JP2024009570A - Operation method of liquid purification device - Google Patents

Operation method of liquid purification device Download PDF

Info

Publication number
JP2024009570A
JP2024009570A JP2022111199A JP2022111199A JP2024009570A JP 2024009570 A JP2024009570 A JP 2024009570A JP 2022111199 A JP2022111199 A JP 2022111199A JP 2022111199 A JP2022111199 A JP 2022111199A JP 2024009570 A JP2024009570 A JP 2024009570A
Authority
JP
Japan
Prior art keywords
liquid
purified
purification means
dehydration treatment
aqueous solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022111199A
Other languages
Japanese (ja)
Inventor
翔太 森野
Shota MORINO
智子 ▲高▼田
Tomoko Takada
幸福 山下
Kofuku Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Organo Co Ltd filed Critical Japan Organo Co Ltd
Priority to JP2022111199A priority Critical patent/JP2024009570A/en
Publication of JP2024009570A publication Critical patent/JP2024009570A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the amount of a non-aqueous solvent used in dehydration treatment of a monolithic organic porous ion exchanger.
SOLUTION: The operation method of a liquid purification device 10 having a monolithic organic porous ion exchanger as purification means 11 for purifying a non-aqueous solvent includes the steps of: passing a non-aqueous solvent to be purified or a non-aqueous solvent different from the non-aqueous solvent to be purified through the purification means 11 as a dehydration treatment liquid and removing water contained in the purification means 11 by eluting it into the dehydration treatment liquid; and after removing the water contained in the purification means 11, passing the non-aqueous solvent to be purified through the purification means 11 and removing ionic components contained in the non-aqueous solvent to be purified, by the purification means 11. The step of passing the dehydration treatment liquid includes passing the dehydration treatment liquid through the purification means 11 at a flow rate lower than the flow rate when passing the non-aqueous solvent to be purified through the purification means 11.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、液体精製装置の運転方法に関する。 The present invention relates to a method of operating a liquid purification device.

半導体デバイスやリチウムイオン電池の製造プロセスでは、高度に精製された非水溶媒が用いられている。非水溶媒の精製方法としては、精製対象の非水溶媒(被精製液)をイオン交換樹脂やモノリス状有機多孔質イオン交換体などのイオン交換体に通液し、被精製液中の不純物(金属イオンなどのイオン成分)をイオン交換体により除去する方法が知られている(例えば、特許文献1,2参照)。ただし、この方法では、イオン交換体に含まれる水分が被精製液に溶出するおそれがあり、それにより、近年の非水溶媒の高純度化の要求に応えられなくなるおそれがある。そのため、上述した方法を用いた非水溶媒の精製では、それに先立って、脱水処理用の非水溶媒(脱水処理液)をイオン交換体に通液し、その含有水分を脱水処理液に溶出させて除去する脱水処理も行われている(例えば、特許文献3参照)。 Highly purified non-aqueous solvents are used in the manufacturing process of semiconductor devices and lithium-ion batteries. As a method for purifying nonaqueous solvents, the nonaqueous solvent to be purified (liquid to be purified) is passed through an ion exchanger such as an ion exchange resin or a monolithic organic porous ion exchanger to remove impurities ( A method of removing ion components such as metal ions using an ion exchanger is known (for example, see Patent Documents 1 and 2). However, in this method, there is a risk that water contained in the ion exchanger will be eluted into the liquid to be purified, and as a result, there is a risk that it will not be possible to meet the recent demands for high purity of non-aqueous solvents. Therefore, in purifying a nonaqueous solvent using the method described above, the nonaqueous solvent for dehydration treatment (dehydration treatment liquid) is first passed through an ion exchanger, and the water content is eluted into the dehydration treatment liquid. A dehydration treatment is also carried out to remove it (see, for example, Patent Document 3).

ところで、イオン交換体の脱水処理に使用された脱水処理液は、水分が除去された後に再利用されることもあるが、多くは廃棄処分されるため、その使用量はできるだけ少ないことが好ましい。これに対し、特許文献3には、脱水処理液の使用量を低減する方法として、イオン交換樹脂の中心近傍の水分を除去しやすくするために、イオン交換樹脂の粒径を小さくする方法が提案されている。 By the way, the dehydration treatment liquid used for the dehydration treatment of the ion exchanger is sometimes reused after water is removed, but since most of it is disposed of, it is preferable to use as little amount as possible. On the other hand, Patent Document 3 proposes a method of reducing the particle size of the ion exchange resin in order to make it easier to remove water near the center of the ion exchange resin, as a method of reducing the amount of dehydration treatment liquid used. has been done.

特表2015-521101号公報Special Publication No. 2015-521101 特開2019-195763号公報JP 2019-195763 Publication 特開2021-109833号公報JP 2021-109833 Publication

しかしながら、上述した方法はイオン交換樹脂に適用されるものであり、イオン交換樹脂に比べて高流速での精製処理と不純物の除去性能の両立が可能になるモノリス状有機多孔質イオン交換体に適用されるものはこれまで提案されていない。 However, the above-mentioned method is applied to ion exchange resins, and is applied to monolithic organic porous ion exchangers that can achieve both high flow rate purification and impurity removal performance compared to ion exchange resins. None have been proposed so far.

そこで、本発明の目的は、モノリス状有機多孔質イオン交換体の脱水処理に使用される非水溶媒の使用量を少なくする液体精製装置の運転方法を提供することである。 SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for operating a liquid purification apparatus that reduces the amount of non-aqueous solvent used in the dehydration treatment of a monolithic organic porous ion exchanger.

