate repeating units having a linear or branched alkyl group having 1 to 4 carbon atoms in the side chain can be preferably used.

上記水酸基を側鎖に有する(メタ)アクリル系モノマー由来の繰り返し単位としては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸ヒドロキシフェニル等のモノマー由来成分が挙げられる。これらは単独で用いても良く、2種以上を組み合わせて用いてもよい。 Examples of repeating units derived from (meth)acrylic monomers having a hydroxyl group in the side chain include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 4-hydroxy (meth)acrylate. Examples include components derived from monomers such as butyl, 6-hydroxyhexyl (meth)acrylate, and hydroxyphenyl (meth)acrylate. These may be used alone or in combination of two or more.

オレフィン系繰り返し単位としては、例えば、エチレン、プロピレン、イソプレン、ブタジエン等のオレフィン系モノマー由来成分が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the olefinic repeating unit include components derived from olefinic monomers such as ethylene, propylene, isoprene, and butadiene. These may be used alone or in combination of two or more.

ハロゲン原子含有繰り返し単位としては、例えば、塩化ビニル、塩化ビニリデン等のモノマー由来成分が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the halogen atom-containing repeating unit include components derived from monomers such as vinyl chloride and vinylidene chloride. These may be used alone or in combination of two or more.

スチレン系繰り返し単位としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン等のスチレン系モノマー由来成分が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
酢酸ビニル系の繰り返し単位としては、例えば、酢酸ビニル、プロピオン酸ビニルなどの飽和カルボン酸とビニルアルコールのエステル体が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
ビニルアルコール系繰り返し単位としては、例えば、ビニルアルコールが挙げられ、側鎖に1,2-グリコール結合を有していてもよい。
Examples of the styrene repeating unit include components derived from styrene monomers such as styrene, α-methylstyrene, and vinyltoluene. These may be used alone or in combination of two or more.
Examples of vinyl acetate-based repeating units include esters of vinyl alcohol and saturated carboxylic acids such as vinyl acetate and vinyl propionate. These may be used alone or in combination of two or more.
Examples of vinyl alcohol repeating units include vinyl alcohol, which may have a 1,2-glycol bond in its side chain.

共重合体は、ランダム共重合体、交互共重合体、ブロック共重合体、および、グラフト共重合体のいずれの構造を有していてもよい。共重合体の構造がランダム共重合体であれば、製造工程およびその他成分との調製が容易である。そのため、ランダム共重合体は、他の共重合体よりも好ましい。 The copolymer may have the structure of a random copolymer, an alternating copolymer, a block copolymer, or a graft copolymer. If the structure of the copolymer is a random copolymer, the manufacturing process and preparation with other components are easy. Therefore, random copolymers are preferred over other copolymers.

共重合体を得るための重合方法には、ラジカル重合を用いることができる。ラジカル重合は、工業的な生産が容易である点で好ましい。ラジカル重合は、溶液重合法、乳化重合法、塊状重合法、および、懸濁重合法などであってよい。ラジカル重合には、溶液重合法を用いることが好ましい。溶液重合法を用いることによって、共重合体における分子量の制御が容易である。 Radical polymerization can be used as a polymerization method to obtain the copolymer. Radical polymerization is preferred because industrial production is easy. Radical polymerization may be a solution polymerization method, an emulsion polymerization method, a bulk polymerization method, a suspension polymerization method, or the like. It is preferable to use a solution polymerization method for radical polymerization. By using the solution polymerization method, it is easy to control the molecular weight of the copolymer.

ラジカル重合では、上述したモノマーを重合溶剤によって希釈した後に、重合開始剤を加えてモノマーの重合を行ってもよい。
重合溶剤は、例えば、エステル系溶剤、アルコールエーテル系溶剤、ケトン系溶剤、芳香族系溶剤、アミド系溶剤、および、アルコール系溶剤などであってよい。エステル系溶剤は、例えば、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸イソブチル、酢酸t-ブチル、乳酸メチル、および、乳酸エチルなどであってよい。アルコールエーテル系溶剤は、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテル、3-メトキシ-1-ブタノール、および、3-メトキシ-3-メチル-1-ブタノールなどであってよい。ケトン系溶剤は、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、および、シクロヘキサノンなどであってよい。芳香族系溶剤は、例えば、ベンゼン、トルエン、および、キシレンなどであってよい。アミド系溶剤は、例えば、ホルムアミド、および、ジメチルホルムアミドなどであってよい。アルコール系溶剤は、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、s-ブタノール、t-ブタノール、ジアセトンアルコール、および、2-メチル-2-ブタノールなどであってよい。なお、上述した重合溶剤において、1種を単独で用いてもよいし、2種以上を混合して用いてもよい。
In radical polymerization, the monomers mentioned above may be diluted with a polymerization solvent and then a polymerization initiator may be added to polymerize the monomers.
The polymerization solvent may be, for example, an ester solvent, an alcohol ether solvent, a ketone solvent, an aromatic solvent, an amide solvent, or an alcohol solvent. The ester solvent may be, for example, methyl acetate, ethyl acetate, n-butyl acetate, isobutyl acetate, t-butyl acetate, methyl lactate, and ethyl lactate. Examples of alcohol ether solvents include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, 3-methoxy-1-butanol, and 3-methoxy- It may be 3-methyl-1-butanol or the like. The ketone solvent may be, for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. Aromatic solvents may include, for example, benzene, toluene, and xylene. The amide solvent may be, for example, formamide and dimethylformamide. The alcoholic solvent may be, for example, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, s-butanol, t-butanol, diacetone alcohol, and 2-methyl-2-butanol. . In addition, in the polymerization solvent mentioned above, one type may be used individually, and two or more types may be mixed and used.

ラジカル重合開始剤は、例えば、過酸化物およびアゾ化合物などであってよい。過酸化物は、例えば、ベンゾイルペルオキシド、t-ブチルパーオキシアセテート、t-ブチルパーオキシベンゾエート、および、ジ-t-ブチルパーオキシドなどであってよい。アゾ化合物は、例えば、アゾビスイソブチロニトリル、アゾビスアミジノプロパン塩、アゾビスシアノバレリックアシッド(塩)、および、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]などであってよい。 Radical polymerization initiators may be, for example, peroxides and azo compounds. The peroxide may be, for example, benzoyl peroxide, t-butyl peroxyacetate, t-butyl peroxybenzoate, di-t-butyl peroxide, and the like. Azo compounds include, for example, azobisisobutyronitrile, azobisamidinopropane salt, azobiscyanovaleric acid (salt), and 2,2'-azobis[2-methyl-N-(2-hydroxyethyl) propionamide] and the like.

ラジカル重合開始剤の使用量は、モノマーの合計を100質量部に設定した場合に、0.0001質量部以上20質量部以下であることが好ましく、0.001質量部以上15質量部以下であることがより好ましく、0.005質量部以上10質量部以下であることがさらに好ましい。ラジカル重合開始剤は、モノマーおよび重合溶剤に対して、重合開始前に添加されてもよいし、重合反応系中に滴下されてもよい。ラジカル重合開始剤をモノマーおよび重合溶剤に対して重合反応系中に滴下することは、重合による発熱を抑制することができる点で好ましい。 The amount of the radical polymerization initiator used is preferably 0.0001 parts by mass or more and 20 parts by mass or less, and 0.001 parts by mass or more and 15 parts by mass or less, when the total monomer is set to 100 parts by mass. More preferably, the amount is 0.005 parts by mass or more and 10 parts by mass or less. The radical polymerization initiator may be added to the monomer and the polymerization solvent before starting the polymerization, or may be added dropwise into the polymerization reaction system. It is preferable to drop the radical polymerization initiator into the polymerization reaction system with respect to the monomer and the polymerization solvent, since heat generation due to polymerization can be suppressed.

ラジカル重合の反応温度は、ラジカル重合開始剤および重合溶剤の種類によって適宜選択される。反応温度は、製造上の容易性、および、反応制御性の観点から、60℃以上110℃以下であることが好ましい。 The reaction temperature for radical polymerization is appropriately selected depending on the type of radical polymerization initiator and polymerization solvent. The reaction temperature is preferably 60° C. or higher and 110° C. or lower from the viewpoint of ease of production and reaction controllability.

ラジカル捕捉剤(D)が式(i)で表される構造単位を含むポリマーである場合、式(i)で表される構造単位の含有量は、エネルギー線硬化型化合物(B)を構成するモノマーの総モル量に対して、1~95モル%が好ましく、10~90モル%がより好ましい。式(i)で表される構造単位の含有量が上記数値範囲内であると、色素(A)の耐光性及び耐熱性が向上し、退色を抑制しやすい。 When the radical scavenger (D) is a polymer containing a structural unit represented by formula (i), the content of the structural unit represented by formula (i) constitutes the energy ray-curable compound (B). It is preferably 1 to 95 mol%, more preferably 10 to 90 mol%, based on the total molar amount of monomers. When the content of the structural unit represented by formula (i) is within the above numerical range, the light resistance and heat resistance of the dye (A) are improved and fading is easily suppressed.

着色層10には、溶剤(E)や添加剤(F)が含まれてもよい。以下、これらの詳細について説明する。
<溶剤(E)>
溶剤(E)は、着色層の形成時に必要であり、塗工後の乾燥においてその多くが揮発等により着色層から消失するが、一部は着色層に残留するため、その成分について記載する。
溶剤(E)としては、エーテル類、ケトン類、エステル類、セロソルブ類等が挙げられる。エーテル類としては、例えば、ジブチルエーテル、ジメトキシメタン、ジメトキシエタン、ジエトキシエタン、プロピレンオキシド、1,4-ジオキサン、1,3-ジオキソラン、1,3,5-トリオキサン、テトラヒドロフラン、アニソール又はフェネトール等が挙げられる。ケトン類としては、例えば、アセトン、メチルエチルケトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン又はエチルシクロヘキサノン等が挙げられる。エステル類としては、例えば、蟻酸エチル、蟻酸プロピル、蟻酸n-ペンチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン醸エチル、酢酸n-ペンチル又はγ-ブチロラクトン等が挙げられる。セロソルブ類としては、例えば、メチルセロソルブ、セロソルブ(エチルセロソルブ)、ブチルセロソルブ又はセロソルブアセテート等が挙げられる。溶剤(E)は、1種を単独で用いてもよく、2種以上を併用してもよい。
The colored layer 10 may contain a solvent (E) and an additive (F). These details will be explained below.
<Solvent (E)>
The solvent (E) is necessary when forming the colored layer, and most of it disappears from the colored layer by volatilization or the like during drying after coating, but some of it remains in the colored layer, so its components will be described.
Examples of the solvent (E) include ethers, ketones, esters, cellosolves, and the like. Examples of the ethers include dibutyl ether, dimethoxymethane, dimethoxyethane, diethoxyethane, propylene oxide, 1,4-dioxane, 1,3-dioxolane, 1,3,5-trioxane, tetrahydrofuran, anisole, and phenetol. Can be mentioned. Examples of ketones include acetone, methyl ethyl ketone, diethyl ketone, dipropyl ketone, diisobutyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, methylcyclohexanone, and ethylcyclohexanone. Examples of the esters include ethyl formate, propyl formate, n-pentyl formate, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, n-pentyl acetate, and γ-butyrolactone. Examples of cellosolves include methyl cellosolve, cellosolve (ethyl cellosolve), butyl cellosolve, and cellosolve acetate. One type of solvent (E) may be used alone, or two or more types may be used in combination.

