JP2024009745A - Design method for partial pressure pit enclosure protection structure considering non-extreme earth pressure distribution mode - Google Patents

Design method for partial pressure pit enclosure protection structure considering non-extreme earth pressure distribution mode Download PDF

Info

Publication number
JP2024009745A
JP2024009745A JP2023020343A JP2023020343A JP2024009745A JP 2024009745 A JP2024009745 A JP 2024009745A JP 2023020343 A JP2023020343 A JP 2023020343A JP 2023020343 A JP2023020343 A JP 2023020343A JP 2024009745 A JP2024009745 A JP 2024009745A
Authority
JP
Japan
Prior art keywords
protection structure
pit
earth pressure
load
enclosure protection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2023020343A
Other languages
Japanese (ja)
Other versions
JP7262874B1 (en
Inventor
暁真 范
Xiaozhen Fan
長節 徐
Changjie Xu
智 丁
Zhi Ding
禄鉅 梁
Luju Liang
成宝 胡
Chengbao Hu
綱 魏
Gang Wei
昊宇 蒋
Haoyu Jiang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University City College ZUCC
Original Assignee
Zhejiang University City College ZUCC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University City College ZUCC filed Critical Zhejiang University City College ZUCC
Application granted granted Critical
Publication of JP7262874B1 publication Critical patent/JP7262874B1/en
Publication of JP2024009745A publication Critical patent/JP2024009745A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/02Foundation pits
    • E02D17/04Bordering surfacing or stiffening the sides of foundation pits
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Evolutionary Computation (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Architecture (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Foundations (AREA)

Abstract

To provide a design method for a partial pressure pit enclosure protection structure considering a non-extreme earth pressure distribution mode.SOLUTION: A design method for a partial pressure pit enclosure protection structure considering non-extreme earth pressure distribution mode comprises determining the cross-sectional parameters and soil body parameters of the partial pressure pit, determining a displacement mode of the both-side enclosure protection structure and a receiving force analysis diagram of the entire partial pressure pit surrounding protection structure model, determining the displacement value of an inner support during preliminary design, calculating the axial force of the inner support at each stage, assuming a distribution mode of earth pressure such that the earth pressure in the both-side enclosure protection structure changes from an extreme state to a non-extreme state, and linearly attenuates to the bit bottom to reach the static earth pressure, determining the required depth at the time of this change and the embedding and fixing depth of the both-side enclosure protection structure, determining the material and reinforcement arrangement of the both-side enclosure protection structure, and calculating overall stability, capsize resistance, and upheaval stability.SELECTED DRAWING: Figure 1

Description

本発明は、地下工事の分野に関し、より正確には、非極限土圧分布モードを考慮した偏圧ピット囲い保護構造の設計方法に関する。 The present invention relates to the field of underground construction, and more precisely to a method for designing an unbalanced pit enclosure protection structure taking into account non-extreme earth pressure distribution modes.

中国の都市の土地資源がますます緊張しており、地下空間建設が急速に発展しているため、ピットが偏圧荷重を受ける状況は、ますますよく見られる。ピットの一方側に堤防が存在すること、ピットの両側の負荷が異なること、ピットの両側の建築物が異なることなどを含むが、一般的な計算方法は、ピットの両側のピット縁荷重が対称的である状況での囲い保護構造の設計にしか応用できない。 As the land resources of Chinese cities are becoming more and more strained and underground space construction is rapidly developing, the situation where pits are subjected to unbalanced pressure loads is becoming more and more common. This includes the presence of an embankment on one side of the pit, different loads on both sides of the pit, different buildings on both sides of the pit, etc., but the general calculation method is that the pit edge loads on both sides of the pit are symmetrical. It can only be applied to the design of enclosure protection structures in specific situations.

現在、偏圧ピットに対して、現在の『建築ピット支持保護の技術規程』に、効果が最も悪い一方側に従って設計計算を行うことが規定されており、この処理方法は、投資と施工量の増加をもたらしてしまう。ピットの偏圧受荷重により、ピットの両側囲い保護構造の変位が異なり、さらに両側囲い保護構造の受けた土圧分布が異なり、内力分布が非対称であり、両側囲い保護構造に必要な埋め込み固定深さも異なる。 Currently, for unbalanced pits, the current ``Technical Regulations for Supporting and Protecting Architectural Pits'' stipulates that design calculations should be made according to the side with the worst effect, and this treatment method will reduce the investment and construction amount. will result in an increase. Due to the unbalanced pressure received by the pit, the displacement of the protection structure on both sides of the pit is different, and the earth pressure distribution received by the protection structure on both sides is also different, the internal force distribution is asymmetrical, and the depth of embedding and fixing required for the protection structure on both sides is also different. different.

本発明の目的は、従来の技術における不足を克服し、非極限土圧分布モードを考慮した偏圧ピット囲い保護構造の設計方法を提供することである。 The purpose of the present invention is to overcome the deficiencies in the prior art and to provide a method for designing an unbalanced pit enclosure protection structure that takes into account non-extreme earth pressure distribution modes.

