JP2024012728A - Coating apparatus - Google Patents

Coating apparatus Download PDF

Info

Publication number
JP2024012728A
JP2024012728A JP2020208122A JP2020208122A JP2024012728A JP 2024012728 A JP2024012728 A JP 2024012728A JP 2020208122 A JP2020208122 A JP 2020208122A JP 2020208122 A JP2020208122 A JP 2020208122A JP 2024012728 A JP2024012728 A JP 2024012728A
Authority
JP
Japan
Prior art keywords
mass
coating
alloy
edge
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020208122A
Other languages
Japanese (ja)
Inventor
恵 遠藤
Megumi Endo
卓也 伊藤
Takuya Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mmc Ryotec Corp
Original Assignee
Mmc Ryotec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mmc Ryotec Corp filed Critical Mmc Ryotec Corp
Priority to JP2020208122A priority Critical patent/JP2024012728A/en
Priority to PCT/JP2021/045757 priority patent/WO2022131194A1/en
Publication of JP2024012728A publication Critical patent/JP2024012728A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Coating Apparatus (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a slot die comprising edge parts that inhibit white turbidness and thickness reduction, and that obtain a coating film with a uniform thickness stably over a long term, when using a negative electrode active material of a lithium ion battery as a coating liquid, and that further, uses a material requiring less time and labor for manufacturing.
SOLUTION: A coating apparatus includes one or more coating heads, each having opposing edge members, and adjusts a coating amount of a coating liquid by adjusting an interval of the edge members. The edge members of the coating apparatus comprise a Co-Cr-W-based alloy or a Ni-Cr-Fe-based alloy in which HRC is 45-52.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、塗布液を塗布する塗布装置であるスロットダイ(以下、塗布装置とスロットダイを区別せずに使用する)に関するものである。 The present invention relates to a slot die that is a coating device for applying a coating liquid (hereinafter, the coating device and slot die will be used without distinction).

対向するエッジを有する1または2以上の塗布ヘッドを有し、前記エッジ間隔を調整することにより塗布液の塗布量が調整できる塗布装置としてスロットダイが知られている。このスロットダイは、可撓性を有するフィルムなどに絶縁材、導電材、接着剤、粘結剤、写真感光剤、磁性物質等の各種塗布液の塗布に広く使用されている。
そして、このスロットダイの用途を広げ、塗布性能や耐久性の向上を目的として、種々の提案がなされている。
A slot die is known as a coating device that has one or more coating heads having opposing edges and can adjust the amount of coating liquid applied by adjusting the spacing between the edges. This slot die is widely used for applying various coating liquids such as insulating materials, conductive materials, adhesives, binders, photographic photosensitive agents, and magnetic materials to flexible films and the like.
Various proposals have been made for the purpose of expanding the uses of this slot die and improving coating performance and durability.

例えば、特許文献1には、マニフォールドの先端部から流通部、塗布先端部においてNi-Cr-Si-B系の合金粉末、または、Co-Cr-Si-B系の合金粉末をHIP処理により直接拡散接合されたHIPライニング層を形成したスロットダイが記載され、該スロットダイは、リチウムイオン電池の負極活物質ペーストを塗布液として集電体上に塗布成形するために用いることができ、該塗布液による傷や摩耗が発生しにくいとされている。 For example, in Patent Document 1, Ni-Cr-Si-B alloy powder or Co-Cr-Si-B alloy powder is directly applied by HIP treatment from the tip of the manifold to the distribution section and the coating tip. A slot die is described in which a diffusion-bonded HIP lining layer is formed, and the slot die can be used to apply and mold a negative electrode active material paste of a lithium ion battery as a coating liquid onto a current collector, It is said to be less prone to scratches and abrasion caused by liquids.

また、例えば、特許文献2には、塗布先端部が超硬合金からなり、該超硬合金はコバルトを主成分とする結合相を2~16質量%有するWC基超硬合金であって、その硬さ(X)がロックウエル硬度Aスケールで90.0~94.0(HRA)、該超硬合金の保磁力(Yエルステッド)は、60X-5100≧Y≧50X-4320を満足するスロットダイが記載され、該スロットダイは耐食性、耐腐食摩耗性、耐アブレーション摩耗および耐微小損傷性に優れて耐久性を有するとされている。 Further, for example, Patent Document 2 discloses that the application tip is made of a cemented carbide, and the cemented carbide is a WC-based cemented carbide having 2 to 16% by mass of a binder phase mainly composed of cobalt. The slot die has a hardness (X) of 90.0 to 94.0 (HRA) on the Rockwell hardness A scale, and a coercive force (Y Oersted) of the cemented carbide that satisfies 60X-5100≧Y≧50X-4320. The slot die is said to have excellent corrosion resistance, corrosion wear resistance, abrasion wear resistance, and microdamage resistance, and is durable.

さらに、例えば、特許文献3には、塗布先端部が超硬合金からなり、該超硬合金はWCを主成分とする硬質相とNiおよびCrを主成分とする結合相を有する実質的に非磁性のスロットダイが記載され、該スロットダイは耐食性が向上しているとされている。 Further, for example, in Patent Document 3, the coating tip part is made of a cemented carbide, and the cemented carbide has a hard phase mainly composed of WC and a binder phase mainly composed of Ni and Cr2C3 . A non-magnetic slot die has been described, and the slot die is said to have improved corrosion resistance.

