JP2024001906A - Liquid level meter for liquid hydrogen and liquid level measurement method - Google Patents

Liquid level meter for liquid hydrogen and liquid level measurement method Download PDF

Info

Publication number
JP2024001906A
JP2024001906A JP2022100762A JP2022100762A JP2024001906A JP 2024001906 A JP2024001906 A JP 2024001906A JP 2022100762 A JP2022100762 A JP 2022100762A JP 2022100762 A JP2022100762 A JP 2022100762A JP 2024001906 A JP2024001906 A JP 2024001906A
Authority
JP
Japan
Prior art keywords
liquid
rays
liquid level
ray
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022100762A
Other languages
Japanese (ja)
Inventor
直樹 菊川
Naoki Kikukawa
博之 山瀬
Hiroyuki Yamase
吉晴 櫻井
Yoshiharu Sakurai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2022100762A priority Critical patent/JP2024001906A/en
Publication of JP2024001906A publication Critical patent/JP2024001906A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a liquid level meter capable of measuring a liquid level so as to be in non-contact with liquid hydrogen inside a container.
SOLUTION: A liquid level meter comprises: an X-ray irradiation device 20 that irradiates X-rays toward a central axis of a liquid hydrogen tank 10 in a direction parallel to a liquid level; an X-ray detection device 32 that detects backscattered X-rays generated near the central axis by X-rays; a shielding member 30 that shields a part of the backscattered X-rays in front of the X-ray detection device 32; and a calculation device 34 that calculates a liquid level at the central axis based on the detected backscattered X-rays. The liquid level meter has a vertical drive mechanism 22 that moves the X-ray irradiation device 20 in a vertical direction of the liquid hydrogen tank 10 to adjust a height of an X-ray irradiation axis in the liquid hydrogen tank 10. The shielding member 30 allows X-rays having passed through slits provided at regular intervals in the vertical direction of the liquid hydrogen tank 10 to enter the X-ray detection device 32. The X-ray detection device 32 detects backscattered X-rays. The calculation device 34 determines the liquid level at an interface between liquid hydrogen and hydrogen gas in the liquid hydrogen tank 10.
SELECTED DRAWING: Figure 1A
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、例えば液体水素用に用いて好適な、液面計及び液位測定方法に関する。 The present invention relates to a liquid level gauge and a liquid level measuring method suitable for use, for example, in liquid hydrogen.

クリーンエネルギーである水素の利用が、第6次エネルギー基本計画の基本方針の一つとして盛り込まれた。水素の輸送や貯蔵の際には、気体に比べ密度が1/800となる液体状態での利用が想定されている。その際、断熱構造を有する容器内にある液体水素の容量を精密に計測し把握することは、水素利用には欠かせない。容量測定には、他の寒剤(窒素、ヘリウムなど)と同様、一般的な液面計を用いている。例えば、液体窒素では簡便なフロート式が用いられている。水素液面計に関しても、超伝導を応用したものが提案されている(例えば、特許文献1~3参照)し、また静電容量式も知られている。 The use of hydrogen, a clean energy source, was included as one of the basic policies of the Sixth Basic Energy Plan. When transporting or storing hydrogen, it is assumed that it will be used in a liquid state, which has a density 1/800 of that of gas. At that time, it is essential for hydrogen utilization to precisely measure and understand the volume of liquid hydrogen in a container with an insulated structure. As with other cryogens (nitrogen, helium, etc.), a general liquid level gauge is used to measure the volume. For example, a simple float type is used for liquid nitrogen. As for hydrogen level gauges, ones that apply superconductivity have been proposed (see, for example, Patent Documents 1 to 3), and capacitance type gauges are also known.

特開2009-175034号公報Japanese Patent Application Publication No. 2009-175034 特開2014-098659号公報Japanese Patent Application Publication No. 2014-098659 WO2017-179488号公報WO2017-179488 publication

しかしながら、静電容量式では、実験ごとの校正が必要とされ、来るべき水素社会において、5tonクラスのプラント用大型タンクから地産地消型を想定した100kg程度までの小・中型容器までの個々の容器を対応させることは現実的ではない。
超伝導線を用いた方式においても、常圧下での沸点が4.2ケルビンのヘリウムに比べ、20ケルビンの水素に対し、利用可能な超伝導材料はMgBなどに限られる。また、水素下での評価法が確立していないのが現状である。
However, the capacitance type requires calibration for each experiment, and in the coming hydrogen society, it will be necessary to calibrate individual containers ranging from large 5-ton class tanks for plants to small and medium-sized containers of around 100 kg, assuming local production and local consumption. It is not practical to make containers compatible.
Even in methods using superconducting wires, the usable superconducting materials are limited to MgB 2 and the like for hydrogen, which has a boiling point of 20 Kelvin, compared to helium, which has a boiling point of 4.2 Kelvin under normal pressure. Furthermore, at present, an evaluation method under hydrogen has not been established.

また、水素ならではの課題も克服する必要がある。水素自体が可燃性であることから、その安全性も一層求められる。さらに液体水素容器内への液面センサーの導入には、熱流入が不可避であり、貴重なエネルギー源の蒸発につながってしまう。さらに、容器内部への液面センサーの導入は、用いる液面系材料の水素脆化・低温脆化も考慮する必要があるのと同時に、容器の構造を一層複雑にする。容器内部に導入した液面センサーによる溶接・接続部の水素脆化・低温脆化も不可避の懸念となる。 It is also necessary to overcome challenges unique to hydrogen. Since hydrogen itself is flammable, its safety is even more important. Furthermore, the introduction of a liquid level sensor into a liquid hydrogen container inevitably introduces heat, which leads to evaporation of a valuable energy source. Furthermore, the introduction of a liquid level sensor inside the container requires consideration of hydrogen embrittlement and low-temperature embrittlement of the liquid surface material used, and at the same time makes the structure of the container even more complex. Hydrogen embrittlement and low-temperature embrittlement of welds and connections caused by liquid level sensors installed inside the container are also inevitable concerns.

