JP2024012879A - Method for producing tumor-reactive t-cell - Google Patents

Method for producing tumor-reactive t-cell Download PDF

Info

Publication number
JP2024012879A
JP2024012879A JP2022114657A JP2022114657A JP2024012879A JP 2024012879 A JP2024012879 A JP 2024012879A JP 2022114657 A JP2022114657 A JP 2022114657A JP 2022114657 A JP2022114657 A JP 2022114657A JP 2024012879 A JP2024012879 A JP 2024012879A
Authority
JP
Japan
Prior art keywords
tumor
cells
cancer
cell
tcr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022114657A
Other languages
Japanese (ja)
Inventor
慶裕 宮原
Yoshihiro Miyahara
洋 珠玖
Hiroshi Shuku
真妃子 山根
Makiko Yamane
和志 平糠
Kazushi HIRANUKA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mie University NUC
BrightPath Biotherapeutics Co Ltd
Original Assignee
Mie University NUC
BrightPath Biotherapeutics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mie University NUC, BrightPath Biotherapeutics Co Ltd filed Critical Mie University NUC
Priority to JP2022114657A priority Critical patent/JP2024012879A/en
Publication of JP2024012879A publication Critical patent/JP2024012879A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique for minimizing time, cost, and labor, and which is capable of efficiently selecting a tumor-reactive T-cell simply by using an expression molecule marker as an indicator.
SOLUTION: A method for producing a tumor-reactive T-cell comprises: (1) a candidate isolation process of isolating a CD-8 positive T-cell from a tumor-infiltrating T-cell (Tumor-Infiltrating Lymphocyte: TIL) or whole blood collected from a cancer patient by using PD-1 and/or 4-1BB of an antigen of a cell surface as a marker; (2) a tumor-reactive evaluation process of transducing a T-cell receptor (TCR) gene of a T-cell isolated in the candidate isolation process into the T-cell, and specifying/evaluating a TCR equipped with tumor-reactivity; and (3) a therapeutic T-cell acquisition process of propagating a T-cell reacting a tumor in vitro to obtain a tumor therapeutic T-cell to be administered to the cancer patient.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、腫瘍反応性T細胞の製造方法などに関する。 The present invention relates to methods for producing tumor-reactive T cells, etc.

近年、PD-1やPD-L1などの分子に対する抗体を使用する抗チェックポイント抗体治療の進展によって、がん患者生体内には腫瘍を認識する、特に個々の腫瘍のゲノム変異に起因する変異抗原を認識するT細胞が存在し、抑制状態にあるT細胞が再活性化することで腫瘍退縮・予後延長が期待できることが明確になっている。
また従来、特に悪性黒色腫において、拡大培養したTIL(Tumor-infiltrating lymphocyte:腫瘍浸潤T細胞)を輸注する「TIL療法」が有効性を示し、その有効性の要因としてTILに含まれる変異抗原に特異的なT細胞が報告されている。
さらに、近年にはキメラ抗原受容体(CAR)あるいはT細胞受容体(TCR)によって腫瘍反応性を新規に付与されたT細胞(CAR-T細胞、TCR-T細胞)の投与により、腫瘍退縮効果が期待できることも明らかとなっている。
従って、変異抗原を含む腫瘍抗原を認識する腫瘍反応性T細胞、あるいはそのTCRを利用した治療法が、固形がんに対する有効な治療法となり得る期待が大きくなっている。このような背景から、各種がんにおいて腫瘍反応性T細胞を同定し取得する試みがなされてきたが、主に悪性黒色腫を対象とした研究であり、現時点では、大腸がんを含む他の癌腫において末梢血はもとより、腫瘍反応性T細胞が多く存在すると想定されるTILからも、腫瘍反応性T細胞を確実に取得することは現実的に極めて困難であった(非特許文献1~3)。
In recent years, advances in anti-checkpoint antibody therapy that use antibodies against molecules such as PD-1 and PD-L1 have enabled cancer patients to recognize their tumors, especially mutated antigens caused by genomic mutations in individual tumors. It is clear that there are T cells that recognize this, and that reactivation of suppressed T cells can lead to tumor regression and prolongation of prognosis.
In addition, "TIL therapy" in which expanded cultured TILs (Tumor-infiltrating T cells) are infused has been shown to be effective, especially for malignant melanoma. Specific T cells have been reported.
Furthermore, in recent years, the administration of T cells newly endowed with tumor reactivity by chimeric antigen receptors (CARs) or T cell receptors (TCRs) (CAR-T cells, TCR-T cells) has been shown to have tumor regression effects. It is also clear that this can be expected.
Therefore, there are growing expectations that treatments using tumor-reactive T cells that recognize tumor antigens, including mutated antigens, or their TCRs will be effective treatments for solid cancers. Against this background, attempts have been made to identify and obtain tumor-reactive T cells in various cancers, but research has mainly focused on malignant melanoma, and at present, research has focused on malignant melanoma and other cancers including colorectal cancer. In reality, it has been extremely difficult to reliably obtain tumor-reactive T cells not only from peripheral blood but also from TIL, where many tumor-reactive T cells are expected to exist in cancer (Non-Patent Documents 1 to 3). ).

WO2014-017533A1公報Publication WO2014-017533A1

PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J Clin Invest. 2014 May;124(5):2246-59.PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J Clin Invest. 2014 May;124(5):2246-59. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature. 2018 May;557(7706):575-579.Bystander CD8+ T cells are abundant and phenotypically distinct in human tumor infiltrates. Nature. 2018 May;557(7706):575-579. Isolation of T-Cell Receptors Specifically Reactive with Mutated Tumor-Associated Antigens from Tumor-Infiltrating Lymphocytes Based on CD137 Expression. Clin Cancer Res. 2017 May 15; 23(10): 2491-2505.Isolation of T-Cell Receptors Specifically Reactive with Mutated Tumor-Associated Antigens from Tumor-Infiltrating Lymphocytes Based on CD137 Expression. Clin Cancer Res. 2017 May 15; 23(10): 2491-2505. Fujii et al., Identification of an immunogenic neo-epitope encoded by mouse sarcoma using CXCR3 ligand mRNAs as sensors, Oncoimmunology. 2017 Mar 20;6(5):e1306617.Fujii et al., Identification of an immunogenic neo-epitope encoded by mouse sarcoma using CXCR3 ligand mRNAs as sensors, Oncoimmunology. 2017 Mar 20;6(5):e1306617. Hanson HL.et al., Eradication of Established Tumors by DUC18T Cell Adoptive Immunotherapy, Immunity 2000, 13:265-76.Hanson HL.et al., Eradication of Established Tumors by DUC18T Cell Adoptive Immunotherapy, Immunity 2000, 13:265-76.

TIL中のPD-1, LAG3, TIM3の発現が腫瘍反応性T細胞の指標となりうることが報告されているが、悪性黒色腫での検討であり、その他のがんに対しては、適当な指標が見つけられていなかった。
また、(1)ペプチドあるいは腫瘍の溶解物を取り込んだ抗原提示細胞等をTILと共培養し、腫瘍特異的なT細胞を選択的に培養し増殖させることで取得可能になるとの報告や、(2)TILに対してsingle-cell RNA sequenceおよびTCR sequenceを行い、mRNAレベルで特徴的な発現分子群を指標として腫瘍反応性T細胞を選択する手法が報告されている。しかし、これらの方法は、個々のがん患者に対して適用するには、多くの時間・労力・コストを必要とするため現実的でなかった。
本発明は、上記した事情に鑑みてなされたものであり、その目的は、時間・コスト・労力を最小化すると共に、発現分子マーカーを指標として、簡易に腫瘍反応性T細胞を効率的に選択可能とする技術を提供することである。
It has been reported that the expression of PD-1, LAG3, and TIM3 in TILs can be an indicator of tumor-reactive T cells, but this study was conducted in malignant melanoma, and appropriate treatment is not recommended for other cancers. No indicators were found.
In addition, there are reports that (1) it is possible to obtain tumor-specific T cells by co-culturing them with TILs and selectively culturing and proliferating tumor-specific T cells, such as antigen-presenting cells that have taken up peptides or tumor lysates; 2) A method has been reported in which single-cell RNA sequencing and TCR sequencing are performed on TILs and tumor-reactive T cells are selected using a characteristic group of molecules expressed at the mRNA level as indicators. However, these methods are not practical because they require a lot of time, effort, and cost when applied to individual cancer patients.
The present invention was made in view of the above-mentioned circumstances, and its purpose is to minimize time, cost, and labor, and to easily and efficiently select tumor-reactive T cells using expressed molecular markers as indicators. The goal is to provide the technology that makes it possible.

上記課題を解決するための発明に係る腫瘍反応性T細胞の製造方法は、(1)がん患者から採取した腫瘍浸潤T細胞(Tumor-infiltrating lymphocyte:TIL)または全血から、細胞表面の抗原のうちPD-1及び/または4-1BBをマーカーとして、CD-8陽性T細胞を単離する候補単離工程、(2)前記候補単離工程で単離されたT細胞のT細胞受容体(TCR)遺伝子を標的細胞に形質導入し、腫瘍反応性を備えたTCRを特定・評価する腫瘍反応性評価工程、(3)腫瘍に反応するTCRを持つT細胞をin vitroで増殖させ、前記がん患者に対して投与するための腫瘍治療用T細胞を得る治療用T細胞取得工程を備えたことを特徴とする。
上記発明において、標的細胞とは、所定のTCR遺伝子を発現させることで、腫瘍反応性を発揮し得る能力を持つ細胞のことを意味しており、例えばT細胞、末梢血単核球(peripheral blood mononuclear cell:PBMC)などが含まれる。
上記発明において、前記固形腫瘍が、脳腫瘍、舌がん、食道がん、胃がん、小腸がん、大腸がん、肝臓がん、腎臓がん、膀胱がん、肺がん、甲状腺がん、乳がん、子宮がん、卵巣がん、前立腺がん、横紋筋肉腫及び平滑筋腫からなる群から選択される少なくとも一つであることが好ましい。
また、前記候補単離工程において、更にテトラスパニンをマーカーとすることを特徴とすることが好ましい。このとき、前記テトラスパニンが、CD9、TSPAN2、CD151、CD53、CD37、CD82、CD81及びCD63からなる群から選択される少なくとも一つであることが好ましい。
The method for producing tumor-reactive T cells according to the invention for solving the above problems is as follows: (1) From tumor-infiltrating T cells (Tumor-infiltrating lymphocytes: TILs) or whole blood collected from cancer patients, a candidate isolation step of isolating CD-8 positive T cells using PD-1 and/or 4-1BB as a marker; (2) a T cell receptor of the T cells isolated in the candidate isolation step; (TCR) gene transfection into target cells to identify and evaluate TCRs with tumor reactivity; (3) T cells with tumor-reactive TCRs are expanded in vitro; The present invention is characterized by comprising a therapeutic T cell obtaining step for obtaining tumor therapeutic T cells to be administered to cancer patients.
In the above invention, target cells refer to cells that have the ability to exhibit tumor reactivity by expressing a predetermined TCR gene, such as T cells and peripheral blood mononuclear cells (peripheral blood mononuclear cells). mononuclear cells (PBMC).
In the above invention, the solid tumor is brain tumor, tongue cancer, esophageal cancer, stomach cancer, small intestine cancer, colon cancer, liver cancer, kidney cancer, bladder cancer, lung cancer, thyroid cancer, breast cancer, uterus cancer, Preferably, the cancer is at least one selected from the group consisting of cancer, ovarian cancer, prostate cancer, rhabdomyosarcoma, and leiomyoma.
Moreover, it is preferable that the candidate isolation step further includes using tetraspanin as a marker. At this time, it is preferable that the tetraspanin is at least one selected from the group consisting of CD9, TSPAN2, CD151, CD53, CD37, CD82, CD81, and CD63.

<本発明の概要>
1.自己腫瘍に反応するTCRの同定方法
図1には、腫瘍反応性T細胞の細胞表面抗原を探索する方法について概要を示した。固形腫瘍を持つがん患者(例えば大腸がん患者)から、腫瘍組織(Tumor tissue)を取得する(1)。一般に、腫瘍組織中には、正常細胞に加え、腫瘍細胞及びTILが含まれている。この腫瘍組織に含まれる腫瘍細胞から癌組織由来スフェロイド(Cancer Tissue-Originated Spheroid:CTOS)を作成することでin vitroで患者腫瘍細胞を維持する(5)。一方、腫瘍組織からCD8陽性TIL(CD8+TIL)を同定し(2)、ここからPD-1及び4-1BBの発現を指標としてCD8+T細胞集団を細分化し、それぞれの細胞集団(PD-1陽性且つ4-1BB陰性(PD-1+4-1BB)、PD-1陽性且つ4-1BB陽性(PD-1+4-1BB+)、PD-1及び4-1BB共に陰性(PD-14-1BB))に属する個々のT細胞を取得し(候補単離工程)、そのT細胞のT細胞受容体(TCR)をsingle-cell PCRにより取得し、それらTCRの遺伝子配列を用いてレパトア解析を行う(3)。レパトアサイズの大きいTCRを中心に、個々のTCRを健常人末梢血単核球(peripheral blood mononuclear cell:PBMC)分画にレトロウイルスベクターを用いて発現導入し(4)、自己腫瘍由来CTOSと24時間共培養し、その培養上清のサイトカイン(IFN-γ)を測定することで、自己腫瘍に反応するTCRの同定を行える(6:腫瘍反応性評価工程)。
図の右上端には、CTOSの「腫瘍性」を確認するため、大腸がん組織に高発現するCEA(がん胎児性抗原)を抗CEA抗体を用いて染色したときに得られるイメージを示す。
<Summary of the present invention>
1. Method for identifying TCRs that respond to autologous tumors Figure 1 outlines a method for searching for cell surface antigens of tumor-reactive T cells. Tumor tissue is obtained from cancer patients with solid tumors (for example, colon cancer patients) (1). Generally, tumor tissue contains tumor cells and TILs in addition to normal cells. Patient tumor cells are maintained in vitro by creating cancer tissue-originated spheroids (CTOS) from the tumor cells contained in the tumor tissue (5). On the other hand, CD8 + TILs were identified from tumor tissues (2), and CD8 + T cell populations were subdivided using PD-1 and 4-1BB expression as indicators, and each cell population (PD- 1 positive and 4-1BB negative (PD-1 + 4-1BB ), PD-1 positive and 4-1BB positive (PD-1 + 4-1BB + ), both PD-1 and 4-1BB negative (PD- 1 - 4-1BB - ))) (candidate isolation step), obtain the T cell receptors (TCRs) of the T cells by single-cell PCR, and determine the gene sequences of these TCRs. Perform repertoire analysis using this method (3). Individual TCRs, mainly TCRs with large repertoire sizes, were expressed and introduced into peripheral blood mononuclear cell (PBMC) fractions of healthy individuals using retroviral vectors (4), and autologous tumor-derived CTOS and 24 By co-culturing for a period of time and measuring the cytokine (IFN-γ) in the culture supernatant, it is possible to identify TCRs that react with autologous tumors (6: Tumor reactivity evaluation step).
The upper right corner of the figure shows an image obtained when CEA (carcinoembryonic antigen), which is highly expressed in colorectal cancer tissue, was stained with an anti-CEA antibody to confirm the "tumor nature" of CTOS. .