溶剤(E)の含有量は、上記(A)ないし(D)を含む着色層形成用組成物の総質量に対して、20~80質量%が好ましく、30~70質量%がより好ましい。溶剤(E)の含有量が上記下限値以上であると、着色層形成用組成物の取扱い性をより高められる。溶剤(E)の含有量が上記上限値以下であると、着色層を形成するための時間を短縮できる。 The content of the solvent (E) is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, based on the total mass of the composition for forming a colored layer containing the above (A) to (D). When the content of the solvent (E) is at least the above lower limit, the handleability of the composition for forming a colored layer can be further improved. When the content of the solvent (E) is at most the above upper limit, the time for forming the colored layer can be shortened.

<添加剤(F)>
添加剤(F)の具体例として、一重項酸素クエンチャー、過酸化物分解剤、レベリング剤、消泡剤、酸化防止剤、紫外線吸収剤、光安定剤、光増感剤、導電材料等が挙げられる。
<Additive (F)>
Specific examples of additives (F) include singlet oxygen quenchers, peroxide decomposers, leveling agents, antifoaming agents, antioxidants, ultraviolet absorbers, light stabilizers, photosensitizers, conductive materials, etc. Can be mentioned.

一重項酸素クエンチャーとしては、ジアルキルジチオホスフェート、ジアルキルジチオカルバネート、ベンゼンジチオール、およびこれらの遷移金属錯体を例示できる。
着色層が一重項酸素クエンチャーを含有すると、色素(A)の耐光性および耐熱性を向上できる。
Examples of singlet oxygen quenchers include dialkyldithiophosphates, dialkyldithiocarbanates, benzenedithiols, and transition metal complexes thereof.
When the colored layer contains a singlet oxygen quencher, the light resistance and heat resistance of the dye (A) can be improved.

発明者らは、ロール・ツー・ロール方式での製造に耐えうる表面硬度を確保しつつ、機能性色材の耐光性を低下させにくい構成について種々検討した結果、着色層の780~825cm-1における赤外線吸収スペクトルピーク強度を所定の範囲にし、さらにラジカル捕捉剤を含有させることでこれを実現できることを突き止めた。具体的には、着色層10の780~825cm-1における赤外線吸収スペクトルピーク強度をA、ペンタエリスリトールテトラアクリレートの780~825cm-1における赤外線吸収スペクトルピーク強度をBとしたとき、A/Bを0.01以上0.25以下とすることで、表面硬度および耐光性の両方を良好とできる。詳細は後に実施例を用いて示すが、上記A/Bが0.01未満では硬化後の着色層の硬度が充分でなく、0.25を超えると、耐光性が充分でなくなる可能性が高まった。 The inventors investigated various configurations that would not reduce the light resistance of the functional coloring material while ensuring surface hardness that could withstand roll-to-roll manufacturing . We have found that this can be achieved by adjusting the infrared absorption spectrum peak intensity in a predetermined range and further containing a radical scavenger. Specifically, when the infrared absorption spectrum peak intensity at 780 to 825 cm -1 of the colored layer 10 is A, and the infrared absorption spectrum peak intensity at 780 to 825 cm -1 of pentaerythritol tetraacrylate is B, A/B is 0. By setting it to .01 or more and 0.25 or less, both surface hardness and light resistance can be made good. Details will be shown later using examples, but if the above A/B is less than 0.01, the hardness of the colored layer after curing will not be sufficient, and if it exceeds 0.25, there is a high possibility that the light resistance will not be sufficient. Ta.

本実施形態に係る着色層10が上記効果を奏する詳細な機序は完全に明らかにはなっていないが、780~825cm-1における赤外線吸収スペクトルピーク強度が二重結合の度合いの指標となることが知られている。本実施形態に係る着色層10においては、着色層の構造中に一定量の二重結合を確保して硬度を付与しつつ、二重結合の量が過剰になることを抑制することで、二重結合に光が当たった際に発生する、機能性色材を劣化させるラジカル等の発生を抑えつつ、さらに発生したラジカルについてもラジカル捕捉剤で捕捉することにより耐光性の低下を抑制していると考えられる。 Although the detailed mechanism by which the colored layer 10 according to this embodiment achieves the above effects is not completely clear, the infrared absorption spectrum peak intensity at 780 to 825 cm −1 is an indicator of the degree of double bonding. It has been known. In the colored layer 10 according to the present embodiment, a certain amount of double bonds is ensured in the structure of the colored layer to impart hardness, while suppressing the amount of double bonds from becoming excessive. While suppressing the generation of radicals that degrade functional coloring materials that are generated when light hits heavy bonds, the reduction in light resistance is also suppressed by capturing the generated radicals with a radical scavenger. it is conceivable that.

上記A/Bの値の調節には、エネルギー線硬化型化合物(B)に使用される材料として(メタ)アクリロイル基を2個のみ有する化合物を用いることが有効である。発明者らの検討では、エネルギー線硬化型化合物(B)に(メタ)アクリロイル基を2個のみ有する化合物が20重量%以上含まれていると、上記A/Bの好適範囲を簡便に実現できることが見出されている。 In order to adjust the value of A/B, it is effective to use a compound having only two (meth)acryloyl groups as the material used for the energy ray-curable compound (B). According to the inventors' studies, if the energy ray-curable compound (B) contains 20% by weight or more of a compound having only two (meth)acryloyl groups, the above preferred range of A/B can be easily achieved. has been found.

≪透明基材≫
透明基材20は、着色層10の一方の面に位置し、光学フィルム1を形成するシート状部材である。
透明基材20の材質としては、透光性を有する樹脂フィルムを採用することができる。透明基材20の形成材料としては、透明樹脂や無機ガラスを利用できる。透明樹脂としては、例えば、ポリオレフィン、ポリエステル、ポリアクリレート、ポリアミド、ポリイミド、ポリアリレート、ポリカーボネート、トリアセチルセルロース、ポリビニルアルコール、ポリ塩化ビニル、シクロオレフィンコポリマー、含ノルボルネン樹脂、ポリエーテルサルフォン、ポリサルフォン等が挙げられる。ポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン等が挙げられる。ポリエステルとしては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等が挙げられる。ポリアクリレートとしては、例えば、ポリメチルメタクリレート等が挙げられる。ポリアミドとしては、例えば、ナイロン6、ナイロン66等が挙げられる。この中でも、ポリエチレンテレフタレートからなるフィルム(PET)、トリアセチルセルロースからなるフィルム(TAC)、ポリメチルメタクリレートからなるフィルム(PMMA)、PETを除くポリエステルからなるフィルムを好適に利用できる。
透明基材20の厚さは、特に限定されないが、例えば、10~100μmが好ましい。
透明基材20の透過率としては、例えば、90%以上であることが好ましい。
≪Transparent base material≫
The transparent base material 20 is a sheet-like member located on one surface of the colored layer 10 and forming the optical film 1.
As the material of the transparent base material 20, a resin film having translucency can be used. As the material for forming the transparent base material 20, transparent resin or inorganic glass can be used. Examples of the transparent resin include polyolefin, polyester, polyacrylate, polyamide, polyimide, polyarylate, polycarbonate, triacetyl cellulose, polyvinyl alcohol, polyvinyl chloride, cycloolefin copolymer, norbornene-containing resin, polyether sulfone, polysulfone, etc. Can be mentioned. Examples of the polyolefin include polyethylene and polypropylene. Examples of the polyester include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and the like. Examples of polyacrylate include polymethyl methacrylate. Examples of the polyamide include nylon 6 and nylon 66. Among these, a film made of polyethylene terephthalate (PET), a film made of triacetyl cellulose (TAC), a film made of polymethyl methacrylate (PMMA), and a film made of polyester other than PET can be suitably used.
The thickness of the transparent base material 20 is not particularly limited, but is preferably, for example, 10 to 100 μm.
The transmittance of the transparent base material 20 is preferably 90% or more, for example.

透明基材20には、紫外線吸収能を付与してもよい。透明基材20の原料となる樹脂に、紫外線吸収剤を添加することで、透明基材20に紫外線吸収能を付与できる。 The transparent base material 20 may be provided with ultraviolet absorbing ability. By adding a UV absorber to the resin that is the raw material for the transparent base material 20, the transparent base material 20 can be given UV absorbing ability.

紫外線吸収剤としては、例えば、サリチル酸エステル系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、ベンゾトリアジン系紫外線吸収剤、シアノアクリレート系紫外線吸収剤等が挙げられる。
これらの紫外線吸収剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
Examples of the ultraviolet absorber include salicylic acid ester ultraviolet absorbers, benzophenone ultraviolet absorbers, benzotriazole ultraviolet absorbers, benzotriazine ultraviolet absorbers, cyanoacrylate ultraviolet absorbers, and the like.
These ultraviolet absorbers may be used alone or in combination of two or more.

透明基材20に紫外線吸収能を付与する場合、紫外線遮蔽率は、85%以上であることが好ましい。ここで、紫外線遮蔽率は、JIS L1925に準拠して測定される値であり、下記式により算出される。
紫外線遮蔽率(%)=100-波長290~400nmの紫外線の平均透過率(%)
紫外線遮蔽率が85%未満の場合、色素(A)の耐光性での退色抑制効果が低くなる。
When imparting ultraviolet absorption ability to the transparent base material 20, the ultraviolet shielding rate is preferably 85% or more. Here, the ultraviolet shielding rate is a value measured in accordance with JIS L1925, and is calculated by the following formula.
Ultraviolet shielding rate (%) = 100 - Average transmittance of ultraviolet light with a wavelength of 290 to 400 nm (%)
When the ultraviolet shielding rate is less than 85%, the fading suppressing effect on the light resistance of the dye (A) becomes low.

≪機能層≫
機能層30は、着色層10の一方又は他方の面に位置する。光学フィルムは、機能層30を有することで、種々の機能を発揮できる。
機能層30の機能としては、反射防止機能、防眩機能、帯電防止機能、防汚機能、強化機能、紫外線吸収機能(紫外線吸収能)等が挙げられる。
機能層30は、単層であってもよく、複数の層であってもよい。機能層30は、1種の機能を有していてもよく、2種以上の機能を有していてもよい。
≪Functional layer≫
The functional layer 30 is located on one or the other surface of the colored layer 10. By having the functional layer 30, the optical film can exhibit various functions.
Functions of the functional layer 30 include antireflection function, antiglare function, antistatic function, antifouling function, reinforcement function, ultraviolet absorption function (ultraviolet absorption ability), and the like.
The functional layer 30 may be a single layer or may be a plurality of layers. The functional layer 30 may have one type of function, or may have two or more types of functions.

