JP2024007302A - Low-entropy engine compatibly attaining environmental conservation and economical efficiency - Google Patents

Low-entropy engine compatibly attaining environmental conservation and economical efficiency Download PDF

Info

Publication number
JP2024007302A
JP2024007302A JP2022117559A JP2022117559A JP2024007302A JP 2024007302 A JP2024007302 A JP 2024007302A JP 2022117559 A JP2022117559 A JP 2022117559A JP 2022117559 A JP2022117559 A JP 2022117559A JP 2024007302 A JP2024007302 A JP 2024007302A
Authority
JP
Japan
Prior art keywords
flow rate
vcn
turbine
low
thrust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022117559A
Other languages
Japanese (ja)
Inventor
勇 根本
Isamu Nemoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2022117559A priority Critical patent/JP2024007302A/en
Publication of JP2024007302A publication Critical patent/JP2024007302A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Abstract

PROBLEM TO BE SOLVED: To lower a turbine intake temperature (TIT) without reducing a thrust by employing a variable mechanism for an exhaust nozzle of a core and widening a variable core nozzle (VCN) at a take-off rating, and to reduce a specific propellant consumption (SFC) by controlling a thrust by reducing a fuel flow rate, without lowering a fan rotating speed in cruising.
SOLUTION: A take-off rating at which a fan rotating speed is maximum is defined as an aerodynamic design point (ADP), it is made possible to choke a high-pressure turbine (HPT), a low-pressure turbine (LPT), and a nozzle of a VCN at the ADP, and then increase a low-pressure shaft rotating speed without increasing a high-pressure shaft rotating speed when the VCN is opened, and new "TIT-flow rate-thrust" relation for a turbofan engine for subsonic aircraft is thus created to solve the problem to be solved.
EFFECT: Heat efficiency is enhanced through low-entropy cycles to reduce an SFC and decrease a CO2 discharge amount, and a discharge amount of NOX is reduced with a low TIT to prolong a turbine lifetime, thereby compatibly attaining economic efficiency and environment adaptability.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、コアの排気ノズルを可変機構にした可変サイクル・エンジン(VCE:Variable Cycle Engine)に関する。ターボファン・エンジンの環境対策に関する発明であって、温室効果ガス排出量低減とエンジンのライフサイクルコスト節減を両立させる低エントロピー・エンジンである。 The present invention relates to a variable cycle engine (VCE) in which a core exhaust nozzle is a variable mechanism. This invention relates to environmental measures for turbofan engines, and is a low entropy engine that reduces greenhouse gas emissions and reduces engine life cycle costs.

従来の固定サイクルターボファンで操作できる独立変数は燃料流量である。燃料流量、即ちタービン入口温度(TIT:turbine inlet temperature)によって圧縮機やファンの回転数が決まり推力も決まる。このようにジェットエンジンの推力はTITに支配され、TITは材料の融点により制約を受ける。そのため高度なタービン空冷技術や材料の革新的技術が開発されてきた。しかし冷却空気量が多すぎると高温化による性能向上を冷却空気過剰によるサイクル損失が上回ってしまう。また燃焼機内の火炎温度の上昇にともない温室効果ガスであるNOx(窒素酸化物)の排出量は指数関数的に増加する。 The independent variable that can be manipulated in conventional fixed cycle turbofans is fuel flow. The fuel flow rate, that is, the turbine inlet temperature (TIT) determines the rotational speed of the compressor and the fan, and also determines the thrust force. In this way, the thrust of a jet engine is controlled by the TIT, and the TIT is limited by the melting point of the material. Therefore, advanced turbine air cooling technology and innovative materials technologies have been developed. However, if the amount of cooling air is too large, the performance improvement due to higher temperature will be outweighed by the cycle loss due to excess cooling air. Furthermore, as the flame temperature inside the combustion machine increases, the amount of NOx (nitrogen oxide) emissions, which are greenhouse gases, increases exponentially.

森田光男、関根静雄著 「多軸ターボファンエンジンの設計点外性能」航空宇宙技術研究所報告347号Mitsuo Morita and Shizuo Sekine “Performance beyond design point of multi-shaft turbofan engine” Aerospace Technology Research Institute Report No. 347

八田桂三著 「ガスタービンおよびジェットエンジン」共立出版株式会社Keizo Hatta “Gas Turbines and Jet Engines” Kyoritsu Publishing Co., Ltd.

従来ターボファンエンジンの技術開発の方向は、小型軽量、高推力を目的としてサイクル最高温度(タービン入口温度TIT)と最低温度(大気温度Ta)の差を大きくすることにあった。本発明が解決しようとする課題は、これに反しTITの上昇を抑え、TITに対する推力を最大化することである。 Conventionally, the direction of technological development of turbofan engines has been to increase the difference between the maximum cycle temperature (turbine inlet temperature TIT) and the minimum temperature (atmospheric temperature Ta) with the aim of making them compact, lightweight, and high in thrust. The problem to be solved by the present invention, on the contrary, is to suppress the rise in TIT and maximize the thrust to TIT.

上記課題を地上と上空に分けて説明すると、第一に離陸定格では推力を落さずTITを下げることである。一般にはTITを下げれば推力は落ちる。第二に巡航時は、エンジン流量を維持したまま燃料流量を減じて推力を制御し、燃料消費率(SFC;specific fuel consumption)を低減することである。これも一般には燃料流量を減らせばファン回転数は低下しエンジン流量は減少する。 To explain the above issues separately for the ground and the air, the first is to lower the TIT without reducing the thrust at the takeoff rating. Generally speaking, lowering TIT will reduce thrust. Second, during cruising, the thrust is controlled by reducing the fuel flow rate while maintaining the engine flow rate to reduce specific fuel consumption (SFC). Generally speaking, if the fuel flow rate is reduced, the fan rotation speed will decrease and the engine flow rate will also decrease.