2.TCRの変異抗原に対する認識性の有無の検証方法
図2には、CTOSに反応する腫瘍反応性TCRについて、変異抗原(個々の腫瘍ゲノムの遺伝子変異に由来する抗原)に対する反応性を解析する検証方法を示した。
個々の患者腫瘍組織(1)から得られた核酸(DNA/RNA)及び患者末梢血から得られた正常組織核酸(DNA)(2)を次世代シークエンスにより解析し(3)、腫瘍特異的なアミノ酸変異を伴う遺伝子変異を同定する(4)。さらにin silicoでの解析を加え、患者HLAに提示されやすく、免疫原性が高いと想定される変異抗原を選択する(5)。それら変異抗原(アミノ酸配列として27-mer(中心に変異アミノ酸を置き、両側に13アミノ酸))をコードする塩基配列をタンデムに8~10種類並べたプラスミド(Tandem Mini Gene;TMG)を構築し(6)、さらにin vitro transcriptionによりmRNAを作製する。
一方、患者腫瘍組織からCD8+TILを同定し、単離されたCD8+TILのクローン性を分析する(7)。TCR遺伝子を形質導入し(8)、CTOSを用いて腫瘍反応性を評価する(9:候補単離工程)。
先に作製しておいたmRNAを患者のB細胞から作製したLCL(不死化B細胞株)に電気穿孔法(Electroporation)を用いて発現導入し、腫瘍反応性TCRを導入したT細胞と共培養しELISPOT法を用いてその反応性を解析する(腫瘍反応性評価工程)。TCRが特定の変異抗原を認識する場合には、TMG mRNAを導入したLCLに反応する。その場合、TMGには8~10種類の変異抗原があるため、個別に分けたTMGを新たに作製し、それらを解析することで、どの変異抗原を認識するのかが決定できる(10)。
2. Method for verifying the ability of TCR to recognize mutant antigens Figure 2 shows a verification method for analyzing the reactivity of tumor-reactive TCRs that react with CTOS to mutant antigens (antigens derived from genetic mutations in individual tumor genomes). showed that.
Nucleic acids (DNA/RNA) obtained from individual patient tumor tissues (1) and normal tissue nucleic acids (DNA) obtained from patient peripheral blood (2) are analyzed by next-generation sequencing (3), and tumor-specific Identify genetic mutations that involve amino acid mutations (4). Furthermore, in silico analysis is performed to select mutant antigens that are likely to be presented to the patient's HLA and are expected to be highly immunogenic (5). We construct a plasmid (Tandem Mini Gene; TMG) in which 8 to 10 base sequences encoding these mutated antigens (27-mer amino acid sequence (mutated amino acid in the center, 13 amino acids on both sides)) are arranged in tandem ( 6), further produce mRNA by in vitro transcription.
On the other hand, CD8 + TILs are identified from patient tumor tissues and the clonality of the isolated CD8 + TILs is analyzed (7). Transduce the TCR gene (8) and evaluate tumor reactivity using CTOS (9: candidate isolation step).
Expression of the previously prepared mRNA is introduced into LCL (immortalized B cell line) prepared from patient B cells using electroporation, and co-cultured with T cells into which tumor-reactive TCR has been introduced. and analyze its reactivity using the ELISPOT method (tumor reactivity evaluation step). When TCR recognizes a specific mutated antigen, it reacts with LCL into which TMG mRNA has been introduced. In this case, since there are 8 to 10 types of mutated antigens in TMG, it is possible to determine which mutated antigen is recognized by creating new individual TMGs and analyzing them (10).

3.がん患者のTILまたはPBMCを利用した免疫細胞療法
図3には、がん患者由来のTILまたはPBMCを利用した免疫細胞療法の概要について示す。
がん患者から腫瘍(Tumor)またはPBMCを採取し、ここからPD-1+4-1BB+CD9+のTriple Positive のCD8+T細胞をTIL候補として取得する(1:候補単離工程)。ここからTCR遺伝子を解析し、腫瘍反応性TCRを取得する(2)。次いで、このTCRをT細胞に形質導入する(3:腫瘍反応性評価工程)。これとは別に、患者PBMCからPD-1+4-1BB+CD9+の腫瘍反応性TCRを取得できる(4)。次に、(3)及び/または(4)で得た細胞をin vitroで増殖させた後(5:治療用T細胞取得工程)、これを患者に投与する(6)。このT細胞を投与することにより、免疫原性がない(少ない)腫瘍(cold tumor)から免疫原性の強い腫瘍(hot tumor)になるよう免疫反応を起こさせ(7)、治癒に導くことができる(8)。
3. Immune cell therapy using TIL or PBMC from cancer patients Figure 3 shows an overview of immune cell therapy using TIL or PBMC derived from cancer patients.
Tumors or PBMCs are collected from cancer patients, and PD-1 + 4-1BB + CD9 + triple positive CD8 + T cells are obtained as TIL candidates (1: candidate isolation step). From here, the TCR gene is analyzed and a tumor-reactive TCR is obtained (2). Next, this TCR is transduced into T cells (3: tumor reactivity evaluation step). Separately, PD-1 + 4-1BB + CD9 + tumor-reactive TCRs can be obtained from patient PBMCs (4). Next, the cells obtained in (3) and/or (4) are grown in vitro (5: therapeutic T cell acquisition step), and then administered to the patient (6). By administering these T cells, it is possible to induce an immune response that changes a tumor (cold tumor with little immunogenicity) to a tumor (hot tumor) with strong immunogenicity (7), leading to a cure. I can (8).

本発明によれば、がん患者の腫瘍治療用T細胞を提供できる。このT細胞は、当該がん患者の治療に有効に使用できる。そのような治療方法としては、例えば次のようなものが考えられる。
1.腫瘍反応性T細胞のTCRを利用した遺伝子改変T細胞輸注療法、2.腫瘍反応性T細胞の集団を改変せず拡大培養して輸注する治療法、3.テトラスパニン分子をTCR/CARでの遺伝子改変と同時に共発現させ有効性を高める治療法、及び4.腫瘍反応性T細胞からのエクソソームを含む細胞外小胞(extracellular vesicle:EV)のがん治療への応用などである。
According to the present invention, T cells for tumor treatment of cancer patients can be provided. These T cells can be effectively used to treat cancer patients. Examples of such treatment methods include the following:
1. Genetically modified T cell infusion therapy using TCR of tumor-reactive T cells, 2. 3. A treatment method in which a population of tumor-reactive T cells is expanded and cultured without modification and then infused; 3. 4. A treatment method that increases efficacy by co-expressing tetraspanin molecules simultaneously with genetic modification with TCR/CAR; and 4. This includes the application of extracellular vesicles (EVs) containing exosomes from tumor-reactive T cells to cancer treatment.

腫瘍反応性T細胞の細胞表面抗原を探索する方法を説明する概要図である。FIG. 2 is a schematic diagram illustrating a method for searching for cell surface antigens of tumor-reactive T cells. CTOSに反応する腫瘍反応性TCRについて、変異抗原に対する反応性を解析する検証方法を説明する概要図である。FIG. 2 is a schematic diagram illustrating a verification method for analyzing reactivity to mutant antigens for tumor-reactive TCRs that react with CTOS. がん患者由来のTILまたはPBMCを利用した免疫細胞療法の概要図である。FIG. 2 is a schematic diagram of immune cell therapy using TIL or PBMC derived from cancer patients. CCP1について、腫瘍反応性TCRを解析した結果を示す図である。(A)4-1BBとPD-1の発現の有無によって、TILを3種類の細胞集団に分けた結果を示すパイチャート、(B)DP-1~DP-9がIFN-γを産生するか否かを調べた結果を示すグラフ、(C)4種類のTMGから作製したmRNAをCCP1患者由来LCLに発現導入した後、ELISPOT法で解析した結果を示すグラフである。FIG. 2 is a diagram showing the results of analyzing tumor-reactive TCR for CCP1. (A) Pie chart showing the results of dividing TIL into three types of cell populations depending on the presence or absence of 4-1BB and PD-1 expression, (B) Whether DP-1 to DP-9 produce IFN-γ (C) A graph showing the results of analysis using the ELISPOT method after introducing mRNA prepared from four types of TMG into CCP1 patient-derived LCL. CCP3について、腫瘍反応性TCRを解析した結果を示す図である。(A)4-1BBとPD-1の発現の有無によって、TILを3種類の細胞集団に分けた結果を示すパイチャート、(B),(C)4種類のTMGを用いて、CCP3患者由来LCLに発現導入した後、反応性を調べた結果を示す図である。FIG. 3 is a diagram showing the results of analyzing tumor-reactive TCR for CCP3. (A) Pie chart showing the results of dividing TIL into three types of cell populations depending on the presence or absence of 4-1BB and PD-1 expression, (B), (C) Using four types of TMG, CCP3 patient-derived FIG. 2 is a diagram showing the results of examining reactivity after expression was introduced into LCL. CCP5について、腫瘍反応性TCRを解析した結果を示す図である。(A)PD-1の発現の有無によって、TILを2種類の細胞集団に分けたパイチャート及びそれぞれの細胞集団から個々のTCR遺伝子を取得し、レパトア解析をした結果を示す図、(B)2種類のTMGから作製したmRNAをCCP5患者由来LCLに発現導入した後、ELISPOT法で解析した結果を示すグラフ、(C)TMG1中の遺伝子を個々に分割したTMについて、反応性を調べた結果を示すグラフである。FIG. 2 is a diagram showing the results of analyzing tumor-reactive TCR for CCP5. (A) A pie chart showing the division of TIL into two types of cell populations based on the presence or absence of PD-1 expression, and a diagram showing the results of repertoire analysis obtained by acquiring individual TCR genes from each cell population, (B) Graph showing the results of analysis by ELISPOT after expression of mRNA prepared from two types of TMG was introduced into LCL derived from a CCP5 patient. (C) Results of investigating the reactivity of TMs in which genes in TMG1 were individually divided. This is a graph showing. CCP15について、腫瘍反応性TCRを解析した結果を示す図である。(A)PD-1及び4-1BBの発現の有無によって、TILを3種類の細胞集団に分けたパイチャート、(B)4種類のTMGから作製したmRNAをCCP15患者由来LCLに発現導入した後、ELISPOT法で解析した結果を示すグラフ、(C)TMG1中の遺伝子を個々に分割したTMについて、反応性を調べた結果を示すグラフである。FIG. 3 is a diagram showing the results of analyzing tumor-reactive TCR for CCP15. (A) Pie chart in which TILs are divided into three types of cell populations depending on the presence or absence of PD-1 and 4-1BB expression. (B) After expression of mRNA prepared from four types of TMG is introduced into LCLs derived from CCP15 patients. , a graph showing the results of analysis using the ELISPOT method, and (C) a graph showing the results of examining the reactivity of TMs in which genes in TMG1 were individually divided. 12症例のCCPから得られたCD8+TILのうち腫瘍反応性TCRについてPD-1及び4-1BBの発現頻度を調べた結果を示す図である。(A)PD-1+4-1BB+のDP(Double Positive)集団の割合を比較した図、(B)CCP1について、PD-1と4-1BBの発現の有無を調べた結果を示す図、(C)CCP1について、TILをPD-1と4-1BBの発現の有無で3種類の細胞集団に分けたパイチャートである。FIG. 3 is a diagram showing the results of investigating the expression frequency of PD-1 and 4-1BB among tumor-reactive TCRs among CD8 + TILs obtained from 12 cases of CCP. (A) Diagram comparing the percentage of DP (Double Positive) population of PD-1 + 4-1BB + (B) Diagram showing the results of examining the presence or absence of expression of PD-1 and 4-1BB for CCP1, (C) For CCP1, this is a pie chart in which TILs are divided into three types of cell populations based on the presence or absence of PD-1 and 4-1BB expression. 16症例の予後について、「CD8+TIL中のPD-1+4-1BB+細胞集団頻度3%以上」を基準にログランク検定を実施した結果を示すグラフである。This is a graph showing the results of a log-rank test regarding the prognosis of 16 cases based on "PD-1 + 4-1BB + cell population frequency in CD8 + TIL of 3% or more". CCP1症例TILを用いて、sc(single cell)RNA-seq解析及びTCR-seq解析を行った結果を示す図である。(A)PD-1+4-1BB+のDP集団を調べた結果を示すパイチャート及びCTOSへの反応性を調べた結果を示すグラフ、(B)2種類のTCRについて、近似したRNA発現プロファイルを示すグラフ、(C)DP5-6及びDP53-1と他の細胞のRNA発現解析を実施した結果を示す図である。FIG. 3 is a diagram showing the results of sc (single cell) RNA-seq analysis and TCR-seq analysis using CCP1 case TIL. (A) Pie chart showing the results of investigating the PD-1 + 4-1BB + DP population and graph showing the results of investigating the reactivity to CTOS, (B) Approximate RNA expression profiles for the two types of TCR (C) A diagram showing the results of RNA expression analysis of DP5-6 and DP53-1 and other cells. CCP9について、腫瘍反応性TCRを解析した結果を示す図である。(A)PD-1+で選択し、TCRを調べた結果を示すパイチャート、(B)PD-1+4-1BB+CD9+のTP(Triple Positive)で選択し、TCRを調べた結果を示すパイチャート、(C)SP12-2等がIFN-γを産生するか否かを調べた結果を示すグラフである。FIG. 2 is a diagram showing the results of analyzing tumor-reactive TCR for CCP9. (A) Pie chart showing the results of selecting by PD-1 + and examining TCR, (B) Selecting by TP (Triple Positive) of PD-1 + 4-1BB + CD9 + and examining the results of TCR. (C) A graph showing the results of investigating whether SP12-2 and the like produce IFN-γ. マウスモデルを用いて、CD9分子の発現が腫瘍反応性の指標となり得るか否かを検討した結果を示す図である。(A)IFN-γICS法に使用するCD8+T細胞の採取スケジュールを示す図、(B)IFN-γICS法を実施した結果を示すグラフ、(C)変異型Snd1ペプチドとアジュバント(CHP:疎水化多糖類)がCMS7担癌マウスに効果があることを調べた結果を示す図(上側は実験プロトコール、下側は腫瘍長と腫瘍投与との関係を調べたグラフ)である。FIG. 3 is a diagram showing the results of examining whether the expression of CD9 molecules can serve as an indicator of tumor reactivity using a mouse model. (A) Diagram showing the collection schedule of CD8 + T cells used in the IFN-γICS method, (B) Graph showing the results of implementing the IFN-γICS method, (C) Mutant Snd1 peptide and adjuvant (CHP: hydrophobized This figure shows the results of an investigation into the effect of polysaccharides) on CMS7 tumor-bearing mice (the upper part is the experimental protocol, and the lower part is a graph examining the relationship between tumor length and tumor administration). 変異型Snd1特異的CD8+T細胞がCD9分子を発現しているか否かを調べた結果を示す図である。(A)CD8+T細胞の採取スケジュールを示す図、(B)IFN-γICS法を実施した結果を示すグラフ、(C)ELISPOT法によって、変異型Snd1ペプチド特異的CD8+細胞の頻度を調べた結果を示すグラフである。FIG. 2 is a diagram showing the results of examining whether mutant Snd1-specific CD8 + T cells express CD9 molecules. (A) Diagram showing the collection schedule of CD8 + T cells, (B) Graph showing the results of implementing the IFN-γICS method, (C) The frequency of mutant Snd1 peptide-specific CD8 + cells was investigated by the ELISPOT method. It is a graph showing the results. CD8+CD9+CD81+T細胞のTCRレパトア解析を実施した結果を示す図である。(A)脾細胞の採取スケジュールを示す図、(B)Day21の脾臓中CD8+CD9+CD81+T細胞のTCR解析を行った結果を示す図、(C) 変異型Snd1に特異的なCD8+T細胞でのCD81の発現を解析した結果を示す図である。FIG. 3 is a diagram showing the results of TCR repertoire analysis of CD8 + CD9 + CD81 + T cells. (A) Diagram showing the collection schedule of splenocytes, (B) Diagram showing the results of TCR analysis of CD8 + CD9 + CD81 + T cells in the spleen on Day 21, (C) CD8 + specific for mutant Snd1 FIG. 2 is a diagram showing the results of analyzing the expression of CD81 in T cells. CMS7担癌後ICI無治療マウス脾臓中のCD8+CD9+CD81+T細胞集団のTCRレパトア解析とTCRのCMS7への反応性の解析を行った結果を示す図である。(A)マウスIFN-γ(mIFN-γ)の測定結果を示すグラフ、(B)マウスTNFα(mTNFα)の測定結果を示すグラフ、(C)CMS7を特異的に認識するTCRが3細胞で認められた結果を示すパイチャートである。FIG. 3 is a diagram showing the results of TCR repertoire analysis of CD8 + CD9 + CD81 + T cell population in the spleen of ICI-untreated mice after CMS7 tumor bearing and analysis of TCR reactivity to CMS7. (A) Graph showing the measurement results of mouse IFN-γ (mIFN-γ), (B) Graph showing the measurement results of mouse TNFα (mTNFα), (C) TCR that specifically recognizes CMS7 was observed in 3 cells. This is a pie chart showing the results obtained. CT26担癌マウス脾臓中のCD8+CD9+CD81+T細胞集団のTCRレパトア解析を行った結果を示す図である。(A)マウス脾臓の採取スケジュールを示す図、(B)Day21の脾臓中CD8陽性細胞のCD9+CD81+細胞のレパトア解析を行った結果を示す図である。FIG. 3 shows the results of TCR repertoire analysis of CD8 + CD9 + CD81 + T cell populations in the spleen of CT26 tumor-bearing mice. (A) A diagram showing the collection schedule of mouse spleen, and (B) a diagram showing the results of repertoire analysis of CD9 + CD81 + cells among CD8-positive cells in the spleen on Day 21. CT26担癌ICI無治療マウス脾臓中のCD8+CD9+CD81+T細胞集団の特徴を調べた結果を示す図である。(A)マウス脾臓の採取スケジュールを示す図、(B)、(C)マウスIFN-γ(mIFN-γ)の測定結果を示すグラフである。FIG. 3 is a diagram showing the results of examining the characteristics of CD8 + CD9 + CD81 + T cell populations in the spleen of CT26 tumor-bearing ICI-untreated mice. (A) A diagram showing the schedule for collecting mouse spleen, (B) and (C) graphs showing the measurement results of mouse IFN-γ (mIFN-γ). CD9の発現が抗腫瘍効果を高めることを検証するための実験結果を示す図である。(A)試験スケジュールを示す図、(B)腫瘍投与と腫瘍サイズの関係を示すグラフである。FIG. 3 is a diagram showing the results of an experiment to verify that CD9 expression enhances antitumor effects. (A) A diagram showing the test schedule, (B) a graph showing the relationship between tumor administration and tumor size.

