JP2024009238A - Optical system and imaging apparatus having the same - Google Patents

Optical system and imaging apparatus having the same Download PDF

Info

Publication number
JP2024009238A
JP2024009238A JP2023199251A JP2023199251A JP2024009238A JP 2024009238 A JP2024009238 A JP 2024009238A JP 2023199251 A JP2023199251 A JP 2023199251A JP 2023199251 A JP2023199251 A JP 2023199251A JP 2024009238 A JP2024009238 A JP 2024009238A
Authority
JP
Japan
Prior art keywords
lens
optical system
lens group
positive
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2023199251A
Other languages
Japanese (ja)
Other versions
JP7574394B2 (en
Inventor
慎一郎 齋藤
Shinichiro Saito
誠 中原
Makoto Nakahara
卓 井上
Taku Inoue
章 水間
Akira Mizuma
正和 山岸
Masakazu Yamagishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022000492A external-priority patent/JP7183456B2/en
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2023199251A priority Critical patent/JP7574394B2/en
Priority claimed from JP2023199251A external-priority patent/JP7574394B2/en
Publication of JP2024009238A publication Critical patent/JP2024009238A/en
Application granted granted Critical
Publication of JP7574394B2 publication Critical patent/JP7574394B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

To obtain an optical system which is light and in which aberration such as chromatic aberration is satisfactorily corrected.SOLUTION: An optical system comprises a first lens group B1 having positive refractive power, a second lens group B2, and a third lens group B3 arranged in order from an object side to an image side. When performing focusing, the second lens group B2 moves, and an interval between adjacent lens groups changes. The first lens group B1 comprises a positive lens G1p disposed on the most object side, and a negative lens G1n disposed on the most object side among all negative lenses belonging to the first lens group B1. The optical system satisfies predetermined conditions.SELECTED DRAWING: Figure 1

Description

本発明は光学系及びそれを有する撮像装置に関し、例えばデジタルスチルカメラ、ビデオカメラ、監視カメラ、放送用カメラ等の撮像素子を用いた撮像装置、或いは銀塩写真フィルムを用いたカメラ等の撮像装置に好適なものである。 The present invention relates to an optical system and an imaging device having the same, and for example, an imaging device using an imaging element such as a digital still camera, a video camera, a surveillance camera, a broadcasting camera, or an imaging device such as a camera using a silver halide photographic film. It is suitable for

焦点距離の長い撮影光学系として、物体側に正の屈折力の光学系を配置し、像側に負の屈折力の光学系を配置した、いわゆるテレフォトタイプの撮影光学系が知られている。テレフォトタイプの撮影光学系は、例えば単焦点の超望遠レンズに用いられている。 As a photographing optical system with a long focal length, a so-called telephoto type photographing optical system is known, in which an optical system with positive refractive power is placed on the object side and an optical system with negative refractive power is placed on the image side. . A telephoto type photographing optical system is used, for example, in a single focus super telephoto lens.

超望遠レンズでは、一般に、焦点距離が長くなるにつれて軸上色収差や倍率色収差が多く発生する。これらの色収差を良好に補正するための手法として、物体側に配置されるレンズの枚数を増やし、各レンズに色収差の補正作用を分担させることが知られている。しかしながら、超望遠レンズの物体側に配置されるレンズは有効径が大きくなりやすく、上述した手法により色収差の補正を図ると撮影光学系の重量が増大してしまう。 In a super-telephoto lens, generally, the longer the focal length, the more axial chromatic aberration and lateral chromatic aberration occur. As a method for properly correcting these chromatic aberrations, it is known to increase the number of lenses arranged on the object side and have each lens share the function of correcting the chromatic aberrations. However, a lens placed on the object side of a super-telephoto lens tends to have a large effective diameter, and if the above-mentioned method is used to correct chromatic aberration, the weight of the photographic optical system increases.

特許文献1の撮影光学系では、最も物体側から連続して、低分散かつ異常分散性を有する材料から形成された正レンズを配置することで、軸上色収差や倍率色収差の補正を図っている。 In the photographing optical system of Patent Document 1, a positive lens made of a material having low dispersion and anomalous dispersion is arranged continuously from the object side to correct axial chromatic aberration and lateral chromatic aberration. .

特開2015-215561号公報Japanese Patent Application Publication No. 2015-215561

特許文献1に記載の光学系では、低分散かつ異常分散性を有する材料から形成された正レンズをできる限り物体側に配置することで色収差の補正を図っているが、これらの正レンズは有効径が大きくなるため、光学系を十分に軽量化することができていない。 In the optical system described in Patent Document 1, chromatic aberration is corrected by placing a positive lens made of a material with low dispersion and anomalous dispersion as close to the object side as possible, but these positive lenses are not effective. Since the diameter becomes large, it is not possible to sufficiently reduce the weight of the optical system.

光学系の更なる軽量化を実現するためには、正レンズのみならず、負レンズについても適切な材料や配置を見出すことが重要である。 In order to further reduce the weight of the optical system, it is important to find appropriate materials and placement not only for the positive lens but also for the negative lens.

本発明は、小型であり、かつ色収差等の収差が良好に補正された光学系及びそれを有する撮像装置を提供することを目的とする。 An object of the present invention is to provide an optical system that is compact and in which aberrations such as chromatic aberration are well corrected, and an imaging device having the same.

本発明の光学系は、物体側より像側へ順に配置された、正の屈折力の第1レンズ群、第2レンズ群、第3レンズ群から構成され、フォーカシングに際して前記第2レンズ群が移動し、隣り合うレンズ群の間隔が変化する光学系であって、前記第1レンズ群は、最も物体側に配置された正レンズG1pと、該正レンズG1pの像側に隣接して配置されたレンズG2と、前記第1レンズ群に含まれる負レンズの中で最も物体側に配置された負レンズG1nを含み、前記レンズG2は正の屈折力を有し、前記光学系のバックフォーカスをBF、前記正レンズG1pの焦点距離をfG1p、前記負レンズG1nの焦点距離をfG1n、前記負レンズG1nの材料のアッベ数をνdG1n、部分分散比をθgFG1n、前記レンズG2の材料のアッベ数をνdG2としたとき、
0.02<BF/fG1p<0.14
3.358≦|fG1p/fG1n|<10.00
20.0<νdG1n<40.0
-0.1000<θgFG1n-(-1.665×10-7×νdG1n+5.213×10-5×νdG1n-5.656×10-3×νdG1n+0.7268)<-0.0010
νdG2>73.0
なる条件式を満足することを特徴とする。
The optical system of the present invention is composed of a first lens group, a second lens group, and a third lens group each having a positive refractive power, which are arranged in order from the object side to the image side, and the second lens group moves during focusing. The first lens group is an optical system in which the distance between adjacent lens groups changes, and the first lens group is arranged adjacent to a positive lens G1p disposed closest to the object side and an image side of the positive lens G1p. The lens G2 includes a negative lens G1n which is disposed closest to the object side among the negative lenses included in the first lens group, the lens G2 has a positive refractive power, and the back focus of the optical system is set to BF. , the focal length of the positive lens G1p is fG1p, the focal length of the negative lens G1n is fG1n, the Abbe number of the material of the negative lens G1n is νdG1n, the partial dispersion ratio is θgFG1n, and the Abbe number of the material of the lens G2 is νdG2. When I did,
0.02<BF/fG1p<0.14
3.358≦|fG1p/fG1n|<10.00
20.0<νdG1n<40.0
−0.1000<θgFG1n−(−1.665×10 −7 ×νdG1n 3 +5.213×10 −5 ×νdG1n 2 −5.656×10 −3 ×νdG1n+0.7268)<−0.0010
νdG2>73.0
It is characterized by satisfying the following conditional expression.

本発明によれば、小型であり、かつ色収差等の収差が良好に補正された光学系を得ることができる。 According to the present invention, it is possible to obtain an optical system that is compact and in which aberrations such as chromatic aberration are well corrected.

実施例1の光学系のレンズ断面図である。3 is a cross-sectional view of a lens in the optical system of Example 1. FIG. 無限遠に合焦しているときにおける実施例1の光学系の収差図である。FIG. 3 is an aberration diagram of the optical system of Example 1 when focusing at infinity. 実施例2の光学系のレンズ断面図である。FIG. 3 is a cross-sectional view of a lens in the optical system of Example 2. 無限遠に合焦しているときにおける実施例2の光学系の収差図である。FIG. 7 is an aberration diagram of the optical system of Example 2 when focusing at infinity. 実施例3の光学系のレンズ断面図である。FIG. 7 is a cross-sectional view of a lens in the optical system of Example 3. 無限遠に合焦しているときにおける実施例3の光学系の収差図である。FIG. 7 is an aberration diagram of the optical system of Example 3 when focusing at infinity. 撮像装置の要部概略図である。FIG. 1 is a schematic diagram of main parts of an imaging device.

以下、本発明の光学系及びそれを有する撮像装置の実施例について、添付の図面に基づいて詳細に説明する。各実施例の光学系は、物体側より像側へ順に配置された、正の屈折力の第1レンズ群、第2レンズ群、第3レンズ群から構成される。フォーカシングに際して第2レンズ群が移動し、隣り合うレンズ群の間隔が変化する。ここでレンズ群とは、フォーカシングに際して一体的に移動するレンズ要素であって、1枚以上のレンズを有していればよく、複数枚のレンズを有していなくてもよい。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of an optical system of the present invention and an imaging device having the same will be described in detail based on the accompanying drawings. The optical system of each embodiment is composed of a first lens group, a second lens group, and a third lens group each having a positive refractive power and arranged in order from the object side to the image side. During focusing, the second lens group moves, and the distance between adjacent lens groups changes. Here, the lens group is a lens element that moves integrally during focusing, and only needs to have one or more lenses, and does not need to have a plurality of lenses.