第一の態様によれば、非極限土圧分布モードを考慮した偏圧ピット囲い保護構造の設計方法を提供し、この非極限土圧分布モードを考慮した偏圧ピット囲い保護構造の設計方法は、
S1、偏圧ピットの断面パラメータ及び土体パラメータを決定することと、
S2、偏圧ピットの両側囲い保護構造の変位モードと偏圧ピット囲い保護構造モデル全体の受力分析図を決定することであって、前記両側囲い保護構造は、荷重が大きい側の囲い保護構造と荷重が小さい側の囲い保護構造とを含み、前記両側囲い保護構造の間が多段のインナーサポートを介して接続されることと、
S3、両側の偏圧の荷重値及びピットの許容変位制御値により予備設計時のインナーサポートの変位値を決定することと、
S4、S3で決定されたサポート箇所の変位値に基づいて、応力歪み関係により各段のインナーサポートの軸力を計算することと、
S5、偏圧ピットの両側囲い保護構造の変位モードに基づいて、ピット底部以下のある深さX以上が極限土圧分布であり、この深さ以下が非極限土圧分布であり、且つピット底部箇所まで直線的に減衰して静止土圧となるように両側囲い保護構造における土圧の分布モードを仮定することと、
S6、S5で提案された分布モードに基づいて、前記荷重が大きい側の囲い保護構造と前記荷重が小さい側の囲い保護構造の土圧をそれぞれ計算し、両側囲い保護構造における土圧が極限状態から非極限状態に変わる求めるべき深さX及び両側囲い保護構造の埋め込み固定深さDを決定することと、
S7、両側囲い保護構造の曲げモーメントとせん断力分布をそれぞれ計算し、且つ最大曲げモーメントと最大せん断力に基づいて、両側囲い保護構造の材料及び配筋をそれぞれ決定することと、
S8、全体安定性の験算、耐転覆性の験算、耐隆起安定性の験算を行うこととを含む。
According to a first aspect, there is provided a method for designing an unbalanced pit enclosure protection structure that takes into account a non-extreme earth pressure distribution mode; ,
S1, determining the cross-sectional parameters and soil body parameters of the unbalanced pit;
S2. Determining the displacement mode of the protection structure surrounding both sides of the unbalanced pit and the receiving force analysis diagram of the entire model of the protection structure surrounding the unbalanced pit, wherein the protection structure on both sides is the protection structure on the side with the larger load. and an enclosure protection structure on the side with a smaller load, and the two side enclosure protection structures are connected via a multi-stage inner support;
S3: Determining the displacement value of the inner support during preliminary design based on the load value of the partial pressure on both sides and the allowable displacement control value of the pit;
Calculating the axial force of the inner support at each stage based on the stress-strain relationship based on the displacement value of the support location determined in S4 and S3;
S5. Based on the displacement mode of the protection structure surrounding both sides of the unbalanced pit, a certain depth below the bottom of the pit over a certain depth X i is the ultimate earth pressure distribution, and below this depth is the non-extreme earth pressure distribution, and the pit Assuming the distribution mode of the earth pressure in the protection structure on both sides so that it attenuates linearly to the bottom point and becomes static earth pressure;
Based on the distribution mode proposed in S6 and S5, the earth pressure of the enclosure protection structure on the side with the larger load and the enclosure protection structure on the side with the smaller load is calculated, and the earth pressure in the enclosure protection structure on both sides is in an extreme state. Determining the required depth X i to change from to a non-extreme state and the embedding fixing depth D i of the double-side enclosing protection structure;
S7. Calculating the bending moment and shear force distribution of the two-side enclosure protection structure, and determining the material and reinforcement arrangement of the two-side enclosure protection structure, respectively, based on the maximum bending moment and the maximum shear force;
S8, including performing an experimental calculation of overall stability, an experimental calculation of capsize resistance, and an experimental calculation of uplift resistance stability.

好ましくは、S1では、前記偏圧ピットは、一方側のピット縁荷重が大きく、他方側のピット縁荷重が小さいピットであり、前記偏圧ピットの断面パラメータは、ピットの掘削深さH、各段のインナーサポートの配置深さh、計算された長さB、受圧剛性EA、水平ピッチS、荷重が大きい側のピット縁荷重値qと荷重が小さい側のピット縁荷重値qを含み、前記土体パラメータは、三倍の掘削深さ範囲内の土層の土層厚さd、単位重量γ、壁と土体との間の摩擦角δ、内部摩擦角φ及び粘着力cを含む。 Preferably, in S1, the unbalanced pit is a pit with a large pit edge load on one side and a small pit edge load on the other side, and the cross-sectional parameters of the unbalanced pit are an excavation depth H of the pit, each Determine the arrangement depth h m of the inner support of the stage, the calculated length B, the pressure receiving rigidity EA, the horizontal pitch S, the pit edge load value q d on the side with the larger load, and the pit edge load value q x on the side with the smaller load. The soil body parameters include the soil layer thickness d of the soil layer within the triple excavation depth range, the unit weight γ, the friction angle δ between the wall and the soil body, the internal friction angle φ, and the adhesive force c including.

好ましくは、S3では、インナーサポートの、荷重が大きい側の囲い保護構造に近い端の変位大きさΔsdmとしてピット囲い保護構造の許容変位値[Δ]maxを取り、インナーサポートの、荷重が小さい側の囲い保護構造に近い端の変位大きさΔsxmを各段のインナーサポートの両側偏圧の比値に基づいて計算し、計算式は、
ここで、mは、m段目のインナーサポートを表し、Kは、能動土圧係数を表し、γは、土層の等価単位重量であり、複数層の土層に対して分層総和法で求めて得られる。
Preferably, in S3, the permissible displacement value [Δ] max of the pit enclosure protection structure is taken as the displacement magnitude Δs dm of the end of the inner support closer to the enclosure protection structure on the side where the load is larger, and the inner support where the load is smaller The displacement magnitude Δs xm of the end close to the side enclosure protection structure is calculated based on the ratio value of the bias pressure on both sides of the inner support of each stage, and the calculation formula is as follows:
Here, m represents the m-th stage inner support, Ka represents the active earth pressure coefficient, γ is the equivalent unit weight of the soil layer, and the layer summation method is used for multiple soil layers. It can be obtained by searching for .

好ましくは、S4では、各段のインナーサポートの軸力の計算式は、
好ましくは、S5では、前記偏圧ピットの両側囲い保護構造の変位モードは、荷重が大きい側の囲い保護構造の底部変位がゼロに近く、底部以上の部分がピット内への変位を呈し、最大変位がピット許容変位値により決定され、荷重が小さい側の囲い保護構造の底部変位がゼロに近く、底部以上の部分がピット内への変位を呈するとともに、荷重が大きい側の押し戻し変位の影響を受け、変位が荷重が大きい側よりも小さい。
Preferably, in S4, the formula for calculating the axial force of the inner support at each stage is as follows:
Preferably, in S5, the displacement mode of the enclosing protection structure on both sides of the biased pit is such that the bottom displacement of the enclosing protection structure on the side where the load is larger is close to zero, the portion above the bottom is displaced into the pit, and the displacement mode is the maximum. The displacement is determined by the pit allowable displacement value, and the bottom displacement of the enclosure protection structure on the side with the smaller load is close to zero, and the part above the bottom exhibits displacement into the pit, and the effect of the push-back displacement on the side with the larger load is ignored. The displacement is smaller than the side with the larger load.

好ましくは、S6では、水平力バランス方程式とモーメントバランス方程式は、
Preferably, in S6, the horizontal force balance equation and the moment balance equation are

好ましくは、前記荷重が大きい側の囲い保護構造は、荷重が大きい側の囲い保護杭又は荷重が大きい側の囲い保護壁であり、前記荷重が小さい側の囲い保護構造は、荷重が小さい側の囲い保護杭又は荷重が小さい側の囲い保護壁である。 Preferably, the enclosure protection structure on the side with a large load is an enclosure protection pile on the side with a large load or an enclosure protection wall on the side with a large load, and the enclosure protection structure on the side with a small load is an enclosure protection structure on the side with a small load. These are enclosure protection piles or enclosure protection walls on the side with smaller loads.

