JP2024009325A - Method of extracting and recovering specific substance based on liquid-liquid extraction - Google Patents

Method of extracting and recovering specific substance based on liquid-liquid extraction Download PDF

Info

Publication number
JP2024009325A
JP2024009325A JP2023201835A JP2023201835A JP2024009325A JP 2024009325 A JP2024009325 A JP 2024009325A JP 2023201835 A JP2023201835 A JP 2023201835A JP 2023201835 A JP2023201835 A JP 2023201835A JP 2024009325 A JP2024009325 A JP 2024009325A
Authority
JP
Japan
Prior art keywords
liquid phase
phase
partition plate
chamber
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023201835A
Other languages
Japanese (ja)
Inventor
弘親 長縄
Hirochika Osanawa
哲志 永野
Tetsushi Nagano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2023201835A priority Critical patent/JP2024009325A/en
Publication of JP2024009325A publication Critical patent/JP2024009325A/en
Pending legal-status Critical Current

Links

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of efficiently extracting and recovering a specific substance included in a heavy liquid phase, a light liquid phase, or both phases, in a simple manner.
SOLUTION: In a liquid-liquid extraction utilizing mechanical agitation, while an agitation vane is rotated a vane part of which is located in the vicinity of an interface between a heavy liquid phase and a light liquid phase, a heavy liquid phase is sent and introduced from above a container and a light liquid phase is sent and introduced from below the container, forming areas of an emulsion mixed state and a phase separation state. The phase-separated liquid phase is introduced into a back-extraction liquid of another container, and the specific substance is extracted and recovered.
SELECTED DRAWING: Figure 1(p)
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、液液抽出に基づく特定物質の抽出回収方法に係り、詳細には、重液相(多くの場合、水相)と軽液相(多くの場合、油相)を、相混合のための容器内において互いに向流接触させながらエマルション相(2液相乳濁混合相)を成長させる一方で、両相の分離(相分離)を同時進行させることで、重液相内若しくは軽液相内又は両相内で分離精製される特定の物質を得るための特定物質の抽出回収方法であり、特に、重液相と軽液相を効率的に相混合させて広範囲で安定なエマルション相を容易に得ることができる、液液抽出に基づく特定物質の抽出回収方法に関する。 The present invention relates to a method for extracting and recovering specific substances based on liquid-liquid extraction, and in particular, a heavy liquid phase (in many cases, an aqueous phase) and a light liquid phase (in many cases, an oil phase) are separated by phase mixing. By growing an emulsion phase (two-liquid emulsion mixed phase) while bringing them into countercurrent contact with each other in a container for storage, simultaneous separation of both phases (phase separation) allows It is an extraction and recovery method for specific substances to obtain specific substances that are separated and purified within a phase or within both phases.In particular, it is an emulsion phase that is stable over a wide range by efficiently mixing the heavy liquid phase and the light liquid phase. The present invention relates to a method for extracting and recovering a specific substance based on liquid-liquid extraction, by which the substance can be easily obtained.

液液抽出(溶媒抽出とも呼ばれる)を利用して、水溶液中の目的成分を分離・濃縮したり、目的成分から不純物を分離・除去したりすることで、製品として高品位な金属品、化学品(有機化合物など)などを得ることができる。液液抽出とは、互いに混じり合わない2つの液体の相(例えば、水相と油相)の間における物質の分配の違いによって、金属イオン、有機化合物、生体高分子などを分離精製・濃縮する方法であり、工業的に幅広く利用されている。 By using liquid-liquid extraction (also called solvent extraction) to separate and concentrate target components in aqueous solutions and to separate and remove impurities from target components, high-grade metal and chemical products can be produced. (organic compounds, etc.). Liquid-liquid extraction is the separation, purification, and concentration of metal ions, organic compounds, biopolymers, etc. based on the difference in the distribution of substances between two immiscible liquid phases (e.g., water phase and oil phase). This method is widely used industrially.

液液抽出に基づく分離では、扱う対象に応じて、錯形成反応、脱水和反応、溶媒和反応、イオン交換反応、酸塩基反応、酸化還元反応、触媒反応、自己組織化反応など、多くの化学反応が関与し得る。 Separation based on liquid-liquid extraction involves many chemical reactions, such as complexation reactions, dehydration reactions, solvation reactions, ion exchange reactions, acid-base reactions, redox reactions, catalytic reactions, and self-assembly reactions, depending on the target. reactions may be involved.

実際に、液液抽出を工業的に行う場合、撹拌翼の回転によって2液相を相混合した後、別室に運ばれた2液相を重力分離するミキサーセトラー法が、しばしば利用される。ミキサーセトラー法に基づく液液抽出の仕組みは、比較的シンプルな構造ながら安定な性能が得られることで、工業的な液液抽出を代表する装置として最も普及している。 In fact, when liquid-liquid extraction is carried out industrially, a mixer-settler method is often used in which two liquid phases are mixed by rotation of a stirring blade and then transported to a separate chamber and separated by gravity. The liquid-liquid extraction mechanism based on the mixer-settler method has a relatively simple structure but provides stable performance, making it the most popular device representing industrial liquid-liquid extraction.

一方、従来のミキサーセトラー法(以下、単に従来法と称する)の仕組みは、2液相の間の界面の位置が変化しやすく、かつ、界面位置の調整など、その扱いには熟練を要する。また、2液相の送液速度の比が、そのまま、相混合にあずかる両相の体積比(いわゆるO/A比)となるため、例えば、目的成分を含む水相の処理速度(プロセッシング・スピード)を大きくするために水相の送液速度を上げたい場合、同時に油相の送液速度も同様に大きくしなければ、両相の体積比が変化してしまう。 On the other hand, in the mechanism of the conventional mixer-settler method (hereinafter simply referred to as the conventional method), the position of the interface between the two liquid phases is likely to change, and the adjustment of the interface position requires skill. In addition, since the ratio of the liquid feeding speeds of the two liquid phases directly becomes the volume ratio of both phases participating in phase mixing (so-called O/A ratio), for example, the processing speed of the aqueous phase containing the target component (processing speed ) If it is desired to increase the liquid feeding rate of the aqueous phase in order to increase the liquid phase, the liquid feeding rate of the oil phase must also be increased at the same time, otherwise the volume ratio of both phases will change.

従来法の仕組みでは、水相、油相ともにミキサー室の底部から互いに隣接した導入口を通じて供給され、該ミキサー室の下方に設置された撹拌翼部位(回転軸の先端に位置する翼部位)によって両相が即座に撹拌混合される仕組みを基本としている。また、ミキサー室の下部に水相と油相が導入される前室が設けられ、その前室とミキサー室の間の仕切板に設けられた通過口から、撹拌翼の回転で生じる負圧による吸い上げを利用して両相を該前室からミキサー室に導きながら両相を混合する仕組みも、一般的なミキサーセトラー装置として知られている(特許文献1、特許文献2の図3)。 In the conventional method, both the aqueous phase and the oil phase are supplied from the bottom of the mixer chamber through adjacent inlets, and are supplied by a stirring blade section (blade section located at the tip of the rotating shaft) installed below the mixer chamber. The basic mechanism is that both phases are stirred and mixed immediately. In addition, a front chamber is provided at the bottom of the mixer chamber into which the aqueous phase and oil phase are introduced, and the negative pressure generated by the rotation of the stirring blades is A mechanism for mixing both phases while guiding them from the front chamber to the mixer chamber using suction is also known as a general mixer-settler device (see FIG. 3 of Patent Document 1 and Patent Document 2).

特公昭61-19281号公報Special Publication No. 61-19281 特許第6119029号公報Patent No. 6119029

水相が重液相で油相が軽液相である場合、水相と油相はともに水相内に供給され、かつ、撹拌翼の翼部位は両相の導入口の直上の水相内に位置している。このように、両相は水相内(重液相内)に導入され、該水相内で即座に撹拌されるため、必然的に、周囲の水相を巻き込んだ状態での撹拌混合とならざるを得ない。それゆえに、乳濁混合状態が不十分であったり、広範囲に安定な状態を維持するには至らなかったりする場合がある。なお、前室を設けたタイプでは、前室上部に油相が滞留するため、その吸い上げにより油相の割合を増加させるのに役立つが、実際に相混合されている両相の体積比は安定しない。 When the water phase is a heavy liquid phase and the oil phase is a light liquid phase, both the water phase and the oil phase are supplied into the water phase, and the blade part of the stirring blade is inside the water phase directly above the inlet of both phases. It is located in In this way, since both phases are introduced into the aqueous phase (inside the heavy liquid phase) and immediately stirred within the aqueous phase, it is inevitable that the agitation and mixing will involve the surrounding aqueous phase. I have no choice but to. Therefore, the emulsion mixing state may be insufficient or a stable state may not be maintained over a wide range. In addition, in the type with a front chamber, the oil phase stays in the upper part of the front chamber, and sucking it up helps to increase the ratio of the oil phase, but the volume ratio of both phases actually mixed is stable. do not.

また、両相ともにミキサー室の上部から導入し、撹拌翼の翼部位をミキサー室の下部に設置した構造も存在するが(特許文献2の図1)、撹拌翼の翼部位を重液相リッチなミキサー室の下部に配置しているため、2液相の混合初期において、重液相の割合が大きくなる傾向を持つ点では同様である。 There is also a structure in which both phases are introduced from the upper part of the mixer chamber and the blade part of the stirring blade is installed in the lower part of the mixer room (see Figure 1 of Patent Document 2). Since the heavy liquid phase is placed at the bottom of the heavy liquid phase mixer chamber, the proportion of the heavy liquid phase tends to increase at the initial stage of mixing the two liquid phases.

以上のように、従来法の仕組みは、重液相、軽液相ともにミキサー室の下部、又は両相ともに同室上部から導入する方式である。この点において、上部から重液相、下部から軽液相を導入する方式の多くのカラム型液液抽出方法とは異なる。重液相と軽液相を対向して流す方式では、両相の向流接触によって、より効率的な抽出が可能となる。従来のカラム型液液抽出方法(例えば、スプレーカラム方式、パルスカラム方式など)は、撹拌翼を用いるミキサーセトラーと比べて2液相混合能力は低い反面、両相の向流接触に基づく理論段数の向上が見込める。 As described above, the conventional method is such that both the heavy liquid phase and the light liquid phase are introduced from the bottom of the mixer chamber, or both phases are introduced from the top of the same chamber. In this respect, it differs from many column-type liquid-liquid extraction methods in which a heavy liquid phase is introduced from the top and a light liquid phase is introduced from the bottom. In a system in which a heavy liquid phase and a light liquid phase flow oppositely, more efficient extraction is possible due to countercurrent contact between the two phases. Conventional column-type liquid-liquid extraction methods (e.g., spray column method, pulse column method, etc.) have a lower two-liquid phase mixing capacity than mixer-settlers that use stirring blades, but on the other hand, they have a lower number of theoretical plates based on countercurrent contact of both phases. is expected to improve.

また、従来法の仕組みでは、撹拌翼の回転によって生じる吸引力を送液に利用するため、ポンプに頼らないで送液できるという利点がある。すなわち、ポンプへの負荷を撹拌翼の回転によって大幅に軽減できるが、一方で、2液相の撹拌の強さの違い(撹拌翼の回転速度の違いなど)によって送液速度が変化してしまうという問題がある。 In addition, the conventional system utilizes the suction force generated by the rotation of the stirring blades for liquid feeding, so it has the advantage of being able to feed liquid without relying on a pump. In other words, the load on the pump can be significantly reduced by rotating the stirring blade, but on the other hand, the liquid feeding speed changes due to the difference in the strength of stirring of the two liquid phases (such as the difference in the rotational speed of the stirring blade). There is a problem.

従来法の仕組みは、比較的シンプルな構造ながら安定した性能が得られる反面、界面位置が変化しやすいことなどによる扱いにくさ(扱いに熟練を要する)、相混合にあずかる2液相の体積比の非独立性(両相の送液速度の比に依存)、重液相リッチ(軽液相不足)に陥りやすい非効率な2液相混合、撹拌翼回転の送液速度への影響などの問題点がある。 Although the conventional method has a relatively simple structure and provides stable performance, it is difficult to handle due to the fact that the interface position changes easily (requiring skill to handle it), and the volume ratio of the two liquid phases that participate in phase mixing is difficult. (dependent on the ratio of the liquid feeding speeds of both phases), inefficient two-liquid phase mixing that tends to result in heavy liquid phase richness (light liquid phase deficiency), and the influence of stirring blade rotation on liquid feeding speed. There is a problem.

本発明の目的は、上述の問題を解決し、重液相内若しくは軽液相内又は両相内で分離精製される特定の物質を、従来法の仕組みでは得られない革新的な特徴を発現させることができるようにした特定物質の製造方法を提供することにある。 The purpose of the present invention is to solve the above-mentioned problems and to develop innovative characteristics that cannot be obtained by conventional methods, by allowing specific substances to be separated and purified within the heavy liquid phase, the light liquid phase, or both phases. An object of the present invention is to provide a method for producing a specific substance that enables the production of specific substances.

本発明は、容器内部に、攪拌翼並びに重液相と軽液相の両相が互いに同体積になるように設置されており、かつ前記撹拌翼の翼部位が、前記両相がなす界面から上下に該翼部位の厚さの3倍以内の範囲に配置されているところの第1の容器、及び前記第1の容器から送液される軽液相から特定物質を逆抽出するための第2の容器の少なくとも2個の容器を用意し、前記撹拌翼を回転させて前記攪拌翼の翼部位によって前記両相を攪拌しながら、前記第1の容器の上方から重液相を下方から軽液相を送液導入することによって、前記第1の容器内に両相が乳濁混合された状態と相分離された状態を共存させ、相分離された状態にある前記第1の容器の上部に存在する軽液相を、逆抽出液である重液相を含む第2の容器の下方から該重液相内に送液し、前記第2の容器の上方から得られるリセットされた軽液相を再度前記第1の容器に戻し、前記第2の容器の逆抽出液内に特定物質を回収することを特徴とする。 In the present invention, a stirring blade and both phases, a heavy liquid phase and a light liquid phase, are installed inside a container so that they have the same volume, and the blade portion of the stirring blade is separated from the interface between the two phases. a first container disposed above and below in a range within three times the thickness of the blade section; and a first container for back-extracting a specific substance from the light liquid phase sent from the first container. At least two of the second containers are prepared, and while the stirring blade is rotated and both phases are stirred by the blade portion of the stirring blade, the heavy liquid phase is lightened from above the first container from below. By feeding and introducing the liquid phase, a state where both phases are emulsified and mixed and a state where they are phase separated coexist in the first container, and the upper part of the first container is in the phase separated state. The light liquid phase present in the liquid is fed into the heavy liquid phase from below the second container containing the heavy liquid phase which is the reverse extraction liquid, and the reset light liquid obtained from the upper part of the second container is The method is characterized in that the phase is returned to the first container again, and the specific substance is recovered in the back-extraction liquid in the second container.

本発明に係る特定物質の抽出回収方法の最適な形態では、次の7つの特徴を得ることができる。1)前記容器又は部屋での2液相界面の位置が変動なく常に安定で、2)相混合にあずかる両相の体積比を送液速度とは無関係に(独立的に)設定でき、3)両相を効率的に相混合することで広範囲で安定なエマルション相(2液相乳濁混合相)を成長させ、4)撹拌翼回転(相混合の強さ)が送液速度に影響せず、5)重液相と軽液相の対向送液に基づく両相の向流接触によって理論段数が向上し、6)機械撹拌のための容器又は部屋(ミキサー室)において相分離を同時進行させることで、分相性が向上し、7)オーバーフロー(溢流)による液送りから圧力作用による送液への切り替えにより、循環送液を容易にできる。 The following seven features can be obtained in the optimal form of the method for extracting and recovering a specific substance according to the present invention. 1) The position of the interface between the two liquid phases in the container or room is always stable without fluctuation, 2) The volume ratio of both phases participating in phase mixing can be set independently (independently) regardless of the liquid feeding rate, and 3) By efficiently mixing both phases, a stable emulsion phase (two-liquid emulsion mixed phase) can be grown over a wide range, and 4) the rotation of the stirring blade (strength of phase mixing) does not affect the liquid feeding speed. , 5) The number of theoretical plates is improved by countercurrent contact of both phases based on counter-feeding of the heavy liquid phase and the light liquid phase, and 6) Phase separation proceeds simultaneously in a container or room for mechanical stirring (mixer room). This improves phase separation, and 7) switching from liquid feeding by overflow to liquid feeding by pressure action facilitates circulating liquid feeding.

従来法の仕組みでは、重液相(多くの場合、水相)、軽液相(多くの場合、油相)の両方がミキサー室の下部から導入される。ミキサー室下部は重液相リッチになりやすく、そこに導入された2液相は、重液相リッチのまま、乳濁混合状態の相(エマルション相)を形成する。すなわち、重液相と軽液相の混合初期では、重液相の割合が大きい状態で2液相が乳濁混合される。そこで、その影響を小さくするため、撹拌翼の翼部位は、ミキサー室下部の両相の導入口の直上に設置されることが多い。また、両相の導入口の直下に前室を設けると、該前室の上部は軽液相の割合が大きくなるため、それを撹拌翼の吸引作用で吸い上げることにより、前述の重液相リッチの状態での乳濁混合を相殺・緩和できるが、吸上げられる両相の割合が一定ではないため、相混合されている両相の体積比が安定しないという欠点がある。 In conventional arrangements, both a heavy liquid phase (often a water phase) and a light liquid phase (often an oil phase) are introduced from the bottom of the mixer chamber. The lower part of the mixer chamber tends to become rich in the heavy liquid phase, and the two liquid phases introduced there form an emulsified mixed phase (emulsion phase) while remaining rich in the heavy liquid phase. That is, in the early stage of mixing the heavy liquid phase and the light liquid phase, the two liquid phases are emulsified and mixed with a large proportion of the heavy liquid phase. Therefore, in order to reduce this influence, the blade portion of the stirring blade is often installed directly above the inlets for both phases in the lower part of the mixer chamber. In addition, if a front chamber is provided directly below the inlet for both phases, the upper part of the front chamber will have a large proportion of light liquid phase, so by sucking it up with the suction action of the stirring blade, it will be possible to enrich the heavy liquid phase as described above. Although emulsion mixing in this state can be offset or alleviated, the ratio of the two phases sucked up is not constant, so there is a drawback that the volume ratio of the two phases being mixed is not stable.

それに対して、本発明では、重液相と軽液相を相混合するための撹拌翼の翼部位を2液相の間の界面近傍(撹拌翼の回転によって重液相と軽液相の乳濁混合が促進される界面近くの位置)に配置するとともに、前記撹拌翼を格納する容器又は部屋(ミキサー室)の上方から重液相、下方から軽液相を送液導入する液液抽出の仕組みを利用することで、エマルション相(2液相乳濁混合相)に存在する重液相と軽液相の体積比が終始変化しないままで、相混合することができる。 In contrast, in the present invention, the blade part of the stirring blade for phase mixing the heavy liquid phase and the light liquid phase is moved near the interface between the two liquid phases (the rotation of the stirring blade causes the mixing of the heavy liquid phase and the light liquid phase to occur). A liquid-liquid extraction method in which a heavy liquid phase is introduced from above and a light liquid phase is introduced from below in a container or room (mixer room) in which the stirring blades are stored. By utilizing this mechanism, the phases can be mixed while the volume ratio of the heavy liquid phase and the light liquid phase present in the emulsion phase (two-liquid emulsion mixed phase) remains unchanged throughout.

本発明は、機械撹拌を利用する液液抽出において、従来のミキサーセトラー法(従来法と称する)の仕組みが持つ問題点を解決するとともに、従来法にはない革新的な特徴を発現させるものである。 The present invention solves the problems of the conventional mixer-settler method (referred to as the "conventional method") in liquid-liquid extraction using mechanical stirring, and also brings out innovative features not found in conventional methods. be.

具体的には、本発明の最良の実施形態では、従来法の仕組みの問題点である、界面位置が変化しやすいなどの扱いにくさ、相混合にあずかる2液相の体積比(いわゆるO/A比)が両相の送液速度の比に依存するという操作上の制限、周囲の重液相を巻き込んだ非効率な2液相混合、撹拌翼回転と送液速度が連動することで生じる操作上の煩雑さを解決できる。すなわち、本発明の方法によれば、界面位置が変動せず常に安定で、両相の体積比を送液速度とは無関係に(独立的に)設定でき、エマルション相内での両相の体積比を終始一貫して維持しながら効率的な2液相混合を実現し、撹拌翼回転が送液速度に影響しないようにできる。 Specifically, in the best embodiment of the present invention, problems with the mechanism of the conventional method, such as difficulty in handling such as the interface position easily changing, and the volume ratio of the two liquid phases participating in phase mixing (so-called O/ This is caused by the operational limitation that the A ratio) depends on the ratio of the liquid feeding speed of both phases, inefficient two-liquid phase mixing that involves the surrounding heavy liquid phase, and the interlocking of stirring blade rotation and liquid feeding speed. It can solve operational complications. That is, according to the method of the present invention, the interface position does not fluctuate and is always stable, the volume ratio of both phases can be set independently (independently), and the volume ratio of both phases within the emulsion phase can be set independently. Efficient two-liquid phase mixing can be achieved while maintaining the ratio consistently from beginning to end, and the rotation of the stirring blade can be prevented from affecting the liquid feeding speed.

また、本発明では、従来法にはない革新的な特徴として、重液相と軽液相の対向した流れに基づく向流接触により理論段数が向上する。ここで言う理論段数とは、液液抽出における分離の性能を回分式での分配平衡値を基準にして表した指標であり、理論段数が向上すると、2つの物質間の分離の度合の大きさを示す分離係数(2つの物質の分配比の比)の値が増加する。また、機械撹拌のための容器又は部屋(ミキサー室)において相分離を同時進行させることにより、分相性が向上する。さらに、オーバーフローから圧力送液への切り替えにより、循環送液を容易にできる。なお、循環送液適応型の仕組みは、正抽出、洗浄、及び逆抽出を一体化して同期的に循環送液することで生じる多段効果に利用することができ、従来法の仕組みと比較して、装置システムを大幅にダウンサイズできる。 Furthermore, in the present invention, as an innovative feature not found in conventional methods, the number of theoretical plates is improved by countercurrent contact based on opposing flows of a heavy liquid phase and a light liquid phase. The number of theoretical plates mentioned here is an index that expresses the separation performance in liquid-liquid extraction based on the distribution equilibrium value in a batch system, and as the number of theoretical plates increases, the degree of separation between two substances increases. The value of the separation coefficient (ratio of distribution ratios of two substances), which indicates , increases. In addition, phase separation properties are improved by simultaneous progress of phase separation in a container or room for mechanical stirring (mixer room). Furthermore, by switching from overflow to pressure liquid feeding, circulating liquid feeding can be facilitated. In addition, the circulating liquid feeding adaptive mechanism can be used for the multi-stage effect produced by integrating forward extraction, washing, and reverse extraction and synchronously circulating the liquid, and is more effective than the conventional mechanism. , the equipment system can be significantly downsized.