本発明は、上記従来技術の問題点を解決したもので、容器内部の液体水素とは非接触で液面の液位を測定できる液面計及び液位測定方法を提供することを目的とする。 The present invention solves the problems of the prior art described above, and aims to provide a liquid level meter and a liquid level measuring method that can measure the liquid level without contacting the liquid hydrogen inside the container. .

〔1〕本発明の液面計は、例えば図1に示すように、液体水素用タンク10の中心軸に向けて液面と平行な方向に所定のエネルギーのX線を照射するX線照射装置20と、前記X線によって前記中心軸の近傍で生じた後方散乱X線を検出するX線検出装置32と、前記後方散乱X線の一部を前記X線検出装置の手前で遮蔽する遮蔽部材30と、検出した後方散乱X線に基づいて前記中心軸での液位を算出する算出装置34とを備えた液面計であって、X線照射装置20を液体水素用タンク10の上下方向に移動して、前記X線の照射軸の液体水素用タンク10における高さを調整する上下方向駆動機構22を有し、遮蔽部材30は、液体水素用タンク10の上下方向に一定間隔で設けられたスリットを有し、前記スリットを通過したX線がX線検出装置32に入射し、X線検出装置32は、後方散乱X線を検出すると共に、当該後方散乱X線のX線線量及びエネルギー量を測定し、算出装置34は、検出した後方散乱X線の特定のエネルギーにおけるX線線量に基づいて液体水素用タンク10の液体水素と水素ガスの境界面の液位を求めるものである。 [1] As shown in FIG. 1, for example, the liquid level gauge of the present invention includes an X-ray irradiation device that irradiates X-rays with a predetermined energy in a direction parallel to the liquid level toward the central axis of the liquid hydrogen tank 10. 20, an X-ray detection device 32 that detects backscattered X-rays generated near the central axis by the X-rays, and a shielding member that blocks part of the backscattered X-rays in front of the X-ray detection device. 30 and a calculation device 34 that calculates the liquid level at the central axis based on the detected backscattered X-rays, the It has a vertical drive mechanism 22 that moves to adjust the height of the X-ray irradiation axis in the liquid hydrogen tank 10, and the shielding members 30 are provided at regular intervals in the vertical direction of the liquid hydrogen tank 10. The X-rays passing through the slit enter the X-ray detection device 32, and the X-ray detection device 32 detects the backscattered X-rays and determines the X-ray dose and amount of the backscattered X-rays. The calculation device 34 measures the energy amount and determines the liquid level at the interface between liquid hydrogen and hydrogen gas in the liquid hydrogen tank 10 based on the X-ray dose at a specific energy of the detected backscattered X-rays. .

〔2〕本発明の液面計〔1〕において、好ましくは、算出装置34は、前記中心軸の近傍と同等の材料よりなる試験体に向けて照射された前記所定のエネルギーのX線によって生じる後方散乱X線の特定のエネルギーにおけるX線線量と当該液体水素用タンク内での液体水素の既知の液位との関係を示す検量線データを有し、前記検出した後方散乱X線の特定のエネルギーにおけるX線線量と前記検量線データとに基づいて前記液位を求めるものであるとよい。
〔3〕本発明の液面計〔1〕又は〔2〕において、好ましくは、X線照射装置20は、前記X線を照射するX線焦点の近傍に一端が取り付けられ他端が液体水素用タンク10の壁面近傍に位置する遮蔽筒体と、前記遮蔽筒体の前記他端に設けられ且つ1カ所に開口を有するコリメーターとをさらに備えるとよい。
〔4〕本発明の液面計〔3〕において、好ましくは、前記コリメーターは、前記液面と平行な方向に摺動可能であり、前記X線検出装置32は、前記コリメーターの摺動方向に直交する方向に移動可能であり、
算出装置34は、前記中心軸の近傍の所定範囲における走査情報を生成する走査情報生成部を有するとよい。
〔5〕本発明の液面計〔1〕乃至〔4〕において、好ましくは、前記X線は、液体水素用タンク10の壁面近傍に入射する際のビーム直径が10mm以下であるとよい。
〔6〕本発明の液面計〔1〕乃至〔5〕において、例えば、X線検出装置32は、X線の検出方向軸が前記照射軸に対し30~165°で交差するように配向するとよい。
〔7〕本発明の液面計〔1〕乃至〔6〕において、前記液体水素用タンクに代えて、液体ヘリウム用タンク、液体空気用タンク、液体窒素用タンク、若しくは他の寒剤保存用タンクに用いられ、X線検出装置は、液体水素と水素ガスに代えて、液体ヘリウムとヘリウムガス、液体空気と空気、液体窒素と窒素ガス、若しくは他の寒剤で生ずる液体相とガス相の境界の検出に用いられるものでもよい。
[2] In the liquid level gauge [1] of the present invention, preferably, the calculation device 34 calculates the amount of energy generated by the X-rays of the predetermined energy irradiated toward the test specimen made of the same material as the vicinity of the central axis. It has calibration curve data showing the relationship between the X-ray dose at a specific energy of the backscattered X-rays and the known liquid level of liquid hydrogen in the liquid hydrogen tank, and Preferably, the liquid level is determined based on the X-ray dose at energy and the calibration curve data.
[3] In the liquid level gauge [1] or [2] of the present invention, preferably, the X-ray irradiation device 20 has one end attached near the X-ray focal point for irradiating the X-rays and the other end attached to the liquid hydrogen It is preferable to further include a shielding cylindrical body located near the wall surface of the tank 10, and a collimator provided at the other end of the shielding cylindrical body and having an opening at one location.
[4] In the liquid level gauge [3] of the present invention, preferably, the collimator is slidable in a direction parallel to the liquid level, and the X-ray detection device 32 is configured to It is movable in a direction perpendicular to the direction,
The calculation device 34 preferably includes a scanning information generation section that generates scanning information in a predetermined range near the central axis.
[5] In the liquid level gauges [1] to [4] of the present invention, preferably, the beam diameter of the X-rays when incident near the wall surface of the liquid hydrogen tank 10 is 10 mm or less.
[6] In the liquid level gauges [1] to [5] of the present invention, for example, if the X-ray detection device 32 is oriented such that the X-ray detection direction axis intersects the irradiation axis at an angle of 30 to 165 degrees. good.
[7] In the liquid level gauges [1] to [6] of the present invention, instead of the liquid hydrogen tank, a liquid helium tank, a liquid air tank, a liquid nitrogen tank, or another cryogen storage tank is used. X-ray detection equipment can be used to detect boundaries between liquid and gas phases that occur with liquid helium and helium gas, liquid air and air, liquid nitrogen and nitrogen gas, or other cryogens instead of liquid hydrogen and hydrogen gas. It may also be used for.