上記課題を解決するには、高圧軸回転数を高めずに低圧軸回転数を高めるシステムを生み出せばよい。その手段は;
1)可変コア排気ノズル(VCN;Variable Core Nozzle)を装着して、操作できる独立変数を二つに増やす。
2)ファンの回転数が最大の離陸定格を空力設計点(ADP;Aerodynamic Design Point)とする。
3)ADPを高圧タービン(HPT;High Pressure Turbine)と低圧タービン(LPT;Low Pressure Turbine)のチョーク点とする。
4)VCNを広げることにより、チョーク点ADPで高圧圧縮機(HPC;High Pressure Compressor)の作動線を大流量側に移動し、作動点の流量を増して圧力比(HPR;High pressure ratio)が低下するように下流側のHPT、LPT、VCNのノズル面積と膨張比を設定する(詳細は「発明を実施するための形態」の項で説明する)。
In order to solve the above problem, it is sufficient to create a system that increases the rotation speed of the low-pressure shaft without increasing the rotation speed of the high-pressure shaft. The means are;
1) Install a variable core exhaust nozzle (VCN) to increase the number of independent variables that can be manipulated to two.
2) The takeoff rating at which the fan rotation speed is maximum is the aerodynamic design point (ADP).
3) Let ADP be the choke point of the high pressure turbine (HPT) and the low pressure turbine (LPT).
4) By widening VCN, the operating line of the high pressure compressor (HPC) is moved to the high flow rate side at the choke point ADP, the flow rate at the operating point is increased, and the pressure ratio (HPR) is increased. The nozzle areas and expansion ratios of the HPT, LPT, and VCN on the downstream side are set so as to decrease (details will be explained in the "Details of the Invention" section).

発明の効果は、SFCの低減によりCO2の排出量を、TITの低下によりNOxの排出量を減らし、またTITの低温化によりタービン寿命の延伸を図り、ライフサイクル・コストを低減して、温暖化対策と経済性の両立を図ることである。 The effects of the invention are to reduce CO2 emissions by reducing SFC and NOx emissions by reducing TIT, extend the life of the turbine by lowering the temperature of TIT, reduce life cycle costs, and reduce global warming. The aim is to strike a balance between countermeasures and economic efficiency.

本発明低エントロピー・エンジンの基本構成。Basic configuration of the low entropy engine of the present invention. FAN作動マップ。FAN operation map. LPC作動マップ。LPC operation map. HPC作動マップ。HPC operation map. タービンの流量特性曲線図、図の実線は本発明、点線は従来型エンジン(例1はHPT、例2はLPT)。The flow rate characteristic curve diagram of the turbine, the solid line in the figure is the present invention, and the dotted line is the conventional engine (Example 1 is HPT, Example 2 is LPT). 本発明と従来型エンジンの離陸定格でのタービン入口温度と推力の比較。Comparison of turbine inlet temperature and thrust at takeoff rating for the present invention and conventional engines. 相対推力(F)/(F)desとSFCの関係を示す図(例3は地上静止状態、例4は巡航時)。A diagram showing the relationship between relative thrust (F)/(F)des and SFC (Example 3 is stationary on the ground, Example 4 is when cruising). HPTとLPTの空力的繋がりを示すタービン特性曲線図(例5は地上静止状態、例6は巡航時)。Turbine characteristic curve diagram showing the aerodynamic connection between HPT and LPT (Example 5 is stationary on the ground, Example 6 is when cruising). 固定サイクル・エンジンのタービン部流量関係図。A diagram showing the relationship between the flow rate of the turbine part of a fixed cycle engine. 本発明と従来型エンジンの離陸定格でのエントロピー変化の比較。Comparison of entropy changes at takeoff rating for the present invention and conventional engines.

本発明低エントロピー・エンジンの基本構成を図1に示す。その機構はコアノズルを可変機構にした可変サイクルエンジンである。図においてFANはファン、LPCは低圧圧縮機、HPCは高圧圧縮機、COMBは燃焼器、HPTは高圧タービン、LPTは低圧タービン、VCNは可変コアノズルである。また数字はエンジン位置番号を表す。 The basic configuration of the low entropy engine of the present invention is shown in FIG. The mechanism is a variable cycle engine with a variable core nozzle. In the figure, FAN is a fan, LPC is a low pressure compressor, HPC is a high pressure compressor, COMB is a combustor, HPT is a high pressure turbine, LPT is a low pressure turbine, and VCN is a variable core nozzle. The numbers also represent engine position numbers.

本発明低エントロピー・エンジンのサイクル特性及びその効果を説明するには、エンジン前面面積が等しい従来型固定サイクルエンジンと可変コアノズルを装着した本発明を比較してその違いを示す方法が分かり易い。よってこの作動説明では、ファン前面面積が等しく、FAN、LPC、HPCの幾何形状が同じ二つのエンジン、即ちコアの排気ノズル固定の従来型ターボファンとVCNを装着した可変サイクル・エンジン(本発明)の離陸定格、及び巡航(同じ飛行条件)における作動を計算し比較して示す。 An easy way to explain the cycle characteristics and effects of the low entropy engine of the present invention is to compare and show the differences between a conventional fixed cycle engine with the same engine front area and the present invention equipped with a variable core nozzle. Therefore, in this operational description, two engines with equal fan front areas and the same FAN, LPC, and HPC geometries are used: a conventional turbofan with a fixed core exhaust nozzle, and a variable cycle engine equipped with a VCN (the present invention). Calculate and compare the takeoff rating and operation at cruise (same flight conditions).