重液相及び軽液相を循環送液する単室式の仕組み(その1)。A single-chamber system that circulates the heavy liquid phase and light liquid phase (Part 1). 重液相及び軽液相を循環送液する単室式の仕組み(その2)。A single-chamber system that circulates the heavy liquid phase and light liquid phase (Part 2). 重液相及び軽液相を循環送液する単室式の仕組み(その3)。A single-chamber mechanism that circulates the heavy liquid phase and light liquid phase (part 3). 重液相及び軽液相を循環送液する単室式の仕組み(その4)。A single-chamber system that circulates the heavy liquid phase and light liquid phase (part 4). 重液相及び軽液相を循環送液する単室式の仕組み(その5)。A single-chamber mechanism that circulates the heavy liquid phase and light liquid phase (Part 5). 軽液相のみを循環送液する単室式の仕組み(その1)。A single-chamber system that circulates only the light liquid phase (Part 1). 軽液相のみを循環送液する単室式の仕組み(その2)。A single-chamber system that circulates only the light liquid phase (Part 2). 軽液相のみを循環送液する単室式の仕組み(その3)。A single-chamber system that circulates only the light liquid phase (Part 3). 軽液相のみを循環送液する単室式の仕組み(その4)。A single-chamber mechanism that circulates only the light liquid phase (part 4). 軽液相のみを循環送液する単室式の仕組み(その5)。A single-chamber system that circulates only the light liquid phase (Part 5). 重液相のみを循環送液する単室式の仕組み(その1)。A single-chamber system that circulates only the heavy liquid phase (Part 1). 重液相のみを循環送液する単室式の仕組み(その2)。A single-chamber system that circulates only the heavy liquid phase (Part 2). 重液相のみを循環送液する単室式の仕組み(その3)。A single-chamber system that circulates only the heavy liquid phase (part 3). 重液相のみを循環送液する単室式の仕組み(その4)。A single-chamber system that circulates only the heavy liquid phase (part 4). 重液相のみを循環送液する単室式の仕組み(その5)。A single-chamber system that circulates only the heavy liquid phase (Part 5). 重液相及び軽液相を1回通過送液する単室式の仕組み(その1)。A single-chamber system that transports heavy liquid phase and light liquid phase once (Part 1). 重液相及び軽液相を1回通過送液する単室式の仕組み(その2)。A single-chamber system that transports the heavy liquid phase and light liquid phase once (Part 2). 重液相及び軽液相を1回通過送液する単室式の仕組み(その3)。A single-chamber mechanism that transports the heavy liquid phase and light liquid phase once (part 3). 重液相及び軽液相を1回通過送液する単室式の仕組み(その4)。A single-chamber system that transports the heavy liquid phase and light liquid phase once (part 4). 重液相及び軽液相を1回通過送液する単室式の仕組み(その5)。A single-chamber system that transports heavy liquid phase and light liquid phase once (part 5). 重液相及び軽液相を循環送液する上下張出形状単室式の仕組み(その1)。A single-chamber system with an upper and lower overhang that circulates the heavy liquid phase and light liquid phase (Part 1). 重液相及び軽液相を循環送液する上下張出形状単室式の仕組み(その2)。A single-chamber system with an upper and lower overhang that circulates the heavy liquid phase and light liquid phase (Part 2). 重液相及び軽液相を循環送液する上下張出形状単室式の仕組み(その3)。A single-chamber system with an upper and lower overhang that circulates the heavy liquid phase and light liquid phase (part 3). 重液相及び軽液相を循環送液する上下張出形状単室式の仕組み(その4)。A single-chamber system with an upper and lower overhang that circulates the heavy liquid phase and light liquid phase (part 4). 重液相及び軽液相を循環送液する上下張出形状単室式の仕組み(その5)。A single-chamber mechanism with an upper and lower overhang that circulates the heavy liquid phase and light liquid phase (Part 5). 軽液相のみを循環送液する上下張出形状単室式の仕組み(その1)。A single-chamber system with an upper and lower overhang that circulates and pumps only the light liquid phase (Part 1). 軽液相のみを循環送液する上下張出形状単室式の仕組み(その2)。A single-chamber system with an upper and lower overhang that circulates and pumps only the light liquid phase (Part 2). 軽液相のみを循環送液する上下張出形状単室式の仕組み(その3)。A single-chamber mechanism with an upper and lower overhang that circulates and pumps only the light liquid phase (part 3). 軽液相のみを循環送液する上下張出形状単室式の仕組み(その4)。A single-chamber system with an upper and lower overhang that circulates and pumps only the light liquid phase (Part 4). 軽液相のみを循環送液する上下張出形状単室式の仕組み(その5)。A single-chamber system with an upper and lower overhang that circulates and pumps only the light liquid phase (Part 5). 重液相のみを循環送液する上下張出形状単室式の仕組み(その1)。A single-chamber system with an upper and lower overhang that circulates and pumps only the heavy liquid phase (Part 1). 重液相のみを循環送液する上下張出形状単室式の仕組み(その2)。A single-chamber system with an upper and lower overhang that circulates and pumps only the heavy liquid phase (Part 2). 重液相のみを循環送液する上下張出形状単室式の仕組み(その3)。A single-chamber system with an upper and lower overhang that circulates only the heavy liquid phase (part 3). 重液相のみを循環送液する上下張出形状単室式の仕組み(その4)。A single-chamber system with an upper and lower overhang that circulates and pumps only the heavy liquid phase (Part 4). 重液相のみを循環送液する上下張出形状単室式の仕組み(その5)。A single-chamber system with an upper and lower overhang that circulates and pumps only the heavy liquid phase (Part 5). 重液相及び軽液相を1回通過送液する上下張出形状単室式の仕組み(その1)。A single-chamber system with an upper and lower overhang that transports the heavy liquid phase and light liquid phase once (part 1). 重液相及び軽液相を1回通過送液する上下張出形状単室式の仕組み(その2)。A single-chamber mechanism with an upper and lower overhang that transports the heavy liquid phase and light liquid phase once (part 2). 重液相及び軽液相を1回通過送液する上下張出形状単室式の仕組み(その3)。A single-chamber system with an upper and lower overhang that transports the heavy liquid phase and light liquid phase once (part 3). 重液相及び軽液相を1回通過送液する上下張出形状単室式の仕組み(その4)。A single-chamber system with an upper and lower overhang that transports the heavy liquid phase and light liquid phase once (part 4). 重液相及び軽液相を1回通過送液する上下張出形状単室式の仕組み(その5)。A single-chamber system with an upper and lower overhang that transports the heavy liquid phase and light liquid phase once (Part 5). 縦長形状単室式で軸ホルダー又は軸受を利用した仕組み(その1)。Vertically long, single-chamber system that uses a shaft holder or bearing (part 1). 上下張出縦長形状単室式で軸ホルダー又は軸受を利用した仕組み(その1)。A vertically elongated single-chamber type with vertically extending upper and lower sides that uses a shaft holder or bearing (part 1). 縦長形状単室式で軸ホルダー又は軸受を利用した仕組み(その2)。Vertically long, single-chamber system that uses a shaft holder or bearing (Part 2). 上下張出縦長形状単室式で軸ホルダー又は軸受を利用した仕組み(その2)。A mechanism using a shaft holder or bearing in a vertically elongated single-chamber type with upper and lower overhangs (Part 2). 縦長形状単室式で二軸直交歯車を利用した仕組み。A vertically elongated, single-chamber system that uses two axes orthogonal gears. 上下張出縦長形状単室式で二軸直交歯車を利用した仕組み。A vertically elongated single-chamber type with vertically extending top and bottom, and a mechanism that uses two axes orthogonal gears. 重液相及び軽液相を循環送液する複室式の仕組み(その1)。A multi-chamber system that circulates the heavy liquid phase and light liquid phase (Part 1). 重液相及び軽液相を循環送液する複室式の仕組み(その2)。A multi-chamber system that circulates the heavy liquid phase and light liquid phase (Part 2). 重液相及び軽液相を循環送液する複室式の仕組み(その3)。A multi-chamber system that circulates the heavy liquid phase and light liquid phase (Part 3). 重液相及び軽液相を循環送液する複室式の仕組み(その4)。A multi-chamber system that circulates the heavy liquid phase and light liquid phase (part 4). 軽液相のみを循環送液する複室式の仕組み(その1)。A multi-chamber system that circulates only the light liquid phase (Part 1). 軽液相のみを循環送液する複室式の仕組み(その2)。A multi-chamber system that circulates only the light liquid phase (Part 2). 軽液相のみを循環送液する複室式の仕組み(その3)。A multi-chamber system that circulates only the light liquid phase (part 3). 軽液相のみを循環送液する複室式の仕組み(その4)。A multi-chamber system that circulates only the light liquid phase (part 4). 重液相のみを循環送液する複室式の仕組み(その1)。A multi-chamber system that circulates only the heavy liquid phase (Part 1). 重液相のみを循環送液する複室式の仕組み(その2)。A multi-chamber system that circulates only the heavy liquid phase (Part 2). 重液相のみを循環送液する複室式の仕組み(その3)。A multi-chamber system that circulates only the heavy liquid phase (part 3). 重液相のみを循環送液する複室式の仕組み(その4)。A multi-chamber system that circulates only the heavy liquid phase (part 4). 重液相及び軽液相を1回通過送液する複室式の仕組み(その1)。A multi-chamber system that transports heavy liquid phase and light liquid phase once (part 1). 重液相及び軽液相を1回通過送液する複室式の仕組み(その2)。A multi-chamber mechanism (part 2) that transports the heavy liquid phase and light liquid phase once. 重液相及び軽液相を1回通過送液する複室式の仕組み(その3)。A multi-chamber system that transports heavy liquid phase and light liquid phase once (part 3). 重液相及び軽液相を1回通過送液する複室式の仕組み(その4)。A multi-chamber system that transports heavy liquid phase and light liquid phase once (part 4). 仕切板の構造と2液相設置時の上下連通部位の関係(その1)。Relationship between the structure of the partition plate and the upper and lower communication parts when installing two liquid phases (Part 1). 仕切板の構造と2液相設置時の上下連通部位の関係(その1)。Relationship between the structure of the partition plate and the upper and lower communication parts when installing two liquid phases (Part 1). 仕切板の構造と2液相設置時の上下連通部位の関係(その2)。Relationship between the structure of the partition plate and the upper and lower communication parts when installing two liquid phases (Part 2). 仕切板の構造と2液相設置時の上下連通部位の関係(その2)。Relationship between the structure of the partition plate and the upper and lower communication parts when installing two liquid phases (Part 2). 仕切板の構造と2液相設置時の上下連通部位の関係(その3)。Relationship between the structure of the partition plate and the upper and lower communication parts when installing two liquid phases (Part 3). 仕切板の構造と2液相設置時の上下連通部位の関係(その3)。Relationship between the structure of the partition plate and the upper and lower communication parts when installing two liquid phases (Part 3). 仕切板の構造と2液相設置時の上下連通部位の関係(その4)。Relationship between the structure of the partition plate and the upper and lower communication parts when installing two liquid phases (Part 4). 仕切板の構造と2液相設置時の上下連通部位の関係(その4)。Relationship between the structure of the partition plate and the upper and lower communication parts when installing two liquid phases (Part 4). 仕切板の構造と2液相設置時の上下連通部位の関係(その5)。Relationship between the structure of the partition plate and the upper and lower communication parts when installing two liquid phases (Part 5). 仕切板の構造と2液相設置時の上下連通部位の関係(その5)。Relationship between the structure of the partition plate and the upper and lower communication parts when installing two liquid phases (Part 5). 仕切板の構造と2液相設置時の上下連通部位の関係(その6)。Relationship between the structure of the partition plate and the upper and lower communication parts when installing two liquid phases (Part 6). 仕切板の構造と2液相設置時の上下連通部位の関係(その6)。Relationship between the structure of the partition plate and the upper and lower communication parts when installing two liquid phases (Part 6). 仕切板の構造と2液相設置時の上下連通部位の関係(その7)。Relationship between the structure of the partition plate and the upper and lower communication parts when installing two liquid phases (Part 7). 仕切板の構造と2液相設置時の上下連通部位の関係(その7)。Relationship between the structure of the partition plate and the upper and lower communication parts when installing two liquid phases (Part 7). 仕切板の構造と2液相設置時の上下連通部位の関係(その8)。Relationship between the structure of the partition plate and the upper and lower communication parts when installing two liquid phases (Part 8). 仕切板の構造と2液相設置時の上下連通部位の関係(その8)。Relationship between the structure of the partition plate and the upper and lower communication parts when installing two liquid phases (Part 8). 仕切板の構造と2液相設置時の上下連通部位の関係(その9)。Relationship between the structure of the partition plate and the upper and lower communication parts when installing two liquid phases (Part 9). 仕切板の構造と2液相設置時の上下連通部位の関係(その9)。Relationship between the structure of the partition plate and the upper and lower communication parts when installing two liquid phases (Part 9). 重液相及び軽液相を循環送液する複室式の仕組み(その5)。A multi-chamber mechanism that circulates the heavy liquid phase and light liquid phase (Part 5). 重液相及び軽液相を循環送液する複室式の仕組み(その6)。A multi-chamber mechanism that circulates the heavy liquid phase and light liquid phase (Part 6). 重液相及び軽液相を循環送液する複室式の仕組み(その7)。A multi-chamber mechanism that circulates the heavy liquid phase and light liquid phase (Part 7). 重液相及び軽液相を循環送液する複室式の仕組み(その8)。A multi-chamber mechanism that circulates the heavy liquid phase and light liquid phase (Part 8). 軽液相のみを循環送液する複室式の仕組み(その5)。A multi-chamber system that circulates only the light liquid phase (Part 5). 軽液相のみを循環送液する複室式の仕組み(その6)。A multi-chamber system that circulates only the light liquid phase (Part 6). 軽液相のみを循環送液する複室式の仕組み(その7)。A multi-chamber system that circulates only the light liquid phase (Part 7). 軽液相のみを循環送液する複室式の仕組み(その8)。A multi-chamber system that circulates only the light liquid phase (Part 8). 重液相のみを循環送液する複室式の仕組み(その5)。A multi-chamber system that circulates only the heavy liquid phase (Part 5). 重液相のみを循環送液する複室式の仕組み(その6)。A multi-chamber system that circulates only the heavy liquid phase (Part 6). 重液相のみを循環送液する複室式の仕組み(その7)。A multi-chamber system that circulates only the heavy liquid phase (Part 7). 重液相のみを循環送液する複室式の仕組み(その8)。A multi-chamber system that circulates only the heavy liquid phase (Part 8). 重液相及び軽液相を1回通過送液する複室式の仕組み(その5)。A multi-chamber system that transports the heavy liquid phase and light liquid phase once (part 5). 重液相及び軽液相を1回通過送液する複室式の仕組み(その6)。A multi-chamber system that transports heavy liquid phase and light liquid phase once (part 6). 重液相及び軽液相を1回通過送液する複室式の仕組み(その7)。A multi-chamber system that transports the heavy liquid phase and light liquid phase once (part 7). 重液相及び軽液相を1回通過送液する複室式の仕組み(その8)。A multi-chamber system that transports heavy liquid phase and light liquid phase once (part 8). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その1)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 1). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その1)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 1). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その2)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 2). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その2)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 2). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その3)。Relationship between the structure of the upper partition plate and lower partition plate and the upper and lower communication parts (part 3). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その3)。Relationship between the structure of the upper partition plate and lower partition plate and the upper and lower communication parts (part 3). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その4)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (part 4). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その4)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (part 4). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その5)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 5). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その5)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 5). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その6)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (part 6). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その6)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (part 6). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その7)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (part 7). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その7)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (part 7). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その8)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 8). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その8)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 8). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その9)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (part 9). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その9)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (part 9). 重液相及び軽液相を循環送液する複室式の仕組み(その9)。A multi-chamber system that circulates the heavy liquid phase and light liquid phase (part 9). 重液相及び軽液相を循環送液する複室式の仕組み(その10)。A multi-chamber system that circulates the heavy liquid phase and light liquid phase (Part 10). 重液相及び軽液相を循環送液する複室式の仕組み(その11)。A multi-chamber system that circulates the heavy liquid phase and light liquid phase (Part 11). 重液相及び軽液相を循環送液する複室式の仕組み(その12)。A multi-chamber system that circulates the heavy liquid phase and light liquid phase (Part 12). 軽液相のみを循環送液する複室式の仕組み(その9)。A multi-chamber system that circulates only the light liquid phase (part 9). 軽液相のみを循環送液する複室式の仕組み(その10)。A multi-chamber system that circulates only the light liquid phase (Part 10). 軽液相のみを循環送液する複室式の仕組み(その11)。A multi-chamber system that circulates only the light liquid phase (Part 11). 軽液相のみを循環送液する複室式の仕組み(その12)。A multi-chamber system that circulates only the light liquid phase (Part 12). 重液相のみを循環送液する複室式の仕組み(その9)。A multi-chamber system that circulates only the heavy liquid phase (part 9). 重液相のみを循環送液する複室式の仕組み(その10)。A multi-chamber system that circulates only the heavy liquid phase (Part 10). 重液相のみを循環送液する複室式の仕組み(その11)。A multi-chamber system that circulates only the heavy liquid phase (Part 11). 重液相のみを循環送液する複室式の仕組み(その12)。A multi-chamber system that circulates only the heavy liquid phase (Part 12). 重液相及び軽液相を1回通過送液する複室式の仕組み(その9)。A multi-chamber system that transports the heavy liquid phase and light liquid phase once (part 9). 重液相及び軽液相を1回通過送液する複室式の仕組み(その10)。A multi-chamber mechanism that transports heavy liquid phase and light liquid phase once (part 10). 重液相及び軽液相を1回通過送液する複室式の仕組み(その11)。A multi-chamber mechanism that transports heavy liquid phase and light liquid phase once (Part 11). 重液相及び軽液相を1回通過送液する複室式の仕組み(その12)。A multi-chamber system that transports heavy liquid phase and light liquid phase once (part 12). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その10)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 10). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その10)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 10). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その11)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 11). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その11)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 11). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その12)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 12). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その12)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 12). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その13)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 13). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その13)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 13). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その14)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 14). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その14)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 14). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その15)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 15). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その15)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 15). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その16)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 16). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その16)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 16). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その17)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 17). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その17)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 17). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その18)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 18). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その18)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 18). 重液相及び軽液相を循環送液する複室式の仕組み(その13)。A multi-chamber mechanism that circulates the heavy liquid phase and light liquid phase (Part 13). 重液相及び軽液相を循環送液する複室式の仕組み(その14)。A multi-chamber mechanism that circulates the heavy liquid phase and light liquid phase (Part 14). 重液相及び軽液相を循環送液する複室式の仕組み(その15)。A multi-chamber mechanism that circulates the heavy liquid phase and light liquid phase (Part 15). 重液相及び軽液相を循環送液する複室式の仕組み(その16)。A multi-chamber system that circulates the heavy liquid phase and light liquid phase (Part 16). 軽液相のみを循環送液する複室式の仕組み(その13)。A multi-chamber system that circulates only the light liquid phase (Part 13). 軽液相のみを循環送液する複室式の仕組み(その14)。A multi-chamber system that circulates only the light liquid phase (Part 14). 軽液相のみを循環送液する複室式の仕組み(その15)。A multi-chamber system that circulates only the light liquid phase (Part 15). 軽液相のみを循環送液する複室式の仕組み(その16)。A multi-chamber system that circulates only the light liquid phase (Part 16). 重液相のみを循環送液する複室式の仕組み(その13)。A multi-chamber system that circulates only the heavy liquid phase (Part 13). 重液相のみを循環送液する複室式の仕組み(その14)。A multi-chamber system that circulates only the heavy liquid phase (Part 14). 重液相のみを循環送液する複室式の仕組み(その15)。A multi-chamber system that circulates only the heavy liquid phase (Part 15). 重液相のみを循環送液する複室式の仕組み(その16)。A multi-chamber system that circulates only the heavy liquid phase (Part 16). 重液相及び軽液相を1回通過送液する複室式の仕組み(その13)。A multi-chamber mechanism that transports heavy liquid phase and light liquid phase once (part 13). 重液相及び軽液相を1回通過送液する複室式の仕組み(その14)。A multi-chamber system that transports heavy liquid phase and light liquid phase once (Part 14). 重液相及び軽液相を1回通過送液する複室式の仕組み(その15)。A multi-chamber system that transports heavy liquid phase and light liquid phase once (Part 15). 重液相及び軽液相を1回通過送液する複室式の仕組み(その16)。A multi-chamber system that transports heavy liquid phase and light liquid phase once (Part 16). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その19)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 19). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その19)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 19). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その20)Relationship between the structure of the upper partition plate and lower partition plate and the upper and lower communication parts (Part 20) 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その20)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 20). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その21)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 21). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その21)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 21). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その22)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 22). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その22)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 22). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その23)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 23). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その23)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 23). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その24)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 24). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その24)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 24). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その25)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 25). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その25)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 25). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その26)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 26). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その26)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 26). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その27)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 27). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その27)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 27). 重液相及び軽液相を循環送液する複室式の仕組み(その17)。A multi-chamber system that circulates the heavy liquid phase and light liquid phase (Part 17). 重液相及び軽液相を循環送液する複室式の仕組み(その18)。A multi-chamber system that circulates the heavy liquid phase and light liquid phase (Part 18). 重液相及び軽液相を循環送液する複室式の仕組み(その19)。A multi-chamber system that circulates the heavy liquid phase and light liquid phase (Part 19). 重液相及び軽液相を循環送液する複室式の仕組み(その20)。A multi-chamber mechanism that circulates the heavy liquid phase and light liquid phase (Part 20). 軽液相のみを循環送液する複室式の仕組み(その17)。A multi-chamber system that circulates only the light liquid phase (Part 17). 軽液相のみを循環送液する複室式の仕組み(その18)。A multi-chamber system that circulates only the light liquid phase (Part 18). 軽液相のみを循環送液する複室式の仕組み(その19)。A multi-chamber system that circulates only the light liquid phase (Part 19). 軽液相のみを循環送液する複室式の仕組み(その20)。A multi-chamber system that circulates only the light liquid phase (Part 20). 重液相のみを循環送液する複室式の仕組み(その17)。A multi-chamber system that circulates only the heavy liquid phase (Part 17). 重液相のみを循環送液する複室式の仕組み(その18)。A multi-chamber system that circulates only the heavy liquid phase (Part 18). 重液相のみを循環送液する複室式の仕組み(その19)。A multi-chamber system that circulates only the heavy liquid phase (Part 19). 重液相のみを循環送液する複室式の仕組み(その20)。A multi-chamber system that circulates only the heavy liquid phase (Part 20). 重液相及び軽液相を1回通過送液する複室式の仕組み(その17)。A multi-chamber system that transports heavy liquid phase and light liquid phase once (Part 17). 重液相及び軽液相を1回通過送液する複室式の仕組み(その18)。A multi-chamber system that transports heavy liquid phase and light liquid phase once (part 18). 重液相及び軽液相を1回通過送液する複室式の仕組み(その19)。A multi-chamber system that transports the heavy liquid phase and light liquid phase once (part 19). 重液相及び軽液相を1回通過送液する複室式の仕組み(その20)。A multi-chamber system that transports heavy liquid phase and light liquid phase once (part 20). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その28)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 28). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その28)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 28). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その29)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 29). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その29)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (Part 29). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その30)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (part 30). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その30)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (part 30). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その31)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (part 31). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その31)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (part 31). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その32)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (part 32). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その32)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (part 32). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その33)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (part 33). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その33)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (part 33). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その34)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (part 34). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その34)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (part 34). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その35)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (part 35). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その35)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (part 35). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その36)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (part 36). 上方仕切板及び下方仕切板の構造と上下連通部位の関係(その36)。Relationship between the structure of the upper partition plate and the lower partition plate and the upper and lower communication parts (part 36). 図1(f)の仕組みを稼働させたときの乳濁混合状態の領域。The region of the emulsion mixed state when the mechanism shown in FIG. 1(f) is operated. 図2(f)の仕組みを稼働させたときの乳濁混合状態の領域。The region of the emulsion mixed state when the mechanism shown in FIG. 2(f) is operated. 図4(e)の仕組みを稼働させたときの乳濁混合状態の領域。The region of the emulsion mixed state when the mechanism of FIG. 4(e) is operated. 図6(e)の仕組みを稼働させたときの乳濁混合状態の領域。The region of the emulsion mixed state when the mechanism of FIG. 6(e) is operated. 図8(e)の仕組みを稼働させたときの乳濁混合状態の領域。The region of the emulsion mixed state when the mechanism of FIG. 8(e) is operated. 図10(e)の仕組みを稼働させたときの乳濁混合状態の領域。The region of the emulsion mixed state when the mechanism of FIG. 10(e) is operated. 図12(e)の仕組みを稼働させたときの乳濁混合状態の領域。The region of the emulsion mixed state when the mechanism shown in FIG. 12(e) is operated. 図4(e)に示す仕切板において上下の両室連通部位以外にも横型の通過口を設置した仕組み。In the partition plate shown in FIG. 4(e), horizontal passage ports are installed in addition to the communication areas between the upper and lower chambers. 図21の仕組みを稼働させたときの乳濁混合状態の領域。The region of the emulsion mixed state when the mechanism of FIG. 21 is operated. 図8(m)に対応しているところの従来のミキサーセトラーの仕組み。The conventional mixer settler mechanism corresponds to Figure 8(m).

本発明は、攪拌翼2が備えられた容器1に重液相と軽液相を設置して行う機械撹拌に基づく液液抽出において、2液相間の界面を常に同じ位置に維持でき、前記容器又は部屋での両相の体積比を送液速度とは無関係に設定でき、重液相と軽液相を効率的に相混合して広範囲で安定なエマルション相(2液相乳濁混合相)を成長させることができ、撹拌翼回転(相混合の強さ)が送液速度に影響しないようにでき、重液相と軽液相の向流接触により理論段数が向上し、相混合のための容器1において相分離を同時進行させることで分相性が向上し、オーバーフロー(溢流)による液送りから圧力作用による送液に切り替えることで循環送液を容易にできることを特徴とする、液液抽出に基づく特定物質の抽出回収方法に関するものである。 In liquid-liquid extraction based on mechanical stirring performed by installing a heavy liquid phase and a light liquid phase in a container 1 equipped with stirring blades 2, the present invention can always maintain the interface between the two liquid phases at the same position, and The volume ratio of both phases in a container or room can be set independently of the liquid feeding rate, and the heavy liquid phase and light liquid phase can be efficiently mixed to create a stable emulsion phase (two-liquid emulsion mixed phase) over a wide range. ), the rotation of the stirring blade (strength of phase mixing) can be prevented from affecting the liquid feeding speed, and the number of theoretical plates can be increased due to countercurrent contact between the heavy liquid phase and the light liquid phase, and the phase mixing can be improved. The liquid is characterized in that the phase separation property is improved by simultaneously proceeding phase separation in the container 1, and the circulating liquid can be easily transferred by switching from liquid feeding by overflow to liquid feeding by pressure action. This invention relates to a method for extracting and recovering specific substances based on liquid extraction.