〔8〕本発明の液位測定方法は、例えば図1に示すように、液体水素用タンク10の中心軸に向けて液面と平行な方向に所定のエネルギーのX線を照射するX線照射装置20と、前記X線によって前記中心軸の近傍で生じた後方散乱X線を検出するX線検出装置32と、前記後方散乱X線の一部を前記X線検出装置の手前で遮蔽する遮蔽部材30と、検出した後方散乱X線に基づいて前記中心軸での液位を算出する算出装置34とを備えた液面計を用いた液位測定方法であって、遮蔽部材30は、液体水素用タンク10の上下方向に一定間隔で設けられたスリットを有し、前記スリットを通過したX線が前記X線検出装置に入射するように構成され、X線照射装置20を液体水素用タンク10の上下方向に移動して、前記中心軸の近傍に向けてX線を照射し、前記中心軸の近傍で生じた後方散乱X線を検出すると共に、当該後方散乱X線のX線線量及びエネルギー量を測定し、検出した後方散乱X線の特定のエネルギーにおけるX線線量に基づいて液体水素用タンク10の液体水素と水素ガスの境界面の液位を求めるものである。
〔9〕本発明の液位測定方法〔8〕において、好ましくは、前記液体水素用タンクに代えて、液体ヘリウム用タンク、液体空気用タンク、液体窒素用タンク、若しくは他の寒剤保存用タンクに用いられ、X線検出装置は、液体水素と水素ガスに代えて、液体ヘリウムとヘリウムガス、液体空気と空気、液体窒素と窒素ガス、若しくは他の寒剤で生ずる液体相とガス相の境界の検出に用いられるものでもよい。
[8] The liquid level measurement method of the present invention includes, for example, as shown in FIG. an X-ray detection device 32 that detects backscattered X-rays generated near the central axis by the X-rays; and a shield that blocks part of the backscattered X-rays in front of the X-ray detection device. A liquid level measuring method using a liquid level gauge including a member 30 and a calculation device 34 that calculates the liquid level at the central axis based on detected backscattered X-rays, the shielding member 30 The hydrogen tank 10 has slits provided at regular intervals in the vertical direction, and is configured such that X-rays passing through the slits enter the X-ray detection device, and the X-ray irradiation device 20 is connected to the liquid hydrogen tank. 10 in the vertical direction, irradiates X-rays toward the vicinity of the central axis, detects backscattered X-rays generated near the central axis, and detects the X-ray dose and amount of the backscattered X-rays. The amount of energy is measured, and the liquid level at the interface between liquid hydrogen and hydrogen gas in the liquid hydrogen tank 10 is determined based on the amount of X-rays at a specific energy of the detected backscattered X-rays.
[9] In the liquid level measuring method [8] of the present invention, preferably a liquid helium tank, a liquid air tank, a liquid nitrogen tank, or another cryogen storage tank is used instead of the liquid hydrogen tank. X-ray detection equipment can be used to detect boundaries between liquid and gas phases that occur with liquid helium and helium gas, liquid air and air, liquid nitrogen and nitrogen gas, or other cryogens instead of liquid hydrogen and hydrogen gas. It may also be used for.

本発明の液面計によれば、容器外部から計測のためのセンサー類などを、容器内部に導入する必要がない。これは、従来型の延長といえる超伝導線を容器内部に導入した液面計などと比較し、熱流入の抑制、水素脆化・低温脆化の懸念がない、容器の大きさに依存しない、容器の構造が簡素化し、水素を扱う上での安全性の向上、精密計測が可能、という利点を有する。 According to the liquid level gauge of the present invention, there is no need to introduce sensors for measurement from outside the container into the inside of the container. Compared to liquid level gauges that use superconducting wires inside the container, which can be considered an extension of conventional methods, this technology suppresses heat inflow, eliminates concerns about hydrogen embrittlement and low-temperature embrittlement, and is independent of the size of the container. This has the advantage of simplifying the structure of the container, improving safety when handling hydrogen, and enabling precise measurement.