第二の態様によれば、第一の態様のいずれか1項に記載の非極限土圧分布モードを考慮した偏圧ピット囲い保護構造の設計方法を実行するための非極限土圧分布モードを考慮した偏圧ピット囲い保護構造の設計装置を提供し、この非極限土圧分布モードを考慮した偏圧ピット囲い保護構造の設計装置は、
偏圧ピットの断面パラメータ及び土体パラメータを決定するための第一の決定モジュールと、
偏圧ピットの両側囲い保護構造の変位モードと偏圧ピット囲い保護構造モデル全体の受力分析図を決定するための第二の決定モジュールであって、前記両側囲い保護構造は、荷重が大きい側の囲い保護構造と荷重が小さい側の囲い保護構造とを含み、前記両側囲い保護構造の間が多段のインナーサポートを介して接続される第二の決定モジュールと、
両側の偏圧の荷重値及びピットの許容変位制御値により予備設計時のインナーサポートの変位値を決定するための第三の決定モジュールと、
第三の決定モジュールにより決定されたサポート箇所の変位値に基づいて、応力歪み関係により各段のインナーサポートの軸力を計算するための第一の計算モジュールと、
偏圧ピットの両側囲い保護構造の変位モードに基づいて、ピット底部以下のある深さX以上が極限土圧分布であり、この深さ以下が非極限土圧分布であり、且つピット底部箇所まで直線的に減衰して静止土圧となるように両側囲い保護構造における土圧の分布モードを仮定するための仮定モジュールと、
仮定モジュールにより提案された分布モードに基づいて、前記荷重が大きい側の囲い保護構造と前記荷重が小さい側の囲い保護構造の土圧をそれぞれ計算し、両側囲い保護構造における土圧が極限状態から非極限状態に変わる求めるべき深さX及び両側囲い保護構造の埋め込み固定深さDを決定するための第二の計算モジュールと、
両側囲い保護構造の曲げモーメントとせん断力分布をそれぞれ計算し、且つ最大曲げモーメントと最大せん断力に基づいて、両側囲い保護構造の材料及び配筋をそれぞれ決定するための第三の計算モジュールと、
全体安定性の験算、耐転覆性の験算、耐隆起安定性の験算を行うための験算モジュールとを含む。
According to the second aspect, a non-extreme earth pressure distribution mode for carrying out the design method of a partial pressure pit enclosure protection structure considering the non-extreme earth pressure distribution mode according to any one of the first aspects is provided. We provide a design device for a protective structure for unbalanced pit enclosures that takes into account this non-extreme earth pressure distribution mode.
a first determination module for determining cross-sectional parameters and soil body parameters of the unbalanced pit;
a second determination module for determining a displacement mode of a protection structure surrounding a biased pit on both sides and a receiving force analysis diagram of the entire model of the protection structure surrounding an unbalanced pit; a second determination module including an enclosure protection structure on the side with a lower load and an enclosure protection structure on the side with a smaller load, and in which the two side enclosure protection structures are connected via a multi-stage inner support;
a third determination module for determining the displacement value of the inner support during preliminary design based on the load value of the bias pressure on both sides and the allowable displacement control value of the pit;
a first calculation module for calculating the axial force of the inner support at each stage based on the stress-strain relationship based on the displacement value of the support location determined by the third determination module;
Based on the displacement mode of the protective structure surrounding both sides of the unbalanced pit, a certain depth below the bottom of the pit at least X i is the ultimate earth pressure distribution, and below this depth is the non-extreme earth pressure distribution, and at the bottom of the pit an assumption module for assuming a distribution mode of earth pressure in the both-side enclosure protection structure such that it linearly attenuates to static earth pressure;
Based on the distribution mode proposed by the assumption module, the earth pressure of the enclosure protection structure on the side with the larger load and the enclosure protection structure on the side with the smaller load is calculated respectively, and the earth pressure in the enclosure protection structure on both sides is determined from the extreme state. a second calculation module for determining the depth X i to be sought for changing to the non-extreme state and the embedment fixing depth D i of the double-side enclosing protection structure;
a third calculation module for calculating the bending moment and shear force distribution of the double-sided enclosure protection structure, respectively, and determining the material and reinforcement arrangement of the double-sided enclosure protection structure, respectively, based on the maximum bending moment and the maximum shear force;
It includes an experimental calculation module for performing an experimental calculation of overall stability, an experimental calculation of capsize resistance, and an experimental calculation of uplift resistance stability.

第三の態様によれば、コンピュータ記憶媒体を提供し、前記コンピュータ記憶媒体にコンピュータプログラムが記憶されており、前記コンピュータプログラムがコンピュータ上で運行される時、コンピュータに第一の態様のいずれか1項に記載の非極限土圧分布モードを考慮した偏圧ピット囲い保護構造の設計方法を実行させる。 According to a third aspect, there is provided a computer storage medium, a computer program is stored on the computer storage medium, and when the computer program is run on the computer, the computer is loaded with one of the first aspects. Execute the design method for a partial pressure pit enclosure protection structure that takes into account the non-extreme earth pressure distribution mode described in Section 1.

第四の態様によれば、コンピュータプログラム製品を提供し、前記コンピュータプログラム製品がコンピュータ上で運行される時、コンピュータに第一の態様のいずれか1項に記載の非極限土圧分布モードを考慮した偏圧ピット囲い保護構造の設計方法を実行させる。 According to a fourth aspect, a computer program product is provided, and when the computer program product is run on a computer, the computer takes into account the non-extreme earth pressure distribution mode according to any one of the first aspects. Implement the design method for the unbalanced pit enclosure protection structure.

本発明の有益な効果は、以下のとおりである。本発明は、従来のピット設計方法で考慮していないピットが偏圧荷重を受ける状況を克服し、且つ偏圧ピット囲い保護構造に対して、変形制御に基づく設計を行うことができ、計算式が簡単且つ実行可能であり、安全性、安定性、及びピット変形の制御要求を確保する前提で、工事コストを効果的に節約し、施工量を減少させることができ、非常に良好な普及応用価値を有する。 The beneficial effects of the present invention are as follows. The present invention overcomes the situation where the pit is subjected to unbalanced pressure load, which is not taken into account in the conventional pit design method, and allows the design of the unbalanced pit enclosure protection structure to be based on deformation control. is simple and practicable, and on the premise of ensuring safety, stability, and pit deformation control requirements, it can effectively save construction costs and reduce construction amount, and has a very good popular application. have value.