ミキサーセトラー法に代表される従来の機械撹拌を利用した液液抽出の仕組みには、界面位置が変動しやすい、相混合にあずかる2液相の体積比が両相の送液速度の比に依存する、2液相混合の際に周囲の重液相を巻き込んでしまう、攪拌翼2の回転速度が送液速度に影響してしまう、などの問題点がある。本発明は、これらの従来法の仕組みが持つ問題点を解消するものであり、加えて、従来法の仕組みでは得られない革新的な特徴を発現させるものである。この仕組みを用いた方法により、従来法よりも効率的かつ効果的に特定物質を製造することが可能になる。 In conventional liquid-liquid extraction mechanisms using mechanical stirring, such as the mixer-settler method, the interface position tends to fluctuate, and the volume ratio of the two liquid phases participating in phase mixing depends on the ratio of the liquid feeding speeds of both phases. There are problems such as, the surrounding heavy liquid phase is dragged in when two liquid phases are mixed, and the rotational speed of the stirring blade 2 affects the liquid feeding speed. The present invention solves the problems inherent in the mechanisms of these conventional methods and, in addition, brings out innovative features that cannot be obtained with the mechanisms of the conventional methods. A method using this mechanism makes it possible to produce specific substances more efficiently and effectively than conventional methods.

攪拌翼2の翼部位を重液相4と軽液相5の間の界面100の近傍に配置して回転させ、該撹拌翼を格納する容器1の上方から重液相4、下方から軽液相5を送液導入する仕組みを利用することで、前述の従来法の仕組みが持つ問題点を解決できる。また、本発明の仕組みでは、重液相4と軽液相5の流れが対向していることで両相が向流接触し、理論段数が向上する。また、相混合のための容器1において相分離を同時進行させることで、分相性が向上する。さらに、オーバーフローから圧力送液への切り替えにより、循環送液を容易にできる。すなわち、従来法の問題点を解消できるだけではなく、従来法では得られない革新的な特徴が発現することから、従来法よりも効率的かつ効果的に、液液抽出に基づく特定物質の抽出回収を行うことができるようになる。 The blade part of the stirring blade 2 is arranged near the interface 100 between the heavy liquid phase 4 and the light liquid phase 5 and rotated, and the heavy liquid phase 4 is drawn from above and the light liquid from below of the container 1 in which the stirring blade is stored. By using a mechanism for feeding and introducing phase 5, the problems associated with the mechanism of the conventional method described above can be solved. Furthermore, in the mechanism of the present invention, the heavy liquid phase 4 and the light liquid phase 5 flow in opposite directions, so that the two phases come into countercurrent contact, and the number of theoretical plates increases. Further, phase separation properties are improved by allowing phase separation to proceed simultaneously in the container 1 for phase mixing. Furthermore, by switching from overflow to pressure liquid feeding, circulating liquid feeding can be facilitated. In other words, it not only solves the problems of conventional methods, but also brings out innovative features that cannot be obtained with conventional methods, making it possible to extract and recover specific substances based on liquid-liquid extraction more efficiently and effectively than conventional methods. You will be able to do this.

初めに、本発明の最も基本的でシンプルな仕組みとして、図1(a)から図1(t)までを参照するが、この限りではない。攪拌翼2を備えた1つの容器1に重液相4と軽液相5を設置し、該容器内の両相の界面100の近傍に攪拌翼2の翼部位を配置した構造であって、該撹拌翼を回転させるとともに、前記容器の上方から重液相4、下方から軽液相5を送液導入し、両相が乳濁混合された状態と相分離された状態が共存するようにして液液抽出を行う。このような仕組みによれば、ミキサーセトラー法に代表される従来の機械撹拌を利用した液液抽出では実現できなかった2液相の向流接触が可能となる。なお、これらの図では、例として、重液相と軽液相を同体積としているが、その限りではない。図1(a)、図1(b)、図1(c)、図1(d)、図1(e)、図1(f)、図1(g)、図1(h)、図1(i)、図1(j)、図1(k)、図1(l)、図1(m)、図1(n)、及び図1(o)は、重液相若しくは軽液相又はその両方を循環送液させる仕組みの例であり、図1(p)、図1(q)、図1(r)、図1(s)、及び図1(t)は、重液相と軽液相の両方を1回通過で送液させる仕組みの例である。 First, as the most basic and simple mechanism of the present invention, reference will be made to FIGS. 1(a) to 1(t), but the invention is not limited thereto. A structure in which a heavy liquid phase 4 and a light liquid phase 5 are placed in one container 1 equipped with a stirring blade 2, and a blade portion of the stirring blade 2 is placed near an interface 100 between both phases in the container, While rotating the stirring blade, the heavy liquid phase 4 is introduced from the top of the container, and the light liquid phase 5 is introduced from the bottom, so that a state where both phases are emulsified and mixed and a state where they are phase separated coexist. Perform liquid-liquid extraction. According to such a mechanism, countercurrent contact of two liquid phases, which could not be realized in conventional liquid-liquid extraction using mechanical stirring, such as the mixer-settler method, becomes possible. In addition, in these figures, as an example, the heavy liquid phase and the light liquid phase are shown to have the same volume, but this is not a limitation. Figure 1(a), Figure 1(b), Figure 1(c), Figure 1(d), Figure 1(e), Figure 1(f), Figure 1(g), Figure 1(h), Figure 1 (i), FIG. 1(j), FIG. 1(k), FIG. 1(l), FIG. 1(m), FIG. 1(n), and FIG. 1(o) show the heavy liquid phase or light liquid phase or This is an example of a mechanism for circulating liquid in both of them. This is an example of a mechanism for sending both liquid phases in one pass.

図1(a)、図1(b)、図1(c)、図1(d)、及び図1(e)では、重液相、軽液相ともに循環送液する。図1(f)、図1(g)、図1(h)、図1(i)、及び図1(j)は、重液相を1回通過で送液しながら、軽液相を循環送液する。また、重液相の排出方法として、図1(f)及び図1(g)は配管方式、図1(h)、図1(i)、及び図1(j)は容器内通路方式である。なお、重液相の排出は、配管方式(図1(f)及び図1(g))でも容器内通路方式(図1(h)、図1(i)、及び図1(j))でも、排出位置を上方に配置して行う。図1(k)、図1(l)、図1(m)、図1(n)、及び図1(o)は、重液相を循環送液しながら、軽液相を1回通過で送液する。また、軽液相の排出方法として、図1(k)及び図1(l)は送液ライン7による配管方式、図1(m) 、図1(n)、及び図1(o)は軽液相通路12による容器内通路方式である。なお、軽液相の排出は、配管方式(図1(k)及び図1(l))では排出位置を上方に配置し、容器内通路方式(図1(m)、図1(n)、及び図1(o))では排出位置を下方に配置して行う。なお、図1(k)及び図1(l)について、軽液相の供給と排出を同じ高さで管理したい場合には、排出の配管を上方から下方に向けて延長することも可能である。なお、油相(多くの場合、軽液相5)内で分離精製される特定物質は、油相の送液ライン(多くの場合、軽液相の送液ライン7)に逆抽出容器(図示せず)を設けることで、該逆抽出容器内に設置された逆抽出液(多くの場合、重液相)に回収できる。すなわち、同一出願人が先に提出した特願2019-113657号の図1と同様に、例えば、送液ライン7の入口から取り出した軽液相を、容器1と同様の構造を有する逆抽出容器の下方から逆抽出液(重液相)内に送液し、その上方から得られるリセットされた軽液相を再度送液ライン7に戻すようにして、逆抽出液内に特定物質を回収する。 In FIGS. 1(a), 1(b), 1(c), 1(d), and 1(e), both the heavy liquid phase and the light liquid phase are circulated. Figure 1(f), Figure 1(g), Figure 1(h), Figure 1(i), and Figure 1(j) show that the light liquid phase is circulated while the heavy liquid phase is fed in one pass. Send liquid. In addition, as for the method of discharging the heavy liquid phase, Fig. 1(f) and Fig. 1(g) show a piping method, and Fig. 1(h), Fig. 1(i), and Fig. 1(j) show an in-container passage method. . The heavy liquid phase can be discharged either by piping method (Fig. 1(f) and Fig. 1(g)) or by internal passage method (Fig. 1(h), Fig. 1(i), and Fig. 1(j)). , the discharge position is placed upward. Figure 1(k), Figure 1(l), Figure 1(m), Figure 1(n), and Figure 1(o) show that the heavy liquid phase is circulated and the light liquid phase is passed once. Send liquid. In addition, as for the method of discharging the light liquid phase, Fig. 1(k) and Fig. 1(l) show the piping method using the liquid feed line 7, and Fig. 1(m), Fig. 1(n), and Fig. 1(o) show the method of discharging the light liquid phase. This is an in-container passage system using a liquid phase passage 12. The light liquid phase can be discharged by placing the discharge position upward in the piping method (Figs. 1(k) and 1(l)), and in the container passage method (Fig. 1(m), Fig. 1(n), In FIG. 1(o)), the discharge position is placed downward. Regarding Figures 1(k) and 1(l), if you want to manage the supply and discharge of the light liquid phase at the same height, it is also possible to extend the discharge piping from the top to the bottom. . In addition, specific substances to be separated and purified in the oil phase (light liquid phase 5 in most cases) are placed in a back extraction container (Fig. (not shown), it can be collected in the back extraction liquid (in most cases, heavy liquid phase) placed in the back extraction vessel. That is, similar to FIG. 1 of Japanese Patent Application No. 2019-113657 previously filed by the same applicant, for example, the light liquid phase taken out from the inlet of the liquid feeding line 7 is transferred to a reverse extraction container having the same structure as the container 1. The specific substance is recovered in the reverse extraction solution by feeding the liquid into the reverse extraction solution (heavy liquid phase) from below and returning the reset light liquid phase obtained from above to the liquid supply line 7. .

図1(p)、図1(q)、図1(r)、図1(s)、及び図1(t)は、重液相、軽液相ともに1回通過で送液する仕組みの例である。図1(p)では、重液相4、軽液相5ともに、排出方法を配管方式として、1回通過で送液する。図1(q)では、排出方法として、重液相は容器内通路方式、軽液相は配管方式として、1回通過で送液する。図1(r)では、排出方法として、重液相は配管方式、軽液相は容器内通路方式として、1回通過で送液する。図1(s)と図1(t)では、重液相、軽液相ともに、排出方法を容器内通路方式として、1回通過で送液する。また、図1(s)は重液相と軽液相の容器内通路を容器1の一方に寄せた形、図1(t)は両相の容器内通路を左右に割り振った形である。なお、重液相4の排出は、配管方式(図1(p)及び図1(r))でも容器内通路方式(図1(q)、図1(s)、及び図1(t))でも、排出位置を上方に配置して行う。また、軽液相5の排出は、配管方式(図1(p)及び図1(q))では排出位置を上方に配置し、容器内通路方式(図1(r)、図1(s)、及び図1(t))では排出位置を下方に配置して行う。なお、図1(p)及び図1(q)について、軽液相の供給と排出を同じ高さで管理したい場合には、排出の配管を上方から下方に向けて延長することも可能である。 Figure 1(p), Figure 1(q), Figure 1(r), Figure 1(s), and Figure 1(t) are examples of a mechanism in which both the heavy liquid phase and the light liquid phase are transferred in one pass. It is. In FIG. 1(p), both the heavy liquid phase 4 and the light liquid phase 5 are discharged by a piping method, and the liquids are sent in one pass. In FIG. 1(q), the heavy liquid phase is discharged by an in-container passage method, and the light liquid phase is discharged by a piping method, and the liquid is sent in one pass. In FIG. 1(r), the heavy liquid phase is discharged by a piping method, and the light liquid phase is discharged by a passage method in a container, and the liquid is sent in one pass. In FIGS. 1(s) and 1(t), the discharge method for both the heavy liquid phase and the light liquid phase is a container passage method, and the liquid is sent in one pass. Further, FIG. 1(s) shows a shape in which the passages in the container for the heavy liquid phase and the light liquid phase are brought to one side of the container 1, and FIG. 1(t) shows a shape in which the passages in the container for both phases are distributed to the left and right. The heavy liquid phase 4 can be discharged either by piping method (Fig. 1 (p) and Fig. 1 (r)) or by internal passage method (Fig. 1 (q), Fig. 1 (s), and Fig. 1 (t)). However, it is done by placing the ejection position upward. In addition, the light liquid phase 5 is discharged by placing the discharge position upward in the piping method (Fig. 1 (p) and Fig. 1 (q)), and by placing the discharge position upward in the pipe method (Fig. 1 (r), Fig. 1 (s)). , and FIG. 1(t)), the discharge position is placed downward. Regarding Figures 1(p) and 1(q), if you want to manage the supply and discharge of the light liquid phase at the same height, it is also possible to extend the discharge piping from the top to the bottom. .

また、図1(a)乃至図1(t)に示すところの攪拌翼2の翼部位の位置には、ある程度の幅を持たすことができ、例えば、2液相の界面100から上下に該翼部位の厚さ(高さ)の2、3倍程度の範囲内であれば、本発明の方法が有効である。 Further, the positions of the blade portions of the stirring blades 2 shown in FIGS. 1(a) to 1(t) can have a certain width, for example, the blades are located above and below the interface 100 between the two liquid phases. The method of the present invention is effective within a range of about 2 to 3 times the thickness (height) of the part.

図1(a)乃至図1(t)に示すところの仕組みは、重液相4と軽液相5が乳濁混合した状態と両相が相分離した状態が共存する点に特徴があり、分相された両相が排出又は循環送液に供されることで機能する。すなわち、相分離は本発明の要であり、相分離を確実に行うことが重要である。そこで、例えば、容器1の上方部分若しくは下方部分又はその両方に対して、該容器の中間部分よりも断面積が大きい形状(張出形状)を設けることにより、重液相4と軽液相5の相分離が促進される。なお、翼部位を大きくしたいなどの理由から、該容器の中央部分の断面積を大きくする場合にも、前記張出形状と前記中央部分の間を狭窄させることで、同様な効果が得られる。 The mechanism shown in FIGS. 1(a) to 1(t) is characterized by the coexistence of a state where the heavy liquid phase 4 and the light liquid phase 5 are emulsified and mixed, and a state where both phases are separated. It functions by discharging or circulating the two separated phases. That is, phase separation is the key to the present invention, and it is important to perform phase separation reliably. Therefore, for example, by providing the upper part, the lower part, or both of the container 1 with a shape (overhanging shape) having a larger cross-sectional area than the middle part of the container, the heavy liquid phase 4 and the light liquid phase 5 can be phase separation is promoted. Note that even when the cross-sectional area of the central portion of the container is increased for reasons such as increasing the size of the wing portion, the same effect can be obtained by narrowing the space between the projecting shape and the central portion.

図2(a)から図2(t)までに、容器1の上方及び下方の両方に対して該容器の中間部分よりも断面積が大きい形状(張出形状)を設けた例を示すが、その限りではない。このような形状を有する容器であっても、図1(a)から図1(t)までに示す構造と同様な流路の仕組みが可能である。 FIGS. 2(a) to 2(t) show examples in which both the upper and lower parts of the container 1 are provided with a shape (overhanging shape) that has a larger cross-sectional area than the middle part of the container. That's not the limit. Even in a container having such a shape, a flow path mechanism similar to the structure shown in FIGS. 1(a) to 1(t) is possible.

図1(a)乃至図1(t)等、及び図2(a)乃至図2(t) 等に示す仕組みにおいて、重液相4と軽液相5が乳濁混合した領域を大きくすれば、液液抽出の処理速度(プロセッシング・スピード)を大きくでき、両相が相分離した領域を大きくすれば、分相に余裕を持たせることができる。例えば、容器1をより一層縦長の形状(鉛直方向に拡張した形状)にして体積を大きくすると(以下、縦長形状の顕著化という)、重液相4と軽液相5の乳濁混合状態の領域が鉛直方向に拡張されることで処理速度が増加し、分相に余裕が生じ、両相の相分離が促される。加えて、縦長の形状は、設置床面積を小さくできる点でも有利である。 In the mechanisms shown in FIGS. 1(a) to 1(t), etc., and FIGS. 2(a) to 2(t), etc., if the area where the heavy liquid phase 4 and the light liquid phase 5 are emulsified and mixed is enlarged, If the processing speed of liquid-liquid extraction can be increased, and the region where both phases are separated can be increased, a margin can be given to phase separation. For example, if the container 1 is made to have a more vertically elongated shape (a shape expanded in the vertical direction) and its volume is increased (hereinafter referred to as the elongated shape becoming more pronounced), the emulsified mixed state of the heavy liquid phase 4 and the light liquid phase 5 will change. By expanding the area in the vertical direction, the processing speed increases, a margin is created for phase separation, and phase separation of both phases is promoted. In addition, the vertically elongated shape is advantageous in that the installation floor area can be reduced.

さらに、重液相4と軽液相5を向流接触させることで高い理論段数が期待できる仕組みであることから、縦長形状をより顕著化すれば、理論段数の観点から選択的分離能が向上するので、より高度な分離が可能になる。 Furthermore, since the mechanism is such that a high number of theoretical plates can be expected by bringing the heavy liquid phase 4 and the light liquid phase 5 into countercurrent contact, if the vertically elongated shape is made more pronounced, the selective separation power will improve from the viewpoint of the number of theoretical plates. Therefore, more advanced separation becomes possible.

一方、容器1の縦長形状を顕著化すれば、必然的に、攪拌翼2の回転軸を長くしなければならない。ところが、回転軸が長くなれば、軸振動や軸ぶれが大きくなり、正常な機械撹拌が不可能になる場合もある。そこで、軸ホルダー若しくは軸受(ベアリング)又は二軸直交歯車を設置することで、軸振動や軸ぶれを解消することができる。なお、軸ホルダー、軸受、及び二軸直交歯車のうちの2者又はすべてを組み合せて用いても良い。図3(a)から図3(f)までに、軸ホルダー若しくは軸受又は二軸直交歯車を設置した例を示すが、その限りではない。 On the other hand, if the vertically elongated shape of the container 1 is made more pronounced, the rotational axis of the stirring blade 2 must necessarily be made longer. However, if the rotating shaft becomes longer, shaft vibration and shaft runout will increase, and normal mechanical stirring may become impossible. Therefore, by installing a shaft holder, a bearing, or a biaxial orthogonal gear, shaft vibration and shaft wobbling can be eliminated. Note that two or all of the shaft holder, bearing, and biaxial orthogonal gear may be used in combination. Although FIGS. 3(a) to 3(f) show examples in which shaft holders, bearings, or two-axis orthogonal gears are installed, the present invention is not limited thereto.

図3(a)は、図1(a)の構造に対して容器1の縦長形状を顕著化したもので、軸振動や軸ぶれを解消するために、攪拌翼2の翼部位の上方に軸ホルダー又は軸受を設置している。なお、ここで言う軸ホルダーとは、回転軸のぶれ(とくに、左右方向の動き)を制限するものであり、回転軸と軸ホルダーは、点でも面でも接触していない構造を意図している。一方、軸受とは、点あるいは面で回転軸と軸受が接触している構造、すなわち、転がり軸受又は滑り軸受を意図している。また、図3(b)は、図2(a) の構造に対して容器1の縦長形状を顕著化したもので、図3(a)と同様に、攪拌翼2の翼部位の上方に軸ホルダー又は軸受を設置している。なお、攪拌翼2の翼部位の上方に設置する軸ホルダー又は軸受は、複数個でも良い。 Fig. 3(a) shows the structure of Fig. 1(a) in which the vertically elongated shape of the container 1 is made more conspicuous.In order to eliminate shaft vibration and shaft runout, a shaft is installed above the blade part of the stirring blade 2. A holder or bearing is installed. Note that the shaft holder referred to here is something that limits the wobbling of the rotating shaft (especially movement in the left and right direction), and is intended to have a structure in which the rotating shaft and shaft holder do not touch at any point or surface. . On the other hand, a bearing is intended to be a structure in which a rotating shaft and a bearing are in contact with each other at a point or a plane, that is, a rolling bearing or a sliding bearing. In addition, FIG. 3(b) shows the structure of FIG. 2(a) in which the vertically elongated shape of the container 1 is emphasized, and like FIG. 3(a), there is a shaft above the blade part of the stirring blade 2. A holder or bearing is installed. Note that a plurality of shaft holders or bearings may be installed above the blade portion of the stirring blade 2.

軸ホルダー又は軸受は、攪拌翼2の回転軸を翼部位の下方にまで延長した上で、該翼部位の下方に設置することも可能である。例えば、図3(c)又は図3(d)に示すように、容器1の底面付近に軸ホルダー又は軸受を設置することができるが、この限りではない。なお、攪拌翼2の翼部位の上方と下方の両方に軸ホルダー又は軸受を設置することもでき、攪拌翼2の翼部位の上方若しくは下方又はその両方に複数個の軸ホルダー又は軸受を設置しても良い。 The shaft holder or bearing can also be installed below the blade section by extending the rotating shaft of the stirring blade 2 to below the blade section. For example, as shown in FIG. 3(c) or FIG. 3(d), a shaft holder or a bearing can be installed near the bottom of the container 1, but this is not a limitation. Note that shaft holders or bearings may be installed both above and below the blade portion of the stirring blade 2, or a plurality of shaft holders or bearings may be installed above or below the blade portion of the stirring blade 2, or both. It's okay.

軸ホルダーや軸受に替えて、二軸直交歯車を用いることもできる。図3(e)では、図1(a)に示す容器1の縦長形状を顕著化したものに対して、攪拌翼2の回転軸の軸振動や軸ぶれを解消するために、該撹拌翼の翼部位の上方に二軸直交歯車を設置している。また、図3(f)では、図2(a)に示す容器1の縦長形状を顕著化したものに対して、二軸直交歯車を同様に設置している。これらの場合、鉛直方向の回転軸に直交する水平方向の回転軸は、器壁に設置した軸受によって固定されているが、この限りではない。なお、二軸直交歯車を用いる場合でも、軸ホルダーや軸受を用いる場合と同様に、攪拌翼2の翼部位の上方に複数個の二軸直交歯車を設置しても良い。また、攪拌翼2の回転軸を翼部位の下方にまで延長した上で、二軸直交歯車を該翼部位の下方に設置することも可能である。その場合、攪拌翼2の翼部位の上方と下方の両方に二軸直交歯車を設置することもでき、攪拌翼2の翼部位の上方若しくは下方又はその両方に複数個の二軸直交歯車を設置しても良い。 A biaxial orthogonal gear can also be used instead of a shaft holder or bearing. In FIG. 3(e), the vertically elongated shape of the container 1 shown in FIG. A biaxial orthogonal gear is installed above the wing section. Further, in FIG. 3(f), a biaxial orthogonal gear is similarly installed for the container 1 shown in FIG. 2(a), which has a more pronounced vertically elongated shape. In these cases, the horizontal rotation axis perpendicular to the vertical rotation axis is fixed by a bearing installed on the vessel wall, but this is not the case. Note that even when using biaxial orthogonal gears, a plurality of biaxial orthogonal gears may be installed above the blade portion of the stirring blade 2, as in the case of using a shaft holder or a bearing. Furthermore, it is also possible to extend the rotating shaft of the stirring blade 2 below the blade part and then install a biaxial orthogonal gear below the blade part. In that case, biaxial orthogonal gears can be installed both above and below the blade part of the stirring blade 2, or a plurality of biaxial orthogonal gears can be installed above or below the blade part of the stirring blade 2, or both. You may do so.

また、二軸直交歯車を用いる場合、必ずしも、鉛直方向の回転軸を動力軸にする必要はなく、水平方向の回転軸を動力軸として、鉛直方向の回転軸は軸受で固定すれば、容器1の側方に攪拌翼2回転のためのモーターを設置できる。撹拌翼回転モーターの維持・管理の点では、縦長形状の容器1の上部に設置するよりも側方に設置する方が好都合の場合もある。 In addition, when using two-axis orthogonal gears, it is not necessarily necessary to use the vertical rotation axis as the power axis.If the horizontal rotation axis is used as the power axis and the vertical rotation axis is fixed with a bearing, the container 1 A motor can be installed on the side to rotate the stirring blade twice. In terms of maintenance and management of the stirring blade rotation motor, it may be more convenient to install it on the side of the vertically long container 1 rather than on the top.