図2、3、4にFAN、LPC、HPCの作動マップを示す。これらは航空宇宙技術研究所報告347号(非特許文献1)に掲載されているマップから、回転数に対する流量特性を、流量に対して放物線近似する方法で再現し、その作動線上に計算した各作動点をプロットしたものである。図5はタービン流量特性曲線を後記する数1を用いて描いた図である。例1は高圧タービンHPTの特性曲線、例2は低圧タービンLPTの特性曲線である。図において実線は本発明、点線は従来型の流量特性曲線である。図から明らかなようにここで比較する従来型と本発明はFAN、LPC、HPCは同一ハードウエアであり、タービンは異なるハードウエアである。尚、航技研報告347号は工学単位系で書かれており、この明細書もそれに準じた。 Figures 2, 3, and 4 show operational maps of FAN, LPC, and HPC. These are based on the map published in Aerospace Technology Research Institute Report No. 347 (Non-Patent Document 1), and the flow rate characteristics with respect to the rotation speed are reproduced by a method of parabolic approximation to the flow rate, and each calculated on the operating line. The operating points are plotted. FIG. 5 is a diagram depicting a turbine flow rate characteristic curve using Equation 1, which will be described later. Example 1 is a characteristic curve of the high pressure turbine HPT, and Example 2 is a characteristic curve of the low pressure turbine LPT. In the figure, the solid line is the flow characteristic curve of the present invention, and the dotted line is the flow characteristic curve of the conventional type. As is clear from the figure, in the conventional type and the present invention compared here, the FAN, LPC, and HPC are the same hardware, but the turbine is different hardware. Note that Aeronautical Engineering Research Report No. 347 was written in the engineering unit system, and this specification also follows that system.

先ず「実施例1」としてエンジンの基本諸元の設定値を示し、計算方法を説明する。また計算に基づき本発明と従来型の作動の違いを示す。図2~5において、点Aは排気ノズル固定の従来型エンジンの空力設計点(ADP)でファン相対修正回転数Nfc=100%、TIT=2000Kである。簡単のため従来型のHPT、LPTはA点でチョークするものとする。 First, as "Example 1", setting values of basic specifications of the engine will be shown, and a calculation method will be explained. It also shows the difference between the operation of the present invention and the conventional type based on calculations. In FIGS. 2 to 5, point A is the aerodynamic design point (ADP) of a conventional engine with a fixed exhaust nozzle, where the fan relative corrected rotation speed Nfc=100% and TIT=2000K. For simplicity, it is assumed that the conventional HPT and LPT are choked at point A.

点TS(Top speed)はファンの回転数を従来型と同じ作動線上のNfc=105%まで高めた作動点である。TS点は本案のADPでファン相対修正回転数105%、TIT=1773Kである。本発明はHPT、LPTとも点TSでチョークする。また本案は相対修正回転数100%の時、TIT=1614.6Kである。 Point TS (Top speed) is an operating point where the fan rotation speed is increased to Nfc=105% on the same operating line as the conventional type. The TS point is the ADP of the present invention, the relative corrected rotation speed of the fan is 105%, and the TIT is 1773K. In the present invention, both HPT and LPT are choked at point TS. Further, in this case, when the relative correction rotation speed is 100%, TIT=1614.6K.

離陸定格の計算では、従来型の点Aにおける推力と、VCNを開いてファン相対修正回転数を105%に高めTITを227度下げた本発明の点TSにおける推力がほぼ等しくなることを証明する。従来型の点Aにおける計算方法は通常の設計点性能計算である。 Calculation of the takeoff rating proves that the thrust at point A of the conventional model is almost equal to the thrust at point TS of the present invention, which opens the VCN, increases the fan relative corrected rotation speed to 105%, and lowers the TIT by 227 degrees. . The conventional calculation method at point A is a normal design point performance calculation.

点TSにおける本発明の計算方法を説明する。ファン修正回転数を105%に高めると、LPCはファンと同軸であるから機械回転数は同じで入口温度はファンより高くなるので修正回転数は99.5%と低くなる。LPCマップ上にNlc=99.5%の等回転数曲線を描くと、その曲線とLPC作動線の交点が本案のLPCの作動点TSである。よってLPC修正流量と圧力比が得られるのでLPC出口条件からHPC入口修正流量が分かる。HPC入口相対修正流量1.026を図4のHPCマップ上に点線で示す。 The calculation method of the present invention at point TS will be explained. If the fan corrected rotation speed is increased to 105%, the mechanical rotation speed is the same since the LPC is coaxial with the fan, but the inlet temperature is higher than that of the fan, so the corrected rotation speed becomes as low as 99.5%. When a constant rotation speed curve with Nlc=99.5% is drawn on the LPC map, the intersection of the curve and the LPC operating line is the LPC operating point TS of the present invention. Therefore, since the LPC corrected flow rate and pressure ratio can be obtained, the HPC inlet corrected flow rate can be determined from the LPC outlet conditions. The HPC inlet relative corrected flow rate of 1.026 is shown as a dotted line on the HPC map in FIG.

