JP2023551168A - 全マイクロ波zz制御 - Google Patents

全マイクロ波zz制御 Download PDF

Info

Publication number
JP2023551168A
JP2023551168A JP2023530243A JP2023530243A JP2023551168A JP 2023551168 A JP2023551168 A JP 2023551168A JP 2023530243 A JP2023530243 A JP 2023530243A JP 2023530243 A JP2023530243 A JP 2023530243A JP 2023551168 A JP2023551168 A JP 2023551168A
Authority
JP
Japan
Prior art keywords
qubit
qubits
resonant microwave
computer
resonant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023530243A
Other languages
English (en)
Other versions
JPWO2022117589A5 (ja
Inventor
マッカイ、デイヴィッド
カンダーラ、アブヒナヴ
ディアル、オリバー
ステファン、マティアス
ラウアー、アイザック
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of JP2023551168A publication Critical patent/JP2023551168A/ja
Publication of JPWO2022117589A5 publication Critical patent/JPWO2022117589A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/40Physical realisations or architectures of quantum processors or components for manipulating qubits, e.g. qubit coupling or qubit control

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Nonlinear Science (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

量子コンピューティング・デバイスのためのZZ相互作用の動的制御を容易にする技術。1つの例では、量子結合デバイスは、各第1および第2の駆動線を介して第1および第2の量子ビットに動作可能に結合されたバイアス・コンポーネントを備えることができる。バイアス・コンポーネントは、各第1および第2の駆動線を介して加えられた非共鳴マイクロ波信号を使用して、第1および第2の量子ビット間のZZ相互作用の動的制御を容易にすることができる。

Description

本開示は、量子コンピューティングに関連しており、より詳細には、量子コンピューティング・デバイスのためのZZ相互作用の動的制御を容易にする技術に関連している。
以下に、本発明の1つまたは複数の実施形態の基本的理解を可能にするための概要を示す。この概要は、主要な要素または重要な要素を特定するよう意図されておらず、特定の実施形態の範囲または特許請求の範囲を正確に説明するよう意図されていない。この概要の唯一の目的は、後で提示されるより詳細な説明のための前置きとして、概念を簡略化された形態で提示することである。本明細書に記載された1つまたは複数の実施形態では、量子コンピューティング・デバイスのためのZZ相互作用の動的制御を容易にするシステム、デバイス、コンピュータ実装方法、またはコンピュータ・プログラム製品、あるいはその組み合わせが説明される。
実施形態によれば、量子結合デバイスは、各第1および第2の駆動線を介して第1および第2の量子ビットに動作可能に結合されたバイアス・コンポーネントを備えることができる。バイアス・コンポーネントは、各第1および第2の駆動線を介して加えられた非共鳴マイクロ波信号を使用して、第1および第2の量子ビット間のZZ相互作用の動的制御を容易にすることができる。
別の実施形態によれば、コンピュータ実装方法は、プロセッサに動作可能に結合されたシステムによって、各第1および第2の駆動線を介して、バイアス・コンポーネントを第1および第2の量子ビットに動作可能に結合することを含むことができる。コンピュータ実装方法は、システムによって、バイアス・コンポーネントを使用して、各第1および第2の駆動線を介して加えられた非共鳴マイクロ波信号で、第1および第2の量子ビット間のZZ相互作用を動的に制御することをさらに含むことができる。
別の実施形態によれば、コンピュータ・プログラム製品は、プログラム命令が具現化されているコンピュータ可読ストレージ媒体を備えることができる。プログラム命令は、プロセッサに動作を実行させるために、プロセッサによって実行可能である。これらの動作は、プロセッサによって、各第1および第2の駆動線を介して、バイアス・コンポーネントを第1および第2の量子ビットに動作可能に結合することを含むことができる。これらの動作は、プロセッサによって、バイアス・コンポーネントを使用して、各第1および第2の駆動線を介して加えられた非共鳴マイクロ波信号で、第1および第2の量子ビット間のZZ相互作用の動的制御を容易にすることをさらに含むことができる。
本明細書に記載された1つまたは複数の実施形態に従って、量子コンピューティング・デバイスのためのZZ相互作用の動的制御を容易にすることができる例示的な非限定的デバイスのブロック図を示す図である。 本明細書に記載された1つまたは複数の実施形態に従って、非共鳴マイクロ波信号間の相対位相差およびラービ率(Rabi rate)に対してZZ結合を描く対数目盛り付きの例示的な非限定的グラフを示す図である。 本明細書に記載された1つまたは複数の実施形態に従って、時間の関数として非共鳴マイクロ波信号間の相対位相差を描く例示的な非限定的グラフを示す図である。 本明細書に記載された1つまたは複数の実施形態に従って、駆動位相およびラービ率に対する量子ビット周波数のシフトを描く例示的な非限定的グラフを示す図である。 本明細書に記載された1つまたは複数の実施形態に従って、駆動位相およびラービ率に対する量子ビット周波数のシフトを描く別の例示的な非限定的グラフを示す図である。 本明細書に記載された1つまたは複数の実施形態に従って、エコーπパルスを含む例示的な非限定的非共鳴マイクロ波信号を示す図である。 本明細書に記載された1つまたは複数の実施形態に従って、フレーム変更パルス(frame change pulses)を含む例示的な非限定的非共鳴マイクロ波信号を示す図である。 本明細書に記載された1つまたは複数の実施形態に従って、量子コンピューティング・デバイスのためのZZ相互作用の動的制御を容易にすることができる例示的な非限定的量子結合デバイスのブロック図を示す図である。 本明細書に記載された1つまたは複数の実施形態に従って、時間の関数として非共鳴マイクロ波信号間の相対位相差を描く例示的な非限定的グラフを示す図である。 本明細書に記載された1つまたは複数の実施形態に従って、非共鳴マイクロ波信号の周波数および非共鳴マイクロ波信号の振幅に対してZZ結合を描く対数目盛り付きの例示的な非限定的グラフを示す図である。 本明細書に記載された1つまたは複数の実施形態に従って、時間の関数として非共鳴マイクロ波信号の振幅を描く例示的な非限定的グラフを示す図である。 本明細書に記載された1つまたは複数の実施形態に従って、エコーπパルスを含む例示的な非限定的非共鳴マイクロ波信号を示す図である。 本明細書に記載された1つまたは複数の実施形態に従って、フレーム変更パルスを含む例示的な非限定的非共鳴マイクロ波信号を示す図である。 本明細書に記載された1つまたは複数の実施形態に従って、時間の関数として非共鳴マイクロ波信号の振幅を描く例示的な非限定的グラフを示す図である。 本明細書に記載された1つまたは複数の実施形態に従って、追加の非共鳴マイクロ波信号の振幅の関数としてZZ結合を描く例示的な非限定的グラフを示す図である。 本明細書に記載された1つまたは複数の実施形態に従って、量子コンピューティング・デバイスのためのZZ相互作用の動的制御を容易にする例示的な非限定的コンピュータ実装方法のフロー図を示す図である。 本明細書に記載された1つまたは複数の実施形態を容易にすることができる例示的な非限定的動作環境のブロック図を示す図である。
以下の詳細な説明は、例にすぎず、実施形態、または実施形態の適用もしくは使用、あるいはその両方を制限するよう意図されていない。さらに、先行する「技術分野」または「発明の概要」のセクション、あるいは「発明を実施するための形態」のセクションで提示された、いずれかの明示されたか、または暗示された情報によって制約されるという意図はない。
ここで、図面を参照して1つまたは複数の実施形態が説明され、図面全体を通じて、類似する参照番号が、類似する要素を参照するために使用されている。以下の説明では、説明の目的で、1つまたは複数の実施形態を十分に理解できるように、多数の特定の詳細が示されている。しかし、これらの特定の詳細がなくても、さまざまな事例において、1つまたは複数の実施形態が実践され得るということは明らかである。
古典的コンピュータは、情報を2進状態として格納するか、または表す2進数(またはビット)に対して動作し、計算および情報処理機能を実行する。これに対して、量子コンピューティング・デバイスは、情報を2進状態および2進状態の重ね合わせの両方として格納するか、または表す量子ビット(quantum bits)(または量子ビット(qubits))に対して動作する。そのため、量子コンピューティング・デバイスは、もつれおよび干渉などの量子力学的現象を利用する。
量子計算は、古典的な計算ビットの代わりに、量子ビットを基本単位として使用する。量子ビット(例えば、量子2進数)は、古典的ビットの量子力学的類似物である。古典的ビットは、2つの基礎状態(例えば、0または1)のうちの1つのみであり得るが、量子ビットは、これらの基礎状態の重ね合わせ(例えば、α|0>+β|1>、αおよびβは、|α|+|β|=1となるような複素スカラーである)であり得る。複数の量子ビットが、同時に指数関数的に大きい数の状態になることができるが、量子ビットの状態が測定された場合、結果は0または1のいずれかになる。量子コンピュータの動作中に、量子ビットの状態は、ゲートとして知られている動作によって変換される。それらの動作中に、状態(すなわち、αおよびβ)の前に、係数の建設的または脱建設的あるいはその両方の干渉が存在することができる。この重ね合わせおよび干渉の二重の特性は、量子コンピュータ(例えば、古典的ビットのみではなく量子ビットを採用するコンピュータ)が、理論的には、古典的コンピュータ上よりも素早く特定の問題を解くことを可能にする。一般的な量子プログラムは、計算の量子力学的部分と古典的部分の調整を必要とする。
特に示されない限り、以下の定義が本開示全体を通じて使用される。「量子ビット」は、二準位量子系を示す。「CR」は、交差共鳴ゲートを示す。「非調和性」(α)は、第2および第1の励起状態のエネルギー・レベル間の差および量子ビットの遷移(例えば、最低の2つのエネルギー・レベル)を示す。「共鳴状態」は、駆動磁場が、量子系における遷移周波数と同じ周波数にある場合を指す。「ハミルトニアン」は、量子演算に関して表された量子系のエネルギーを示す。「シュタルク・シフト」は、非共鳴駆動磁場に起因する量子系のエネルギー・レベルにおけるシフトを示す。「シュタルク駆動」は、ACシュタルク・シフトを引き起こす非共鳴駆動を示す。「ZZ」は、2つの量子ビットが励起されるときの、状態のエネルギーにおけるシフトを示す。「ゲート」は、量子状態を変換する量子系に対する動作を示す。「単一量子ビット・ゲート」は、単一の量子ビットの状態を(例えば、通常はマイクロ波駆動を使用して)変換するゲートを示す。「2量子ビット・ゲート」は、2つの量子ビットの結合状態を変換するゲートを示し、2つの量子ビット間の相互作用の何らかの形態を伴う。
量子コンピューティング・デバイスにおいて実装される1つの一般的な種類の量子回路は、固定された結合を伴う固定周波数トランズモン量子ビットを備える。そのような量子回路の各量子ビットは、その量子ビットをバイアス・コンポーネントに動作可能に結合するマイクロ波駆動線を含むことができる。実施形態では、そのような量子回路のハミルトニアンは、方程式1によって定義されたハミルトニアンを使用して近似され得る。
Figure 2023551168000002