従来法の仕組みのように、重液相4と軽液相5を撹拌混合するミキサー室30と両相を相分離するセトラー室40に分離した容器構造に対しても、前述と同様な仕組みを適用することができる。具体的には、ミキサー室30とセトラー室40を格納する容器1の天井面と仕切板の間、及び底面と仕切板の間の2箇所に連通部位を設け、両室の間で重液相と軽液相が自由に行き来し合えるようにすれば、ミキサー室30とセトラー室40の区別がない前述の容器構造と同様に扱うことができる。なお、基本的に、ミキサー室30とセトラー室40の間の仕切板の上下2箇所の連通部位には、乳濁混合状態の混合相を通過させないように運転する。セトラー室40を設けることで、分相性及び運転時の安定性の向上が見込める。すなわち、エマルション相(2液相乳濁混合相)の予期しない成長(範囲の拡大)により、エマルション相が排出又は循環される重液相及び軽液相に混入するリスクが軽減される。 The same mechanism as described above is applied to a container structure that is separated into a mixer chamber 30 for stirring and mixing the heavy liquid phase 4 and light liquid phase 5 and a settler chamber 40 for phase-separating both phases, as in the conventional method. Can be applied. Specifically, communication parts are provided at two locations, between the ceiling surface and the partition plate of the container 1 that houses the mixer chamber 30 and the settler chamber 40, and between the bottom surface and the partition plate, so that the heavy liquid phase and the light liquid phase can be exchanged between the two chambers. If they are allowed to freely come and go, it can be handled in the same way as the above-mentioned container structure in which there is no distinction between the mixer chamber 30 and the settler chamber 40. Basically, the operation is performed so that the mixed phase in the emulsion mixture state does not pass through the upper and lower two communicating portions of the partition plate between the mixer chamber 30 and the settler chamber 40. By providing the settler chamber 40, it is expected that phase separation properties and stability during operation will be improved. That is, unexpected growth (expansion of range) of the emulsion phase (two-liquid emulsion mixed phase) reduces the risk of contamination of the emulsion phase with the heavy and light liquid phases being discharged or recycled.

図4(a)から図4(p)までに、1枚の仕切板(M室/S室仕切板)によってミキサー室30とセトラー室40に分離した容器構造の仕組みを示す。このような容器構造においても、図1(a)から図1(t)までに示す構造、及び図2(a)から図2(t)までに示す構造と同様な流路の仕組みが可能である。なお、図4(a)から図4(p)以外にも、両相の容器内通路を左右に割り振った構造(図1(e)、図1(j)、図1(o)、図1(t)、図2(e)、図2(j)、図2(o)、及び図2(t)のような構造)も可能である。しかしながら、分相性の向上を求めてセトラー室40を設置したという点において、ミキサー室30側に重液相4又は軽液相5の容器内通路(排出又は循環のための通路)を設けることは好ましいとは言えない。 4(a) to 4(p) show the mechanism of a container structure that is separated into a mixer chamber 30 and a settler chamber 40 by one partition plate (M chamber/S chamber partition plate). Even in such a container structure, a flow path mechanism similar to the structures shown in FIGS. 1(a) to 1(t) and the structures shown in FIGS. 2(a) to 2(t) is possible. be. In addition to Figs. 4(a) to 4(p), there are also structures in which the internal passages of both phases are allocated to the left and right (Fig. 1(e), Fig. 1(j), Fig. 1(o), Fig. 1 (t), FIG. 2(e), FIG. 2(j), FIG. 2(o), and FIG. 2(t)) are also possible. However, in that the settler chamber 40 is installed to improve phase separation, it is not possible to provide a passage (passage for discharge or circulation) in the container for the heavy liquid phase 4 or the light liquid phase 5 on the mixer chamber 30 side. I can't say it's desirable.

ミキサー室30とセトラー室40を格納する容器1の天井面と仕切板の間、及び底面と仕切板の間に設置された連通部位と仕切板の構造の関係を図5(a1)、図5(b1)・・・図5(i1)に示す。また、そこに重液相と軽液相を設置した状態を、それぞれ図5(a2)、図5(b2)・・・図5(i2)に示す。なお、これらの図は、いずれもセトラー室40側からミキサー室30側を見た図である。天井面と仕切板の間に設けられた軽液相の連通部位は、仕切板の上端の一部又は全部が天井面と接していない構造、又は、仕切板の上端部に通過口が設けられた構造によって得られる。同様に、底面と仕切板の間に設けられた重液相の連通部位は、仕切板の下端の一部又は全部が底面と接していない構造、又は、仕切板の下端部に通過口が設けられた構造によって得られる。 5(a1), 5(b1) and 5(b1) show the relationship between the communication parts installed between the ceiling surface and the partition plate of the container 1 that stores the mixer chamber 30 and the settler chamber 40, and between the bottom surface and the partition plate and the partition plate. ...shown in Figure 5 (i1). Further, the states in which the heavy liquid phase and the light liquid phase are installed are shown in FIGS. 5(a2), 5(b2), and 5(i2), respectively. Note that these figures are all views of the mixer chamber 30 side from the settler chamber 40 side. The light liquid phase communication part provided between the ceiling surface and the partition plate has a structure in which part or all of the upper end of the partition plate does not touch the ceiling surface, or a structure in which a passage port is provided at the upper end of the partition plate. obtained by. Similarly, the communication area for the heavy liquid phase provided between the bottom surface and the partition plate has a structure in which part or all of the bottom end of the partition plate is not in contact with the bottom surface, or a passage port is provided at the bottom end of the partition plate. Obtained by structure.

なお、これらの連通部位の形状は、図5(a1)乃至図5(i2)に記載の形状に限らない。すなわち、仕切板の上端又は下端の一部が天井面又は底面と接していない構造に対して、その形状は四角に限らず、半円、三角などの形状でも良い。同様に、仕切板の上端部又は下端部に設けられた通過口の形状についても、円に限らず、四角、三角などの形状でも良い。 Note that the shapes of these communication parts are not limited to the shapes shown in FIGS. 5(a1) to 5(i2). That is, for a structure in which a part of the upper end or lower end of the partition plate is not in contact with the ceiling surface or the bottom surface, the shape is not limited to a square, but may be a semicircle, a triangle, or the like. Similarly, the shape of the passage opening provided at the upper end or lower end of the partition plate is not limited to a circle, but may be square, triangular, or the like.

また、仕切板の上端又は下端の一部又は全部が天井面又は底面と接していない構造と該仕切板の上端部又は下端部に通過口が設けられた構造は、組み合せて用いることができる。図5(f1)乃至図5(i2)は、両者を組み合せた形態の例である。 Further, a structure in which part or all of the upper end or lower end of the partition plate does not touch the ceiling surface or the bottom surface and a structure in which a passage hole is provided at the upper end or lower end of the partition plate can be used in combination. FIG. 5(f1) to FIG. 5(i2) are examples of a combination of the two.

図4(a)から図4(p)までに示す仕組み等は、ミキサー室30において広範囲にわたって乳濁混合状態の領域(エマルション相)を形成させる仕組みとして優れているが、その反面、エマルション相をセトラー室40に流出させることなく、ミキサー室30でのエマルション相の高さ(幅)を常に一定に保つことは、必ずしも容易ではない。すなわち、ミキサー室でのエマルション相の高さは、変動しやすい場合があり、その場合には、このような変動に対して余裕がある構造、又は変動を制御できる構造が好ましい。 The mechanisms shown in FIGS. 4(a) to 4(p) are excellent as mechanisms for forming an emulsion-mixed region (emulsion phase) over a wide range in the mixer chamber 30, but on the other hand, It is not always easy to keep the height (width) of the emulsion phase constant in the mixer chamber 30 without causing it to flow into the settler chamber 40. That is, the height of the emulsion phase in the mixer chamber may easily fluctuate, and in that case, a structure that can afford such fluctuations or a structure that can control fluctuations is preferable.

まず、エマルション相の高さの変動に余裕がある構造として、ミキサー室30を縦長形状にする方法がある。縦長形状にすれば、セトラー室40へのエマルション相の流出を抑制して分相性が向上することに加え、エマルション相がより高く成長することで2液相接触が促進される利点もある。その一方で、縦長形状にすると、前述したように、攪拌翼2の回転軸が長くなることで軸振動や軸ぶれが大きくなり、正常な機械撹拌が不可能になる場合もある。そこで、例えば、図3(a)から図3(f)までに示すような、軸ホルダー若しくは軸受(ベアリング)又は二軸直交歯車を設置することで、軸振動や軸ぶれを解消する方法が有効である。なお、軸ホルダー、軸受、及び二軸直交歯車のうちの2者又はすべてを組み合せて用いても良い。 First, there is a method in which the mixer chamber 30 is formed into a vertically elongated shape as a structure that allows a margin for variation in the height of the emulsion phase. The vertically elongated shape not only suppresses outflow of the emulsion phase into the settler chamber 40 and improves phase separation properties, but also has the advantage that contact between the two liquid phases is promoted by the emulsion phase growing higher. On the other hand, if the stirring blades 2 are made into a vertically elongated shape, as described above, the rotating shaft of the stirring blade 2 becomes longer, resulting in increased shaft vibration and shaft wobbling, which may make normal mechanical stirring impossible. Therefore, it is effective to eliminate shaft vibration and shaft runout by installing a shaft holder, a bearing, or a biaxial orthogonal gear, as shown in Figures 3(a) to 3(f), for example. It is. Note that two or all of the shaft holder, bearing, and biaxial orthogonal gear may be used in combination.

一方、ミキサー室30とセトラー室40の間の上下2箇所の連通部位は、上の連通部位で両室間の軽液相を行き来させ、下の連通部位で両室間の重液相を行き来させるためのものであり、いずれも、本来、エマルション相をセトラー室40に流出させる役目ではない。ところが、ミキサー室30からエマルション相がまったく移動しない構造では、成長し過ぎたエマルション相の逃げ道が、前述の上下連通部位を除いて他に存在せず、その点では、必ずしも好ましいとは言えない。逆に、エマルション相の一部がセトラー室40に移動する構造であれば、ミキサー室30でのエマルション相の高さ(幅)の変動は、大幅に抑制される。 On the other hand, the upper and lower communication parts between the mixer chamber 30 and the settler chamber 40 are such that the upper communication part allows the light liquid phase to go back and forth between the two chambers, and the lower communication part allows the heavy liquid phase to go back and forth between the two chambers. Both of them do not originally have the role of causing the emulsion phase to flow out into the settler chamber 40. However, in a structure in which the emulsion phase does not move at all from the mixer chamber 30, there is no escape route for the overgrown emulsion phase other than the above-mentioned upper and lower communication parts, and in that respect, it is not necessarily preferable. Conversely, if the structure is such that a portion of the emulsion phase moves to the settler chamber 40, fluctuations in the height (width) of the emulsion phase in the mixer chamber 30 can be significantly suppressed.

そこで、エマルション相の高さ(幅)の変動を制御できる構造として、上下の連通部位以外にも、攪拌翼2の翼部位付近の高さで仕切板に通過口を設けると、該通過口からエマルション相がセトラー室40に流出することで、ミキサー室30でのエマルション相の高さの変動は抑制される。ところが、このような構造では、ミキサー室30で発生したエマルション相が、すぐさま、セトラー室40に移動するため、ミキサー室30でのエマルション相の発達が抑制され、なおかつ、大量のエマルション相がセトラー室40に集合するため、セトラー室40での分相が困難になる。 Therefore, as a structure that can control the variation in the height (width) of the emulsion phase, in addition to the upper and lower communication parts, if a passage hole is provided in the partition plate at a height near the blade part of the stirring blade 2, it is possible to As the emulsion phase flows out into the settler chamber 40, fluctuations in the height of the emulsion phase in the mixer chamber 30 are suppressed. However, in such a structure, the emulsion phase generated in the mixer chamber 30 immediately moves to the settler chamber 40, so the development of the emulsion phase in the mixer chamber 30 is suppressed, and a large amount of the emulsion phase is transferred to the settler chamber 40. 40, making phase separation in the settler chamber 40 difficult.

それに対して、ミキサー室30で発生したエマルション相を鉛直方向に形成された通路を移動させ、縦型の通過口に導いた後、セトラー室40に至らしめるようにすれば、その過程において相分離が進行し、セトラー室40での乳濁は大幅に解消される。そのような容器構造のいくつかの例を以下に示す。 On the other hand, if the emulsion phase generated in the mixer chamber 30 is moved through a passage formed in the vertical direction, guided to a vertical passage port, and then brought to the settler chamber 40, the phase will separate in the process. progresses, and the emulsion in the settler chamber 40 is largely eliminated. Some examples of such container structures are shown below.

図4(a)から図4(p)までに記載の仕切板に替えて、ミキサー室30とセトラー室40を格納する容器1の上部に両室の軽液相の連通部位を成す上方仕切板、及び前記容器の下部に両室の重液相の連通部位を成す下方仕切板を交互に設置することで、乳濁混合された2液相が鉛直方向に移行できる通路と縦型の通過口を形成させることができる。 Instead of the partition plates shown in FIGS. 4(a) to 4(p), an upper partition plate is provided at the upper part of the container 1 that stores the mixer chamber 30 and the settler chamber 40, forming a communication area for the light liquid phase of both chambers. , and by alternately installing lower partition plates at the bottom of the container that form a communication area for the heavy liquid phases in both chambers, a passageway and a vertical passage opening are created through which the two emulsion-mixed liquid phases can move in the vertical direction. can be formed.

上方仕切板20をミキサー室30寄りに配置し、下方仕切板21をセトラー室寄りに設置した例を、図6(a)から図6(p)までに示すが、この限りではない。なお、上方仕切板20と下方仕切板21が交互に設置される条件において、該上方仕切板及び該下方仕切板はそれぞれ複数枚であっても良い。このように、設置される仕切板の数の違いにかかわらず、図4(a)から図4(p)までに示す構造と同様な流路の仕組みが可能である。 An example in which the upper partition plate 20 is placed closer to the mixer chamber 30 and the lower partition plate 21 is installed closer to the settler chamber is shown in FIGS. 6(a) to 6(p), but this is not the case. Note that, under the condition that the upper partition plates 20 and the lower partition plates 21 are installed alternately, there may be a plurality of upper partition plates and a plurality of lower partition plates. In this way, regardless of the difference in the number of partition plates installed, a flow path mechanism similar to the structure shown in FIGS. 4(a) to 4(p) is possible.

また、このときの上方仕切板20(ミキサー室寄りの仕切板)の構造及びこれによって形成される軽液相5の連通部位の形状を、図7(a1)、図7(b1)・・・図7(i1)に示す。また、下方仕切板21(セトラー室寄りの仕切板)の構造及びこれによって形成される重液相4の連通部位の形状を、図7(a2)、図7(b2)・・・図7(i2)に示す。ここで、図7(a1)と図7(a2)、図7(b1)と図7(b2)・・・図7(i1)と図7(i2)が一対の上方仕切板20と下方仕切板21を示している。天井面と上方仕切板20の間に設けられた軽液相5の連通部位は、上方仕切板20の上端の一部又は全部が天井面と接していない構造、又は、上方仕切板20の上端部に通過口が設けられた構造によって得られる。同様に、底面と下方仕切板21の間に設けられた重液相4の連通部位は、下方仕切板21の下端の一部又は全部が底面と接していない構造、又は、下方仕切板21の下端部に通過口が設けられた構造によって得られる。 In addition, the structure of the upper partition plate 20 (partition plate near the mixer room) at this time and the shape of the communicating part of the light liquid phase 5 formed thereby are shown in FIG. 7(a1), FIG. 7(b1)... It is shown in FIG. 7(i1). In addition, the structure of the lower partition plate 21 (partition plate near the settler chamber) and the shape of the communication area of the heavy liquid phase 4 formed thereby are shown in FIG. 7(a2), FIG. 7(b2)...FIG. Shown in i2). Here, FIG. 7(a1) and FIG. 7(a2), FIG. 7(b1) and FIG. 7(b2)...FIG. 7(i1) and FIG. 7(i2) are a pair of upper partition plate 20 and lower partition. A plate 21 is shown. The communication portion of the light liquid phase 5 provided between the ceiling surface and the upper partition plate 20 has a structure in which part or all of the upper end of the upper partition plate 20 is not in contact with the ceiling surface, or the upper end of the upper partition plate 20 This is achieved by a structure in which a passage hole is provided in the part. Similarly, the communication portion of the heavy liquid phase 4 provided between the bottom surface and the lower partition plate 21 is constructed such that part or all of the lower end of the lower partition plate 21 is not in contact with the bottom surface, or This is achieved by a structure in which a passage hole is provided at the lower end.

なお、これらの連通部位の形状は、図7(a1)乃至図7(i2)に記載の形状に限らない。すなわち、上方仕切板20上端の一部が天井面と接していない構造、又は、下方仕切板21の下端の一部が底面と接していない構造に対して、その形状は四角に限らず、半円、三角などの形状でも良い。同様に、上方仕切板20の上端部、又は下方仕切板21の下端部に設けられた通過口の形状についても、円に限らず、四角、三角などの形状でも良い。 Note that the shapes of these communicating parts are not limited to the shapes shown in FIGS. 7(a1) to 7(i2). That is, for a structure in which a part of the upper end of the upper partition plate 20 does not touch the ceiling surface, or a structure in which a part of the lower end of the lower partition plate 21 does not touch the bottom surface, the shape is not limited to a square, but may be half-shaped. The shape may be a circle, a triangle, or the like. Similarly, the shape of the passage opening provided at the upper end of the upper partition plate 20 or the lower end of the lower partition plate 21 is not limited to a circle, but may be a square, a triangle, or the like.

また、上方仕切板20の上端の一部又は全部が天井面と接していない構造と下方仕切板21の下端部に通過口が設けられた構造、及び、上方仕切板20の上端部に通過口が設けられた構造と下方仕切板21の下端の一部又は全部が底面と接していない構造とは、組み合せて用いることができる。図7(f1)乃至図7(i2)は、両者を組み合せた形態の例である。 In addition, there are two types of structures: a structure in which a part or all of the upper end of the upper partition plate 20 does not touch the ceiling surface, a structure in which a passage opening is provided at the lower end of the lower partition plate 21, and a passage opening in the upper end of the upper partition plate 20. A structure in which a part or all of the lower end of the lower partition plate 21 is not in contact with the bottom surface can be used in combination. FIG. 7(f1) to FIG. 7(i2) are examples of a combination of the two.

下方仕切板21をミキサー室30寄りに配置し、上方仕切板20をセトラー室40寄りに設置した例を、図8(a)から図8(p)までに示すが、この限りではない。なお、下方仕切板21と上方仕切板20が交互に設置される条件において、該下方仕切板及び該上方仕切板はそれぞれ複数枚であっても良い。この場合も、設置される仕切板の数の違いにかかわらず、図4(a)から図4(p)までに示す構造と同様な流路の仕組みが可能である。 An example in which the lower partition plate 21 is placed closer to the mixer chamber 30 and the upper partition plate 20 is installed closer to the settler chamber 40 is shown in FIGS. 8(a) to 8(p), but this is not the case. Note that, under the condition that the lower partition plates 21 and the upper partition plates 20 are installed alternately, there may be a plurality of lower partition plates and a plurality of upper partition plates. In this case as well, regardless of the difference in the number of partition plates installed, a flow path mechanism similar to the structure shown in FIGS. 4(a) to 4(p) is possible.

また、このときの下方仕切板21(ミキサー室寄りの仕切板)の構造及びこれによって形成される重液相4の連通部位の形状を図9(a1)、図9(b1)・・・図9(i1)に示す。また、上方仕切板20(セトラー室寄りの仕切板)の構造及びをこれによって形成される軽液相5の連通部位の形状を図9(a2)、図9(b2)・・・図9(i2)に示す。ここで、図9(a1)と図9(a2)、図9(b1)と図9(b2)・・・図9(i1)と図9(i2)が一対の下方仕切板21と上方仕切板20を示している。底面と下方仕切板21の間に設けられた重液相の連通部位は、下方仕切板21の下端の一部又は全部が底面と接していない構造、又は、下方仕切板21の下端部に通過口が設けられた構造によって得られる。同様に、天井面と上方仕切板20の間に設けられた軽液相の連通部位は、上方仕切板20の上端の一部又は全部が天井面と接していない構造、又は、上方仕切板20の上端部に通過口が設けられた構造によって得られる。 In addition, the structure of the lower partition plate 21 (partition plate near the mixer room) at this time and the shape of the communication area of the heavy liquid phase 4 formed thereby are shown in FIGS. 9(a1), 9(b1)... 9(i1). In addition, the structure of the upper partition plate 20 (partition plate near the settler chamber) and the shape of the communication area of the light liquid phase 5 formed thereby are shown in FIGS. 9(a2), 9(b2), . . . Shown in i2). Here, FIG. 9(a1) and FIG. 9(a2), FIG. 9(b1) and FIG. 9(b2)...FIG. 9(i1) and FIG. 9(i2) are a pair of lower partition plate 21 and upper partition. A plate 20 is shown. The communication portion of the heavy liquid phase provided between the bottom surface and the lower partition plate 21 has a structure in which part or all of the lower end of the lower partition plate 21 is not in contact with the bottom surface, or it passes through the lower end of the lower partition plate 21. Obtained by a structure provided with a mouth. Similarly, the light liquid phase communication portion provided between the ceiling surface and the upper partition plate 20 has a structure where part or all of the upper end of the upper partition plate 20 is not in contact with the ceiling surface, or a structure where the upper partition plate 20 This is obtained by having a structure in which a passage hole is provided at the upper end of the .

なお、これらの連通部位の形状は、図9(a1)乃至図9(i2)に記載の形状に限らない。すなわち、上方仕切板20の上端の一部が天井面と接していない構造、又は、下方仕切板21の下端の一部が底面と接していない構造に対して、その形状は四角に限らず、半円、三角などの形状でも良い。同様に、上方仕切板20の上端部、又は下方仕切板21の下端部に設けられた通過口の形状についても、円に限らず、四角、三角などの形状でも良い。 Note that the shapes of these communication parts are not limited to the shapes shown in FIGS. 9(a1) to 9(i2). That is, for a structure in which a part of the upper end of the upper partition plate 20 does not touch the ceiling surface, or a structure in which a part of the lower end of the lower partition plate 21 does not touch the bottom surface, the shape is not limited to a square; The shape may be semicircular or triangular. Similarly, the shape of the passage opening provided at the upper end of the upper partition plate 20 or the lower end of the lower partition plate 21 is not limited to a circle, but may be a square, a triangle, or the like.

また、下方仕切板21の下端の一部又は全部が底面と接していない構造と上方仕切板20の上端部に通過口が設けられた構造、及び、下方仕切板21の下端部に通過口が設けられた構造と上方仕切板20の上端の一部又は全部が天井面と接していない構造とは、組み合せて用いることができる。図9(f1)乃至図9(i2)は、両者を組み合せた形態の例である。 Furthermore, there are two types of structures: a structure in which a part or all of the lower end of the lower partition plate 21 does not touch the bottom surface, a structure in which a passage opening is provided at the upper end of the upper partition plate 20, and a structure in which a passage opening is provided in the lower end of the lower partition plate 21. A structure in which a part or all of the upper end of the upper partition plate 20 is not in contact with the ceiling surface can be used in combination. FIGS. 9(f1) to 9(i2) are examples of a combination of the two.

短い下方仕切板21と2箇所で屈曲させた上方仕切板20を組み合せて、鉛直方向の通路と縦型の通過口を形成させた例を、図10(a)から図10(p)までに示すが、この限りではない。なお、下方仕切板21と上方仕切板20が交互に設置される条件において、該下方仕切板及び該上方仕切板はそれぞれ複数枚であっても良い。この場合も、設置される仕切板の数や形状の違いにかかわらず、図4(a)から図4(p)までに示す構造と同様な流路の仕組みが可能である。 FIGS. 10(a) to 10(p) show an example in which a short lower partition plate 21 and an upper partition plate 20 bent at two points are combined to form a vertical passage and a vertical passage port. However, this is not limited to this. Note that, under the condition that the lower partition plates 21 and the upper partition plates 20 are installed alternately, there may be a plurality of lower partition plates and a plurality of upper partition plates. In this case as well, regardless of the number and shape of the partition plates installed, a flow path mechanism similar to the structures shown in FIGS. 4(a) to 4(p) is possible.