光学フィルム1が反射防止機能を有する場合、機能層30は、反射防止層として機能する。反射防止層としては、後述するハードコート層32や防眩層34、透明基材20よりも低い屈折率を呈する低屈折率層31が挙げられる。低屈折率層31は、ハードコート層32や防眩層34、透明基材20の材質よりも屈折率が低い材質を機能層に採用することで形成できる。
低屈折率層31の屈折率調整のため、フッ化リチウム(LiF)、フッ化マグネシウム(MgF)、ヘキサフルオロアルミニウムナトリウム(氷晶石、クリオライト、3NaF・AlF、NaAlF)、フッ化アルミニウム(AlF)等の微粒子や、シリカ微粒子等を配合してもよい。シリカ微粒子としては、多孔質シリカ微粒子や中空シリカ微粒子等の粒子内部に空隙を有するものを用いることが、低屈折率層31の低屈折率化に有効である。また、低屈折率層31を形成する組成物(低屈折率層形成用組成物)には、着色層10で説明した光重合開始剤(C)や溶剤(D)、添加剤(E)を適宜配合してもよい。
低屈折率層31の屈折率は、1.20~1.55とすることが好ましい。
低屈折率層31の厚さは、特に限定されないが、例えば、40nm~1μmが好ましい。
When the optical film 1 has an antireflection function, the functional layer 30 functions as an antireflection layer. Examples of the antireflection layer include a hard coat layer 32, an antiglare layer 34, and a low refractive index layer 31 having a lower refractive index than the transparent base material 20, which will be described later. The low refractive index layer 31 can be formed by using a material having a lower refractive index than the materials of the hard coat layer 32, the anti-glare layer 34, and the transparent base material 20 for the functional layer.
To adjust the refractive index of the low refractive index layer 31, lithium fluoride (LiF), magnesium fluoride (MgF 2 ), sodium hexafluoroaluminum (cryolite, cryolite, 3NaF・AlF 3 , Na 3 AlF 6 ), Fine particles such as aluminum fluoride (AlF 3 ), fine silica particles, etc. may be blended. As the silica particles, it is effective to use particles having voids inside the particles, such as porous silica particles or hollow silica particles, to lower the refractive index of the low refractive index layer 31. In addition, the composition for forming the low refractive index layer 31 (composition for forming a low refractive index layer) contains the photopolymerization initiator (C), solvent (D), and additive (E) described in the colored layer 10. They may be blended as appropriate.
The refractive index of the low refractive index layer 31 is preferably 1.20 to 1.55.
The thickness of the low refractive index layer 31 is not particularly limited, but is preferably 40 nm to 1 μm, for example.

光学フィルム1が防眩機能を有する場合、機能層30は、防眩層34として機能する。防眩層34は、表面に微細な凹凸を有し、この凹凸で外光を散乱させ、映り込みを抑えて表示品位を向上させる層である。低屈折率層31と組み合わされる場合、低屈折率層31と防眩層34とで反射防止層を構成する。
防眩層34には、必要に応じて有機微粒子及び無機微粒子から選択される1種以上が含まれる。有機微粒子は、表面に微細な凹凸を形成し、外光を散乱させる機能を付与する材料である。有機微粒子としては、例えば、アクリル樹脂、ポリスチレン樹脂、スチレン-(メタ)アクリル酸エステル共重合体、ポリエチレン樹脂、エポキシ樹脂、シリコーン樹脂、ポリフッ化ビニリデン、ポリフッ化エチレン系樹脂等の透光性樹脂材料からなる樹脂粒子が挙げられる。屈折率や樹脂粒子の分散性を調整するために、材質(屈折率)の異なる2種類以上の樹脂粒子を混合して使用してもよい。
無機微粒子は、有機微粒子の沈降や凝集を調整する材料である。無機微粒子としては、例えば、シリカ微粒子や、金属酸化物微粒子、各種の鉱物微粒子等を使用することができる。シリカ微粒子としては、例えば、コロイダルシリカや(メタ)アクリロイル基等の反応性官能基で表面修飾されたシリカ微粒子等を使用することができる。金属酸化物微粒子としては、例えば、アルミナ(酸化アルミニウム)や酸化亜鉛、酸化スズ、酸化アンチモン、酸化インジウム、チタニア(二酸化チタン)、ジルコニア(二酸化ジルコニウム)等を使用することができる。鉱物微粒子としては、例えば、雲母、合成雲母、バーミキュライト、モンモリロナイト、鉄モンモリロナイト、ベントナイト、バイデライト、サポナイト、ヘクトライト、スチーブンサイト、ノントロナイト、マガディアイト、アイラライト、カネマイト、層状チタン酸、スメクタイト、合成スメクタイト等を使用することができる。鉱物微粒子は、天然物及び合成物(置換体、誘導体を含む)のいずれであってもよく、両者の混合物を使用してもよい。鉱物微粒子の中でも、層状有機粘土がより好ましい。層状有機粘土とは、膨潤性粘土の層間に有機オニウムイオンを導入したものをいう。有機オニウムイオンは、膨潤性粘土の陽イオン交換性を利用して有機化することができるものであれば制限されない。鉱物微粒子として、層状有機粘土鉱物を用いる場合、上述した合成スメクタイトを好適に使用できる。合成スメクタイトは、防眩層形成用の塗工液の粘性を増加させ、樹脂粒子及び無機微粒子の沈降を抑制して、防眩層34(機能層30)の表面の凹凸形状を調整する機能を有する。
When the optical film 1 has an anti-glare function, the functional layer 30 functions as an anti-glare layer 34. The anti-glare layer 34 has fine irregularities on its surface, and is a layer that uses the irregularities to scatter external light, suppress reflections, and improve display quality. When combined with the low refractive index layer 31, the low refractive index layer 31 and the anti-glare layer 34 constitute an antireflection layer.
The anti-glare layer 34 contains at least one kind selected from organic fine particles and inorganic fine particles as necessary. Organic fine particles are materials that form fine irregularities on the surface and provide the function of scattering external light. Examples of organic fine particles include translucent resin materials such as acrylic resin, polystyrene resin, styrene-(meth)acrylate copolymer, polyethylene resin, epoxy resin, silicone resin, polyvinylidene fluoride, and polyethylene fluoride resin. Examples include resin particles consisting of: In order to adjust the refractive index and the dispersibility of the resin particles, two or more types of resin particles having different materials (refractive indexes) may be mixed and used.
Inorganic fine particles are materials that adjust sedimentation and aggregation of organic fine particles. As the inorganic fine particles, for example, silica fine particles, metal oxide fine particles, various mineral fine particles, etc. can be used. As the silica fine particles, for example, colloidal silica, silica fine particles surface-modified with a reactive functional group such as a (meth)acryloyl group, etc. can be used. As the metal oxide fine particles, for example, alumina (aluminum oxide), zinc oxide, tin oxide, antimony oxide, indium oxide, titania (titanium dioxide), zirconia (zirconium dioxide), etc. can be used. Examples of mineral fine particles include mica, synthetic mica, vermiculite, montmorillonite, iron-montmorillonite, bentonite, beidellite, saponite, hectorite, stevensite, nontronite, magadiite, islarite, kanemite, layered titanate, smectite, and synthetic. Smectite etc. can be used. The mineral fine particles may be either natural products or synthetic products (including substituted products and derivatives), and a mixture of both may be used. Among the mineral fine particles, layered organic clay is more preferable. Layered organic clay refers to a swellable clay in which organic onium ions are introduced between the layers. The organic onium ion is not limited as long as it can be organicized using the cation exchange properties of the swelling clay. When using a layered organic clay mineral as the mineral fine particles, the above-mentioned synthetic smectite can be suitably used. Synthetic smectite has the function of increasing the viscosity of the coating liquid for forming the anti-glare layer, suppressing the sedimentation of resin particles and inorganic fine particles, and adjusting the uneven shape of the surface of the anti-glare layer 34 (functional layer 30). have

光学フィルム1が帯電防止機能を有する場合、機能層30は、帯電防止層として機能する。帯電防止層としては、例えば、アンチモンをドープした酸化錫(ATO)、スズをドープした酸化インジウム(ITO)等の金属酸化物微粒子、高分子型導電性組成物、4級アンモニウム塩等の帯電防止剤を含有する層が挙げられる。
帯電防止層は、機能層30の最表面に設けられてもよいし、機能層30と透明基材20との間に設けられてもよい。あるいは、上述した機能層30を構成するいずれかの層に帯電防止剤を配合することにより、帯電防止層を形成してもよい。帯電防止層を設ける場合、光学フィルムの表面抵抗値は、1.0×10~1.0×1012(Ω/cm)であることが好ましい。
When the optical film 1 has an antistatic function, the functional layer 30 functions as an antistatic layer. Examples of antistatic layers include metal oxide fine particles such as antimony-doped tin oxide (ATO) and tin-doped indium oxide (ITO), polymeric conductive compositions, and quaternary ammonium salts. A layer containing an agent can be mentioned.
The antistatic layer may be provided on the outermost surface of the functional layer 30 or may be provided between the functional layer 30 and the transparent base material 20. Alternatively, an antistatic layer may be formed by adding an antistatic agent to any layer constituting the functional layer 30 described above. When an antistatic layer is provided, the surface resistance value of the optical film is preferably 1.0×10 6 to 1.0×10 12 (Ω/cm).

光学フィルム1が防汚機能を有する場合、機能層30は、防汚層として機能する。防汚層は、撥水性及び撥油性の双方又はいずれか一方を付与することにより、防汚性を高めるものである。防汚層としては、珪素酸化物、フッ素含有シラン化合物、フルオロアルキルシラザン、フルオロアルキルシラン、フッ素含有珪素系化合物、パーフルオロポリエーテル基含有シランカップリング剤等の防汚剤を含有する層が挙げられる。
防汚層は、機能層30の最表面に設けられてもよく、上述した機能層30のうち、最表面となる層に防汚剤を配合することにより、防汚層を形成してもよい。
When the optical film 1 has an antifouling function, the functional layer 30 functions as an antifouling layer. The antifouling layer improves antifouling properties by imparting water repellency and/or oil repellency. Examples of the antifouling layer include layers containing antifouling agents such as silicon oxide, fluorine-containing silane compounds, fluoroalkylsilazane, fluoroalkylsilanes, fluorine-containing silicon compounds, and perfluoropolyether group-containing silane coupling agents. It will be done.
The antifouling layer may be provided on the outermost surface of the functional layer 30, or the antifouling layer may be formed by adding an antifouling agent to the outermost layer of the functional layer 30 described above. .

光学フィルム1が強化機能を有する場合、機能層30は、強化層として機能する。強化層は、光学フィルムの強度を高める層である。強化層としては、例えば、ハードコート層32が挙げられる。ハードコート層32としては、例えば、単官能、2官能又は3官能以上の(メタ)アクリレート、ウレタン(メタ)アクリレートを含むハードコート剤で形成された層が挙げられる。 When the optical film 1 has a reinforcing function, the functional layer 30 functions as a reinforcing layer. The reinforcing layer is a layer that increases the strength of the optical film. An example of the reinforcing layer is the hard coat layer 32. Examples of the hard coat layer 32 include a layer formed with a hard coat agent containing monofunctional, bifunctional, trifunctional or more functional (meth)acrylate, or urethane (meth)acrylate.

光学フィルム1が紫外線吸収能を有する場合、機能層30は、紫外線吸収層として機能する。紫外線吸収層としては、例えば、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-ヘキシルオキシフェノール等のトリアジン系、2-(2H-ベンゾトリアゾール-2-イル)-4-メチルフェノール等のベンゾトリアゾール系の紫外線吸収剤を含有する層が挙げられる。
紫外線吸収剤の含有量は、紫外線吸収層を形成する材料の総質量に対して、0.1~5質量%が好ましい。紫外線吸収剤の含有量が上記下限値以上であると、機能層30に充分な紫外線吸収能を付与できる。紫外線吸収剤の含有量が上記上限値以下であると、硬化成分の減少に伴う硬度不足を回避できる。
When the optical film 1 has ultraviolet absorption ability, the functional layer 30 functions as an ultraviolet absorption layer. As the ultraviolet absorbing layer, for example, triazine-based materials such as 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-hexyloxyphenol, 2-(2H-benzotriazole-2- Examples include a layer containing a benzotriazole-based ultraviolet absorber such as yl)-4-methylphenol.
The content of the ultraviolet absorber is preferably 0.1 to 5% by weight based on the total weight of the materials forming the ultraviolet absorbing layer. When the content of the ultraviolet absorber is at least the above lower limit, sufficient ultraviolet absorbing ability can be imparted to the functional layer 30. When the content of the ultraviolet absorber is at most the above upper limit, it is possible to avoid insufficient hardness due to a decrease in the curing component.