方程式1
上の方程式1に従って、ωはトランズモンiの量子ビット周波数(例えば、最低の2つのレベル間のエネルギー分裂)を示し、αはトランズモンiの非調和性(例えば、第1および第2のエネルギー・レベル間のエネルギー分裂とωの間の差)を示し、
Figure 2023551168000003

はトランズモンiの個数演算子を示し、Ωd,iはトランズモンiでのマイクロ波駆動の強度を示し、φd,iは量子ビットiでの駆動位相を示し、
Figure 2023551168000004

はトランズモンiの生成演算子を示し、
Figure 2023551168000005

は量子ビットiの消滅演算子を示し、ωd,iはトランズモンiでのマイクロ波駆動周波数を示し、Jは量子ビット間の交換結合を示し、tは時間を示す。実施形態では、方程式1はダフィング振動子近似(duffing oscillator approximation)であることができる。方程式1によって定義されたハミルトニアンは、量子ビット周波数の項、非調和性の項、駆動の項、および量子ビット間を結合することに関連している結合の項を含む。方程式1では、量子ビット周波数の項は
Figure 2023551168000006

に対応し、非調和性の項は
Figure 2023551168000007

に対応し、駆動の項は
Figure 2023551168000008

に対応し、結合の項は
Figure 2023551168000009

に対応する。
場合によっては、「共鳴状態」の駆動信号(例えば、ωd,i=ω)の印加が単一量子ビット・ゲートを容易にすることができる。すなわち、「共鳴状態」の駆動信号を加えることによって、特定の量子ビットの状態の操作を容易にすることができる。例えば、特定の量子ビットは、基底状態|0>と励起状態|1>の間で変調することができる。場合によっては、隣接する量子ビットと共鳴する駆動信号を加えることによって、交差共鳴が実行され得る。例えば、ωd,0=ωまたはこの逆の場合に、交差共鳴が実行され得る。そのような交差共鳴を実行することによって、2量子ビット・ゲートを実行するための全マイクロ波の方法を容易にすることができる。
場合によっては、「遠共鳴駆動(far off-resonance drive)」(例えば、|ωd,iーω|>>Ω)の適用は、「シュタルク・シフト」を引き起こすことができる。すなわち、遠共鳴駆動の適用は、量子ビットのエネルギーにおけるシフトを引き起こすことができる。実施形態では、遠共鳴駆動の適用によって引き起こされる量子ビットのエネルギーにおけるシフトは、方程式2によって定義された関係を使用して近似され得る。
Figure 2023551168000010

方程式2
上の方程式2に従って、ωi,Starkは非共鳴駆動の適用後の量子ビットのエネルギーを示し、Δは量子ビット周波数からの非共鳴駆動のデチューンを示し、Ωは非共鳴駆動の強度を示す。方程式1によって定義された固定結合ハミルトニアン(fixed coupling Hamiltonian)の形態の1つの特徴は、「装飾されたフレーム(dressed frame)」(例えば、結合の項を考慮するためにハミルトニアンを対角化した後のフレーム)内に、残余の不要なZZ結合が存在する可能性があるということである。実施形態では、残余の不要なZZ結合は、方程式3によって定義された式を使用して近似され得る。
Figure 2023551168000011

方程式3
量子ビット間のZZ結合は、単一のシュタルク駆動の適用によって調整されることが可能であり、場合によっては、シュタルク駆動は、そのようなZZ相互作用を取り消すために使用され得る。さらに、シュタルク誘起されたZZ結合は、二重のシュタルク駆動を使用して、両方の量子ビットを同じ周波数で同時に駆動することによって、実施され得る。実施形態では、ZZ結合は、方程式4によって定義された式を使用して、高電力制限内で近似され得る。
Figure 2023551168000012