図1、3、5は、それぞれ実施例1乃至3の光学系の断面図である。各実施例の光学系はビデオカメラやデジタルカメラ、銀塩フィルムカメラ、テレビカメラ等の撮像装置に用いられる撮影レンズ系である。レンズ断面図において左方が物体側(前方)で、右方が像側(後方)である。またレンズ断面図において、jを物体側から像側へのレンズ群の順番とするとBjは第jレンズ群を示す。 1, 3, and 5 are cross-sectional views of the optical systems of Examples 1 to 3, respectively. The optical system of each embodiment is a photographing lens system used in an imaging device such as a video camera, a digital camera, a silver halide film camera, or a television camera. In the cross-sectional view of the lens, the left side is the object side (front), and the right side is the image side (back). In the lens sectional view, Bj indicates the j-th lens group, where j is the order of the lens groups from the object side to the image side.

各実施例において、SPは開口絞りである。各実施例の光学系では、開口絞りSPは、第1レンズ群B1と第2レンズ群B2の間に配置されている。 In each example, SP is an aperture stop. In the optical system of each example, the aperture stop SP is arranged between the first lens group B1 and the second lens group B2.

IPは像面である。ビデオカメラやデジタルカメラの撮像光学系として光学系を使用する際には、像面IPはCCDセンサやCMOSセンサといった固体撮像素子(光電変換素子)に相当する。銀塩フィルムカメラの撮像光学系として各実施例の光学系を使用する際には、像面IPはフィルム面に相当する。 IP is the image plane. When an optical system is used as an imaging optical system of a video camera or a digital camera, the image plane IP corresponds to a solid-state image sensor (photoelectric conversion element) such as a CCD sensor or a CMOS sensor. When the optical system of each embodiment is used as an imaging optical system of a silver halide film camera, the image plane IP corresponds to the film plane.

図2、4、6は、それぞれ無限遠合焦時の実施例1乃至3の光学系の収差図である。 2, 4, and 6 are aberration diagrams of the optical systems of Examples 1 to 3 when focusing on infinity, respectively.

球面収差図においてFnoはFナンバーであり、d線(波長587.6nm)、g線(波長435.8nm)に対する球面収差を示している。非点収差図においてSはサジタル像面における非点収差量、Mはメリディオナル像面における非点収差量を示している。歪曲収差はd線について示している。色収差図ではg線における色収差を示している。ωは撮像半画角である。 In the spherical aberration diagram, Fno is the F number and indicates the spherical aberration for the d-line (wavelength 587.6 nm) and the g-line (wavelength 435.8 nm). In the astigmatism diagram, S indicates the amount of astigmatism on the sagittal image plane, and M indicates the amount of astigmatism on the meridional image surface. Distortion aberration is shown for the d-line. The chromatic aberration diagram shows chromatic aberration at the g-line. ω is the imaging half angle of view.

各実施例の光学系では、レンズ断面図中の矢印で示すように、無限遠から近距離へのフォーカシングに際して第2レンズ群B2が像側へ移動し、隣り合うレンズ群の間隔が変化する。すなわち、各実施例の光学系において第2レンズ群B2がフォーカス群に相当する。 In the optical system of each embodiment, the second lens group B2 moves toward the image side during focusing from infinity to a short distance, and the interval between adjacent lens groups changes, as shown by the arrow in the lens cross-sectional view. That is, in the optical system of each example, the second lens group B2 corresponds to the focus group.

また、各実施例の光学系では、光学系の一部のレンズを防振群として、防振群を光軸と垂直方向の成分を持つ方向に移動させることにより結像位置を変化させることができる。これにより像ぶれ補正を行うことができる。第1レンズ群B1、第2レンズ群B2、第3レンズ群B3のいずれかのレンズ群を防振群としても良いし、特定のレンズ群に含まれる一部のレンズを防振群としても良い。 Furthermore, in the optical system of each example, some of the lenses in the optical system are used as an anti-vibration group, and the imaging position can be changed by moving the anti-vibration group in a direction having a component perpendicular to the optical axis. can. This allows image blur correction to be performed. Any one of the first lens group B1, second lens group B2, and third lens group B3 may be used as an anti-shake group, or some lenses included in a specific lens group may be used as an anti-shake group. .

各実施例の光学系では、第1レンズ群B1に含まれる負レンズに、高分散かつ異常分散性の高い材料を用いることで色収差を良好に補正している。従来の超望遠レンズでは、第1レンズ群B1に含まれる正レンズの材料を適切に設定することで色収差の発生量を低減させており、第1レンズ群B1に含まれる負レンズによる色収差の補正効果は十分ではなかった。そこで、各実施例の光学系では、第1レンズ群B1に含まれる負レンズに高分散かつ異常分散性の高い材料を用いることで、第1レンズ群B1に含まれる負レンズにおける色収差の補正効果を高め、光学系全体での色収差を良好に補正している。 In the optical system of each example, chromatic aberration is favorably corrected by using a material with high dispersion and high anomalous dispersion for the negative lens included in the first lens group B1. In conventional super telephoto lenses, the amount of chromatic aberration is reduced by appropriately setting the material of the positive lens included in the first lens group B1, and the chromatic aberration is corrected by the negative lens included in the first lens group B1. The effect was not sufficient. Therefore, in the optical system of each example, by using a material with high dispersion and high anomalous dispersion for the negative lens included in the first lens group B1, the effect of correcting chromatic aberration in the negative lens included in the first lens group B1 is chromatic aberration throughout the optical system.

ここで、光学系における色収差の補正に関連するパラメータとして、アッベ数νd、部分分散比θgFが知られている。g線(波長435.8nm)、F線(486.1nm)、C線(656.3nm)、d線(587.6nm)に対する材料の屈折率をそれぞれNg、NF、NC、Ndとするとき、アッベ数νd、部分分散比θgFはそれぞれ、以下の式で表される。
νd=(Nd-1)/(NF-NC)
θgF=(Ng-NF)/(NF-NC)
Here, the Abbe number νd and the partial dispersion ratio θgF are known as parameters related to correction of chromatic aberration in the optical system. When the refractive index of the material for the g line (wavelength 435.8 nm), F line (486.1 nm), C line (656.3 nm), and d line (587.6 nm) is respectively Ng, NF, NC, and Nd, The Abbe number νd and the partial dispersion ratio θgF are each expressed by the following formulas.
νd=(Nd-1)/(NF-NC)
θgF=(Ng-NF)/(NF-NC)

一般に、全体として正の屈折力を有するレンズ群の中に配置された負レンズの材料として高分散の材料を用いることで、1次の色収差の補正効果を得ることができる。また、全体として正の屈折力を有するレンズ群の中に配置された負レンズの材料として異常分散性の高い材料を用いることで、2次の倍率色収差を良好に補正することができる。 Generally, by using a highly dispersive material as a material for a negative lens arranged in a lens group having positive refractive power as a whole, it is possible to obtain the effect of correcting first-order chromatic aberration. Further, by using a material with high anomalous dispersion as the material of the negative lens arranged in the lens group having positive refractive power as a whole, it is possible to satisfactorily correct second-order lateral chromatic aberration.

ここで、レンズに用いられる材料の異常分散性について説明する。本願明細書では、異常分散性の強さの指標ΔθgFを以下の式で定義する。
ΔθgF=θgF-(-1.665×10-7×νd+5.213×10-5×νd-5.656×10-3×νd+0.7268)
Here, the anomalous dispersion of the material used for the lens will be explained. In this specification, the index ΔθgF of the strength of anomalous dispersion is defined by the following formula.
ΔθgF=θgF-(-1.665×10 −7 ×νd 3 +5.213×10 −5 ×νd 2 −5.656×10 −3 ×νd+0.7268)

多くの光学材料では、ΔθgFの値はゼロ近傍の値となる。ΔθgFの値がゼロから離れるほど、異常分散性の高い材料となる。 In many optical materials, the value of ΔθgF is close to zero. The farther the value of ΔθgF is from zero, the higher the anomalous dispersion of the material.

光学系のバックフォーカスをBF、第1レンズ群B1に含まれる正レンズの中で最も物体側に配置された正レンズG1pの焦点距離をfG1pとする。また、第1レンズ群B1に含まれる負レンズの中で最も物体側に配置された負レンズG1nの焦点距離、アッベ数、部分分散比をそれぞれfG1n、νdG1n、θgFG1nとしたとき、各実施例の光学系は、以下の式(1)乃至(4)を満足する。
0.02<BF/fG1p<0.14 (1)
2.00<|fG1p/fG1n|<10.00 (2)
20.00<νdG1n<40.00 (3)
-0.1000<θgFG1n-(-1.665×10-7×νdG1n+5.213×10-5×νdG1n-5.656×10-3×νdG1n+0.7268)<-0.0010 (4)
The back focus of the optical system is assumed to be BF, and the focal length of the positive lens G1p, which is disposed closest to the object side among the positive lenses included in the first lens group B1, is fG1p. Furthermore, when the focal length, Abbe number, and partial dispersion ratio of the negative lens G1n, which is disposed closest to the object among the negative lenses included in the first lens group B1, are fG1n, νdG1n, and θgFG1n, respectively, The optical system satisfies the following equations (1) to (4).
0.02<BF/fG1p<0.14 (1)
2.00<|fG1p/fG1n|<10.00 (2)
20.00<νdG1n<40.00 (3)
-0.1000<θgFG1n-(-1.665×10 -7 ×νdG1n 3 +5.213×10 -5 ×νdG1n 2 -5.656×10 -3 ×νdG1n+0.7268)<-0.0010 (4)