本発明の一実施例を示す液面計の説明図で、液体水素タンク外部に装着した状態を示している。FIG. 2 is an explanatory diagram of a liquid level gauge showing an embodiment of the present invention, showing a state where it is attached to the outside of a liquid hydrogen tank. 本発明の一実施例を示す液面計の説明図で、図1Aに示す液体水素タンクに装着した状態を上から見た配置図を示している。FIG. 1 is an explanatory diagram of a liquid level gauge according to an embodiment of the present invention, and shows a layout diagram when viewed from above when attached to the liquid hydrogen tank shown in FIG. 1A. X線コンプトン散乱の説明図である。It is an explanatory diagram of X-ray Compton scattering.

以下図面を用いて本発明を説明する。
図1Aは、本発明の一実施例を示す液面計の説明図で、液体水素タンク外部に装着した状態を示している。図1Bは、図1Aに示す液体水素タンクに装着した状態を上から見た配置図を示している。
図において、液体水素容器10は、液体水素容器外壁10aと液体水素容器内壁10bの二重壁構造となっており、両者の間隙に断熱層12が設けられている。液体水素容器外壁10aと液体水素容器内壁10bは、水素脆化などをクリアしたSUS(304、304L、316、316L、317)の5種類が構造材として用いられる。断熱層12は、真空やパーライト材が用いられる。液体水素容器内壁10bには、液面の上側が水素ガス14であり、下側が液体水素16となっている。
The present invention will be explained below using the drawings.
FIG. 1A is an explanatory diagram of a liquid level gauge showing an embodiment of the present invention, and shows a state where it is attached to the outside of a liquid hydrogen tank. FIG. 1B shows a top view of the device installed in the liquid hydrogen tank shown in FIG. 1A.
In the figure, the liquid hydrogen container 10 has a double-walled structure consisting of an outer wall 10a of the liquid hydrogen container and an inner wall 10b of the liquid hydrogen container, and a heat insulating layer 12 is provided in the gap between the two. For the outer wall 10a of the liquid hydrogen container and the inner wall 10b of the liquid hydrogen container, five types of SUS (304, 304L, 316, 316L, 317), which have cleared hydrogen embrittlement, are used as structural materials. For the heat insulating layer 12, vacuum or pearlite material is used. On the inner wall 10b of the liquid hydrogen container, the upper side of the liquid surface is hydrogen gas 14, and the lower side is liquid hydrogen 16.

X線源20は、X線を液体水素容器10の液面方向に照射するものである。照射したX線は液面方向に対して上下方向に各々7-8度程度にわたり広がって伝搬する。X線源上下駆動機構22は、X線源20を液体水素容器10の上下方向に駆動する機構で、汎用的な昇降機構が用いられる。 The X-ray source 20 irradiates X-rays in the direction of the liquid surface of the liquid hydrogen container 10. The irradiated X-rays spread and propagate by about 7 to 8 degrees in the vertical direction with respect to the liquid surface direction. The X-ray source vertical drive mechanism 22 is a mechanism that drives the X-ray source 20 in the vertical direction of the liquid hydrogen container 10, and a general-purpose lifting mechanism is used.

遮蔽部材30は液体水素容器10の上下方向に位置するもので、例えばX線の照射方向に対して直交する方向に設けられる。遮蔽部材30は、タンタルやタングステンの板材よりなるもので、スリット31が例えば1mm間隔で設けられている。スリット31の間隔は、液位計測の分解能(1mm程度)を定める。
半導体検出器32は、スリット31を通過した平行光束のX線を検出する。
算出装置34は、検出した後方散乱X線に基づいて中心軸での液位を算出する。X線強度モニタ36は、半導体検出器32で検出されたX線強度を可視化するもので、例えばバーグラフ表示器が用いられる。
なお、遮蔽部材30をX線の照射方向に対して直交する方向に設けると、X線検出装置は、X線の検出方向軸が照射軸に対し90°で交差するように配向されることとなる。しかし、前記直交する方向は設置作業の便宜のために定めたものであり、散乱X線の強度が強く検出が容易となる角度に設置すれば良い。例えばX線検出装置は、X線の検出方向軸が照射軸に対し、30~165°の間で交差するように遮蔽部材30を設置しても良く、また可能であれば10~170°で交差するように遮蔽部材30を設置しても良い。X線の検出方向軸が照射軸に対し10°未満で交差すると、弾性散乱X線と液面測定に必要な散乱X線との分離が困難になるという不都合がある。また、X線の検出方向軸が照射軸に対し170°を超えた角度で交差すると、X線照射源と検出器の設置が重なるという不都合がある。
The shielding member 30 is located in the vertical direction of the liquid hydrogen container 10, and is provided, for example, in a direction perpendicular to the direction of X-ray irradiation. The shielding member 30 is made of a plate material of tantalum or tungsten, and has slits 31 provided at intervals of, for example, 1 mm. The interval between the slits 31 determines the resolution (about 1 mm) of liquid level measurement.
The semiconductor detector 32 detects the parallel beam of X-rays that has passed through the slit 31.
The calculation device 34 calculates the liquid level at the central axis based on the detected backscattered X-rays. The X-ray intensity monitor 36 visualizes the X-ray intensity detected by the semiconductor detector 32, and uses, for example, a bar graph display.
Note that when the shielding member 30 is provided in a direction perpendicular to the X-ray irradiation direction, the X-ray detection device is oriented so that the X-ray detection direction axis intersects the irradiation axis at 90 degrees. Become. However, the orthogonal directions are determined for convenience of installation work, and it is sufficient to install at an angle where the intensity of scattered X-rays is strong and detection is easy. For example, in the X-ray detection device, the shielding member 30 may be installed so that the X-ray detection direction axis intersects the irradiation axis at an angle of 30 to 165 degrees, and if possible, an angle of 10 to 170 degrees. The shielding members 30 may be installed so as to intersect with each other. If the X-ray detection direction axis intersects the irradiation axis at an angle of less than 10°, there is a disadvantage that it becomes difficult to separate the elastically scattered X-rays from the scattered X-rays necessary for liquid level measurement. Further, if the X-ray detection direction axis intersects the irradiation axis at an angle of more than 170°, there is a problem that the X-ray irradiation source and the detector are installed in the same direction.