方程式4
方程式4は、シュタルクによるZZ活性化(ZZ activation)が、デチューンに対する駆動電力の比率によって効果的に設定され得るということを示している。方程式4は、シュタルクが駆動トーン間の相対位相の関数であることができ、結合に比例することもできるということをさらに示している。これが、より高いトランズモン・レベルの共鳴効果ではないということに注意する。
簡単でない量子コンピューティング・デバイスの1つの要素は、隣接する量子ビット間の情報交換を容易にする2量子ビット・ゲートとして知られている結合要素である。場合によっては、そのような2量子ビット・ゲートを実装するために、交差共鳴手法が使用された。しかし、交差共鳴ゲートを実装する量子コンピューティング・デバイスは、製造制約およびゲート忠実度の両方に関して、さまざまな課題に遭遇する可能性がある。
例として、実行可能な交差共鳴ゲートは、通常、周波数が(例えば、非調和性の範囲内で)相対的に近いが、実際には重複していない隣接する量子ビットを含む。いずれかの共鳴条件が満たされた場合(例えば、隣接する量子ビットが同じ共振周波数を有する場合)、周波数衝突が発生し、通常は量子回路が動作不可能になる。これは、特定の交差共鳴ゲートに結合された各量子ビットの周波数に対する特に厳しい要件を表している。別の例として、方程式3において説明されたZZ結合(常に有効なZZ相互作用)は、回路の性能を低下させ得る不要な2量子ビット結合を引き起こす可能性がある。
図1は、本明細書に記載された1つまたは複数の実施形態に従って、量子コンピューティング・デバイスのためのZZ相互作用の動的制御を容易にすることができる例示的な非限定的量子結合デバイス100のブロック図を示している。図1に示された実施形態例によって例示されているように、デバイス100は、バイアス・コンポーネント110、第1の量子ビット120、および第2の量子ビット130を含む。第1の量子ビット120および第2の量子ビット130は、それぞれ第1の駆動線125および第2の駆動線135を介して、バイアス・コンポーネント110に動作可能に結合される。第1の量子ビット120または第2の量子ビット130あるいはその両方を実装するのに適している量子ビットの例としては、固定周波数量子ビット、調整可能な量子ビット、トランズモン量子ビット、固定周波数トランズモン量子ビット、調整可能なトランズモン量子ビットなどが挙げられるが、これらに限定されない。実施形態では、第1の量子ビット120または第2の量子ビット130あるいはその両方は、固定周波数の調整不可能な量子ビットであることができる。下でさらに詳細に説明されるように、バイアス・コンポーネント110は、各駆動線(例えば、第1の駆動線125または第2の駆動線135あるいはその両方)を介して加えられた非共鳴マイクロ波信号を使用して、量子ビット(例えば、第1の量子ビット120または第2の量子ビット130あるいはその両方)間のZZ相互作用の動的制御を容易にすることができる。そのような非共鳴マイクロ波信号の特徴を変更することによって、バイアス・コンポーネント110の実施形態は、第1の量子ビット120と第2の量子ビット130の間の調整可能な結合140を提供することができる。
図2~3は、非共鳴マイクロ波信号間の相対位相差を動的に調整することによって、バイアス・コンポーネント110が第1の量子ビット120と第2の量子ビット130の間のZZ相互作用の動的制御を容易にすることができる実施形態を示している。図2~3によって示されている実施形態例では、バイアス・コンポーネント110は、非共鳴マイクロ波信号を、定電力値で第1の量子ビット120および第2の量子ビット130に加えることができる。この実施形態では、第1の量子ビット120および第2の量子ビット130は、4900メガヘルツ(MHz)および5300MHzの共振周波数をそれぞれ有することができる。この実施形態では、第1の量子ビット120および第2の量子ビット130は、3MHzの交換結合強度Jを有する。非共鳴マイクロ波信号は、第1の駆動線125を介して第1の量子ビット120に加えられる第1の非共鳴マイクロ波信号、および第2の駆動線135を介して第2の量子ビット130に加えられる第2の非共鳴マイクロ波信号を含むことができる。実施形態では、第1および第2の非共鳴マイクロ波信号は、第1の量子ビット120および第2の量子ビット130の各共振周波数によって定義された周波数値を有することができる。例えば、図2~3では、第1および第2の非共鳴マイクロ波信号の周波数値は5100MHzである。実施形態では、第1および第2の非共鳴マイクロ波信号は、等しい振幅値を有することができる。例えば、図2~3では、第1および第2の非共鳴マイクロ波信号の各振幅値は等しい。実施形態では、共通の発生源が、第1および第2の非共鳴マイクロ波信号を生成することができる。例えば、バイアス・コンポーネント110は、第1および第2の非共鳴マイクロ波信号を生成するマイクロ波源を備えることができる。
グラフ200のY軸(例えば、グラフ200の縦軸)は、バイアス・コンポーネント110が第1の量子ビット120および第2の量子ビット130に加える非共鳴マイクロ波信号間の相対位相差を表している。グラフ200によって示されているように、第1の量子ビット120と第2の量子ビット130の間のZZ結合は、方程式4と一致する非共鳴マイクロ波信号間の相対位相差に基づいて変化することができる。例えば、グラフ200は、第1の量子ビット120と第2の量子ビット130の間のZZ結合が実質的にゼロになることができる低いZZ結合点210を含む。グラフ200は、低いZZ結合点210での非共鳴マイクロ波信号間の相対位相差が、約1.7ラジアンであることを示している。グラフ200は、第1の量子ビット120と第2の量子ビット130の間のZZ結合が約1.5メガヘルツ(MHz)である高いZZ結合点220をさらに含む。グラフ200は、高いZZ結合点220での非共鳴マイクロ波信号間の相対位相差が、約3.0ラジアンであることを示している。
図3は、本明細書に記載された1つまたは複数の実施形態に従って、時間の関数として非共鳴マイクロ波信号間の相対位相差を描く例示的な非限定的グラフ300を示している。グラフ300によって示されているように、バイアス・コンポーネント110は、相対位相差を動的に調整する(または制御する)ことによって、第1の量子ビット120と第2の量子ビット130の間のZZ結合140の動的制御を容易にすることができる。例えば、バイアス・コンポーネント110は、第1の期間310の間に、約1.7ラジアンの相対位相差で、定電力値で非共鳴マイクロ波信号を第1の量子ビット120および第2の量子ビット130に加えて、第1の量子ビット120と第2の量子ビット130の間のZZ相互作用を取り消すことができる。この例では、第1の量子ビット120と第2の量子ビット130の間のZZ相互作用を引き起こすために、バイアス・コンポーネント110は、第2の期間320の間に、非共鳴マイクロ波信号間の相対位相差を約1.7ラジアンから約3.0ラジアンに動的に調整することができる。第3の期間330の間に、第1の量子ビット120と第2の量子ビット130の間のZZ結合140が、望ましくないことがある。そのため、バイアス・コンポーネント110は、第3の期間330の間に、非共鳴マイクロ波信号間の相対位相差を約3.0ラジアンから約1.7ラジアンに動的に調整することができる。
図4~5は、本明細書に記載された1つまたは複数の実施形態に従って、非共鳴マイクロ波信号間の相対位相差および両方の信号のラービ率に対して量子ビット周波数シフト(例えば、シュタルク周波数シフト(Stark frequency shift))を描く例示的な非限定的グラフを示している。具体的には、例示的な非限定的グラフ400は、第1の量子ビット120の量子ビット周波数シフトを示しており、例示的な非限定的グラフ500は、第2の量子ビット130の量子ビット周波数シフトを示している。グラフ400および500によって示されているように、第1の量子ビット120および第2の量子ビット130の各量子ビット周波数における任意のシフトは、バイアス・コンポーネント110が非共鳴マイクロ波信号間の相対位相差を動的に調整するため、最小になることができる。
実施形態では、図6~7に示されているように、エコーπパルスまたはフレーム変更パルスを非共鳴マイクロ波信号に対応するパルス・シーケンスに導入することによって、相対位相差のその動的調整から生じるすべての単一量子ビットZエラー(single qubit Z errors)が修正され得る。図6~7は、エコーπパルスおよびフレーム変更パルスを含む例示的な非限定的パルス・シーケンスをそれぞれ示している。具体的には、図6は、第1のパルス・シーケンス600および第2のパルス・シーケンス650を示している。第1のパルス・シーケンス600は、バイアス・コンポーネント110が第1の駆動線125を介して第1の量子ビット120に加えることができる第1の非共鳴マイクロ波信号に対応する。第2のパルス・シーケンス650は、バイアス・コンポーネント110が第2の駆動線135を介して第2の量子ビット130に加えることができる第2の非共鳴マイクロ波信号に対応する。
図3を参照すると、パルス602および652は、バイアス・コンポーネント110が第1の量子ビット120と第2の量子ビット130の間のZZ相互作用を取り消すために第1の期間310の間に加えることができる非共鳴マイクロ波信号に対応する。パルス610および660は、バイアス・コンポーネント110が第1の量子ビット120と第2の量子ビット130の間のZZ相互作用を取り消すために第3の期間330の間に加えることができる非共鳴マイクロ波信号に対応する。パルス604および608は、バイアス・コンポーネント110が第1の量子ビット120と第2の量子ビット130の間のZZ相互作用を引き起こすために第2の期間320の間に第1の量子ビット120に加えることができる第1の非共鳴マイクロ波信号に集合的に対応する。同様に、パルス654および658は、バイアス・コンポーネント110が第2の期間320の間に第2の量子ビット130に加えることができる第2の非共鳴マイクロ波信号に集合的に対応する。