条件式(1)は、光学系のバックフォーカスと正レンズG1pの焦点距離の関係を規定するものである。条件式(1)を満たすことで、全長の短い小型な光学系を実現できる。条件式(1)の上限値を上回ると、バックフォーカスが長くなりすぎる結果、光学系や光学系が装着される撮像装置が光軸方向に大型化してしまうため好ましくない。また、条件式(1)の下限値を下回ると、バックフォーカスが短くなりすぎる。この場合、光学系の最も像側に配置されるレンズの径が大きくなりすぎ、撮像装置に光学系を装着するためのマウントの径が大型化してしまう。結果として、光学系や撮像装置を小型かつ軽量に構成することが困難となる。また、条件式(1)の下限値を下回るほどにバックフォーカスを小さくしつつ光学系の最終レンズの径を小さくしようとすると、撮像素子への光線入射角が大きくなる結果、特に画像の周辺で画質が低下しやすくなるため好ましくない。 Conditional expression (1) defines the relationship between the back focus of the optical system and the focal length of the positive lens G1p. By satisfying conditional expression (1), a compact optical system with a short overall length can be realized. If the upper limit of conditional expression (1) is exceeded, the back focus becomes too long, which is undesirable because the optical system and the imaging device to which the optical system is attached will become larger in the optical axis direction. Furthermore, if the lower limit of conditional expression (1) is not reached, the back focus becomes too short. In this case, the diameter of the lens disposed closest to the image side of the optical system becomes too large, and the diameter of the mount for mounting the optical system on the imaging device becomes large. As a result, it becomes difficult to configure the optical system and the imaging device to be compact and lightweight. Also, if you try to reduce the diameter of the final lens in the optical system while reducing the back focus to a value below the lower limit of conditional expression (1), the angle of incidence of the rays on the image sensor will increase, especially at the periphery of the image. This is not preferable because the image quality tends to deteriorate.

条件式(2)は、正レンズG1pの焦点距離fG1pと負レンズG1nの焦点距離fG1nの比を規定した条件式である。条件式(2)の下限値を下回って正レンズG1pの焦点距離fG1pが短くなると、正レンズG1pの屈折力が強くなり過ぎて、正レンズG1pにおいて軸上色収差が多く発生するため好ましくない。正レンズG1pで発生した軸上色収差を第1レンズ群B1に含まれる負レンズで補正するためには、負レンズの枚数を増やす必要性が生じ、光学系の重量化を招くため好ましくない。 Conditional expression (2) is a conditional expression that defines the ratio of the focal length fG1p of the positive lens G1p to the focal length fG1n of the negative lens G1n. If the focal length fG1p of the positive lens G1p becomes shorter than the lower limit of conditional expression (2), the refractive power of the positive lens G1p becomes too strong, which is not preferable because a large amount of axial chromatic aberration occurs in the positive lens G1p. In order to correct the longitudinal chromatic aberration generated by the positive lens G1p with the negative lens included in the first lens group B1, it is necessary to increase the number of negative lenses, which is not preferable because it increases the weight of the optical system.

また、条件式(2)の上限値を上回って正レンズG1pの焦点距離fG1pが長くなると、正レンズG1pの屈折力が弱くなり過ぎる。その結果、正レンズG1pにおいて光を十分に収斂させることができず、正レンズG1pの像側に配置されたレンズの有効径が大きくなり、光学系の重量化を招くため好ましくない。 Furthermore, when the focal length fG1p of the positive lens G1p becomes longer than the upper limit of conditional expression (2), the refractive power of the positive lens G1p becomes too weak. As a result, the light cannot be sufficiently converged in the positive lens G1p, and the effective diameter of the lens disposed on the image side of the positive lens G1p increases, which is undesirable because it increases the weight of the optical system.

条件式(3)は、負レンズG1nの材料のアッベ数νdG1nを規定した条件式である。正の屈折力の第1レンズ群B1に含まれる負レンズG1nの材料として、高分散の材料を用いることで1次の色収差を良好に補正することができる。条件式(3)の下限値を下回ると、負レンズG1nにおいて倍率色収差が過剰に補正されてしまうため好ましくない。また、条件式(3)の上限値を上回ると、負レンズG1nにおいて倍率色収差を十分に補正することが困難になるため、好ましくない。 Conditional expression (3) is a conditional expression that defines the Abbe number νdG1n of the material of the negative lens G1n. By using a highly dispersive material as the material of the negative lens G1n included in the first lens group B1 having positive refractive power, first-order chromatic aberration can be favorably corrected. If the lower limit of conditional expression (3) is not reached, the chromatic aberration of magnification will be excessively corrected in the negative lens G1n, which is not preferable. Moreover, if the upper limit of conditional expression (3) is exceeded, it becomes difficult to sufficiently correct lateral chromatic aberration in the negative lens G1n, which is not preferable.

条件式(4)は、負レンズG1nの材料の異常分散性ΔθgFG1nを規定した条件式である。異常分散性の高い材料を用いて負レンズG1nを構成することで、2次の倍率色収差の補正効果を高めることができる。条件式(4)の下限値を下回る材料は、撮影光学系としての実用性が乏しくなる。負レンズG1nの材料として、条件式(4)の上限値を上回る材料を用いると、2次の倍率色収差を十分に補正することが困難になるため好ましくない。 Conditional expression (4) is a conditional expression that defines the anomalous dispersion ΔθgFG1n of the material of the negative lens G1n. By configuring the negative lens G1n using a material with high anomalous dispersion, it is possible to enhance the effect of correcting second-order lateral chromatic aberration. Materials below the lower limit of conditional expression (4) have poor practicality as a photographic optical system. It is not preferable to use a material exceeding the upper limit of conditional expression (4) as the material of the negative lens G1n because it becomes difficult to sufficiently correct the second-order lateral chromatic aberration.

なお、各実施例の光学系では光学系全体の収差補正のバランスを考慮した結果、負レンズG1nを構成する材料としてNBFD15(HOYA株式会社製。νd=33.27、θgF=0.5883、ΔθgF=-0.0019)を用いている。なお、本発明の負レンズG1nは式(3)、(4)を共に満足する材料から構成されていれば良い。式(3)、(4)を共に満たす材料としては、例えばS-LAH79(株式会社OHARA製。νd=28.27、θgF=0.5980、ΔθgF=-0.0068)がある。また、S-NBH56(株式会社OHARA製。νd=24.80、θgF=0.6122、ΔθgF=-0.0039)等でも良い。 In addition, in the optical system of each example, as a result of considering the balance of aberration correction of the entire optical system, NBFD15 (manufactured by HOYA Corporation. νd = 33.27, θgF = 0.5883, ΔθgF = -0.0019) is used. Note that the negative lens G1n of the present invention may be made of a material that satisfies both formulas (3) and (4). An example of a material that satisfies both formulas (3) and (4) is S-LAH79 (manufactured by OHARA Corporation, νd=28.27, θgF=0.5980, ΔθgF=−0.0068). Alternatively, S-NBH56 (manufactured by OHARA Co., Ltd., νd=24.80, θgF=0.6122, ΔθgF=-0.0039) or the like may be used.

各実施例では以上説明したように、条件式(1)~(4)を満足するように各要素を適切に設定している。これにより小型であり、色収差等の収差が良好に補正された光学系を得ることができる。 In each embodiment, as explained above, each element is appropriately set so as to satisfy conditional expressions (1) to (4). Thereby, it is possible to obtain an optical system that is compact and in which aberrations such as chromatic aberration are well corrected.

なお、各実施例において、好ましくは、条件式(1)~(4)の数値範囲を次のように設定するのが良い。
0.02<BF/fG1p<0.11 (1a)
2.50<|fG1p/fG1n|<8.00 (2a)
21.00<νdG1n<39.00 (3a)
-0.0300<θgFG1n-(-1.665×10-7×νdG1n+5.213×10-5×νdG1n-5.656×10-3×νdG1n+0.7268)<-0.0013 (4a)
In each embodiment, the numerical ranges of conditional expressions (1) to (4) are preferably set as follows.
0.02<BF/fG1p<0.11 (1a)
2.50<|fG1p/fG1n|<8.00 (2a)
21.00<νdG1n<39.00 (3a)
−0.0300<θgFG1n−(−1.665×10 −7 ×νdG1n 3 +5.213×10 −5 ×νdG1n 2 −5.656×10 −3 ×νdG1n+0.7268)<−0.0013 (4a)

また、さらに好ましくは、条件式(1)~(4)の数値範囲を次のように設定するのが良い。
0.04<BF/fG1p<0.09 (1b)
2.20<|fG1p/fG1n|<7.00 (2b)
23.00<νdG1n<36.00 (3b)
-0.0020<θgFG1n-(-1.665×10-7×νdG1n+5.213×10-5×νdG1n-5.656×10-3×νdG1n+0.7268)<-0.0015 (4b)
Further, more preferably, the numerical ranges of conditional expressions (1) to (4) are set as follows.
0.04<BF/fG1p<0.09 (1b)
2.20<|fG1p/fG1n|<7.00 (2b)
23.00<νdG1n<36.00 (3b)
-0.0020<θgFG1n-(-1.665×10 −7 ×νdG1n 3 +5.213×10 −5 ×νdG1n 2 −5.656×10 −3 ×νdG1n+0.7268)<−0.0015 (4b)

このように、負レンズG1nの材料として異常分散性の高い材料を用いることで、第1レンズ群B1に含まれる正レンズを比較的像側に配置することができる。これにより、第1レンズ群B1の重量を効果的に低減させることができ、光学系の小型化と色収差の良好な補正を両立させることができる。 In this way, by using a material with high anomalous dispersion as the material of the negative lens G1n, the positive lens included in the first lens group B1 can be arranged relatively to the image side. Thereby, the weight of the first lens group B1 can be effectively reduced, and it is possible to achieve both miniaturization of the optical system and good correction of chromatic aberration.