偏圧ピット囲い保護構造の変位モードを含む偏圧ピット断面のモデル図である。FIG. 3 is a model diagram of a cross section of a biased pit including a displacement mode of a biased pit surrounding protection structure. 非極限土圧分布モードを考慮した偏圧ピット全体の受力分析概略図である。FIG. 2 is a schematic diagram of a receiving force analysis of the entire unbalanced pit considering a non-extreme earth pressure distribution mode.

以下、実施例を併せて本発明についてさらに記述する。下記実施例の説明は、本発明の理解を支援するためのものに過ぎない。指摘すべきものとして、当業者にとって、本発明の原理を逸脱することなく、本発明にいくつかの修飾を加えることもでき、これらの改良と修飾も本発明の特許請求の保護範囲に属する。 The present invention will be further described below along with Examples. The following description of the examples is only to assist in understanding the invention. It should be pointed out that those skilled in the art may make certain modifications to the present invention without departing from the principles of the invention, and these improvements and modifications also fall within the protection scope of the claims of the present invention.

実施例1:
非極限土圧分布モードを考慮した偏圧ピット囲い保護構造の設計方法は、以下のことを含む。
Example 1:
The design method of the unbalanced pit enclosure protection structure considering the non-extreme earth pressure distribution mode includes the following:

S1では、偏圧ピットの断面パラメータ及び土体パラメータを決定する。 In S1, the cross-sectional parameters and soil body parameters of the unbalanced pit are determined.

S1では、偏圧ピットは、一方側のピット縁荷重が大きく、他方側のピット縁荷重が小さいピットであり、偏圧ピットの断面パラメータは、ピットの掘削深さH、各段のインナーサポートの配置深さh、計算された長さB、受圧剛性EA、水平ピッチS、荷重が大きい側のピット縁荷重値qと荷重が小さい側のピット縁荷重値qを含み、土体パラメータは、三倍の掘削深さ範囲内の土層の土層厚さd、単位重量γ、壁と土体との間の摩擦角δ、内部摩擦角φ及び粘着力cを含む。 In S1, the unbalanced pit is a pit with a large pit edge load on one side and a small pit edge load on the other side, and the cross-sectional parameters of the unbalanced pit are the excavation depth H of the pit and the inner support of each stage. Including the placement depth h m , the calculated length B, the pressure receiving stiffness EA, the horizontal pitch S, the pit edge load value qd on the side with the larger load and the pit edge load value qx on the side with the smaller load, and the soil body parameters. includes the soil layer thickness d, the unit weight γ, the friction angle δ between the wall and the soil body, the internal friction angle φ, and the adhesive force c of the soil layer within the triple excavation depth range.

例示的に、ある偏圧ピットの断面パラメータは、以下のとおりである。 Illustratively, the cross-sectional parameters of a certain biased pit are as follows:

図1を参照すると、ピットの地面標高は、0であり、掘削領域のピット底部の標高は、-10.0mであり、即ち掘削深さH=10.0mである。標高-1mに一段のインナーサポートを設け、即ちh=1mで、サポートの長さB=30mで、サポートの剛性EAは、1.854×10kNで、サポートの水平ピッチS=15mで、偏圧ピットの荷重が大きい側のピット縁荷重値qは、=50kNmで、荷重が小さい側のピット縁荷重値qは、=10kNmである。 Referring to FIG. 1, the ground elevation of the pit is 0, and the elevation of the bottom of the pit in the excavation area is -10.0m, ie, the excavation depth H=10.0m. A single inner support is provided at an altitude of -1 m, that is, h 1 = 1 m, the length of the support B = 30 m, the stiffness EA of the support is 1.854 × 10 6 kN, and the horizontal pitch of the support S = 15 m. , the pit edge load value q d on the side where the load of the biased pit is large is =50 kNm 2 , and the pit edge load value q x on the side where the load is small is = 10 kNm 2 .

三倍の掘削深さ範囲内の土体パラメータは、表1に示す。 The soil parameters within the triple excavation depth range are shown in Table 1.

クーロン土圧理論により計算して、能動土圧係数、受動土圧係数K=0.44、K=2.59をそれぞれ得ることができ、Jaky静止土圧係数式により、計算してK=0.65を得ることができる。 Calculated using the Coulomb earth pressure theory, the active earth pressure coefficient, passive earth pressure coefficient K a =0.44, and K p =2.59 can be obtained, respectively, and calculated using the Jaky static earth pressure coefficient formula, K 0 =0.65 can be obtained.

S2では、偏圧ピットの両側囲い保護構造の変位モードと偏圧ピット囲い保護構造モデル全体の受力分析図を決定し、両側囲い保護構造は、荷重が大きい側の囲い保護構造と荷重が小さい側の囲い保護構造とを含み、両側囲い保護構造の間が多段のインナーサポートを介して接続される。 In S2, we determined the displacement mode of the protection structure surrounding both sides of the unbalanced pit and the receiving force analysis diagram of the entire model of the protection structure surrounding the unbalanced pit. and a side enclosure protection structure, and the two side enclosure protection structures are connected via multi-stage inner supports.

S2では、偏圧ピットの両側囲い保護構造の変位モードは、荷重が大きい側の囲い保護構造の底部変位がゼロに近く、底部以上の部分がピット内への変位を呈し、最大変位がピット許容変位値により決定され、荷重が小さい側の囲い保護構造の底部変位がゼロに近く、底部以上の部分がピット内への変位を呈するとともに、荷重が大きい側の押し戻し変位の影響を受け、変位が荷重が大きい側よりも小さい。変位モードの概略図は、図1を参照すればよい。 In S2, the displacement mode of the enclosure protection structure on both sides of the unbalanced pit is such that the bottom displacement of the enclosure protection structure on the side with a large load is close to zero, the part above the bottom exhibits displacement into the pit, and the maximum displacement is the pit allowable. Determined by the displacement value, the bottom displacement of the enclosure protection structure on the side with the smaller load is close to zero, and the part above the bottom exhibits displacement into the pit, and is affected by the push-back displacement on the side with the larger load, causing the displacement to decrease. smaller than the side with the greater load. See FIG. 1 for a schematic diagram of displacement modes.