相対位相差の動的調整から生じるすべての単一量子ビットZエラー(例えば、ZI相互作用(ZI interactions)、IZ相互作用(IZ interactions)、または量子ビット・シュタルク・シフト(qubit Stark shift)、あるいはその組み合わせ)を修正するために、バイアス・コンポーネント110は、エコーπパルスを非共鳴マイクロ波パルス(off-resonant microwave pulses)に導入することができる。例えば、バイアス・コンポーネント110は、図6によって示されているように、パルス604および608を2つの分離したパルスに分割することができる。バイアス・コンポーネント110は、エコーπパルス606がパルス604とパルス608の間に介在するように、エコーπパルス606を第1の非共鳴マイクロ波信号に導入することもできる。別の例として、バイアス・コンポーネント110は、図6によって示されているように、パルス654および658を2つの分離したパルスに分割することができる。バイアス・コンポーネント110は、エコーπパルス656がパルス654とパルス658の間に介在するように、エコーπパルス656を第2の非共鳴マイクロ波信号に導入することもできる。
図7は、第1のパルス・シーケンス700および第2のパルス・シーケンス750を示している。第1のパルス・シーケンス700は、バイアス・コンポーネント110が第1の駆動線125を介して第1の量子ビット120に加えることができる第1の非共鳴マイクロ波信号に対応する。第2のパルス・シーケンス750は、バイアス・コンポーネント110が第2の駆動線135を介して第2の量子ビット130に加えることができる第2の非共鳴マイクロ波信号に対応する。
図3を参照すると、パルス702および752は、バイアス・コンポーネント110が第1の量子ビット120と第2の量子ビット130の間のZZ相互作用を取り消すために第1の期間310の間に加えることができる非共鳴マイクロ波信号に対応する。パルス708および758は、バイアス・コンポーネント110が第1の量子ビット120と第2の量子ビット130の間のZZ相互作用を取り消すために第3の期間330の間に加えることができる非共鳴マイクロ波信号に対応する。パルス704および754は、バイアス・コンポーネント110が第1の量子ビット120と第2の量子ビット130の間のZZ相互作用を引き起こすために第2の期間320の間に加えることができる第1および第2の非共鳴マイクロ波信号にそれぞれ対応する。
相対位相差の動的調整から生じるすべての単一量子ビットZエラー(例えば、ZI相互作用、IZ相互作用、または量子ビット・シュタルク・シフト、あるいはその組み合わせ)を修正するために、バイアス・コンポーネント110は、フレーム変更パルスを非共鳴マイクロ波パルスに導入することができる。例えば、バイアス・コンポーネント110は、フレーム変更パルス706がパルス704とパルス708の間に介在するように、フレーム変更パルス706を第1の非共鳴マイクロ波信号に導入することができる。別の例として、バイアス・コンポーネント110は、フレーム変更パルス756がパルス754とパルス758の間に介在するように、フレーム変更パルス756を第2の非共鳴マイクロ波信号に導入することができる。
図8は、本明細書に記載された1つまたは複数の実施形態に従って、量子コンピューティング・デバイスのためのZZ相互作用の動的制御を容易にすることができる例示的な非限定的量子結合デバイス800のブロック図を示している。図8に示された実施形態例によって例示されているように、デバイス800は、量子ビットの格子に動作可能に結合されたバイアス・コンポーネント110を含む。図8では、量子ビットの格子は、第1の量子ビット120、第2の量子ビット130、第3の量子ビット850、および第4の量子ビット870を含む。第1の量子ビット120、第2の量子ビット130、第3の量子ビット850、および第4の量子ビット870は、それぞれ第1の駆動線125、第2の駆動線135、第3の駆動線855、および第4の駆動線875を介して、バイアス・コンポーネント110に動作可能に結合される。第1の量子ビット120、第2の量子ビット130、第3の量子ビット850、または第4の量子ビット870、あるいはその組み合わせを実装するのに適している量子ビットの例としては、固定周波数量子ビット、調整可能な量子ビット、トランズモン量子ビット、固定周波数トランズモン量子ビット、調整可能なトランズモン量子ビットなどが挙げられるが、これらに限定されない。実施形態では、第1の量子ビット120、第2の量子ビット130、第3の量子ビット850、または第4の量子ビット870、あるいはその組み合わせは、固定周波数の調整不可能な量子ビットであることができる。下でさらに詳細に説明されるように、バイアス・コンポーネント110は、各駆動線を介して加えられた非共鳴マイクロ波信号を使用して、格子内の量子ビット間のZZ相互作用の動的制御を容易にすることができる。特に、バイアス・コンポーネント110は、各駆動線を介して加えられた非共鳴マイクロ波信号を使用して、格子内の選択された量子ビットの対の間の対でのZZ相互作用の動的制御を容易にすることができる。
第1の量子ビット120および第2の量子ビット130が、第3の量子ビット(例えば、第3の量子ビット850)を含む量子ビットの格子を備える実施形態では、バイアス・コンポーネント110を使用して第1および第2の量子ビット間のZZ相互作用の動的制御を容易にすることが、格子内の選択された量子ビットの対の間の対でのZZ相互作用を連続的に適用し、量子アルゴリズムを実行することを含む。第1の量子ビット120および第2の量子ビット130が、第3の量子ビット(例えば、第3の量子ビット850)を含む量子ビットの格子を備える実施形態では、バイアス・コンポーネント110を使用して第1および第2の量子ビット間のZZ相互作用の動的制御を容易にすることが、格子内の選択された量子ビットの対の間の対でのZZ相互作用を適用し、断熱量子コンピューティングを実行することを含む。
図9は、本明細書に記載された1つまたは複数の実施形態に従って、時間の関数として非共鳴マイクロ波信号間の相対位相差を描く例示的な非限定的グラフ900を示している。グラフ900は、バイアス・コンポーネント110が、非共鳴マイクロ波信号の相対位相差を動的に調整する(または制御する)ことによって、図8に示された量子ビットの格子内の選択された量子ビットの対の間の対でのZZ相互作用の動的制御を容易にすることができることを示している。図9によって示された例では、バイアス・コンポーネント110は、第1の期間910の間に、格子内の量子ビットの各対の間のZZ相互作用を取り消すことができる。
そのため、バイアス・コンポーネントは、低いZZ結合点(例えば、図2の低いZZ結合点210)にそれぞれ対応する各位相差で、各駆動線を介して非共鳴マイクロ波信号を加えることができる。実施形態では、非共鳴マイクロ波信号は、定電力値を含む。グラフ900によって示されているように、第1の期間910の間に加えられる各非共鳴マイクロ波信号の間に、位相差が存在する。例えば、第1の駆動線125を介して第1の量子ビット120に加えられる第1の非共鳴マイクロ波信号902と、第3の駆動線855を介して第3の量子ビット850に加えられる第3の非共鳴マイクロ波信号904の間に、位相差が存在する。別の例として、第2の駆動線135を介して第2の量子ビット130に加えられる第2の非共鳴マイクロ波信号906と、第4の駆動線875を介して第4の量子ビット870に加えられる第4の非共鳴マイクロ波信号908の間に、位相差が存在する。
第2の期間920の間に、第1の量子ビット120と第3の量子ビット850の間のZZ結合860が、望ましいことがある。そのため、バイアス・コンポーネント110は、第1の量子ビット120と第3の量子ビット850の間のZZ相互作用を引き起こすように、第2の期間920の間に、第1の非共鳴マイクロ波信号902と第3の非共鳴マイクロ波信号904の間の相対位相差を動的に調整することができる。バイアス・コンポーネント110は、第2の期間920の間に、第1の非共鳴マイクロ波信号902と第3の非共鳴マイクロ波信号904の間の相対位相差のみが変化するように、他の各位相差を維持することによって、格子内の他の量子ビット間のZZ相互作用を抑制することができる。例えば、バイアス・コンポーネント110は、第1の非共鳴マイクロ波信号902と第2の非共鳴マイクロ波信号906の間の相対位相差を維持することによって、第2の期間920の間に第1の量子ビット120と第2の量子ビット130の間のZZ相互作用を抑制することができる。
第3の期間930の間に、第1の量子ビット120と第4の量子ビット870の間のZZ結合880が、望ましいことがある。そのため、バイアス・コンポーネント110は、第1の量子ビット120と第4の量子ビット870の間のZZ相互作用を引き起こすように、第3の期間930の間に、第1の非共鳴マイクロ波信号902と第4の非共鳴マイクロ波信号908の間の相対位相差を動的に調整することができる。バイアス・コンポーネント110は、第3の期間930の間に、第1の非共鳴マイクロ波信号902と第4の非共鳴マイクロ波信号908の間の相対位相差のみが変化するように、他の各位相差を維持することによって、格子内の他の量子ビット間のZZ相互作用を抑制することができる。例えば、バイアス・コンポーネント110は、第1の期間910の間に存在していた第1の非共鳴マイクロ波信号902と第3の非共鳴マイクロ波信号904の間の相対位相差に戻すことによって、第3の期間930の間に第1の量子ビット120と第3の量子ビット850の間のZZ相互作用を抑制することができる。
第4の期間940の間に、格子のいずれかの量子ビット間のZZ結合が、望ましくないことがある。そのため、バイアス・コンポーネント110は、第1の期間910の間に各非共鳴マイクロ波信号間に存在していた相対位相差が戻るように、第4の期間の間に非共鳴マイクロ波信号の相対位相差を動的に調整することができる。
実施形態では、図9に関して上で説明された例における量子結合デバイス800のハミルトニアンは、方程式5によって定義されたハミルトニアンを使用して近似され得る。
Figure 2023551168000013