このように構成された液面計の動作を次に説明する。
図2は、X線コンプトン散乱の説明図で、1個のX線光子が物質中の1個の電子に衝突し、散乱された場面を表している。コンプトン効果とは、光子のエネルギーが大きくて電子と衝突した後でも光子として残って散乱し、散乱X線の波長が入射X線の波長より長くなる現象である。照射されたX線の振動数をωi[Hz]、散乱X線の振動数をωf[Hz]、入射方向と散乱方向とのなす角(散乱角)をθ、電子の質量をm[kg]、衝突前の電子のポテンシャルエネルギーをVi[J]、散乱された電子のポテンシャルエネルギーをVf[J]、衝突前の電子の運動量をpi[kg・m/s]、散乱された電子の運動量をpf[kg・m/s]、プランク定数をh[J・s]とすると、次式で表される。
The operation of the liquid level gauge configured in this way will be explained next.
FIG. 2 is an explanatory diagram of X-ray Compton scattering, showing a scene in which one X-ray photon collides with one electron in a substance and is scattered. The Compton effect is a phenomenon in which a photon has so much energy that even after colliding with an electron, it remains as a photon and is scattered, making the wavelength of the scattered X-rays longer than the wavelength of the incident X-rays. The frequency of the irradiated X-rays is ωi [Hz], the frequency of the scattered X-rays is ωf [Hz], the angle between the incident direction and the scattering direction (scattering angle) is θ, and the mass of the electron is m [kg]. , the potential energy of the electron before collision is Vi [J], the potential energy of the scattered electron is Vf [J], the momentum of the electron before collision is pi [kg・m/s], the momentum of the scattered electron is When pf [kg·m/s] and Planck's constant are h [J·s], it is expressed by the following formula.

液体水素用タンク内の液体水素下の環境では、気体-液面境界面で水素分子密度が不連続的に変化することから、コンプトン散乱の特徴を生かして、水素貯蔵容器であるステンレス鋼や断熱材で囲まれた容器内の水素の液面位置を検出できる。入射X線と、反射X線の検出器の幾何学的配置は任意であり、状況に応じて適切な散乱角度(θ)を設定できる。入射X線装置・検出器ともに水素容器の外に設置されるため、入射・検出装置自体の水素脆化・低温脆化の問題は生じない。 In the liquid hydrogen environment inside a liquid hydrogen tank, the density of hydrogen molecules changes discontinuously at the gas-liquid interface. It is possible to detect the position of the hydrogen liquid level in a container surrounded by material. The geometrical arrangement of the detectors for incident X-rays and reflected X-rays is arbitrary, and an appropriate scattering angle (θ) can be set depending on the situation. Since both the incident X-ray device and the detector are installed outside the hydrogen container, there is no problem of hydrogen embrittlement or low-temperature embrittlement of the incident/detection device itself.

また、散乱X線を検出する半導体素子も既存の市販品を使えるため、測定コストは低い。液面の高さの検出精度は、検出器内部の素子やスリットの配置に依存するものの、1mm以下の精度も実現可能である。この精度は、現在用いられている寒剤容器の液面計の精度以上にできる。 Furthermore, since existing commercially available semiconductor elements for detecting scattered X-rays can be used, the measurement cost is low. The detection accuracy of the liquid level height depends on the arrangement of elements and slits inside the detector, but it is possible to achieve an accuracy of 1 mm or less. This accuracy is higher than that of the liquid level gauges currently used in cryogen containers.

次に、超伝導線を用いた方式と比較した、本発明の液面計の効果を列記する。
(1)容器内部にセンサー類を導入しないですみ、センサー類を介した熱流入、センサー類の水素脆化・低温脆化を防ぐことができる。
(2)X線コンプトン散乱によれば、液体水素用タンクの材料に用いられるステンレス鋼や断熱材を透過して、その内部にある液体水素の残留量を把握できる。
(3)容器外部から内部に向けて照射されたX線は、タンク内の水素中の電子により散乱される。その際の散乱強度は気相・液相で異なり、密度の大きな液相の散乱強度が強くなる。その強度の違いを気相・液相境界として液面位置の判定が精密にできる。
Next, the effects of the liquid level gauge of the present invention will be listed in comparison with a system using a superconducting wire.
(1) There is no need to introduce sensors inside the container, and it is possible to prevent heat inflow through the sensors and hydrogen embrittlement and low-temperature embrittlement of the sensors.
(2) According to X-ray Compton scattering, the amount of liquid hydrogen remaining inside can be determined by transmitting through the stainless steel and heat insulating materials used in liquid hydrogen tanks.
(3) X-rays irradiated from the outside of the container toward the inside are scattered by electrons in the hydrogen inside the tank. The scattering intensity at this time differs between the gas phase and the liquid phase, and the scattering intensity is stronger in the liquid phase, which has a higher density. The difference in strength can be used as the boundary between the gas and liquid phases to accurately determine the position of the liquid level.