S3を参照すると、両側の偏圧の荷重値及びピットの許容変位制御値により予備設計時のインナーサポートの変位値を決定する。 Referring to S3, the displacement value of the inner support at the time of preliminary design is determined based on the load value of the bias pressure on both sides and the allowable displacement control value of the pit.

S3では、インナーサポートの、荷重が大きい側の囲い保護構造に近い端の変位大きさΔsdmとしてピット囲い保護構造の許容変位値[Δ]maxを取り、インナーサポートの、荷重が小さい側の囲い保護構造に近い端の変位大きさΔsxmを各段のインナーサポートの両側偏圧の比値に基づいて計算し、計算式は、
ここで、mは、m段目のインナーサポートを表し、Kは、能動土圧係数を表し、γは、土層の等価単位重量であり、複数層の土層に対して分層総和法で求めて得られる。
In S3, the allowable displacement value [Δ] max of the pit enclosure protection structure is taken as the displacement magnitude Δs dm of the end of the inner support near the enclosure protection structure on the side with the larger load, and the allowable displacement value [Δ] max of the inner support on the side of the enclosure with the smaller load is taken The displacement magnitude Δs xm of the end near the protective structure is calculated based on the ratio value of the biased pressure on both sides of the inner support of each stage, and the calculation formula is as follows:
Here, m represents the m-th stage inner support, Ka represents the active earth pressure coefficient, γ is the equivalent unit weight of the soil layer, and the layer summation method is used for multiple soil layers. It can be obtained by searching for .

例示的に、許容変位値[Δ]max=5.0cmとすると、Δsdm=[Δ]max=5.0cmを得ることができ、荷重が小さい側のサポートの変位大きさΔsxmを以上の式に基づいて計算して、Δsx1=2.1cmを得ることができる。 For example, if the allowable displacement value [Δ] max = 5.0 cm, Δs dm = [Δ] max = 5.0 cm can be obtained, and the displacement magnitude Δs xm of the support on the side with a smaller load can be set to Calculating based on the formula, Δs x1 =2.1 cm can be obtained.

S4では、S3で決定されたサポート箇所の変位値に基づいて、応力歪み関係により各段のインナーサポートの軸力を計算する。 In S4, the axial force of the inner support of each stage is calculated based on the stress-strain relationship based on the displacement value of the support location determined in S3.

S4では、各段のインナーサポートの軸力の計算式は、
In S4, the formula for calculating the axial force of the inner support at each stage is:

S5では、偏圧ピットの両側囲い保護構造の変位モードに基づいて、ピット底部以下のある深さX以上が極限土圧分布であり、この深さ以下が非極限土圧分布であり、且つピット底部箇所まで直線的に減衰して静止土圧となるように両側囲い保護構造における土圧の分布モードを仮定する。 In S5, based on the displacement mode of the protection structure surrounding both sides of the unbalanced pit, a certain depth X i or more below the pit bottom is the ultimate earth pressure distribution, and below this depth is the non-extreme earth pressure distribution, and It is assumed that the distribution mode of the earth pressure in the protection structure on both sides is such that it decays linearly to the bottom of the pit and becomes static earth pressure.

S6では、図2に示すように、S5で提案された分布モードに基づいて、荷重が大きい側の囲い保護構造と荷重が小さい側の囲い保護構造の土圧をそれぞれ計算し、両側囲い保護構造における土圧が極限状態から非極限状態に変わる求めるべき深さX及び両側囲い保護構造の埋め込み固定深さDを決定する。 In S6, as shown in Figure 2, based on the distribution mode proposed in S5, the earth pressure of the enclosure protection structure on the side with a larger load and the enclosure protection structure on the side with a smaller load is calculated, and the earth pressure is calculated for the enclosure protection structure on both sides. Determine the required depth X i at which the earth pressure changes from an extreme state to a non-extreme state and the embedding depth D i of the both-side enclosure protection structure.

S6では、水平力バランス方程式とモーメントバランス方程式は、
In S6, the horizontal force balance equation and moment balance equation are

S7では、両側囲い保護構造の曲げモーメントとせん断力分布をそれぞれ計算し、且つ最大曲げモーメントと最大せん断力に基づいて、両側囲い保護構造の材料及び配筋をそれぞれ決定する。 In S7, the bending moment and shear force distribution of the both-side enclosure protection structure are calculated, and the material and reinforcement arrangement of the both-side enclosure protection structure are determined based on the maximum bending moment and the maximum shear force.

S8では、全体安定性の験算、耐転覆性の験算、耐隆起安定性の験算を行う。 In S8, the overall stability, capsize resistance, and uplift resistance stability are estimated.

以上をまとめると、本発明による偏圧ピット囲い保護構造の設計方法は、従来の技術で効果が最も悪い一方側に従って直接に片側設計を行う方法に比べて、従来のピット設計方法で考慮していないピットが偏圧荷重を受ける状況を克服するとともに、支持保護構造の変位を考慮することができ、変形角度から設計を制御し、従来の計算方法を大幅に改良する。提供された実施例では、リニアメーターあたりに支持保護構造の長さを約5.9m節約し、大量の工事コストを節約する。 In summary, the design method of the unbalanced pit enclosure protection structure according to the present invention is better than the method of directly designing one side according to the one side, which has the worst effect in the conventional technology. It overcomes the situation where no pit is subjected to unbalanced pressure load, and can also take into account the displacement of the supporting protection structure, control the design from the deformation angle, and greatly improve the traditional calculation method. The example provided saves about 5.9 m in support structure length per linear meter, saving a large amount of construction costs.

1 荷重が大きい側の地表、2 荷重が大きい側の囲い保護構造、3 荷重が大きい側の囲い保護構造の変位モード、4 荷重が小さい側の地表、5 荷重が小さい側の囲い保護構造、6 荷重が小さい側の囲い保護構造の変位モード、7 インナーサポート、8 ピット底部。 1 Ground surface on the side where the load is large, 2 Enclosure protection structure on the side where the load is large, 3 Displacement mode of the enclosure protection structure on the side where the load is large, 4 Ground surface on the side where the load is small, 5 Enclosure protection structure on the side where the load is small, 6 Displacement mode of enclosure protection structure on side with lower load, 7. Inner support, 8. Pit bottom.