方程式5
上の方程式5に従って、ξijは量子ビットiとjの間の時間依存性のZZ結合強度を示し、
Figure 2023551168000014

は量子ビットiのパウリZ演算子を示し、
Figure 2023551168000015

は量子ビットjのパウリZ演算子を示す。このハミルトニアンは、バイアス・コンポーネント110によって制御されるときに、量子ビットの格子に関して、ZZ結合が時間においてどのように変化しているかの式であることができる。
図10~11は、非共鳴マイクロ波信号間のうちの少なくとも1つの振幅(または駆動電力)を動的に調整することによって、図1のバイアス・コンポーネント110が第1の量子ビット120と第2の量子ビット130の間のZZ相互作用の動的制御を容易にすることができる実施形態を示している。この実施形態では、第1の量子ビット120および第2の量子ビット130は、4900MHzおよび5300MHzの共振周波数をそれぞれ有することができる。この実施形態では、第1の量子ビット120および第2の量子ビット130は、3MHzの交換結合強度Jを有する。非共鳴マイクロ波信号は、第1の駆動線125を介して第1の量子ビット120に加えられる第1の非共鳴マイクロ波信号、および第2の駆動線135を介して第2の量子ビット130に加えられる第2の非共鳴マイクロ波信号を含むことができる。実施形態では、第1および第2の非共鳴マイクロ波信号は、第1の量子ビット120および第2の量子ビット130の各共振周波数によって定義される周波数値を有することができる。例えば、図10~11では、第1および第2の非共鳴マイクロ波信号の周波数値は5100MHzである。実施形態では、第1および第2の非共鳴マイクロ波信号は、等しい振幅値を有することができる。例えば、図10~11では、第1および第2の非共鳴マイクロ波信号の各振幅値は等しい。実施形態では、第1および第2の非共鳴マイクロ波信号間の位相差が固定され得る。例えば、図10~11では、第1および第2の非共鳴マイクロ波信号間の位相差は、πラジアンに固定されている。実施形態では、共通の発生源が、第1および第2の非共鳴マイクロ波信号を生成することができる。例えば、バイアス・コンポーネント110は、第1および第2の非共鳴マイクロ波信号を生成するマイクロ波源を備えることができる。
グラフ1000のX軸(例えば、グラフ1000の横軸)は、バイアス・コンポーネント110が第1の量子ビット120および第2の量子ビット130に加える非共鳴マイクロ波信号の振幅(または駆動電力)と一致する。グラフ1000によって示されているように、第1の量子ビット120と第2の量子ビット130の間のZZ結合は、非共鳴マイクロ波信号の振幅に基づいて変化することができる。例えば、グラフ1000は、第1の量子ビット120と第2の量子ビット130の間のZZ結合が実質的にゼロになることができる低いZZ結合点1010を含む。グラフ1000は、低いZZ結合点1010での非共鳴マイクロ波信号の振幅が、約25MHzであることを示している。グラフ1000は、第1の量子ビット120と第2の量子ビット130の間のZZ結合が約1.5MHzである高いZZ結合点1020をさらに含む。グラフ200は、高いZZ結合点1020での非共鳴マイクロ波信号の振幅が、約95MHzであることを示している。
図11は、本明細書に記載された1つまたは複数の実施形態に従って、時間の関数として非共鳴マイクロ波信号の振幅を描く例示的な非限定的グラフ1100を示している。グラフ1100によって示されているように、バイアス・コンポーネント110は、非共鳴マイクロ波信号の振幅を動的に調整する(または制御する)ことによって、第1の量子ビット120と第2の量子ビット130の間のZZ結合140の動的制御を容易にすることができる。例えば、バイアス・コンポーネント110は、第1の期間1110の間に、約25MHzの振幅で非共鳴マイクロ波信号を第1の量子ビット120および第2の量子ビット130に加えて、第1の量子ビット120と第2の量子ビット130の間のZZ相互作用を取り消すことができる。この例では、第1の量子ビット120と第2の量子ビット130の間のZZ相互作用を引き起こすために、バイアス・コンポーネント110は、第2の期間1120の間に、非共鳴マイクロ波信号の振幅を約25MHzから約95MHzに動的に調整することができる。第3の期間1130の間に、第1の量子ビット120と第2の量子ビット130の間のZZ結合140が、望ましくないことがある。そのため、バイアス・コンポーネント110は、第3の期間1130の間に、非共鳴マイクロ波信号の振幅を約95MHzから約25MHzに動的に調整することができる。
実施形態では、図12~13に示されているように、エコーπパルスまたはフレーム変更パルスを非共鳴マイクロ波信号に対応するパルス・シーケンスに導入することによって、非共鳴マイクロ波信号の振幅のその動的調整から生じるすべての単一量子ビットZエラーが修正され得る。図12~13は、エコーπパルスおよびフレーム変更パルスを含む例示的な非限定的パルス・シーケンスをそれぞれ示している。具体的には、図12は、第1のパルス・シーケンス1200および第2のパルス・シーケンス1250を示している。第1のパルス・シーケンス1200は、バイアス・コンポーネント110が第1の駆動線125を介して第1の量子ビット120に加えることができる第1の非共鳴マイクロ波信号に対応する。第2のパルス・シーケンス1250は、バイアス・コンポーネント110が第2の駆動線135を介して第2の量子ビット130に加えることができる第2の非共鳴マイクロ波信号に対応する。
図11を参照すると、パルス1202および1206は、バイアス・コンポーネント110が第1の量子ビット120と第2の量子ビット130の間のZZ相互作用を引き起こすために第2の期間1120の間に第1の量子ビット120に加えることができる第1の非共鳴マイクロ波信号に集合的に対応する。同様に、パルス1252および1256は、バイアス・コンポーネント110が第2の期間1120の間に第2の量子ビット130に加えることができる第2の非共鳴マイクロ波信号に集合的に対応する。
非共鳴マイクロ波信号の振幅の動的調整から生じるすべての単一量子ビットZエラー(例えば、ZI相互作用、IZ相互作用、または量子ビット・シュタルク・シフト、あるいはその組み合わせ)を修正するために、バイアス・コンポーネント110は、エコーπパルスを非共鳴マイクロ波パルスに導入することができる。例えば、バイアス・コンポーネント110は、図12によって示されているように、パルス1202および1206を2つの分離したパルスに分割することができる。バイアス・コンポーネント110は、エコーπパルス1204がパルス1202とパルス1206の間に介在するように、エコーπパルス1204を第1の非共鳴マイクロ波信号に導入することもできる。別の例として、バイアス・コンポーネント110は、図12によって示されているように、パルス1252および1256を2つの分離したパルスに分割することができる。バイアス・コンポーネント110は、エコーπパルス1254がパルス1252とパルス1256の間に介在するように、エコーπパルス1254を第2の非共鳴マイクロ波信号に導入することもできる。
図13は、第1のパルス・シーケンス1300および第2のパルス・シーケンス1350を示している。第1のパルス・シーケンス1300は、バイアス・コンポーネント110が第1の駆動線125を介して第1の量子ビット120に加えることができる第1の非共鳴マイクロ波信号に対応する。第2のパルス・シーケンス1350は、バイアス・コンポーネント110が第2の駆動線135を介して第2の量子ビット130に加えることができる第2の非共鳴マイクロ波信号に対応する。図11を参照すると、パルス1302および1352は、バイアス・コンポーネント110が第1の量子ビット120と第2の量子ビット130の間のZZ相互作用を引き起こすために第2の期間1120の間に加えることができる第1および第2の非共鳴マイクロ波信号にそれぞれ対応する。
非共鳴マイクロ波信号の振幅の動的調整から生じるすべての単一量子ビットZエラー(例えば、ZI相互作用、IZ相互作用、または量子ビット・シュタルク・シフト、あるいはその組み合わせ)を修正するために、バイアス・コンポーネント110は、フレーム変更パルスを非共鳴マイクロ波パルスに導入することができる。例えば、バイアス・コンポーネント110は、第1のパルス・シーケンス1300内でフレーム変更パルス1304がパルス1302の後に続くように、フレーム変更パルス1304を第1の非共鳴マイクロ波信号に導入することができる。別の例として、バイアス・コンポーネント110は、第2のパルス・シーケンス1350内でフレーム変更パルス1354がパルス1352の後に続くように、フレーム変更パルス1354を第2の非共鳴マイクロ波信号に導入することができる。
図14は、本明細書に記載された1つまたは複数の実施形態に従って、時間の関数として非共鳴マイクロ波信号の振幅(または駆動電力値)を描く例示的な非限定的グラフ1400を示している。グラフ1400は、バイアス・コンポーネント110が、非共鳴マイクロ波信号のうちの少なくとも1つの振幅を動的に調整する(または制御する)ことによって、図8に示された量子ビットの格子内の選択された量子ビットの対の間の対でのZZ結合の動的制御を容易にすることができることを示している。図14によって示された例では、各対でのZZ結合が、異なる周波数を有する非共鳴マイクロ波信号を伴う。そのため、図14の非共鳴マイクロ波信号は、(i)各駆動線を介して第1の量子ビット120および第2の量子ビット130に適用され得る第1の周波数を有する第1の非共鳴マイクロ波信号1402と、(ii)各駆動線を介して第1の量子ビット120および第3の量子ビット850に適用され得る第2の周波数を有する第2の非共鳴マイクロ波信号1404と、(iii)各駆動線を介して第1の量子ビット120および第4の量子ビット870に適用され得る第3の周波数を有する第3の非共鳴マイクロ波信号1406とを含む。
第1の期間1410の間に、格子のいずれかの量子ビット間のZZ結合が、望ましくないことがある。そのため、バイアス・コンポーネント110は、低いZZ結合点(例えば、図10の低いZZ結合点1010)に対応する各振幅で各非共鳴マイクロ波信号を加えることによって、第1の期間1410の間に、格子内の量子ビットの各対の間のZZ相互作用を取り消す。
第2の期間1420の間に、第1の量子ビット120と第2の量子ビット130の間のZZ結合140が、望ましいことがある。そのため、バイアス・コンポーネント110は、第1の非共鳴マイクロ波信号1402の振幅を、第1の期間1410の間に存在していた振幅から第2の期間1420の間の高いZZ結合点(例えば、図10の高いZZ結合点1020)に対応する振幅に動的に調整し(またはそのような振幅のパルスを発し)、第1の量子ビット120と第2の量子ビット130の間のZZ相互作用を引き起こすことができる。バイアス・コンポーネント110は、第1の期間1410の間に存在していた各振幅で他の非共鳴マイクロ波信号を維持することによって、格子内の他の量子ビット間のZZ相互作用を抑制することができる。例えば、バイアス・コンポーネント110は、第1の期間1410の間に存在していた振幅で第2の非共鳴マイクロ波信号1404を維持することによって、第2の期間1420の間に第1の量子ビット120と第3の量子ビット850の間のZZ相互作用を抑制することができる。