HPC修正流量を示す点線とHPC作動線の交点は、従来型固定サイクルで燃料流量を増しファン回転数Nfcを100%から105%に高めた時のHPC作動点で、HPR=9.015、TIT=2088Kとなるので限界超過、運転不可になる。そこでTITを1773Kに降下させるためのタービン及びVCNの設計が必要になる。 The intersection of the dotted line indicating the HPC corrected flow rate and the HPC operating line is the HPC operating point when the fuel flow rate is increased and the fan rotation speed Nfc is increased from 100% to 105% in the conventional fixed cycle, HPR = 9.015, TIT = 2088K, which exceeds the limit and makes it impossible to operate. Therefore, a turbine and VCN design is required to lower the TIT to 1773K.

NAL報告347号(非特許文献1)ではタービン流量特性を数1に示す楕円式で近似している。数1においてiは入口、eは出口である。離陸定格の計算ではG*Sqrtθi/δiは空力設計点の修正流量、Pi/Peは空力設計点の膨張比である。i=4、e=5とすれば数1左辺はHPT入口修正流量を表す。次にTITを1773Kに指定した燃焼器出口修正流量を数2に示す。 In NAL Report No. 347 (Non-Patent Document 1), the turbine flow rate characteristics are approximated by an elliptic equation shown in Equation 1. In Equation 1, i is the entrance and e is the exit. In the takeoff rating calculation, G*Sqrtθi/δi is the corrected flow rate at the aerodynamic design point, and Pi/Pe is the expansion ratio at the aerodynamic design point. If i=4 and e=5, the left side of Equation 1 represents the HPT inlet corrected flow rate. Next, the corrected flow rate at the combustor outlet with TIT specified as 1773K is shown in Equation 2.

Figure 2024007302000002
Figure 2024007302000002

Figure 2024007302000003
Figure 2024007302000003

ここでεは燃焼器全圧損失係数である。計算の初めの段階ではHPTがチョークすることを避けるため、数1の修正流量と膨張比のチョーク値を大きめに仮定した上で、数2の右辺第2項、分母のHPR=P03/P02をいろいろ変えて計算し、左辺の燃焼器出口修正流量と数1の左辺のHPT入口修正流量を一致させれば、図4に示す点TSのHPRの値を知ることが出来る。このHPRの値は、VCNを広げたときの値でVCNの作動条件が上流のHPCに伝わっている状態であり、この計算段階では、HPCの作動線を支配するのはVCNである。 Here, ε is the combustor total pressure loss coefficient. In order to avoid choking of the HPT at the initial stage of calculation, the choke values of the corrected flow rate and expansion ratio in Equation 1 are assumed to be large, and the second term on the right side of Equation 2, the denominator HPR = P03/P02, is By performing various calculations and matching the combustor outlet corrected flow rate on the left side with the HPT inlet corrected flow rate on the left side of Equation 1, the HPR value at the point TS shown in FIG. 4 can be found. This HPR value is the value when the VCN is expanded, and is a state in which the operating conditions of the VCN are transmitted to the upstream HPC, and at this calculation stage, it is the VCN that controls the operating line of the HPC.

つまりHPC下流の絞りを開いてHPC作動線を大流量側に移動し、その作動線とLPC出口条件から導いたHPC修正流量の交点の値がHPRとなる。よってコア流量Ghcが増しHPC出口圧P03が過昇にならないマッチング計算となる。数1と数2の左辺が等しくなった時点で数1の修正流量と膨張比のチョーク値を計算値と一致させれば、本発明のHPTは図5例1の点TS(本発明のADP)でチョークすることになる。 In other words, the HPC downstream throttle is opened and the HPC operating line is moved to the high flow rate side, and the value at the intersection of the operating line and the HPC corrected flow rate derived from the LPC exit conditions becomes the HPR. Therefore, a matching calculation is performed in which the core flow rate Ghc increases and the HPC outlet pressure P03 does not rise excessively. When the left sides of Equation 1 and Equation 2 become equal, if the choke values of the corrected flow rate and expansion ratio of Equation 1 are made to match the calculated values, the HPT of the present invention can be calculated from the point TS of Example 1 in Figure 5 (ADP of the present invention). ).

次に数1のエンジン位置番号をLPT入口、出口の位置番号5、6に替えて計算し、HPT出口修正流量とLPT入口修正流量を合致させれば、LPTの特性を得ることが出来る。ここでもLPTの入口修正流量及び膨張比のチョーク値はVCNの動作条件が上流に伝わることを妨げない値とし、計算後チョーク値を計算値に一致させる。つまりLPTも点TSでチョークさせる。よってHPT、LPTともにそのチョーク値は、上述のHPC作動を許容する最小面積となる。尚、流量と仕事の釣合の計算方法は既知なので省略する。 Next, the LPT characteristics can be obtained by replacing the engine position number in Equation 1 with the LPT inlet and outlet position numbers 5 and 6, and matching the HPT outlet corrected flow rate with the LPT inlet corrected flow rate. Here again, the choke values of the corrected inlet flow rate and expansion ratio of the LPT are set to values that do not prevent the operating conditions of the VCN from being transmitted upstream, and after calculation, the choke values are made to match the calculated values. In other words, LPT is also choked at point TS. Therefore, the choke value of both HPT and LPT becomes the minimum area that allows the above-mentioned HPC operation. Note that the method for calculating the balance between flow rate and work is already known and will therefore be omitted.