次に、本発明の実施形態について、図表を参照しつつ説明するが、本発明の技術的範囲は、これらの実施形態によって限定されるものではなく、発明の要旨を変更することなく様々な形態で実施できる。
<材料と試験方法>
1.ヒトサンプルに関する倫理
患者と健康なボランティアから、ヘルシンキ宣言のガイドラインに従って、書面によるインフォームドコンセントを得た。試験プロトコールは、三重大学医学部の倫理委員会によって承認された。
2.マウス実験に関する倫理
全ての動物実験は、三重大学生命科学センターの動物管理使用委員会によって承認されたプロトコルを使用して実施した。
3.マウス
雌性BALB/cマウスは、静岡動物研究所から購入した。H-2Kd mERK2136-144と反応するα/β-TCRトランスジェニックDUC18マウスは、既報に従って確立した。NOGマウスとして知られるNOD/Shi-scid/IL-2Rγnullマウスは、中央実験動物研究所から購入した。全てのマウスは、特定病原体除去環境化で飼育し、8~10週齢で使用した。
Next, embodiments of the present invention will be described with reference to diagrams, but the technical scope of the present invention is not limited by these embodiments, and various forms may be implemented without changing the gist of the invention. It can be carried out with
<Materials and test methods>
1. Ethics regarding human samples Written informed consent was obtained from patients and healthy volunteers in accordance with the guidelines of the Declaration of Helsinki. The study protocol was approved by the Ethics Committee of Mie University School of Medicine.
2. Ethics regarding mouse experiments All animal experiments were performed using protocols approved by the Mie University Life Science Center Animal Care and Use Committee.
3. Mice Female BALB/c mice were purchased from Shizuoka Animal Research Institute. α/β-TCR transgenic DUC18 mice that react with H-2K d mERK2 136-144 were established as previously reported. NOD/Shi-scid/IL-2Rγ null mice, known as NOG mice, were purchased from the Central Institute of Laboratory Animals. All mice were housed in a specific pathogen-free environment and used at 8-10 weeks of age.

4.抗体
フルオレセインイソチオシアネート(FITC)結合抗ヒトCD3モノクローナル抗体(mAb、OKT3)、フィコエリスリン(PE)-Cy7結合抗ヒトCD8 mAb(RPA-T8)、PerCP-Cy5.5結合抗ヒトCD9(HI9a)、アロフィコシアニン(APC)結合抗ヒトPD-1 mAb(EH12.2H7)、PE結合抗ヒト4-1BB(CD137)mAb(4B4-1)およびeFluor780-Fixable Viability Dye をBioLegendから購入した。PerCP-Cy5.5結合抗マウスCD3 mAb(145-2C11)、APC-Cy7結合抗マウスCD8 mAb(53-6.7)、FITC結合抗マウスCD9 mAb(MZ3)、PE結合 抗マウスCD81 mAb(Eat-2)およびPE-Cy7結合抗マウスPD-1 mAbについては、BioLegend社から購入した。FITC結合抗CEA mAb(CB30)はAbcam社から購入した。マウスの治療のために、抗マウスPD-1(RMP1-14)、抗マウスCTLA-4(9D9)および抗マウスGITR(DTA-1)mAbをハイブリドーマから産生し、プロテインGカラムで精製した。
5.細胞株
CMS5およびCMS7は、BALB/c由来の3-メチルコラントレン誘発性肉腫細胞株である。CT26は、BALB/cマウスへのN-ニトロソ-N-メチルウレタンの直腸内注射に由来する結腸上皮腫瘍細胞株である。P1.HTRは、DBA/2由来のP815肥満細胞腫細胞株の亜株(サブライン)である。ヒトBリンパ芽球様細胞株(human B-lymphoblastoid cell lines :LCL)は、EBVを含む上清を使用して、患者の末梢血から当研究室で生成した。全てのマウス腫瘍株およびLCLは、10%熱不活化ウシ胎児血清(FCS)、50μM 2-メルカプトエタノール(2-ME)、および0.2 mg/mLグルタミンを添加したRPMI-1640培地で培養した。
4. Antibodies Fluorescein isothiocyanate (FITC)-conjugated anti-human CD3 monoclonal antibody (mAb, OKT3), phycoerythrin (PE)-Cy7-conjugated anti-human CD8 mAb (RPA-T8), PerCP-Cy5.5-conjugated anti-human CD9 (HI9a) , allophycocyanin (APC)-conjugated anti-human PD-1 mAb (EH12.2H7), PE-conjugated anti-human 4-1BB (CD137) mAb (4B4-1) and eFluor780-Fixable Viability Dye were purchased from BioLegend. PerCP-Cy5.5-conjugated anti-mouse CD3 mAb (145-2C11), APC-Cy7-conjugated anti-mouse CD8 mAb (53-6.7), FITC-conjugated anti-mouse CD9 mAb (MZ3), PE-conjugated anti-mouse CD81 mAb (Eat-2 ) and PE-Cy7-conjugated anti-mouse PD-1 mAb were purchased from BioLegend. FITC-conjugated anti-CEA mAb (CB30) was purchased from Abcam. For the treatment of mice, anti-mouse PD-1 (RMP1-14), anti-mouse CTLA-4 (9D9) and anti-mouse GITR (DTA-1) mAbs were produced from hybridomas and purified on a protein G column.
5. cell line
CMS5 and CMS7 are 3-methylcholanthrene-induced sarcoma cell lines derived from BALB/c. CT26 is a colon epithelial tumor cell line derived from intrarectal injection of N-nitroso-N-methylurethane into BALB/c mice. P1.HTR is a subline of the P815 mastocytoma cell line derived from DBA/2. Human B-lymphoblastoid cell lines (LCL) were generated in our laboratory from patients' peripheral blood using EBV-containing supernatants. All mouse tumor lines and LCLs were cultured in RPMI-1640 medium supplemented with 10% heat-inactivated fetal calf serum (FCS), 50 μM 2-mercaptoethanol (2-ME), and 0.2 mg/mL glutamine.

6.患者及びサンプル
三重大学医学部附属病院の消化管・小児外科を訪れ、2016年~2018年の間に手術を受けた結腸直腸癌(colorectal cancer:CRC)の患者を本研究に登録した。外科的に切除されたCRCから新鮮な腫瘍組織サンプルを収集した。患者個人からの対となる末梢血単核細胞(peripheral blood mononuclear cell:PBMC)は、Ficoll-Paque PLUS(GE Healthcare社製)で密度勾配遠心分離を行い、新鮮なヘパリン化静脈血サンプルから分離した。
7.癌組織由来スフェロイド(Cancer Tissue-Originated Spheroid:CTOS)系統およびTILの調製
CTOSは、既報に適当な変更を加えて準備した。簡単に説明すると、次の通りである。切除した腫瘍を速やかに機械的に細かく切断し、最終濃度として26 units/mLのリベラーゼDH(ロッシュ社製)を含むDMEM/Ham F12培地(和光純薬工業社製)で、37°Cにて90分間、連続攪拌しながら培養した。10μg/mLのDNase I(ロッシュ社製)を添加した後、さらに15分間培養した。消化された培養液を500、250、100および40μmのメッシュフィルター(BD Falcon社製)を使用して連続的に濾過した。100~250μm(Fr.100-250)と40~100μm(Fr.40-100)の間で画分を回収した。Fr.40-100サンプルをSTEM PRO hESC SFM(Invitrogen社製)を用いて、5%CO2、20%O2環境下で37°Cにて24~48時間培養し、CTOSを形成した。Fr.100-250サンプルは、27ゲージの針を使用してプランジャーを数回上下させることにより機械的に破壊した後、Fr.40-100サンプルと同様に培養した。
40μmメッシュフィルターを通過した細胞を回収し、Cellbanker-1培地(タカラバイオ社製)を用いて-80℃で凍結し、これをTILとして使用した。
6. Patients and Samples Patients with colorectal cancer (CRC) who visited the Department of Gastrointestinal and Pediatric Surgery at Mie University Hospital and underwent surgery between 2016 and 2018 were enrolled in this study. Fresh tumor tissue samples were collected from surgically resected CRCs. Paired peripheral blood mononuclear cells (PBMCs) from individual patients were isolated from fresh heparinized venous blood samples by density gradient centrifugation on Ficoll-Paque PLUS (GE Healthcare). .
7. Preparation of Cancer Tissue-Originated Spheroid (CTOS) lines and TILs
CTOS was prepared by making appropriate changes to previous reports. A brief explanation is as follows. The excised tumor was immediately mechanically cut into small pieces and incubated at 37°C in DMEM/Ham F12 medium (manufactured by Wako Pure Chemical Industries, Ltd.) containing Liberase DH (manufactured by Roche) at a final concentration of 26 units/mL. Incubation was continued for 90 minutes with continuous stirring. After adding 10 μg/mL of DNase I (manufactured by Roche), the cells were cultured for an additional 15 minutes. The digested culture fluid was sequentially filtered using 500, 250, 100 and 40 μm mesh filters (BD Falcon). Fractions between 100 and 250 μm (Fr. 100-250) and 40 and 100 μm (Fr. 40-100) were collected. The Fr.40-100 sample was cultured using STEM PRO hESC SFM (manufactured by Invitrogen) at 37°C in an environment of 5% CO 2 and 20% O 2 for 24 to 48 hours to form CTOS. The Fr. 100-250 samples were mechanically disrupted using a 27-gauge needle by moving the plunger up and down several times, and then cultured similarly to the Fr. 40-100 samples.
Cells that had passed through a 40 μm mesh filter were collected, frozen at −80° C. using Cellbanker-1 medium (manufactured by Takara Bio Inc.), and used as TIL.