第3の期間1430の間に、第1の量子ビット120と第3の量子ビット850の間のZZ結合860が、望ましいことがある。そのため、バイアス・コンポーネント110は、第2の非共鳴マイクロ波信号1404の振幅を、第1の期間1410および第2の期間1420の間に存在していた振幅から第3の期間1430の間の高いZZ結合点に対応する振幅に動的に調整し(またはそのような振幅のパルスを発し)、第1の量子ビット120と第3の量子ビット850の間のZZ相互作用を引き起こすことができる。バイアス・コンポーネント110は、第1の期間1410の間に存在していた各振幅で他の非共鳴マイクロ波信号を加えることによって、格子内の他の量子ビット間のZZ相互作用を抑制することができる。例えば、バイアス・コンポーネント110は、第1の非共鳴マイクロ波信号1402を、第2の期間1420の間に存在していた振幅から第1の期間1410の間に存在していた振幅に動的に調整することによって、第3の期間1430の間に第1の量子ビット120と第2の量子ビット130の間のZZ相互作用を抑制することができる。
第4の期間1440の間に、第1の量子ビット120と第4の量子ビット870の間のZZ結合880が、望ましいことがある。そのため、バイアス・コンポーネント110は、第3の非共鳴マイクロ波信号1406の振幅を、第1の期間1410~第3の期間1430に存在していた振幅から第4の期間1440の間の高いZZ結合点に対応する振幅に動的に調整し(またはそのような振幅のパルスを発し)、第1の量子ビット120と第4の量子ビット870の間のZZ相互作用を引き起こすことができる。バイアス・コンポーネント110は、第1の期間1410の間に存在していた各振幅で他の非共鳴マイクロ波信号を加えることによって、格子内の他の量子ビット間のZZ相互作用を抑制することができる。例えば、バイアス・コンポーネント110は、第2の非共鳴マイクロ波信号1404を、第3の期間1430の間に存在していた振幅から第1の期間1410および第2の期間1420の間に存在していた振幅に動的に調整することによって、第4の期間1440の間に第1の量子ビット120と第3の量子ビット850の間のZZ相互作用を抑制することができる。
第5の期間1450の間に、格子のいずれかの量子ビット間のZZ結合が、望ましくないことがある。そのため、バイアス・コンポーネント110は、低いZZ結合点に対応する各振幅で各非共鳴マイクロ波信号を加えることによって、第5の期間1450の間に、格子内の量子ビットの各対の間のZZ相互作用を取り消すことができる。
図15は、本明細書に記載された1つまたは複数の実施形態に従って、追加の非共鳴マイクロ波信号の振幅の関数としてZZ結合を描く例示的な非限定的グラフ1500を示している。図15の例では、第1の量子ビット120および第2の量子ビット130は、4900MHzおよび5300MHzの共振周波数をそれぞれ有することができる。図15の例では、第1の量子ビット120および第2の量子ビット130は、3MHzの交換結合強度Jを有する。例示的なグラフ1500を取得するために、バイアス・コンポーネント110は、5100MHzの周波数を有する共通の非共鳴マイクロ波信号を第1の量子ビット120および第2の量子ビット130に加える。バイアス・コンポーネント110は、5250MHzの周波数を有する追加の非共鳴マイクロ波信号も、第1の量子ビット120に加える。グラフ1500のX軸(例えば、グラフ1500の横軸)は、追加の非共鳴マイクロ波信号の振幅(または駆動電力)と一致する。
図16は、本明細書に記載された1つまたは複数の実施形態に従って、量子コンピューティング・デバイスのためのZZ相互作用の動的制御を容易にする例示的な非限定的コンピュータ実装方法1600のフロー図を示している。本明細書に記載された他の実施形態で採用されている類似する要素の説明の繰り返しは、簡潔にするために省略されている。
1610で、コンピュータ実装方法1600は、プロセッサに動作可能に結合されたシステムによって、各第1および第2の駆動線(例えば、第1の駆動線125および第2の駆動線135)を介して、バイアス・コンポーネント(例えば、図1のバイアス・コンポーネント110)を第1および第2の量子ビット(例えば、第1の量子ビット120および第2の量子ビット130)に動作可能に結合することを含むことができる。
1620で、コンピュータ実装方法1600は、システムによって、バイアス・コンポーネントを使用して、各第1および第2の駆動線を介して加えられた非共鳴マイクロ波信号で、第1および第2の量子ビット間のZZ相互作用を動的に制御することを含むことができる。実施形態では、バイアス・コンポーネントを使用して、第1および第2の量子ビット間のZZ相互作用を動的に制御することは、システムによって、非共鳴マイクロ波信号間の相対位相差を動的に調整することを含むことができる。実施形態では、共通の発生源が、非共鳴マイクロ波信号を生成することができる。実施形態では、非共鳴マイクロ波信号は、第1および第2の量子ビットの各共振周波数によって定義された周波数値を含むことができる。実施形態では、非共鳴マイクロ波信号は、定電力値を含むことができる。
実施形態では、バイアス・コンポーネントを使用して第1および第2の量子ビット間のZZ相互作用を動的に制御することは、非共鳴マイクロ波信号のうちの少なくとも1つの振幅を動的に調整することを含むことができる。実施形態では、第1および第2の量子ビットは、第3の量子ビット(例えば、図8の第3の量子ビット850)を含む量子ビットの格子を備える。実施形態では、バイアス・コンポーネントを使用して第1および第2の量子ビット間のZZ相互作用の動的制御を容易にすることは、格子内の選択された量子ビットの対の間の対でのZZ相互作用を連続的に適用し、量子アルゴリズムを実行することを含むことができる。実施形態では、バイアス・コンポーネントを使用して第1および第2の量子ビット間のZZ相互作用の動的制御を容易にすることは、格子内の選択された量子ビットの対の間の対でのZZ相互作用を適用し、断熱量子コンピューティングを実行することを含むことができる。
実施形態では、コンピュータ実装方法1600は、システムによって、第3の駆動線(例えば、第3の駆動線855)を介して、第3の量子ビット(例えば、図8の第3の量子ビット850)をバイアス・コンポーネントに動作可能に結合することをさらに含むことができる。実施形態では、コンピュータ実装方法1600は、システムによって、バイアス・コンポーネントで、各第1および第3の駆動線を介して加えられた非共鳴マイクロ波信号間の相対位相差を調整することによって、第1および第3の量子ビット間のZZ相互作用を引き起こすことをさらに含むことができる。
実施形態では、コンピュータ実装方法1600は、第3の駆動線(例えば、第3の駆動線855)を介して第3の量子ビット(例えば、図8の第3の量子ビット850)をバイアス・コンポーネントに動作可能に結合することをさらに含むことができる。実施形態では、コンピュータ実装方法1600は、バイアス・コンポーネントで、各第3および第1の駆動線を介して加えられた非共鳴マイクロ波信号間の位相差を維持することによって、第3および第1の量子ビット間のZZ相互作用を抑制することをさらに含むことができる。
開示される主題のさまざまな態様の背景を提供するために、図17および以下の説明は、開示される主題のさまざまな態様が実装され得る適切な環境の概要を示すよう意図されている。本開示のさまざまな態様を実装することはコンピュータ1712を含むこともできるので、図17は適切な動作環境1700を示す。コンピュータ1712は、処理ユニット1714、システム・メモリ1716、およびシステム・バス1718を含むこともできる。システム・バス1718は、システム・メモリ1716を含むが、これに限定されないシステム・コンポーネントを、処理ユニット1714に結合する。処理ユニット1714は、さまざまな使用可能なプロセッサのいずれかであることができる。デュアル・マイクロプロセッサおよび他のマルチプロセッサ・アーキテクチャが、処理ユニット1714として採用されることも可能である。システム・バス1718は、ISA(Industry Standard Architecture)、MCA(Micro Channel Architecture)、EISA(Enhanced ISA)、IDE(Intelligent Drive Electronics)、VESAローカル・バス(VLB:VESA Local Bus)、PCI(Peripheral Component Interconnects)、カードバス、ユニバーサル・シリアル・バス(USB:Universal Serial Bus)、AGP(Advanced Graphics Port)、Firewire(IEEE 1094)、および小型コンピュータ・システム・インターフェイス(SCSI:Small Computer Systems Interface)を含むが、これらに限定されない、任意のさまざまな使用可能なバス・アーキテクチャを使用する、メモリ・バスもしくはメモリ・コントローラ、ペリフェラル・バスもしくは外部バス、またはローカル・バス、あるいはその組み合わせを含む、複数の種類のバス構造のいずれかであることができる。システム・メモリ1716は、揮発性メモリ1720および不揮発性メモリ1722を含むこともできる。起動中などにコンピュータ1712内の要素間で情報を転送するための基本ルーチンを含んでいる基本入出力システム(BIOS:basic input/output system)が、不揮発性メモリ1722に格納される。不揮発性メモリ1722の例としては、読み取り専用メモリ(ROM:read only memory)、プログラマブルROM(PROM:programmable ROM)、電気的プログラマブルROM(EPROM:electrically programmable ROM)、電気的消去可能プログラマブルROM(EEPROM:electrically erasable programmable ROM)、フラッシュ・メモリ、または不揮発性ランダム・アクセス・メモリ(RAM:random access memory)(例えば、強誘電体RAM(FeRAM:ferroelectric RAM))が挙げられるが、これらに限定されない。揮発性メモリ1720は、外部キャッシュ・メモリとして機能するランダム・アクセス・メモリ(RAM)を含むこともできる。例えばRAMは、スタティックRAM(SRAM:static RAM)、ダイナミックRAM(DRAM:dynamic RAM)、シンクロナスDRAM(SDRAM:synchronous DRAM)、ダブル・データ・レートSDRAM(DDR SDRAM:double data rate SDRAM)、拡張SDRAM(ESDRAM:enhanced SDRAM)、シンクリンクDRAM(SLDRAM:Synchlink DRAM)、ダイレクト・ラムバスRAM(DRRAM:direct Rambus RAM)、ダイレクト・ラムバス・ダイナミックRAM(DRDRAM:direct Rambus dynamic RAM)、およびラムバス・ダイナミックRAMなどの、ただしこれらに限定されない、多くの形態で利用可能である。