さらに、各実施例において、次の条件式のうち1つ以上を満足することがより好ましい。
0.13<D12/LD<0.50 (5)
1.50<fG1p/fG2<5.00 (6)
νdG2>73.00 (7)
0.0100<θgFG2-(-1.665×10-7×νdG2+5.213×10-5×νdG2-5.656×10-3×νdG2+0.7268)<0.1000(8)
0.05<BF/IH<2.20 (9)
0.05<BF/fG2<0.23 (10)
1.02<|fGkp/fGkn|<2.50 (11)
Furthermore, in each example, it is more preferable that one or more of the following conditional expressions be satisfied.
0.13<D12/LD<0.50 (5)
1.50<fG1p/fG2<5.00 (6)
νdG2>73.00 (7)
0.0100<θgFG2-(-1.665× 10-7 ×νdG2 3 +5.213× 10-5 ×νdG2 2-5.656 × 10-3 ×νdG2+0.7268)<0.1000(8)
0.05<BF/IH<2.20 (9)
0.05<BF/fG2<0.23 (10)
1.02<|fGkp/fGkn|<2.50 (11)

ここで、第1レンズ群B1の最も物体側のレンズ面から像面までの光軸上の距離をLDとする。また、正レンズG1pの像側に隣接して配置されたレンズG2と正レンズG1pの光軸上の距離をD12、レンズG2の焦点距離をfG2、レンズG2の材料のアッベ数をνdG2、レンズG2の材料の部分分散比をθgFG2とする。 Here, the distance on the optical axis from the lens surface closest to the object side of the first lens group B1 to the image plane is defined as LD. Further, the distance on the optical axis between lens G2 arranged adjacent to the image side of positive lens G1p and positive lens G1p is D12, the focal length of lens G2 is fG2, the Abbe number of the material of lens G2 is νdG2, and lens G2 Let the partial dispersion ratio of the material be θgFG2.

また、IHを最大像高とする。なお、最大像高IHは、出力画像の形成に用いられる撮像素子の使用範囲の対角長の半分の長さを指す。 Also, IH is the maximum image height. Note that the maximum image height IH refers to half the diagonal length of the usage range of the image sensor used to form the output image.

また、第3レンズ群B3に含まれる正レンズの内最も像側に配置された正レンズの焦点距離をfGkp、第3レンズ群B3に含まれる負レンズの内最も像側に配置された負レンズの焦点距離をfGknとする。 In addition, the focal length of the positive lens disposed closest to the image side among the positive lenses included in the third lens group B3 is fGkp, and the negative lens disposed closest to the image side among the negative lenses included in the third lens group B3 is fGkp. Let fGkn be the focal length of .

条件式(5)は、正レンズG1pと、正レンズG1pの像側に隣接して配置されたレンズG2との光軸上の距離D12と、レンズ全長LDの比を規定した式である。条件式(5)の下限値を下回って、正レンズG1pとレンズG2の距離D12が短くなると、レンズG2の有効径が大きくなり、レンズG2の重量が増大するため好ましくない。条件式(5)の上限値を上回って、正レンズG1pとレンズG2の距離D12が長くなると、正レンズG1pで発生する球面収差や色収差をレンズG2以降のレンズで補正することが困難になるため好ましくない。 Conditional expression (5) is an expression that defines the ratio of the distance D12 on the optical axis between the positive lens G1p and the lens G2 arranged adjacent to the image side of the positive lens G1p, and the lens total length LD. If the distance D12 between the positive lens G1p and the lens G2 becomes shorter than the lower limit of conditional expression (5), the effective diameter of the lens G2 becomes large and the weight of the lens G2 increases, which is not preferable. If the distance D12 between the positive lens G1p and the lens G2 increases beyond the upper limit of conditional expression (5), it becomes difficult to correct the spherical aberration and chromatic aberration occurring in the positive lens G1p with lenses after lens G2. Undesirable.

また、レンズG2は、正の屈折力を有することが好ましい。光学系の最も物体側から連続して2枚の正レンズを配置することで、レンズを通過する光線を大きく収斂させることができ、結果として、レンズG2よりも像側に配置されるレンズの有効径を小さくすることができる。これにより、光学系全系のさらなる軽量化を実現することができる。 Moreover, it is preferable that the lens G2 has positive refractive power. By arranging two positive lenses consecutively from the most object side of the optical system, it is possible to greatly converge the light rays passing through the lenses, and as a result, the effectiveness of the lens placed closer to the image side than lens G2 is increased. The diameter can be made smaller. This makes it possible to further reduce the weight of the entire optical system.

条件式(6)は、正レンズG1pの焦点距離fG1pとレンズG2の焦点距離fG2の比を規定した条件式である。条件式(6)の下限値を下回って正レンズG1pの焦点距離fG1pが短くなると、正レンズG1pの屈折力が強くなり過ぎて、正レンズG1pにおいて軸上色収差が多く発生するため好ましくない。正レンズG1pで発生した軸上色収差を第1レンズ群B1に含まれる負レンズで補正するためには、負レンズの枚数を増やす必要性が生じ、光学系の重量化を招くため好ましくない。 Conditional expression (6) is a conditional expression that defines the ratio between the focal length fG1p of the positive lens G1p and the focal length fG2 of the lens G2. If the focal length fG1p of the positive lens G1p becomes short by falling below the lower limit of conditional expression (6), the refractive power of the positive lens G1p becomes too strong and a large amount of axial chromatic aberration occurs in the positive lens G1p, which is not preferable. In order to correct the longitudinal chromatic aberration generated by the positive lens G1p with the negative lens included in the first lens group B1, it is necessary to increase the number of negative lenses, which is not preferable because it increases the weight of the optical system.

また、条件式(6)の上限値を上回って正レンズG1pの焦点距離fG1pが長くなると、正レンズG1pの屈折力が弱くなり過ぎる。その結果、正レンズG1pにおいて光を十分に収斂させることができず、正レンズG1pの像側に配置されたレンズの有効径が大きくなり、光学系の重量化を招くため好ましくない。 Furthermore, when the focal length fG1p of the positive lens G1p becomes longer than the upper limit of conditional expression (6), the refractive power of the positive lens G1p becomes too weak. As a result, the light cannot be sufficiently converged in the positive lens G1p, and the effective diameter of the lens disposed on the image side of the positive lens G1p increases, which is undesirable because it increases the weight of the optical system.

条件式(7)は、レンズG2の材料のアッベ数νdG2を規定する条件式である。条件式(7)の下限値を下回って、アッベ数νdG2が小さくなると、レンズG2において色収差が多く発生するため好ましくない。 Conditional expression (7) is a conditional expression that defines the Abbe number νdG2 of the material of the lens G2. If the Abbe number νdG2 becomes smaller than the lower limit of conditional expression (7), it is not preferable because a large amount of chromatic aberration occurs in the lens G2.

条件式(8)は、レンズG2の材料の異常分散性を規定した条件式である。異常分散性の高い材料を用いてレンズG2を構成することで、2次の倍率色収差の補正効果を高めることができる。条件式(8)の下限値を下回る材料は、撮影光学系に用いられる光学材料としての実用性が乏しくなる。レンズG2の材料として、条件式(8)の上限値を上回る材料を用いると、2次の倍率色収差を十分に補正することが困難になるため好ましくない。 Conditional expression (8) is a conditional expression that defines the anomalous dispersion of the material of the lens G2. By configuring the lens G2 using a material with high anomalous dispersion, it is possible to enhance the effect of correcting second-order lateral chromatic aberration. Materials below the lower limit of conditional expression (8) have poor practicality as optical materials used in photographic optical systems. It is not preferable to use a material exceeding the upper limit of conditional expression (8) as the material of the lens G2 because it becomes difficult to sufficiently correct the second-order chromatic aberration of magnification.

なお、各実施例の光学系では光学系全体の収差補正のバランスを考慮した結果、レンズG2を構成する材料としてFCD100(HOYA株式会社製。νd=95.10、θgF=0.5334、ΔθgF=0.0162)を用いている。なお、式(3)、(4)を共に満たす他の材料としては、例えばS-FPL53(株式会社OHARA製。νd=94.93、θgF=0.5340、ΔθgF=0.0168)がある。また、S-FPL51(株式会社OHARA製。νd=81.54、θgF=0.5375、ΔθgF=0.0168)等でも良い。 In addition, in the optical system of each example, as a result of considering the balance of aberration correction of the entire optical system, FCD100 (manufactured by HOYA Corporation. νd = 95.10, θgF = 0.5334, ΔθgF = 0.0162) is used. Note that another material that satisfies both formulas (3) and (4) is, for example, S-FPL53 (manufactured by OHARA Co., Ltd., νd=94.93, θgF=0.5340, ΔθgF=0.0168). Alternatively, S-FPL51 (manufactured by OHARA Co., Ltd., νd=81.54, θgF=0.5375, ΔθgF=0.0168) or the like may be used.

条件式(9)は、光学系のバックフォーカスと最大像高との関係式である。条件式(9)の上限値を上回ると、全長が長くなりすぎて、光学系を保持するメカ部材(鏡筒等)の重量が大きくなってしまい、光学系の軽量化が困難になる。また、条件式(9)の下限値を下回ると、バックフォーカスが短くなりすぎる。この場合、光学系の最も像側に配置されるレンズの径が大きくなりすぎ、撮像装置に光学系を装着するためのマウントの径が大型化してしまう。結果として、光学系や撮像装置を小型かつ軽量に構成することが困難となる。また、条件式(9)の下限値を下回るほどにバックフォーカスを小さくしつつ光学系の最終レンズの径を小さくしようとすると、撮像素子への光線入射角が大きくなる結果、特に画像の周辺で画質が低下しやすくなるため好ましくない。 Conditional expression (9) is a relational expression between the back focus of the optical system and the maximum image height. If the upper limit of conditional expression (9) is exceeded, the overall length becomes too long, and the weight of the mechanical member (lens barrel, etc.) that holds the optical system increases, making it difficult to reduce the weight of the optical system. Furthermore, if the lower limit of conditional expression (9) is not reached, the back focus becomes too short. In this case, the diameter of the lens disposed closest to the image side of the optical system becomes too large, and the diameter of the mount for mounting the optical system on the imaging device becomes large. As a result, it becomes difficult to configure the optical system and the imaging device to be compact and lightweight. Also, if you try to reduce the diameter of the final lens in the optical system while reducing the back focus to a value below the lower limit of conditional expression (9), the angle of incidence of the rays on the image sensor will increase, especially at the periphery of the image. This is not preferable because the image quality tends to deteriorate.