光学フィルム1において、透明基材20及び機能層30の一方又は双方は、紫外線遮蔽率が85%以上であり、90%以上が好ましく、95%以上がより好ましく、100%であってもよい。紫外線遮蔽率が上記下限値以上であると、耐光性及び耐熱性をより向上できる。
紫外線遮蔽率は、JIS L1925に記載の方法に準じて測定できる。
紫外線遮蔽率は、透明基材20及び機能層30の一方又は双方に紫外線吸収能を付与することにより調節できる。
In the optical film 1, one or both of the transparent base material 20 and the functional layer 30 have an ultraviolet shielding rate of 85% or more, preferably 90% or more, more preferably 95% or more, and may be 100%. When the ultraviolet shielding rate is at least the above lower limit, light resistance and heat resistance can be further improved.
The ultraviolet shielding rate can be measured according to the method described in JIS L1925.
The ultraviolet shielding rate can be adjusted by imparting ultraviolet absorption ability to one or both of the transparent base material 20 and the functional layer 30.

機能層30の厚さは、例えば、0.04~25μmが好ましく、0.1~20μmがより好ましく、0.2~15μmがさらに好ましい。機能層30の厚さが上記下限値以上であると、光学フィルム1に種々の機能を付与しやすい。機能層30の厚さが上記上限値以下であると、表示装置の薄型化に有利である。 The thickness of the functional layer 30 is, for example, preferably 0.04 to 25 μm, more preferably 0.1 to 20 μm, and even more preferably 0.2 to 15 μm. When the thickness of the functional layer 30 is equal to or greater than the above lower limit, various functions can be easily imparted to the optical film 1. When the thickness of the functional layer 30 is less than or equal to the above upper limit value, it is advantageous for making the display device thinner.

[光学フィルムの製造方法]
本実施形態の光学フィルム1は、従来公知の方法により製造できる。
例えば、透明基材20の一方の面に上記(A)ないし(D)を含む(さらに(E)や(F)を含んでもよい)着色層形成用組成物を塗布し、活性エネルギー線を照射して着色層形成用組成物を硬化することにより着色層10を得る。
活性エネルギー線を照射して着色層形成用組成物を硬化させ、着色層10を形成するための光源は、活性エネルギー線を発生する光源であれば制限なく使用できる。活性エネルギー線としては、放射線(ガンマ線、X線等)、紫外線、可視光線、電子線(EB)等の光エネルギー線が使用でき、通常、紫外線、電子線である場合が多い。例えば、紫外線を放射するランプとして低圧水銀灯、中圧水銀灯、高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ、無電極放電管等を使用できる。照射条件として紫外線照射量は、通常100~1000mJ/cmである。
[Optical film manufacturing method]
The optical film 1 of this embodiment can be manufactured by a conventionally known method.
For example, a composition for forming a colored layer containing the above (A) to (D) (which may also contain (E) and (F)) is applied to one surface of the transparent base material 20, and active energy rays are irradiated. The colored layer 10 is obtained by curing the colored layer forming composition.
The light source for curing the colored layer forming composition by irradiating active energy rays to form the colored layer 10 can be any light source that generates active energy rays. As the active energy ray, optical energy rays such as radiation (gamma rays, X-rays, etc.), ultraviolet rays, visible light, and electron beams (EB) can be used, and usually ultraviolet rays and electron beams are used. For example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, an electrodeless discharge tube, etc. can be used as a lamp that emits ultraviolet rays. As for the irradiation conditions, the amount of ultraviolet irradiation is usually 100 to 1000 mJ/cm 2 .

次に、透明基材20の他方の面にハードコート剤を塗布し、着色層10と同様に活性エネルギー線を照射してハードコート剤を硬化することによりハードコート層32を得る。 Next, a hard coat agent is applied to the other surface of the transparent base material 20, and similarly to the colored layer 10, the hard coat agent is cured by irradiation with active energy rays, thereby obtaining the hard coat layer 32.

ハードコート層32上に低屈折率層31を形成することにより、透明基材20の他方の面に機能層30が位置する光学フィルム1が得られる。
低屈折率層31の形成方法に制限はなく、低屈折率層形成用組成物をハードコート層32に塗布し、活性エネルギー線を照射して硬化させる方法、真空蒸着法、スパッタリング法、イオンプレーティング法、イオンビーム法、プラズマ気相成長法等を使用できる。
By forming the low refractive index layer 31 on the hard coat layer 32, the optical film 1 in which the functional layer 30 is located on the other surface of the transparent base material 20 is obtained.
There are no limitations on the method of forming the low refractive index layer 31, and examples include a method of applying a composition for forming a low refractive index layer to the hard coat layer 32 and curing it by irradiating active energy rays, a vacuum evaporation method, a sputtering method, and an ion spray method. A method such as a heating method, an ion beam method, or a plasma vapor phase epitaxy method can be used.

[その他の実施形態]
光学フィルムは、図2に示すように、着色層10の一方の面に位置する透明基材20を有し、着色層10、透明基材20、防眩層34が、この順で積層された光学フィルム3であってもよい。光学フィルム3では、防眩層34が機能層30を構成する。
本実施形態の光学フィルム3は、防眩層34を有するため、反射抑制に優れる。
[Other embodiments]
As shown in FIG. 2, the optical film has a transparent base material 20 located on one side of the colored layer 10, and the colored layer 10, the transparent base material 20, and the anti-glare layer 34 are laminated in this order. It may be the optical film 3. In the optical film 3, the antiglare layer 34 constitutes the functional layer 30.
Since the optical film 3 of this embodiment has the anti-glare layer 34, it is excellent in suppressing reflection.

光学フィルムは、図3に示すように、着色層10の一方の面に位置する透明基材20を有し、着色層10、透明基材20、防眩層34、低屈折率層31が、この順で積層された光学フィルム4であってもよい。光学フィルム4では、防眩層34、低屈折率層31が機能層30を構成する。
本実施形態の光学フィルム4は、低屈折率層31と防眩層34とを有するため、反射抑制により優れる。
As shown in FIG. 3, the optical film has a transparent base material 20 located on one side of the colored layer 10, and the colored layer 10, the transparent base material 20, the anti-glare layer 34, and the low refractive index layer 31, The optical film 4 may be laminated in this order. In the optical film 4, the anti-glare layer 34 and the low refractive index layer 31 constitute the functional layer 30.
Since the optical film 4 of this embodiment has the low refractive index layer 31 and the anti-glare layer 34, it is excellent in suppressing reflection.

光学フィルムは、図4に示すように、着色層10の一方の面に位置する透明基材20と、着色層10の他方の面に位置する機能層30とを有し、透明基材20、着色層10、ハードコート層32、低屈折率層31が、この順で積層された光学フィルム5であってもよい。光学フィルム5では、ハードコート層32、低屈折率層31が機能層30を構成する。
本実施形態の光学フィルム5は、透明基材20の一方の面に着色層10と紫外線吸収機能及び反射防止機能を有する機能層30とを有する。紫外線吸収機能は、機能層を構成する層のいずれに付与されてもよい。
As shown in FIG. 4, the optical film has a transparent base material 20 located on one surface of the colored layer 10 and a functional layer 30 located on the other surface of the colored layer 10. The optical film 5 may have the colored layer 10, the hard coat layer 32, and the low refractive index layer 31 laminated in this order. In the optical film 5 , the hard coat layer 32 and the low refractive index layer 31 constitute the functional layer 30 .
The optical film 5 of this embodiment has a colored layer 10 and a functional layer 30 having an ultraviolet absorbing function and an antireflection function on one side of a transparent base material 20. The ultraviolet absorption function may be imparted to any of the layers constituting the functional layer.

光学フィルムは、図5に示すように、着色層10の一方の面に位置する透明基材20と、着色層10の他方の面に位置する防眩層34とを有し、透明基材20、着色層10、防眩層34が、この順で積層された光学フィルム7であってもよい。光学フィルム7では、防眩層34が機能層30を構成する。
本実施形態の光学フィルム7は、防眩層34を有するため、反射抑制に優れる。
光学フィルム7においては、防眩層34に紫外線吸収機能を付与することが好ましい。
As shown in FIG. 5, the optical film has a transparent base material 20 located on one surface of the colored layer 10 and an anti-glare layer 34 located on the other surface of the colored layer 10. , the colored layer 10, and the anti-glare layer 34 may be laminated in this order in the optical film 7. In the optical film 7 , the antiglare layer 34 constitutes the functional layer 30 .
Since the optical film 7 of this embodiment has the anti-glare layer 34, it is excellent in suppressing reflection.
In the optical film 7, it is preferable that the anti-glare layer 34 has an ultraviolet absorbing function.

光学フィルムは、図6に示すように、着色層10の一方の面に位置する透明基材20と、着色層10の他方の面に位置する機能層30とを有し、透明基材20、着色層10、防眩層34、低屈折率層31が、この順で積層された光学フィルム8であってもよい。光学フィルム8では、防眩層34、低屈折率層31が機能層30を構成する。
本実施形態の光学フィルム8は、低屈折率層31と防眩層34とを有するため、反射抑制により優れる。
光学フィルム8においては、機能層30を構成する層のいずれかに紫外線吸収機能を付与することが好ましい。
As shown in FIG. 6, the optical film has a transparent base material 20 located on one surface of the colored layer 10 and a functional layer 30 located on the other surface of the colored layer 10. The optical film 8 may have the colored layer 10, the anti-glare layer 34, and the low refractive index layer 31 laminated in this order. In the optical film 8, the anti-glare layer 34 and the low refractive index layer 31 constitute the functional layer 30.
Since the optical film 8 of this embodiment has the low refractive index layer 31 and the anti-glare layer 34, it is excellent in suppressing reflection.
In the optical film 8, it is preferable that one of the layers constituting the functional layer 30 has an ultraviolet absorption function.

[表示装置]
本発明の表示装置は、本発明の光学フィルムを備える。表示装置の具体例としては、例えば、テレビ、モニタ、携帯電話、携帯型ゲーム機器、携帯情報端末、パーソナルコンピュータ、電子書籍、ビデオカメラ、デジタルスチルカメラ、ヘッドマウントディスプレイ、ナビゲーションシステム、音響再生装置(カーオーディオ、デジタルオーディオプレイヤ等)、複写機、ファクシミリ、プリンター、プリンター複合機、自動販売機、現金自動預け入れ払い機(ATM)、個人認証機器、光通信機器、ICカード等が挙げられる。中でも、金属製の電極や配線により、外光反射の影響を受けやすいLED、有機EL、無機蛍光体、量子ドット等の自発光素子を備える表示装置に好適に用いられる。
[Display device]
The display device of the present invention includes the optical film of the present invention. Specific examples of display devices include televisions, monitors, mobile phones, portable game devices, personal digital assistants, personal computers, electronic books, video cameras, digital still cameras, head-mounted displays, navigation systems, and sound playback devices ( (car audio, digital audio player, etc.), copying machines, facsimile machines, printers, multifunction printers, vending machines, automatic teller machines (ATMs), personal authentication devices, optical communication devices, IC cards, etc. Among these, it is suitably used for display devices equipped with self-luminous elements such as LEDs, organic ELs, inorganic phosphors, and quantum dots, which are susceptible to reflection of external light due to metal electrodes and wiring.

上述した各実施形態に係る光学フィルムによれば、硬化後の着色層10が充分な硬度を有し、ロール・ツー・ロール方式で生産性良く製造できる。その上、着色層に含まれる色材の耐光性及び耐熱性を向上させ、反射抑制と輝度効率とを両立できる。このため、本実施形態の光学フィルムを備える表示装置は、表示品位を向上でき、発光素子を長寿命化できる。 According to the optical films according to the embodiments described above, the colored layer 10 after curing has sufficient hardness and can be manufactured with high productivity by a roll-to-roll method. Moreover, the light resistance and heat resistance of the coloring material contained in the colored layer can be improved, and both reflection suppression and brightness efficiency can be achieved. Therefore, the display device including the optical film of this embodiment can improve the display quality and extend the life of the light emitting elements.