上述した目的を達成するために、本発明の液体精製装置の運転方法は、非水溶媒を精製する精製手段としてモノリス状有機多孔質イオン交換体を有する液体精製装置の運転方法であって、精製される非水溶媒または精製される非水溶媒とは別の非水溶媒を脱水処理液として精製手段に通液し、精製手段に含まれる水分を脱水処理液に溶出させて除去する工程と、精製手段に含まれる水分を除去した後に、精製される非水溶媒を精製手段に通液し、精製される非水溶媒に含まれるイオン成分を精製手段により除去する工程と、を含み、脱水処理液を通液する工程が、精製される非水溶媒を精製手段に通液する際の流量よりも少ない流量で、脱水処理液を精製手段に通液することを含んでいる。 In order to achieve the above-mentioned object, a method for operating a liquid purification apparatus according to the present invention is a method for operating a liquid purification apparatus having a monolithic organic porous ion exchanger as a purification means for purifying a non-aqueous solvent, the method comprising: A step of passing a non-aqueous solvent to be purified or a non-aqueous solvent different from the non-aqueous solvent to be purified through a purification means as a dehydration treatment liquid, and removing water contained in the purification means by elution into the dehydration treatment liquid; After removing the water contained in the purification means, the non-aqueous solvent to be purified is passed through the purification means, and the ionic components contained in the non-aqueous solvent to be purified are removed by the purification means. The step of passing the liquid through the dehydration treatment liquid includes passing the dehydration treatment liquid through the purification means at a flow rate lower than the flow rate when passing the nonaqueous solvent to be purified through the purification means.

このような液体精製装置の運転方法によれば、脱水処理液の通液時に、比表面積の大きいモノリス状有機多孔質イオン交換体と脱水処理液との接触を十分かつ確実に行うことが可能になる。その結果、モノリス状有機多孔質イオン交換体に含まれる水分が除去されやすくなり、そのために必要な脱水処理液の使用量を少なくすることができる。 According to such a method of operating a liquid purification device, it is possible to sufficiently and reliably bring the monolithic organic porous ion exchanger with a large specific surface area into contact with the dehydration treatment liquid when the dehydration treatment liquid is passed through the liquid purification device. Become. As a result, water contained in the monolithic organic porous ion exchanger is easily removed, and the amount of dehydration treatment liquid required for this purpose can be reduced.

以上、本発明によれば、モノリス状有機多孔質イオン交換体の脱水処理に使用される非水溶媒の使用量を少なくすることができる。 As described above, according to the present invention, the amount of non-aqueous solvent used in the dehydration treatment of the monolithic organic porous ion exchanger can be reduced.

本発明の一実施形態に係る液体精製装置の概略構成図である。1 is a schematic configuration diagram of a liquid purification device according to an embodiment of the present invention. 条件A1~A3におけるモノリス状有機多孔質イオン交換体への通液後の脱水処理液中の水分濃度の経時変化を測定した結果を示すグラフである。2 is a graph showing the results of measuring changes in water concentration over time in a dehydrated solution after passing through a monolithic organic porous ion exchanger under conditions A1 to A3. 条件B1~B3におけるモノリス状有機多孔質イオン交換体への通液後の脱水処理液中の水分濃度の経時変化を測定した結果を示すグラフである。3 is a graph showing the results of measuring changes over time in the water concentration in the dehydrated liquid after the liquid was passed through the monolithic organic porous ion exchanger under conditions B1 to B3. 条件C1~C3におけるモノリス状有機多孔質イオン交換体への通液後の脱水処理液中の水分濃度の経時変化を測定した結果を示すグラフである。3 is a graph showing the results of measuring changes over time in the water concentration in a dehydrated solution after passing through a monolithic organic porous ion exchanger under conditions C1 to C3.

以下、図面を参照して、本発明の実施の形態について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の一実施形態に係る液体精製装置の概略構成図である。 FIG. 1 is a schematic configuration diagram of a liquid purification apparatus according to an embodiment of the present invention.

液体精製装置10は、非水溶媒中の不純物(金属イオンなどのイオン成分)を除去することで非水溶媒を精製し、その非水溶媒をユースポイントに供給するものである。精製対象の非水溶媒としては、特に制限されないが、例えば、アルコール系(イソプロピルアルコール、メタノール、エタノールなど)、エーテル系(プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)など)、ケトン系(シクロヘキサノン、メチルイソブチルケトン、アセトン、メチルエチルケトンなど)、アルケン系(2,4-ジフェニル-4-メチル-1-ペンテン、2-フェニル-1-プロペンなど)、エステル系(プロピレングリコールモノメチルエーテルアセテート、酢酸イソプロピルなど)、芳香族系、アミン系(N-メチルピロリドンなど)などの各種有機溶媒、および、それらの混合物が挙げられる。 The liquid purification device 10 purifies a nonaqueous solvent by removing impurities (ion components such as metal ions) in the nonaqueous solvent, and supplies the nonaqueous solvent to a point of use. Non-aqueous solvents to be purified include, but are not particularly limited to, alcohol-based solvents (isopropyl alcohol, methanol, ethanol, etc.), ether-based solvents (propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), etc.), Ketones (cyclohexanone, methyl isobutyl ketone, acetone, methyl ethyl ketone, etc.), alkenes (2,4-diphenyl-4-methyl-1-pentene, 2-phenyl-1-propene, etc.), esters (propylene glycol monomethyl ether acetate) , isopropyl acetate, etc.), aromatic solvents, amine solvents (N-methylpyrrolidone, etc.), and mixtures thereof.