また、このときの下方仕切板21(短い形状の仕切板)の構造及びこれによって形成される重液相の連通部位の形状を、図11(a1)、図11(b1)・・・図11(i1)に示す。また、上方仕切板20(2箇所で屈曲させた形状の仕切板)の構造及びこれによって形成される軽液相の連通部位の形状を、図11(a2)、図11(b2)・・・図11(i2)に示す。ここで、図11(a1)と図11(a2)、図11(b1)と図11(b2)・・・図11(i1)と図11(i2)が一対の下方仕切板21と上方仕切板20を示している。右側に示す。天井面と上方仕切板の間に設けられた軽液相5の連通部位は、上方仕切板20の上端の一部又は全部が天井面と接していない構造、又は、上方仕切板20の上端部に通過口が設けられた構造によって得られる。同様に、底面と下方仕切板の間に設けられた重液相4の連通部位は、下方仕切板21の下端の一部又は全部が底面と接していない構造、又は、下方仕切板21の下端部に通過口が設けられた構造によって得られる。 In addition, the structure of the lower partition plate 21 (short-shaped partition plate) at this time and the shape of the communication area of the heavy liquid phase formed thereby are shown in FIGS. 11(a1), 11(b1)... Shown in (i1). In addition, the structure of the upper partition plate 20 (a partition plate bent at two points) and the shape of the light liquid phase communication area formed thereby are shown in FIGS. 11(a2), 11(b2)... It is shown in FIG. 11(i2). Here, FIG. 11(a1) and FIG. 11(a2), FIG. 11(b1) and FIG. 11(b2)...FIG. 11(i1) and FIG. 11(i2) are a pair of lower partition plate 21 and upper partition. A plate 20 is shown. Shown on the right. The communication portion of the light liquid phase 5 provided between the ceiling surface and the upper partition plate has a structure in which part or all of the upper end of the upper partition plate 20 is not in contact with the ceiling surface, or a structure in which the light liquid phase 5 passes through the upper end part of the upper partition plate 20. Obtained by a structure provided with a mouth. Similarly, the communication portion of the heavy liquid phase 4 provided between the bottom surface and the lower partition plate is constructed such that part or all of the lower end of the lower partition plate 21 is not in contact with the bottom surface, or the lower end portion of the lower partition plate 21 is This is obtained by a structure provided with a passage hole.

なお、これらの連通部位の形状は、図11(a1)乃至図11(i2)に記載の形状に限らない。すなわち、上方仕切板20の上端の一部が天井面と接していない構造、又は、下方仕切板21の下端の一部が底面と接していない構造に対して、その形状は四角に限らず、半円、三角などの形状でも良い。同様に、上方仕切板20の上端部、又は下方仕切板21の下端部に設けられた通過口の形状についても、円に限らず、四角、三角などの形状でも良い。 Note that the shapes of these communicating parts are not limited to the shapes shown in FIGS. 11(a1) to 11(i2). That is, for a structure in which a part of the upper end of the upper partition plate 20 does not touch the ceiling surface, or a structure in which a part of the lower end of the lower partition plate 21 does not touch the bottom surface, the shape is not limited to a square; The shape may be semicircular or triangular. Similarly, the shape of the passage opening provided at the upper end of the upper partition plate 20 or the lower end of the lower partition plate 21 is not limited to a circle, but may be a square, a triangle, or the like.

また、下方仕切板21の下端の一部又は全部が底面と接していない構造と上方仕切板20の上端部に通過口が設けられた構造、及び、下方仕切板21の下端部に通過口が設けられた構造と上方仕切板20の上端の一部又は全部が天井面と接していない構造とは、組み合せて用いることができる。図11(f1)乃至図11(i2)は、両者を組み合せた形態の例である。 Furthermore, there are two types of structures: a structure in which a part or all of the lower end of the lower partition plate 21 does not touch the bottom surface, a structure in which a passage opening is provided at the upper end of the upper partition plate 20, and a structure in which a passage opening is provided in the lower end of the lower partition plate 21. A structure in which a part or all of the upper end of the upper partition plate 20 is not in contact with the ceiling surface can be used in combination. FIGS. 11(f1) to 11(i2) are examples of a combination of the two.

短い上方仕切板20と2箇所で屈曲させた下方仕切板21を組み合せて、鉛直方向の通路と縦型の通過口を形成させた例を、図12(a)から図12(p)までに示すが、この限りではない。なお、上方仕切板20と下方仕切板21が交互に設置される条件において、該上方仕切板及び該下方仕切板はそれぞれ複数枚であっても良い。この場合も、設置される仕切板の数や形状の違いにかかわらず、図4(a)から図4(p)までに示す構造と同様な流路の仕組みが可能である。 An example in which a short upper partition plate 20 and a lower partition plate 21 bent at two points are combined to form a vertical passage and a vertical passage opening is shown in FIGS. 12(a) to 12(p). However, this is not limited to this. Note that, under the condition that the upper partition plates 20 and the lower partition plates 21 are installed alternately, there may be a plurality of upper partition plates and a plurality of lower partition plates. In this case as well, regardless of the number and shape of the partition plates installed, a flow path mechanism similar to the structures shown in FIGS. 4(a) to 4(p) is possible.

また、このときの上方仕切板20(短い形状の仕切板)の構造及びこれによって形成される重液相の連通部位の形状を、図13(a1)、図13(b1)・・・図13(i1)に示す。また、下方仕切板21(2箇所で屈曲させた形状の仕切板)の構造及びこれによって形成される軽液相の連通部位の形状を、図13(a2)、図13(b2)・・・図13(i2)に示す。ここで、図13(a1)と図13(a2)、図13(b1)と図13(b2)・・・図13(i1)と図13(i2)が一対の上方仕切板20と下方仕切板21を示している。右側に示す。天井面と上方仕切板20の間に設けられた軽液相の連通部位は、上方仕切板20の上端の一部又は全部が天井面と接していない構造、又は、上方仕切板20の上端部に通過口が設けられた構造によって得られる。同様に、底面と下方仕切板21の間に設けられた重液相の連通部位は、下方仕切板21の下端の一部又は全部が底面と接していない構造、又は、下方仕切板21の下端部に通過口が設けられた構造によって得られる。 In addition, the structure of the upper partition plate 20 (short-shaped partition plate) at this time and the shape of the heavy liquid phase communication region formed thereby are shown in FIGS. 13(a1), 13(b1)... Shown in (i1). In addition, the structure of the lower partition plate 21 (a partition plate bent at two points) and the shape of the light liquid phase communication area formed thereby are shown in FIG. 13(a2), FIG. 13(b2)... It is shown in FIG. 13(i2). Here, FIG. 13(a1) and FIG. 13(a2), FIG. 13(b1) and FIG. 13(b2)...FIG. 13(i1) and FIG. 13(i2) are a pair of upper partition plate 20 and lower partition plate. A plate 21 is shown. Shown on the right. The light liquid phase communication portion provided between the ceiling surface and the upper partition plate 20 has a structure in which part or all of the upper end of the upper partition plate 20 is not in contact with the ceiling surface, or the upper end portion of the upper partition plate 20 This is achieved by a structure in which a passage hole is provided in the. Similarly, the communication portion of the heavy liquid phase provided between the bottom surface and the lower partition plate 21 has a structure in which part or all of the lower end of the lower partition plate 21 is not in contact with the bottom surface, or the lower end of the lower partition plate 21 This is achieved by a structure in which a passage hole is provided in the part.

なお、これらの連通部位の形状は、図13(a1)乃至図13(i2)に記載の形状に限らない。すなわち、上方仕切板20の上端の一部が天井面と接していない構造、又は、下方仕切板21の下端の一部が底面と接していない構造に対して、その形状は四角に限らず、半円、三角などの形状でも良い。同様に、上方仕切板20の上端部、又は下方仕切板21の下端部に設けられた通過口の形状についても、円に限らず、四角、三角などの形状でも良い。 Note that the shapes of these communicating parts are not limited to the shapes shown in FIGS. 13(a1) to 13(i2). That is, for a structure in which a part of the upper end of the upper partition plate 20 does not touch the ceiling surface, or a structure in which a part of the lower end of the lower partition plate 21 does not touch the bottom surface, the shape is not limited to a square; The shape may be semicircular or triangular. Similarly, the shape of the passage opening provided at the upper end of the upper partition plate 20 or the lower end of the lower partition plate 21 is not limited to a circle, but may be a square, a triangle, or the like.

また、上方仕切板20の上端の一部又は全部が天井面と接していない構造と下方仕切板21の下端部に通過口が設けられた構造、及び、上方仕切板20の上端部に通過口が設けられた構造と下方仕切板21の下端の一部又は全部が底面と接していない構造とは、組み合せて用いることができる。図13(f1)乃至図13(i2)は、両者を組み合せた形態の例である。 In addition, there are two types of structures: a structure in which a part or all of the upper end of the upper partition plate 20 does not touch the ceiling surface, a structure in which a passage opening is provided at the lower end of the lower partition plate 21, and a passage opening in the upper end of the upper partition plate 20. A structure in which a part or all of the lower end of the lower partition plate 21 is not in contact with the bottom surface can be used in combination. FIGS. 13(f1) to 13(i2) are examples of a combination of the two.

なお、図6(a)から図6(p)まで、図8(a)から図8(p)まで、図10(a)から図10(p)まで、及び図12(a)から図12(p)までは、ミキサー室30とセトラー室40の間に2枚の仕切板(上方仕切板20と下方仕切板21)を設置した例だが、さらに仕切板の枚数を増やすこともできる。すなわち、3枚、4枚、5枚、さらにそれ以上というように、上方仕切板20と下方仕切板21を交互に配置することによって、相分離効果を高めることも可能であるが、容器構造はより複雑化する。 In addition, from FIG. 6(a) to FIG. 6(p), from FIG. 8(a) to FIG. 8(p), from FIG. 10(a) to FIG. 10(p), and from FIG. 12(a) to FIG. Although the example up to (p) is an example in which two partition plates (upper partition plate 20 and lower partition plate 21) are installed between mixer chamber 30 and settler chamber 40, the number of partition plates can be further increased. That is, it is possible to enhance the phase separation effect by alternately arranging the upper partition plates 20 and the lower partition plates 21, such as 3, 4, 5, or more, but the container structure It becomes more complicated.

以上、本発明の方法が適用可能な容器構造、流路構造などの詳細を述べたが、図1(a)から図1(t)まで、及び図2(a)から図2(t)までに記載の仕組みのように、重液相4と軽液相5の撹拌混合に供する1つの容器を用いる方式を、便宜上、単室式と称し、図4(a)から図4(p)まで、図6(a)から図6(p)まで、図8(a)から図8(p)まで、図10(a)から図10(p)まで、及び図12(a)から図12(p)までに記載の仕組みのように、重液相4と軽液相5の撹拌混合に供する部屋(ミキサー室30)と両相の相分離に供する部屋(セトラー室40)が仕切板によって隔てられている容器構造を用いる方式を、便宜上、複室式と称する。 The details of the container structure, flow channel structure, etc. to which the method of the present invention can be applied have been described above, and from FIG. 1(a) to FIG. 1(t) and from FIG. 2(a) to FIG. 2(t) For convenience, the system using one container for stirring and mixing the heavy liquid phase 4 and the light liquid phase 5, such as the system described in Figure 4(a) to Figure 4(p), is referred to as a single-chamber system. , from Fig. 6(a) to Fig. 6(p), from Fig. 8(a) to Fig. 8(p), from Fig. 10(a) to Fig. 10(p), and from Fig. 12(a) to Fig. 12( As in the mechanism described up to p), a room (mixer chamber 30) for stirring and mixing heavy liquid phase 4 and light liquid phase 5 and a chamber (settler chamber 40) for phase separation of both phases are separated by a partition plate. For convenience, the system using the container structure described above is referred to as the multi-chamber system.

単室式は、シンプルな仕組みであり、2液相の送液速度及び攪拌翼2の回転速度が一定に保たれた条件において安定的に機能する。一方、処理対象の水相(多くの場合、重液相)の組成が大きく変化したり、固形成分が混入したりするなど、予測できない現象によって、エマルション相の高さ(幅)が急激に変化する場合もある。そのような場合に備えて、縦長形状にする、容器1の上下に断面積が大きい形状(張出形状)を設けるといった方法で、エマルション相の高さ(幅)の変動に対して余裕を持たせることができる。ただし、その上限を超えて、さらにエマルション相が発達した場合には、即座に正常な稼働が不可能になってしまう。 The single-chamber type has a simple mechanism and functions stably under conditions where the liquid feeding speed of the two liquid phases and the rotational speed of the stirring blade 2 are kept constant. On the other hand, the height (width) of the emulsion phase can change rapidly due to unpredictable phenomena, such as large changes in the composition of the aqueous phase (often heavy liquid phase) to be treated or the introduction of solid components. In some cases. In preparation for such cases, the container 1 can be made into a vertically elongated shape, or a shape with a large cross-sectional area (overhanging shape) can be provided at the top and bottom of the container 1 to provide some margin for fluctuations in the height (width) of the emulsion phase. can be set. However, if the upper limit is exceeded and the emulsion phase develops further, normal operation will immediately become impossible.

一方、複室式では、このような予想を超えたエマルション相の発達に対して、セトラー室40を設置することで、これを抑制することができる。すなわち、複室式とは、上限を超えて発達したエマルション相の一部をセトラー室40に導くことで、正常な稼働を保持しようとする仕組みである。たとえば、図4(a)乃至図4(p)に示す仕組みでは、ミキサー室30で過剰に発達したエマルション相が、本来、相分離された重液相4と軽液相5が通過すべき容器上下の連通部位からセトラー室40に向かって流出するが、短時間であれば、両相に大きな濁りを生じさせることなく稼働させることができる。また、図6(a)乃至図6(p)、図8(a)乃至図8(p)、図10(a)乃至図10(p)、図12(a)乃至図12(p)に示すような縦型の通過口を有する構造では、エマルション相が縦型の通過口を移動する間に相分離が進行するため、セトラー室40に至るときには、すでに乳濁が大幅に解消されている。 On the other hand, in the multi-chamber type, the development of the emulsion phase beyond expectations can be suppressed by installing the settler chamber 40. That is, the multi-chamber type is a mechanism that attempts to maintain normal operation by guiding a part of the emulsion phase that has developed beyond the upper limit to the settler chamber 40. For example, in the mechanism shown in FIGS. 4(a) to 4(p), the emulsion phase that has developed excessively in the mixer chamber 30 is transferred to the container through which the phase-separated heavy liquid phase 4 and light liquid phase 5 should originally pass. Although it flows out from the upper and lower communication parts toward the settler chamber 40, it can be operated for a short time without causing significant turbidity in both phases. In addition, FIGS. 6(a) to 6(p), FIGS. 8(a) to 8(p), FIGS. 10(a) to 10(p), and FIGS. 12(a) to 12(p) In a structure having a vertical passage port as shown, phase separation progresses while the emulsion phase moves through the vertical passage port, so that by the time it reaches the settler chamber 40, the emulsion has already been largely eliminated. .

また、単室式、複室式のいずれにおいても、攪拌翼2の回転に基づく機械撹拌だけではエマルション相が形成されにくい場合がある。その場合、重液相4若しくは軽液相5又はその両方を、細孔又は細管を有するノズル(図示せず)を通じて送液することで、エマルション相の形成が促進されることがある。 Further, in both the single-chamber type and the multi-chamber type, it may be difficult to form an emulsion phase only by mechanical stirring based on the rotation of the stirring blades 2. In that case, the formation of the emulsion phase may be promoted by feeding the heavy liquid phase 4 or the light liquid phase 5, or both, through a nozzle (not shown) having pores or capillaries.

以下、実施例により、本発明の示す仕組みによって生じる乳濁混合状態の領域、及び、このような乳濁混合状態の発生を利用して液液抽出を行うことで分離精製される特定の物質の抽出回収方法の具体例を示すが、本発明は、下記の実施例に限定されるものではない。 Hereinafter, examples will show the region of the emulsion mixture state generated by the mechanism shown in the present invention, and the specific substances that are separated and purified by performing liquid-liquid extraction using the generation of such an emulsion mixture state. Although a specific example of the extraction and recovery method will be shown, the present invention is not limited to the following example.

乳濁混合状態の領域。 Area of mixed emulsion state.

本発明の図1(a)から図1(t)までに示す単室式の仕組みの一例として、図1(f)の仕組みを稼働させることで発生する乳濁混合状態(エマルション)の領域を図14に示す。重液相としてイオン交換水(純水)又は0.1M(mol dm-3)硝酸水溶液を用い、軽液相としてアルカンを主成分とする溶媒(商品名ShellSol D70)を用いて実験を行った結果、乳濁混合状態の領域の上下において、2液相が相分離された状態の領域(上は軽液相、下は重液相の領域)が生じ、乳濁混合の領域及び相分離の領域の範囲(高さ)は安定的に維持された。なお、乳濁混合状態の領域の範囲(高さ)は、攪拌翼2の回転速度及び2液相の送液速度に影響を受けるが、これらの速度が変化しなければ、安定的に維持された。一方で、乳濁混合状態の領域が大きくなり過ぎて相分離状態の領域を十分に維持できなくなると(そのような撹拌翼回転速度、送液速度に設定すると)、容器1内が全体にわたって白濁し、事実上、液液抽出を行うことができなくなった。 As an example of the single-chamber mechanism of the present invention shown in FIGS. 1(a) to 1(t), the area of the emulsion mixed state (emulsion) generated by operating the mechanism of FIG. 1(f) is It is shown in FIG. Experiments were conducted using ion-exchanged water (pure water) or 0.1M (mol dm-3) nitric acid aqueous solution as the heavy liquid phase, and a solvent containing an alkane as the main component (product name: ShellSol D70) as the light liquid phase. As a result, above and below the emulsion mixed state region, a region where the two liquid phases are phase separated (the upper part is the light liquid phase and the lower part is the heavy liquid phase region) is created, and the emulsion mixed region and the phase separation state are created. The extent (height) of the area remained stable. Note that the range (height) of the region of the emulsion mixed state is affected by the rotational speed of the stirring blade 2 and the feeding speed of the two liquid phases, but if these speeds do not change, it will be stably maintained. Ta. On the other hand, if the region of the emulsion mixture state becomes too large and the region of the phase separation state cannot be maintained sufficiently (if such a stirring blade rotation speed and liquid feeding speed are set), the inside of the container 1 will become cloudy throughout. However, it became virtually impossible to perform liquid-liquid extraction.

なお、図1(f)以外の仕組み(図1(a)から図1(e)まで及び図1(g)から図1(t)までに示す仕組み)に対しても、同様な乳濁混合状態の領域が得られた。すなわち、軽液相5及び重液相4を送液するための流路構造の違いは、乳濁混合状態の領域に影響しないことが確認された。 Note that similar emulsion mixing can be applied to mechanisms other than those shown in Figure 1(f) (the mechanisms shown in Figures 1(a) to 1(e) and 1(g) to 1(t)). The state domain is obtained. That is, it was confirmed that the difference in the channel structure for feeding the light liquid phase 5 and the heavy liquid phase 4 did not affect the region of the emulsion mixed state.

従来のミキサーセトラー法(従来法と称する)の仕組みとの比較において、本発明の図1(a)乃至図1(t)に示す仕組み(単室式の仕組み)での乳濁混合状態の領域はミキサー室に相当し、相分離状態の領域はセトラー室に相当することから、乳濁混合状態の領域を大きくすることで、液液抽出の処理速度(プロセッシング・スピード)が大きくなった。例えば、容器1の底面積を維持しままで縦長形状にすれば、設置床面積を変えることなく処理速度を大きくできた。また、縦長形状は、相分離状態の領域に対して余裕を持たせられる点においても有効であり、乳濁混合状態の領域を大きくできるだけではなく、相分離状態の領域も十分に確保できることがわかった。 In comparison with the mechanism of the conventional mixer-settler method (referred to as the conventional method), the area of emulsion mixing state in the mechanism (single chamber type mechanism) shown in FIGS. 1(a) to 1(t) of the present invention corresponds to the mixer chamber, and the region in the phase-separated state corresponds to the settler chamber, so by increasing the region in the emulsion mixed state, the processing speed of liquid-liquid extraction was increased. For example, by making the container 1 into a vertically elongated shape while maintaining the bottom area, the processing speed could be increased without changing the installation floor area. In addition, the vertically elongated shape is effective in providing a margin for the region in the phase-separated state, and it has been found that not only can the region in the emulsion mixed state be enlarged, but also a sufficient region in the phase-separated state can be secured. Ta.

さらに、乳濁混合状態の領域を抑制して相分離状態の領域を確保するのに、容器1の上方若しくは下方又はその両方に対して、該容器の中間部分よりも断面積が大きい形状(張出形状)を設けたところ、重液相4と軽液相5の相分離が促進されることがわかった。図15は、図2(f)に示すような、容器1の上下に断面積が大きい形状を設けた仕組みを稼働させることで発生する乳濁混合状態の領域を示している。このように、乳濁混合状態の領域が断面積の大きい形状の部分に到達すると相分離が促されるため、乳濁混合状態の領域が大きくなり過ぎず、その成長を抑制できた。なお、図2(f)以外の仕組み(図2(a)から図2(e)まで及び図2(g)から図2(t)までに示す仕組み)に対しても、同様な乳濁混合状態の領域が得られた。すなわち、図1(a)から図1(f)までに示す仕組みと同様に、軽液相及び重液相を送液するための流路構造の違いは、乳濁混合状態の領域に影響しないことが確認された。 Furthermore, in order to suppress the region of the emulsion mixture state and secure the region of the phase separation state, the upper and lower sides of the container 1, or both, have a shape that has a larger cross-sectional area than the middle part of the container. It was found that phase separation of the heavy liquid phase 4 and the light liquid phase 5 was promoted when the liquid phase 4 was provided with a shape of 3 mm. FIG. 15 shows an area in which an emulsion mixture state occurs by operating a mechanism in which a shape with a large cross-sectional area is provided at the top and bottom of the container 1, as shown in FIG. 2(f). In this way, phase separation is promoted when the region in the emulsion-mixed state reaches a portion having a large cross-sectional area, so that the region in the emulsion-mixed state does not become too large and its growth can be suppressed. Note that the same emulsion mixing method can be used for mechanisms other than those shown in Figure 2(f) (the mechanisms shown in Figures 2(a) to 2(e) and 2(g) to 2(t)). The state domain is obtained. In other words, similar to the mechanisms shown in FIGS. 1(a) to 1(f), the difference in channel structure for feeding the light liquid phase and the heavy liquid phase does not affect the region of the emulsion mixed state. This was confirmed.

一方で、縦長形状が顕著化することで攪拌翼2の回転軸が長くなり、軸振動や軸ぶれが大きくなるが、図3(a)から図3(f)までに示すような、軸ホルダー、軸受、若しくは二軸直交歯車、又はこれらの組み合せを用いることにより、軸振動、軸ぶれは大幅に抑制された。 On the other hand, as the vertically elongated shape becomes more pronounced, the rotating shaft of the stirring blade 2 becomes longer, and shaft vibration and shaft runout become larger. By using , bearings, biaxial orthogonal gears, or a combination thereof, shaft vibration and shaft runout were significantly suppressed.

従来法の仕組みと同様に、重液相4と軽液相5を撹拌混合するミキサー室30と2液相を相分離するセトラー室40に分離した容器構造(複室式の仕組み)に対しても、乳濁混合状態の領域を確認した。図16は、図4(e)の仕組みを稼働させることで発生する乳濁状態の領域を示している。なお、ミキサー室30とセトラー室40の範囲を明確にするために、ミキサー室の範囲を破線で囲んで明示している。 Similar to the mechanism of the conventional method, the container structure (multi-chamber mechanism) is separated into a mixer chamber 30 for stirring and mixing the heavy liquid phase 4 and light liquid phase 5 and a settler chamber 40 for phase separation of the two liquid phases. Also, a region of mixed emulsion was confirmed. FIG. 16 shows an area in an emulsified state that is generated by operating the mechanism shown in FIG. 4(e). In addition, in order to clarify the range of the mixer chamber 30 and the settler chamber 40, the range of the mixer chamber is clearly indicated by surrounding it with a broken line.

図16に示す乳濁混合状態の領域は、図14に示す乳濁混合状態の領域と同様に、攪拌翼2の回転速度若しくは送液速度又はこれら両方が大きくなり過ぎると、ミキサー室全体にわたって広がった。一方で、セトラー室を有する図4(e)の容器構造では、乳濁混合状態(エマルション)が、仕切板の上下に設置された連通部位を通じてミキサー室30からセトラー室40に移動し、セトラー室40において重力分離することができた。その場合、排水に若干の濁りは生じるものの、液液抽出を継続することは可能であった。この点において、複室式は単室式に対して優位性を持つと言える。なお、乳濁混合状態(エマルション)がセトラー室40に流出しても、稼働の前後で2液相間の界面の位置はほとんど変化せず、相混合にあずかる重液相4と軽液相5の体積比(いわゆるO/A比)は維持された。 Similar to the emulsion mixed state region shown in FIG. 14, the region of the emulsion mixing state shown in FIG. Ta. On the other hand, in the container structure of FIG. 4(e) having a settler chamber, the emulsion mixed state (emulsion) moves from the mixer chamber 30 to the settler chamber 40 through the communication parts installed above and below the partition plate, Gravitational separation was possible at 40°C. In that case, although some turbidity occurred in the wastewater, it was possible to continue liquid-liquid extraction. In this respect, it can be said that the multi-chamber type has an advantage over the single-chamber type. Note that even if the emulsion flows into the settler chamber 40, the position of the interface between the two liquid phases remains almost unchanged before and after operation, and the heavy liquid phase 4 and light liquid phase 5 that participate in phase mixing remain the same. The volume ratio (so-called O/A ratio) was maintained.