以上述べてきたマッチング計算から、本発明はコア排気ノズルを広げることで燃料流量を増さずにファン流量が増し、コアの流量、バイパス流量ともに増加するので推力を落さずTITを下げることが出来る。その流量とTITと推力の関係を表1に示す。また離陸定格での本発明と従来型エンジンのタービン入口温度と推力の比較を図6に示す。離陸定格での本発明のVCN面積は従来型の1.355倍である。この設定により本発明は推力を落さず従来型よりTITを227度下げることが出来ることが表1と図6より分かる。 From the matching calculations described above, in the present invention, by widening the core exhaust nozzle, the fan flow rate increases without increasing the fuel flow rate, and both the core flow rate and the bypass flow rate increase, so it is possible to lower the TIT without reducing thrust. I can do it. Table 1 shows the relationship between the flow rate, TIT, and thrust. Further, FIG. 6 shows a comparison of the turbine inlet temperature and thrust of the present invention and the conventional engine at takeoff rating. The VCN area of the present invention at takeoff rating is 1.355 times that of the conventional type. It can be seen from Table 1 and FIG. 6 that with this setting, the present invention can lower TIT by 227 degrees than the conventional type without reducing thrust.

Figure 2024007302000004
Figure 2024007302000004

次に地上静止状態の部分負荷性能を図7の例3に、高度10km、飛行マッハ数0.9の巡航性能を図7の例4に示す。例3はコアノズル固定の従来型のターボファン(Conventional TF)と本エンジンVCEの地上静止状態における部分負荷性能を比較したものである。図において点線で結んだ二つの作動点でのSFCは従来型が0.387、本エンジンが0.32で、本案はSFCを約17%低減できている。例4は高度10km、飛行マッハ数0.9における同一条件での巡航性能の比較である。図において点線で結んだ二つの作動点でのSFCは従来型が0.804、本案が0.7である。VCNを開いた本発明は、巡航時の点線位置のSFCを従来型より約13%改善できている。 Next, the partial load performance while stationary on the ground is shown in Example 3 of FIG. 7, and the cruise performance at an altitude of 10 km and a flight Mach number of 0.9 is shown in Example 4 of FIG. Example 3 compares the partial load performance of a conventional turbofan with a fixed core nozzle (Conventional TF) and this engine VCE in a stationary state on the ground. The SFC at the two operating points connected by dotted lines in the figure is 0.387 for the conventional engine and 0.32 for the present engine, and the present invention is able to reduce the SFC by approximately 17%. Example 4 is a comparison of cruise performance under the same conditions at an altitude of 10 km and a flight Mach number of 0.9. The SFC at the two operating points connected by dotted lines in the figure is 0.804 for the conventional type and 0.7 for the present invention. The present invention in which the VCN is opened can improve the SFC at the dotted line position during cruising by approximately 13% over the conventional type.

次に「実施例2」として本サイクルの新たな二つのセオリーを示す。先ず本サイクルのセオリーその1は、本サイクルはHPTとLPTの関係が通常の2軸直列フリータービンのエネルギー配分と異なることを示す。本発明のHPTとLPTの空力的繋がりを示すタービン特性曲線図を図8に示す。図8の例5は地上静止状態、例6は巡航時(高度10km、飛行マッハ数0.9)である。図から分かるようにVCNを開いてTITを下げると、HPT膨張比一定でLPT膨張比が大きくなっている。これは従来の固定サイクルエンジンでタービンが直列につながるときの部分負荷の膨張比配分と全く異なる。 Next, two new theories of this cycle will be shown as "Example 2". First, the first theory of this cycle is that the relationship between HPT and LPT in this cycle is different from the energy distribution of a normal two-shaft series free turbine. A turbine characteristic curve diagram showing the aerodynamic connection between the HPT and LPT of the present invention is shown in FIG. Example 5 in FIG. 8 is a state where the aircraft is stationary on the ground, and Example 6 is a state where the aircraft is cruising (altitude 10 km, flight Mach number 0.9). As can be seen from the figure, when the VCN is opened and the TIT is lowered, the LPT expansion ratio increases while the HPT expansion ratio remains constant. This is completely different from the partial load expansion ratio distribution when turbines are connected in series in conventional fixed cycle engines.

図9にコアノズル固定の従来型ターボファンのタービン部流量関係図を示す。図9から分かるように設計点では両タービン間の関係は実線で示されるように結ばれるが、部分負荷時に全膨張比が減ると点線のようになりHPTでは膨張比減少が少なく、LPTで大きく減少する。即ちTITを下げるとHPTの仕事とLPTの仕事の比は大きくなりLPTの出力は急激に減少する(非特許文献2、26頁より)。 FIG. 9 shows a flow rate relationship diagram of the turbine section of a conventional turbo fan with a fixed core nozzle. As can be seen from Figure 9, at the design point, the relationship between both turbines is connected as shown by the solid line, but when the total expansion ratio decreases at partial load, it becomes like the dotted line. Decrease. That is, when the TIT is lowered, the ratio between the work of the HPT and the work of the LPT increases, and the output of the LPT rapidly decreases (from Non-Patent Document 2, page 26).

図8と図9で注目すべきは、LPT膨張比の増減を示す矢印の方向が正反対なことでる。図8の本発明の作動は、二つのタービンを結ぶ従来の空力的法則を打ち破る、今迄にない新規な現象である。図8の例5、6の作動は「課題を解決するため手段」で述べた「高圧軸回転数を高めずに低圧軸回転数を高めるシステム」を具現したものである。このシステムはタービンの新しいセオリーを生み出している。広いVCN面積によりもたらされるこの現象は理に適っており本サイクルの要であって、本発明の進歩性を現している。 What should be noted in FIGS. 8 and 9 is that the directions of the arrows indicating increases and decreases in the LPT expansion ratio are completely opposite. The operation of the present invention shown in FIG. 8 is an unprecedented novel phenomenon that breaks the conventional aerodynamic law connecting two turbines. The operations of Examples 5 and 6 in FIG. 8 embody the ``system for increasing the low-pressure shaft rotation speed without increasing the high-pressure shaft rotation speed'' described in ``Means for Solving the Problem.'' This system creates a new theory for turbines. This phenomenon, brought about by the large VCN area, is logical and central to this cycle, and represents the inventive step of the present invention.