液体精製装置10は、モノリス状有機多孔質イオン交換体を含む精製手段11を有している。精製手段11の入口と出口は、精製される非水溶媒(被精製液)を流通させる供給ラインL1と、精製された非水溶媒(精製液)を流通させる送液ラインL2とにそれぞれ接続されている。供給ラインL1には、開閉弁V1を介してサンプリングラインL11が接続され、送液ラインL2にも、開閉弁V2を介してサンプリングラインL12が接続されている。サンプリングラインL11,L12は、被精製液および精製液中の水分量を分析するために、それぞれ被精製液および精製液を取り出すために用いられる。 The liquid purification device 10 has a purification means 11 including a monolithic organic porous ion exchanger. The inlet and outlet of the purification means 11 are respectively connected to a supply line L1 through which the non-aqueous solvent to be purified (liquid to be purified) flows and a liquid feed line L2 through which the purified non-aqueous solvent (purified liquid) flows. ing. A sampling line L11 is connected to the supply line L1 via an on-off valve V1, and a sampling line L12 is also connected to the liquid feeding line L2 via an on-off valve V2. The sampling lines L11 and L12 are used to take out the liquid to be purified and the purified liquid, respectively, in order to analyze the water content in the liquid to be purified and the purified liquid.

精製手段11としてのモノリス状有機多孔質イオン交換体は、モノリス状有機多孔質体、すなわち、有機ポリマーにより形成された骨格間に反応液の流路となる多数の連通孔を有する多孔質体の骨格中に、イオン交換基が導入されたものである。モノリス状有機多孔質イオン交換体は、一般的な粒状のイオン交換樹脂と比べて、処理流量を大きくしても十分なイオン除去性能を有しており、それにより、装置の小型化も可能になる点で有利である。このようなモノリス状有機多孔質イオン交換体としては、除去すべきイオン成分の種類に応じて、イオン交換基としてカチオン交換基が導入されたモノリス状有機多孔質カチオン交換体と、イオン交換基としてアニオン交換基が導入されたモノリス状有機多孔質アニオン交換体との少なくとも一方を用いることができる。 The monolithic organic porous ion exchanger as the purification means 11 is a monolithic organic porous body, that is, a porous body having a large number of communicating holes that serve as flow paths for the reaction liquid between the skeletons formed of organic polymers. An ion exchange group is introduced into the skeleton. Compared to general granular ion exchange resins, monolithic organic porous ion exchangers have sufficient ion removal performance even at higher treatment flow rates, which makes it possible to downsize the equipment. It is advantageous in that respect. Depending on the type of ionic component to be removed, such monolithic organic porous ion exchangers include monolithic organic porous cation exchangers with cation exchange groups introduced as ion exchange groups, and monolithic organic porous cation exchangers with cation exchange groups introduced as ion exchange groups. At least one of a monolithic organic porous anion exchanger into which an anion exchange group has been introduced can be used.

なお、ここで用いられるモノリス状有機多孔質イオン交換体(以下、「モノリスイオン交換体」ともいう)の構造例としては、特開2002-306976号公報や特開2009-62512号公報に開示されている連続気泡構造、特開2009-67982号公報に開示されている共連続構造、特開2009-7550号公報に開示されている粒子凝集型構造、特開2009-108294号公報に開示されている粒子複合型構造などが挙げられる。また、モノリスイオン交換体の形態例やその製造方法としては、特許文献2に開示されているものが挙げられる。また、モノリスイオン交換体に導入されているイオン交換基、すなわち、モノリス状有機多孔質カチオン交換体(以下、「モノリスカチオン交換体」ともいう)に導入されているカチオン交換基や、モノリス状有機多孔質アニオン交換体(以下、「モノリスアニオン交換体」ともいう)に導入されているアニオン交換基としては、特許文献2に開示されているものが挙げられる。 Note that structural examples of the monolithic organic porous ion exchanger (hereinafter also referred to as "monolith ion exchanger") used here include those disclosed in JP-A No. 2002-306976 and JP-A No. 2009-62512. an open-cell structure disclosed in JP-A No. 2009-67982, a particle aggregation type structure disclosed in JP-A No. 2009-7550, and a structure disclosed in JP-A No. 2009-108294. Examples include particle composite structures. Examples of the form of the monolith ion exchanger and its manufacturing method include those disclosed in Patent Document 2. In addition, the ion exchange groups introduced into the monolithic ion exchanger, that is, the cation exchange groups introduced into the monolithic organic porous cation exchanger (hereinafter also referred to as "monolithic cation exchanger"), and the monolithic organic porous cation exchanger Examples of anion exchange groups introduced into the porous anion exchanger (hereinafter also referred to as "monolith anion exchanger") include those disclosed in Patent Document 2.