8.ヒトサンプルからのDNA及びRNAの精製
直径5 mmの腫瘍組織サンプルを用いて、DNAおよびRNAを単離した。RNAとゲノムDNAの精製には、RNeasy and Puregene Coreキット(キアゲン社製)を使用し、製造元のプロトコルに従って実施した。DNA分離には5×106PBMCを使用した。PBMCからのゲノムDNAの精製には、QIAmp DNAキット(キアゲン社製)を使用し、製造元のプロトコルに従って実施した。
9.次世代シークエンス及びデータ解析
患者の正常組織及び腫瘍組織より抽出したゲノムDNAを200ng用い150~200 bpに切断し、SureSelect XT HS キット(Agilent technology社製)を用いてアダプターを連結後、Exon領域についてSureSelect Human All Exon V6にMHC領域を追加したビオチン化オリゴRNAベイトを用いてハイブリダイゼーションを実施した。アビジンビーズを用いてサンプルを回収し、PCR増幅を行ってライブラリを得た後、NextSeq550(illumina社製)を用いた101 bpペアエンドのWhole Exome Sequence (WES)を実施した。腫瘍組織より抽出したTotal RNAを300~500 ng用い、TruSeqTM Stranded mRNA Library キット(llumina社製)を用いてmRNAにアダプターを連結後、PCR増幅を行ってライブラリを得た後、NextSeq550を用いた76 bpペアエンドのRNA Sequence(RNA-Seq)を実施した。
8. Purification of DNA and RNA from human samples A 5 mm diameter tumor tissue sample was used to isolate DNA and RNA. Purification of RNA and genomic DNA was performed using the RNeasy and Puregene Core kit (Qiagen) according to the manufacturer's protocol. 5×10 6 PBMCs were used for DNA isolation. Purification of genomic DNA from PBMCs was carried out using the QIAmp DNA kit (manufactured by Qiagen) according to the manufacturer's protocol.
9. Next-generation sequencing and data analysis Genomic DNA extracted from patient normal tissue and tumor tissue was cut into 150 to 200 bp using 200 ng, and after ligating adapters using SureSelect XT HS kit (manufactured by Agilent technology), the Exon region was extracted. Hybridization was performed using a biotinylated oligo RNA bait with an MHC region added to SureSelect Human All Exon V6. After collecting samples using avidin beads and performing PCR amplification to obtain a library, 101 bp paired-end Whole Exome Sequence (WES) was performed using NextSeq550 (manufactured by Illumina). Using 300-500 ng of total RNA extracted from tumor tissue, ligate an adapter to the mRNA using the TruSeq TM Stranded mRNA Library kit (manufactured by Llumina), perform PCR amplification to obtain a library, and then use NextSeq550. 76 bp paired-end RNA sequencing (RNA-Seq) was performed.

10.腫瘍組織中の体細胞変異体の同定
ヒトリファレンスゲノムhg38を用いて患者の正常組織および腫瘍組織のWESデータを比較解析し、腫瘍特異的な体細胞変異を検出した。また同リファレンスゲノムと正常組織のWESデータを用いて生殖細胞変異を検出した。それぞれの解析はGATK best practicesに準ずる方法で行った。検出された変異について、フィルタリングを行い確度の高いものに絞った後、GENCODEヒトリファレンス遺伝子モデルを用いて遺伝子のタンパク翻訳配列上に位置する変異を抽出した。同一遺伝子のタンパク翻訳配列上に存在し、かつゲノム座位的に近い体細胞変異と生殖細胞変異はフィジカルフェージングを行い、体細胞変異を有するアリルの周辺範囲のハプロタイプを決定した。更にこのハプロタイプ情報を元に変異抗原エピトープとなり得る8~11残基のペプチド配列の総パターンを切り出した。
変異抗原を翻訳するmRNAの転写発現量を定量化するため、患者の腫瘍組織のRNA-Seqデータを用いて転写発現量解析を行い、TPM(Transcript Per Million)による数値化をアイソフォームレベルで行った。一連の解析はGTEx/TOPMed RNA-Seq pipelineに準ずる方法で行った。同一の体細胞変異にオーバーラップするtranscript isoformが複数存在する場合、それぞれのTPM値を合算してTPM_SUMとした。更に体細胞変異を含むアリル特異的な転写発現量を見積もるため、WESで検出された体細胞変異のRNA Seqデータ上での変異アリル頻度を計算し、これをTPMまたはTPM_SUM値に乗じたものをTPMvarまたはTPM_SUMvarとして算出した。
10. Identification of somatic mutations in tumor tissue We used the human reference genome hg38 to perform a comparative analysis of WES data of normal and tumor tissues from patients, and detected tumor-specific somatic mutations. Germline mutations were also detected using the same reference genome and WES data of normal tissues. Each analysis was performed in accordance with GATK best practices. After filtering the detected mutations to narrow them down to those with high accuracy, we used the GENCODE human reference gene model to extract mutations located on the protein translation sequence of the gene. Physical phasing was performed for somatic mutations and germline mutations that exist on the protein translation sequence of the same gene and are close to each other in terms of genomic locus, and the haplotypes surrounding the alleles with somatic mutations were determined. Furthermore, based on this haplotype information, we excised a total pattern of peptide sequences of 8 to 11 residues that could be the mutant antigen epitope.
In order to quantify the transcriptional expression level of mRNA that translates the mutant antigen, we performed transcriptional expression analysis using RNA-Seq data of patient tumor tissues and quantified it at the isoform level using TPM (Transcript Per Million). Ta. A series of analyzes were performed using a method similar to the GTEx/TOPMed RNA-Seq pipeline. When there are multiple transcript isoforms that overlap with the same somatic mutation, the respective TPM values were summed to form TPM_SUM. Furthermore, in order to estimate the allele-specific transcription expression level including somatic mutations, we calculated the mutation allele frequency on the RNA Seq data of the somatic mutations detected by WES, and multiplied this by the TPM or TPM_SUM value. Calculated as TPMvar or TPM_SUMvar.

変異抗原エピトープとなり得る8~11残基のペプチド配列のヒト主要組織適合遺伝子複合体(MHC)への提示可能性を順位付けるため、ブライトパスバイオ社独自に開発した提示予測モデルによるスコア計算を行った。提示予測モデルの構築は公共データベースから取得したimmunopeptidomeデータとランダムペプチドを学習データとする一般化線形モデル(ロジスティック回帰モデル)によって行い、MHC結合予測ツールであるNetMHCpan-4.0およびMHCflurry-1.4、ならびにプロテアソーム切断予測ツールであるNetChop-3.1の予測値を説明変数とした最尤法よるパラメータ推定を行った。この推定されたパラメータを持つ線形予測子を使って、患者由来の変異抗原エピトープの提示可能性を患者が持つHLAアリル毎にスコア化した。具体的には式(1)に示すように、各ペプチドに対する線形予測子の計算値(z)をソフトプラス変換したものを提示スコア(SCORE)とした。更に転写発現量による補正を行うため式(2)を用いてSCOREadjを算出した。 In order to rank the possibility of presentation of peptide sequences of 8 to 11 residues, which can be variant antigen epitopes, to the human major histocompatibility complex (MHC), a score was calculated using a presentation prediction model developed by BrightPath Bio. Ta. The proposed prediction model was constructed using a generalized linear model (logistic regression model) using immunopeptidome data and random peptides obtained from public databases as learning data, and was constructed using the MHC binding prediction tools NetMHCpan-4.0 and MHCflurry-1.4, as well as proteasome cleavage. Parameter estimation was performed using the maximum likelihood method using the predicted values of the prediction tool NetChop-3.1 as explanatory variables. Using a linear predictor with these estimated parameters, the likelihood of presenting a patient-derived variant antigen epitope was scored for each HLA allele possessed by the patient. Specifically, as shown in Equation (1), the calculated value (z) of the linear predictor for each peptide was subjected to soft plus conversion and was used as the presentation score (SCORE). Furthermore, SCOREadj was calculated using equation (2) to perform correction based on the transcriptional expression level.

患者が持つHLAアリルの中で最もSCOREの値が高いHLAアリルをその変異抗原エピトープの予測HLAアリルとし、そのHLAアリルのSCOREadjが高い順に変異抗原エピトープの順位付けを行った。 The HLA allele with the highest SCORE value among the HLA alleles possessed by the patient was used as the predicted HLA allele for the mutated antigen epitope, and the mutated antigen epitopes were ranked in descending order of the HLA allele's SCOREadj.

11.タンデム・ミニ・ジーン(tandem minigene:TMG)をコードするDNAの調製とin vitro 転写
TMG法に使用するDNA配列は次のように設計した。変異体残基を中心とする27merのペプチド配列を設計し、DNA配列に逆翻訳した。挿入・欠失型の体細胞変異の場合、8~11merの変異抗原エピトープを中心とした27merのペプチド配列を用い、DNA配列への逆翻訳を行った。TMGは、pcDNA3.1(+)のMCS中のBamHIとXhoIを使用してクローン化した。XhoI酵素による切断によって、プラスミドDNAを線形化した後、酢酸ナトリウムとエタノールを用いてDNAを沈殿させた。次に、1μgのDNAを使用し、mMESSAGE mMACHINE T7 Ultra キット(Life Technologies社製)を用い、製造元のプロトコールに従って、in vitroで転写されたRNAを生成した。得られたキャップ及びテール付きRNAを1μg/μLの水に再懸濁し、LCLのトランスフェクションに使用する前に-80℃で保存した。
11. Preparation and in vitro transcription of DNA encoding tandem minigene (TMG)
The DNA sequence used in the TMG method was designed as follows. A 27mer peptide sequence centered around the mutant residues was designed and back translated into a DNA sequence. In the case of insertion/deletion somatic mutations, back translation into DNA sequences was performed using a 27-mer peptide sequence centered on the 8- to 11-mer mutant antigen epitope. TMG was cloned using BamHI and XhoI in the MCS of pcDNA3.1(+). After linearizing the plasmid DNA by cutting with the XhoI enzyme, the DNA was precipitated using sodium acetate and ethanol. Next, 1 μg of DNA was used to generate in vitro transcribed RNA using the mMESSAGE mMACHINE T7 Ultra kit (manufactured by Life Technologies) according to the manufacturer's protocol. The resulting capped and tailed RNA was resuspended in water at 1 μg/μL and stored at −80° C. before use for LCL transfection.

12.エレクトロポーレーション
LCLを採取し、リン酸緩衝生理食塩水(PBS)で2回洗浄し、RPMI1640培地に再懸濁した。次に、10μgのmRNAを最大1×106個の細胞を含む100μlの細胞懸濁液と混合し、2 mmギャップキュベット(Genetronics社製)に移し、BTXECM830矩形波エレクトロポレーター(Genetronics社製.)を用いてエレクトロポレーションした。エレクトロポレーション後、細胞を直ちに2.0 mlの培地に移し、使用するまでCO2インキュベーター内で37℃の24ウェルプレートで一晩培養した。
13.細胞内染色(Intracellular staining:ICS)
細胞内サイトカイン染色については、次の通りに実施した。脾細胞(1×106)を50μMの合成ペプチドまたはDMSOと室温で15分間インキュベートし、続いてGolgiPlug(BD Bioscience社製)と4時間インキュベートした。細胞をCD8α特異的mAb、CD9特異的mAb、またはCD81特異的mAbで4°Cで15分間染色した。Cytofix/Cytopermキット(BD Biosciences社製)を使用し、製造元のプロトコールに従って透過処理および固定した後、細胞をアロフィコシアニン結合抗IFNγ mAbで染色した。
12. electroporation
LCLs were harvested, washed twice with phosphate buffered saline (PBS), and resuspended in RPMI1640 medium. Next, 10 μg of mRNA was mixed with 100 μl of cell suspension containing up to 1 × 10 cells, transferred to a 2 mm gap cuvette (Genetronics), and transferred to a BTXECM830 square wave electroporator (Genetronics). ) was used for electroporation. After electroporation, cells were immediately transferred to 2.0 ml of medium and cultured overnight in a 24-well plate at 37 °C in a CO 2 incubator until use.
13. Intracellular staining (ICS)
Intracellular cytokine staining was performed as follows. Splenocytes (1×10 6 ) were incubated with 50 μM synthetic peptide or DMSO for 15 minutes at room temperature, followed by GolgiPlug (BD Bioscience) for 4 hours. Cells were stained with CD8α-specific mAb, CD9-specific mAb, or CD81-specific mAb for 15 min at 4 °C. Cells were stained with allophycocyanin-conjugated anti-IFNγ mAb after permeabilization and fixation using the Cytofix/Cytoperm kit (BD Biosciences) according to the manufacturer's protocol.

14.酵素免疫測定法(Enzyme-linked immunosorbent assay:ELISA)
培養上清中のヒトまたはマウスのサイトカイン濃度は、ELISAキット(Thermo fisher Scientific社製)を使用し、製造元のプロトコールに従って決定した。
15.酵素結合免疫スポット(Enzyme-linked immunospot: ELISPOT)アッセイ
ヒトIFNγ ELISPOTアッセイは、少しの変更を加えて前述のように実行した。簡単に説明すると、ELISPOTプレート(MAHA S4510、ミリポア社製)を抗ヒトIFNγ mAb(1-D1K、Mabtech社製)でコーティングした。合計2×104個のTCR形質導入T細胞と2×104個のTMG mRNA形質導入LCLをプレートの各ウェルに添加した。37℃で22時間インキュベートした後、プレートを洗浄し、ビオチン化捕捉用抗体(7-B6-1、Mabtech社製)を加え、4℃で一晩インキュベートした。ウェルを洗浄後、細胞をアルカリホスファターゼ標識ストレプトアビジンと反応させ、次にアルカリホスファターゼ標識基質キット(Bio-Rad社製)で染色した。ELISPOTプレートリーダー(ImmunoSpot、CTL-Europe GmbH社製)を使用してスポットをカウントした。
14. Enzyme-linked immunosorbent assay (ELISA)
Human or mouse cytokine concentrations in culture supernatants were determined using an ELISA kit (Thermo Fisher Scientific) according to the manufacturer's protocol.
15. Enzyme-linked immunospot (ELISPOT) assay The human IFNγ ELISPOT assay was performed as previously described with minor modifications. Briefly, ELISPOT plates (MAHA S4510, Millipore) were coated with anti-human IFNγ mAb (1-D1K, Mabtech). A total of 2 × 10 4 TCR-transduced T cells and 2 × 10 4 TMG mRNA-transduced LCLs were added to each well of the plate. After incubation at 37°C for 22 hours, the plate was washed, biotinylated capture antibody (7-B6-1, manufactured by Mabtech) was added, and the plate was incubated at 4°C overnight. After washing the wells, the cells were reacted with alkaline phosphatase-labeled streptavidin, and then stained with an alkaline phosphatase-labeled substrate kit (manufactured by Bio-Rad). Spots were counted using an ELISPOT plate reader (ImmunoSpot, manufactured by CTL-Europe GmbH).