コンピュータ1712は、取り外し可能/取り外し不可能な揮発性/不揮発性のコンピュータ・ストレージ媒体を含むこともできる。例えば図17は、ディスク・ストレージ1724を示している。ディスク・ストレージ1724は、磁気ディスク・ドライブ、フロッピー(R)・ディスク・ドライブ、テープ・ドライブ、Jazドライブ、Zipドライブ、LS-100ドライブ、フラッシュ・メモリ・カード、またはメモリ・スティックなどの、ただしこれらに限定されない、デバイスを含むこともできる。ディスク・ストレージ1724は、コンパクト・ディスクROM(CD-ROM:compact disk ROM)デバイス、記録可能CD(CD-R:CD recordable)ドライブ、再書き込み可能CD(CD-RW:CD rewritable)ドライブ、またはデジタル・バーサタイル・ディスクROM(DVD-ROM:digital versatile disk ROM)ドライブなどの光ディスク・ドライブを含むが、これらに限定されないストレージ媒体を、別々に、または他のストレージ媒体と組み合わせて、含むこともできる。システム・バス1718へのディスク・ストレージ1724の接続を容易にするために、インターフェイス1726などの、取り外し可能または取り外し不可能なインターフェイスが通常は使用される。図17は、ユーザと、適切な動作環境1700において説明された基本的なコンピュータ・リソースとの間の仲介として機能するソフトウェアも示している。そのようなソフトウェアは、例えば、オペレーティング・システム1728を含むこともできる。ディスク・ストレージ1724に格納できるオペレーティング・システム1728は、コンピュータ1712のリソースを制御し、割り当てるように動作する。システムのアプリケーション1730は、例えばシステム・メモリ1716またはディスク・ストレージ1724のいずれかに格納されたプログラム・モジュール1732およびプログラム・データ1734を介して、オペレーティング・システム1728によるリソースの管理を利用する。さまざまなオペレーティング・システムまたはオペレーティング・システムの組み合わせを使用して本開示が実装され得るということが、理解されるべきである。ユーザは、入力デバイス1736を介して、コマンドまたは情報をコンピュータ1712に入力する。入力デバイス1736は、マウス、トラックボール、スタイラス、タッチ・パッド、キーボード、マイクロホン、ジョイスティック、ゲーム・パッド、衛星放送受信アンテナ、スキャナ、TVチューナー・カード、デジタル・カメラ、デジタル・ビデオ・カメラ、Webカメラなどのポインティング・デバイスを含むが、これらに限定されない。これらおよび他の入力デバイスは、インターフェイス・ポート1738を介してシステム・バス1718を通り、処理ユニット1714に接続する。インターフェイス・ポート1738は、例えば、シリアル・ポート、パラレル・ポート、ゲーム・ポート、およびユニバーサル・シリアル・バス(USB)を含む。出力デバイス1740は、入力デバイス1736と同じ種類のポートの一部を使用する。このようにして、例えば、USBポートを使用して、入力をコンピュータ1712に提供し、コンピュータ1712から出力デバイス1740に情報を出力できる。出力アダプタ1742は、特殊なアダプタを必要とする出力デバイス1740の中でも特に、モニタ、スピーカ、およびプリンタのような何らかの出力デバイス1740が存在することを示すために提供される。出力アダプタ1742の例としては、出力デバイス1740とシステム・バス1718の間の接続の手段を提供するビデオ・カードおよびサウンド・カードが挙げられるが、これらに限定されない。リモート・コンピュータ1744などの、その他のデバイスまたはデバイスのシステムあるいはその両方が、入力機能および出力機能の両方を提供すると言うことができる。
コンピュータ1712は、リモート・コンピュータ1744などの1つまたは複数のリモート・コンピュータへの論理接続を使用して、ネットワーク環境内で動作できる。リモート・コンピュータ1744は、コンピュータ、サーバ、ルータ、ネットワークPC、ワークステーション、マイクロプロセッサベースの機器、ピア・デバイス、またはその他の一般的なネットワーク・ノードなどであることができ、通常は、コンピュータ1712に関連して説明された要素の多くを含むこともできる。簡潔にするために、メモリ・ストレージ・デバイス1746のみが、リモート・コンピュータ1744と共に示されている。リモート・コンピュータ1744は、ネットワーク・インターフェイス1748を介してコンピュータ1712に論理的に接続されてから、通信接続1750を介して物理的に接続される。ネットワーク・インターフェイス1748は、ローカル・エリア・ネットワーク(LAN:local-area networks)、広域ネットワーク(WAN:wide-area networks)、セルラー・ネットワークなどの、有線通信ネットワークまたはワイヤレス通信ネットワークあるいはその両方を包含する。LAN技術は、光ファイバ分散データ・インターフェイス(FDDI:Fiber Distributed Data Interface)、銅線分散データ・インターフェイス(CDDI:Copper Distributed Data Interface)、イーサネット(R)、トークン・リングなどを含む。WAN技術は、ポイントツーポイント・リンク、総合デジタル通信網(ISDN:Integrated Services Digital Networks)およびその変形などの回路交換網、パケット交換網、およびデジタル加入者回線(DSL:Digital Subscriber Lines)を含むが、これらに限定されない。通信接続1750は、ネットワーク・インターフェイス1748をシステム・バス1718に接続するために採用されたハードウェア/ソフトウェアのことを指す。通信接続1750は、説明を明確にするために、コンピュータ1712内に示されているが、コンピュータ1712の外部に存在することもできる。ネットワーク・インターフェイス1748に接続するためのハードウェア/ソフトウェアは、単に例示の目的で、通常の電話の等級のモデム、ケーブル・モデム、およびDSLモデムを含むモデム、ISDNアダプタ、ならびにイーサネット(R)・カードなどの、内部および外部の技術を含むこともできる。
本発明は、任意の可能な統合の技術的詳細レベルで、システム、方法、装置、またはコンピュータ・プログラム製品、あるいはその組み合わせであってよい。コンピュータ・プログラム製品は、プロセッサに本発明の態様を実行させるためのコンピュータ可読プログラム命令を含んでいるコンピュータ可読ストレージ媒体を含むことができる。コンピュータ可読ストレージ媒体は、命令実行デバイスによって使用するための命令を保持および格納できる有形のデバイスであることができる。コンピュータ可読ストレージ媒体は、例えば、電子ストレージ・デバイス、磁気ストレージ・デバイス、光ストレージ・デバイス、電磁ストレージ・デバイス、半導体ストレージ・デバイス、またはこれらの任意の適切な組み合わせであることができるが、これらに限定されない。コンピュータ可読ストレージ媒体のさらに具体的な例の非網羅的リストは、ポータブル・コンピュータ・ディスケット、ハード・ディスク、ランダム・アクセス・メモリ(RAM:random access memory)、読み取り専用メモリ(ROM:read-only memory)、消去可能プログラマブル読み取り専用メモリ(EPROM:erasable programmable read-only memoryまたはフラッシュ・メモリ)、スタティック・ランダム・アクセス・メモリ(SRAM:static random access memory)、ポータブル・コンパクト・ディスク読み取り専用メモリ(CD-ROM:compact disc read-only memory)、デジタル・バーサタイル・ディスク(DVD:digital versatile disk)、メモリ・スティック、フロッピー(R)・ディスク、パンチカードまたは命令が記録されている溝の中の隆起構造などの機械的にエンコードされるデバイス、およびこれらの任意の適切な組み合わせを含むこともできる。本明細書において使用されるとき、コンピュータ可読ストレージ媒体は、それ自体が、電波または他の自由に伝搬する電磁波、導波管または他の送信媒体を伝搬する電磁波(例えば、光ファイバ・ケーブルを通過する光パルス)、あるいはワイヤを介して送信される電気信号などの一過性の信号であると解釈されるべきではない。
本明細書に記載されたコンピュータ可読プログラム命令は、コンピュータ可読ストレージ媒体から各コンピューティング・デバイス/処理デバイスへ、またはネットワーク(例えば、インターネット、ローカル・エリア・ネットワーク、広域ネットワーク、または無線ネットワーク、あるいはその組み合わせ)を介して外部コンピュータまたは外部ストレージ・デバイスへダウンロードされ得る。このネットワークは、銅伝送ケーブル、光伝送ファイバ、ワイヤレス送信、ルータ、ファイアウォール、スイッチ、ゲートウェイ・コンピュータ、またはエッジ・サーバ、あるいはその組み合わせを備えることができる。各コンピューティング・デバイス/処理デバイス内のネットワーク・アダプタ・カードまたはネットワーク・インターフェイスは、コンピュータ可読プログラム命令をネットワークから受信し、それらのコンピュータ可読プログラム命令を各コンピューティング・デバイス/処理デバイス内のコンピュータ可読ストレージ媒体に格納するために転送する。本発明の動作を実行するためのコンピュータ可読プログラム命令は、アセンブラ命令、命令セット・アーキテクチャ(ISA:instruction-set-architecture)命令、マシン命令、マシン依存命令、マイクロコード、ファームウェア命令、状態設定データ、集積回路のための構成データ、あるいはSmalltalk(R)、C++などのオブジェクト指向プログラミング言語、および「C」プログラミング言語または同様のプログラミング言語などの手続き型プログラミング言語を含む1つまたは複数のプログラミング言語の任意の組み合わせで記述されたソース・コードまたはオブジェクト・コードであることができる。コンピュータ可読プログラム命令は、ユーザのコンピュータ上で全体的に実行すること、ユーザのコンピュータ上でスタンドアロン・ソフトウェア・パッケージとして部分的に実行すること、ユーザのコンピュータ上およびリモート・コンピュータ上でそれぞれ部分的に実行すること、あるいはリモート・コンピュータ上またはサーバ上で全体的に実行することができる。後者のシナリオでは、リモート・コンピュータは、ローカル・エリア・ネットワーク(LAN)または広域ネットワーク(WAN)を含む任意の種類のネットワークを介してユーザのコンピュータに接続することができ、または接続は、(例えば、インターネット・サービス・プロバイダを使用してインターネットを介して)外部コンピュータに対して行われ得る。一部の実施形態では、本発明の態様を実行するために、例えばプログラマブル論理回路、フィールドプログラマブル・ゲート・アレイ(FPGA:field-programmable gate arrays)、またはプログラマブル・ロジック・アレイ(PLA:programmable logic arrays)を含む電子回路は、コンピュータ可読プログラム命令の状態情報を利用することによって、電子回路をカスタマイズするためのコンピュータ可読プログラム命令を実行することができる。