液体精製装置10の通常運転時には、供給ラインL1を通じて精製手段11に被精製液を通液する精製工程が行われる。この精製工程では、被精製液に含まれるイオン成分が精製手段11のモノリスイオン交換体により除去され、こうして得られた精製液が、送液ラインL2を通じてユースポイントへと送られる。ここで、被精製液を精製手段11に通液する際の流量は、特に限定されるものではないが、空間速度で500~5000h-1の範囲であることが好ましい。 During normal operation of the liquid purification device 10, a purification step is performed in which the liquid to be purified is passed through the purification means 11 through the supply line L1. In this purification step, ionic components contained in the liquid to be purified are removed by the monolith ion exchanger of the purification means 11, and the purified liquid thus obtained is sent to the point of use through the liquid delivery line L2. Here, the flow rate when passing the liquid to be purified through the purification means 11 is not particularly limited, but is preferably in the range of 500 to 5000 h -1 in terms of space velocity.

なお、未使用または再生済みのモノリスイオン交換体には水分が含まれていることがあり、精製工程では、そのような水分が被精製液に溶出することで、高純度な精製液が得られなくなるおそれがある。そこで、精製工程を行う前には、モノリスイオン交換体に含まれる水分を予め除去する前処理工程を行うことが好ましい。前処理工程では、供給ラインL1を通じて脱水処理用の非水溶媒(脱水処理液)を精製手段11に通液することで、モノリスイオン交換体の脱水処理が行われ、モノリスイオン交換体に含まれる水分が脱水処理液に溶出されて除去される。こうして水分を取り込んだ脱水処理液は、送液ラインL2から図示しない排液ラインを通じて外部に排出される。 Note that unused or recycled monolith ion exchangers may contain moisture, and during the purification process, such moisture is eluted into the purified liquid, making it difficult to obtain a highly purified purified liquid. There is a risk that it will disappear. Therefore, before performing the purification step, it is preferable to perform a pretreatment step to previously remove water contained in the monolith ion exchanger. In the pretreatment step, the monolithic ion exchanger is dehydrated by passing a nonaqueous solvent for dehydration treatment (dehydration treatment liquid) through the supply line L1 to the purification means 11, and the monolithic ion exchanger is dehydrated. Water is eluted into the dehydration treatment solution and removed. The dehydrated liquid that has taken in water in this way is discharged to the outside from the liquid supply line L2 through a drainage line (not shown).

前処理工程に使用される脱水処理液としては、被精製液と異なる種類の非水溶媒を用いてもよいが、その場合、精製工程を行う前に、被精製液を精製手段11に通液してモノリスイオン交換体内の脱水処理液を被精製液で置換する必要がある。したがって、脱水処理液としては、被精製液と同じ種類の非水溶媒を用いることが好ましい。すなわち、例えば、被精製液としてイソプロピルアルコール(IPA)の精製を行う場合には、脱水処理液としてIPAを用いることが好ましい。 As the dehydration treatment liquid used in the pretreatment process, a non-aqueous solvent of a type different from that of the liquid to be purified may be used, but in that case, before performing the purification process, the liquid to be purified is passed through the purification means 11. It is necessary to replace the dehydration treatment liquid in the monolithic ion exchanger with the liquid to be purified. Therefore, it is preferable to use the same type of nonaqueous solvent as the liquid to be purified as the dehydration treatment liquid. That is, for example, when purifying isopropyl alcohol (IPA) as the liquid to be purified, it is preferable to use IPA as the dehydration treatment liquid.

また、脱水処理液としての非水溶媒は、できるだけ純度の高いものであることが好ましい。すなわち、脱水処理液中の水分濃度はできるだけ低いことが好ましく、例えば、精製液に要求される水分濃度と同等以下であることが好ましい。これにより、モノリスイオン交換体の脱水処理に必要な脱水処理液の使用量を少なくすることができる。脱水処理液中の各イオン濃度もできるだけ低いことが好ましく、例えば、精製液に要求される各イオン濃度と同等以下であることが好ましい。これにより、前処理工程でモノリスイオン交換体のイオン交換容量が必要以上に消費されることがなくなり、モノリスイオン交換体の寿命が短くなるのを抑制することができる。 Further, it is preferable that the non-aqueous solvent used as the dehydration treatment liquid has as high a purity as possible. That is, the water concentration in the dehydrated liquid is preferably as low as possible, for example, preferably equal to or lower than the water concentration required for the purified liquid. This makes it possible to reduce the amount of dehydration solution required for dehydration of the monolithic ion exchanger. The concentration of each ion in the dehydration solution is preferably as low as possible, for example, preferably equal to or lower than the concentration of each ion required for the purified solution. This prevents the ion exchange capacity of the monolith ion exchanger from being consumed more than necessary in the pretreatment step, and can prevent the life of the monolith ion exchanger from becoming short.