加えて、例えば、特許文献4には、塗布ヘッドの金属エッジ(塗布先端部)がCr:14~23質量%、Mo:14~20質量%、W:0.2~5質量%、Fe:0.2~7質量%、Co:0.2~2.5質量%、残部Niおよび不可避的不純物からなる組成を有するNi合金(以下、Ni-Cr-Mo系合金という)を溶体化処理後に圧延加工し、熱処理したスロットダイが記載され、該スロットダイは耐食性と耐摩耗性に優れているとされている。 In addition, for example, in Patent Document 4, the metal edge (coating tip) of the coating head contains Cr: 14 to 23% by mass, Mo: 14 to 20% by mass, W: 0.2 to 5% by mass, Fe: After solution treatment of a Ni alloy (hereinafter referred to as Ni-Cr-Mo alloy) having a composition of 0.2 to 7% by mass, Co: 0.2 to 2.5% by mass, and the balance Ni and unavoidable impurities. A slot die that is rolled and heat treated is described, and the slot die is said to have excellent corrosion resistance and wear resistance.

特開2018-122283号公報Japanese Patent Application Publication No. 2018-122283 特許第3048145号公報Patent No. 3048145 特開2002-346456号公報Japanese Patent Application Publication No. 2002-346456 特開平6-134379号公報Japanese Unexamined Patent Publication No. 6-134379

本発明者は、SUS630等の析出硬化型ステンレス鋼やSUS420等のマルテンサイト系ステンレス鋼により製造されたスロットダイにおいて、塗布液としてリチウムイオン電池の負極活物質(ペースト)を使用したとき、塗布先端部(エッジ部)に白濁や減肉が生じる問題があることを発見した。 The present inventor has discovered that when a negative electrode active material (paste) of a lithium ion battery is used as a coating liquid in a slot die manufactured from precipitation hardening stainless steel such as SUS630 or martensitic stainless steel such as SUS420, the coating tip It was discovered that there was a problem with clouding and thinning of the edges.

そこで、この白濁や減肉を防止すべく、前記各特許文献に記載されたスロットダイの塗布先端部の材料を試用した。その結果、本発明者は、これら材料を使用しても、この白濁や減肉を抑制できないことを認識した。 Therefore, in order to prevent this clouding and thinning, the materials for the application tip of the slot die described in each of the above-mentioned patent documents were used on a trial basis. As a result, the inventor realized that even if these materials were used, the cloudiness and thinning could not be suppressed.

一方、本発明者は、特許文献4に記載された組成の合金を含むNi-Cr-Mo合金をエッジ部の材料として用いると、白濁や減肉を抑制できるものの、スロットダイのエッジ部に用いるために、溶体化処理後に高圧下率の圧延加工し、時効熱処理を行う必要があるため、製造上の手間が無視できないという問題があることを認識した。 On the other hand, the present inventor found that although clouding and thinning can be suppressed by using a Ni-Cr-Mo alloy containing an alloy having the composition described in Patent Document 4 as a material for the edge part, In order to achieve this, it is necessary to carry out rolling at a high reduction rate after solution treatment and to perform aging heat treatment, so it has been recognized that there is a problem in that the labor involved in manufacturing cannot be ignored.

本発明は、これら問題を解決するためになされたものであって、リチウムイオン電池の負極活物質を塗布液とするに当たり、Ni-Cr-Mo合金と同等以上の白濁と減肉を抑制し、長期間にわたって安定して均一の厚さの塗布膜を得ることができ、しかも、製造上の手間の少ない材料を用いたエッジ部を有するスロットダイを提供することを目的とする。 The present invention was made to solve these problems, and when using a negative electrode active material of a lithium ion battery as a coating liquid, it suppresses cloudiness and thinning to a degree equivalent to or higher than that of Ni-Cr-Mo alloy, and It is an object of the present invention to provide a slot die that can stably obtain a coating film of uniform thickness over a long period of time and has an edge portion made of a material that requires less manufacturing effort.

本発明の実施形態に係る塗布装置は、
それぞれ対峙するエッジ部材を有する1または2以上の塗布ヘッドを有し、前記エッジ部材の間隔を調整することにより塗布液の塗布量を調整する塗布装置であって、
前記エッジ部材は、HRCが45~52のCo-Cr-W系合金またはNi-Cr-Fe系合金である。
The coating device according to the embodiment of the present invention includes:
A coating device that has one or more coating heads each having edge members facing each other, and adjusts the amount of coating liquid applied by adjusting the interval between the edge members,
The edge member is a Co--Cr--W alloy or a Ni--Cr--Fe alloy with an HRC of 45 to 52.

また、前記Co-Cr-W系合金またはNi-Cr-Fe系合金の熱膨張係数は、前記塗布装置の本体部分に使用される材料の熱膨張係数との差が0.50×10-5/K以下であってもよい。 Further, the coefficient of thermal expansion of the Co-Cr-W alloy or the Ni-Cr-Fe alloy has a difference of 0.50×10 −5 from the coefficient of thermal expansion of the material used for the main body of the coating device. /K or less.

前記によれば、リチウムイオン電池の負極活物質の塗布に当たって、製造上の手間の少ない材料により、エッジ部の白濁と減肉を抑制し、長期間にわたって安定して均一の厚さの塗布膜を得ることができる。 According to the above, when applying the negative electrode active material of lithium ion batteries, it is possible to suppress white clouding and thinning of the edge portion by using a material that requires less manufacturing effort, and to produce a coating film with a stable and uniform thickness over a long period of time. Obtainable.