16.ペプチド
MuLV gp70由来AH-1(SPSYVYHQF(配列番号1))、変異ERK2由来ペプチド(mERK2-9m: QYIHSANVL(配列番号2))、変異Snd1由来ペプチド(mSnd1: YAPCRGEF(配列番号3))、および非変異Snd1由来ペプチド(wSnd1: YAPRRGEF(配列番号4))については、Invitrogen社に依頼し、80%を超える純度のものを得た。全てのペプチドを10mMの濃度でDMSOに溶解し、使用前に分注し、-80℃で保存した。
17.単離細胞RNAシークエンス及びTCRシークエンスの実施
CCP1 TILを複数回洗浄した後、0.04%BSAを含む1×PBSに再懸濁した。Chromium Controller(10x Genomics社製)を使用したGEM(エマルジョン中のゲルビーズ)の生成には、100%の生存率を持つ約5×103個の細胞を使用した。この方法によって、RNA分子を、各細胞で個別にタグ付けした。TCRのV(D)J遺伝子に由来するものを含む分子タグ付きRNAフラグメントをcDNAに変換した後、Chromium Single Cell V(D)J Reagent Kits v1.1(10×Genomics社製)を使用して、次世代シーケンシング用のライブラリーを確立した。得られたライブラリーは、Qubit dsDNA Assay(ThermoFisher Scientific社製)およびTapeStation D1000(Agilent社製)によって定量化した。遺伝子発現用ライブラリーとV(D)Jライブラリーはそれぞれ9:1の比率でプールし、イルミナHiSeqプラットフォームによって、次の構成でシーケンスした。すなわち、読み取り1:26bp、読み取り2:91bp、及びi7インデックス:8bpとし、サンプルあたりに合計で約400Mのペアエンドリードとした。画像解析とベースコールは、HiSeq機器のソフトウェアによって実行した。FASTQ読取り生データは、マッピング、遺伝子発現カウント、クロノタイプアノテーションを行うために、Cell Ranger V(D)Jパイプライン(10×Genomics社製)にインポートした。上記単離細胞分析は、製造元のプロトコールに従って実施した。
16. peptide
MuLV gp70-derived AH-1 (SPSYVYHQF (SEQ ID NO: 1)), mutated ERK2-derived peptide (mERK2-9m: QYIHSANVL (SEQ ID NO: 2)), mutated Snd1-derived peptide (mSnd1: YAPCRGEF (SEQ ID NO: 3)), and non-mutated The Snd1-derived peptide (wSnd1: YAPRRGEF (SEQ ID NO: 4)) was obtained from Invitrogen with a purity of over 80%. All peptides were dissolved in DMSO at a concentration of 10 mM, aliquoted and stored at -80°C before use.
17. Performing isolated cell RNA sequencing and TCR sequencing
CCP1 TILs were washed multiple times and then resuspended in 1× PBS containing 0.04% BSA. Approximately 5 x 10 cells with 100% viability were used for generation of GEMs (gel beads in emulsion) using Chromium Controller (10x Genomics). By this method, RNA molecules were tagged individually in each cell. After converting molecularly tagged RNA fragments containing those derived from the TCR V(D)J gene into cDNA, Chromium Single Cell V(D)J Reagent Kits v1.1 (manufactured by 10× Genomics) were used. , established a library for next-generation sequencing. The obtained library was quantified using Qubit dsDNA Assay (manufactured by ThermoFisher Scientific) and TapeStation D1000 (manufactured by Agilent). Gene expression libraries and V(D)J libraries were each pooled at a ratio of 9:1 and sequenced using the Illumina HiSeq platform with the following configuration. That is, read 1: 26 bp, read 2: 91 bp, and i7 index: 8 bp, for a total of about 400 M paired-end reads per sample. Image analysis and base calling were performed by HiSeq instrument software. FASTQ read raw data were imported into the Cell Ranger V(D)J pipeline (10x Genomics) for mapping, gene expression counting, and clonotype annotation. The above isolated cell analysis was performed according to the manufacturer's protocol.

18.PBMCの調製
PBMCは、Ficoll-Paque PLUS(GE Healthcare社製)を用いて密度勾配遠心分離を行い、ヘパリン処理した新鮮静脈血サンプルから分離した。
19.マウス脾細胞の調製
マウス脾臓を顕微鏡スライドを用いて粉砕し、塩化アンモニウム・カリウム(ACK)で処理し、Cell Trics(登録商標)30μm(Sysmex Partec社製)でろ過した。プールした脾臓からの単離細胞懸濁液を適当なペプチドとともに、5×106個/mlの密度で96ウェルV底プレートで培養した。いくつかの実験では、CD8+脾臓T細胞は、MACSシステム(Miltenyi Biotec社製)を使用したポジティブエンリッチメントによって得た。フローサイトメトリーにより、T細胞画分に95%を超えるCD8+T細胞が含まれていることを確認した。
20.フローサイトメトリー分析と単離細胞ソーティング
TILを解凍し、FITC-抗ヒトCD3 mAb、PE-Cy7抗ヒトCD8 mAb、PE-抗ヒトCD137(4-1BB) mAbおよびAPC抗ヒトPD-1 mAbで染色した。死細胞は、eFluor780-Fixable Viability Dyeによる染色で除外した。染色後、FACSAria(Beckton Dickinson社製)を使用して細胞を分析した。CD8+PD-1+CD137+、CD8+ PD-1+CD137-およびCD8+PD-1-CD137-T細胞は、それぞれ96ウェルPCRプレートに単離した。マウスの場合、脾細胞はPerCP-Cy5.5結合抗マウスCD3 mAb、APC-Cy7結合抗マウスCD8 mAb、FITC結合抗マウスCD9 mAb、PE結合抗マウスCD81 mAbで染色した。死細胞は、eFluor780-FixableViabilityDyeによる染色から除外した。
18. Preparation of PBMC
PBMCs were separated from heparin-treated fresh venous blood samples by density gradient centrifugation using Ficoll-Paque PLUS (manufactured by GE Healthcare).
19. Preparation of Mouse Splenocytes Mouse spleen was crushed using a microscope slide, treated with ammonium potassium chloride (ACK), and filtered through Cell Trics® 30 μm (manufactured by Sysmex Partec). Isolated cell suspensions from pooled spleens were cultured with appropriate peptides in 96-well V-bottom plates at a density of 5×10 6 cells/ml. In some experiments, CD8 + splenic T cells were obtained by positive enrichment using the MACS system (Miltenyi Biotec). Flow cytometry confirmed that the T cell fraction contained >95% CD8 + T cells.
20. Flow cytometry analysis and isolated cell sorting
TILs were thawed and stained with FITC-anti-human CD3 mAb, PE-Cy7 anti-human CD8 mAb, PE-anti-human CD137(4-1BB) mAb and APC anti-human PD-1 mAb. Dead cells were excluded by staining with eFluor780-Fixable Viability Dye. After staining, cells were analyzed using FACSAria (Beckton Dickinson). CD8 + PD-1 + CD137 + , CD8 + PD-1 + CD137 - and CD8 + PD-1-CD137 - T cells were isolated into 96-well PCR plates, respectively. For mice, splenocytes were stained with PerCP-Cy5.5-conjugated anti-mouse CD3 mAb, APC-Cy7-conjugated anti-mouse CD8 mAb, FITC-conjugated anti-mouse CD9 mAb, and PE-conjugated anti-mouse CD81 mAb. Dead cells were excluded from staining with eFluor780-FixableViabilityDye.

21.単離T細胞からのTCR cDNAの増幅
T細胞受容体(TCR)のクローニングは、WO2014-017533A1(特許文献1)に記載の方法に従った。簡単に説明すると次の通りである。単離された各T細胞から抽出されたRNAをcDNAに変換し、VαおよびVβ領域を多段階ネステッドPCRによって増幅した。その後、PCR産物のDNA配列をダイレクト・シークエンスにより決定した。TCRレパトアは、IMGT/V-Questツール(http://www.imgt.org/)を使用して分析した。ヒトPBMCまたはマウス脾細胞への形質導入のために、TCRαおよびTCRβ鎖はP2A配列によって連結し、pMX-IRES-EGFPベクターにクローン化した。
22.レトロウイルスの生産
TCR遺伝子をヒトPBMCまたはマウス脾細胞に形質導入するためのレトロウイルスを作製するために、Plat-AまたはPlat-E細胞(Cell Biolabs社製)を使用した。
23.ヒトPBMCへのレトロウイルス形質導入
健康なボランティアから得られたPBMCは、600 IU/mLの組換えIL-2の存在下で、抗CD3抗体をコートしたプレートとRetroNectin(タカラバイオ株式会社製)を使用して刺激した。増殖中のリンパ球に、候補TCRα/β遺伝子をコードするレトロウイルスを形質導入し、さらにin vitroで増殖させた。形質導入の10日後、細胞を回収して実験に使用した。
21. Amplification of TCR cDNA from isolated T cells
Cloning of T cell receptor (TCR) followed the method described in WO2014-017533A1 (Patent Document 1). A brief explanation is as follows. RNA extracted from each isolated T cell was converted to cDNA, and Vα and Vβ regions were amplified by multistep nested PCR. Thereafter, the DNA sequence of the PCR product was determined by direct sequencing. The TCR repertoire was analyzed using the IMGT/V-Quest tool (http://www.imgt.org/). For transduction of human PBMCs or mouse splenocytes, TCRα and TCRβ chains were linked by the P2A sequence and cloned into the pMX-IRES-EGFP vector.
22. Production of retroviruses
Plat-A or Plat-E cells (Cell Biolabs) were used to generate retroviruses for transducing TCR genes into human PBMCs or mouse splenocytes.
23. Retroviral transduction of human PBMCs PBMCs obtained from healthy volunteers were incubated with anti-CD3 antibody-coated plates and RetroNectin (Takara Bio Inc.) in the presence of 600 IU/mL recombinant IL-2. Used to stimulate. Proliferating lymphocytes were transduced with retroviruses encoding candidate TCRα/β genes and expanded in vitro. Ten days after transduction, cells were harvested and used for experiments.

24.マウス脾細胞へのレトロウイルス形質導入
BALB/cマウスから得た全脾細胞(1.5×107個/5mL)を6ウェルプレートの1つのウェル中で固定化抗CD3(1μg/mL; 145-2C11)および可溶性抗CD28(1μg/mL; 37.51)で刺激した。刺激から1日後(day 1)に5×105個の細胞について、24ウェルプレートの各ウェルにRetroNectin(タカラバイオ社製)をコートし、1mL培地を添加した後、RetroNectin結合ウイルス感染法を使用し、候補TCR発現ウイルスベクターを形質導入した。day 3に、10mLの培地を含む50mLフラスコに細胞を移し、増殖・培養した。day 5に細胞を回収し、実験に使用した。培養中には60 IU/mLの組換えヒトIL-2(Novartis社製)を添加した。いくつかの実験では、マウスCD9を形質導入したT細胞は、DUC18マウスから得た脾臓T細胞を使用して調製した。
25.TILを用いたsingle-cell RNAシークエンス解析及びTCRシークエンス解析
液体窒素で凍結保存していたTILを10%FBS RPMI1640培養液を用いて解凍し、2%FBS 1×PBSを用いて数回洗浄した。次に、human CD8 magnet beads (Miltenyi Biotec社製)を用いてTIL中のCD8+T細胞を分離し、single-cell RNA-seq及びTCR-seqを行った。
26.統計解析
統計解析は対応のないスチューデントのt検定により行い、5%未満(p<0.05)を統計的に有意とした。
24. Retroviral transduction of mouse splenocytes
Whole splenocytes (1.5 × 10 cells/5 mL) from BALB/c mice were incubated with immobilized anti-CD3 (1 μg/mL; 145-2C11) and soluble anti-CD28 (1 μg/mL) in one well of a 6-well plate. ; 37.51). One day after stimulation (day 1), each well of a 24-well plate was coated with RetroNectin (manufactured by Takara Bio Inc.) for 5 × 10 cells, and after adding 1 mL of medium, the RetroNectin-conjugated virus infection method was used. and transduced with a candidate TCR-expressing viral vector. On day 3, the cells were transferred to a 50 mL flask containing 10 mL of medium, and were grown and cultured. Cells were collected on day 5 and used for experiments. During the culture, 60 IU/mL of recombinant human IL-2 (manufactured by Novartis) was added. In some experiments, murine CD9-transduced T cells were prepared using splenic T cells obtained from DUC18 mice.
25. Single-cell RNA sequence analysis and TCR sequence analysis using TILs TILs that had been frozen and preserved in liquid nitrogen were thawed using 10% FBS RPMI1640 culture medium and washed several times using 2% FBS 1×PBS. Next, CD8 + T cells in TIL were separated using human CD8 magnet beads (manufactured by Miltenyi Biotec), and single-cell RNA-seq and TCR-seq were performed.
26. Statistical analysis Statistical analysis was performed by unpaired Student's t test, and less than 5% (p<0.05) was considered statistically significant.

<試験結果>
表1には、患者情報とCTOSの樹立の有無、及びCTOSを認識するTCR遺伝子の取得の有無をまとめた。
<Test results>
Table 1 summarizes patient information, whether CTOS has been established, and whether the TCR gene that recognizes CTOS has been acquired.