以上、本発明の各実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更、組み合わせ等も含まれる。 Although each embodiment of the present invention has been described above in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and changes and combinations of the configuration can be made without departing from the gist of the present invention. included.

例えば、上述した各光学フィルムは、いずれも着色層の数が1つであるが、着色層の数は、2以上であってもよい。この場合、各々の着色層が、第一ないし第三の色材のうち同一の色材を含有してもよいし、異なる色材を含有してもよい。
各実施形態に係る光学フィルムにおいて、紫外線吸収能は、透明基材20に付与してもよく、ハードコート層32等の機能層30に付与してもよい。重要なことは、表示装置に取り付けた際に、着色層10よりも使用者が見る画面に近い層に紫外線吸収能を付与することである。
For example, each of the optical films described above has one colored layer, but the number of colored layers may be two or more. In this case, each colored layer may contain the same coloring material among the first to third coloring materials, or may contain different coloring materials.
In the optical film according to each embodiment, the ultraviolet absorbing ability may be imparted to the transparent base material 20 or to the functional layer 30 such as the hard coat layer 32. What is important is that when attached to a display device, a layer closer to the screen viewed by the user than the colored layer 10 is given ultraviolet absorbing ability.

以下に、実施例を用いて本発明をさらに詳しく説明する。本発明の技術的範囲は、これら実施例の具体的内容のみを根拠として何ら限定されるものではない。 The present invention will be explained in more detail below using examples. The technical scope of the present invention is not limited in any way based solely on the specific contents of these Examples.

[実施例1~7、比較例1~7]
以下の実施例及び比較例では、表1に示す層構成の光学フィルム1~22を作製した。作製した光学フィルム1~22について、光学フィルム特性、及び有機ELパネルでの表示装置特性をシミュレーションにより評価した。表中、「-」は、その層を有しないことを示す。
[Examples 1 to 7, Comparative Examples 1 to 7]
In the following Examples and Comparative Examples, optical films 1 to 22 having the layer configurations shown in Table 1 were produced. For the produced optical films 1 to 22, the optical film characteristics and the display device characteristics in an organic EL panel were evaluated by simulation. In the table, "-" indicates that the layer is not included.

Figure 2024013386000003
Figure 2024013386000003

≪光学フィルムの作製≫
以下、各層の形成方法を説明する。
≪Preparation of optical film≫
The method for forming each layer will be explained below.

[着色層の形成]
着色層の使用材料としては、以下のものを用いた。
なお、色材の吸収極大波長、半値幅、及び規定波長範囲での最小透過率波長は、硬化塗膜での特性値である。
[Formation of colored layer]
The following materials were used for the colored layer.
Note that the absorption maximum wavelength, half-width, and minimum transmittance wavelength in a specified wavelength range of the coloring material are characteristic values of the cured coating film.

<色素(A)>
・第一の色材
Dye-1:ピロメテンコバルト錯体染料(吸収極大波長493nm、半値幅26nm)
<Dye-1の製造例>
5-ホルミル-2,4-ジメチル-1H-ピロール-3-カルボン酸エチル(2.5g)を反応容器に封入し、メタノール(50mL)に溶解させた後、47%臭化水素酸(45g)を添加して、1時間還流を行った。析出した固体を濾別することで、3,3’,5,5’-テトラメチル-4,4’‐ジ-エトキシカルボニル-2,2’-ジピロメテン臭化水素酸塩(2.6g)を得た。
3,3’,5,5’-テトラメチル-4,4’-ジ-エトキシカルボニル-2,2’-ジピロメテン臭化水素酸塩(0.6g)を反応容器に封入し、メタノール(5mL)、トリエチルアミン(0.17g)、酢酸コバルト四水和物(0.18g)を添加し、2時間還流を行った。析出した固体を濾別することで、Dye-1(0.42g)を得た。
Dye-2:ピロメテンコバルト錯体染料(吸収極大波長496nm、半値幅23nm)
<Dye-2の製造例>
上記<Dye-1の製造例>において、5-ホルミル-2,4-ジメチル-1H-ピロール-3-カルボン酸エチルを4-ブチル-2-エチル-5-ホルミル-1H-ピロール-3-カルボン酸メチルに変更した以外は、同様の手順でDye-2を合成した。
・第二の色材
Dye-3:テトラアザポルフィリン銅錯体染料(山田化学工業(株)製、FDG-007、吸収極大波長595nm、半値幅22nm)
・第三の色材
Dye-4:フタロシアニン銅錯体染料(山田化学工業(株)製、FDN-002、400~780nmでの最小透過率波長 780nm)
・その他の色材
Dye-5:染料FDG-003(山田化学工業(株)製、FDG-003、吸収極大波長545nm、半値幅79nm)
なお、Dye-5は、比較例のみに使用されている比較対象であり、本願における第二の色材に該当しない。
<Dye (A)>
・First coloring material Dye-1: Pyrromethene cobalt complex dye (maximum absorption wavelength 493 nm, half width 26 nm)
<Production example of Dye-1>
Ethyl 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylate (2.5 g) was sealed in a reaction vessel and dissolved in methanol (50 mL), followed by 47% hydrobromic acid (45 g). was added and refluxed for 1 hour. By filtering the precipitated solid, 3,3',5,5'-tetramethyl-4,4'-di-ethoxycarbonyl-2,2'-dipyrromethene hydrobromide (2.6 g) was obtained. Obtained.
3,3',5,5'-tetramethyl-4,4'-di-ethoxycarbonyl-2,2'-dipyrromethene hydrobromide (0.6 g) was sealed in a reaction vessel, and methanol (5 mL) was added. , triethylamine (0.17 g), and cobalt acetate tetrahydrate (0.18 g) were added, and the mixture was refluxed for 2 hours. Dye-1 (0.42 g) was obtained by filtering the precipitated solid.
Dye-2: Pyrromethene cobalt complex dye (maximum absorption wavelength 496 nm, half width 23 nm)
<Production example of Dye-2>
In the above <Production example of Dye-1>, ethyl 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylate was replaced with 4-butyl-2-ethyl-5-formyl-1H-pyrrole-3-carboxylate. Dye-2 was synthesized using the same procedure except that methyl acid was used.
・Second coloring material Dye-3: Tetraazaporphyrin copper complex dye (manufactured by Yamada Chemical Co., Ltd., FDG-007, maximum absorption wavelength 595 nm, half-value width 22 nm)
・Third coloring material Dye-4: Phthalocyanine copper complex dye (manufactured by Yamada Chemical Co., Ltd., FDN-002, minimum transmittance wavelength in the range of 400 to 780 nm: 780 nm)
・Other coloring materials Dye-5: Dye FDG-003 (manufactured by Yamada Chemical Co., Ltd., FDG-003, maximum absorption wavelength 545 nm, half-value width 79 nm)
Note that Dye-5 is a comparison target used only in comparative examples and does not correspond to the second coloring material in the present application.

<エネルギー線硬化型化合物(B)>
・DCPA:トリシクロデカンジメタノールジアクリレート
・DCPM:トリシクロデカンジメタノールジメタクリレート
・DOGA:ジオキサングリコールジアクリレート
・NP-A:ネオペンチルグリコールジアクリレート
・BP-4EAL:ビスフェノールAのEO付加物ジアクリレート
・PE3A:ペンタエリスリトールトリアクリレート
・PE4A:ペンタエリスリトールテトラアクリレート
・DPHA:ジペンタエリスリトールヘキサアクリレート
・510H:ジペンタエリスリトールヘキサアクリレート ヘキサメチレンジイソシアネート ウレタンプレポリマー(共栄社化学(株)製、UA-510H)
・PMMA:メタクリル酸メチルポリマー(富士フィルム和光純薬(株)製)
なお、PMMAは活性エネルギー線硬化性樹脂ではないが、比較対象として比較例のみに使用されているため、この欄に併記している。
<Energy ray curable compound (B)>
・DCPA: Tricyclodecane dimethanol diacrylate ・DCPM: Tricyclodecane dimethanol dimethacrylate ・DOGA: Dioxane glycol diacrylate ・NP-A: Neopentyl glycol diacrylate ・BP-4EAL: EO adduct diacrylate of bisphenol A・PE3A: Pentaerythritol triacrylate ・PE4A: Pentaerythritol tetraacrylate ・DPHA: Dipentaerythritol hexaacrylate ・510H: Dipentaerythritol hexaacrylate hexamethylene diisocyanate urethane prepolymer (manufactured by Kyoeisha Chemical Co., Ltd., UA-510H)
・PMMA: Methyl methacrylate polymer (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.)
Although PMMA is not an active energy ray-curable resin, it is also included in this column because it is used only in comparative examples for comparison.

<光重合開始剤(C)>
・Omnirad TPO:アシルホスフィンオキサイド系光重合開始剤(IGM Resins B.V.社製)
<Photopolymerization initiator (C)>
・Omnirad TPO: Acyl phosphine oxide photopolymerization initiator (manufactured by IGM Resins B.V.)

<ラジカル捕捉剤(D)>
・LA-63P:ヒンダードアミン系光安定剤アデカスタブLA-63P((株)アデカ製)
・樹脂1:上記式(i)で表される構造単位を含むポリマー
<樹脂1の製造例>
メタクリル酸1,2,2,6,6-ペンタメチル-4-ピペリジル(昭和電工マテリアルズ(株)製、FA-711MM)2.4g、メタクリル酸メチル(関東化学(株)製)5.6g、シクロヘキサノン(関東化学(株)製)31g、2,2‘-アゾビス(イソブチロニトリル)(富士フイルム和光純薬(株)製)0.11gを反応容器に入れ、窒素ガス雰囲気下、70℃で8時間加熱攪拌した。その後、100℃で1時間加熱攪拌を行うことでポリマー溶液を得た。このポリマー溶液をメタノール(関東化学(株)製)400mL中へ注ぐことで生じた析出物をろ過、乾燥することでメタクリル酸1,2,2,6,6-ペンタメチル-4-ピペリジル:メタクリル酸メチル=15:85[mоl%]で共重合された樹脂1を得た。
<Radical scavenger (D)>
・LA-63P: Hindered amine light stabilizer Adekastab LA-63P (manufactured by Adeka Co., Ltd.)
・Resin 1: Polymer containing the structural unit represented by the above formula (i) <Production example of resin 1>
2.4 g of 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate (manufactured by Showa Denko Materials Co., Ltd., FA-711MM), 5.6 g of methyl methacrylate (manufactured by Kanto Chemical Co., Ltd.), 31 g of cyclohexanone (manufactured by Kanto Kagaku Co., Ltd.) and 0.11 g of 2,2'-azobis(isobutyronitrile) (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) were placed in a reaction vessel and heated at 70°C under a nitrogen gas atmosphere. The mixture was heated and stirred for 8 hours. Thereafter, a polymer solution was obtained by heating and stirring at 100° C. for 1 hour. By pouring this polymer solution into 400 mL of methanol (manufactured by Kanto Kagaku Co., Ltd.), the resulting precipitate was filtered and dried. Resin 1 copolymerized with methyl = 15:85 [mol%] was obtained.