実施例に係る塗布装置の斜視模式図である。FIG. 1 is a schematic perspective view of a coating device according to an example. 図1のA-A断面図である。2 is a sectional view taken along line AA in FIG. 1. FIG. 図1の塗布装置の第1金型の斜視模式図である。FIG. 2 is a schematic perspective view of a first mold of the coating device of FIG. 1; 図1の塗布装置の第2金型の斜視模式図である。FIG. 2 is a schematic perspective view of a second mold of the coating device of FIG. 1; 図1の塗布装置に使用する(第1金型と第2金型との間に介挿する)スペーサーの斜視模式図である。FIG. 2 is a schematic perspective view of a spacer used in the coating device of FIG. 1 (inserted between a first mold and a second mold).

以下、本発明の実施形態に係る塗布装置について詳述する。
なお、本明細書および特許請求の範囲において、数値範囲を「M~N」(M、Nは共に数値)で表現するときは、その範囲は上限値(N)および下限値(M)を含んでおり、上限値(N)と下限値(M)の単位は同じである。
Hereinafter, a coating device according to an embodiment of the present invention will be described in detail.
In this specification and claims, when a numerical range is expressed as "M to N" (M and N are both numerical values), the range does not include the upper limit (N) and the lower limit (M). The upper limit value (N) and lower limit value (M) have the same unit.

リチウムイオン電池の負極活物質は、黒鉛、結着剤、水を混練したものであって、腐食性を有する化学物質ではないため腐食は生じないと一応考えられる。しかし、本発明者は、作用機序は定かではないが、塗布装置のエッジ部では、この負極活物質の流動に起因する潰食(cavitation errosion)や負極活物質中の固形成分による摩耗が生じ、白濁と減肉が生じているのではないかと考えるに至った。 The negative electrode active material of lithium ion batteries is a mixture of graphite, a binder, and water, and is not a corrosive chemical substance, so it is thought that corrosion will not occur. However, although the mechanism of action is not clear, the inventor has found that cavitation erosion caused by the flow of the negative electrode active material and wear caused by solid components in the negative electrode active material occur at the edge of the coating device. I came to think that cloudiness and thinning may have occurred.

さらに、塗布装置本体の材料であるSUS630等の析出硬化型ステンレス鋼やSUS420等のマルテンサイト系ステンレス鋼は、耐食性に優れるが、塗布液に接する内壁面の面粗さを小さくすべく研磨加工が必要であり、その結果エッジ部分にバリが生じてしまい、バリ取りのためにエッジ加工を行う必要があり、このエッジの加工精度が低下して均一な塗布量を得ることが困難であり、一方、WC基超硬合金は、バリ取りを行う必要はなく耐摩耗性は有するものの、耐食性が十分ではないため白濁と減肉を生じるものはないかと推察した。 Furthermore, precipitation hardening stainless steels such as SUS630 and martensitic stainless steels such as SUS420, which are the materials for the main body of the coating device, have excellent corrosion resistance. As a result, burrs occur on the edges, and it is necessary to perform edge processing to remove the burrs, which reduces the processing accuracy of the edges and makes it difficult to obtain a uniform coating amount. Although WC-based cemented carbide does not need to be deburred and has wear resistance, it was assumed that some of them do not have sufficient corrosion resistance, resulting in cloudiness and thinning.

そこで、この推察に立って、前記各材料や白濁と減肉を抑制することができるNi-Cr-Mo系合金について、その物性を解析した結果、耐摩耗性の指標となる硬度が特定の範囲にあり、所定の耐食性を有していることが判明した。その結果、白濁と減肉を抑制するために必要な硬度と耐食性について、以下の知見を得た。
以下、順に説明する。
Based on this assumption, we analyzed the physical properties of each of the above materials and Ni-Cr-Mo alloys that can suppress clouding and thinning, and found that the hardness, which is an index of wear resistance, falls within a specific range. It was found that the material had a certain level of corrosion resistance. As a result, the following knowledge was obtained regarding the hardness and corrosion resistance necessary to suppress cloudiness and thinning.
Below, they will be explained in order.

耐摩耗性
耐摩耗性は硬度と相関関係があり、硬度の高い材料は耐摩耗性が高くなるが、硬度が高くなれば研削と研磨の加工性が低下してしまう。そこで、前述の特許文献4に記載された合金の組成を含むNi-Cr-Mo系合金の物性の解析結果をもとにして、塗布装置のエッジ部に使用する材料として必要な耐摩耗性と研削と研磨の加工の容易性とのバランスを検討した結果、HRC硬度(ロックウエル硬さCスケール)が45~52の材料が適切である知見を得た。
Wear resistance Wear resistance is correlated with hardness, and materials with higher hardness have higher wear resistance, but higher hardness reduces workability in grinding and polishing. Therefore, based on the analysis results of the physical properties of the Ni-Cr-Mo alloy containing the alloy composition described in Patent Document 4 mentioned above, we have determined the wear resistance required for the material used for the edge part of the coating device. As a result of examining the balance between ease of grinding and polishing, we found that materials with HRC hardness (Rockwell hardness C scale) of 45 to 52 are appropriate.

すなわち、HRC硬度が45未満であると、白濁と減肉を抑制するための硬さが十分ではなく、すなわち、耐摩耗性が十分でなく、一方、HRC硬度が52を超えると、例えば、WC基超硬合金のようにスロットダイを製作するための研磨、研削の加工性が劣ってしまうのである。 That is, when the HRC hardness is less than 45, the hardness to suppress clouding and thinning is insufficient, that is, the wear resistance is insufficient, while when the HRC hardness exceeds 52, for example, WC Unlike base cemented carbide, it has poor workability in polishing and grinding for making slot dies.