表に示すように、16名の大腸がん患者(CCP1~CCP16)症例中、10症例でCTOSの樹立が可能であった(CTOS欄の「○」または「△」印)。また、これら10症例のうち、6症例では、TIL由来TCRを取得できた(TCR CTOS-Reactivity欄の「+」印)。
図4には、上記6症例(CCP1, 3, 5, 7, 9, 15)のうちのCCP1について、腫瘍反応性TCRを解析した結果を示した。
CCP1症例ではPD-1、4-1BBの発現の有無によって、CD8+TILを3種類の細胞集団に分け(図4(A)においては、左下(PD-1,4-1BB: 60個)、右下(PD-1,4-1BB: 72個)、右上(PD-1、4-1BB: 72個)を意味する。なお、左上に該当するPD-1,4-1BBについては検出されず。)、それぞれの細胞集団から個々のTCR遺伝子を取得し、レパトア解析を実施した。図4(A)に示すパイチャートは、それぞれの細胞集団でのTCRレパトア解析の結果であり、該当する2種類のTCRがPD-14-1BB分画(DP)で最も頻度高く濃縮されていることを示している。
また、それらTCRのCTOSに対する反応性を検討した。その結果、図4(B)に示すように、腫瘍反応性を示す2種類のTCR(DP5-6及びDP53-1。DPはDouble Positiveを意味する。)を取得した。CTOSへの反応性はCTOSとTCR導入T細胞との共培養によるIFN-γの産生で判定した。
この2種類のTCRの変異抗原に対する反応性について、TMGを4種類作成し(TM1~TM4)、それぞれのTMGから作製したmRNAをCCP1患者由来LCLに発現導入した後、ELISPOT法で解析したところ、図4(C)に示すように、両TCRともにTMG1に反応性を示した。さらに解析を進めたところ、両TCR共にTMG1中の変異型CREBBPを特異的に認識していることが明らかとなった。図中のアミノ酸配列は、変異型CRBBPが「NGTASQSTSPSQPCKKIFKPEELRQAL」(配列番号5)、野生型CRBBPが「NGTASQSTSPSQPRKKIFKPEELRQAL」(配列番号6)であった。
As shown in the table, CTOS could be established in 10 of the 16 colorectal cancer patients (CCP1 to CCP16) (marked with "○" or "△" in the CTOS column). Furthermore, in 6 of these 10 cases, TIL-derived TCR could be obtained ("+" mark in the TCR CTOS-Reactivity column).
Figure 4 shows the results of analyzing tumor-reactive TCR for CCP1 among the six cases (CCP1, 3, 5, 7, 9, 15).
In CCP1 cases, CD8 + TILs are divided into three types of cell populations depending on the presence or absence of PD-1 and 4-1BB expression (in Figure 4 (A), the lower left (PD-1 ,4-1BB : 60 cells) ), lower right (PD-1 + ,4-1BB - : 72 pieces), upper right (PD-1 + ,4-1BB + : 72 pieces).In addition, PD-1 - ,4 corresponding to the upper left -1BB + was not detected.), individual TCR genes were obtained from each cell population, and repertoire analysis was performed. The pie chart shown in Figure 4(A) is the result of TCR repertoire analysis for each cell population, and the two corresponding TCRs are most frequently enriched in the PD-1 + 4-1BB + fraction (DP). It shows that
We also examined the reactivity of these TCRs to CTOS. As a result, as shown in FIG. 4(B), two types of TCR (DP5-6 and DP53-1; DP means Double Positive) showing tumor reactivity were obtained. Reactivity to CTOS was determined by the production of IFN-γ by co-culture of CTOS and TCR-transduced T cells.
Regarding the reactivity of these two types of TCR to mutated antigens, we created four types of TMG (TM1 to TM4), introduced the mRNA created from each TMG into CCP1 patient-derived LCL, and then analyzed it using the ELISPOT method. As shown in FIG. 4(C), both TCRs showed reactivity with TMG1. Further analysis revealed that both TCRs specifically recognized the mutant CREBBP in TMG1. The amino acid sequences in the figure are "NGTASQSTSPSQPCKKIFKPEELRQAL" (SEQ ID NO: 5) for mutant CRBBP and "NGTASQSTSPSQPRKKIFKPEELRQAL" (SEQ ID NO: 6) for wild type CRBBP.

図5には、CCP3について、腫瘍反応性TCRを解析した結果を示した。
CCP3症例では、図4と同様に、PD-1及び4-1BBの発現によって、CD8+TILを3種類の細胞集団に分け(図5(A))、それぞれの細胞集団から個々のTCR遺伝子を取得し、レパトア解析を実施した。また、それらTCRのCTOSに対する反応性を検討した結果、腫瘍反応性を示すTCR(DP72-6)を取得した(図5(B))。図5(A)に示すパイチャートは、それぞれの細胞集団でのTCRレパトア解析の結果である。該当するTCRを発現するT細胞がPD-1+4-1BB+のDP分画では2細胞で認められ、PD-14-1BB分画では1細胞(single)でのみ認められたことを示している。
このTCRの変異抗原に対する反応性について、TMGを4種類作成し(TM1~TM4)、それぞれのTMGから作製したmRNAをCCP3患者由来LCLに発現導入した後、ELISPOT法で解析したところ、TMG1に反応性を示した(図5(C))。さらに解析を進めたところ、TMG1中の変異型DDX60を特異的に認識していることが明らかになった。図中のアミノ酸配列は、変異型DDX60が「PRVMDMLKLYFLFYLQFLVKEGYLDQE」(配列番号7)、野生型DDX60Pが「PRVMDMLKLYFLFSLQFLVKEGYLDQE」(配列番号8)であった。
Figure 5 shows the results of analyzing tumor-reactive TCR for CCP3.
In the CCP3 case, CD8 + TILs were divided into three types of cell populations based on the expression of PD-1 and 4-1BB (Figure 5(A)), and individual TCR genes were extracted from each cell population, as in Figure 4. were acquired and repertoire analysis was performed. Furthermore, as a result of examining the reactivity of these TCRs to CTOS, we obtained a TCR (DP72-6) that showed tumor reactivity (Figure 5(B)). The pie chart shown in FIG. 5(A) is the result of TCR repertoire analysis for each cell population. Two T cells expressing the relevant TCR were observed in the PD-1 + 4-1BB + DP fraction, and only one cell (single) in the PD-1 + 4-1BB - fraction. It shows.
Regarding the reactivity of this TCR to mutated antigens, we created four types of TMG (TM1 to TM4), introduced the mRNA created from each TMG into CCP3 patient-derived LCL, and analyzed it by ELISPOT, and found that it reacted with TMG1. (Figure 5(C)). Further analysis revealed that it specifically recognized the mutant DDX60 in TMG1. The amino acid sequences in the figure were "PRVMDMLKLYFLFYLQFLVKEGYLDQE" (SEQ ID NO: 7) for mutant DDX60 and "PRVMDMLKLYFLFSLQFLVKEGYLDQE" (SEQ ID NO: 8) for wild type DDX60P.

図6には、CCP5について、腫瘍反応性TCRを解析した結果を示した。
CCP5症例では、PD-1の発現によって、CD8+TILを2種類の細胞集団に分け(図6(A))、それぞれの細胞集団から個々のTCR遺伝子を取得し、レパトア解析を実施した。また、それらTCRのCTOSに対する反応性を検討した結果、腫瘍反応性を示すTCR(SP27-2)を取得した。図6(A)に示すパイチャートは、それぞれの細胞集団でのTCRレパトア解析の結果であり、該当するTCRを発現するT細胞がPD-1+分画では3細胞で認められ、PD-1分画では認められなかったことを示している。
TCRの変異抗原に対する反応性について、TMGを2種類作成し(TM1、TM2)、それぞれのTMGから作製したmRNAをCCP5患者由来LCLに発現導入した後、ELISPOT法で解析したところ、TM1に反応性を示した(図6(B))。さらに解析を進めたところ、TM1中の変異型FAM129Bを特異的に認識していることが明らかとなった(図6(C)。TM1中の4が「FAM129B」である。)。図中のアミノ酸配列は、変異型FAM129Bが「RAQIHMREQMDNAMYTFETLLHQELGK」(配列番号9)、野生型FAM129Bが「RAQIHMREQMDNAVYTFETLLHQELGK」(配列番号10)であった。
Figure 6 shows the results of analyzing tumor-reactive TCR for CCP5.
In the CCP5 case, CD8 + TILs were divided into two types of cell populations based on PD-1 expression (Figure 6(A)), individual TCR genes were obtained from each cell population, and repertoire analysis was performed. Furthermore, as a result of examining the reactivity of these TCRs to CTOS, we obtained a TCR (SP27-2) that shows tumor reactivity. The pie chart shown in Figure 6(A) is the result of TCR repertoire analysis in each cell population, and T cells expressing the relevant TCR were observed in 3 cells in the PD-1 + fraction, and PD-1 - Indicates that it was not observed in fractionation.
Regarding the reactivity of TCR to mutated antigens, we created two types of TMG (TM1 and TM2), introduced the mRNA created from each TMG into CCP5 patient-derived LCL, and analyzed it by ELISPOT, and found that it was reactive with TM1. (Figure 6(B)). Further analysis revealed that it specifically recognized mutant FAM129B in TM1 (Figure 6(C). 4 in TM1 is "FAM129B"). The amino acid sequences in the figure were "RAQIHMREQMDNAMYTFETLLHQELGK" (SEQ ID NO: 9) for mutant FAM129B and "RAQIHMREQMDNAVYTFETLLHQELGK" (SEQ ID NO: 10) for wild type FAM129B.

図7には、CCP15について、腫瘍反応性TCRを解析した結果を示した。
CCP15症例では、PD-1及び4-1BBの発現によって、CD8+TILを3種類の細胞集団に分け(図7(A))、それぞれの細胞集団から個々のTCR遺伝子を取得し、レパトア解析を実施した。図7(A)に示すパイチャートは、それぞれの細胞集団でのTCRレパトア解析の結果であり、該当するTCRを発現するT細胞がPD-1+4-1BB+分画では3細胞で認められ、PD-1+4-1BB分画では1細胞(single)でのみ認められたことを示している。
TCRの変異抗原に対する反応性について、TMGを4種類作成し(TM1~TM4)、それぞれのTMGから作製したmRNAをCCP15患者由来LCLに発現導入した後、ELISPOT法で解析したところ、DP28-5 TCRを導入したT細胞がTMG1に反応性を示すことを確認した(図7(B))。さらに解析を進めたところ、TMG1中の変異型ABCF1を特異的に認識していることが明らかとなった(図7(C)。TM1中の6が「ABCF1」である。)。図中のアミノ酸配列は、変異型ABCF1が「TKQAEKQTKEALTQKQQKCRRKNQDEE」(配列番号11)、野生型ABCF1が「TKQAEKQTKEALTRKQQKCRRKNQDEE」(配列番号12)であった。
FIG. 7 shows the results of analyzing tumor-reactive TCR for CCP15.
In CCP15 cases, CD8 + TILs were divided into three types of cell populations based on the expression of PD-1 and 4-1BB (Figure 7(A)), and individual TCR genes were obtained from each cell population and repertoire analysis was performed. carried out. The pie chart shown in Figure 7(A) is the result of TCR repertoire analysis for each cell population, and T cells expressing the relevant TCR were observed in 3 cells in the PD-1 + 4-1BB + fraction. , which indicates that it was observed only in one cell (single) in the PD-1 + 4-1BB fraction.
Regarding the reactivity of TCR to mutated antigens, we created four types of TMG (TM1 to TM4), introduced the mRNA created from each TMG into CCP15 patient-derived LCL, and analyzed it by ELISPOT. It was confirmed that T cells transfected with TMG1 showed reactivity to TMG1 (Figure 7(B)). Further analysis revealed that it specifically recognized mutant ABCF1 in TMG1 (Figure 7(C). 6 in TM1 is "ABCF1"). The amino acid sequences in the figure are "TKQAEKQTKEALTQKQQKCRRKNQDEE" (SEQ ID NO: 11) for mutant ABCF1 and "TKQAEKQTKEALTRKQQKCRRKNQDEE" (SEQ ID NO: 12) for wild type ABCF1.

図8には、4症例(CCP1,3,5,15)由来の全ての腫瘍反応性TCRの特徴をまとめたものを示した。
全ての腫瘍反応性TCRは、PD-1+4-1BB+のDP集団で最も頻度高く同定された。且つ、CCP5でのTCRを含み、変異抗原特異的TCR は全て、TIL中のPD-1+4-1BB+集団の頻度が高い症例で同定された。図8(B)には、CCP1での解析結果を示した。CCP3,15を含め、PD-1+4-1BB+分画にはPD-1+4-1BB分画と比較して、より腫瘍反応性T細胞が頻度高く濃縮されていると考えられた。また、認識変異抗原を同定可能であった全てのTCRはPD-1分画には認められなかった。
図9には、解析した大腸がん16症例の予後について、図8(A)に示した「CD8+TIL中のPD-1+4-1BB+細胞集団頻度3%以上」を基準にログランク検定を実施した結果を示した。有意差は認められなかったものの、該当者4症例(CCP1,3,5,15:図中のグラフ「A」に該当。)では、2000日後まで死亡者が認められなかった一方、残りの12症例(図中のグラフ「B」に該当。)では2000日後には7症例の生存者となった。このように、「CD8+TIL中のPD-1+4-1BB+細胞集団頻度3%以上」の症例では、予後が良好な傾向があると判断できた。
図10には、CCP1症例TILを用いて、sc(single cell)RNA-seq解析及びTCR-seq解析を行った結果を示した。その結果、2種類のTCRを発現するCD8+T細胞が近似したRNA発現パターンを示すことが示された(図10(B))。次に、これら2種類の腫瘍反応性TCRを発現するCD8+T細胞と他のCD8+T細胞との間のRNA発現比較を実施したところ、CD9 RNAの発現がこれら2種類の腫瘍反応性TCRを発現するT細胞において有意に高いことが示された(図10(C))。
Figure 8 shows a summary of the characteristics of all tumor-reactive TCRs derived from 4 cases (CCP1, 3, 5, 15).
All tumor-reactive TCRs were most frequently identified in the PD-1 + 4-1BB + DP population. Moreover, all variant antigen-specific TCRs, including the TCR at CCP5, were identified in cases with a high frequency of PD-1 + 4-1BB + population in TILs. Figure 8(B) shows the analysis results using CCP1. It was thought that tumor-reactive T cells, including CCP3,15, were more frequently enriched in the PD-1 + 4-1BB + fraction than in the PD-1 + 4-1BB - fraction. . In addition, none of the TCRs for which recognition mutant antigens could be identified were found in the PD-1 - fraction.
Figure 9 shows the log rank of the prognosis of the 16 analyzed colorectal cancer cases based on the "PD-1 + 4-1BB + cell population frequency in CD8 + TIL of 3% or more" shown in Figure 8 (A). The results of the test are shown. Although no significant difference was observed, no deaths were observed in the 4 relevant cases (CCP1, 3, 5, 15: corresponding to graph "A" in the figure) until 2000 days, while the remaining 12 cases Among the cases (corresponding to graph "B" in the figure), there were 7 survivors after 2000 days. In this way, it was determined that cases with "PD-1 + 4-1BB + cell population frequency in CD8 + TIL of 3% or more" tended to have a favorable prognosis.
FIG. 10 shows the results of sc (single cell) RNA-seq analysis and TCR-seq analysis using CCP1 case TIL. The results showed that CD8 + T cells expressing two types of TCR showed similar RNA expression patterns (FIG. 10(B)). Next, we performed an RNA expression comparison between CD8 + T cells expressing these two types of tumor-reactive TCRs and other CD8 + T cells, and found that the expression of CD9 RNA was higher than that of these two types of tumor-reactive TCRs. was shown to be significantly higher in T cells expressing (Figure 10(C)).