前処理工程は、精製手段11のモノリスイオン交換体の含水量が十分に低減され、それにより、モノリスイオン交換体から脱水処理液に水分がほとんど溶出しなくなったことが確認されるまで行われる。モノリスイオン交換体からの水分の溶出の有無は、例えば、精製手段11に通液する前後の脱水処理液中の水分濃度を比較することによって確認することができる。すなわち、サンプリングラインL11,L12からそれぞれ試料液として脱水処理液を採取し、採取した試料液中の水分濃度をそれぞれ測定する。そして、両者が所定の誤差範囲内で一致したか否かによって、モノリスイオン交換体からの水分の溶出がほとんどなくなったか否かを確認することができる。あるいは、精製手段11に通液後の脱水処理液中の水分濃度(すなわち、サンプリングラインL12から採取した試料水中の水分濃度)が十分に低下して定常状態に達した場合にも、モノリスイオン交換体からの水分の溶出がほとんどなくなったと確認することができる。水分濃度が定常状態に達したか否かは、例えば、水分濃度の時系列データのうち時間的に連続する2つのデータを比較し、それらが所定の誤差範囲内で一致したか否かによって判定することができる。脱水処理液中の水分濃度を測定する方法としては、信頼性が高く、高精度に水分の定量分析が可能なカールフィッシャー(KF)法を用いることが好ましい。 The pretreatment step is carried out until it is confirmed that the water content of the monolithic ion exchanger of the purification means 11 is sufficiently reduced, so that almost no water is eluted from the monolithic ion exchanger into the dehydration treatment liquid. The presence or absence of elution of water from the monolithic ion exchanger can be confirmed, for example, by comparing the water concentration in the dehydrated liquid before and after passing through the purification means 11. That is, dehydrated liquids are sampled as sample liquids from the sampling lines L11 and L12, respectively, and the water concentrations in the sample liquids are measured. Then, depending on whether or not the two match within a predetermined error range, it can be confirmed whether or not the elution of water from the monolithic ion exchanger has almost completely disappeared. Alternatively, even if the water concentration in the dehydrated liquid after passing through the purification means 11 (that is, the water concentration in the sample water collected from the sampling line L12) has sufficiently decreased and reached a steady state, monolith ion exchange It can be confirmed that almost no water is eluted from the body. Whether or not the water concentration has reached a steady state can be determined, for example, by comparing two temporally consecutive data of the water concentration time series data and whether or not they match within a predetermined error range. can do. As a method for measuring the water concentration in the dehydrated liquid, it is preferable to use the Karl Fischer (KF) method, which is highly reliable and capable of quantitatively analyzing water with high accuracy.

本実施形態では、精製手段11としてモノリスイオン交換体が用いられており、上述したように、より高い空間速度での通液が可能である。このことから、前処理工程において必要な脱水処理液の使用量を少なくするためには、例えば、精製工程時と同程度の比較的大きな流量で、短時間のうちにモノリスイオン交換体に含まれる水分を脱水処理液に溶出させることが好ましいと考えられる。しかしながら、実際には、精製工程時の被精製液の流量よりも少ない流量で脱水処理液を精製手段11に通液することで、より少ない脱水処理液の使用量でモノリスイオン交換体の脱水処理を完了させることができることが、本発明者らの検証により見出されている。以下、この知見を得るに至った実験結果について説明する。 In this embodiment, a monolith ion exchanger is used as the purification means 11, and as described above, it is possible to pass the liquid at a higher space velocity. Therefore, in order to reduce the amount of dehydration treatment liquid required in the pretreatment process, it is necessary to It is considered preferable to elute water into the dehydration treatment liquid. However, in reality, by passing the dehydration treatment liquid through the purification means 11 at a flow rate lower than the flow rate of the liquid to be purified during the purification process, the monolithic ion exchanger can be dehydrated with a smaller amount of dehydration treatment liquid. It has been found through verification by the present inventors that it is possible to complete the process. The experimental results that led to this knowledge will be explained below.

本発明者らは、未使用のモノリスイオン交換体に脱水処理液としての非水溶媒を通液し、通液後の脱水処理液中の水分濃度の経時変化を測定した。具体的には、モノリスイオン交換体を充填した円筒状の容器に、脱水処理液としてIPAまたはPGME/PGMEA混合溶液(PGME:PGMEA=7:3)を通液し、その通液中に、容器の出口から経時的に採取した脱水処理液中の水分濃度をKF法により測定した。測定は、脱水処理液としてIPAを用いた場合、以下の6つの条件(条件A1~A3,B1~B3)で行い、PGME/PGMEA混合溶液を用いた場合、以下の3つの条件(条件C1~C3)で行った。そして、モノリスイオン交換体の脱水処理が完了するまで、ここでは、通液後の脱水処理液中の水分濃度が定常状態に達するまでに必要な脱水処理液の通液量を比較した。 The present inventors passed a non-aqueous solvent as a dehydration solution through an unused monolithic ion exchanger, and measured the change over time in the water concentration in the dehydration solution after the flow. Specifically, IPA or a PGME/PGMEA mixed solution (PGME:PGMEA=7:3) is passed as a dehydration treatment liquid into a cylindrical container filled with a monolith ion exchanger, and during the flow, the container is The water concentration in the dehydrated liquid sampled over time from the outlet was measured by the KF method. Measurements were performed under the following six conditions (conditions A1 to A3, B1 to B3) when IPA was used as the dehydration treatment solution, and under the following three conditions (conditions C1 to B3) when a PGME/PGMEA mixed solution was used. C3). Then, until the dehydration treatment of the monolithic ion exchanger is completed, here, the amount of the dehydration treatment liquid that is required to be passed until the water concentration in the dehydration treatment liquid after passing the liquid reaches a steady state was compared.

(条件A1)
モノリスイオン交換体として、モノリスカチオン交換体を用いた。円筒状の容器として、内径が8mm、高さが15mmのものを用い、容器に通液する際のIPAの流量を25mL/minとした。したがって、脱水処理液の空間速度は1990h-1であった。
(Condition A1)
A monolithic cation exchanger was used as the monolithic ion exchanger. A cylindrical container with an inner diameter of 8 mm and a height of 15 mm was used, and the flow rate of IPA when flowing into the container was 25 mL/min. Therefore, the space velocity of the dehydrated solution was 1990 h −1 .