Claims (10)

非極限土圧分布モードを考慮した偏圧ピット囲い保護構造の設計方法であって、
S1、偏圧ピットの断面パラメータ及び土体パラメータを決定することと、
S2、偏圧ピットの両側囲い保護構造の変位モードと偏圧ピット囲い保護構造モデル全体の受力分析図を決定することであって、前記両側囲い保護構造は、荷重が大きい側の囲い保護構造と荷重が小さい側の囲い保護構造とを含み、前記両側囲い保護構造の間が多段のインナーサポートを介して接続されることと、
S3、両側の偏圧の荷重値及びピットの許容変位制御値により予備設計時のインナーサポートの変位値を決定することと、
S4、S3で決定されたサポート箇所の変位値に基づいて、応力歪み関係により各段のインナーサポートの軸力を計算することと、
S5、偏圧ピットの両側囲い保護構造の変位モードに基づいて、ピット底部以下のある深さX以上が極限土圧分布であり、この深さ以下が非極限土圧分布であり、且つピット底部箇所まで直線的に減衰して静止土圧となるように両側囲い保護構造における土圧の分布モードを仮定することと、
S6、S5で提案された分布モードに基づいて、前記荷重が大きい側の囲い保護構造と前記荷重が小さい側の囲い保護構造の土圧をそれぞれ計算し、両側囲い保護構造における土圧が極限状態から非極限状態に変わる求めるべき深さX及び両側囲い保護構造の埋め込み固定深さDを決定することと、
S7、両側囲い保護構造の曲げモーメントとせん断力分布をそれぞれ計算し、且つ最大曲げモーメントと最大せん断力に基づいて、両側囲い保護構造の材料及び配筋をそれぞれ決定することと、
S8、全体安定性の験算、耐転覆性の験算、耐隆起安定性の験算を行うこととを含む、ことを特徴とする非極限土圧分布モードを考慮した偏圧ピット囲い保護構造の設計方法。
A method for designing an unbalanced pit enclosure protection structure considering a non-extreme earth pressure distribution mode, the method comprising:
S1, determining the cross-sectional parameters and soil body parameters of the unbalanced pit;
S2. Determining the displacement mode of the protection structure surrounding both sides of the unbalanced pit and the receiving force analysis diagram of the entire model of the protection structure surrounding the unbalanced pit, wherein the protection structure on both sides is the protection structure on the side with the larger load. and an enclosure protection structure on the side with a smaller load, and the two side enclosure protection structures are connected via a multi-stage inner support;
S3: Determining the displacement value of the inner support during preliminary design based on the load value of the partial pressure on both sides and the allowable displacement control value of the pit;
Calculating the axial force of the inner support at each stage based on the stress-strain relationship based on the displacement value of the support location determined in S4 and S3;
S5. Based on the displacement mode of the protection structure surrounding both sides of the unbalanced pit, a certain depth below the bottom of the pit over a certain depth X i is the ultimate earth pressure distribution, and below this depth is the non-extreme earth pressure distribution, and the pit Assuming the distribution mode of the earth pressure in the protection structure on both sides so that it attenuates linearly to the bottom point and becomes static earth pressure;
Based on the distribution mode proposed in S6 and S5, the earth pressure of the enclosure protection structure on the side with the larger load and the enclosure protection structure on the side with the smaller load is calculated, and the earth pressure in the enclosure protection structure on both sides is in an extreme state. Determining the required depth X i to change from to a non-extreme state and the embedding fixing depth D i of the double-side enclosing protection structure;
S7. Calculating the bending moment and shear force distribution of the two-side enclosure protection structure, and determining the material and reinforcement arrangement of the two-side enclosure protection structure, respectively, based on the maximum bending moment and the maximum shear force;
S8. An unbalanced pit enclosure protection structure considering a non-extreme earth pressure distribution mode, which is characterized by comprising: performing an experimental calculation of overall stability, an experimental calculation of capsize resistance, and an experimental calculation of uplift resistance stability. design method.
S1では、前記偏圧ピットは、一方側のピット縁荷重が大きく、他方側のピット縁荷重が小さいピットであり、前記偏圧ピットの断面パラメータは、ピットの掘削深さH、及び各段のインナーサポートの配置深さh、計算された長さB、受圧剛性EA、水平ピッチS、荷重が大きい側のピット縁荷重値qと荷重が小さい側のピット縁荷重値qを含み、前記土体パラメータは、三倍の掘削深さ範囲内の土層の土層厚さd、単位重量γ、壁と土体との間の摩擦角δ、内部摩擦角φ及び粘着力cを含む、ことを特徴とする請求項1に記載の非極限土圧分布モードを考慮した偏圧ピット囲い保護構造の設計方法。 In S1, the unbalanced pit is a pit with a large pit edge load on one side and a small pit edge load on the other side, and the cross-sectional parameters of the unbalanced pit are the excavation depth H of the pit and the pit edge load of each stage. Including the arrangement depth h m of the inner support, the calculated length B, the pressure receiving stiffness EA, the horizontal pitch S, the pit edge load value q d on the side with a large load, and the pit edge load value q x on the side with a small load, The soil body parameters include the soil layer thickness d of the soil layer within the triple excavation depth range, the unit weight γ, the friction angle δ between the wall and the soil body, the internal friction angle φ, and the adhesive force c. 2. The method of designing a partial pressure pit enclosing protection structure in consideration of a non-extreme earth pressure distribution mode according to claim 1. S3では、インナーサポートの、荷重が大きい側の囲い保護構造に近い端の変位大きさΔsdmとしてピット囲い保護構造の許容変位値[Δ]maxを取り、インナーサポートの、荷重が小さい側の囲い保護構造に近い端の変位大きさΔsxmを各段のインナーサポートの両側偏圧の比値に基づいて計算し、計算式は、
ここで、mは、m段目のインナーサポートを表し、Kは、能動土圧係数を表し、γは、土層の等価単位重量であり、複数層の土層に対して分層総和法で求めて得られる、ことを特徴とする請求項2に記載の非極限土圧分布モードを考慮した偏圧ピット囲い保護構造の設計方法。
In S3, the allowable displacement value [Δ] max of the pit enclosure protection structure is taken as the displacement magnitude Δs dm of the end of the inner support near the enclosure protection structure on the side with the larger load, and the allowable displacement value [Δ] max of the inner support on the side of the enclosure with the smaller load is taken The displacement magnitude Δs xm of the end near the protective structure is calculated based on the ratio value of the biased pressure on both sides of the inner support of each stage, and the calculation formula is as follows:
Here, m represents the m-th stage inner support, Ka represents the active earth pressure coefficient, γ is the equivalent unit weight of the soil layer, and the layer summation method is used for multiple soil layers. 3. The method for designing a partial pressure pit enclosing protection structure in consideration of a non-extreme earth pressure distribution mode according to claim 2.
S4では、各段のインナーサポートの軸力の計算式は、
である、ことを特徴とする請求項3に記載の非極限土圧分布モードを考慮した偏圧ピット囲い保護構造の設計方法。
In S4, the formula for calculating the axial force of the inner support at each stage is:
The method of designing a partial pressure pit enclosing protection structure in consideration of a non-extreme earth pressure distribution mode according to claim 3.
S2では、前記偏圧ピットの両側囲い保護構造の変位モードは、荷重が大きい側の囲い保護構造の底部変位がゼロに近く、底部以上の部分がピット内への変位を呈し、最大変位がピット許容変位値により決定され、荷重が小さい側の囲い保護構造の底部変位がゼロに近く、底部以上の部分がピット内への変位を呈するとともに、荷重が大きい側の押し戻し変位の影響を受け、変位が荷重が大きい側よりも小さい、ことを特徴とする請求項4に記載の非極限土圧分布モードを考慮した偏圧ピット囲い保護構造の設計方法。 In S2, the displacement mode of the enclosure protection structure on both sides of the biased pit is such that the bottom displacement of the enclosure protection structure on the side with a larger load is close to zero, the portion above the bottom is displaced into the pit, and the maximum displacement is in the pit. Determined by the allowable displacement value, the bottom displacement of the enclosure protection structure on the side with a small load is close to zero, and the part above the bottom exhibits displacement into the pit, and is affected by the push-back displacement on the side with a large load, and the displacement 5. The method for designing a partial pressure pit enclosure protection structure in consideration of a non-extreme earth pressure distribution mode according to claim 4, wherein the load is smaller than that on the side with a larger load. S6では、水平力バランス方程式とモーメントバランス方程式は、