航空機用エンジンの可変排気ノズルは昔からある。世界で最初の量産エンジンユモ004B型エンジンは、高速稼働中にTITを一定に保つため排気ノズルが可変になっていた。現在は超音速軍用機にVCNが用いられ、アフターバナー使用時にVCNを開いている。しかし使用目的が本発明とはまったく違い、図8のタービン結合特性はまだこの世に存在していなかった。 Variable exhaust nozzles for aircraft engines have been around for a long time. The world's first mass-produced engine, the Yumo 004B engine, had a variable exhaust nozzle to maintain a constant TIT during high-speed operation. Currently, VCN is used in supersonic military aircraft, and the VCN is opened when using After Banner. However, the purpose of use was completely different from that of the present invention, and the turbine coupling characteristics shown in FIG. 8 did not yet exist in this world.

次に本サイクルのセオリー2として、本サイクルが低エントロピー・サイクルであり、そのことによって熱効率が高いことを示す。図7例3の本発明と従来型の比較は、地上静止状態であるから推進効率は関係ない。例3の離陸定格の計算結果からコアエンジンの離陸時のT-s線図を作成した。その線図を図10に示す。図10において外側の面積が従来型の点Aにおけるコアエンジンの仕事量を表し、内側の面積が本案の点TSにおけるコアエンジンの仕事量(熱量)を表す。燃焼器入口3と出口4の温度差が少ない本発明は低エントロピー・サイクルである。図から明らかに低エントロピー・サイクルはコアエンジンの単位流量当りの仕事量が少ない。しかしエンジン流量の増加によって推力が保たれていることが表1に明示されている。 Next, as theory 2 of this cycle, it will be shown that this cycle is a low entropy cycle, and therefore has high thermal efficiency. In the comparison between the present invention and the conventional type in Example 3 of FIG. 7, the propulsion efficiency is not relevant because the vehicle is stationary on the ground. A T-s diagram for the core engine during takeoff was created from the calculation results of the takeoff rating in Example 3. The diagram is shown in FIG. In FIG. 10, the outer area represents the amount of work of the core engine at point A of the conventional type, and the inner area represents the amount of work (heat amount) of the core engine at point TS of the present invention. The present invention, in which the temperature difference between the combustor inlet 3 and the combustor outlet 4 is small, is a low entropy cycle. It is clear from the figure that the low entropy cycle produces less work per unit flow rate of the core engine. However, Table 1 clearly shows that the thrust is maintained by increasing the engine flow rate.

重量G[kgf]の物体に熱量dQが与えられたときの温度上昇をdt[℃]とすると、ΔtはΔQに比例し、重量Gに逆比例する。Δt∝ΔQ/G。本エンジンは離陸時にQを増さずに、Gを増す装置であり、Gとはコア流量Ghp+Gfのこと、ガスゼネレータ流量である。即ちWork Coefficient(仕事率)で考えれば点Aと点TSのエンジンの仕事率はほぼ変わらない(表1参照)。本エンジンの特性は、1)受熱過程、放熱過程における温度差が小さい、2)断熱膨張過程の温度差が大きい(タービン膨張比が大きい)、この2点から本サイクルは低エントロピー・サイクルであると云える。燃料を増さずに仕事率を維持できる理由は図10から明らかなように排気残留エネルギが小さくなるからである。If the temperature rise when an amount of heat dQ is applied to an object having a weight of G [kgf] is dt [° C.], Δt is proportional to ΔQ and inversely proportional to the weight G. Δt∝ΔQ/G. This engine is a device that increases G without increasing Q during takeoff, where G is the core flow rate Ghp + Gf and the gas generator flow rate. That is, in terms of work efficiency, the power of the engine at point A and point TS is almost the same (see Table 1). The characteristics of this engine are: 1) the temperature difference in the heat receiving process and the heat radiation process is small; 2) the temperature difference in the adiabatic expansion process is large (the turbine expansion ratio is large); these two points make this cycle a low entropy cycle. I can say that. The reason why the power can be maintained without increasing the amount of fuel is that the exhaust residual energy becomes smaller, as is clear from FIG.

本可変サイクル・エンジンはVCNを広げてファン回転数を高めファン吸込み流量を増した時バイパス流量のみでなくコア流量も増加する。従ってバイパス比は寧ろ低下する。地上静止状態で従来型より本エンジンのSFCが高いのは、偏に熱効率の改善によるものである(但し、巡航時は推進効率が良くなる)。これが本サイクルの特徴である。 In this variable cycle engine, when the VCN is widened to increase the fan speed and increase the fan suction flow rate, not only the bypass flow rate but also the core flow rate increases. Therefore, the bypass ratio is rather reduced. The reason why this engine's SFC is higher than the conventional type when stationary on the ground is due in part to improved thermal efficiency (however, propulsion efficiency improves when cruising). This is a feature of this cycle.