条件式(10)は、光学系のバックフォーカスとレンズG2の焦点距離との関係式である。条件式(10)の上限値を上回ると、全長が長くなりすぎて、光学系を保持するメカ部材(鏡筒等)の重量が大きくなってしまい、光学系の軽量化が困難になる。また、条件式(10)の下限値を下回ると、バックフォーカスが短くなりすぎる。この場合、光学系の最も像側に配置されるレンズの径が大きくなりすぎ、撮像装置に光学系を装着するためのマウントの径が大型化してしまう。結果として、光学系や撮像装置を小型かつ軽量に構成することが困難となる。また、条件式(10)の下限値を下回るほどにバックフォーカスを小さくしつつ光学系の最終レンズの径を小さくしようとすると、撮像素子への光線入射角が大きくなる結果、特に画像の周辺で画質が低下しやすくなるため好ましくない。 Conditional expression (10) is a relational expression between the back focus of the optical system and the focal length of the lens G2. If the upper limit of conditional expression (10) is exceeded, the overall length will become too long and the weight of the mechanical member (lens barrel, etc.) that holds the optical system will increase, making it difficult to reduce the weight of the optical system. Furthermore, if the lower limit of conditional expression (10) is not reached, the back focus becomes too short. In this case, the diameter of the lens disposed closest to the image side of the optical system becomes too large, and the diameter of the mount for mounting the optical system on the imaging device becomes large. As a result, it becomes difficult to configure the optical system and the imaging device to be compact and lightweight. Also, if you try to reduce the diameter of the final lens in the optical system while reducing the back focus to a value below the lower limit of conditional expression (10), the angle of incidence of the rays on the image sensor will increase, especially at the periphery of the image. This is not preferable because the image quality tends to deteriorate.

条件式(11)は、第3レンズ群B3の正レンズのうち、最も像側に位置する正レンズGkpと、負レンズのうち、最も像側に位置する負レンズGknの焦点距離の関係を規定したものである。条件式(11)を満足することで、歪曲収差、倍率色収差を良好に補正しつつ、光学系の全長を短縮することができる。 Conditional expression (11) defines the relationship between the focal lengths of the positive lens Gkp, which is located closest to the image side among the positive lenses in the third lens group B3, and the negative lens Gkn, which is located closest to the image side among the negative lenses. This is what I did. By satisfying conditional expression (11), it is possible to reduce the total length of the optical system while satisfactorily correcting distortion and lateral chromatic aberration.

条件式(11)の上限値を超える場合、光学系の全長の短縮には有利だが、歪曲収差や倍率色収差の補正が不十分となり易く好ましくない。 If the upper limit of conditional expression (11) is exceeded, it is advantageous for shortening the total length of the optical system, but it is not preferable because correction of distortion aberration and lateral chromatic aberration tends to be insufficient.

条件式(11)の下限値を超えると、像面湾曲や歪曲収差が大きくなるため好ましくない。 Exceeding the lower limit of conditional expression (11) is not preferable because field curvature and distortion become large.

好ましくは、条件式(5)~(11)の数値範囲を次のように設定するのが良い。
0.15<D12/LD<0.45 (5a)
1.55<fG1p/fG2<4.50 (6a)
νdG2>80.00 (7a)
0.0120<θgFG2-(-1.665×10-7×νdG2+5.213×10-5×νdG2-5.656×10-3×νdG2+0.7268)<0.0600(8a)
0.06<BF/IH<2.00 (9a)
0.06<BF/fG2<0.21 (10a)
1.04<|fGkp/fGkn|<2.20 (11a)
Preferably, the numerical ranges of conditional expressions (5) to (11) are set as follows.
0.15<D12/LD<0.45 (5a)
1.55<fG1p/fG2<4.50 (6a)
νdG2>80.00 (7a)
0.0120<θgFG2-(-1.665× 10-7 ×νdG2 3 +5.213× 10-5 ×νdG2 2-5.656 × 10-3 ×νdG2+0.7268)<0.0600(8a)
0.06<BF/IH<2.00 (9a)
0.06<BF/fG2<0.21 (10a)
1.04<|fGkp/fGkn|<2.20 (11a)

なお、さらに好ましくは、条件式(5)~(8)の数値範囲を次のように設定するのが良い。
0.17<D12/LD<0.40 (5b)
1.60<fG1p/fG2<4.00 (6b)
νdG2>90.00 (7b)
0.0150<θgFG2-(-1.665×10-7×νdG2+5.213×10-5×νdG2-5.656×10-3×νdG2+0.7268)<0.0170(8b)
0.07<BF/IH<1.80 (9b)
0.07<BF/fG2<0.20 (10b)
1.06<|fGkp/fGkn|<1.90 (11b)
Furthermore, more preferably, the numerical ranges of conditional expressions (5) to (8) are set as follows.
0.17<D12/LD<0.40 (5b)
1.60<fG1p/fG2<4.00 (6b)
νdG2>90.00 (7b)
0.0150<θgFG2-(-1.665× 10-7 ×νdG2 3 +5.213× 10-5 ×νdG2 2-5.656 × 10-3 ×νdG2+0.7268)<0.0170(8b)
0.07<BF/IH<1.80 (9b)
0.07<BF/fG2<0.20 (10b)
1.06<|fGkp/fGkn|<1.90 (11b)

なお、フォーカシングに際して移動する第2レンズ群B2は、1枚の負レンズから成ることが好ましい。これにより、第2レンズ群B2を駆動させるためのメカ機構の小型化や軽量化を実現できる。また、迅速なフォーカシングが容易となる。 Note that the second lens group B2 that moves during focusing is preferably composed of one negative lens. Thereby, the mechanical mechanism for driving the second lens group B2 can be made smaller and lighter. Moreover, quick focusing becomes easy.

さらに、各実施例の光学系において、フォーカシングに際して第1レンズ群B1が不動であることが好ましい。光学系を構成するレンズ群の中で最も物体側に配置される第1レンズ群B1は、有効径が大きくなり高重量である。重量の大きい第1レンズ群B1をフォーカシングに際して移動させるためには大型の駆動機構が必要となり、光学系や光学系を含む撮像装置が重量化してしまうため好ましくない。 Furthermore, in the optical system of each embodiment, it is preferable that the first lens group B1 remains stationary during focusing. The first lens group B1, which is disposed closest to the object side among the lens groups constituting the optical system, has a large effective diameter and is heavy. In order to move the heavy first lens group B1 during focusing, a large drive mechanism is required, which is undesirable because it increases the weight of the optical system and the imaging device including the optical system.

また、各実施例の光学系において、第3レンズ群B3は像面側から順に正レンズ、負レンズを有することが好ましい。すなわち、第3レンズ群B3は最も像側に配置された正レンズGkpと、正レンズGkpの物体側に隣接して配置された負レンズGknを有することが好ましい。光学系の最も像面側において、物体側から順に負レンズ、正レンズが配置された構成をとることによって、撮像面への入射角度を小さくすることが可能となる。これによって、撮像素子としてCMOSセンサやCCDセンサを用いる場合に問題となる画像周辺部での光量の低下や画質の低下を抑制できる。 Further, in the optical system of each embodiment, it is preferable that the third lens group B3 includes a positive lens and a negative lens in order from the image plane side. That is, the third lens group B3 preferably includes a positive lens Gkp disposed closest to the image side and a negative lens Gkn disposed adjacent to the positive lens Gkp on the object side. By adopting a configuration in which a negative lens and a positive lens are arranged in order from the object side on the closest image plane side of the optical system, it is possible to reduce the angle of incidence on the imaging plane. As a result, it is possible to suppress a decrease in the amount of light and a decrease in image quality at the periphery of an image, which are problems when using a CMOS sensor or a CCD sensor as an image sensor.

また、各実施例の光学系において、第2レンズ群B2および第3レンズ群B3は共に負の屈折力を有することが好ましい。これによって、テレフォトタイプのパワー配置の傾向を強めることができ、光学系の全長を短くすることができる。 Further, in the optical system of each example, it is preferable that both the second lens group B2 and the third lens group B3 have negative refractive power. This makes it possible to strengthen the tendency towards a telephoto type power arrangement and to shorten the total length of the optical system.

次に、実施例1から3にそれぞれ対応する数値実施例1から3を示す。各数値実施例において、iは物体側からの光学面の順序を示す。riは第i番目の光学面(第i面)の曲率半径、diは無限遠合焦時の第i面と第i+1面との間の間隔、ndiとνdiはそれぞれd線に対する第i番目の光学部材の材料の屈折率、アッベ数を示す。レンズ面の間隔変化に関しては、無限遠に合焦しているときのレンズ面の間隔と、最至近距離に合焦しているときのレンズ面の間隔を記載している。 Next, numerical examples 1 to 3 corresponding to Examples 1 to 3, respectively, will be shown. In each numerical example, i indicates the order of the optical surfaces from the object side. ri is the radius of curvature of the i-th optical surface (i-th surface), di is the distance between the i-th surface and the i+1-th surface when focused at infinity, and ndi and νdi are the curvature radius of the i-th optical surface with respect to the d-line, respectively. Indicates the refractive index and Abbe number of the material of the optical member. Regarding changes in the distance between the lens surfaces, the distance between the lens surfaces when focusing at infinity and the distance between the lens surfaces when focusing at the closest distance are described.