耐食性
本発明者の調査によれば、Ni-Cr-Mo系合金と同等以上の耐食性を有する材料として、市販されているCo-Cr-W系合金およびNi-Cr-Fe系合金を挙げることができる。
そこで、このCo-Cr-W系合金、Ni-Cr-Fe系合金について、以下に詳述する。
Corrosion Resistance According to the inventor's research, commercially available Co-Cr-W alloys and Ni-Cr-Fe alloys can be cited as materials having corrosion resistance equivalent to or higher than Ni-Cr-Mo alloys. can.
Therefore, the Co--Cr--W alloy and the Ni--Cr--Fe alloy will be described in detail below.

Co-Cr-W系合金
Co-Cr-W系合金は、Ni-Cr-Mo系合金、SUS630析出硬化型ステンレス鋼と同等以上の耐食性を有し、しかも、簡易な熱処理を行うか、または、特段の熱処理を行うことなく、HRC硬度が45~52となるため、塗布装置のエッジ部の白濁と減肉を抑制することでき、かつ、該エッジ部とするための加工の手間が少なく、好ましい材料である。
Co-Cr-W alloy Co-Cr-W alloy has corrosion resistance equal to or higher than Ni-Cr-Mo alloy and SUS630 precipitation hardening stainless steel, and can be easily heat treated or Since the HRC hardness is 45 to 52 without any special heat treatment, it is possible to suppress cloudiness and thinning of the edge portion of the coating device, and it is preferable because there is less processing effort to form the edge portion. It is the material.

ここで、Co-Cr-W系合金の具体的な組成として、例えば、
Cr:28~32質量%、MoまたはW:7~9質量%、C:1.2~1.6質量%、Ni:3質量%未満、Fe:3質量%未満、Si:2質量%未満、残部:Coと不可避的不純物
を挙げることができ、
Cr:30質量%、W:8質量%、C:1.55質量%、Ni:3質量%未満、Fe:3質量%未満、Si:2質量%未満、残部:Coと不可避的不純物
および
Cr:31質量%、Mo:8質量%、C:1.55質量%、Ni:3質量%未満、Fe:3質量%未満、Si:2質量%未満、残部:Coと不可避的不純物
のものが好ましい。この好ましい組成のCo-Cr-W系合金は、特段の熱処理を行わなくてもHRC硬度が45~52である。
Here, as a specific composition of the Co-Cr-W alloy, for example,
Cr: 28 to 32% by mass, Mo or W: 7 to 9% by mass, C: 1.2 to 1.6% by mass, Ni: less than 3% by mass, Fe: less than 3% by mass, Si: less than 2% by mass , the remainder: Co and unavoidable impurities,
Cr: 30% by mass, W: 8% by mass, C: 1.55% by mass, Ni: less than 3% by mass, Fe: less than 3% by mass, Si: less than 2% by mass, remainder: Co and inevitable impurities and Cr : 31% by mass, Mo: 8% by mass, C: 1.55% by mass, Ni: less than 3% by mass, Fe: less than 3% by mass, Si: less than 2% by mass, remainder: Co and inevitable impurities. preferable. The Co--Cr--W alloy with this preferred composition has an HRC hardness of 45 to 52 without any special heat treatment.

Ni-Cr-Fe系合金
Ni-Cr-Fe系合金は、Ni-Cr-Mo系合金、SUS630析出硬化型ステンレス鋼と同等以上の耐食性を有している。そして、900~1000℃の溶体化処理後、600~700℃で時効処理を行えば、微細なNi-Nb、Al、Tiの各化合物を析出させることができ、45~52のHRC硬度を簡単に得ることができる。
そのため、塗布装置のエッジ部の白濁と減肉を抑制することでき、かつ、該エッジ部とするための加工の手間が少なく、好ましい材料である。
Ni-Cr-Fe alloy Ni-Cr-Fe alloy has corrosion resistance equal to or higher than that of Ni-Cr-Mo alloy and SUS630 precipitation hardening stainless steel. After solution treatment at 900 to 1000°C, aging treatment at 600 to 700°C can precipitate fine Ni-Nb, Al, and Ti compounds, easily achieving an HRC hardness of 45 to 52. can be obtained.
Therefore, it is a preferable material because it can suppress clouding and thinning of the edge portion of the coating device, and requires less processing effort to form the edge portion.

ここで、Ni-Cr-Fe系合金の具体的な組成として、例えば、
Cr:15~23質量%、Mo:2~4質量%、Nb+Ta:4~8質量%、AlとTiがそれぞれ0.2質量%以上でAl+Tiが2質量%以下、C:0.1質量%以下、Si:0.5質量%以下、B:0.001~0.02質量%、Fe:30質量%以下、Mn:1質量%以下、残部:Niおよび不可避的不純物、
Cr:10~25質量%、Al:0.2~1.5質量%、Ti:1.5~3質量%、C:0.1質量%以下、Nb:0.1~3質量%、Zr:0.2質量%、Fe:20質量%以下、Si:0.05~0.8質量%、Al+Ti+Si:2~4.5質量%、残部:Niおよび不可避的不純物
を挙げることができる。
Here, as a specific composition of the Ni-Cr-Fe alloy, for example,
Cr: 15-23% by mass, Mo: 2-4% by mass, Nb + Ta: 4-8% by mass, Al and Ti are each 0.2% by mass or more and Al + Ti is 2% by mass or less, C: 0.1% by mass Below, Si: 0.5% by mass or less, B: 0.001 to 0.02% by mass, Fe: 30% by mass or less, Mn: 1% by mass or less, remainder: Ni and inevitable impurities,
Cr: 10-25% by mass, Al: 0.2-1.5% by mass, Ti: 1.5-3% by mass, C: 0.1% by mass or less, Nb: 0.1-3% by mass, Zr : 0.2% by mass, Fe: 20% by mass or less, Si: 0.05 to 0.8% by mass, Al+Ti+Si: 2 to 4.5% by mass, balance: Ni and inevitable impurities.