In S6, the horizontal force balance equation and moment balance equation are
前記荷重が大きい側の囲い保護構造は、荷重が大きい側の囲い保護杭又は荷重が大きい側の囲い保護壁であり、前記荷重が小さい側の囲い保護構造は、荷重が小さい側の囲い保護杭又は荷重が小さい側の囲い保護壁である、ことを特徴とする請求項6に記載の非極限土圧分布モードを考慮した偏圧ピット囲い保護構造の設計方法。 The enclosure protection structure on the side with a large load is an enclosure protection pile on the side with a large load or an enclosure protection wall on the side with a large load, and the enclosure protection structure on the side with a small load is an enclosure protection pile on the side with a small load. 7. The method of designing a partial pressure pit enclosure protection structure in consideration of a non-extreme earth pressure distribution mode according to claim 6, characterized in that the enclosure protection wall is the enclosure protection wall on the side where the load is smaller. 非極限土圧分布モードを考慮した偏圧ピット囲い保護構造の設計装置であって、請求項1~7のいずれか1項に記載の非極限土圧分布モードを考慮した偏圧ピット囲い保護構造の設計方法を実行するために用いられ、
偏圧ピットの断面パラメータ及び土体パラメータを決定するための第一の決定モジュールと、
偏圧ピットの両側囲い保護構造の変位モードと偏圧ピット囲い保護構造モデル全体の受力分析図を決定するための第二の決定モジュールであって、前記両側囲い保護構造は、荷重が大きい側の囲い保護構造と荷重が小さい側の囲い保護構造とを含み、前記両側囲い保護構造の間が多段のインナーサポートを介して接続される第二の決定モジュールと、
両側の偏圧の荷重値及びピットの許容変位制御値により予備設計時のインナーサポートの変位値を決定するための第三の決定モジュールと、
第三の決定モジュールにより決定されたサポート箇所の変位値に基づいて、応力歪み関係により各段のインナーサポートの軸力を計算するための第一の計算モジュールと、
偏圧ピットの両側囲い保護構造の変位モードに基づいて、ピット底部以下のある深さX以上が極限土圧分布であり、この深さ以下が非極限土圧分布であり、且つピット底部箇所まで直線的に減衰して静止土圧となるように両側囲い保護構造における土圧の分布モードを仮定するための仮定モジュールと、
仮定モジュールにより提案された分布モードに基づいて、前記荷重が大きい側の囲い保護構造と前記荷重が小さい側の囲い保護構造の土圧をそれぞれ計算し、両側囲い保護構造における土圧が極限状態から非極限状態に変わる求めるべき深さX及び両側囲い保護構造の埋め込み固定深さDを決定するための第二の計算モジュールと、
両側囲い保護構造の曲げモーメントとせん断力分布をそれぞれ計算し、且つ最大曲げモーメントと最大せん断力に基づいて、両側囲い保護構造の材料及び配筋をそれぞれ決定するための第三の計算モジュールと、
全体安定性の験算、耐転覆性の験算、耐隆起安定性の験算を行うための験算モジュールとを含む、ことを特徴とする非極限土圧分布モードを考慮した偏圧ピット囲い保護構造の設計装置。
A device for designing a protection structure for enclosing an unbalanced pit in consideration of a non-extreme earth pressure distribution mode, the device as claimed in any one of claims 1 to 7, which takes into consideration the non-extreme earth pressure distribution mode. used to carry out the design method of
a first determination module for determining cross-sectional parameters and soil body parameters of the unbalanced pit;
a second determination module for determining a displacement mode of a protection structure surrounding a biased pit on both sides and a receiving force analysis diagram of the entire model of the protection structure surrounding an unbalanced pit; a second determination module including an enclosure protection structure on the side with a lower load and an enclosure protection structure on the side with a smaller load, and in which the two side enclosure protection structures are connected via a multi-stage inner support;
a third determination module for determining the displacement value of the inner support during preliminary design based on the load value of the bias pressure on both sides and the allowable displacement control value of the pit;
a first calculation module for calculating the axial force of the inner support at each stage based on the stress-strain relationship based on the displacement value of the support location determined by the third determination module;
Based on the displacement mode of the protective structure surrounding both sides of the unbalanced pit, a certain depth below the bottom of the pit at least X i is the ultimate earth pressure distribution, and below this depth is the non-extreme earth pressure distribution, and at the bottom of the pit an assumption module for assuming a distribution mode of earth pressure in the both-side enclosure protection structure such that it linearly attenuates to static earth pressure;
Based on the distribution mode proposed by the assumption module, the earth pressure of the enclosure protection structure on the side with the larger load and the enclosure protection structure on the side with the smaller load is calculated respectively, and the earth pressure in the enclosure protection structure on both sides is determined from the extreme state. a second calculation module for determining the depth X i to be sought for changing to the non-extreme state and the embedment fixing depth D i of the double-side enclosing protection structure;
a third calculation module for calculating the bending moment and shear force distribution of the double-sided enclosure protection structure, respectively, and determining the material and reinforcement arrangement of the double-sided enclosure protection structure, respectively, based on the maximum bending moment and the maximum shear force;
An unbalanced pit enclosure that takes into account a non-extreme earth pressure distribution mode, characterized in that it includes an experimental calculation module for performing an experimental calculation of overall stability, an experimental calculation of capsize resistance, and an experimental calculation of uplift resistance stability. Protective structure design equipment.
コンピュータ記憶媒体であって、前記コンピュータ記憶媒体にコンピュータプログラムが記憶されており、前記コンピュータプログラムがコンピュータ上で運行される時、コンピュータに請求項1~7のいずれか1項に記載の非極限土圧分布モードを考慮した偏圧ピット囲い保護構造の設計方法を実行させる、ことを特徴とするコンピュータ記憶媒体。 A computer storage medium, wherein a computer program is stored in the computer storage medium, and when the computer program is run on a computer, the non-extreme program according to any one of claims 1 to 7 is executed on the computer. A computer storage medium for executing a method for designing a protection structure for enclosing a partial pressure pit in consideration of a pressure distribution mode. コンピュータプログラム製品であって、前記コンピュータプログラム製品がコンピュータ上で運行される時、コンピュータに請求項1~7のいずれか1項に記載の非極限土圧分布モードを考慮した偏圧ピット囲い保護構造の設計方法を実行させる、ことを特徴とするコンピュータプログラム製品。 A computer program product, when the computer program product is run on a computer, the partial pressure pit enclosure protection structure taking into account the non-extreme earth pressure distribution mode as claimed in any one of claims 1 to 7 on the computer. A computer program product characterized by causing a designed method to be executed.
JP2023020343A 2022-07-11 2023-02-13 Design Method of Unbalanced Pit Enclosure Protection Structure Considering Non-Extreme Earth Pressure Distribution Mode Active JP7262874B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210808094.X 2022-07-11
CN202210808094.XA CN115081084A (en) 2022-07-11 2022-07-11 Design method of bias foundation pit support structure considering non-extreme soil pressure distribution mode