図11には、CCP9症例を用いて、PD-1/4-1BBにCD9を指標として加え、TILを絞り込んで解析した結果を示した。CCP9症例では、PD-1+TIL細胞分画に属する個々のCD8+T細胞からTCRを取得し、その中の2種類のTCRがCCP9症例由来CTOSに反応性を示すことを確認した(図11(A))。次に、CCP9症例の凍結保存TILを用いて、PD-1+4-1BB+CD9+であるCD8+TIL細胞分画から個々のTCR遺伝子を取得しレパトア解析を行った。その結果、2種類の腫瘍反応性TCRがPD-1+4-1BB+CD9+分画では、より頻度高く同定されることが明らかとなった(図11(B))。得られた結果からは、CD9分子は腫瘍反応性T細胞の絞り込みに有用であり、PD-1/4-1BBにCD9を指標として加えることにより、腫瘍反応性T細胞をさらに絞り込むことが可能になると考えられた。 Figure 11 shows the results of an analysis using 9 CCP cases, adding CD9 as an index to PD-1/4-1BB, and narrowing down TILs. In the CCP9 case, TCRs were obtained from individual CD8 + T cells belonging to the PD-1 + TIL cell fraction, and two types of TCRs among them were confirmed to be reactive with CTOS derived from the CCP9 case (Figure 11 (A)). Next, using cryopreserved TIL from nine CCP cases, we obtained individual TCR genes from the PD-1 + 4-1BB + CD9 + CD8 + TIL cell fraction and performed repertoire analysis. As a result, it became clear that two types of tumor-reactive TCRs were identified more frequently in the PD-1 + 4-1BB + CD9 + fraction (Figure 11(B)). The obtained results indicate that the CD9 molecule is useful for narrowing down tumor-reactive T cells, and by adding CD9 to PD-1/4-1BB as an indicator, it is possible to further narrow down tumor-reactive T cells. It was thought that it would be.

CD9分子は、「テトラスパニン(Tetraspanin)」として知られる分子の一種である。テトラスパニンは、細胞膜を4回貫通する構造を持つ膜貫通タンパク質ファミリーであり、Transmembrane 4 superfamily(TS4SF)とも言われる。テトラスパニンとしては、CD9の他にTSPAN2、CD151, CD53, CD37, CD82, CD81, CD63などが知られている。
テトラスパニンに属する分子が腫瘍反応性T細胞の選択での指標となるとの報告はこれまでに認められない。そこで、マウスモデルを用いて、CD9分子の発現が腫瘍反応性の指標となり得るか否かを検討した。マウスモデルとして、本発明者らが発表した変異型Snd1(staphylococcal nuclease domain-containing protein 1)に特異的なCD8+T細胞が誘導される担癌マウス治療モデルを利用した(非特許文献4)。このモデルではマウス線維芽細胞肉腫由来細胞株CMS7を担癌し、抗チェックポイント抗体(抗PD-1抗体、抗CTLA-4抗体及び抗GITR抗体)を用いて治療することにより、担癌21日後の脾臓細胞中に、CMS7腫瘍ゲノムがコードする変異型Snd1に特異的なCD8+T細胞が確認できる。
The CD9 molecule is a type of molecule known as a "tetraspanin." Tetraspanins are a family of transmembrane proteins that penetrate the cell membrane four times, and are also called Transmembrane 4 superfamily (TS4SF). In addition to CD9, other known tetraspanins include TSPAN2, CD151, CD53, CD37, CD82, CD81, and CD63.
To date, there have been no reports that molecules belonging to tetraspanins serve as indicators for the selection of tumor-reactive T cells. Therefore, using a mouse model, we investigated whether the expression of CD9 molecules could be an indicator of tumor reactivity. As a mouse model, we used a tumor-bearing mouse treatment model in which CD8 + T cells specific for mutant Snd1 (staphylococcal nuclease domain-containing protein 1) are induced (Non-Patent Document 4). In this model, the mouse fibroblast sarcoma-derived cell line CMS7 was used as a tumor-bearing cell line, and by treatment with anti-checkpoint antibodies (anti-PD-1 antibody, anti-CTLA-4 antibody, and anti-GITR antibody), 21 days after tumor-bearing. CD8 + T cells specific for the mutant Snd1 encoded by the CMS7 tumor genome were confirmed in the spleen cells of patients.

試験方法を図12(A)に示した。マウスに対し、day0にCMS7を皮下投与し、day7, 9, 11に抗チェックポイント抗体を静脈内投与した。day21に脾臓を採取し、1×106個の脾臓細胞に変異型Snd1由来ペプチド(SYAPCRGEF(配列番号13))または野生型Snd1由来ペプチド(SYAPRRGEF(配列番号14))を添加し、IFN-γICS法(Intracellular Staining法)を用いることで、ペプチドに反応しIFN-γを細胞内に産生するCD8+T細胞を測定できる。この反応は変異型Snd1由来ペプチドに特異的であり、野生型Snd1由来ペプチド及び溶媒コントロールであるDMSOの添加では観察されない。さらに、抗チェックポイント抗体を用いない担癌無治療マウスでは、変異型Snd1由来ペプチドに対する反応が極めて低かった(図12(B))。抗体治療群における変異型Snd1(mSnd1)のIFN-γ産生を示す割合が1.6%であったことは、極めて大きな数値であった。図12(C)には、変異型Snd1ペプチド(31-mer)とアジュバント(polyIC:LC)を用いることで、CMS7担癌マウスに対する治療有効性があったことを示している。 The test method is shown in Figure 12(A). CMS7 was subcutaneously administered to mice on day 0, and anti-checkpoint antibodies were intravenously administered on days 7, 9, and 11. Spleens were collected on day 21, and mutant Snd1-derived peptide (SYAPCRGEF (SEQ ID NO: 13)) or wild-type Snd1-derived peptide (SYAPRRGEF (SEQ ID NO: 14)) was added to 1 × 10 6 spleen cells, and IFN-γICS By using the intracellular staining method, it is possible to measure CD8 + T cells that react to peptides and produce IFN-γ intracellularly. This reaction is specific to the mutant Snd1-derived peptide and is not observed with the wild-type Snd1-derived peptide or the addition of DMSO as a solvent control. Furthermore, in tumor-bearing untreated mice that did not use anti-checkpoint antibodies, the response to the mutant Snd1-derived peptide was extremely low (FIG. 12(B)). The percentage of mutant Snd1 (mSnd1) showing IFN-γ production in the antibody treatment group was 1.6%, which was an extremely large number. FIG. 12(C) shows that the use of the mutant Snd1 peptide (31-mer) and adjuvant (polyIC:LC) was effective in treating CMS7 tumor-bearing mice.

図13には、TILがCD9分子を発現しているか否かを調べた結果を示した。
まず、CMS7担癌抗チェックポイント抗体(ICI; Immune checkpoint Inhibitor)治療マウスモデルにおいて観察される、変異型Snd1特異的CD8+T細胞がCD9分子を発現しているか検討した。day0にCMS7腫瘍株(1×106細胞)をBALB/cマウス背部に皮下接種により担癌し、day 7, 9, 11にICIによる治療を行った。ICIによる治療を行わない群をコントロールとした。day 21にマウスから脾臓を取り出した(図13(A))。1×106個の脾臓細胞に変異型Snd1由来ペプチドあるいはコントロールペプチドを添加し、IFN-γICS法(Intracellular Staining法)を用いて変異型Snd1特異的CD8+T細胞を測定した。その結果、図13(B)に示すように、ICI治療群では変異型Snd1由来ペプチド特異的なIFN-γの産生がCD8+T細胞に認められ、その大多数はCD9分子を発現する細胞集団に属していた(上段の右側2つのデータ)。一方、コントロールペプチド添加群ではIFN-γ産生CD8+T細胞は認められず(中段の右側2つのデータ)、ICI無治療群においては変異型Snd1由来ペプチド特異的なCD8+T細胞の頻度は極めて低かった(下段の右側2つのデータ)。
FIG. 13 shows the results of examining whether TILs express CD9 molecules.
First, we investigated whether mutant Snd1-specific CD8 + T cells observed in a CMS7 tumor-bearing anti-checkpoint inhibitor (ICI)-treated mouse model expressed CD9 molecules. On day 0, the CMS7 tumor line (1×10 6 cells) was subcutaneously inoculated into the back of BALB/c mice to carry the tumor, and on days 7, 9, and 11, treatment with ICI was performed. The group not treated with ICI served as the control. The spleen was removed from the mouse on day 21 (FIG. 13(A)). A mutant Snd1-derived peptide or a control peptide was added to 1×10 6 spleen cells, and mutant Snd1-specific CD8 + T cells were measured using the IFN-γICS method (intracellular staining method). As a result, as shown in Figure 13(B), in the ICI treatment group, production of IFN-γ specific to the mutant Snd1-derived peptide was observed in CD8 + T cells, and the majority of them were a cell population expressing CD9 molecules. (the two data on the right in the upper row). On the other hand, no IFN-γ-producing CD8 + T cells were observed in the control peptide addition group (two data on the right in the middle row), and the frequency of mutant Snd1-derived peptide-specific CD8 + T cells was extremely low in the ICI-untreated group. It was low (two data on the right side of the bottom row).

次に、変異型Snd1由来ペプチドによるCD9分子の発現上昇の可能性を検討するため、ICI治療群マウス3匹から脾臓細胞を準備し、マウスCD8 isolation kit (Miltenyi Biotec社製)を用いてCD8脾臓細胞、及びCD8+T細胞を取得した。取得したCD8細胞の一部をPE-conjugated mouse CD9抗体を用いて染色し、次に抗PE beads (Miltenyi Biotec社製)を用いてCD8+CD9+T細胞集団、及びCD8+CD9T細胞集団を取得した。これら3種類の1×105個CD8細胞集団(whole CD8, CD8+CD9, CD8+CD9+)を変異型Snd1ペプチドを添加した1×106個のCD8脾臓細胞と共培養し、変異型Snd1ペプチド特異的CD8+細胞の頻度をELISPOT法を用いて解析した。その結果、変異型Snd1特異的CD8+T細胞はペプチド刺激によりCD9分子の発現が上昇するのではなく、担癌マウス脾臓中の変異型Snd1特異的CD8+T細胞の大多数がCD9+であることが明らかになった(図13(C))。 Next, in order to examine the possibility that the mutant Snd1-derived peptide increases the expression of CD9 molecules, spleen cells were prepared from three mice in the ICI treatment group, and CD8 was isolated using a mouse CD8 isolation kit (manufactured by Miltenyi Biotec). Spleen cells and CD8 + T cells were obtained. A portion of the obtained CD8 cells was stained using PE-conjugated mouse CD9 antibody, and then CD8 + CD9 + T cell population and CD8 + CD9 T cell population were determined using anti-PE beads (manufactured by Miltenyi Biotec). obtained. These three types of 1×10 5 CD8 cell populations (whole CD8, CD8 + CD9 , CD8 + CD9 + ) were cocultured with 1×10 6 CD8 spleen cells supplemented with the mutant Snd1 peptide, and the mutant The frequency of type Snd1 peptide-specific CD8 + cells was analyzed using ELISPOT method. As a result, the expression of CD9 molecules in mutant Snd1-specific CD8 + T cells was not increased by peptide stimulation, but the majority of mutant Snd1-specific CD8 + T cells in the spleen of tumor-bearing mice were CD9 + . This became clear (Figure 13(C)).

CD9はテトラスパニンに属する分子の1種であり、他に多くの分子がテトラスパニンに属している。その中で、CD9あるいはCD81がノックアウトされている雌マウスでは受精の際の細胞融合に問題があり不妊となることが知られており、テトラスパニン分子間の機能類似性が報告されている。そこで、CD81分子について、変異抗原Snd1特異的CD8+T細胞におけるCD81分子の発現を解析した。
結果を図14に示した。変異抗原Snd1特異的CD8+T細胞の大多数は、CD9と同様に、CD81分子を発現していることが明らかとなった(図14(C))。このように、担癌マウス脾臓細胞中のCD8+CD9+CD81+T細胞集団に腫瘍反応性CD8+T細胞が存在していると考えられた。この考えを検証するため、変異型Snd1特異的CD8+T細胞の頻度が極めて低い、CMS7担癌後ICI無治療マウス脾臓中のCD8+CD9+CD81+T細胞(CD8+T細胞中1.9%)のTCRレパトア解析を実施した。結果を図14(B)右側に示した。解析した36細胞のTCR中で同一TCR遺伝子配列が認められたTCRは2種類であり、それぞれ3細胞、2細胞であった。
CD9 is a type of molecule that belongs to tetraspanins, and many other molecules also belong to tetraspanins. Among these, it is known that female mice in which CD9 or CD81 are knocked out have problems with cell fusion during fertilization and become infertile, and functional similarities between tetraspanin molecules have been reported. Therefore, regarding the CD81 molecule, we analyzed the expression of the CD81 molecule in CD8 + T cells specific for the mutant antigen Snd1.
The results are shown in FIG. It was revealed that the majority of mutant antigen Snd1-specific CD8 + T cells expressed CD81 molecules as well as CD9 (FIG. 14(C)). Thus, it was considered that tumor-reactive CD8 + T cells were present in the CD8 + CD9 + CD81 + T cell population in the spleen cells of tumor-bearing mice. To test this idea, we investigated CD8 + CD9 + CD81 + T cells in the spleens of ICI-untreated mice after CMS7 tumor bearing, where the frequency of mutant Snd1-specific CD8 + T cells is extremely low (1.9% among CD8 + T cells). TCR repertoire analysis was performed. The results are shown on the right side of FIG. 14(B). Among the TCRs of the 36 cells analyzed, two types of TCRs had the same TCR gene sequence: 3 and 2 types, respectively.

CMS7担癌後ICI無治療マウス脾臓中のCD8+CD9+CD81+T細胞集団のTCRレパトア解析の結果から、TCR発現が複数で認められた2種類のTCR、及び単一(single)TCRとして取得した2種類のTCRをレトロウイルスベクターを用いてBALB/cマウスT細胞に発現導入した。これらそれぞれのTCRを導入したマウスT細胞(1×105細胞)とCMS7腫瘍細胞(5×104細胞)とを24時間共培養し、上清中のマウスIFN-γ及びTNFαを測定した。実験に際し、CMS7に特異的に反応する変異型Snd1特異的TCR (mSnd1 22-1 TCR)を陽性コントロールとして使用した。
その結果、図15に示すように、3細胞で同一のTCRが認められた11-3 TCRがCMS7を特異的に認識し、これらサイトカインを放出していることが明らかとなった。この反応はCMS7特異的であり、CMS7と同様にマウス線維芽細胞肉腫由来細胞株であるCMS5にはサイトカイン放出が認められなかった。
From the results of TCR repertoire analysis of the CD8 + CD9 + CD81 + T cell population in the spleen of ICI-untreated mice after CMS7 tumor bearing, two types of TCR with multiple TCR expression and a single TCR were obtained. The two types of TCRs were expressed and introduced into BALB/c mouse T cells using retroviral vectors. Mouse T cells (1×10 5 cells) introduced with each of these TCRs and CMS7 tumor cells (5×10 4 cells) were co-cultured for 24 hours, and mouse IFN-γ and TNFα in the supernatant were measured. In the experiment, a mutant Snd1-specific TCR (mSnd1 22-1 TCR) that specifically reacts with CMS7 was used as a positive control.
As a result, as shown in FIG. 15, it was revealed that 11-3 TCR, in which the same TCR was observed in three cells, specifically recognized CMS7 and released these cytokines. This reaction was specific to CMS7, and like CMS7, no cytokine release was observed in CMS5, a mouse fibroblast sarcoma-derived cell line.