100℃で1時間の追加加熱攪拌を行うことで、開始剤である2,2‘-アゾビス(イソブチロニトリル)を完全に分解させることができ、残存開始剤による光学フィルムの劣化を抑制することができる。
また、ポリマー溶液をメタノール中へ注ぐことで、未反応のモノマーや重合溶媒、開始剤の分解物などを除くことができ、光学フィルムの劣化を抑制することができる。
By additionally heating and stirring at 100°C for 1 hour, the initiator 2,2'-azobis(isobutyronitrile) can be completely decomposed, suppressing the deterioration of the optical film due to the remaining initiator. be able to.
Furthermore, by pouring the polymer solution into methanol, unreacted monomers, polymerization solvents, decomposed products of the initiator, etc. can be removed, and deterioration of the optical film can be suppressed.

<溶剤(E)>
・MEK:メチルエチルケトン。
・酢酸メチル
<Solvent (E)>
・MEK: Methyl ethyl ketone.
・Methyl acetate

<添加剤(F)>
・化合物A:下記の式(ii)で示される構造を有するT1477。なお、構造式中のRはCであり、R~RはHである。
・一重項酸素クエンチャー:ビス(ジブチルジチオカルバミン酸)ニッケル(II)(東京化成工業(株)製 D1781)
<Additive (F)>
- Compound A: T1477 having a structure represented by the following formula (ii). Note that R 1 in the structural formula is C 3 H 7 , and R 2 to R 8 are H.
・Singlet oxygen quencher: Bis(dibutyldithiocarbamic acid) nickel(II) (manufactured by Tokyo Chemical Industry Co., Ltd. D1781)

Figure 2024013386000004
Figure 2024013386000004

(透明基材)
透明基材としては、下記のものを用いた。
・TAC:トリアセチルセルロースフィルム(富士フイルム(株)製、TG60UL、基材厚60μm、紫外線遮蔽率92.9%)。
(transparent base material)
As the transparent base material, the following was used.
- TAC: triacetyl cellulose film (manufactured by Fuji Film Corporation, TG60UL, base material thickness 60 μm, ultraviolet shielding rate 92.9%).

(着色層の形成)
表1に示す透明基材上に、表2に示す組成の着色層形成用組成物を塗布し、80℃のオーブンで60秒間乾燥させた。その後、紫外線照射装置を用いて照射線量150mJ/cm(フュージョンUVシステムズジャパン(株)製、光源Hバルブ)で紫外線照射を行うことにより塗膜を硬化させ、硬化後の膜厚が5.0μmとなるよう着色層を形成した。なお、添加量は質量比(質量%)である。表中、「-」は、その成分を含有しないことを示す。
(Formation of colored layer)
A colored layer forming composition having the composition shown in Table 2 was applied onto the transparent substrate shown in Table 1, and dried in an oven at 80° C. for 60 seconds. After that, the coating film was cured by irradiating ultraviolet rays with an irradiation dose of 150 mJ/cm 2 (manufactured by Fusion UV Systems Japan Co., Ltd., light source H bulb) using an ultraviolet irradiation device, and the film thickness after curing was 5.0 μm. A colored layer was formed so that Note that the amount added is a mass ratio (mass%). In the table, "-" indicates that the component is not contained.

Figure 2024013386000005
Figure 2024013386000005

[機能層の形成:ハードコート層]
(ハードコート層形成用組成物 使用材料)
ハードコート層の形成に用いるハードコート層形成用組成物の使用材料として、下記のものを用いた。
・活性エネルギー線硬化性樹脂
UA-306H:ペンタエリスリトールトリアクリレート ヘキサメチレンジイソシアネート ウレタンプレポリマー(共栄社化学(株)製、UA-306H)
DPHA
PE3A:ペンタエリスリトールトリアクリレート(共栄社化学(株)製 ライトアクリレートPE-3A)
・光重合開始剤
Omnirad TPO
・添加剤(紫外線(UV)吸収剤)
Tinuvin479:ヒドロキシフェニルトリアジン系紫外線吸収剤、Tinuvin(登録商標)479(BASFジャパン(株)製)
LA-36:ベンゾトリアゾール系紫外線吸収剤、アデカスタブ(登録商標)LA-36((株)アデカ製)
・溶剤
MEK:メチルエチルケトン
酢酸メチル
これらを用い、表3に示す2種類のハードコート層用塗液を準備した。
[Formation of functional layer: hard coat layer]
(Materials used for composition for forming hard coat layer)
The following materials were used for the hard coat layer forming composition used to form the hard coat layer.
・Active energy ray curable resin UA-306H: Pentaerythritol triacrylate hexamethylene diisocyanate urethane prepolymer (manufactured by Kyoeisha Chemical Co., Ltd., UA-306H)
D.P.H.A.
PE3A: Pentaerythritol triacrylate (light acrylate PE-3A manufactured by Kyoeisha Chemical Co., Ltd.)
・Photopolymerization initiator Omnirad TPO
・Additives (ultraviolet (UV) absorbers)
Tinuvin479: Hydroxyphenyltriazine ultraviolet absorber, Tinuvin (registered trademark) 479 (manufactured by BASF Japan Ltd.)
LA-36: Benzotriazole ultraviolet absorber, Adekastab (registered trademark) LA-36 (manufactured by Adeka Co., Ltd.)
- Solvent MEK: Methyl ethyl ketone Methyl acetate Using these, two types of hard coat layer coating liquids shown in Table 3 were prepared.

Figure 2024013386000006
Figure 2024013386000006

(ハードコート層の形成)
表1に示す透明基材又は着色層上に、上述のハードコート層用塗液を塗布し、80℃のオーブンで60秒間乾燥させた。その後、紫外線照射装置を用いて照射線量150mJ/cm(フュージョンUVシステムズジャパン(株)製、光源Hバルブ)で紫外線照射を行うことにより塗膜を硬化させ、硬化後の膜厚が5.0μmとなるようハードコート層を形成した。ハードコート層1は紫外線吸収能を有さず、ハードコート層2は紫外線吸収能を有する。
(Formation of hard coat layer)
The above-mentioned hard coat layer coating liquid was applied onto the transparent substrate or colored layer shown in Table 1, and dried in an oven at 80° C. for 60 seconds. After that, the coating film was cured by irradiating ultraviolet rays with an irradiation dose of 150 mJ/cm 2 (manufactured by Fusion UV Systems Japan Co., Ltd., light source H bulb) using an ultraviolet irradiation device, and the film thickness after curing was 5.0 μm. A hard coat layer was formed so that Hard coat layer 1 does not have ultraviolet absorption ability, and hard coat layer 2 has ultraviolet absorption ability.

[機能層の形成:防眩層]
(防眩層形成用組成物 使用材料)
防眩層の形成に用いる防眩層形成用組成物の使用材料として、下記のものを用いた。
・活性エネルギー線硬化性樹脂
PE3A
・光重合開始剤
Omnirad TPO
・樹脂粒子
スチレン-メタクリル酸メチル共重合体粒子(屈折率1.515、平均粒径2.0μm)
・無機微粒子
合成スメクタイト
アルミナナノ粒子(平均粒径40nm)
・添加剤(紫外線(UV)吸収剤)
Tinuvin479
LA-36
・溶剤
トルエン
イソプロピルアルコール
これらを用い、以下の組成を有する防眩層用塗液1および2を調製した。
・防眩層用塗液1
・PE3A 43.7重量部
・Omnirad TPO 4.55質量部
・スチレン-メタクリル酸メチル共重合体粒子 0.5質量部
・合成スメクタイト 0.25質量部
・アルミナナノ粒子 1.0質量部
・トルエン/イソプロピルアルコール=30/70 50質量部
・防眩層用塗液2
・PE3A 40.5重量部
・Omnirad TPO 4.55質量部
・スチレン-メタクリル酸メチル共重合体粒子 0.5質量部
・合成スメクタイト 0.25質量部
・アルミナナノ粒子 1.0質量部
・Tinuvin479/LA-36=40/60 3.2質量部
・トルエン/イソプロピルアルコール=30/70 50質量部
(防眩層の形成)
表1に示す透明基材上に、上記の防眩層用塗液の一方を塗布し、80℃のオーブンで60秒間乾燥させた。その後、紫外線照射装置を用いて照射線量150mJ/cm(フュージョンUVシステムズジャパン(株)製、光源Hバルブ)で紫外線照射を行うことにより塗膜を硬化させ、硬化後の膜厚が5.0μmとなるよう防眩層1または2を形成した。防眩層1は紫外線吸収能を有さず、防眩層2は紫外線吸収能を有する。
[Formation of functional layer: anti-glare layer]
(Materials used for anti-glare layer forming composition)
The following materials were used for the anti-glare layer forming composition used to form the anti-glare layer.
・Active energy ray curable resin PE3A
・Photopolymerization initiator Omnirad TPO
・Resin particles Styrene-methyl methacrylate copolymer particles (refractive index 1.515, average particle size 2.0 μm)
・Inorganic fine particles Synthetic smectite Alumina nanoparticles (average particle size 40 nm)
・Additives (ultraviolet (UV) absorbers)
Tinuvin479
LA-36
- Solvent Toluene Isopropyl alcohol Using these, anti-glare layer coating liquids 1 and 2 having the following compositions were prepared.
Coating liquid 1 for anti-glare layer
- PE3A 43.7 parts by weight - Omnirad TPO 4.55 parts by weight - Styrene-methyl methacrylate copolymer particles 0.5 parts by weight - Synthetic smectite 0.25 parts by weight - Alumina nanoparticles 1.0 parts by weight - Toluene/ Isopropyl alcohol = 30/70 50 parts by mass / Anti-glare layer coating liquid 2
- PE3A 40.5 parts by weight - Omnirad TPO 4.55 parts by weight - Styrene-methyl methacrylate copolymer particles 0.5 parts by weight - Synthetic smectite 0.25 parts by weight - Alumina nanoparticles 1.0 parts by weight - Tinuvin479/ LA-36 = 40/60 3.2 parts by mass Toluene/isopropyl alcohol = 30/70 50 parts by mass (formation of anti-glare layer)
One of the above anti-glare layer coating liquids was applied onto the transparent substrate shown in Table 1, and dried in an oven at 80°C for 60 seconds. After that, the coating film was cured by irradiating ultraviolet rays with an irradiation dose of 150 mJ/cm 2 (manufactured by Fusion UV Systems Japan Co., Ltd., light source H bulb) using an ultraviolet irradiation device, and the film thickness after curing was 5.0 μm. Antiglare layer 1 or 2 was formed so as to have the following properties. The anti-glare layer 1 does not have an ability to absorb ultraviolet rays, and the anti-glare layer 2 has an ability to absorb ultraviolet rays.

[機能層の形成:低屈折率層]
(低屈折率層形成用組成物)
低屈折率層の形成に用いる低屈折率層形成用組成物として、下記のものを用いた。
・屈折率調整剤
多孔質シリカ微粒子(平均粒径75nm、固形分20%)メチルイソブチルケトン分散液 8.5質量部
・防汚付与剤
オプツール(登録商標)AR-110(ダイキン工業(株)製、固形分15%、溶剤:メチルイソブチルケトン) 5.6質量部
・活性エネルギー線硬化性樹脂
PE-3A 0.4質量部
・光重合開始剤
Omnirad TPO 0.07質量部
・レベリング剤
RS-77(DIC(株)製) 1.7質量部
・溶剤
メチルイソブチルケトン 83.73質量部
[Formation of functional layer: low refractive index layer]
(Composition for forming low refractive index layer)
The following composition was used for forming the low refractive index layer.
・Refractive index adjuster Porous silica fine particles (average particle size 75 nm, solid content 20%) Methyl isobutyl ketone dispersion 8.5 parts by mass ・Antifouling agent Optool (registered trademark) AR-110 (manufactured by Daikin Industries, Ltd.) , solid content 15%, solvent: methyl isobutyl ketone) 5.6 parts by mass Active energy ray curable resin PE-3A 0.4 parts by mass Photopolymerization initiator Omnirad TPO 0.07 parts by mass Leveling agent RS-77 (Manufactured by DIC Corporation) 1.7 parts by mass/Solvent Methyl isobutyl ketone 83.73 parts by mass

(低屈折率層の形成)
表1に示すハードコート層上又は防眩層上に、上記の低屈折率層形成用組成物を塗布し、80℃のオーブンで60秒間乾燥させた。その後、紫外線照射装置を用いて照射線量200mJ/cm(フュージョンUVシステムズジャパン(株)製、光源Hバルブ)で紫外線照射を行うことにより塗膜を硬化させ、硬化後の膜厚が100nmである低屈折率層を形成した。
(Formation of low refractive index layer)
The above composition for forming a low refractive index layer was applied onto the hard coat layer or antiglare layer shown in Table 1, and dried in an oven at 80° C. for 60 seconds. After that, the coating film is cured by irradiating ultraviolet rays with an irradiation dose of 200 mJ/cm 2 (manufactured by Fusion UV Systems Japan Co., Ltd., light source H bulb) using an ultraviolet irradiation device, and the film thickness after curing is 100 nm. A low refractive index layer was formed.