塗布装置本体に使用される材料との熱膨張係数差
塗布装置のエッジ部に用いられる材料は、塗布装置本体(エッジ部以外)に使用される材料との熱膨張係数差が小さいものが好ましい。その理由は、熱膨張係数差が大きくなれば、エッジ部の変形や気密性が維持できなくなるためである。
塗布装置本体に使用される材料が、SUS630析出硬化型ステンレス鋼、SUS420J2マルテンサイト系ステンレス鋼であれば、その熱膨張係数は、それぞれ、1.08×10-5/K、1.03×10-5/Kである。また、工具鋼であれば、概ね1.00~1.40×10-5/Kである。
これに対して、前述のCo-Cr-W系合金の熱膨張係数は、おおよそ1.46×10-5/Kであり、Ni-Cr-Fe系合金の熱膨張係数は、おおよそ1.30×10-5/Kである。
Difference in Coefficient of Thermal Expansion from the Material Used in the Coating Apparatus Body The material used for the edge part of the coating apparatus preferably has a small difference in coefficient of thermal expansion from the material used in the coating apparatus body (other than the edge part). The reason for this is that if the difference in thermal expansion coefficient becomes large, deformation of the edge portion and airtightness cannot be maintained.
If the material used for the coating device body is SUS630 precipitation hardening stainless steel or SUS420J2 martensitic stainless steel, the coefficient of thermal expansion is 1.08×10 −5 /K and 1.03×10, respectively. -5 /K. Further, in the case of tool steel, it is approximately 1.00 to 1.40×10 −5 /K.
On the other hand, the coefficient of thermal expansion of the aforementioned Co-Cr-W alloy is approximately 1.46×10 -5 /K, and the coefficient of thermal expansion of the Ni-Cr-Fe alloy is approximately 1.30. ×10 −5 /K.

塗布装置本体に用いられる材料とエッジ部に用いられる材料との熱膨張係数の差により、バイメタル変形が生じるが、両者の熱膨張係数差が小さいほどその変形量は小さくなる。本発明者の検討によれば、塗布装置本体に使用されるSUS630析出硬化型ステンレス鋼、SUS420J2マルテンサイト系ステンレス鋼、工具鋼との熱膨張係数の差が0.50×10-5/K以下であると、十分にエッジ部の変形を防止し、気密性を維持することができることが判明した。
よって、エッジ部に超硬合金材料が用いられた場合に比して、これらCo-Cr-W系合金、Ni-Cr-Fe系合金を用いれば、十分にエッジ部の変形を防止し、気密性を維持することができる。
Bimetal deformation occurs due to the difference in thermal expansion coefficient between the material used for the coating device body and the material used for the edge portion, and the smaller the difference in thermal expansion coefficient between the two, the smaller the amount of deformation. According to the inventor's study, the difference in thermal expansion coefficient between SUS630 precipitation hardening stainless steel, SUS420J2 martensitic stainless steel, and tool steel used for the coating device main body is 0.50×10 -5 /K or less. It has been found that the deformation of the edge portion can be sufficiently prevented and airtightness can be maintained.
Therefore, compared to the case where a cemented carbide material is used for the edge portion, if these Co-Cr-W alloys and Ni-Cr-Fe alloys are used, deformation of the edge portion can be sufficiently prevented and airtightness can be achieved. can maintain sexuality.

以下、実施例を挙げて本発明を説明するが、本発明は実施例に限定されるものではない。 The present invention will be described below with reference to Examples, but the present invention is not limited to the Examples.

まず、本実施例で使用した塗布装置(スロットダイ)について説明する。
図1に該装置の斜視模式図を、図2に図1のA-A断面模式図、図3に第1金型の斜視模式図、図4に第2金型の斜視模式図をそれぞれ示す。
First, the coating device (slot die) used in this example will be explained.
FIG. 1 is a schematic perspective view of the device, FIG. 2 is a schematic cross-sectional view taken along line AA in FIG. 1, FIG. 3 is a schematic perspective view of the first mold, and FIG. 4 is a schematic perspective view of the second mold. .

第1のヘッド部材(台金部)2、第2のヘッド部材(台金部)3は、共に、SUS630析出硬化型ステンレス鋼(熱膨張係数:1.08×10-5/K)で製作されており、エッジ部材6を取り付ける凹部を有するエッジ部材取付け部4と台金部材5から構成されている。エッジ部材取付け部4の凹部の角部は、エッジ部材6の角部と干渉しないように溝8が設けられている。 Both the first head member (base metal part) 2 and the second head member (base metal part) 3 are made of SUS630 precipitation hardening stainless steel (thermal expansion coefficient: 1.08×10 -5 /K). It is made up of an edge member attachment portion 4 having a recessed portion for attaching an edge member 6, and a base metal member 5. A groove 8 is provided at the corner of the recess of the edge member mounting portion 4 so as not to interfere with the corner of the edge member 6.

エッジ取付け部4のエッジ部材6には、ろう付けで雌ネジが切られた駒部品9が固定されている。この駒部品9に、台金部材7の斜面にあけられた穴を介してエッジ部材固定ボルト7が螺合して台金部材4とエッジ部材6が固定される。なお、前記穴は樹脂により塞がれている。 A female threaded piece part 9 is fixed to the edge member 6 of the edge attachment part 4 by brazing. An edge member fixing bolt 7 is screwed into this piece part 9 through a hole drilled in the slope of the base metal member 7, thereby fixing the base metal member 4 and the edge member 6. Note that the hole is closed with resin.