水素などの軽元素では、同時に放出される蛍光X線に対して相対的にコンプトン散乱強度が強くなる。さらに、高エネルギーX線を用いるため透過性も高く、非破壊非接触で測定できることも大きな特徴である。 In light elements such as hydrogen, the Compton scattering intensity becomes stronger relative to the simultaneously emitted fluorescent X-rays. Furthermore, since it uses high-energy X-rays, it has high transparency, and its ability to perform non-destructive and non-contact measurements is also a major feature.

なお、上記の実施の形態では、液体水素用タンクを例に液体水素と水素ガスの境界面をX線コンプトン散乱を用いて検出する場合を説明しているが、本発明はこれに限定されるものではない。例えば、液体水素用タンクに代えて、液体ヘリウム用タンク、液体空気用タンク、液体窒素用タンク、若しくは他の寒剤保存用タンクに用いられ、X線検出装置によって、液体水素と水素ガスに代えて、液体ヘリウムとヘリウムガス、液体空気と空気、液体窒素と窒素ガス、若しくは他の寒剤で生ずる液体相とガス相の境界の検出に用いるものでもよい。 Note that in the above embodiment, a case has been described in which the interface between liquid hydrogen and hydrogen gas is detected using X-ray Compton scattering using a liquid hydrogen tank as an example, but the present invention is limited to this. It's not a thing. For example, instead of a liquid hydrogen tank, it can be used as a liquid helium tank, liquid air tank, liquid nitrogen tank, or other cryogen storage tank, and an X-ray detection device can replace liquid hydrogen and hydrogen gas. , liquid helium and helium gas, liquid air and air, liquid nitrogen and nitrogen gas, or other cryogens.

本発明の液面計によれば、クリーンエネルギーである水素の大量利用に対し、容器内の液体水素の容量について、X線コンプトン散乱法を用いている。X線コンプトン散乱法では、容器外部から内部に入射されたX線に対し、内部にある寒剤の液相・気相からの反射がそれぞれの密度の違いとして判別でき、その境界から液面の位置が判定できる。この方法では容器外部から計測のためのセンサー類などを、容器内部に導入する必要がない。
これは、従来型の延長といえる超伝導線を容器内部に導入した液面計などと比較し、熱流入の抑制、水素脆化・低温脆化の懸念がない、容器の大きさに依存しない、容器の構造が簡素化され、精密計測が可能、という利点を有する。
According to the liquid level gauge of the present invention, the X-ray Compton scattering method is used to determine the volume of liquid hydrogen in the container for the large-scale use of hydrogen, which is clean energy. In the X-ray Compton scattering method, the reflection from the liquid and gas phases of the cryogen inside the container can be determined as the difference in density of X-rays incident from outside the container into the inside, and the position of the liquid surface can be determined from the boundary. can be determined. With this method, there is no need to introduce sensors or the like into the container for measurement from outside the container.
Compared to liquid level gauges that introduce superconducting wires into the container, which can be considered an extension of conventional methods, this technology suppresses heat inflow, eliminates concerns about hydrogen embrittlement and low-temperature embrittlement, and is independent of the size of the container. This has the advantage that the structure of the container is simplified and precise measurement is possible.

10 液体水素容器(液体水素用タンク)
10a 液体水素容器外壁
10b 液体水素容器内壁
12 断熱層
14 水素ガス
16 液体水素
20 X線源(X線照射装置)
22 X線源上下駆動機構
30 遮蔽部材
31 スリット
32 半導体検出器(X線検出装置)
34 算出装置
36 X線強度モニタ

10 Liquid hydrogen container (liquid hydrogen tank)
10a Liquid hydrogen container outer wall 10b Liquid hydrogen container inner wall 12 Heat insulation layer 14 Hydrogen gas 16 Liquid hydrogen 20 X-ray source (X-ray irradiation device)
22 X-ray source vertical drive mechanism 30 Shielding member 31 Slit 32 Semiconductor detector (X-ray detection device)
34 Calculation device 36 X-ray intensity monitor

Claims (9)