(条件A2)
モノリスイオン交換体として、モノリスカチオン交換体を用いた。円筒状の容器として、内径が22mm、高さが40mmのものを用い、容器に通液する際のIPAの流量を30mL/minとした。したがって、脱水処理液の空間速度は118h-1であった。
(Condition A2)
A monolithic cation exchanger was used as the monolithic ion exchanger. A cylindrical container with an inner diameter of 22 mm and a height of 40 mm was used, and the flow rate of IPA when flowing into the container was 30 mL/min. Therefore, the space velocity of the dehydrated solution was 118 h -1 .

(条件A3)
モノリスイオン交換体として、モノリスカチオン交換体を用いた。円筒状の容器として、内径が33.7mm、高さが70mmのものを用い、容器に通液する際のIPAの流量を20mL/minとした。したがって、脱水処理液の空間速度は19h-1であった。
(Condition A3)
A monolithic cation exchanger was used as the monolithic ion exchanger. A cylindrical container with an inner diameter of 33.7 mm and a height of 70 mm was used, and the flow rate of IPA when flowing into the container was 20 mL/min. Therefore, the space velocity of the dehydrated solution was 19 h −1 .

(条件B1)
モノリスイオン交換体として、モノリスカチオン交換体とモノリスアニオン交換体を用いた。円筒状の容器として、内径が10mm、高さが10mmのものを2つ直列に接続したものを用い、上流側の容器にモノリスアニオン交換体を充填し、下流側の容器にモノリス状有機多孔質カチオン交換体を充填した。容器に通液する際のIPAの流量を25mL/minとした。したがって、脱水処理液の空間速度は955h-1であった。
(Condition B1)
A monolith cation exchanger and a monolith anion exchanger were used as the monolith ion exchanger. Two cylindrical containers with an inner diameter of 10 mm and a height of 10 mm are used, connected in series. The upstream container is filled with a monolithic anion exchanger, and the downstream container is filled with a monolithic organic porous material. Filled with cation exchanger. The flow rate of IPA when flowing into the container was 25 mL/min. Therefore, the space velocity of the dehydrated solution was 955 h -1 .

(条件B2)
モノリスイオン交換体として、モノリスカチオン交換体とモノリスアニオン交換体を用いた。円筒状の容器として、内径が22mm、高さが20mmのものを2つ直列に接続したものを用い、上流側の容器にモノリスアニオン交換体を充填し、下流側の容器にモノリスカチオン交換体を充填した。容器に通液する際のIPAの流量を30mL/minとした。したがって、脱水処理液の空間速度は118h-1であった。
(Condition B2)
A monolith cation exchanger and a monolith anion exchanger were used as the monolith ion exchanger. Two cylindrical containers with an inner diameter of 22 mm and a height of 20 mm were used, connected in series, and the upstream container was filled with a monolithic anion exchanger, and the downstream container was filled with a monolithic cation exchanger. Filled. The flow rate of IPA when flowing into the container was 30 mL/min. Therefore, the space velocity of the dehydrated solution was 118 h -1 .

(条件B3)
モノリスイオン交換体として、モノリスカチオン交換体とモノリスアニオン交換体を用いた。円筒状の容器として、内径が22mm、高さが20mmのものを2つ直列に接続したものを用い、上流側の容器にモノリスアニオン交換体を充填し、下流側の容器にモノリスカチオン交換体を充填した。容器に通液する際のIPAの流量を5mL/minとした。したがって、脱水処理液の空間速度は20h-1であった。
(Condition B3)
A monolith cation exchanger and a monolith anion exchanger were used as the monolith ion exchanger. Two cylindrical containers with an inner diameter of 22 mm and a height of 20 mm were used, connected in series, and the upstream container was filled with a monolithic anion exchanger, and the downstream container was filled with a monolithic cation exchanger. Filled. The flow rate of IPA when flowing into the container was 5 mL/min. Therefore, the space velocity of the dehydrated solution was 20 h −1 .

(条件C1)
モノリスイオン交換体として、モノリスカチオン交換体を用いた。円筒状の容器として、内径が10mm、高さが10mmのものを用い、容器に通液する際のPGME/PGMEA混合溶液の流量を33.3mL/minとした。したがって、脱水処理液の空間速度は2545h-1であった。
(Condition C1)
A monolithic cation exchanger was used as the monolithic ion exchanger. A cylindrical container with an inner diameter of 10 mm and a height of 10 mm was used, and the flow rate of the PGME/PGMEA mixed solution when flowing into the container was 33.3 mL/min. Therefore, the space velocity of the dehydrated solution was 2545 h -1 .

(条件C2)
モノリスイオン交換体として、モノリスカチオン交換体を用いた。円筒状の容器として、内径が22mm、高さが20mmのものを用い、容器に通液する際のPGME/PGMEA混合溶液の流量を15mL/minとした。したがって、脱水処理液の空間速度は118h-1であった。
(Condition C2)
A monolithic cation exchanger was used as the monolithic ion exchanger. A cylindrical container with an inner diameter of 22 mm and a height of 20 mm was used, and the flow rate of the PGME/PGMEA mixed solution when flowing into the container was 15 mL/min. Therefore, the space velocity of the dehydrated solution was 118 h -1 .

(条件C3)
モノリスイオン交換体として、モノリスカチオン交換体を用いた。円筒状の容器として、内径が22mm、高さが20mmのものを用い、容器に通液する際のPGME/PGMEA混合溶液の流量を2.5mL/minとした。したがって、脱水処理液の空間速度は20h-1であった。
(Condition C3)
A monolithic cation exchanger was used as the monolithic ion exchanger. A cylindrical container with an inner diameter of 22 mm and a height of 20 mm was used, and the flow rate of the PGME/PGMEA mixed solution when flowing into the container was 2.5 mL/min. Therefore, the space velocity of the dehydrated solution was 20 h −1 .