図1に示すように、塗布装置1は、第1のヘッド部材2と第2のヘッド部材3から構成されており、両ヘッド部材は、シム15を介してヘッド部材固定ボルト10により固着されている。対向するエッジ部材6により塗布液流出口が形成されている。 As shown in FIG. 1, the coating device 1 is composed of a first head member 2 and a second head member 3, and both head members are fixed by head member fixing bolts 10 via shims 15. There is. A coating liquid outlet is formed by the opposing edge members 6 .

ここで、塗布液流出口の間隔は、この塗布液流出口の中心線と垂直な線に対して10度傾いている第1のヘッド部材2および第2ヘッド部材3に設けられた各エッジ部材6の裏面の駒部品9を介して押圧するエッジ部材固定7により調整される。 Here, the spacing between the coating liquid outlets is determined by the edge members provided on the first head member 2 and the second head member 3, which are inclined at 10 degrees with respect to a line perpendicular to the center line of the coating liquid outlet. Adjustment is made by the edge member fixing 7 which is pressed through the piece part 9 on the back side of the frame 6.

なお、この実施例で使用した装置ではエッジ部材固定ボルトボルト7は10度傾いているが、この傾きの角度は0~10度の範囲で適宜選択されればよい。 In the device used in this embodiment, the edge member fixing bolt 7 is inclined by 10 degrees, but the angle of inclination may be appropriately selected within the range of 0 to 10 degrees.

そして、塗布液注入口12へ外部から図示しない配管を介して塗布液が供給される。塗布装置1に供給された塗布液は、図2に示されるように、流通部13を経て液留部14に貯留され、スペーサー14の働きによりスリット部11を経て、対向するエッジ部材6に至り塗布液排出口から排出される。 Then, a coating liquid is supplied to the coating liquid inlet 12 from the outside via a pipe (not shown). As shown in FIG. 2, the coating liquid supplied to the coating device 1 is stored in the liquid storage section 14 through the flow section 13, passes through the slit section 11 by the action of the spacer 14, and reaches the opposing edge member 6. It is discharged from the coating liquid outlet.

次に、エッジ部の材質を表1に示す組成の材質とした実施例1~3、比較例1~7、参とした各塗布装置に対して、次の耐食試験1および2を行い、白濁や減肉の発生について比較を比較検討した。 Next, the following corrosion resistance tests 1 and 2 were conducted on the coating devices of Examples 1 to 3, Comparative Examples 1 to 7, and reference coating devices in which the edge portion was made of a material with the composition shown in Table 1. A comparison was made regarding the occurrence of thinning and thinning.

腐食試験1
それぞれ、実施例1~2の材質のエッジ部材6、比較例1、2、4、を装着した塗布装置に対して、貯留槽から送液ポンプを介して塗布液を塗布液供給口から塗布液装置に導入し、塗布液流出口から流出させ、流出した塗布液は回収して再び貯留槽に戻して、塗布液が循環されるようにした。
Corrosion test 1
The coating liquid is supplied from the storage tank via the liquid supply pump to the coating device equipped with the edge member 6 made of the materials of Examples 1 and 2 and Comparative Examples 1, 2, and 4 from the coating liquid supply port. The coating liquid was introduced into the apparatus and flowed out from the coating liquid outlet, and the flowing coating liquid was collected and returned to the storage tank so that the coating liquid was circulated.

ここで、実施例1~2の材質のエッジ部材、および比較例1~3の材質のエッジ部材は、組成は次のとおりである。なお、比較例1以外は市販品である。 Here, the compositions of the edge members made of the materials of Examples 1 and 2 and the edge members made of the materials of Comparative Examples 1 to 3 are as follows. Note that the samples other than Comparative Example 1 are commercially available products.

実施例1(Ni-Cr-Fe系合金(1))
Cr:17~21質量%、Mo:2.8~3.3質量%、Nb+Ta:4.8~5.6質量%、Al:0.2~0.8質量%、Ti:0.65~1.15質量%、Al+Tiが1.95質量%以下、C:0.08質量%以下、Si:0.35質量%以下、B:0.006質量%、Fe:11~24質量%、Mn:0.35質量%以下、残部:Niおよび不可避的不純物
Example 1 (Ni-Cr-Fe alloy (1))
Cr: 17-21% by mass, Mo: 2.8-3.3% by mass, Nb + Ta: 4.8-5.6% by mass, Al: 0.2-0.8% by mass, Ti: 0.65-0.65% by mass 1.15 mass%, Al+Ti 1.95 mass% or less, C: 0.08 mass% or less, Si: 0.35 mass% or less, B: 0.006 mass%, Fe: 11 to 24 mass%, Mn : 0.35% by mass or less, remainder: Ni and inevitable impurities

実施例2(Ni-Cr-Fe系合金(2))
Cr:14~17質量%、Al:0.4~1質量%、Ti:2.25~2.75質量%、C:0.08質量%以下、Nb:0.7~1.2質量%、Fe:5~9質量%、Si:0.5質量%以下、Al+Ti+Si:2.65~4.25質量%、残部:Niおよび不可避的不純物
Example 2 (Ni-Cr-Fe alloy (2))
Cr: 14-17% by mass, Al: 0.4-1% by mass, Ti: 2.25-2.75% by mass, C: 0.08% by mass or less, Nb: 0.7-1.2% by mass , Fe: 5 to 9% by mass, Si: 0.5% by mass or less, Al+Ti+Si: 2.65 to 4.25% by mass, remainder: Ni and inevitable impurities.