各数値実施例において、バックフォーカス(BF)は、光学系の最も像側の面から像面までの距離を、空気換算長により表したものである。 In each numerical example, the back focus (BF) is the distance from the surface of the optical system closest to the image side to the image plane, expressed as an air equivalent length.

なお、各実施例において第1レンズ群B1の物体側に、レンズを保護するための保護ガラスを配置しても良い。また、最も像面側に配置されたレンズと像面の間に保護ガラスやローパスフィルタを配置しても良い。本願明細書において、光学系の最も物体側および最も像側に配置された保護ガラスやローパスフィルタなどの屈折力が極めて弱い光学部材は、光学系を構成するレンズとしては扱わないものとする。なお、「屈折力が極めて弱い」とは、焦点距離の絶対値が光学系全系の焦点距離の5倍以上である光学部材を言う。 In each embodiment, a protective glass for protecting the lens may be placed on the object side of the first lens group B1. Further, a protective glass or a low-pass filter may be placed between the lens placed closest to the image plane and the image plane. In this specification, optical members with extremely weak refractive power, such as protective glasses and low-pass filters, which are disposed closest to the object side and closest to the image side of the optical system, are not treated as lenses constituting the optical system. Note that "having extremely weak refractive power" refers to an optical member whose absolute value of focal length is five times or more the focal length of the entire optical system.

なお、光学系と撮像素子の間に屈折力の極めて弱い光学部材が配置されている場合、バックフォーカスBFの値は光学系と撮像素子の間に配置された屈折力の極めて弱い光学部材を空気換算した際の値を用いる。 Note that when an optical member with an extremely weak refractive power is placed between the optical system and the image sensor, the value of the back focus BF is determined when the optical member with an extremely weak refractive power placed between the optical system and the image sensor Use the converted value.

[数値実施例1]
単位 mm
面データ
面番号 r d nd νd 有効径
1 208.863 12.81 1.59522 67.7 135.17
2 2382.509 111.80 134.54
3 102.362 15.74 1.43700 95.1 89.59
4 -468.113 0.00 87.76
5 -468.113 1.50 1.80610 33.3 87.76
6 114.870 2.04 83.37
7 100.771 11.33 1.43700 95.1 83.11
8 ∞ 16.95 82.34
9 82.389 5.78 1.89286 20.4 70.56
10 140.543 0.20 69.07
11 73.987 2.00 1.83400 37.2 65.93
12 42.707 11.70 1.43700 95.1 59.92
13 117.076 7.33 57.82
14(絞り) ∞ 5.00 54.98
15 2203.612 1.60 1.61800 63.4 51.02
16 70.804 55.04 48.37
17 90.626 1.40 1.89286 20.4 33.99
18 63.622 6.17 1.51742 52.4 33.76
19 -141.334 1.00 33.75
20 62.995 6.11 1.80610 33.3 33.21
21 -112.871 1.20 1.53775 74.7 32.36
22 28.360 7.05 29.59
23 -61.753 1.20 1.72916 54.7 29.57
24 49.029 1.23 30.62
25 58.720 3.29 1.65412 39.7 31.53
26 384.248 6.25 31.95
27 51.293 12.56 1.64769 33.8 36.97
28 -41.167 1.70 1.80810 22.8 36.94
29 -94.283 8.00 37.29
30 -67.868 2.00 1.85025 30.1 35.98
31 65.755 1.00 37.10
32 54.455 8.04 1.56732 42.8 38.88
33 -98.899 31.01 39.42
像面 ∞

各種データ

焦点距離 392.00
Fナンバー 2.90
画角 3.16
像高 21.64
レンズ全長 360.03
BF 31.01

入射瞳位置 379.29
射出瞳位置 -96.96
前側主点位置-429.43
後側主点位置-360.99

レンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 183.77 199.18 99.64 -110.90
2 15 -118.41 1.60 1.02 0.03
3 17 -2011.18 68.20 252.67 174.19

単レンズデータ
レンズ 始面 焦点距離
1 1 383.77
2 3 193.83
3 5 -114.29
4 7 230.60
5 9 213.02
6 11 -124.75
7 12 146.82
8 15 -118.41
9 17 -245.13
10 18 85.67
11 20 50.95
12 21 -42.02
13 23 -37.31
14 25 105.54
15 27 37.25
16 28 -91.74
17 30 -39.01
18 32 63.10
[Numerical Example 1]
Unit: mm
Surface data Surface number rd nd νd Effective diameter
1 208.863 12.81 1.59522 67.7 135.17
2 2382.509 111.80 134.54
3 102.362 15.74 1.43700 95.1 89.59
4 -468.113 0.00 87.76
5 -468.113 1.50 1.80610 33.3 87.76
6 114.870 2.04 83.37
7 100.771 11.33 1.43700 95.1 83.11
8 ∞ 16.95 82.34
9 82.389 5.78 1.89286 20.4 70.56
10 140.543 0.20 69.07
11 73.987 2.00 1.83400 37.2 65.93
12 42.707 11.70 1.43700 95.1 59.92
13 117.076 7.33 57.82
14(Aperture) ∞ 5.00 54.98
15 2203.612 1.60 1.61800 63.4 51.02
16 70.804 55.04 48.37
17 90.626 1.40 1.89286 20.4 33.99
18 63.622 6.17 1.51742 52.4 33.76
19 -141.334 1.00 33.75
20 62.995 6.11 1.80610 33.3 33.21
21 -112.871 1.20 1.53775 74.7 32.36
22 28.360 7.05 29.59
23 -61.753 1.20 1.72916 54.7 29.57
24 49.029 1.23 30.62
25 58.720 3.29 1.65412 39.7 31.53
26 384.248 6.25 31.95
27 51.293 12.56 1.64769 33.8 36.97
28 -41.167 1.70 1.80810 22.8 36.94
29 -94.283 8.00 37.29
30 -67.868 2.00 1.85025 30.1 35.98
31 65.755 1.00 37.10
32 54.455 8.04 1.56732 42.8 38.88
33 -98.899 31.01 39.42
Image plane ∞

Various data

Focal length 392.00
F number 2.90
Angle of view 3.16
Image height 21.64
Lens total length 360.03
BF 31.01

Entrance pupil position 379.29
Exit pupil position -96.96
Front principal point position -429.43
Back principal point position -360.99

Lens group data group Starting surface Focal length Lens length Front principal point position Rear principal point position
1 1 183.77 199.18 99.64 -110.90
2 15 -118.41 1.60 1.02 0.03
3 17 -2011.18 68.20 252.67 174.19

Single lens data lens Starting surface Focal length
1 1 383.77
2 3 193.83
3 5 -114.29
4 7 230.60
5 9 213.02
6 11 -124.75
7 12 146.82
8 15 -118.41
9 17 -245.13
10 18 85.67
11 20 50.95
12 21 -42.02
13 23 -37.31
14 25 105.54
15 27 37.25
16 28 -91.74
17 30 -39.01
18 32 63.10

[数値実施例2]
単位 mm
面データ
面番号 r d nd νd 有効径
1 246.184 9.84 1.59349 67.0 118.93
2 7777.408 144.07 118.42
3 90.915 12.21 1.43700 95.1 74.98
4 -527.016 0.00 73.66
5 -527.016 1.85 1.80610 33.3 73.66
6 112.626 0.14 70.68
7 80.019 8.30 1.43700 95.1 70.47
8 289.154 26.22 69.69
9 73.539 3.98 1.92286 18.9 57.85
10 116.802 0.15 56.90
11 84.384 2.10 1.83481 42.7 55.90
12 39.915 11.42 1.43700 95.1 51.21
13 217.108 6.41 49.52
14(絞り) ∞ 3.77 46.57
15 449.487 1.60 1.59522 67.7 44.02
16 69.954 46.69 42.28
17 200.917 1.30 1.89286 20.4 30.60
18 38.569 4.77 1.80610 33.3 29.82
19 -622.316 1.03 29.52
20 86.674 4.54 1.66680 33.0 28.63
21 -56.951 1.30 1.59522 67.7 28.06
22 48.644 2.97 26.48
23 -148.460 1.10 1.77250 49.6 26.54
24 72.673 4.75 26.94
25 68.402 3.23 1.76182 26.5 29.85
26 -451.612 44.09 30.00
27 54.085 4.62 1.66565 35.6 36.58
28 359.236 1.60 1.92286 20.9 36.20
29 86.966 17.75 35.63
30 -68.784 1.60 1.72916 54.7 35.92
31 238.667 1.00 37.04
32 206.217 4.27 1.58144 40.8 37.66
33 -83.915 33.39 37.99
像面 ∞

各種データ

焦点距離 490.00
Fナンバー 4.12
画角 2.53
像高 21.64
レンズ全長 412.08
BF 33.39

入射瞳位置 463.65
射出瞳位置 -117.91
前側主点位置-633.29
後側主点位置-456.61

レンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 206.83 226.69 130.87 -127.55
2 15 -139.41 1.60 1.19 0.19
3 17 -556.34 99.94 59.24 -25.69