液体水素用タンクの中心軸に向けて液面と平行な方向に所定のエネルギーのX線を照射するX線照射装置と、前記X線によって前記中心軸の近傍で生じた後方散乱X線を検出するX線検出装置と、前記後方散乱X線の一部を前記X線検出装置の手前で遮蔽する遮蔽部材と、検出した後方散乱X線に基づいて前記中心軸での液位を算出する算出装置とを備えた液面計であって、
前記X線照射装置を前記液体水素用タンクの上下方向に移動して、前記X線の照射軸の前記水素用タンクにおける高さを調整する上下方向駆動手段を有し、
前記遮蔽部材は、前記液体水素用タンクの上下方向に一定間隔で設けられたスリットを有し、前記スリットを通過したX線が前記X線検出装置に入射し、
前記X線検出装置は、後方散乱X線を検出すると共に、当該後方散乱X線のX線線量及びエネルギー量を測定し、
前記算出装置は、検出した後方散乱X線の特定のエネルギーにおけるX線線量に基づいて前記液体水素用タンクの液体水素と水素ガスの境界面の液位を求める液面計。
An X-ray irradiation device that irradiates X-rays of a predetermined energy in a direction parallel to the liquid surface toward the central axis of a liquid hydrogen tank, and detects backscattered X-rays generated near the central axis by the X-rays. a shielding member that shields a portion of the backscattered X-rays in front of the X-ray detector; and a calculation that calculates the liquid level at the central axis based on the detected backscattered X-rays. A liquid level gauge comprising a device,
comprising a vertical drive means for moving the X-ray irradiation device in the vertical direction of the liquid hydrogen tank to adjust the height of the X-ray irradiation axis in the hydrogen tank;
The shielding member has slits provided at regular intervals in the vertical direction of the liquid hydrogen tank, and the X-rays passing through the slits enter the X-ray detection device,
The X-ray detection device detects backscattered X-rays and measures the X-ray dose and energy amount of the backscattered X-rays,
The calculation device is a liquid level meter that calculates the liquid level at the interface between liquid hydrogen and hydrogen gas in the liquid hydrogen tank based on the X-ray dose at a specific energy of the detected backscattered X-rays.
前記算出装置は、前記中心軸の近傍と同等の材料よりなる試験体に向けて照射された前記所定のエネルギーのX線によって生じる後方散乱X線の特定のエネルギーにおけるX線線量と当該液体水素用タンク内での液体水素の既知の液位との関係を示す検量線データを有し、前記検出した後方散乱X線の特定のエネルギーにおけるX線線量と前記検量線データとに基づいて前記液位を求める請求項1記載の液面計。 The calculation device calculates the X-ray dose at a specific energy of backscattered X-rays generated by the X-rays of the predetermined energy irradiated toward the test specimen made of the same material as the vicinity of the central axis, and the amount of X-rays for the liquid hydrogen. It has calibration curve data showing a relationship with a known liquid level of liquid hydrogen in the tank, and the liquid level is determined based on the X-ray dose at a specific energy of the detected backscattered X-rays and the calibration curve data. 2. The liquid level gauge according to claim 1, wherein: 前記X線照射装置は、前記X線を照射するX線焦点の近傍に一端が取り付けられ他端が前記液体水素用タンクの壁面近傍に位置する遮蔽筒体と、前記遮蔽筒体の前記他端に設けられ且つ1カ所に開口を有するコリメーターとをさらに備える請求項1又は2記載の液面計。 The X-ray irradiation device includes a shielding cylinder whose one end is attached near the X-ray focal point for irradiating the X-rays and whose other end is located near the wall surface of the liquid hydrogen tank, and the other end of the shielding cylinder. 3. The liquid level gauge according to claim 1, further comprising a collimator provided in the liquid crystal display and having an opening at one location. 前記コリメーターは、前記液面と平行な方向に摺動可能であり、
前記X線検出装置は、前記コリメーターの摺動方向に直交する方向に移動可能であり、
前記算出装置は、前記中心軸の近傍の所定範囲における走査情報を生成する走査情報生成部を有する請求項3記載の液面計。
The collimator is slidable in a direction parallel to the liquid level,
The X-ray detection device is movable in a direction perpendicular to the sliding direction of the collimator,
4. The liquid level gauge according to claim 3, wherein the calculation device includes a scanning information generation section that generates scanning information in a predetermined range near the central axis.
前記X線は、前記液体水素用タンクの壁面近傍に入射する際のビーム直径が10mm以下である請求項1~4のいずれかに記載の液面計。 The liquid level gauge according to any one of claims 1 to 4, wherein the X-ray has a beam diameter of 10 mm or less when incident near the wall surface of the liquid hydrogen tank. 前記X線検出装置は、X線の検出方向軸が前記照射軸に対し30~165°で交差するように配向される請求項1~5のいずれかに記載の液面計。 6. The liquid level gauge according to claim 1, wherein the X-ray detection device is oriented such that the X-ray detection direction axis intersects the irradiation axis at an angle of 30 to 165 degrees. 前記液体水素用タンクに代えて、液体ヘリウム用タンク、液体空気用タンク、液体窒素用タンク、若しくは他の寒剤保存用タンクに用いられ、
X線検出装置は、液体水素と水素ガスに代えて、液体ヘリウムとヘリウムガス、液体空気と空気、液体窒素と窒素ガス、若しくは他の寒剤で生ずる液体相とガス相の境界の検出に用いられる、
請求項1~6のいずれかに記載の液面計。
Instead of the liquid hydrogen tank, it is used as a liquid helium tank, liquid air tank, liquid nitrogen tank, or other cryogen storage tank,
X-ray detection equipment is used to detect boundaries between liquid and gas phases that occur in liquid helium and helium gas, liquid air and air, liquid nitrogen and nitrogen gas, or other cryogens instead of liquid hydrogen and hydrogen gas. ,
The liquid level gauge according to any one of claims 1 to 6.
液体水素用タンクの液面近傍に向けて液面と平行な方向に所定のエネルギーのX線を照射するX線照射装置と、前記X線によって前記中心軸の近傍で生じた後方散乱X線を検出するX線検出装置と、前記後方散乱X線の一部を前記X線検出装置の手前で遮蔽する遮蔽部材と、検出した後方散乱X線に基づいて前記中心軸の近傍の液位を算出する算出装置とを備えた液面計を用いた液位測定方法であって、
前記遮蔽部材は、前記液体水素用タンクの上下方向に一定間隔で設けられたスリットを有し、前記スリットを通過したX線が前記X線検出装置に入射するように構成され、
前記X線照射装置を前記液体水素用タンクの上下方向に移動して、前記中心軸の近傍に向けてX線を照射し、
前記中心軸の近傍で生じた後方散乱X線を検出すると共に、当該後方散乱X線のX線線量及びエネルギー量を測定し、
検出した後方散乱X線の特定のエネルギーにおけるX線線量に基づいて前記液体水素用タンクの液体水素と水素ガスの境界面の液位を求める液位測定方法。
An X-ray irradiation device that irradiates X-rays with a predetermined energy in a direction parallel to the liquid surface near the liquid surface of a liquid hydrogen tank, and backscattered X-rays generated near the central axis by the X-rays. An X-ray detection device for detecting, a shielding member for shielding a portion of the backscattered X-rays in front of the X-ray detection device, and a liquid level near the central axis based on the detected backscattered X-rays. A liquid level measuring method using a liquid level gauge equipped with a calculating device,
The shielding member has slits provided at regular intervals in the vertical direction of the liquid hydrogen tank, and is configured such that X-rays passing through the slits enter the X-ray detection device,
moving the X-ray irradiation device in the vertical direction of the liquid hydrogen tank and irradiating X-rays toward the vicinity of the central axis;
Detecting backscattered X-rays generated near the central axis and measuring the X-ray dose and energy amount of the backscattered X-rays,
A liquid level measuring method for determining the liquid level at the interface between liquid hydrogen and hydrogen gas in the liquid hydrogen tank based on the X-ray dose at a specific energy of the detected backscattered X-rays.
前記液体水素用タンクに代えて、液体ヘリウム用タンク、液体空気用タンク、液体窒素用タンク、若しくは他の寒剤保存用タンクに用いられ、
前記X線検出装置は、液体水素と水素ガスに代えて、液体ヘリウムとヘリウムガス、液体空気と空気、液体窒素と窒素ガス、若しくは他の寒剤で生ずる液体相とガス相の境界の検出に用いられる、
請求項8に記載の液位測定方法。