航空業界は世界のCO2排出量の2.6%を占めており、大量の二酸化炭素(CO2)を排出している。ジェット燃料は深刻な大気汚染源であり、航空業界は温室効果ガス排出量削減の取り組みを強く求められている。他方、環境対策にコストを掛けると開発経費がかさみ、航空運賃が高騰、経済活動が阻害されてしまう。経済性と環境保全の両立を図ることが、持続可能な航空機用エンジンを実現する上で必須である。 The aviation industry accounts for 2.6% of global CO2 emissions and emits large amounts of carbon dioxide (CO2). Jet fuel is a serious source of air pollution, and the aviation industry is under strong pressure to take steps to reduce greenhouse gas emissions. On the other hand, adding costs to environmental measures increases development costs, soars airfares, and impedes economic activity. Achieving both economic efficiency and environmental conservation is essential to realizing sustainable aircraft engines.

本サイクルのセオリーは、第1にタービンの特性が従来の2軸直列フリータービンの仕事の配分と異なり、HPT膨張比を変化させずLPT膨張比を高めることが出来ることである。第2に燃焼器入口と出口の温度差が小さく低エントロピー・サイクルとなり、熱効率を高めることである。これらの理論からTITと流量と推力の新たな関係を生み出す。 The theory of this cycle is that, first, the characteristics of the turbine are different from the work distribution of a conventional two-shaft series free turbine, and the LPT expansion ratio can be increased without changing the HPT expansion ratio. Second, the temperature difference between the combustor inlet and outlet is small, resulting in a low entropy cycle, which increases thermal efficiency. From these theories, we will create a new relationship between TIT, flow rate, and thrust.

本発明、低エントロピー・エンジンは環境対策としてSFCの低減によってCO2の排出量を削減し、燃焼ガス温度を下げることによってNOx排出量を低減する。その上経済性向上策として、推力を落さずタービン入口温度を下げ、タービン寿命の延伸を図りライフサイクル・コストを節減して、環境と経済の両立を図ることが出来るので、産業上の利用可能性が高い。 As an environmental measure, the low entropy engine of the present invention reduces CO2 emissions by reducing SFC and reduces NOx emissions by lowering combustion gas temperature. Furthermore, as a measure to improve economic efficiency, it is possible to lower the turbine inlet temperature without reducing the thrust, extend the life of the turbine, and reduce life cycle costs, achieving both the environment and the economy. Probability is high.

A 面積 ADP 空力設計点
BPR バイパス比 COMB 燃焼器
Cpt タービン部定圧比熱 FAN ファン
f 燃料空気混合比 G 実流量
HPC 高圧圧縮機 HPT 高圧タービン
LPC 低圧圧縮機 LPT 低圧タービン
M マッハ数 N 回転数
Nfc ファン相対修正回転数 Nlc LPC相対修正回転数
s エントロピー Sqrt() 自乗根
SLS 海面上静止状態 TS 高速回転域(トップスピード)
VCN 可変コアノズル
(G√θi/δi)/(G√θi/δi)des 相対修正流量
δ P/Ps ε 全圧損失係数
θ T/Ts
数字
a.大気 1.ファン入口
22.ファン出口 2.LPC出口
3.HPC出口(燃焼器入口) 4.燃焼器出口(HPT入口)
5.LPT入口 6.LPT出口
7.コアノズル出口 8.バイパスノズル出口
A Area ADP Aerodynamic design point BPR Bypass ratio COMB Combustor Cpt Constant-pressure specific heat of turbine part FAN Fan f Fuel-air mixture ratio G Actual flow rate HPC High-pressure compressor HPT High-pressure turbine LPC Low-pressure compressor LPT Low-pressure turbine M Mach number N Rotation speed Nfc Fan relative Corrected rotational speed Nlc LPC relative corrected rotational speed s Entropy Sqrt() Square root SLS Stationary state on sea surface TS High speed rotation range (top speed)
VCN Variable core nozzle (G√θi/δi)/(G√θi/δi) des Relative correction flow rate δ P/Ps ε Total pressure loss coefficient θ T/Ts
Number a. Atmosphere 1. Fan inlet 22. Fan outlet 2. LPC exit 3. HPC outlet (combustor inlet) 4. Combustor outlet (HPT inlet)
5. LPT entrance 6. LPT exit7. Core nozzle outlet 8. Bypass nozzle outlet

Claims (1)