図4(e)の仕組みに限らず、図4(a)から図4(d)まで及び図4(f)から図4(p)までに示す仕組みに対しても、同様な乳濁混合状態の領域が得られた。すなわち、図1(a)から図1(t)までに示す仕組み及び図2(a)から図2(t)までに示す仕組みと同様に、軽液相5及び重液相4を送液するための流路構造の違いは、乳濁混合状態の領域に影響しないことが確認された。 The same emulsion mixing state can be applied not only to the mechanism shown in FIG. 4(e) but also to the mechanisms shown in FIGS. 4(a) to 4(d) and 4(f) to 4(p). area was obtained. That is, the light liquid phase 5 and the heavy liquid phase 4 are fed in the same way as the mechanism shown in FIGS. 1(a) to 1(t) and the mechanism shown in FIGS. 2(a) to 2(t). It was confirmed that the difference in channel structure does not affect the area of emulsion mixing state.

また、仕切板の上下に設置される連通部位に対して、図5(a1)から図5(i2)までに示す構造を用いた結果、いずれの場合も上下連通部位として十分に機能し、大きな差異は見られなかった。なお、それぞれの図の右側に示すように、複室式の仕組みは軽液相5の連通部位(上部連通部位)に軽液相5の液面が到達している状態において稼働させる必要があり、軽液相5の液面が該連通部位に達していない状態で稼働させると、軽液相5がセトラー室40に移動できないまま、重液相4だけがセトラー室40に移動するため、両室において2液相間の界面の位置を保持できなくなった。なお、軽液相5の液面が該連通部位の下に位置するように設定した上で、ミキサー室30の底部に至るまで乳濁混合状態(エマルション)を発達させると、従来法の仕組みと同様に、2液相の送液速度の比が両相の体積比に対応するようになった。 In addition, as a result of using the structures shown in Figures 5 (a1) to 5 (i2) for the communication parts installed above and below the partition plate, in each case, they functioned sufficiently as upper and lower communication parts, and large No difference was observed. As shown on the right side of each figure, the multi-chamber mechanism must be operated in a state where the liquid level of the light liquid phase 5 reaches the communication part (upper communication part) of the light liquid phase 5. If the light liquid phase 5 is operated in a state where the liquid level has not reached the communication area, only the heavy liquid phase 4 will move to the settler chamber 40 without the light liquid phase 5 being able to move to the settler chamber 40. It is no longer possible to maintain the position of the interface between the two liquid phases in the chamber. Note that if the liquid level of the light liquid phase 5 is set to be located below the communication area and an emulsion mixed state (emulsion) is developed to the bottom of the mixer chamber 30, the mechanism of the conventional method is different from that of the conventional method. Similarly, the ratio of the liquid feeding speeds of the two liquid phases corresponded to the volume ratio of both phases.

なお、図4(a)から図4(p)までに示す仕組みでは、単室式と同様に、乳濁混合状態の領域の範囲(高さ)は、攪拌翼2の回転速度と両相の送液速度に依存した。それに対して、図6(a)から図6(p)まで、図8(a)から図8(p)まで、図10(a)から図10(p)まで、及び図12(a)から図12(p)までに示すような、2枚の仕切板(上方仕切板及び下方仕切板)によって形成されるところの、乳濁混合状態(エマルション)が移動するための縦型の通過口を有する仕組みを利用すれば、攪拌翼2の回転速度、両相の送液速度の変化にかかわらず、乳濁混合状態の領域の範囲(高さ)を、ほぼ一定に維持できることがわかった。すなわち、ミキサー室30での乳濁混合状態(エマルション)の範囲(高さ)の変動は抑制された。しかしながら、該縦型通過口を有する仕組みは、乳濁混合状態(エマルション)をセトラー室40に移動させることを基本とする構造であるがゆえに、図4(a)から図4(p)までに示す仕組みと比較して、相分離能力は、若干、低下することがわかった。なお、その点において、図6(a)から図6(p)まで、図8(a)から図8(p)まで、図10(a)から図10(p)まで、及び図12(a)から図12(p)までに示す仕組みで、大きな差異は見られなかった。 In addition, in the mechanism shown in FIGS. 4(a) to 4(p), the range (height) of the region of the emulsion mixed state is determined by the rotational speed of the stirring blade 2 and the amount of both phases, as in the single-chamber type. It depended on the liquid delivery rate. On the other hand, from FIG. 6(a) to FIG. 6(p), from FIG. 8(a) to FIG. 8(p), from FIG. 10(a) to FIG. 10(p), and from FIG. 12(a) As shown in FIG. 12(p), a vertical passage opening for the emulsion to move is formed by two partition plates (an upper partition plate and a lower partition plate). It has been found that by using this mechanism, the range (height) of the emulsion-mixed state region can be maintained almost constant regardless of changes in the rotational speed of the stirring blade 2 and the liquid feeding speed of both phases. That is, fluctuations in the range (height) of the emulsion mixed state (emulsion) in the mixer chamber 30 were suppressed. However, since the mechanism having the vertical passage port is based on moving the emulsion mixed state (emulsion) to the settler chamber 40, It was found that the phase separation ability was slightly reduced compared to the mechanism shown. In this regard, from FIG. 6(a) to FIG. 6(p), from FIG. 8(a) to FIG. 8(p), from FIG. 10(a) to FIG. 10(p), and from FIG. 12(a) ) to Figure 12(p), no major differences were observed.

図6(a)から図6(p)までに示す仕組みについて、図6(e)の流路構造を代表として、乳濁混合状態の領域の範囲(高さ)を図17に示す。なお、ミキサー室30とセトラー室40の範囲を明確にするために、ミキサー室30の範囲を破線で囲んで明示している。このように、乳濁混合状態の領域が前述の縦型通過口の出口に至るまでをミキサー室30の範囲とした。また、容器1の天井面付近に軽液相5の連通部位、容器1の底面付近に重液相4の連通部位が存在する点においては、図16と同様である。 Regarding the mechanisms shown in FIGS. 6(a) to 6(p), the range (height) of the area in the emulsion mixing state is shown in FIG. 17, with the channel structure in FIG. 6(e) as a representative. In addition, in order to clarify the range of the mixer chamber 30 and the settler chamber 40, the range of the mixer chamber 30 is clearly surrounded by a broken line. In this way, the range of the mixer chamber 30 was defined as the area in which the emulsion was mixed up to the outlet of the vertical passage port. 16 in that there is a communication area for the light liquid phase 5 near the ceiling surface of the container 1 and a communication area for the heavy liquid phase 4 near the bottom surface of the container 1.

なお、図6(e)以外の仕組み(図6(a)から図6(d)まで及び図6(f)から図6(p)までに示す仕組み)に対しても、同様な乳濁混合状態の領域が得られた。すなわち、図1(a)から図1(t)までに示す仕組み、図2(a)から図2(t) までに示す仕組み、及び図4(a)から図4(p)までに示す仕組みと同様に、軽液相5及び重液相4を送液するための流路構造の違いは、乳濁混合状態の領域に影響しないことが確認された。 Note that the same emulsion mixing method can be used for mechanisms other than those shown in FIG. 6(e) (the mechanisms shown in FIGS. 6(a) to 6(d) and 6(f) to 6(p)). The state domain is obtained. That is, the mechanisms shown in Figures 1(a) to 1(t), the mechanisms shown in Figures 2(a) to 2(t), and the mechanisms shown in Figures 4(a) to 4(p). Similarly, it was confirmed that the difference in the channel structure for feeding the light liquid phase 5 and the heavy liquid phase 4 did not affect the region of the emulsion mixed state.

また、ミキサー室30寄りに位置する上方仕切板の成す軽液相5の連通部位、及びセトラー室40寄りに位置する下方仕切板21の成す重液相4の連通部位について、図7(a1)から図7(i2)までに示す構造を用いた結果、いずれの場合も上下連通部位として十分に機能し、大きな差異は見られなかった。 Furthermore, regarding the communication area of the light liquid phase 5 formed by the upper partition plate located near the mixer chamber 30 and the communication area of the heavy liquid phase 4 formed by the lower partition plate 21 located near the settler chamber 40, FIG. 7 (a1) As a result of using the structures shown in FIG. 7(i2) through FIG. 7(i2), they functioned sufficiently as upper and lower communicating parts in all cases, and no major differences were observed.

図18に、図8(a)から図8(p)までに示す仕組みについて、図8(e)の流路構造を代表として、乳濁混合状態の領域の範囲(高さ)を示す。図16、図17と同様に、ミキサー室30の範囲を破線で囲んで明示している。図18においても、容器1の天井面付近に軽液相の連通部位、容器1の底面付近に重液相4の連通部位が存在する点では、図16、図17と同様である。 FIG. 18 shows the range (height) of the region in the emulsion mixing state for the mechanisms shown in FIGS. 8(a) to 8(p), with the channel structure in FIG. 8(e) as a representative. Similar to FIGS. 16 and 17, the range of the mixer chamber 30 is clearly indicated by surrounding it with a broken line. 18 is similar to FIGS. 16 and 17 in that there is a communication area for the light liquid phase near the ceiling surface of the container 1 and a communication area for the heavy liquid phase 4 near the bottom surface of the container 1.

なお、図8(e)以外の仕組み(図8(a)から図8(d)まで及び図8(f)から図8(p)までに示す仕組み)に対しても、同様な乳濁混合状態の領域が得られた。すなわち、図1(a)から図1(t)までに示す仕組み、図2(a)から図2(t)までに示す仕組み、図4(a)から図4(p)までに示す仕組み、及び図6(a)から図6(p)までに示す仕組みと同様に、軽液相5及び重液相4を送液するための流路構造の違いは、乳濁混合状態の領域に影響しないことが確認された。 Note that the same emulsion mixing method can be used for mechanisms other than those shown in FIG. 8(e) (the mechanisms shown in FIGS. 8(a) to 8(d) and 8(f) to 8(p)). The state domain is obtained. That is, the mechanism shown in FIG. 1(a) to FIG. 1(t), the mechanism shown in FIG. 2(a) to FIG. 2(t), the mechanism shown in FIG. 4(a) to FIG. 4(p), Similarly to the mechanisms shown in FIGS. 6(a) to 6(p), the difference in the channel structure for feeding the light liquid phase 5 and the heavy liquid phase 4 affects the region of the emulsion mixed state. It was confirmed that it does not.

また、ミキサー室30寄りに位置する下方仕切板21の成す重液相4の連通部位、及びセトラー室40寄りに位置する上方仕切板20の成す軽液相5の連通部位について、図9(a)から図9(i)までに示す構造を用いた結果、いずれの場合も上下連通部位として十分に機能し、大きな差異は見られなかった。 Furthermore, regarding the communication area of the heavy liquid phase 4 formed by the lower partition plate 21 located near the mixer chamber 30 and the communication area of the light liquid phase 5 formed by the upper partition plate 20 located near the settler chamber 40, FIG. As a result of using the structures shown in ) to FIG. 9(i), they functioned sufficiently as upper and lower communication parts in all cases, and no major differences were observed.

図10(a)から図10(p)までに示す仕組みについて、図10(e)の流路構造を代表として、乳濁混合状態の領域の範囲(高さ)を図19に示す。図16、図17、及び図18と同様に、ミキサー室30の範囲を破線で囲んで明示している。図19においても、容器1の天井面付近に軽液相5の連通部位、容器1の底面付近に重液相4の連通部位が存在する点では、図16、図17、及び図18と同様である。 Regarding the mechanisms shown in FIGS. 10(a) to 10(p), FIG. 19 shows the range (height) of the area in the emulsion mixing state, with the channel structure in FIG. 10(e) being representative. Similar to FIGS. 16, 17, and 18, the range of the mixer chamber 30 is clearly indicated by surrounding it with a broken line. 19 is similar to FIGS. 16, 17, and 18 in that there is a communication area for the light liquid phase 5 near the ceiling surface of the container 1 and a communication area for the heavy liquid phase 4 near the bottom surface of the container 1. It is.

なお、図10(e)以外の仕組み(図10(a)から図10(d)まで及び図10(f)から図10(p)までに示す仕組み)に対しても、同様な乳濁混合状態の領域が得られた。すなわち、図1(a)から図1(t)までに示す仕組み、図2(a)から図2(t)までに示す仕組み、図4(a)から図4(p)までに示す仕組み、図6(a)から図6(p)までに示す仕組み、及び図8(a)から図8(p)までに示す仕組みと同様に、軽液相5及び重液相4を送液するための流路構造の違いは、乳濁混合状態の領域に影響しないことが確認された。 Note that the same emulsion mixing method can be used for mechanisms other than those shown in FIG. The state domain is obtained. That is, the mechanism shown in FIG. 1(a) to FIG. 1(t), the mechanism shown in FIG. 2(a) to FIG. 2(t), the mechanism shown in FIG. 4(a) to FIG. 4(p), Similar to the mechanisms shown in FIGS. 6(a) to 6(p) and the mechanisms shown in FIGS. 8(a) to 8(p), for feeding the light liquid phase 5 and the heavy liquid phase 4. It was confirmed that the difference in channel structure does not affect the area of emulsion mixing state.

また、図11(a1)から図11(i2)までに示す構造のような、下方仕切板21の構造と配置(各図の左)及び上方仕切板20の構造と配置(各図の右)によって形成される軽液相5及び重液相4の連通部位は、いずれの場合も、上下連通部位として十分に機能し、大きな差異は見られなかった。 In addition, the structure and arrangement of the lower partition plate 21 (left side of each figure) and the structure and arrangement of the upper partition plate 20 (right side of each figure), such as the structures shown in FIGS. 11(a1) to 11(i2). In each case, the communication site between the light liquid phase 5 and the heavy liquid phase 4 formed by the above sufficiently functioned as an upper and lower communication site, and no major differences were observed.

図12(a)から図12(p)までに示す仕組みについて、図12(e)の流路構造を代表として、乳濁混合状態の領域の範囲(高さ)を図20に示す。図16、図17、図18、及び図19と同様に、ミキサー室30の範囲を破線で囲んで明示している。図20においても、容器1の天井面付近に軽液相5の連通部位、容器1の底面付近に重液相4の連通部位が存在する点では、図16、図17、図18、及び図19と同様である。 Regarding the mechanisms shown in FIGS. 12(a) to 12(p), FIG. 20 shows the range (height) of the region in the emulsion mixing state, with the channel structure in FIG. 12(e) as a representative. Similar to FIGS. 16, 17, 18, and 19, the range of the mixer chamber 30 is clearly indicated by surrounding it with a broken line. 16, 17, 18, and 20 in that there is a communication area for the light liquid phase 5 near the ceiling surface of the container 1 and a communication area for the heavy liquid phase 4 near the bottom surface of the container 1 in FIG. It is the same as 19.

なお、図12(e)以外の仕組み(図12(a)から図12(d)まで及び図12(f)から図12(p)までに示す仕組み)に対しても、同様な乳濁混合状態の領域が得られた。すなわち、図1(a)から図1(t)までに示す仕組み、図2(a)から図2(t)までに示す仕組み、図4(a)から図4(p)までに示す仕組み、図6(a)から図6(p)までに示す仕組み、図8(a)から図8(p)までに示す仕組み、及び図10(a)から図10(p)までに示す仕組みと同様に、軽液相5及び重液相4を送液するための流路構造の違いは、乳濁混合状態の領域に影響しないことが確認された。 Note that the same emulsion mixing method can be used for mechanisms other than those shown in FIG. The state domain is obtained. That is, the mechanism shown in FIG. 1(a) to FIG. 1(t), the mechanism shown in FIG. 2(a) to FIG. 2(t), the mechanism shown in FIG. 4(a) to FIG. 4(p), Similar to the mechanism shown in Figures 6(a) to 6(p), the mechanism shown in Figures 8(a) to 8(p), and the mechanism shown in Figures 10(a) to 10(p). Furthermore, it was confirmed that the difference in the channel structure for feeding the light liquid phase 5 and the heavy liquid phase 4 did not affect the region of the emulsion mixed state.

また、図13(a1)から図13(i2)までに示す構造のような、下方仕切板の構造と配置(各図の左)及び上方仕切板の構造と配置(各図の右)によって形成される軽液相5及び重液相4の連通部位は、いずれの場合も、上下連通部位として十分に機能し、大きな差異は見られなかった。 In addition, the structure and arrangement of the lower partition plate (on the left of each figure) and the structure and arrangement of the upper partition plate (on the right of each figure), such as the structures shown in FIGS. 13(a1) to 13(i2), In both cases, the communication site between the light liquid phase 5 and the heavy liquid phase 4 functioned sufficiently as an upper and lower communication site, and no major differences were observed.

比較例1Comparative example 1

複室式において重液相又は軽液相の連通部位の一方を欠いている仕組み。 A multi-chamber system in which one of the communication parts for the heavy liquid phase or the light liquid phase is missing.

本発明の特徴は、2液相が相混合される容器1又は部屋(ミキサー室30)において、乳濁混合状態の領域と相分離状態の領域が共存する点にあり、ミキサー室30とセトラー室40を有する複室式の仕組みでは、相分離した重液相4及び軽液相5の両方が両室の間で連通している。それに対する比較として、重液相4又は軽液相5のいずれか一方のみが両室を連通している場合について検討した。 A feature of the present invention is that in the container 1 or the room (mixer chamber 30) where two liquid phases are mixed, a region in an emulsion mixture state and a region in a phase separation state coexist, and the mixer chamber 30 and the settler chamber 40, both the phase-separated heavy liquid phase 4 and light liquid phase 5 communicate between both chambers. As a comparison, a case where only either the heavy liquid phase 4 or the light liquid phase 5 communicated with both chambers was investigated.

まず、相分離した重液相4のみに対して連通部位を有する場合は、図4(e)に示す仕組みを用いて、軽液相5の液面が容器天井面と仕切板の間の連通部位に達していない状態で稼働させることで検討した。実施例1で示したように、軽液相5がセトラー室40に移動できないまま、重液相4だけがセトラー室40に移動するため、両室において2液相間の界面の位置を保持できなくなった。 First, if there is a communicating area only for the phase-separated heavy liquid phase 4, use the mechanism shown in FIG. We considered operating the system in a state where the target level was not reached. As shown in Example 1, only the heavy liquid phase 4 moves to the settler chamber 40 while the light liquid phase 5 cannot move to the settler chamber 40, so the position of the interface between the two liquid phases cannot be maintained in both chambers. lost.

次に、相分離した軽液相5のみに対して連通部位を有する場合は、図4(e)に示す仕組みを改造して検討した。すなわち、容器1の底面と仕切板の間に連通部位を有する図4(e)の仕組みに対して、仕切板の下端の全面が容器底面と接合している仕組みに改造した。この改造した仕組みを用いて、軽液相5の液面が容器天井面と仕切板の間の連通部位に達している状態で稼働させた。その結果、重液相4がセトラー室に移動できないまま、軽液相5だけがセトラー室に移動するため、両室において2液相間の界面の位置を保持できなくなった。 Next, we modified the mechanism shown in FIG. 4(e) to consider a case where a communicating portion was provided only to the phase-separated light liquid phase 5. That is, the mechanism shown in FIG. 4E, which has a communicating portion between the bottom of the container 1 and the partition plate, was modified to a mechanism in which the entire lower end of the partition plate is joined to the bottom of the container. Using this modified mechanism, it was operated with the liquid level of the light liquid phase 5 reaching the communication area between the container ceiling surface and the partition plate. As a result, only the light liquid phase 5 moved to the settler chamber without the heavy liquid phase 4 being able to move to the settler chamber, making it impossible to maintain the position of the interface between the two liquid phases in both chambers.

比較例2Comparative example 2

複室式において上下の両室連通部位以外にも横型の通過口を有する仕組み。 In a multi-chamber system, there is a horizontal passageway in addition to the communication area between the upper and lower chambers.

図4(a)から図4(p)までに示す複室式の仕組みでは、単室式と同様に、乳濁混合状態(エマルション)の領域の範囲(高さ)は攪拌翼2の回転速度と両相の送液速度に影響されるが、これらの影響を抑制するために、ミキサー室30とセトラー室40の間に乳濁混合状態が移動するための通過口を設けることは有効である。そこで、図4(e)に示す仕切板に対し、上下の両室連通部位以外にも通過口(横型の通過口)を有する穴あき仕切板24を設置した。その仕組みを図21に示す。 In the multi-chamber system shown in FIGS. 4(a) to 4(p), as in the single-chamber system, the range (height) of the region of the emulsion mixed state (emulsion) is determined by the rotational speed of the stirring blade 2. and the liquid feeding speed of both phases, but in order to suppress these effects, it is effective to provide a passage port between the mixer chamber 30 and the settler chamber 40 for moving the emulsion mixed state. . Therefore, with respect to the partition plate shown in FIG. 4(e), a perforated partition plate 24 having passage ports (horizontal passage ports) in addition to the upper and lower chamber communication portions was installed. The mechanism is shown in FIG. 21.

図21に示す仕組みでは、乳濁混合状態(エマルション)の領域の範囲(高さ)に対する攪拌翼2の回転速度と両相の送液速度の影響を抑制することができた。しかしながら、その一方で、ミキサー室30における攪拌翼2の翼部位付近で発生した乳濁混合相(エマルション相)が、横型の通過口を介してすぐさまセトラー室40に移動してしまうため、ミキサー室30ではエマルション相が十分に発達できず、なおかつ、セトラー室40に大量のエマルションが流入することで、相分離に悪影響を及ぼすことがわかった。図21の仕組みを稼働させた際の乳濁混合状態(エマルション)の様子を図22に示す。 With the mechanism shown in FIG. 21, it was possible to suppress the influence of the rotational speed of the stirring blade 2 and the liquid feeding speed of both phases on the range (height) of the region of the emulsion mixed state (emulsion). However, on the other hand, the emulsion mixed phase (emulsion phase) generated near the blade part of the stirring blade 2 in the mixer chamber 30 immediately moves to the settler chamber 40 through the horizontal passage port. 30, the emulsion phase could not be sufficiently developed, and a large amount of emulsion flowed into the settler chamber 40, which adversely affected phase separation. FIG. 22 shows the emulsion mixed state (emulsion) when the mechanism shown in FIG. 21 is operated.

複室式での2液相間の界面位置の不変性の確認。 Confirmation of constancy of the interface position between two liquid phases in a multi-chamber system.

複室式の仕組みでは、2液相間の界面の位置は、ミキサー室30とセトラー室40で、常に同じ位置にあった。また、両相の送液速度の変動にかかわらず、なおかつ、いかに長期にわたって稼働させても、その位置は不変であった。具体的には、図4(a)乃至図4(p)、図6(a)乃至図6(p)、図8(a)乃至図8(p)、図10(a)乃至図10(p)、及び図12(a)乃至図12(p)に示す仕組みに対して、2液相間の界面位置の不変性が確認された。 In the multi-chamber system, the interface between the two liquid phases was always at the same location in the mixer chamber 30 and the settler chamber 40. In addition, the position remained unchanged regardless of fluctuations in the liquid feeding speeds of both phases and no matter how long the system was operated. Specifically, FIGS. 4(a) to 4(p), FIGS. 6(a) to 6(p), FIGS. 8(a) to 8(p), and FIGS. 10(a) to 10( The invariance of the interface position between the two liquid phases was confirmed for the mechanisms shown in p) and FIGS. 12(a) to 12(p).

一方、従来法の仕組みも、ミキサー室とセトラー室から成る複室式だが、2液相間の界面位置は、両室で必ずしも一致していない。また、該界面位置は、両相の送液速度の変動によって変化し、なおかつ、長期にわたって稼働させることで、その位置は徐々に変化するため、日常的に調整作業を要することが知られている。 On the other hand, the mechanism of the conventional method is also a multi-chamber type consisting of a mixer chamber and a settler chamber, but the interface position between the two liquid phases does not necessarily match in both chambers. Furthermore, it is known that the position of the interface changes due to fluctuations in the liquid feeding speed of both phases, and that the position gradually changes due to long-term operation, requiring adjustment work on a daily basis. .

2液相の送液速度の比とO/A比の独立性の確認。 Confirmation of the independence of the ratio of liquid feeding speeds of the two liquid phases and the O/A ratio.