図2(a)から図2(c)は、条件A1~A3における測定結果を示すグラフであり、図3(a)から図3(c)は、条件B1~B3における測定結果を示すグラフであり、図4(a)から図4(c)は、条件C1~C3における測定結果を示すグラフである。グラフの横軸は、通液倍量(モノリスイオン交換体の充填量に対する総通液量の容積比)を示し、縦軸は、脱水処理液中の水分濃度を対数で示している。なお、グラフ中の破線は、脱水処理液中の水分濃度が定常状態に達したことを理解しやすくするための補助線である。 2(a) to 2(c) are graphs showing measurement results under conditions A1 to A3, and FIGS. 3(a) to 3(c) are graphs showing measurement results under conditions B1 to B3. 4(a) to 4(c) are graphs showing measurement results under conditions C1 to C3. The horizontal axis of the graph indicates the liquid flow rate (volume ratio of the total liquid flow rate to the filling amount of the monolith ion exchanger), and the vertical axis indicates the water concentration in the dehydration treatment liquid as a logarithm. In addition, the broken line in the graph is an auxiliary line for making it easier to understand that the water concentration in the dehydration treatment liquid has reached a steady state.

モノリスカチオン交換体が単体で用いられた条件A1~A3を比較すると、脱水処理が完了するまでの通液倍量は、条件A1では約4000BVであるのに対し、条件A2では約40BV、条件A3では約100BVであった。同様に、モノリスカチオン交換体が単体で用いられた条件C1~C3を比較すると、脱水処理が完了するまでの通液倍量は、条件C1では約350BVであるのに対し、条件C2では約70BV、条件C3では約80BVであった。また、モノリスカチオン交換体とモノリスアニオン交換体が組み合わせて用いられた条件B1~B3を比較すると、脱水処理が完了するまでの通液倍量は、条件B1では約3000BVであるのに対し、条件B2では約150BV、条件B3では約100BVであった。したがって、こうした結果から、精製工程時と同程度の流量で脱水処理液の通液を行った場合(条件A1,B1,C1)に比べて、精製工程時よりも少ない流量で脱水処理液の通液を行った場合(条件A2~A2,B2~B3,C2~C3)、脱水処理が完了するまでの通液倍量がより小さいことが確認された。これは、比較的小さい流量で脱水処理液の通液を行ったことにより、比表面積の大きいモノリスイオン交換体と脱水処理液との接触が十分かつ確実に行われたためであると考えられる。 Comparing conditions A1 to A3 in which the monolithic cation exchanger was used alone, the amount of liquid passed until the dehydration treatment was completed was approximately 4000 BV under condition A1, approximately 40 BV under condition A2, and approximately 40 BV under condition A3. It was about 100 BV. Similarly, when comparing conditions C1 to C3 in which the monolithic cation exchanger was used alone, the amount of liquid passed until the dehydration process was completed was approximately 350 BV under condition C1, while it was approximately 70 BV under condition C2. , it was about 80 BV under condition C3. Furthermore, when comparing conditions B1 to B3 in which a monolithic cation exchanger and a monolithic anion exchanger were used in combination, the amount of liquid passed until the dehydration process is completed is approximately 3000 BV under condition B1, whereas under condition It was about 150 BV under B2 and about 100 BV under condition B3. Therefore, from these results, compared to the case where the dehydrated solution is passed at the same flow rate as during the purification process (conditions A1, B1, C1), the dehydrated solution is passed at a lower flow rate than during the purification process. It was confirmed that when the liquid was applied (conditions A2 to A2, B2 to B3, C2 to C3), the amount of liquid passed until the dehydration process was completed was smaller. This is considered to be because the dehydration treatment liquid was passed through at a relatively small flow rate, so that the monolithic ion exchanger having a large specific surface area and the dehydration treatment liquid were sufficiently and reliably contacted.

このように、本実施形態によれば、精製工程時の被精製液の流量(例えば、空間速度で500~5000h-1)よりも少ない流量(例えば、空間速度で10~500h-1)で、前処理工程時に脱水処理液の通液を行うことが好ましい。これにより、精製手段11のモノリスイオン交換体に含まれる水分が除去されやすくなり、その脱水処理を完了させるために必要な脱水処理液の使用量を少なくすることができる。 As described above, according to the present embodiment, at a flow rate (for example, 10 to 500 h -1 in space velocity) that is lower than the flow rate of the liquid to be purified during the purification process (for example, 500 to 5000 h -1 in space velocity), It is preferable to pass the dehydration treatment liquid during the pretreatment step. Thereby, water contained in the monolith ion exchanger of the purification means 11 is easily removed, and the amount of dehydration treatment liquid required to complete the dehydration treatment can be reduced.