単レンズデータ
レンズ 始面 焦点距離
1 1 428.16
2 3 178.51
3 5 -114.97
4 7 250.15
5 9 206.04
6 11 -92.72
7 12 109.76
8 15 -139.41
9 17 -53.66
10 18 45.20
11 20 52.20
12 21 -43.88
13 23 -63.02
14 25 78.19
15 27 95.08
16 28 -124.69
17 30 -73.07
18 32 103.14
[Numerical Example 2]
Unit: mm
Surface data Surface number rd nd νd Effective diameter
1 246.184 9.84 1.59349 67.0 118.93
2 7777.408 144.07 118.42
3 90.915 12.21 1.43700 95.1 74.98
4 -527.016 0.00 73.66
5 -527.016 1.85 1.80610 33.3 73.66
6 112.626 0.14 70.68
7 80.019 8.30 1.43700 95.1 70.47
8 289.154 26.22 69.69
9 73.539 3.98 1.92286 18.9 57.85
10 116.802 0.15 56.90
11 84.384 2.10 1.83481 42.7 55.90
12 39.915 11.42 1.43700 95.1 51.21
13 217.108 6.41 49.52
14(Aperture) ∞ 3.77 46.57
15 449.487 1.60 1.59522 67.7 44.02
16 69.954 46.69 42.28
17 200.917 1.30 1.89286 20.4 30.60
18 38.569 4.77 1.80610 33.3 29.82
19 -622.316 1.03 29.52
20 86.674 4.54 1.66680 33.0 28.63
21 -56.951 1.30 1.59522 67.7 28.06
22 48.644 2.97 26.48
23 -148.460 1.10 1.77250 49.6 26.54
24 72.673 4.75 26.94
25 68.402 3.23 1.76182 26.5 29.85
26 -451.612 44.09 30.00
27 54.085 4.62 1.66565 35.6 36.58
28 359.236 1.60 1.92286 20.9 36.20
29 86.966 17.75 35.63
30 -68.784 1.60 1.72916 54.7 35.92
31 238.667 1.00 37.04
32 206.217 4.27 1.58144 40.8 37.66
33 -83.915 33.39 37.99
Image plane ∞

Various data

Focal length 490.00
F number 4.12
Angle of view 2.53
Image height 21.64
Lens total length 412.08
BF 33.39

Entrance pupil position 463.65
Exit pupil position -117.91
Front principal point position -633.29
Back principal point position -456.61

Lens group data group Starting surface Focal length Lens length Front principal point position Rear principal point position
1 1 206.83 226.69 130.87 -127.55
2 15 -139.41 1.60 1.19 0.19
3 17 -556.34 99.94 59.24 -25.69

Single lens data lens Starting surface Focal length
1 1 428.16
2 3 178.51
3 5 -114.97
4 7 250.15
5 9 206.04
6 11 -92.72
7 12 109.76
8 15 -139.41
9 17 -53.66
10 18 45.20
11 20 52.20
12 21 -43.88
13 23 -63.02
14 25 78.19
15 27 95.08
16 28 -124.69
17 30 -73.07
18 32 103.14

[数値実施例3]
単位 mm

面データ
面番号 r d nd νd 有効径
1 337.123 11.90 1.59349 67.0 142.72
2 -2141.571 163.62 142.22
3 122.803 16.05 1.43700 95.1 90.55
4 -259.830 0.00 88.96
5 -259.830 1.60 1.80610 33.3 88.96
6 155.285 0.15 85.83
7 92.998 10.91 1.43387 95.1 85.67
8 356.639 44.95 84.69
9 82.341 5.68 1.84666 23.9 66.50
10 174.332 0.15 65.45
11 120.575 2.00 1.80420 46.5 64.32
12 44.732 14.19 1.43700 95.1 58.51
13 682.520 17.80 56.74
14(絞り) ∞ 3.30 45.94
15 377.336 1.60 1.59349 67.0 43.47
16 61.273 24.90 41.50
17 214.060 1.50 1.89286 20.4 35.71
18 49.453 5.28 1.73800 32.3 34.86
19 -421.466 0.97 34.55
20 84.928 4.22 1.80518 25.5 33.47
21 -117.310 1.30 1.59349 67.0 32.93
22 47.131 4.55 30.55
23 -106.050 1.30 1.81600 46.6 30.22
24 94.264 3.59 30.00
25 67.803 5.46 1.85478 24.8 30.63
26 3886.804 50.06 30.13
27 72.986 9.82 1.63980 34.5 33.25
28 -57.663 1.60 1.89286 20.4 32.74
29 223.691 22.76 32.73
30 -78.575 1.60 1.53775 74.7 35.35
31 53.409 1.00 37.05
32 52.308 9.05 1.51742 52.4 38.24
33 -84.502 33.21 39.00
像面 ∞

各種データ

焦点距離 588.00
Fナンバー 4.12
画角 2.11
像高 21.64
レンズ全長 476.08
BF 33.21

入射瞳位置 705.95
射出瞳位置 -142.39
前側主点位置-675.02
後側主点位置-554.79

レンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 234.60 289.00 193.11 -160.97
2 15 -123.49 1.60 1.20 0.20
3 17 -1500.00 124.07 -7.97 -121.60

単レンズデータ
レンズ 始面 焦点距離
1 1 491.66
2 3 193.29
3 5 -120.37
4 7 286.37
5 9 179.23
6 11 -89.48
7 12 108.80
8 15 -123.49
9 17 -72.34
10 18 60.26
11 20 61.76
12 21 -56.49
13 23 -60.98
14 25 80.68
15 27 51.87
16 28 -51.21
17 30 -58.88
18 32 63.88
[Numerical Example 3]
Unit: mm

Surface data Surface number rd nd νd Effective diameter
1 337.123 11.90 1.59349 67.0 142.72
2 -2141.571 163.62 142.22
3 122.803 16.05 1.43700 95.1 90.55
4 -259.830 0.00 88.96
5 -259.830 1.60 1.80610 33.3 88.96
6 155.285 0.15 85.83
7 92.998 10.91 1.43387 95.1 85.67
8 356.639 44.95 84.69
9 82.341 5.68 1.84666 23.9 66.50
10 174.332 0.15 65.45
11 120.575 2.00 1.80420 46.5 64.32
12 44.732 14.19 1.43700 95.1 58.51
13 682.520 17.80 56.74
14(Aperture) ∞ 3.30 45.94
15 377.336 1.60 1.59349 67.0 43.47
16 61.273 24.90 41.50
17 214.060 1.50 1.89286 20.4 35.71
18 49.453 5.28 1.73800 32.3 34.86
19 -421.466 0.97 34.55
20 84.928 4.22 1.80518 25.5 33.47
21 -117.310 1.30 1.59349 67.0 32.93
22 47.131 4.55 30.55
23 -106.050 1.30 1.81600 46.6 30.22
24 94.264 3.59 30.00
25 67.803 5.46 1.85478 24.8 30.63
26 3886.804 50.06 30.13
27 72.986 9.82 1.63980 34.5 33.25
28 -57.663 1.60 1.89286 20.4 32.74
29 223.691 22.76 32.73
30 -78.575 1.60 1.53775 74.7 35.35
31 53.409 1.00 37.05
32 52.308 9.05 1.51742 52.4 38.24
33 -84.502 33.21 39.00
Image plane ∞

Various data

Focal length 588.00
F number 4.12
Angle of view 2.11
Image height 21.64
Lens total length 476.08
BF 33.21

Entrance pupil position 705.95
Exit pupil position -142.39
Front principal point position -675.02
Back principal point position -554.79

Lens group data group Starting surface Focal length Lens length Front principal point position Rear principal point position
1 1 234.60 289.00 193.11 -160.97
2 15 -123.49 1.60 1.20 0.20
3 17 -1500.00 124.07 -7.97 -121.60

Single lens data lens Starting surface Focal length
1 1 491.66
2 3 193.29
3 5 -120.37
4 7 286.37
5 9 179.23
6 11 -89.48
7 12 108.80
8 15 -123.49
9 17 -72.34
10 18 60.26
11 20 61.76
12 21 -56.49
13 23 -60.98
14 25 80.68
15 27 51.87
16 28 -51.21
17 30 -58.88
18 32 63.88

各実施例の光学系における種々の値を以下の表1にまとめて示す。なお、表中のΔθgFG1nは、θgFG1n-(-1.665×10-7×νdG1n+5.213×10-5×νdG1n-5.656×10-3×νdG1n+0.7268)の値である。また、ΔθgFG2は、θgFG2-(-1.665×10-7×νdG2+5.213×10-5×νdG2-5.656×10-3×νdG2+0.7268)の値である。 Various values in the optical system of each example are summarized in Table 1 below. Note that ΔθgFG1n in the table is the value of θgFG1n−(−1.665×10 −7 ×νdG1n 3 +5.213×10 −5 ×νdG1n 2 −5.656×10 −3 ×νdG1n+0.7268). Further, ΔθgFG2 is a value of θgFG2−(−1.665×10 −7 ×νdG2 3 +5.213×10 −5 ×νdG2 2 −5.656×10 −3 ×νdG2+0.7268).

[撮像装置]
次に、上述した各実施例の光学系を撮像光学系として用いたデジタルスチルカメラ(撮像装置)について、図7を用いて説明する。図7において、10はカメラ本体、11は実施例1乃至3で説明したいずれかの光学系によって構成された撮影光学系である。12はカメラ本体に内蔵され、撮影光学系11によって形成された被写体像を受光するCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)である。
[Imaging device]
Next, a digital still camera (imaging device) using the optical system of each embodiment described above as an imaging optical system will be described with reference to FIG. In FIG. 7, 10 is a camera body, and 11 is a photographing optical system constituted by any of the optical systems described in the first to third embodiments. Reference numeral 12 denotes a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor, which is built into the camera body and receives a subject image formed by the photographing optical system 11.

このように各実施例の光学系をデジタルスチルカメラ等の撮像装置に適用することにより、軽量であり、かつ色収差等の収差が良好に補正された撮像装置を得ることができる。 In this way, by applying the optical system of each embodiment to an imaging device such as a digital still camera, it is possible to obtain an imaging device that is lightweight and in which aberrations such as chromatic aberration are well corrected.