本発明の仕組みでは、重液相4と軽液相5の送液速度は、相混合にあずかる両相の体積比(いわゆるO/A比)と無関係に設定することができた。具体的には、図1(a)乃至図1(t)、図2(a)乃至図2(t)、図4(a)乃至図4(p)、図6(a)乃至図6(p)、図8(a)乃至図8(p)、図10(a)乃至図10(p)、及び図12(a)乃至図12(p)に示す仕組みに対して、重液相4の送液速度と軽液相5の送液速度の比を1:1から1:10まで変化させたが、攪拌翼2を格納する容器1又は部屋(ミキサー室30)における2液相間の界面の位置は、稼働の前後で変化しないことがわかった。すなわち、2液相の送液速度の比とO/A比の独立性が確認された。 In the mechanism of the present invention, the liquid feeding speeds of the heavy liquid phase 4 and the light liquid phase 5 could be set independently of the volume ratio of both phases participating in phase mixing (so-called O/A ratio). Specifically, FIGS. 1(a) to 1(t), FIGS. 2(a) to 2(t), FIGS. 4(a) to 4(p), and FIGS. 6(a) to 6( p), FIGS. 8(a) to 8(p), FIGS. 10(a) to 10(p), and FIGS. 12(a) to 12(p), the heavy liquid phase 4 The ratio between the liquid feeding speed of the light liquid phase 5 and the liquid feeding speed of the light liquid phase 5 was varied from 1:1 to 1:10. It was found that the position of the interface did not change before and after operation. That is, the independence of the ratio of the liquid feeding speeds of the two liquid phases and the O/A ratio was confirmed.

乳濁混合状態の発生とその安定性。 Occurrence of emulsion mixed state and its stability.

図8(m)に示す仕組みに対して、重液相4としてイオン交換水(純水)又は0.1M 硝酸水溶液を用い、軽液相5として前述のアルカン系溶媒(ShellSol D70)、トルエン、メチルイソブチルケトン(MIBK)、又はn-オクタノールを用いて、乳濁混合状態の発生とその安定性に関する実験を行った。後述するように、従来法の仕組みでは、重液相4と軽液相5の乳濁混合状態が安定化するまでにかなりの時間(通常、数分から数時間)を要したが、本仕組みでは、即座に(数秒から1分程度で)両相を乳濁混合の状態にすることができた。すなわち、相混合のための容器1又は部屋(ミキサー室30)の上方から重液相4、下方から軽液相5を送液導入しながら、2液相の界面付近に設置した攪拌翼2の翼部位を回転させることによって、即座に両相を乳濁混合状態(エマルション)に至らしめることができた。 For the mechanism shown in FIG. 8(m), ion exchange water (pure water) or 0.1M nitric acid aqueous solution was used as the heavy liquid phase 4, and the above-mentioned alkane solvent (ShellSol D70), toluene, Using methyl isobutyl ketone (MIBK) or n-octanol, experiments were conducted regarding the generation of an emulsified mixed state and its stability. As will be described later, in the conventional method, it took a considerable amount of time (usually several minutes to several hours) for the emulsion mixture of heavy liquid phase 4 and light liquid phase 5 to stabilize, but with this mechanism, It was possible to instantly (in a few seconds to about 1 minute) bring both phases into an emulsified state. That is, while feeding and introducing the heavy liquid phase 4 from above and the light liquid phase 5 from below into the container 1 or room (mixer chamber 30) for phase mixing, the stirring blades 2 installed near the interface between the two liquid phases are introduced. By rotating the wing portion, both phases could be immediately brought into an emulsion.

また、後述するように、安定な乳濁混合状態を得るのに要する攪拌翼2の回転速度は、従来法の場合よりも、ずっと遅くてもよいことがわかった(従来法の3分の2から半分ほどの回転速度)。さらに、本仕組みによって得られる乳濁混合状態は、従来法よりも密で均質性が高いことが、高速度カメラによる液滴観測によって確認された。なお、乳濁混合状態の違いは、目視からも明白であり、長時間を経ても稼働中の様子に変化は見られなかった。一方、従来法で発生させた乳濁混合状態は、長時間を経ることで変化する場合があった。 Furthermore, as will be described later, it was found that the rotational speed of the stirring blade 2 required to obtain a stable emulsion mixing state can be much slower than in the case of the conventional method (two-thirds of the rotation speed of the conventional method). (about half the rotation speed). Furthermore, droplet observation using a high-speed camera confirmed that the emulsion mixture obtained by this mechanism is denser and more homogeneous than that obtained by conventional methods. The difference in the emulsion mixing state was also obvious from visual observation, and no change was observed during operation even after a long period of time. On the other hand, the emulsion mixed state generated by the conventional method may change over a long period of time.

なお、抽出溶媒相(多くの場合、軽液相)の種類によっては、撹拌翼回転に基づく機械撹拌だけではエマルション相が形成されにくいことがあった。とくに、n-オクタノールのような極性有機溶媒を用いた場合に、このような傾向があった。その場合、重液相若しくは軽液相又はその両方を、細孔又は細管を有するノズルを通じて送液することで、エマルション相の形成が促進されることがわかった。 Note that depending on the type of extraction solvent phase (in many cases, a light liquid phase), it may be difficult to form an emulsion phase only by mechanical stirring based on the rotation of a stirring blade. This tendency was particularly observed when a polar organic solvent such as n-octanol was used. In that case, it has been found that the formation of an emulsion phase is facilitated by conveying the heavy liquid phase or the light liquid phase, or both, through a nozzle having pores or capillaries.

比較例3Comparative example 3

乳濁混合状態の発生とその安定性の従来法との比較。 Comparison of generation of emulsion mixed state and its stability with conventional method.

図23に示す従来法に対応する仕組みを作製し、図8(m)の仕組みと比較した。用いた重液相4及び軽液相5は実施例4と同様である。図8(m)の仕組みでは、数秒から1分程度で両相を乳濁混合の状態にすることができたのに対して、図23の仕組みでは、両相の乳濁混合状態が安定化するまでに数分から数時間を要した。また、図23の仕組みでは、安定な乳濁混合状態を得るために、図8(m)の仕組みと比較して、攪拌翼2の回転速度を1.5倍から2倍にする必要があった。従来法ではミキサー室全体にわたって均質な乳濁混合状態に至らしめる必要があり、攪拌翼2の回転速度が不足している場合、乳濁混合状態が密な領域と疎な領域が混在した不均質なエマルション相が発生することで、2液相間の界面位置が変動した。また、溶媒によっては、安定な乳濁混合状態に至らない場合もあった。とくに、アルコールなどの極性の高い溶媒について、エマルション相が発達しにくい傾向があった。 A mechanism corresponding to the conventional method shown in FIG. 23 was created and compared with the mechanism shown in FIG. 8(m). The heavy liquid phase 4 and light liquid phase 5 used were the same as in Example 4. With the mechanism shown in Figure 8(m), it was possible to bring both phases into an emulsion-mixed state within a few seconds to a minute, whereas with the mechanism shown in Figure 23, the emulsion-mixed state of both phases was stabilized. It took several minutes to several hours. Furthermore, in the mechanism shown in Fig. 23, in order to obtain a stable emulsion mixing state, it is necessary to increase the rotational speed of the stirring blade 2 by 1.5 to 2 times compared to the mechanism shown in Fig. 8 (m). Ta. In the conventional method, it is necessary to reach a homogeneous emulsion mixed state throughout the mixer chamber, but if the rotation speed of the stirring blade 2 is insufficient, the emulsion mixed state becomes heterogeneous with dense areas and sparse areas. As a result of the generation of an emulsion phase, the interface position between the two liquid phases changed. Further, depending on the solvent, a stable emulsion mixed state may not be achieved in some cases. In particular, highly polar solvents such as alcohol tended to have difficulty developing an emulsion phase.

攪拌翼の回転速度と2液相の送液速度の独立性の確認。 Confirmation of the independence of the rotational speed of the stirring blade and the liquid feeding speed of the two liquid phases.

従来法(複室式)では、攪拌翼2の回転速度の増加で、より強い剪断力が生じ、液滴どうしが合一しにくい微小な液滴が発生しやすくなるため、エマルション相が相分離しにくくなり、セトラー室へのエマルション相の移行を抑制する必要があるが、攪拌翼2の回転速度の増加に対応して送液速度も大きくなってしまうことから、逆に、エマルション相のセトラー室への移行が促進される。 In the conventional method (multi-chamber type), an increase in the rotational speed of the stirring blade 2 generates stronger shearing force, which tends to generate minute droplets that are difficult to coalesce, resulting in phase separation of the emulsion phase. Therefore, it is necessary to suppress the transfer of the emulsion phase to the settler chamber. The transition to the room is facilitated.

本発明の仕組みでは、重液相及び軽液相の送液速度は、攪拌翼2の回転速度から完全に独立して設定できることがわかった。具体的には、図1(a)乃至図1(t)、図2(a)乃至図2(t)、図4(a)乃至図4(p)、図6(a)乃至図6(p)、図8(a)乃至図8(p)、図10(a)乃至図10(p)、及び図12(a)乃至図12(p)に示す仕組みに対して、攪拌翼2の回転速度と2液相の送液速度の関係を検討した結果、両者の独立性が確認できた。 It has been found that in the mechanism of the present invention, the liquid feeding speeds of the heavy liquid phase and the light liquid phase can be set completely independently of the rotational speed of the stirring blade 2. Specifically, FIGS. 1(a) to 1(t), FIGS. 2(a) to 2(t), FIGS. 4(a) to 4(p), and FIGS. 6(a) to 6( p), FIGS. 8(a) to 8(p), FIGS. 10(a) to 10(p), and FIGS. 12(a) to 12(p), the stirring blade 2 As a result of examining the relationship between the rotational speed and the feeding speed of the two liquid phases, it was confirmed that the two are independent.

分相性の向上の確認。 Confirmation of improvement in phase separation.

本発明の仕組みでは、機械撹拌のための容器1又は部屋(ミキサー室30)において相分離を同時進行させることで、分相性が向上することがわかった。具体的には、図1(a)乃至図1(t)、図2(a)乃至図2(t)、図4(a)乃至図4(p)、図6(a)乃至図6(p)、図8(a)乃至図8(p)、図10(a)乃至図10(p)、及び図12(a)乃至図12(p)に示す仕組みに対して、図23に示す従来法と比較したところ、分相性が大幅に向上することが確認できた。また、分相性が高いことは、処理速度(プロセッシング・スピード)を大きくできることを意味しており、本発明の仕組みを用いた場合と同じ処理速度を図23の仕組みに対して設定すると、セトラー室40が即座に激しく白濁し、排水が困難になった。 It has been found that in the mechanism of the present invention, the phase separation property is improved by simultaneous progress of phase separation in the container 1 or the room (mixer chamber 30) for mechanical stirring. Specifically, FIGS. 1(a) to 1(t), FIGS. 2(a) to 2(t), FIGS. 4(a) to 4(p), and FIGS. 6(a) to 6( p), FIG. 8(a) to FIG. 8(p), FIG. 10(a) to FIG. 10(p), and FIG. 12(a) to FIG. 12(p), the mechanism shown in FIG. When compared with the conventional method, it was confirmed that the phase separation property was significantly improved. In addition, high phase separation means that the processing speed can be increased, and if the same processing speed as when using the mechanism of the present invention is set for the mechanism of Fig. 23, the settler chamber 40 immediately became extremely cloudy and became difficult to drain.

希土類元素の抽出分離実験。 Extraction and separation experiment of rare earth elements.

本発明の図4(e)に示す仕組みにより、アルキルジアミドアミン(ADAAM)を用いて、硝酸水溶液から2つの希土類元素、ネオジム(Nd)とサマリウム(Sm)を抽出分離する実験を行った。具体的には、0.25M(mol dm-3)のADAAMを含むShellSol D70溶液を軽液相として用い、1.5 M の硝酸水溶液(重液相)に溶解しているネオジム(Nd)とサマリウム(Sm)を軽液相に抽出分離した。なお、ADAAMは、希土類元素間の選択的分離能に優れる分子性抽出剤であり、とくに、周期表で隣り合うNdとSmの分離など、中希土類の元素の分離に適している。 An experiment was conducted to extract and separate two rare earth elements, neodymium (Nd) and samarium (Sm) from an aqueous nitric acid solution using an alkyl diamide amine (ADAAM) using the mechanism shown in FIG. 4(e) of the present invention. Specifically, a ShellSol D70 solution containing 0.25 M (mol dm-3) ADAAM was used as a light liquid phase, and neodymium (Nd) dissolved in a 1.5 M nitric acid aqueous solution (heavy liquid phase) was used. Samarium (Sm) was extracted and separated into a light liquid phase. Note that ADAAM is a molecular extractant with excellent selective separation ability between rare earth elements, and is particularly suitable for separating medium rare earth elements such as the separation of Nd and Sm, which are adjacent to each other in the periodic table.

また、比較のため、前述と同じ重液相(水相)と軽液相(油相)を用いて、試験管でのバッチ実験(回分式での実験)を行った。共栓付き試験管に同体積の重液相4と軽液相5を入れて、縦振り振とう器により十分に振とうして抽出平衡に達せしめた後、遠心分離器を使って2液相を分離した。なお、振とう時間に対して分配比(油相中の希土類元素の濃度を水相中の希土類元素の濃度で割った値)が変化しなくなった時点において、抽出平衡に到達したと見なした。 For comparison, a test tube batch experiment (batchwise experiment) was conducted using the same heavy liquid phase (aqueous phase) and light liquid phase (oil phase) as described above. Pour the same volume of heavy liquid phase 4 and light liquid phase 5 into a test tube with a stopper, shake thoroughly using a vertical shaker to reach extraction equilibrium, and then separate the two liquids using a centrifuge. The phases were separated. In addition, extraction equilibrium was considered to have been reached when the distribution ratio (the value obtained by dividing the concentration of rare earth elements in the oil phase by the concentration of rare earth elements in the water phase) did not change with respect to the shaking time. .

分子性抽出剤ADAAMによるNdのSmの抽出分離について、図4(e)に示す仕組みを用いて実験を行った結果と試験管でのバッチ実験の結果を比較する。図4(e)の仕組みでの実験の結果は、Ndの分配比が8.5、Smの分配比が0.38となった。一方、バッチ実験での結果は、Ndの分配比が5.9、Smの分配比が0.42となった。 Regarding the extraction and separation of Sm from Nd using the molecular extractant ADAAM, the results of an experiment using the mechanism shown in FIG. 4(e) will be compared with the results of a test tube batch experiment. As a result of the experiment using the structure shown in FIG. 4(e), the distribution ratio of Nd was 8.5 and the distribution ratio of Sm was 0.38. On the other hand, as a result of the batch experiment, the distribution ratio of Nd was 5.9 and the distribution ratio of Sm was 0.42.

SmからのNdの分離係数(Ndの分配比をSmの分配比で割った値)の値を求めると、図4(e)の仕組みでの実験では22.4、バッチ実験では14.1となった。バッチ実験の結果は、抽出平衡時の結果であるから、図4(e)の仕組みでは、抽出平衡時の分離係数よりも大きな分離係数が得られることがわかった。この結果は、重液相(水相)と軽液相(油相)の対向送液に基づく両相の向流接触によって、理論段数が向上したことによるものと考えられる。 The value of the separation coefficient of Nd from Sm (the value obtained by dividing the distribution ratio of Nd by the distribution ratio of Sm) is 22.4 in the experiment using the mechanism shown in Figure 4(e), and 14.1 in the batch experiment. became. Since the results of the batch experiment are the results at extraction equilibrium, it was found that the mechanism shown in FIG. 4(e) provides a separation coefficient larger than that at extraction equilibrium. This result is considered to be due to the increase in the number of theoretical plates due to countercurrent contact between the heavy liquid phase (aqueous phase) and light liquid phase (oil phase) based on counter-feeding of the two phases.

なお、図23の仕組みを用いた従来法でも、前述と同じ重液相(水相)と軽液相(油相)を用いて実験を行った結果、Ndの分配比は3.2、Smの分配比は0.23となった。すなわち、SmからのNdの分離係数は13.9であり、バッチ実験の結果(抽出平衡時の結果)とほぼ同じ値であった。 In addition, even with the conventional method using the mechanism shown in Figure 23, as a result of conducting an experiment using the same heavy liquid phase (aqueous phase) and light liquid phase (oil phase) as described above, the distribution ratio of Nd was 3.2 and Sm The distribution ratio was 0.23. That is, the separation coefficient of Nd from Sm was 13.9, which was approximately the same value as the result of the batch experiment (result at extraction equilibrium).

循環送液に対する適応性。 Adaptability to circulating fluid delivery.

従来のオーバーフロー(溢流)による液送りの仕組みが循環送液には不向きであるのに対して、本発明の圧力作用による送液の仕組みは、循環送液に対する適応性が高いことがわかった。具体的には、図1(a)から図1(o)まで、図2(a)から図2(o)まで、図4(a)から図4(l)まで、図6(a)から図6(l)まで、図8(a)から図8(l)まで、図10(a)から図10(l)まで、及び図12(a)から図12(l)までに示す仕組みによって、重液相4若しくは軽液相5又は両相を循環送液することが容易であることが確認できた。 It was found that while the conventional liquid feeding mechanism using overflow is not suitable for circulating liquid feeding, the liquid feeding mechanism using pressure action of the present invention is highly adaptable to circulating liquid feeding. . Specifically, from FIG. 1(a) to FIG. 1(o), FIG. 2(a) to FIG. 2(o), FIG. 4(a) to FIG. 4(l), and FIG. 6(a) to By the mechanism shown in FIG. 6(l), FIG. 8(a) to FIG. 8(l), FIG. 10(a) to FIG. 10(l), and FIG. 12(a) to FIG. 12(l). It was confirmed that it was easy to circulate the heavy liquid phase 4, the light liquid phase 5, or both phases.

また、オーバーフロー(溢流)による液送りから圧力作用による送液に切り替えることで循環送液を容易にできることに加え、本発明の仕組みでは、相混合にあずかる重液相4と軽液相5の体積比(いわゆるO/A比)を送液速度とは無関係に設定できる点も、循環送液を容易にする一因である。すなわち、O/A比は変えず、2液相の送液速度の比を自由に設定できるので、たとえば、重液相4(多くの場合、水相)を1回通過方式で送液する場合の送液速度に対して、軽液相5(多くの場合、油相)を循環する送液速度を大幅に大きくした条件で、安定なエマルション相を永続的に維持しながら、処理を進められることがわかった。 In addition, in addition to being able to easily circulate liquid by switching from liquid feeding by overflow to liquid feeding by pressure action, the mechanism of the present invention also allows for the separation of heavy liquid phase 4 and light liquid phase 5, which participate in phase mixing. The fact that the volume ratio (so-called O/A ratio) can be set independently of the liquid feeding rate is also one of the factors that facilitates circulating liquid feeding. In other words, the O/A ratio remains unchanged, and the ratio of the liquid delivery speeds of the two liquid phases can be freely set, so for example, when heavy liquid phase 4 (in most cases, the aqueous phase) is fed in a single pass method, Processing can proceed while permanently maintaining a stable emulsion phase under conditions where the liquid feeding rate for circulating the light liquid phase 5 (in most cases, the oil phase) is significantly increased compared to the liquid feeding rate of . I understand.

循環送液適応型の仕組みには、様々な利点がある。たとえば、前述の本発明における循環送液の仕組みは、抽出速度が遅い系、抽出率が小さい系などを扱う場合に有効であること、正抽出、洗浄、及び逆抽出を一体化して同期的に循環送液することで生じる多段効果、同期的循環送液多段(特願2019―113657)にも利用できることを確認した。なお、多段を要する難分離、精密分離のケースでは、同期的循環送液多段を用いることで、従来のミキサーセトラー法の多段方式(容器員数多段)と比較して、装置システムを大幅にダウンサイズできることもわかった。 A mechanism adapted to circulating fluid delivery has various advantages. For example, the above-mentioned circulating liquid feeding mechanism in the present invention is effective when dealing with systems with slow extraction speeds or low extraction rates, and it integrates forward extraction, washing, and back extraction in a synchronous manner. It was confirmed that it can also be used for the multi-stage effect caused by circulating liquid feeding, and multi-stage synchronous circulating liquid feeding (Japanese Patent Application No. 2019-113657). In addition, in cases of difficult separation or precise separation that require multiple stages, by using multiple stages of synchronous circulation, the equipment system can be significantly downsized compared to the conventional mixer-settler method (multi-stage system). I also found out that it is possible.

前述の実施例及び比較例に示された結果に基づき、以下のように考察できる。まず、この仕組みによって、従来法の仕組みと比較して、より効率的に、かつ、より広範囲で安定なエマルション相を成長させることができる。すなわち、上方から導入される重液相は、他の重液と接触することなく軽液相内を通過した先で初めてエマルション相に到達し、下方から導入される軽液相は、他の軽液と接触することなく重液相内を通過した先で初めてエマルション相に到達する。よって、エマルション相における重液相と軽液相の体積比は、常にほぼ一定の状態を安定的に維持できる。 Based on the results shown in the above-mentioned Examples and Comparative Examples, the following considerations can be made. First, with this mechanism, a stable emulsion phase can be grown more efficiently and over a wider range than with conventional methods. In other words, the heavy liquid phase introduced from above reaches the emulsion phase only after passing through the light liquid phase without contacting other heavy liquids, and the light liquid phase introduced from below reaches the emulsion phase only after passing through the light liquid phase without contacting other heavy liquids. It reaches the emulsion phase only after passing through the heavy liquid phase without contacting the liquid. Therefore, the volume ratio of the heavy liquid phase to the light liquid phase in the emulsion phase can always be stably maintained in a substantially constant state.

さらに、重液相は上方から下方に向かって、軽液相は下方から上方に向かって流れるため、必然的に、両相は向流接触することになる。それによって、多くのカラム型の抽出装置(例えば、スプレーカラム、パルスカラム、エマルションフロー)と同様に、理論段数が向上する。 Furthermore, since the heavy liquid phase flows from the top to the bottom and the light liquid phase flows from the bottom to the top, both phases inevitably come into countercurrent contact. This increases the number of theoretical plates as well as many column type extraction devices (eg spray columns, pulse columns, emulsion flow).

さて、従来法の仕組みでは、撹拌混合された重液相と軽液相がオーバーフロー(溢流)によって1通りのルートでミキサー室からセトラー室へと一方的に液送りされるため、重液相と軽液相の送液速度の比が、そのまま、ミキサー室に存在する2液相の体積比になる。別の言い方をすると、重液相と軽液相の送液速度の比を維持したままで、相混合にあずかる両相の体積比を変えることはできないし、両相の体積比を維持したままで、その送液速度の比を変えることもできない。すなわち、重液相と軽液相の体積比と両相の送液速度の比が一致する、という縛り(制限)の範囲内でしか運転できないという点において、操作上の自由度が小さい。それに対して、単室式の仕組みでは、2液相の撹拌混合に供する1つの容器内でエマルション相が発生している領域と消滅している領域が共存するので、いわば、1つ容器が、従来法で言うところのミキサー室とセトラー室の両方を兼ねている。この場合、前記容器内に存在する2液相の体積比は、送液速度と無関係になる。複室式の仕組みでのミキサー室の場合も、従来法のミキサー室とは異なり、前記単室式と同様に、エマルション相が発生している領域と消滅している領域がミキサー室内で共存しながらセトラー室と連通しているため、ミキサー室内に存在する2液相の体積比は、送液速度と無関係になる(詳細は後述する)。 Now, in the conventional method, the heavy liquid phase and light liquid phase that have been stirred and mixed are sent unilaterally from the mixer chamber to the settler chamber through one route due to overflow, so the heavy liquid phase The ratio of the liquid feeding speed of the light liquid phase and the light liquid phase directly becomes the volume ratio of the two liquid phases existing in the mixer chamber. In other words, it is not possible to change the volume ratio of both phases that participate in phase mixing while maintaining the ratio of the liquid feeding speeds of the heavy liquid phase and the light liquid phase. Also, the ratio of the liquid feeding speed cannot be changed. That is, the degree of freedom in operation is small in that it can only be operated within the constraint (restriction) that the volume ratio of the heavy liquid phase and the light liquid phase and the ratio of the liquid feeding speeds of both phases match. On the other hand, in a single-chamber system, a region in which the emulsion phase is generated and a region in which the emulsion phase has disappeared coexist within one container used for stirring and mixing two liquid phases, so that one container can It serves as both a mixer room and a settler room in the conventional method. In this case, the volume ratio of the two liquid phases present in the container becomes independent of the liquid feeding rate. In the case of a mixer room with a multi-chamber system, unlike the mixer room of the conventional method, the region where the emulsion phase is generated and the region where it disappears coexist in the mixer room, similar to the single-chamber system described above. However, since it communicates with the settler chamber, the volume ratio of the two liquid phases present in the mixer chamber is independent of the liquid feeding rate (details will be described later).