次に、CT26担癌マウス脾臓中のCD8+CD9+CD81+T細胞集団のTCRレパトア解析を行った。CMS7以外のマウス腫瘍細胞株でCMS7と同様の結果が得られるかを検討するため、マウス大腸がん由来腫瘍細胞株であるCT26細胞株を用いて検討した。図16(A)に示すように、day 0に1×106細胞のCT26をBALB/cマウス背部に皮下接種により担癌し、day 21に脾臓細胞中のCD8+CD9+CD81+T細胞集団のTCRレパトア解析を実施した。
図16(B)に示すように、取得した27細胞由来TCRの解析の結果、1種類のTCRが2細胞で発現しており、他はすべて単一(single)で存在していた。
Next, we performed TCR repertoire analysis of the CD8 + CD9 + CD81 + T cell population in the spleen of CT26 tumor-bearing mice. In order to examine whether the same results as CMS7 could be obtained with mouse tumor cell lines other than CMS7, we used the CT26 cell line, a mouse colon cancer-derived tumor cell line. As shown in FIG. 16(A), 1×10 6 CT26 cells were subcutaneously inoculated into the back of BALB/c mice on day 0, and CD8 + CD9 + CD81 + T cell population in spleen cells was isolated on day 21. TCR repertoire analysis was performed.
As shown in FIG. 16(B), as a result of analysis of the obtained 27 cell-derived TCRs, one type of TCR was expressed in two cells, and all the others were present in single form.

次に、同一TCRが2細胞で認められた1種類のTCR、及び単一(single)として存在していた2種類のTCRを選択し、CT26腫瘍細胞への反応性を検証した。
まず、それぞれのTCRをレトロウイルスベクターを用いてBALB/cマウスT細胞に発現導入した。これらTCRを導入したマウスT細胞(1×105細胞)とCT26腫瘍細胞(5×104細胞)とを24時間共培養し、上清中のマウスIFN-γを測定した結果、単一で存在していた1種類のTCR(23-1 TCR)がCT26を特異的に認識していることが明らかとなった(図17(B))。CT26担癌マウスではマウス内在性白血病ウイルスエンベロープgp70由来AH-1ペプチドに対するCD8陽性T細胞免疫応答が惹起されることが報告されており、今回同定したCT26腫瘍反応性TCRの認識抗原がAH-1ペプチドである可能性を検証した。マウスMHC(主要組織適合性抗原)が同一のH-2dであるP1.HTR細胞を用い、TCR導入マウスT細胞(1×105細胞)とAH-1ペプチド添加、変異型Snd1ペプチド添加、関連のない変異型ERK2由来ペプチド添加、あるいは無添加のP1.HTR細胞(5×104細胞)とを24時間共培養し、その上清中のマウスIFN-γを測定した(図17(C))。
その結果、同定したTCRの認識抗原ペプチドが実際にAH-1であることが明らかとなった。CT26担癌マウス脾臓のCD8陽性T細胞中のAH-1特異的CD8+T細胞の頻度は1%以下と想定され、これらの結果はテトラスパニン分子であるCD9及びCD81分子の腫瘍反応性CD8陽性T細胞の絞り込みに極めて有用であることを示すと考えられた。
Next, one type of TCR in which the same TCR was observed in two cells, and two types of TCR in which the same TCR was present as a single (single) were selected, and their reactivity to CT26 tumor cells was verified.
First, expression of each TCR was introduced into BALB/c mouse T cells using a retroviral vector. These TCR-transfected mouse T cells (1 x 10 5 cells) and CT26 tumor cells (5 x 10 4 cells) were co-cultured for 24 hours, and mouse IFN-γ in the supernatant was measured. It became clear that one type of TCR (23-1 TCR) that was present specifically recognized CT26 (Figure 17(B)). It has been reported that CD8-positive T cell immune responses are elicited in CT26 tumor-bearing mice against the AH-1 peptide derived from mouse intrinsic leukemia virus envelope gp70, and the antigen recognized by the CT26 tumor-reactive TCR identified this time is AH-1. We verified the possibility that it was a peptide. Using P1.HTR cells whose mouse MHC (major histocompatibility antigen) is the same H-2d, TCR-transduced mouse T cells (1×10 5 cells), AH-1 peptide addition, mutant Snd1 peptide addition, and related P1.HTR cells (5 × 10 4 cells) with or without mutant ERK2-derived peptide were co-cultured for 24 hours, and mouse IFN-γ in the supernatant was measured (Figure 17(C) ).
As a result, it became clear that the identified antigenic peptide recognized by TCR was actually AH-1. The frequency of AH-1-specific CD8 + T cells among CD8-positive T cells in the spleen of CT26 tumor-bearing mice is assumed to be less than 1%, and these results indicate that the tumor-reactive CD8-positive T cells of CD9 and CD81 molecules, which are tetraspanin molecules, are expected to be less than 1%. This was considered to be extremely useful for narrowing down cells.

CD9分子を含むテトラスパニンの機能については、まだ十分に明らかになっていない。少なくともT細胞と腫瘍細胞間の相互作用に重要な働きを示すことが本研究によって明らかにされており、CD9分子の発現が抗原特異的なTCR/CARを遺伝子導入したT細胞を輸注する免疫細胞療法における有効性を高め得る可能性が考えられた。そこで、抗原特異的T細胞輸注療法において、CD9の発現が抗腫瘍効果を高めることを検証するために、次のデータを得た。
マウス線維芽肉腫由来細胞株CMS5がコードする変異抗原ERK2由来ペプチド(mERK2-9m)とH-2Kdとの複合体を特異的に認識するTCRのトランスジェニックマウス(DUC18。非特許文献5)を使用した。
図18(A)に示すように、day 0においてCMS5 (1×106個)を皮下接種によりBALB/cマウス背部に担癌し、day3に細胞輸注(ACT)を実施した。治療グループとして、以下の3群(n=4/群)を設定した。
(1)無治療(control)、(2)DUC18マウス脾臓細胞に抗CD3抗体及び抗CD28抗体を使用し、5日間刺激増殖させたT細胞(2×106個)の輸注、(3)DUC18マウス脾臓細胞に抗CD3抗体及び抗CD28抗体を使用し、翌日にマウスCD9遺伝子をレトロウイルスを用いて遺伝子導入し、引き続き4日間刺激増殖させたT細胞(2×106個)の輸注とした。
その結果、図18(B)に示すように、CD9分子を強発現させたT細胞の輸注によって治療効果が高まることが示された。
このように本実施形態によれば、がん患者の腫瘍治療用T細胞を提供できた。このT細胞は、当該がん患者の治療に有効に使用できる。
The functions of tetraspanins, including the CD9 molecule, are still not fully understood. This study has revealed that the expression of CD9 molecules plays an important role in the interaction between T cells and tumor cells. The possibility of increasing the effectiveness of therapy was considered. Therefore, in order to verify that CD9 expression enhances the antitumor effect in antigen-specific T cell infusion therapy, we obtained the following data.
A TCR transgenic mouse (DUC18, non-patent document 5) that specifically recognizes the complex of H-2Kd and the mutant antigen ERK2-derived peptide (mERK2-9m) encoded by the mouse fibrosarcoma-derived cell line CMS5 is used. did.
As shown in FIG. 18(A), CMS5 (1×10 6 cells) was subcutaneously inoculated on the back of BALB/c mice on day 0, and cell transfusion (ACT) was performed on day 3. The following three groups (n=4/group) were established as treatment groups.
(1) No treatment (control), (2) Infusion of T cells (2 x 10 6 cells) stimulated and proliferated for 5 days using anti-CD3 antibody and anti-CD28 antibody to DUC18 mouse spleen cells, (3) DUC18 Anti-CD3 and anti-CD28 antibodies were used in mouse spleen cells, and the next day, the mouse CD9 gene was introduced using a retrovirus, followed by infusion of T cells (2 x 10 6 cells) that had been stimulated and proliferated for 4 days. .
As a result, as shown in FIG. 18(B), it was shown that the therapeutic effect was enhanced by infusion of T cells strongly expressing CD9 molecules.
As described above, according to this embodiment, T cells for tumor treatment of cancer patients could be provided. These T cells can be effectively used to treat cancer patients.

Claims (4)

(1)がん患者から採取した腫瘍浸潤T細胞(Tumor-infiltrating lymphocyte:TIL)または全血から、細胞表面の抗原のうちPD-1及び/または4-1BBをマーカーとして、CD-8陽性T細胞を単離する候補単離工程、(2)前記候補単離工程で単離されたT細胞のT細胞受容体(TCR)遺伝子を標的細胞に形質導入し、腫瘍反応性を備えたTCRを特定・評価する腫瘍反応性評価工程、(3)腫瘍に反応するTCRを持つT細胞をin vitroで増殖させ、前記がん患者に対して投与するための腫瘍治療用T細胞を得る治療用T細胞取得工程を備えたことを特徴とする腫瘍反応性T細胞の製造方法。 (1) From tumor-infiltrating T cells (TILs) or whole blood collected from cancer patients, CD-8 positive T cells were detected using PD-1 and/or 4-1BB among cell surface antigens as markers. a candidate isolation step of isolating cells; (2) transducing the T cell receptor (TCR) gene of the T cells isolated in the candidate isolation step into target cells to generate TCR with tumor reactivity; Tumor reactivity evaluation step to identify and evaluate, (3) therapeutic T to proliferate T cells with TCR that reacts with the tumor in vitro to obtain T cells for tumor treatment to be administered to the cancer patient. A method for producing tumor-reactive T cells, comprising a cell obtaining step. 前記固形腫瘍が、脳腫瘍、舌がん、食道がん、胃がん、小腸がん、大腸がん、肝臓がん、腎臓がん、膀胱がん、肺がん、甲状腺がん、乳がん、子宮がん、卵巣がん、前立腺がん、横紋筋肉腫及び平滑筋腫からなる群から選択される少なくとも一つである請求項1に記載の腫瘍反応性T細胞の製造方法。 The solid tumor is brain tumor, tongue cancer, esophageal cancer, stomach cancer, small intestine cancer, colon cancer, liver cancer, kidney cancer, bladder cancer, lung cancer, thyroid cancer, breast cancer, uterine cancer, or ovarian cancer. The method for producing tumor-reactive T cells according to claim 1, which is at least one selected from the group consisting of cancer, prostate cancer, rhabdomyosarcoma, and leiomyoma. 前記候補単離工程において、更にテトラスパニンをマーカーとすることを特徴とする請求項1または2に記載の腫瘍反応性T細胞の製造方法。 3. The method for producing tumor-reactive T cells according to claim 1, further comprising using tetraspanin as a marker in the candidate isolation step. 前記テトラスパニンが、CD9、TSPAN2、CD151、CD53、CD37、CD82、CD81及びCD63からなる群から選択される少なくとも一つである請求項3に記載の腫瘍反応性T細胞の製造方法。 4. The method for producing tumor-reactive T cells according to claim 3, wherein the tetraspanin is at least one selected from the group consisting of CD9, TSPAN2, CD151, CD53, CD37, CD82, CD81, and CD63.
JP2022114657A 2022-07-19 2022-07-19 Method for producing tumor-reactive t-cell Pending JP2024012879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022114657A JP2024012879A (en) 2022-07-19 2022-07-19 Method for producing tumor-reactive t-cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022114657A JP2024012879A (en) 2022-07-19 2022-07-19 Method for producing tumor-reactive t-cell

Publications (1)

Publication Number Publication Date
JP2024012879A true JP2024012879A (en) 2024-01-31

Family

ID=89714185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022114657A Pending JP2024012879A (en) 2022-07-19 2022-07-19 Method for producing tumor-reactive t-cell

Country Status (1)

Country Link
JP (1) JP2024012879A (en)

Similar Documents

Publication Publication Date Title
US11629334B2 (en) Methods of isolating T cells and T cell receptors having antigenic specificity for a cancer-specific mutation from peripheral blood
US11905529B2 (en) Method of enhancing persistence of adoptively infused T cells
CN107750278B (en) Methods of treating cancer
Wang et al. Tumor-specific human CD4+ regulatory T cells and their ligands: implications for immunotherapy
JP2020534839A (en) P53 Method for Isolating T Cells with Antigen Specificity for Cancer-Specific Mutations
CA2961179A1 (en) Personalized cancer vaccines and methods therefor
Lu et al. Direct identification of neoantigen-specific TCRs from tumor specimens by high-throughput single-cell sequencing
US20220155321A1 (en) Selection of t cell receptors
US20210052642A1 (en) Methods of enriching cell populations for cancer-specific t cells using in vitro stimulation of memory t cells
WO2020259707A1 (en) Cell for resisting transplant reaction and method
US20210102942A1 (en) High-throughput method to screen cognate T cell and epitope reactivities in primary human cells
Ali et al. T cells targeted to TdT kill leukemic lymphoblasts while sparing normal lymphocytes
CA3171559A1 (en) Methods of isolating t-cells and t-cell receptors from tumor by single-cell analysis for immunotherapy
JP2017169566A (en) T cell receptor and use thereof
JP2024012879A (en) Method for producing tumor-reactive t-cell
US20230183802A1 (en) Methods of isolating t cells and t-cell receptors from peripheral blood by single-cell analysis for immunotherapy
JP2023521436A (en) Modulation of T cell cytotoxicity and related therapies
Iancu et al. Profile of a serial killer: cellular and molecular approaches to study individual cytotoxic T-cells following therapeutic vaccination
Zhang et al. Global analysis of HLA-A2 restricted MAGE-A3 tumor antigen epitopes and corresponding TCRs in non-small cell lung cancer
RU2808595C1 (en) Method of obtaining a culture of lymphocytes enriched in tumor-specific t-lymphocyte clones and cell cultures obtained using the specified method
Rath et al. Single-cell transcriptomics identifies multiple pathways underlying antitumor function of TCR-and CD8-engineered human CD4+ T cells
Woolaver Immune-and Tumor-Intrinsic Determinants in Heterogeneity of Tumor Immunosurveillance
Gillespie WC1 AND TCR INTERACTIONS FOR γδ T CELL ACTIVATION
James Molecular and Cellular Mechanisms of Mycobacterial Glycolipid Recognition by Human T Cells