本発明は可変サイクル・ターボファンエンジンの機構として
1)コアの排気ノズルを可変ノズル(VCN)とする。
2)ファンの回転数が最大の離陸定格を空力設計点(ADP)とする。
3)ADPを高圧タービン(HPT)、低圧タービン(LPT)のチョーク点とする。
進歩性として
4)チョーク点ADPで高圧圧縮機(HPC)の作動線をチョーク側に移動し、HPC圧力比が下がるように下流側のHPT、LPT、VCNのノズル面積と膨張比を設定する。
その作動として、
5)VCNを開くとエンジン背圧が下がりLPT膨張比が増して、ファン回転数が上昇、燃料流量の増加なくしてコア流量、バイパス流量ともに増加する。
6)コア流量の増加により燃空比が下がりタービン入口温度(TIT)が降下する。
7)バイパス流量の増加によりバイパス側の推力を高め総推力を維持する。
タービン特性の新規制として
8)VCNを開くことで、HPT膨張比一定でLPT膨張比を高め、従来の2軸直列フリータービンの仕事の分配法則を覆すタービン特性を生み出し、
9)高圧軸回転数を増さずに低圧軸回転数を増す。
サイクル特性の新規制として
10)燃焼過程の温度上昇が少なく、膨張過程の温度差が大きい低エントロピー・サイクルを形成し、低エントロピー・サイクルにより熱効率を高める。
11)亜音速機のための新たなTITと流量と推力の関係を生み出す。
効果として
12)離陸定格でVCNを開くと、推力を落さずTITを下げることが出来る。
13)また巡航時にVCNを開き、ファン回転数を下げずに燃料流量を減らして推力を制御し、燃料消費率(SFC)を低減することが出来る。
産業上の利用可能性として
14)SFCの低減によりCO2の排出量を削減し、燃焼ガス温度を下げることによってNOx排出量を低減し、タービン寿命の延伸を図りライフサイクル・コストを節減する。
以上のサイクル効果により、環境保全と経済性を両立させる低エントロピー・エンジン。
The present invention provides a mechanism for a variable cycle turbofan engine: 1) The core exhaust nozzle is a variable nozzle (VCN).
2) The takeoff rating at which the fan rotation speed is maximum is the aerodynamic design point (ADP).
3) Let ADP be the choke point of the high pressure turbine (HPT) and low pressure turbine (LPT).
As an inventive step, 4) the operating line of the high pressure compressor (HPC) is moved to the choke side at the choke point ADP, and the nozzle areas and expansion ratios of the downstream HPT, LPT, and VCN are set so that the HPC pressure ratio decreases.
As its operation,
5) When the VCN is opened, the engine back pressure decreases, the LPT expansion ratio increases, the fan rotation speed increases, and both the core flow rate and bypass flow rate increase without increasing the fuel flow rate.
6) Due to the increase in core flow rate, the fuel-air ratio decreases and the turbine inlet temperature (TIT) decreases.
7) By increasing the bypass flow rate, the thrust on the bypass side is increased and the total thrust is maintained.
As a new regulation for turbine characteristics, 8) By opening the VCN, the LPT expansion ratio is increased while the HPT expansion ratio is constant, creating turbine characteristics that overturn the work distribution law of conventional 2-shaft series free turbines.
9) Increase the low pressure shaft rotation speed without increasing the high pressure shaft rotation speed.
New regulations regarding cycle characteristics include 10) Forming a low-entropy cycle in which the temperature rise in the combustion process is small and the temperature difference in the expansion process is large, increasing thermal efficiency through the low-entropy cycle.
11) Create a new TIT, flow rate, and thrust relationship for subsonic aircraft.
Effect: 12) If the VCN is opened at takeoff rating, TIT can be lowered without reducing thrust.
13) Also, during cruising, the VCN can be opened and the fuel flow rate can be reduced without lowering the fan speed to control the thrust and reduce the fuel consumption rate (SFC).
Industrial applicability: 14) Reduces CO2 emissions by reducing SFC, reduces NOx emissions by lowering combustion gas temperature, extends turbine life and saves life cycle costs.
Thanks to the above cycle effects, this low entropy engine achieves both environmental conservation and economic efficiency.
JP2022117559A 2022-07-05 2022-07-05 Low-entropy engine compatibly attaining environmental conservation and economical efficiency Pending JP2024007302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022117559A JP2024007302A (en) 2022-07-05 2022-07-05 Low-entropy engine compatibly attaining environmental conservation and economical efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022117559A JP2024007302A (en) 2022-07-05 2022-07-05 Low-entropy engine compatibly attaining environmental conservation and economical efficiency

Publications (1)

Publication Number Publication Date
JP2024007302A true JP2024007302A (en) 2024-01-18

Family

ID=89543509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022117559A Pending JP2024007302A (en) 2022-07-05 2022-07-05 Low-entropy engine compatibly attaining environmental conservation and economical efficiency

Country Status (1)

Country Link
JP (1) JP2024007302A (en)

Similar Documents

Publication Publication Date Title
US7788899B2 (en) Fixed nozzle thrust augmentation system
US20210140641A1 (en) Method and system for rotating detonation combustion
RU2140001C1 (en) Method of operation of supersonic hybrid air-jet engine plant
US11884414B2 (en) Supersonic aircraft turbofan engine
Cai et al. Performance assessment for a novel supersonic turbine engine with variable geometry and fuel precooled: From feasibility, exergy, thermoeconomic perspectives
Meng et al. High-level power extraction from adaptive cycle engine for directed energy weapon
Xin et al. Performance optimization of adaptive cycle engine during subsonic climb
US20160363048A1 (en) Gas turbine engine
CN117028059A (en) Separate exhaust throat offset type pneumatic vector spray pipe based on variable cycle engine
JP2024007302A (en) Low-entropy engine compatibly attaining environmental conservation and economical efficiency
US7111449B1 (en) Gas heat engine
Benawra et al. Performance cycle analysis on turbo fan engine PW4000
Nordqvist et al. Conceptual design of a turbofan engine for a supersonic business jet
Zhang et al. A Study of Two Variable Cycle Engine Concepts for High Speed Civil Aircraft
Kumar et al. Innovative approaches for reducing CO2 emissions of aviation engines part 3: advanced Brayton cycle optimization
Li et al. Steady state calculation and performance analysis of variable cycle engine
Shwin On-design cycle analysis of a separate-flow turbofan engine with an interstage turbine burner
Tanatsugu Development study on air turboramjet
Linyuan et al. Steady state control schedule optimization for a variable cycle engine
Ujam Parametric analysis of a Turbojet engine with reduced inlet pressure to compressor
US20240229726A1 (en) Aircraft propulsion system
Deidewig et al. Studies on NOx-emissions of SST engine concepts
Fanqi et al. Performance Calculation of Rocket-Based Combined Cycle Engine
Ou et al. Thermodynamic performance analysis of scramjet at wide working condition
JP2021038737A (en) Low entropy engine