10 液体精製装置
11 精製手段
L1 供給ライン
L2 送液ライン
L11,L12 サンプリングライン
V1,V2 開閉弁
10 Liquid purification device 11 Purification means L1 Supply line L2 Liquid feeding line L11, L12 Sampling line V1, V2 On-off valve

Claims (5)

非水溶媒を精製する精製手段としてモノリス状有機多孔質イオン交換体を有する液体精製装置の運転方法であって、
精製される非水溶媒または該精製される非水溶媒とは別の非水溶媒を脱水処理液として前記精製手段に通液し、前記精製手段に含まれる水分を前記脱水処理液に溶出させて除去する工程と、
前記精製手段に含まれる水分を除去した後に、前記精製される非水溶媒を前記精製手段に通液し、前記精製される非水溶媒に含まれるイオン成分を前記精製手段により除去する工程と、を含み、
前記脱水処理液を通液する工程が、前記精製される非水溶媒を前記精製手段に通液する際の流量よりも少ない流量で、前記脱水処理液を前記精製手段に通液することを含む、液体精製装置の運転方法。
A method for operating a liquid purification device having a monolithic organic porous ion exchanger as a purification means for purifying a non-aqueous solvent, the method comprising:
A non-aqueous solvent to be purified or a non-aqueous solvent different from the non-aqueous solvent to be purified is passed through the purification means as a dehydration treatment liquid, and water contained in the purification means is eluted into the dehydration treatment liquid. a step of removing;
After removing water contained in the purification means, passing the purified non-aqueous solvent through the purification means, and removing ionic components contained in the purified non-aqueous solvent by the purification means; including;
The step of passing the dehydration treatment liquid includes passing the dehydration treatment liquid through the purification means at a flow rate lower than the flow rate when passing the nonaqueous solvent to be purified through the purification means. , how to operate a liquid purification device.
前記脱水処理液の通液は、10~500h-1の空間速度で行われる、請求項1に記載の液体精製装置の運転方法。 The method of operating a liquid purification apparatus according to claim 1, wherein the dehydration treatment liquid is passed at a space velocity of 10 to 500 h -1 . 前記精製される非水溶媒の通液は、500~5000h-1の空間速度で行われる、請求項2に記載の液体精製装置の運転方法。 The method of operating a liquid purification apparatus according to claim 2, wherein the nonaqueous solvent to be purified is passed at a space velocity of 500 to 5000 h -1 . 前記精製手段が、モノリス状有機多孔質カチオン交換体とモノリス状有機多孔質アニオン交換体の少なくとも一方である、請求項1から3のいずれか1項に記載の液体精製装置の運転方法。 4. The method of operating a liquid purification apparatus according to claim 1, wherein the purification means is at least one of a monolithic organic porous cation exchanger and a monolithic organic porous anion exchanger. 前記非水溶媒がアルコールまたはエーテルである、請求項1から3のいずれか1項に記載の液体精製装置の運転方法。 The method for operating a liquid purification apparatus according to any one of claims 1 to 3, wherein the nonaqueous solvent is alcohol or ether.
JP2022111199A 2022-07-11 2022-07-11 Operation method of liquid purification device Pending JP2024009570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022111199A JP2024009570A (en) 2022-07-11 2022-07-11 Operation method of liquid purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022111199A JP2024009570A (en) 2022-07-11 2022-07-11 Operation method of liquid purification device

Publications (1)

Publication Number Publication Date
JP2024009570A true JP2024009570A (en) 2024-01-23

Family

ID=89620453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022111199A Pending JP2024009570A (en) 2022-07-11 2022-07-11 Operation method of liquid purification device

Country Status (1)

Country Link
JP (1) JP2024009570A (en)

Similar Documents

Publication Publication Date Title
JP4441472B2 (en) Method for reducing the amount of metal impurities contained in a cation exchange resin
JP4302201B2 (en) Method for purification of substantially anhydrous organic liquids
US20100126934A1 (en) Purification process of fluorine-based solvent-containing solution
TWI794494B (en) Metal impurity content analysis method and analysis kit for analysis target water
JP6298275B2 (en) Water treatment especially to obtain ultrapure water
JP2013153063A (en) Liquid processing apparatus
JP2005195398A (en) Separation method of material by supercritical fluid chromatography and vapor-liquid separation device used therefor
JP6404056B2 (en) Chemical liquid purification method for semiconductor photolithography, chemical liquid purification apparatus for semiconductor photolithography, and chemical liquid for semiconductor photolithography
JP5717997B2 (en) Method for producing aqueous tetraalkylammonium salt solution
TWI585043B (en) The blending method and blending device of photoresist stripping liquid
JP2024009570A (en) Operation method of liquid purification device
JPH0957069A (en) Method for refining organic liquid by pervaporation, device used therefor and steam drying utilizing them
JP7146568B2 (en) Organic solvent purification method and purification apparatus
Watanabe et al. Selective Sc recovery from rare earths in nitric acid medium by extraction chromatography
JP7289248B2 (en) Impurity detection device and impurity detection method
JP7083633B2 (en) Method for purifying non-aqueous liquid substances and ion exchange resin-filled cartridge with outside air blocking member
CN114585440A (en) Organic solvent purification method and purification system
WO2024024340A1 (en) Liquid purification device and method for starting up liquid purification device
WO2023210370A1 (en) Organic solvent purification method and purification apparatus
JP2001125277A (en) Method of manufacturing photoresist solution decreased in amount of impurity, and liquid refining apparatus for the same
JP4570380B2 (en) Method for producing methanol
CN105845188A (en) Method for adsorption separation of strontium
JP2024018194A (en) Method and device for measuring water content of non-aqueous solvent
JP2024018193A (en) Start-up method of liquid purification apparatus, and liquid purification apparatus
JP7437276B2 (en) Ion exchanger analysis method and ion exchanger pretreatment device