B1 第1レンズ群
B2 第2レンズ群
B3 第3レンズ群
SP 開口絞り
B1 1st lens group B2 2nd lens group B3 3rd lens group SP Aperture diaphragm

Claims (14)

物体側より像側へ順に配置された、正の屈折力の第1レンズ群、第2レンズ群、第3レンズ群から構成され、フォーカシングに際して前記第2レンズ群が移動し、隣り合うレンズ群の間隔が変化する光学系であって、
前記第1レンズ群は、最も物体側に配置された正レンズG1pと、該正レンズG1pの像側に隣接して配置されたレンズG2と、前記第1レンズ群に含まれる負レンズの中で最も物体側に配置された負レンズG1nを含み、
前記レンズG2は正の屈折力を有し、
前記光学系のバックフォーカスをBF、前記正レンズG1pの焦点距離をfG1p、前記負レンズG1nの焦点距離をfG1n、前記負レンズG1nの材料のアッベ数をνdG1n、部分分散比をθgFG1n、前記レンズG2の材料のアッベ数をνdG2としたとき、
0.02<BF/fG1p<0.14
3.358≦|fG1p/fG1n|<10.00
20.0<νdG1n<40.0
-0.1000<θgFG1n-(-1.665×10-7×νdG1n+5.213×10-5×νdG1n-5.656×10-3×νdG1n+0.7268)<-0.0010
νdG2>73.0
なる条件式を満足することを特徴とする光学系。
It is composed of a first lens group, a second lens group, and a third lens group with positive refractive power, which are arranged in order from the object side to the image side. During focusing, the second lens group moves and the adjacent lens groups An optical system in which the interval changes,
The first lens group includes a positive lens G1p disposed closest to the object side, a lens G2 disposed adjacent to the image side of the positive lens G1p, and a negative lens included in the first lens group. Including a negative lens G1n disposed closest to the object side,
The lens G2 has a positive refractive power,
The back focus of the optical system is BF, the focal length of the positive lens G1p is fG1p, the focal length of the negative lens G1n is fG1n, the Abbe number of the material of the negative lens G1n is νdG1n, the partial dispersion ratio is θgFG1n, and the lens G2 When the Abbe number of the material is νdG2,
0.02<BF/fG1p<0.14
3.358≦|fG1p/fG1n|<10.00
20.0<νdG1n<40.0
−0.1000<θgFG1n−(−1.665×10 −7 ×νdG1n 3 +5.213×10 −5 ×νdG1n 2 −5.656×10 −3 ×νdG1n+0.7268)<−0.0010
νdG2>73.0
An optical system characterized by satisfying the following conditional expression.
前記正レンズG1pと前記レンズG2の光軸上の距離をD12、前記第1レンズ群の最も物体側のレンズ面から像面までの光軸上の距離をLDとしたとき、
0.13<D12/LD<0.50
なる条件式を満足することを特徴とする請求項1に記載の光学系。
When the distance on the optical axis between the positive lens G1p and the lens G2 is D12, and the distance on the optical axis from the lens surface closest to the object side of the first lens group to the image plane is LD,
0.13<D12/LD<0.50
The optical system according to claim 1, wherein the optical system satisfies the following conditional expression.
前記レンズG2は正の屈折力を有することを特徴とする請求項1または2に記載の光学系。 The optical system according to claim 1 or 2, wherein the lens G2 has a positive refractive power. 前記レンズG2の焦点距離をfG2としたとき、
0.05<BF/fG2<0.23
なる条件式を満足することを特徴とする請求項1乃至3のいずれか一項に記載の光学系。
When the focal length of the lens G2 is fG2,
0.05<BF/fG2<0.23
4. The optical system according to claim 1, wherein the optical system satisfies the following conditional expression.
前記レンズG2の焦点距離をfG2としたとき、
1.5<fG1p/fG2<5.0
なる条件式を満足することを特徴とする請求項1乃至4のいずれか一項に記載の光学系。
When the focal length of the lens G2 is fG2,
1.5<fG1p/fG2<5.0
5. The optical system according to claim 1, wherein the optical system satisfies the following conditional expression.
前記レンズG2の材料の部分分散比をθgFG2としたとき、
0.0100<θgFG2-(-1.665×10-7×νdG2+5.213×10-5×νdG2-5.656×10-3×νdG2+0.7268)<0.1000
なる条件式を満足することを特徴とする請求項1乃至5のいずれか一項に記載の光学系。
When the partial dispersion ratio of the material of the lens G2 is θgFG2,
0.0100<θgFG2-(-1.665× 10-7 ×νdG2 3 +5.213× 10-5 ×νdG2 2-5.656 × 10-3 ×νdG2+0.7268)<0.1000
6. The optical system according to claim 1, wherein the optical system satisfies the following conditional expression.
前記第2レンズ群は負の屈折力を有し、無限遠から近距離へのフォーカシングに際して像側へ移動することを特徴とする請求項1乃至6のいずれか一項に記載の光学系。 7. The optical system according to claim 1, wherein the second lens group has a negative refractive power and moves toward the image side during focusing from infinity to a short distance. 前記第2レンズ群は1枚の負レンズから成ることを特徴とする請求項7に記載の光学系。 8. The optical system according to claim 7, wherein the second lens group includes one negative lens. 前記第1レンズ群はフォーカシングに際して不動であることを特徴とする請求項1乃至8のいずれか一項に記載の光学系。 9. The optical system according to claim 1, wherein the first lens group does not move during focusing. 前記第3レンズ群は、少なくとも1枚の正レンズと少なくとも1枚の負レンズを含み、前記第3レンズ群に含まれる正レンズの内、最も像側に配置された正レンズの焦点距離をfGkp、前記第3レンズ群に含まれる負レンズの内、最も像側に配置された負レンズの焦点距離をfGknとしたとき、
1.02<|fGkp/fGkn|<2.50
なる条件式を満足することを特徴とする請求項1乃至9のいずれか一項に記載の光学系。
The third lens group includes at least one positive lens and at least one negative lens, and among the positive lenses included in the third lens group, the focal length of the positive lens disposed closest to the image side is fGkp. , when the focal length of the negative lens disposed closest to the image side among the negative lenses included in the third lens group is fGkn,
1.02<|fGkp/fGkn|<2.50
10. The optical system according to claim 1, wherein the optical system satisfies the following conditional expression.
前記第3レンズ群は、最も像側に配置された正レンズGkpと、前記正レンズGkpの物体側に隣接して配置された負レンズGknを有することを特徴とする請求項1乃至10のいずれか一項に記載の光学系。 11. The third lens group includes a positive lens Gkp disposed closest to the image side, and a negative lens Gkn disposed adjacent to the positive lens Gkp on the object side. The optical system according to item (1). 前記第3レンズ群は負の屈折力を有することを特徴とする請求項1乃至11のいずれか一項に記載の光学系。 12. The optical system according to claim 1, wherein the third lens group has negative refractive power. 請求項1乃至12のいずれか一項に記載の光学系と、該光学系によって形成される像を受光する撮像素子を有することを特徴とする撮像装置。 An imaging device comprising: the optical system according to claim 1 ; and an imaging element that receives an image formed by the optical system. 前記撮像装置における最大像高をIHとしたとき、
0.05<BF/IH<2.20
なる条件式を満足することを特徴とする請求項13に記載の撮像装置。
When the maximum image height in the imaging device is IH,
0.05<BF/IH<2.20
The imaging device according to claim 13, wherein the imaging device satisfies the following conditional expression.
JP2023199251A 2023-11-24 Optical system and imaging device having the same Active JP7574394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023199251A JP7574394B2 (en) 2023-11-24 Optical system and imaging device having the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2022000492A JP7183456B2 (en) 2017-11-20 2022-01-05 Optical system and imaging device having the same
JP2022183235A JP7395700B2 (en) 2022-01-05 2022-11-16 Optical system and imaging device including it
JP2023199251A JP7574394B2 (en) 2023-11-24 Optical system and imaging device having the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2022183235A Division JP7395700B2 (en) 2022-01-05 2022-11-16 Optical system and imaging device including it

Publications (2)

Publication Number Publication Date
JP2024009238A true JP2024009238A (en) 2024-01-19
JP7574394B2 JP7574394B2 (en) 2024-10-28

Family

ID=

Also Published As

Publication number Publication date
JP2023009230A (en) 2023-01-19
JP7395700B2 (en) 2023-12-11

Similar Documents

Publication Publication Date Title
JP7061980B2 (en) Zoom lens and image pickup device
JP2014219616A (en) Zoom lens and imaging apparatus including the same
JP6146871B2 (en) Zoom lens and imaging device
JP2019049646A (en) Optical system and imaging apparatus including the same
JP7005312B2 (en) Optical system and an image pickup device having it
JP2016050945A (en) Zoom lens and imaging apparatus
JP2019174712A (en) Lens device
JP2019032390A (en) Zoom lens and imaging apparatus having the same
JP2019032391A (en) Zoom lens and imaging apparatus having the same
JP2016095461A (en) Imaging lens and imaging apparatus
JP7144383B2 (en) Zoom lens and imaging device
JP6150302B2 (en) Zoom lens and imaging device
JP6199259B2 (en) Zoom lens and imaging device
JP6199261B2 (en) Zoom lens and imaging device
JP2015215557A (en) Optical system, optical device, and method for manufacturing the optical system
JP7270562B2 (en) Imaging lens and imaging device
JP7179627B2 (en) Optical system and imaging device having the same
JP7005315B2 (en) Optical system and an image pickup device having it
JP2017156431A (en) Optical system, optical apparatus, and method for manufacturing optical system
JP2019101182A (en) Optical system and imaging apparatus having the same
JP7395700B2 (en) Optical system and imaging device including it
JP7146708B2 (en) Imaging lens and imaging device
JP7574394B2 (en) Optical system and imaging device having the same
JP7183456B2 (en) Optical system and imaging device having the same
JP7126986B2 (en) Zoom lens and imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231124

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20231213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240917