[フィルム特性評価]
<赤外線吸収スペクトル測定>
各例に係る着色層の赤外線吸収スペクトルを日本分光(株)製FT-IR6300を用いてATR法によって赤外線吸収スペクトルを測定した。また、同様の方法でPE4Aの赤外線吸収スペクトルを測定した。それぞれのスペクトルより780cm~825cm-1の範囲内の吸光度の最大ピーク高さを求めた。なお、各サンプルについてスペクトルを10回測定し、それぞれ最大ピーク高さを求め、その平均値をそのサンプルのピーク強度値とした。着色層のピーク強度をA、PE4Aのピーク強度をBとし、A/Bを算出した。
[Film characteristic evaluation]
<Infrared absorption spectrum measurement>
The infrared absorption spectra of the colored layers of each example were measured by the ATR method using FT-IR6300 manufactured by JASCO Corporation. In addition, the infrared absorption spectrum of PE4A was measured in the same manner. The maximum peak height of absorbance within the range of 780 cm to 825 cm −1 was determined from each spectrum. The spectrum of each sample was measured 10 times, the maximum peak height was determined for each, and the average value was taken as the peak intensity value of that sample. A/B was calculated by setting the peak intensity of the colored layer as A and the peak intensity of PE4A as B.

<着色層上の紫外線遮蔽率>
着色層より上層に透明基材となる場合は、基材を自動分光光度計((株)日立製作所製、U-4100)を用いて透過率を測定した。また、着色層が基材より上層にくる場合は、JIS-K5600-5-6:1999付着性試験準拠の透明感圧付着テープを用いて着色層より上層を剥離し、自動分光光度計(U-4100)を用い、粘着テープをリファレンスとして着色層上層の透過率を測定した。これらの透過率を用いて、紫外域(290nm~400nm)の平均透過率[%]を算出し、紫外線遮蔽率[%]を100%から紫外域(290nm~400nm)の平均透過率[%]を引いた値として算出した。
<Ultraviolet shielding rate on colored layer>
When a transparent base material was used as a layer above the colored layer, the transmittance of the base material was measured using an automatic spectrophotometer (manufactured by Hitachi, Ltd., U-4100). If the colored layer is above the base material, peel off the layer above the colored layer using a transparent pressure-sensitive adhesive tape compliant with JIS-K5600-5-6:1999 adhesion test, and use an automatic spectrophotometer (U -4100), and the transmittance of the upper layer of the colored layer was measured using the adhesive tape as a reference. Using these transmittances, calculate the average transmittance [%] in the ultraviolet region (290 nm to 400 nm), and calculate the UV shielding rate [%] from 100% to the average transmittance [%] in the ultraviolet region (290 nm to 400 nm). Calculated as the value subtracted by

<鉛筆硬度試験>
JIS-K5400-1990に準拠し、500gの荷重をかけた鉛筆(三菱鉛筆社製UNI、鉛筆硬度H)を用いて行う鉛筆硬度試験を、クレメンス型引掻き硬度試験機(テスター産業株式会社製、HA-301)を用いて各例に係る着色層の表面に実施した。キズによる外観の変化を目視で評価し、キズが観察されない場合を「○(合格)」、キズが観察される場合を「×(不合格)」とした。
<Pencil hardness test>
The pencil hardness test is conducted in accordance with JIS-K5400-1990 using a pencil (UNI manufactured by Mitsubishi Pencil Co., Ltd., Pencil Hardness H) with a load of 500 g applied using a Clemens scratch hardness tester (manufactured by Tester Sangyo Co., Ltd., HA). -301) on the surface of the colored layer in each example. Changes in appearance due to scratches were visually evaluated, and cases in which no scratches were observed were graded as "○ (pass)" and cases in which scratches were observed were graded as "x (fail)".

<耐光性試験>
得られた光学フィルムの耐光性試験として、キセノンウェザーメーター試験機(スガ試験機株式会社製、X75)を用い、キセノンランプ照度60W/m(300nm~400nm)、試験機内温度45℃・湿度50%RH条件にて120時間試験し、試験前後に自動分光光度計(U-4100)を用いて透過率測定を行った。第一ないし第三の色材の極大吸収波長範囲の中で最小の透過率を示す波長λでの試験前後における透過率差ΔTを算出した。評価は以下の3段階とし、×以外を合格とした。
◎(good):ΔTが3%未満
○(fair):ΔTが3%以上4.5%未満
×(bad):ΔTが4.5%以上
<Light resistance test>
As a light resistance test of the obtained optical film, a xenon weather meter tester (manufactured by Suga Test Instruments Co., Ltd., X75) was used, and the xenon lamp illuminance was 60W/m 2 (300nm to 400nm), the temperature inside the tester was 45°C, and the humidity was 50°C. The test was conducted under %RH conditions for 120 hours, and the transmittance was measured using an automatic spectrophotometer (U-4100) before and after the test. The transmittance difference ΔT before and after the test at the wavelength λ showing the minimum transmittance within the maximum absorption wavelength range of the first to third coloring materials was calculated. The evaluation was made in the following three stages, and anything other than × was considered a pass.
◎ (good): ΔT is less than 3% ○ (fair): ΔT is 3% or more and less than 4.5% × (bad): ΔT is 4.5% or more

[表示装置特性評価]
<白表示透過特性>
得られた光学フィルムの透過率を、自動分光光度計(U-4100)を用いて測定し、この透過率を用いて、白表示時に光学フィルムを透過した光の効率を算出し、白表示透過特性として評価した。基準として、図7に示すスペクトルの白色有機EL光源とカラーフィルタを通して出力される白表示時のスペクトルの効率を100とした。100に近いほど白表示透過率が高く、輝度効率に優れる。
<表示装置反射特性>
得られた光学フィルムの透過率T(λ)及び表面反射率R2(λ)を自動分光光度計(U-4100)を用いて測定した。表面反射率R2(λ)の測定については、透明基材の着色層および機能層が形成されていない面につや消し黒色染料を塗布して反射防止の処理を行い、入射角5°の分光反射率を測定して表面反射率R2(λ)とした。電極反射率R(λ)を波長380nmから780nmまで全て100%として、各層での界面反射及び表面反射は考慮せず、光学フィルムの無い状態でのD65光源(CIE(国際照明委員会)標準光源D65)に対する表示装置反射値を100とした際の相対反射値を下記式(1)から(4)に基づいて算出し、観測者側最表層の表面反射率R(λ)を表示装置反射特性として評価した。表示装置反射特性の値が低いほど、外光反射を低減可能で、反射特性に優れる。なお、式(1)から(4)において、R1(λ)は内部反射成分を、YはD65光源の白色点における3刺激値のうちの一つを、PD65(λ)はD65光源のスペクトルを、オーバーラインy(λ)はCIE1931等色関数を、それぞれ表す。
[Display device characteristics evaluation]
<White display transmission characteristics>
The transmittance of the obtained optical film was measured using an automatic spectrophotometer (U-4100), and the efficiency of light transmitted through the optical film during white display was calculated using this transmittance. It was evaluated as a characteristic. As a reference, the efficiency of the spectrum at the time of white display output through the white organic EL light source and color filter having the spectrum shown in FIG. 7 was set as 100. The closer it is to 100, the higher the white display transmittance and the better the luminance efficiency.
<Display device reflection characteristics>
The transmittance T (λ) and surface reflectance R2 (λ) of the obtained optical film were measured using an automatic spectrophotometer (U-4100). For the measurement of surface reflectance R2 (λ), a matte black dye is applied to the surface of the transparent substrate on which the colored layer and functional layer are not formed to prevent reflection, and the spectral reflectance at an incident angle of 5° is measured. was measured and defined as the surface reflectance R2(λ). The electrode reflectance R E (λ) is assumed to be 100% from wavelength 380 nm to 780 nm, interface reflection and surface reflection in each layer are not considered, and the D65 light source (CIE (Commission Internationale de l'Eclairage) standard) without an optical film is used. The relative reflection value when the display device reflection value for light source D65) is set to 100 is calculated based on the following formulas (1) to (4), and the surface reflectance R (λ) of the outermost layer on the observer side is calculated as the display device reflection value. It was evaluated as a characteristic. The lower the value of the display device reflection characteristics, the more the reflection of external light can be reduced and the better the reflection characteristics are. In equations (1) to (4), R1 (λ) is the internal reflection component, Y is one of the tristimulus values at the white point of the D65 light source, and P D65 (λ) is the spectrum of the D65 light source. , and the overline y(λ) represents the CIE1931 color matching function, respectively.

Figure 2024013386000007
Figure 2024013386000008
Figure 2024013386000009
Figure 2024013386000010
<色再現性>
得られた光学フィルムの透過率を、自動分光光度計(U-4100)を用いて測定し、図7に示すスペクトルの、白色EL光源とカラーフィルタを通して出力される図8の赤色表示、緑色表示、青色表示スペクトルを測定した。図7および図8のグラフの縦軸は、発光強度[a.u.](任意単位:arbitrary unit)を表す。測定した透過率と図8の赤色表示、緑色表示、青色表示スペクトルとを用いて算出されるCIE1931色度値からNTSC(全米テレビジョン放送方式標準化委員会)比を算出し、NTSC比を色再現性の指標として評価した。NTSC比が高いほど色再現性に優れる。
Figure 2024013386000007
Figure 2024013386000008
Figure 2024013386000009
Figure 2024013386000010
<Color reproducibility>
The transmittance of the obtained optical film was measured using an automatic spectrophotometer (U-4100), and the spectrum shown in Fig. 7 was outputted through a white EL light source and a color filter, and the red display and green display in Fig. 8 were measured. , the blue display spectrum was measured. The vertical axis of the graphs in FIGS. 7 and 8 indicates the emission intensity [a. u. ] (arbitrary unit). The NTSC (National Television Broadcast Standards Committee) ratio is calculated from the CIE1931 chromaticity value calculated using the measured transmittance and the red display, green display, and blue display spectra in Figure 8, and the NTSC ratio is used for color reproduction. It was evaluated as an index of gender. The higher the NTSC ratio, the better the color reproducibility.

結果を表4に示す。表示装置特性評価の結果については、一部の例についてのみ行い、白表示透過特性および表示装置反射特性については、着色層を備えない比較例8を基準(100%)とした比率を併せて示している。 The results are shown in Table 4. The results of the display device characteristic evaluation were conducted only for some examples, and the ratios of the white display transmission characteristics and display device reflection characteristics are also shown based on Comparative Example 8, which does not include a colored layer (100%). ing.