比較例1(Co結合相のWC基超硬合金)
Cr:0.65質量%、Co:10質量%、残部WCおよび不可避的不純物
比較例2(Ni結合相のWC基超硬合金(1))
Ni:14質量%、Cr:1.1質量%、残部WCおよび不可避的不純物
比較例3(Ni結合相のWC基超硬合金(2))
Ni:20質量%、Cr:0.57質量%、残部WCおよび不可避的不純物
Comparative Example 1 (WC-based cemented carbide with Co binder phase)
Cr: 0.65% by mass, Co: 10% by mass, remainder WC and unavoidable impurities Comparative Example 2 (WC-based cemented carbide with Ni bonding phase (1))
Ni: 14% by mass, Cr: 1.1% by mass, balance WC and unavoidable impurities Comparative Example 3 (WC-based cemented carbide with Ni binder phase (2))
Ni: 20% by mass, Cr: 0.57% by mass, remainder WC and inevitable impurities

塗布液は、活物質の黒鉛、溶媒として水、その他カルボキシメチルセルロース、アセチレンブラック、スチレンブタジエンゴムを含むごく普通の負極用電極材スラリー液であった。 The coating liquid was an ordinary slurry of an electrode material for a negative electrode, containing graphite as an active material, water as a solvent, and carboxymethyl cellulose, acetylene black, and styrene-butadiene rubber.

390時間の塗布液の循環を行い、エッジ部を目視観察した。その結果を表2に示す。 The coating solution was circulated for 390 hours, and the edge portion was visually observed. The results are shown in Table 2.

表2から明らかなように、実施例1~2では、白濁も減肉も確認できなかったが、比較例1~3では、塗布液の触れていた表面部に腐食による白濁が目視で確認でき、表面粗さ測定機にて白濁部の粗さを測定した結果、0.2~0.3μmの材料の減肉が確認された。
また、実施例1~2は、塗布装置本体材料との熱膨張係数差がいずれも0.50×10-5/K以下であるため、十分にエッジ部の変形を防止し、気密性を維持することができたが、この熱膨張係数を満足しない比較例1~2は、試験時間末期にエッジ部の変形が起こった。
As is clear from Table 2, in Examples 1 and 2, neither cloudiness nor thinning could be confirmed, but in Comparative Examples 1 to 3, cloudiness due to corrosion could be visually confirmed on the surface area that had been in contact with the coating solution. As a result of measuring the roughness of the cloudy part using a surface roughness measuring device, a thinning of the material of 0.2 to 0.3 μm was confirmed.
In addition, in Examples 1 and 2, the difference in thermal expansion coefficient with the coating device main body material is 0.50 × 10 -5 /K or less, so deformation of the edge portion is sufficiently prevented and airtightness is maintained. However, in Comparative Examples 1 and 2 that did not satisfy this thermal expansion coefficient, deformation of the edge portion occurred at the end of the test period.

腐食試験2
それぞれ、実施例1、3の材質のエッジ部材、および比較例1の材質のエッジ部材を装着した腐食試験1と同じ塗布装置と塗布液を使用した。
Corrosion test 2
The same coating equipment and coating liquid as in Corrosion Test 1 were used in which the edge members made of the materials of Examples 1 and 3 and the edge members made of the material of Comparative Example 1 were installed.

ここで、実施例1および比較例1のエッジ部材の組成は前述のとおりであり、実施例3の材質のエッジ部材は、市販材であり、組成は次のとおりである。
実施例3(Co-Cr-W系合金)
Cr:28-32質量%、W:8質量%、C:1.4~1.8質量%、Ni:3質量%以下、Fe:2.5質量%以下、Si:2質量%以下、残部:Coと不可避的不純物
Here, the compositions of the edge members of Example 1 and Comparative Example 1 are as described above, and the edge member of Example 3 is a commercially available material and has the following composition.
Example 3 (Co-Cr-W alloy)
Cr: 28-32% by mass, W: 8% by mass, C: 1.4-1.8% by mass, Ni: 3% by mass or less, Fe: 2.5% by mass or less, Si: 2% by mass or less, remainder :Co and inevitable impurities

1040時間の塗布液の循環を行い、エッジ部を目視観察した。その結果を表3に示す。 The coating solution was circulated for 1040 hours, and the edge portion was visually observed. The results are shown in Table 3.

実施例1、3では、白濁も減肉も確認できなかったが、比較例1では、塗布液の触れていた表面部に腐食による白濁が目視で確認でき、表面粗さ測定機にて白濁部の粗さを測定した結果、0.5~1.5μmの材料の減肉が確認された。 また、実施例1、3は、塗布装置本体材料との熱膨張係数差がいずれも0.50×10-5/K以下であるため、十分にエッジ部の変形を防止し、気密性を維持することができたが、この熱膨張係数を満足しない比較例1は、試験時間末期にエッジ部の変形が起こった。 In Examples 1 and 3, neither white cloudiness nor thinning could be confirmed, but in Comparative Example 1, white cloudiness due to corrosion could be visually confirmed on the surface that had been in contact with the coating solution, and the white cloudy area was confirmed with a surface roughness measuring device. As a result of measuring the roughness of the material, a thinning of the material of 0.5 to 1.5 μm was confirmed. In addition, in Examples 1 and 3, the difference in thermal expansion coefficient with the coating device main body material is 0.50 × 10 -5 /K or less, so deformation of the edge portion is sufficiently prevented and airtightness is maintained. However, in Comparative Example 1 which did not satisfy this thermal expansion coefficient, deformation of the edge portion occurred at the end of the test period.