すなわち、従来法の仕組みで、重液相と軽液相の送液速度の比が同じであればミキサー室に存在する重液相と軽液相の体積比は変化しないのと同様に、重液相と軽液相が1つの容器内に収まっていて、重液相の導入速度と排出速度、及び軽液相の導入速度と排出速度が共に一致していれば、前記容器内に存在する2液相の体積比は変化しない。実際、重液相と軽液相は個別に導入され、容器内では相混合されるが、再び、重液相と軽液相に分離した状態で個別に排出されるため、両相の導入速度と排出速度は常に一致している。別の言い方をすると、入口(導入口)と出口(排出口)で両相の出入りが制御されているため(いずれの液相も、導入された体積と同じ体積が排出されるため)、容器内に設置される両相の体積比は、送液速度の大きさに影響されることなく維持される。この場合、ポンプ等による送液速度が導入速度であり、排出速度でもある。すなわち、重液相の送液速度(=導入速度=排出速度)と軽液相の送液速度(=導入速度=排出速度)は、両相の体積比とは関係なく、自由に設定できる。このことは同時に、前記容器内で重液相と軽液相が成す界面の位置が、両相の送液速度とは無関係であることも意味している。 In other words, in the conventional method, if the ratio of the liquid feeding speeds of the heavy liquid phase and the light liquid phase is the same, the volume ratio of the heavy liquid phase and the light liquid phase existing in the mixer chamber does not change. If the liquid phase and the light liquid phase are contained in one container, and the introduction speed and discharge speed of the heavy liquid phase and the introduction speed and discharge speed of the light liquid phase are the same, the liquid phase exists in the container. The volume ratio of the two liquid phases does not change. In fact, the heavy liquid phase and the light liquid phase are introduced separately and mixed in the container, but again they are separated into the heavy liquid phase and the light liquid phase and discharged separately, so the introduction rate of both phases is and the discharge rate are always consistent. In other words, since the entrance and exit of both phases are controlled at the inlet (inlet) and outlet (outlet) (because the same volume of liquid phase is discharged as the volume introduced), The volume ratio of both phases installed in the container is maintained without being affected by the liquid feeding rate. In this case, the liquid feeding rate by a pump or the like is the introduction rate and also the discharge rate. That is, the liquid feeding rate of the heavy liquid phase (=introduction rate=discharge rate) and the liquid feeding rate of the light liquid phase (=introduction rate=discharge rate) can be freely set regardless of the volume ratio of both phases. This also means that the position of the interface between the heavy liquid phase and the light liquid phase within the container is independent of the liquid feeding speed of both phases.

なお、オーバーフローによって1通りのルートでミキサー室からセトラー室に一方的に液送りされる場合、重液相と軽液相が個別にミキサー室に導入される反面、両相は分離されないまま、ミキサー室からセトラー室に移動するため、ミキサー室からの出口(セトラー室への入口)において、各液相に対しての個別の制御は働かず、ミキサー室に導入された重液相(又は軽液相)の体積とミキサー室からセトラー室に移動する重液相(又は軽液相)の体積は必ずしも一致していない。例えば、ミキサー室内に重液相と軽液相を設置した上で運転を開始した場合、両相の送液速度の比と設置時の両相の体積比が異なれば、ミキサー室内の両相の体積比は徐々に変化してしまう。よって、従来法の仕組み(オーバーフロー方式)では、通常、ミキサー室を空にした状態から運転を開始する。 In addition, when the liquid is sent unilaterally from the mixer chamber to the settler chamber by one route due to overflow, the heavy liquid phase and the light liquid phase are introduced into the mixer chamber separately, but on the other hand, the two phases are not separated and are transferred to the mixer chamber. At the exit from the mixer chamber (inlet to the settler chamber), individual control for each liquid phase does not work, as the heavy liquid phase (or light liquid phase) introduced into the mixer chamber The volume of the heavy liquid phase (or light liquid phase) transferred from the mixer chamber to the settler chamber does not necessarily match. For example, when starting operation after installing a heavy liquid phase and a light liquid phase in the mixer chamber, if the ratio of the liquid feeding speed of both phases and the volume ratio of both phases at the time of installation are different, the difference between the two phases in the mixer chamber. The volume ratio changes gradually. Therefore, in the conventional method (overflow method), operation is usually started with the mixer chamber empty.

また、重液相と軽液相の撹拌混合に供する1つの容器内でエマルション相が発生している領域と消滅している領域が共存する本発明の仕組みは、分相性においても、従来法の仕組みよりも優れている。従来法の仕組みでは、ミキサー室からセトラー室へと移行するエマルション相の中で、ミキサー室への導入時における重液相と軽液相の体積比が維持されている必要があり、ミキサー室では両相が全体にわたって均質的に撹拌混合されている状態が好ましいが、このことが分相性を悪くしている原因でもある。それに対して、1つの容器内において機械撹拌による相混合と相分離が同時進行する本発明の仕組みでは、容器全体にわたって均質的に撹拌混合されている必要はなく、最初から相分離が起こっていることから、分相性は従来法よりも大幅に向上する。 In addition, the mechanism of the present invention, in which regions in which the emulsion phase is generated and regions in which it disappears coexist within one container used for stirring and mixing the heavy liquid phase and the light liquid phase, is superior to the conventional method in terms of phase separation. It's better than a system. In the conventional method, it is necessary to maintain the volume ratio of the heavy liquid phase to the light liquid phase at the time of introduction into the mixer room in the emulsion phase that moves from the mixer room to the settler room. It is preferable that both phases are stirred and mixed homogeneously throughout, but this is also the cause of poor phase separation. In contrast, in the system of the present invention, in which phase mixing and phase separation occur simultaneously within one container by mechanical stirring, it is not necessary that stirring and mixing occur homogeneously throughout the container, and phase separation occurs from the beginning. Therefore, the phase separation property is significantly improved compared to the conventional method.

さらに、本発明の仕組みの場合、重液相及び軽液相は、必ずしも1回通過方式で送液する必要はなく、循環方式で送液してもよい。従来のオーバーフローによる液送りの仕組みは、循環送液には不向きだが、本発明の仕組みは、むしろ循環送液に適している。循環送液は、抽出速度が遅い系、抽出率が小さい系などを扱う場合に有効である。また、このような循環送液適応型の仕組みは、正抽出、洗浄、及び逆抽出を一体化して同期的に循環送液することで生じる多段効果、同期的循環送液多段(特願2019―113657)にも利用できる。多段を要する難分離、精密分離のケースでは、同期的循環送液多段を用いることで、従来法の多段方式(容器員数多段)と比較して、装置システムを大幅にダウンサイズできる。 Furthermore, in the case of the mechanism of the present invention, the heavy liquid phase and the light liquid phase do not necessarily need to be fed in a single pass mode, but may be fed in a circulation mode. The conventional liquid feeding mechanism using overflow is not suitable for circulating liquid feeding, but the mechanism of the present invention is rather suitable for circulating liquid feeding. Circulating liquid feeding is effective when dealing with systems where the extraction rate is slow or the extraction rate is small. In addition, such a mechanism adapted to circulating liquid feeding has a multi-stage effect produced by integrating forward extraction, washing, and back extraction and synchronously circulating liquid feeding, and a multi-stage synchronous circulating liquid feeding system (patent application 2019- 113657) can also be used. In cases of difficult or precise separation that require multiple stages, the use of multiple stages of synchronous circulation liquid feeding allows the equipment system to be significantly downsized compared to the conventional multi-stage method (multi-stage container number).

前述の数々の優れた特徴を有する仕組みは、従来法の仕組みと同様に、重液相と軽液相を撹拌混合するミキサー室と両相を相分離するセトラー室に分離した容器構造に対しても、適用することができる。すなわち、ミキサー室とセトラー室を格納する容器の天井面と仕切板の間、及び底面と仕切板の間の2箇所に連通部位を設け、両室の間で重液相と軽液相が自由に行き来し合えるようにすれば、ミキサー室とセトラー室とに区分けされていない容器構造の場合と同様に扱うことができる。この点において、撹拌混合された重液相と軽液相がオーバーフローによって1通りのルートでミキサー室からセトラー室へと一方的に液送りされる(ミキサー室とセトラー室の間で両相が行き来できない)従来法の仕組みとは根本的に異なる。 The mechanism, which has the many excellent features mentioned above, is similar to the mechanism of conventional methods, and has a container structure that is separated into a mixer chamber where the heavy liquid phase and light liquid phase are stirred and mixed, and a settler chamber where the two phases are separated. can also be applied. In other words, communication parts are provided in two places, between the ceiling surface and the partition plate of the container housing the mixer room and the settler room, and between the bottom surface and the partition plate, so that the heavy liquid phase and the light liquid phase can freely flow back and forth between the two chambers. By doing so, it can be handled in the same way as a container structure that is not divided into a mixer chamber and a settler chamber. At this point, the stirred and mixed heavy liquid phase and light liquid phase are unilaterally sent from the mixer chamber to the settler chamber by one route by the overflow (both phases come and go between the mixer chamber and the settler chamber). (not possible) is fundamentally different from the mechanism of conventional law.

別の言い方をすると、従来法の仕組みと本発明の方法の仕組みは、攪拌翼の翼部位の配置、仕切板の構造、及び重液相と軽液相の導入口の位置に違いがあるのみであり、従来法の仕組みを本発明の方法に基づいて改造することは容易である。従来法の仕組みでは、しばしばミキサー室とセトラー室で液面(軽液相と気相の間の界面)や2液相の間の界面の位置が異なり、特に、2液相界面の位置は、運転を継続するうちに徐々に変動する傾向があるため、定期的あるいは随時に、その位置を調整しなければならない。しかしながら、本発明に従って従来装置を改造すれば、相分離状態にある重液相と軽液相がミキサー室とセトラー室の間を自由に行き来し合えることから、両室の液面の位置(高さ)は同一であり、なおかつ、セトラー室での2液相の界面は、変動することなく常に同じ位置に維持されるので、その調整作業を要しない。 In other words, the mechanism of the conventional method and the mechanism of the method of the present invention differ only in the arrangement of the blade parts of the stirring blades, the structure of the partition plate, and the positions of the inlets for the heavy liquid phase and light liquid phase. Therefore, it is easy to modify the mechanism of the conventional method based on the method of the present invention. In conventional method systems, the position of the liquid level (interface between the light liquid phase and gas phase) or the interface between the two liquid phases is often different between the mixer chamber and the settler chamber. In particular, the position of the interface between the two liquid phases is Since it tends to gradually fluctuate as the operation continues, its position must be adjusted periodically or from time to time. However, if the conventional device is modified according to the present invention, the phase-separated heavy liquid phase and light liquid phase can freely move back and forth between the mixer chamber and the settler chamber. (a) are the same, and since the interface between the two liquid phases in the settler chamber is always maintained at the same position without fluctuation, no adjustment work is required.

なお、従来法の仕組み(オーバーフロー方式)では、ミキサー室での重液相と軽液相の体積比(いわゆるO/A比)が送液速度の比に対応する。従って、攪拌翼の翼部位を両相の界面付近に配置して、より効率的かつ効果的に2液相を撹拌混合したい場合、送液速度の条件に合わせて、攪拌翼の回転軸の長さを調整する必要がある。それに対して、仕切板の構造を改良して、相分離状態にある重液相と軽液相がミキサー室とセトラー室の間を自由に行き来できるようにすれば、このような運転条件に合わせた回転軸の長さ調整は不要となる。例えば、ミキサー室での界面位置は、重液相と軽液相の体積比が1:1の場合の位置で維持しながら、両相の送液速度は、独立的に自由に設定できる。 In addition, in the conventional method (overflow method), the volume ratio of the heavy liquid phase to the light liquid phase (so-called O/A ratio) in the mixer chamber corresponds to the ratio of liquid feeding speeds. Therefore, if you want to mix the two liquid phases more efficiently and effectively by placing the blade part of the stirring blade near the interface between the two phases, the length of the rotation axis of the stirring blade should be adjusted according to the liquid feeding speed condition. It is necessary to adjust the On the other hand, if the structure of the partition plate is improved so that the phase-separated heavy liquid phase and light liquid phase can freely move between the mixer chamber and the settler chamber, it is possible to adapt to such operating conditions. There is no need to adjust the length of the rotating shaft. For example, while maintaining the interface position in the mixer chamber at the position where the volume ratio of the heavy liquid phase to the light liquid phase is 1:1, the liquid feeding speeds of both phases can be freely set independently.

また、本発明の仕組みでは、相混合の強さと送液速度は、完全に独立している。従来法では、撹拌翼回転速度が送液速度に影響するため、両者の連動を考慮した煩雑かつ熟練を要する調整作業が必要になるが、本発明の方法では、撹拌翼回転速度と送液速度が独立しているため、大幅に調整作業が軽減される。 Furthermore, in the mechanism of the present invention, the strength of phase mixing and the liquid feeding rate are completely independent. In the conventional method, the rotational speed of the stirring blade affects the liquid feeding speed, which requires complicated and skillful adjustment work that takes into account the interlocking of the two.However, in the method of the present invention, the rotational speed of the stirring blade and the liquid feeding speed Since they are independent, the adjustment work is greatly reduced.

以上の説明では、容器の上方部分若しくは下方部分又はその両方に対して、該容器の中間部分よりも断面積が大きい形状(張出形状)を成すようにして、重液相と軽液相の相分離を促進させる構造を採用している。しかし、容器の中間部分の断面積を上方部分や下方部分の断面積よりも部分的に拡大し、そこに大きな径の攪拌翼を取り付けることで、上記相分離を促進させることも可能である。 In the above explanation, the upper part, the lower part, or both of the container have a shape (overhanging shape) with a larger cross-sectional area than the middle part of the container, so that the heavy liquid phase and the light liquid phase can be separated. It has a structure that promotes phase separation. However, it is also possible to promote the phase separation by partially enlarging the cross-sectional area of the middle part of the container compared to the cross-sectional areas of the upper and lower parts and attaching stirring blades of large diameter there.

本発明は、機械撹拌を利用する工業的な液液抽出に基づいて分離・精製される物質の製造方法に関するものである。液液抽出は、互いに混じり合わない2つの液体の相の間における物質の分配の違いにより、金属イオン、有機化合物、生体高分子などの物質を分離する方法であり、工業的に幅広く利用されている。特に、化学的性質が類似していて分離が難しいと言われる物質間の分離、高純度物質が求められる高精度な分離など、いわゆる、高度分離に対して、しばしば用いられる。 The present invention relates to a method for producing a substance to be separated and purified based on industrial liquid-liquid extraction using mechanical stirring. Liquid-liquid extraction is a method for separating substances such as metal ions, organic compounds, and biopolymers based on differences in the distribution of substances between two immiscible liquid phases, and is widely used industrially. There is. In particular, it is often used for so-called advanced separations, such as separation between substances that have similar chemical properties and are said to be difficult to separate, and high-precision separation that requires highly pure substances.

工業的な液液抽出では、一般的に、重液相(多くの場合、水相)と軽液相(多くの場合、油相)の相混合に対して機械撹拌が用いられ、例えば、ミキサーセトラー法は、液液抽出の代名詞とも言われる方法だが、その装置には、扱いにくさ、分相性の悪さ、相混合にあずかる2液相の体積比(いわゆるO/A比)などに対する設定自由度の低さ、多段を要する高度分離でのシステムの大型化などの問題があった。本発明の方法を用いれば、現状の機械撹拌による液液抽出が抱える上記の問題を解決できるので、液液抽出の産業上の利用可能性は更に拡大すると考えられる。 In industrial liquid-liquid extraction, mechanical agitation is generally used for phase mixing of a heavy liquid phase (often an aqueous phase) and a light liquid phase (often an oil phase), e.g. The settler method is a method that is said to be synonymous with liquid-liquid extraction, but its equipment has various settings that are difficult to handle, poor phase separation, and the volume ratio of the two liquid phases that participate in phase mixing (so-called O/A ratio). There were problems such as a low degree of separation and an increase in the size of the system due to the high-level separation requiring multiple stages. By using the method of the present invention, the above-mentioned problems faced by the current liquid-liquid extraction using mechanical stirring can be solved, so it is thought that the industrial applicability of liquid-liquid extraction will further expand.

1:容器
2:撹拌翼
3:濁り防止仕切り
4:重液相
5:軽液相
6:重液相の送液ライン
7:軽液相の送液ライン
8:重液相用ポンプ
9:軽液相用ポンプ
10:重液相通路
11:重液相通路仕切板
12:軽液相通路
13:軽液相通路仕切板
14:軸ホルダー、軸受、又は二軸直交歯車
15:M室/S室仕切版
16:天井面/仕切板の連通部位
17:底面/仕切板の連通部位
18:仕切板上端部の通過口
19:仕切板下端部の通過口
20:上方仕切板
21:下方仕切板
22:縦型の通過口
23:乳濁混合状態の領域
24:穴あきM室/S室仕切板
25:横型の通過口
26:上方接合仕切板
27:下方接合仕切板
30:ミキサー室
40:セトラー室
100:界面
1: Container 2: Stirring blade 3: Turbidity prevention partition 4: Heavy liquid phase 5: Light liquid phase 6: Heavy liquid phase liquid feeding line 7: Light liquid phase liquid feeding line 8: Pump for heavy liquid phase 9: Light liquid phase Liquid phase pump 10: Heavy liquid phase passage 11: Heavy liquid phase passage partition plate 12: Light liquid phase passage 13: Light liquid phase passage partition plate 14: Shaft holder, bearing, or two-axis orthogonal gear 15: M chamber/S Room partition plate 16: Ceiling surface/partition plate communication area 17: Bottom surface/partition plate communication area 18: Passage port at upper end of partition plate 19: Passage port at lower end of partition plate 20: Upper partition plate 21: Lower partition plate 22: Vertical passage port 23: Emulsion mixed state area 24: Perforated M chamber/S chamber partition plate 25: Horizontal passage port 26: Upper joint partition plate 27: Lower joint partition plate 30: Mixer chamber 40: Settler chamber 100: interface

Claims (4)

容器内部に、攪拌翼並びに重液相と軽液相の両相が互いに同体積になるように設置されており、かつ前記撹拌翼の翼部位が、前記両相がなす界面から上下に該翼部位の厚さの3倍以内の範囲に配置されているところの第1の容器、及び前記第1の容器から送液される軽液相から特定物質を逆抽出するための第2の容器の少なくとも2個の容器を用意し、
前記撹拌翼を回転させて前記攪拌翼の翼部位によって前記両相を攪拌しながら、前記第1の容器の上方から重液相を下方から軽液相を送液導入することによって、前記第1の容器内に両相が乳濁混合された状態と相分離された状態を共存させ、
相分離された状態にある前記第1の容器の上部に存在する軽液相を、逆抽出液である重液相を含む第2の容器の下方から該重液相内に送液し、
前記第2の容器の上方から得られるリセットされた軽液相を再度前記第1の容器に戻し、前記第2の容器の逆抽出液内に特定物質を回収することを特徴とする液液抽出に基づく特定物質の抽出回収方法
Inside the container, a stirring blade and both phases, a heavy liquid phase and a light liquid phase, are installed so that they have the same volume, and the blade portion of the stirring blade is located above and below the interface between the two phases. A first container disposed within a range of three times the thickness of the site, and a second container for back-extracting a specific substance from the light liquid phase sent from the first container. Prepare at least two containers,
While rotating the stirring blade and stirring both phases by the blade portion of the stirring blade, the heavy liquid phase is introduced from above the first container and the light liquid phase is introduced from the bottom of the first container. A state in which both phases are emulsified and mixed and a state in which they are phase separated coexist in a container.
A light liquid phase existing in the upper part of the first container in a phase-separated state is fed into the heavy liquid phase from below a second container containing a heavy liquid phase which is a reverse extraction liquid,
A liquid-liquid extraction characterized in that the reset light liquid phase obtained from above the second container is returned to the first container again, and the specific substance is recovered in the back extraction liquid in the second container. Extraction and recovery method of specific substances based on
請求項1において、前記第1の容器の上方若しくは下方又はその両方の断面積を、該容器の中間部分の断面積よりも大きくすることで、重液相と軽液相の相分離を促すことを特徴とする液液抽出に基づく特定物質の抽出回収方法。 In claim 1, the cross-sectional area of the upper or lower part of the first container, or both, is made larger than the cross-sectional area of the intermediate portion of the container to promote phase separation between the heavy liquid phase and the light liquid phase. A method for extracting and recovering specific substances based on liquid-liquid extraction, characterized by: 請求項1又は2において、前記重液相及び前記軽液相を1回通過で送液させることを特徴とする液液抽出に基づく特定物質の抽出回収方法。 3. The method for extracting and recovering a specific substance based on liquid-liquid extraction according to claim 1 or 2, characterized in that the heavy liquid phase and the light liquid phase are fed in one pass. 請求項1乃至3のいずれかにおいて、前記重液相若しくは前記軽液相又はその両方が、細孔又は細管を有するノズルを介して送液導入されることを特徴とする液液抽出に基づく特定物質の抽出回収方法。 The identification based on liquid-liquid extraction according to any one of claims 1 to 3, characterized in that the heavy liquid phase, the light liquid phase, or both are fed and introduced through a nozzle having pores or thin tubes. Method for extracting and recovering substances.
JP2023201835A 2019-12-19 2023-11-29 Method of extracting and recovering specific substance based on liquid-liquid extraction Pending JP2024009325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023201835A JP2024009325A (en) 2019-12-19 2023-11-29 Method of extracting and recovering specific substance based on liquid-liquid extraction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019229431A JP2021094546A (en) 2019-12-19 2019-12-19 Method for manufacturing particular substances based on liquid-liquid extraction
JP2023201835A JP2024009325A (en) 2019-12-19 2023-11-29 Method of extracting and recovering specific substance based on liquid-liquid extraction

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019229431A Division JP2021094546A (en) 2019-12-19 2019-12-19 Method for manufacturing particular substances based on liquid-liquid extraction

Publications (1)

Publication Number Publication Date
JP2024009325A true JP2024009325A (en) 2024-01-19

Family

ID=76430056

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019229431A Pending JP2021094546A (en) 2019-12-19 2019-12-19 Method for manufacturing particular substances based on liquid-liquid extraction
JP2023201835A Pending JP2024009325A (en) 2019-12-19 2023-11-29 Method of extracting and recovering specific substance based on liquid-liquid extraction

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019229431A Pending JP2021094546A (en) 2019-12-19 2019-12-19 Method for manufacturing particular substances based on liquid-liquid extraction

Country Status (2)

Country Link
JP (2) JP2021094546A (en)
PH (1) PH12020050523A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022164276A (en) 2021-04-16 2022-10-27 国立研究開発法人日本原子力研究開発機構 Liquid-liquid system multistage device, and method for manufacturing specific substance using the same
JP2023142775A (en) * 2022-03-25 2023-10-05 株式会社エマルションフローテクノロジーズ Method of phase mixing of two liquid phases, and device therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3822999A (en) * 1972-03-30 1974-07-09 Univ Brigham Young Liquid-liquid extraction and plug-flow reactor apparatus
JPS61234902A (en) * 1985-04-11 1986-10-20 Mitsubishi Chem Ind Ltd Countercurrent stirring type continuous extraction apparatus
KR20150035479A (en) * 2011-12-21 2015-04-06 인비스타 테크놀러지스 에스.에이 알.엘. Extraction solvent control for reducing stable emulsions
JP6483886B2 (en) * 2018-03-30 2019-03-13 国立研究開発法人日本原子力研究開発機構 Emulsion flow generation and extinguishing device and method for producing specific substance using the same

Also Published As

Publication number Publication date
PH12020050523A1 (en) 2021-06-28
JP2021094546A (en) 2021-06-24

Similar Documents

Publication Publication Date Title
JP2024009325A (en) Method of extracting and recovering specific substance based on liquid-liquid extraction
JP2024009326A (en) Device of extracting and recovering specific substance based on liquid-liquid extraction
US10407752B2 (en) Liquid-liquid extraction unit, multistage liquid-liquid extraction apparatus using the unit, and multistage continuous extraction system for rare earth elements
JP6483886B2 (en) Emulsion flow generation and extinguishing device and method for producing specific substance using the same
WO2017147313A1 (en) Solvent extraction and stripping system
EA010077B1 (en) Method and apparatus for purification of slightly water-soluble organic solution from aqueous entrainment
US11571634B2 (en) Method and apparatus for producing specific substances by extraction and separation in a liquid-liquid system
JP2016123907A (en) Emulsion stream control method
JP7297294B2 (en) Method for producing specific substances by extraction and separation in a liquid-liquid system
WO2019148105A1 (en) Extraction and recovery of lithium from brine
Lee Development of a more efficient emulsion liquid membrane system with a dilute polymer solution for extraction of penicillin G
KR100721050B1 (en) Liquid-liquid extracting method
CA3151902A1 (en) Liquid-liquid extraction unit and multistage liquid-liquid extraction apparatus using the same
WO2023181604A1 (en) Method for phase mixing of two liquid phases, and device therefor
RU2241517C2 (en) Method of reduction of size of stages for the process of extraction by a solvent and a cell for usage in the process of extraction
BR102022005725A2 (en) LIQUID-LIQUID TYPE MULTI-STAGE DEVICE AND SPECIFIC SUBSTANCE PRODUCTION METHOD USING THE SAME
RU2342969C2 (en) Method of mass exchange between flows of two liquids
JPH02500452A (en) Method for separating metal ions from aqueous solutions
JP2015009218A (en) Mixer settler solvent extractor
Mok et al. Modeling of liquid emulsion membranes facilitated by two carriers

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231226