Figure 2024013386000011
Figure 2024013386000011

実施例に係る光学フィルムは、いずれもA/Bが0.01以上0.25以下であり、良好な耐光性を示し、かつ、十分な硬度を有している。
A/Bが0.25より大きい比較例1~6は耐光性が不十分であり、A/Bが0.01より小さい比較例7は硬度が不十分であった。また、着色層を持たない比較例8や、第一ないし第三の色材のいずれも含まない比較例9では、色再現性が不十分であった。
The optical films according to Examples all have A/B of 0.01 or more and 0.25 or less, exhibit good light resistance, and have sufficient hardness.
Comparative Examples 1 to 6 with A/B greater than 0.25 had insufficient light resistance, and Comparative Example 7 with A/B less than 0.01 had insufficient hardness. Furthermore, in Comparative Example 8, which did not have a colored layer, and Comparative Example 9, which did not contain any of the first to third coloring materials, the color reproducibility was insufficient.

以上、本発明の一実施形態および実施例について詳述したが、本発明は特定の実施形態に限定されず、本発明の要旨を逸脱しない範囲の構成の変更、組み合わせなども含まれる。 Although one embodiment and an example of the present invention have been described in detail above, the present invention is not limited to a specific embodiment, and includes modifications and combinations of configurations within a range that does not depart from the gist of the present invention.

1、3、4、5、7、8 光学フィルム
10 着色層
20 透明基材
30 機能層
31 低屈折率層
32 ハードコート層
34 防眩層
1, 3, 4, 5, 7, 8 Optical film 10 Colored layer 20 Transparent base material 30 Functional layer 31 Low refractive index layer 32 Hard coat layer 34 Anti-glare layer

Claims (9)

シート状の透明基材と、
前記透明基材の第一面側に形成された着色層と、
前記透明基材において、前記第一面と反対側の第二面上、または前記着色層上に形成された機能層と、
を備え、
前記着色層は、色素(A)と、エネルギー線硬化型化合物(B)と、光重合開始剤(C)と、ラジカル捕捉剤(D)と、を含有する硬化物からなり、
前記色素(A)は、第一の色材、第二の色材、および第三の色材のうち少なくとも一つを含有し、
前記第一の色材は、吸収極大波長が470~530nmの範囲内にあり、吸光スペクトルの半値幅が15~45nmであり、
前記第二の色材は、吸収極大波長が560~620nmの範囲内にあり、吸光スペクトルの半値幅が15~55nmであり、
前記第三の色材は、380~780nmの波長の範囲において最も透過率の低い波長が650~780nmの範囲内にあり、
前記着色層の780~825cm-1における赤外線吸収スペクトルピーク強度をA、ペンタエリスリトールテトラアクリレートの780~825cm-1における赤外線吸収スペクトルピーク強度をBとしたとき、A/Bが0.01以上0.25以下であり、
前記透明基材及び前記機能層の少なくとも一方の紫外線遮蔽率が、JIS L1925に準じた測定において85%以上である、
光学フィルム。
A sheet-like transparent base material,
a colored layer formed on the first surface side of the transparent base material;
In the transparent base material, a functional layer formed on a second surface opposite to the first surface or on the colored layer;
Equipped with
The colored layer is made of a cured product containing a dye (A), an energy ray curable compound (B), a photopolymerization initiator (C), and a radical scavenger (D),
The dye (A) contains at least one of a first coloring material, a second coloring material, and a third coloring material,
The first coloring material has an absorption maximum wavelength in the range of 470 to 530 nm, and a half width of the absorption spectrum of 15 to 45 nm,
The second coloring material has an absorption maximum wavelength in the range of 560 to 620 nm, and a half width of the absorption spectrum of 15 to 55 nm,
The third coloring material has a wavelength having the lowest transmittance within a wavelength range of 380 to 780 nm, and is within a range of 650 to 780 nm;
When the infrared absorption spectrum peak intensity at 780 to 825 cm -1 of the colored layer is A, and the infrared absorption spectrum peak intensity at 780 to 825 cm -1 of pentaerythritol tetraacrylate is B, A/B is 0.01 or more. 25 or less,
The ultraviolet shielding rate of at least one of the transparent base material and the functional layer is 85% or more when measured according to JIS L1925.
optical film.
前記エネルギー線硬化型化合物(B)は、(メタ)アクリロイル基を2個のみ有する化合物を20重量%以上含有する、
請求項1に記載の光学フィルム。
The energy ray curable compound (B) contains 20% by weight or more of a compound having only two (meth)acryloyl groups,
The optical film according to claim 1.
前記ラジカル捕捉剤(D)が、下記式(i)で表される構造単位を含むポリマーである、
請求項1に記載の光学フィルム。
Figure 2024013386000012
[式(i)において、R12は、水素原子、ハロゲン原子、カルボキシル基、スルホ基、シアノ基、ヒドロキシ基、炭素数10以下のアルキル基、炭素数10以下のアルコキシカルボニル基、炭素数10以下のアルキルスルホニルアミノカルボニル基、アリールスルホニルアミノカルボニル基、アルキルスルホニル基、アリールスルホニル基、炭素数10以下のアシルアミノスルホニル基、炭素数10以下のアルコキシ基、炭素数10以下のアルキルチオ基、炭素数10以下のアリールオキシ基、ニトロ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、炭素数10以下のアシルオキシ基、炭素数10以下のアシル基、カルバモイル基、スルファモイル基、炭素数10以下のアリール基、置換アミノ基、置換ウレイド基、置換ホスホノ基、又は複素環基を表し、R13は、水素原子又は炭素数30以下のアルキル基を表し、Xは、単結合、エステル基、炭素数30以下の脂肪族アルキル鎖、芳香族鎖、ポリエチレングリコール鎖、又はこれらを組み合わせてなる連結基を表し、いずれもスピロジオキサン環を含むことができる。]
The radical scavenger (D) is a polymer containing a structural unit represented by the following formula (i),
The optical film according to claim 1.
Figure 2024013386000012
[In formula (i), R 12 is a hydrogen atom, a halogen atom, a carboxyl group, a sulfo group, a cyano group, a hydroxy group, an alkyl group having 10 or less carbon atoms, an alkoxycarbonyl group having 10 or less carbon atoms, or a 10 or less carbon atoms Alkylsulfonylaminocarbonyl group, arylsulfonylaminocarbonyl group, alkylsulfonyl group, arylsulfonyl group, acylaminosulfonyl group with 10 or less carbon atoms, alkoxy group with 10 or less carbon atoms, alkylthio group with 10 or less carbon atoms, 10 carbon atoms The following aryloxy groups, nitro groups, alkoxycarbonyloxy groups, aryloxycarbonyloxy groups, acyloxy groups with 10 or less carbon atoms, acyl groups with 10 or less carbon atoms, carbamoyl groups, sulfamoyl groups, aryl groups with 10 or less carbon atoms, Represents a substituted amino group, a substituted ureido group, a substituted phosphono group, or a heterocyclic group, R13 represents a hydrogen atom or an alkyl group having 30 or less carbon atoms, and X represents a single bond, an ester group, or a It represents an aliphatic alkyl chain, an aromatic chain, a polyethylene glycol chain, or a linking group consisting of a combination thereof, and any of them can contain a spirodioxane ring. ]
前記機能層は、反射防止層および防眩層の少なくとも一方として機能する、
請求項1に記載の光学フィルム。
The functional layer functions as at least one of an antireflection layer and an antiglare layer.
The optical film according to claim 1.
前記機能層として、帯電防止層または防汚層を有する、
請求項1に記載の光学フィルム。
The functional layer includes an antistatic layer or an antifouling layer.
The optical film according to claim 1.
前記着色層は、一重項酸素クエンチャー、および過酸化物分解剤の少なくとも一方を有する、
請求項1に記載の光学フィルム。
The colored layer has at least one of a singlet oxygen quencher and a peroxide decomposer,
The optical film according to claim 1.
前記一重項酸素クエンチャーは、ジアルキルジチオホスフェート、ジアルキルジチオカルバネート、ベンゼンジチオール、およびこれらの遷移金属錯体のいずれかである、
請求項6に記載の光学フィルム。
The singlet oxygen quencher is any of dialkyldithiophosphates, dialkyldithiocarbanates, benzenedithiols, and transition metal complexes thereof,
The optical film according to claim 6.
前記色素(A)が、ポルフィリン構造、メロシアニン構造、フタロシアニン構造、アゾ構造、シアニン構造、スクアリリウム構造、クマリン構造、ポリエン構造、キノン構造、テトラジポルフィリン構造、ピロメテン構造及びインジゴ構造のいずれかを有する化合物並びにその金属錯体からなる群から選択される1種以上の化合物を含む、
請求項1に記載の光学フィルム。
A compound in which the dye (A) has any one of a porphyrin structure, a merocyanine structure, a phthalocyanine structure, an azo structure, a cyanine structure, a squarylium structure, a coumarin structure, a polyene structure, a quinone structure, a tetradiporphyrin structure, a pyrromethene structure, and an indigo structure. and one or more compounds selected from the group consisting of metal complexes thereof.
The optical film according to claim 1.
請求項1に記載の光学フィルムを備える、
表示装置。
comprising the optical film according to claim 1;
Display device.
JP2022115440A 2022-07-20 2022-07-20 Optical film and display device Pending JP2024013386A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022115440A JP2024013386A (en) 2022-07-20 2022-07-20 Optical film and display device
PCT/JP2023/019769 WO2024018757A1 (en) 2022-07-20 2023-05-26 Optical film and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022115440A JP2024013386A (en) 2022-07-20 2022-07-20 Optical film and display device

Publications (1)

Publication Number Publication Date
JP2024013386A true JP2024013386A (en) 2024-02-01

Family

ID=89718751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022115440A Pending JP2024013386A (en) 2022-07-20 2022-07-20 Optical film and display device

Country Status (1)

Country Link
JP (1) JP2024013386A (en)

Similar Documents

Publication Publication Date Title
JP7207598B1 (en) optical film and display
US20230375762A1 (en) Optical film, display device using the same, composition for forming colored layer used for producing optical film
WO2024018757A1 (en) Optical film and display device
WO2023218932A1 (en) Composition for forming colored layers, optical film, and display device
JP2024013386A (en) Optical film and display device
WO2023022182A1 (en) Colored-layer-forming composition, optical film, and display device
JP6996656B1 (en) Colored layer forming composition, optical film and display device
JP2024074549A (en) Optical film and display device
JP2023103867A (en) Colored layer forming composition, optical film and display device
TW202417243A (en) Optical film and display device
CN117795385A (en) Composition for forming colored layer, optical film, and display device
JP2024072522A (en) Colored layer forming composition, optical film and display device
JP7168051B1 (en) Colored layer-forming composition, optical film, and display device
JP2023032001A (en) Composition for coloring layer formation, optical film and display device
JP7468709B2 (en) Optical sheet and display device
US20230367051A1 (en) Optical film, display device using the same, composition for forming ultraviolet absorbing layer used for producing optical film
JP7269969B2 (en) Adhesive sheet, display device using the same, composition for forming adhesive layer used for production of adhesive film
WO2023233864A1 (en) Optical film, composition for colored layer formation, dipyrromethene cobalt complex, and display device
WO2023132318A1 (en) Optical film, composition for colored layer formation, dipyrromethene cobalt complex, and display device
WO2022158007A1 (en) Optical film, display device, and composition for forming colored layer
WO2022158006A1 (en) Optical film and display device
JP2023175353A (en) Optical film, composition for colored layer formation, and display device
JP2023175349A (en) Optical film, composition for colored layer formation, dipyrromethene cobalt complex, and display device