Instead of the liquid hydrogen tank, it is used as a liquid helium tank, liquid air tank, liquid nitrogen tank, or other cryogen storage tank,
The X-ray detection device is used to detect boundaries between liquid and gas phases that occur in liquid helium and helium gas, liquid air and air, liquid nitrogen and nitrogen gas, or other cryogens instead of liquid hydrogen and hydrogen gas. be able to,
The liquid level measuring method according to claim 8.

JP2022100762A 2022-06-23 2022-06-23 Liquid level meter for liquid hydrogen and liquid level measurement method Pending JP2024001906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022100762A JP2024001906A (en) 2022-06-23 2022-06-23 Liquid level meter for liquid hydrogen and liquid level measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022100762A JP2024001906A (en) 2022-06-23 2022-06-23 Liquid level meter for liquid hydrogen and liquid level measurement method

Publications (1)

Publication Number Publication Date
JP2024001906A true JP2024001906A (en) 2024-01-11

Family

ID=89473111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022100762A Pending JP2024001906A (en) 2022-06-23 2022-06-23 Liquid level meter for liquid hydrogen and liquid level measurement method

Country Status (1)

Country Link
JP (1) JP2024001906A (en)

Similar Documents

Publication Publication Date Title
US8767912B1 (en) System for inspection and imaging of insulated pipes and vessels using backscattered radiation and X-ray fluorescence
US7492859B2 (en) Buildup-robust density, level and interface measurement with γ-backscattering
GB2420619A (en) Apparatus and method for examination of liquid containing articles
WO2006056132A1 (en) Security inspection method for liquid by radiation source and its device
EP1815484A2 (en) System and method for an interleaved spiral cone shaping collimation
JP2010501860A (en) Scattering tomography
EP2221847A2 (en) Compact multi-focus x-ray source, x-ray diffraction imaging system, and method for fabricating compact multi-focus x-ray source
WO2015097451A1 (en) Scanning method
US20060000287A1 (en) Apparatus for producing hydrogen
KR20190028524A (en) Inspection equipment and inspection method
JP2011027559A (en) Moisture measurement apparatus and moisture measurement method
JP2024001906A (en) Liquid level meter for liquid hydrogen and liquid level measurement method
JP2012047544A (en) Radioactivity measuring device
US9151722B2 (en) Systems for determining and imaging wax deposition and simultaneous corrosion and wax deposit determination in pipelines
JP2009128112A (en) Neutron diffracting device
US5099124A (en) Level detecting apparatus
US8976936B1 (en) Collimator for backscattered radiation imaging and method of using the same
US5300781A (en) Non-hydrogenous process level measurement
JP4763632B2 (en) Moisture measuring method and moisture measuring device
Connolly et al. Demonstration of a chamber for strain mapping of steel specimens under mechanical load in a hydrogen environment by synchrotron radiation
CN103901058A (en) Dual-optical path X-ray nondestructive testing device
KR101239770B1 (en) A liquid level meter using gamma rays
KR102495593B1 (en) Gamma ray measuring device and nondestructive inspection system
CN203025127U (en) Double-light-way X ray nondestructive testing device
US10031092B2 (en) System for determining and imaging wax deposition and corrosion in pipelines