1 塗布装置
2 第1のヘッド部材(台金部)
3 第2のヘッド部材(台金部)
4 エッジ部材取付け部
5 台金部材
6 エッジ部材
7 エッジ部材固定ボルト
8 溝
10 ヘッド部材固定ボルト
11 分解用ボルト穴
12 塗布液注入口
13 流通部
14 液留部
15 シム
1 Coating device 2 First head member (base metal part)
3 Second head member (base metal part)
4 Edge member attachment part 5 Base metal member 6 Edge member 7 Edge member fixing bolt 8 Groove 10 Head member fixing bolt 11 Disassembly bolt hole 12 Application liquid inlet 13 Distribution part 14 Liquid reservoir part 15 Shim

Claims (2)

それぞれ対峙するエッジ部材を有する1または2以上の塗布ヘッドを有し、前記エッジ部材の間隔を調整することにより塗布液の塗布量を調整する塗布装置であって、
前記エッジ部材は、HRCが45~52のCo-Cr-W系合金またはNi-Cr-Fe系合金であることを特徴とする塗布装置。
A coating device that has one or more coating heads each having edge members facing each other, and adjusts the amount of coating liquid applied by adjusting the interval between the edge members,
The coating device is characterized in that the edge member is made of a Co--Cr--W alloy or a Ni--Cr--Fe alloy with an HRC of 45 to 52.
前記Co-Cr-W系合金またはNi-Cr-Fe系合金の熱膨張係数は、前記塗布装置の本体部分に使用される材料の熱膨張係数との差が0.50×10-5/K以下であることを特徴とする請求項1に記載の塗布装置。 The coefficient of thermal expansion of the Co-Cr-W alloy or the Ni-Cr-Fe alloy has a difference of 0.50×10 −5 /K from the coefficient of thermal expansion of the material used for the main body of the coating device. The coating device according to claim 1, characterized in that:
JP2020208122A 2020-12-16 2020-12-16 Coating apparatus Pending JP2024012728A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020208122A JP2024012728A (en) 2020-12-16 2020-12-16 Coating apparatus
PCT/JP2021/045757 WO2022131194A1 (en) 2020-12-16 2021-12-13 Coating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020208122A JP2024012728A (en) 2020-12-16 2020-12-16 Coating apparatus

Publications (1)

Publication Number Publication Date
JP2024012728A true JP2024012728A (en) 2024-01-31

Family

ID=82057756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020208122A Pending JP2024012728A (en) 2020-12-16 2020-12-16 Coating apparatus

Country Status (2)

Country Link
JP (1) JP2024012728A (en)
WO (1) WO2022131194A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06134379A (en) * 1992-10-28 1994-05-17 Mitsubishi Materials Corp Applicator
TWI520832B (en) * 2010-07-13 2016-02-11 Hirai Kogyo Corp Mold and its manufacturing method
JP6930051B2 (en) * 2017-06-28 2021-09-01 Mmcリョウテック株式会社 Coating tools and coating equipment

Also Published As

Publication number Publication date
WO2022131194A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
Liu et al. The effect of Al content on microstructures and comprehensive properties in AlxCoCrCuFeNi high entropy alloys
Chang et al. Microstructure and properties of Ni–Co/nano-Al2O3 composite coatings by pulse reversal current electrodeposition
JP5221951B2 (en) Cemented carbide and cutting tools
Cheung et al. Electrodeposition of nanocrystalline Ni-Fe alloys
CN109072406B (en) Coated cutting tool
Bi et al. Microstructure, mechanical and corrosion properties of Mg–2Dy–xZn (x= 0, 0.1, 0.5 and 1 at.%) alloys
KR20180123092A (en) Surface-coated cutting tool and manufacturing method thereof
JP6684139B2 (en) Aluminum alloy blanks for magnetic disks and aluminum alloy substrates for magnetic disks
Shriram et al. Electrodeposition of nanocrystalline nickel—A brief review
CN103180469A (en) Cemented carbide punch
Jin et al. Fabrication of Aluminum Bipolar Plates by Semi‐solid Forging Process and Performance Test of TiN Coated Aluminum Bipolar Plates
Barzegar et al. Effect of phosphorous content and heat treatment on the structure, hardness and wear behavior of Co-P coatings
JPWO2006035671A1 (en) High hardness, high corrosion resistance, high wear resistance alloy
JP2024012728A (en) Coating apparatus
US20190284668A1 (en) Aluminum alloy substrate for magnetic disc and method of manufacture therefor
Li et al. Corrosion resistance analysis of sintered NdFeB magnets using ultrasonic-aided EDM method
US20130287625A1 (en) ULTRA-FINE CEMENTED CARBIDE Ni BINDER PHASE AND TOOL USING THE SAME
Wang et al. Improving wear and corrosion resistance of LDEDed CrFeNi MEA through addition of B and Si
JP2009056549A (en) Hard coating for cutting tool
JP2014210314A (en) Diamond-coated cemented carbide cutting tool with improved cutting edge strength
JP4560802B2 (en) High hardness precipitation hardened stainless steel with excellent toughness
WO2001083136A1 (en) Mold wall, especially a broadside wall of a continuous casting mold for steel
CN116949334A (en) Binding phase-free hard alloy and preparation method and application thereof
Chou et al. Microcomposite electroforming for LIGA technology
CN111286661A (en) High-temperature alloy machining tool and application thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210412

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210422