Publications (2)

Publication Number Publication Date
JP7262874B1 JP7262874B1 (en) 2023-04-24
JP2024009745A true JP2024009745A (en) 2024-01-23

Family

ID=83258827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023020343A Active JP7262874B1 (en) 2022-07-11 2023-02-13 Design Method of Unbalanced Pit Enclosure Protection Structure Considering Non-Extreme Earth Pressure Distribution Mode

Country Status (2)

Country Link
JP (1) JP7262874B1 (en)
CN (1) CN115081084A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116084473A (en) * 2023-03-02 2023-05-09 叙镇铁路有限责任公司 Deep foundation pit excavation side soil pressure coefficient measuring device and using method
CN115982833B (en) * 2023-03-17 2023-06-09 中国铁路设计集团有限公司 Half-width design calculation method of bias foundation pit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3353273B2 (en) * 2001-05-09 2002-12-03 パシフィックコンサルタンツ株式会社 Method for setting horizontal ground reaction force coefficient on the back side and method for setting minimum earth pressure used in simulation equipment for excavation work
JP5187325B2 (en) * 2010-02-03 2013-04-24 新日鐵住金株式会社 Steel sheet pile retaining wall and design method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3353273B2 (en) * 2001-05-09 2002-12-03 パシフィックコンサルタンツ株式会社 Method for setting horizontal ground reaction force coefficient on the back side and method for setting minimum earth pressure used in simulation equipment for excavation work
JP5187325B2 (en) * 2010-02-03 2013-04-24 新日鐵住金株式会社 Steel sheet pile retaining wall and design method thereof

Also Published As

Publication number Publication date
JP7262874B1 (en) 2023-04-24
CN115081084A (en) 2022-09-20

Similar Documents

Publication Publication Date Title
JP2024009745A (en) Design method for partial pressure pit enclosure protection structure considering non-extreme earth pressure distribution mode
CN201962688U (en) Diaphram wall wharf pile foundation structure
CN108487258B (en) Non-equilibrium design method for silt stratum rigid enclosure structure
Prajapati et al. Study of seismic and wind effect on multi storey RCC, steel and composite building
Di Sarno et al. Seismic retrofitting of framed structures with stainless steel
Khanorkar et al. Outrigger and belt truss system for tall building to control deflection: A review
CN109137961A (en) A kind of compound bridge foundation of shock insulation rigid pile and its construction method
Pan et al. Engineering modular systems for high-rise buildings: an update
Shah et al. Review on behavior of outrigger system in high rise building
Deylami et al. Non-linear. behavior of steel plate shear wall with large rectangular opening
CN109555242A (en) A kind of anti-buckling steel plate shear wall structure of energy-dissipating and shock-absorbing
Khanorkar et al. Belt truss as lateral load resisting structural system for tall building: a review
CN210049632U (en) Shear force wall reinforced structure
Gökdemir et al. Investigation of strong column–weak beam ratio in multi-storey structures
CN112576089A (en) Additional friction plate supported underground structure shock absorption control system
CN209369112U (en) A kind of new steel plate shear wall
CN109296115A (en) A kind of new steel plate shear wall
Arum et al. Comparison of Wind-Induced Displacement Characteristics of Buildings with Different Lateral Load Resisting Systems
CN205776786U (en) A kind of support plug-in type beam column supporting bilateral plate node
Wyllie Strengthening strategies for improved seismic performance
CN210421138U (en) Building foundation anti-seismic bearing structure
CN104120729B (en) A kind of large steel suspension box inner supporting structure and construction technology thereof
Kumar et al. Non Linear Static Seismic Analysis of Vertically Irregular Building Frames With Different Outrigger System
CN108824441B (en) Method for calculating passive soil pressure of foundation pit with pile bottom deeper than cemented soil hidden support reinforcement body
Jia et al. Analysis of the influence of erection of scissor braces on the bearing capacity of the wheel-buckled steel pipe supporting formwork system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230213

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230405

R150 Certificate of patent or registration of utility model

Ref document number: 7262874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150