本発明の態様は、本明細書において、本発明の実施形態に従って、方法、装置(システム)、およびコンピュータ・プログラム製品のフローチャート図またはブロック図あるいはその両方を参照して説明される。フローチャート図またはブロック図あるいはその両方の各ブロック、ならびにフローチャート図またはブロック図あるいはその両方に含まれるブロックの組み合わせが、コンピュータ可読プログラム命令によって実装され得るということが理解されるであろう。これらのコンピュータ可読プログラム命令は、コンピュータまたは他のプログラム可能なデータ処理装置のプロセッサを介して実行される命令が、フローチャートまたはブロック図あるいはその両方のブロックに指定される機能/動作を実施する手段を作り出すべく、汎用コンピュータ、専用コンピュータ、または他のプログラム可能なデータ処理装置のプロセッサに提供されてマシンを作り出すものであることができる。これらのコンピュータ可読プログラム命令は、命令が格納されたコンピュータ可読ストレージ媒体がフローチャートまたはブロック図あるいはその両方のブロックに指定される機能/動作の態様を実施する命令を含んでいる製品を備えるように、コンピュータ可読ストレージ媒体に格納され、コンピュータ、プログラム可能なデータ処理装置、または他のデバイス、あるいはその組み合わせに特定の方式で機能するように指示できるものであることもできる。コンピュータ可読プログラム命令は、コンピュータ上、他のプログラム可能な装置上、または他のデバイス上で実行される命令が、フローチャートまたはブロック図あるいはその両方のブロックに指定される機能/動作を実施するように、コンピュータ実装プロセスを生成すべく、コンピュータ、他のプログラム可能なデータ処理装置、または他のデバイスに読み込まれ、一連の操作可能な動作を、コンピュータ上、他のプログラム可能な装置上、または他のデバイス上で実行させるものであることもできる。
図内のフローチャートおよびブロック図は、本発明のさまざまな実施形態に従って、システム、方法、およびコンピュータ・プログラム製品の可能な実装のアーキテクチャ、機能、および動作を示す。これに関連して、フローチャートまたはブロック図内の各ブロックは、規定された論理機能を実装するための1つまたは複数の実行可能な命令を含んでいる、命令のモジュール、セグメント、または部分を表すことができる。一部の代替の実装では、ブロックに示された機能は、図に示された順序とは異なる順序で発生することができる。例えば、連続して示された2つのブロックは、実際には、含まれている機能に応じて、実質的に同時に実行されるか、または場合によっては逆の順序で実行され得る。ブロック図またはフローチャート図あるいはその両方の各ブロック、ならびにブロック図またはフローチャート図あるいはその両方に含まれるブロックの組み合わせは、規定された機能または動作を実行するか、または専用ハードウェアとコンピュータ命令の組み合わせを実行する専用ハードウェアベースのシステムによって実装されることができるということにも注意する。
上記では、1つのコンピュータまたは複数のコンピュータあるいはその両方で実行されるコンピュータ・プログラム製品のコンピュータ実行可能命令との一般的な関連において、本主題が説明されたが、当業者は、本開示が他のプログラム・モジュールと組み合わせられるか、または他のプログラム・モジュールと組み合わせて実装され得るということを認識するであろう。通常、プログラム・モジュールは、特定のタスクを実行するか、または特定の抽象データ型を実装するか、あるいはその両方を行うルーチン、プログラム、コンポーネント、データ構造などを含む。さらに、当業者は、本発明のコンピュータ実装方法が、シングルプロセッサ・コンピュータ・システムまたはマルチプロセッサ・コンピュータ・システム、ミニコンピューティング・デバイス、メインフレーム・コンピュータ、コンピュータ、ハンドヘルド・コンピューティング・デバイス(例えば、PDA、電話)、マイクロプロセッサベースまたはプログラム可能な家庭用電化製品または産業用電子機器などを含む、他のコンピュータ・システム構成を使用して実践され得るということを理解するであろう。示された態様は、通信ネットワークを介してリンクされたリモート処理デバイスによってタスクが実行される、分散コンピューティング環境内で実践されることも可能である。ただし、本開示の態様の全部ではないとしても一部は、スタンドアロン・コンピュータ上で実践され得る。分散コンピューティング環境において、プログラム・モジュールは、ローカルおよびリモートの両方のメモリ・ストレージ・デバイスに配置され得る。例えば、1つまたは複数の実施形態では、コンピュータ実行可能コンポーネントは、1つまたは複数の分散されたメモリ・ユニットを含むことができるか、または1つまたは複数の分散されたメモリ・ユニットから成ることができる、メモリから実行され得る。本明細書において使用されるとき、「メモリ」および「メモリ・ユニット」は交換可能である。さらに、本明細書に記載された1つまたは複数の実施形態は、コンピュータ実行可能コンポーネントのコードを、分散された方法で、例えば、1つまたは複数の分散されたメモリ・ユニットからのコードを実行するように結合しているか、または協調して動作している複数のプロセッサで、実行することができる。本明細書において使用されるとき、「メモリ」という用語は、1つの位置での単一のメモリまたはメモリ・ユニット、あるいは1つまたは複数の位置での複数のメモリまたはメモリ・ユニットを包含することができる。
本出願において使用されるとき、「コンポーネント」、「システム」、「プラットフォーム」、「インターフェイス」などの用語は、1つまたは複数の特定の機能を含むコンピュータ関連の実体または操作可能なマシンに関連する実体を指すことができるか、またはそれらの実体を含むことができるか、あるいはその両方が可能である。本明細書で開示された実体は、ハードウェア、ハードウェアとソフトウェアの組み合わせ、ソフトウェア、または実行中のソフトウェアのいずれかであることができる。例えば、コンポーネントは、プロセッサ上で実行されるプロセス、プロセッサ、オブジェクト、実行ファイル、実行のスレッド、プログラム、またはコンピュータ、あるいはその組み合わせであることができるが、これらに限定されない。例として、サーバ上で実行されるアプリケーションおよびサーバの両方が、コンポーネントであることができる。1つまたは複数のコンポーネントが、プロセス内または実行のスレッド内あるいはその両方に存在することができ、コンポーネントは、1つのコンピュータ上に局在するか、または2つ以上のコンピュータ間で分散されるか、あるいはその両方が可能である。別の例では、各コンポーネントは、さまざまなデータ構造が格納されているさまざまなコンピュータ可読媒体から実行できる。コンポーネントは、1つまたは複数のデータ・パケット(例えば、ローカル・システム内または分散システム内の別のコンポーネントと情報をやりとりするか、またはインターネットなどのネットワークを経由して、信号を介して他のシステムと情報をやりとりするか、あるいはその両方によって情報をやりとりする、1つのコンポーネントからのデータ)を含んでいる信号などに従って、ローカルまたはリモートあるいはその両方のプロセスを介して通信できる。別の例として、コンポーネントは、電気または電子回路によって操作される機械的部品によって提供される特定の機能を有する装置であることができ、プロセッサによって実行されるソフトウェア・アプリケーションまたはファームウェア・アプリケーションによって操作される。そのような場合、プロセッサは、装置の内部または外部に存在することができ、ソフトウェア・アプリケーションまたはファームウェア・アプリケーションの少なくとも一部を実行できる。さらに別の例として、コンポーネントは、機械的部品を含まない電子コンポーネントを介して特定の機能を提供する装置であることができ、それらの電子コンポーネントは、電子コンポーネントの機能の少なくとも一部を与えるソフトウェアまたはファームウェアを実行するためのプロセッサまたは他の手段を含むことができる。1つの態様では、コンポーネントは、例えばクラウド・コンピューティング・システム内で、仮想マシンを介して電子コンポーネントをエミュレートすることができる。
加えて、「または」という用語は、排他的論理和ではなく、包含的論理和を意味するよう意図されている。すなわち、特に指定されない限り、または文脈から明らかでない限り、「XがAまたはBを採用する」は、自然な包含的順列のいずれかを意味するよう意図されている。すなわち、XがAを採用するか、XがBを採用するか、またはXがAおよびBの両方を採用する場合、「XがAまたはBを採用する」が、前述の事例のいずれかにおいて満たされる。さらに、本明細書および添付の図面において使用される冠詞「a」および「an」は、単数形を対象にすることが特に指定されない限り、または文脈から明らかでない限り、「1つまたは複数」を意味すると一般に解釈されるべきである。本明細書において使用されるとき、「例」または「例示的」あるいはその両方の用語は、例、事例、または実例となることを意味するために使用される。誤解を避けるために、本明細書で開示された主題は、そのような例によって制限されない。加えて、「例」または「例示的」あるいはその両方として本明細書に記載された任意の態様または設計は、他の態様または設計よりも好ましいか、または有利であると必ずしも解釈されず、当業者に知られている同等の例示的な構造および技術を除外するよう意図されていない。
本明細書において使用されるとき、「プロセッサ」という用語は、シングルコア・プロセッサと、ソフトウェアのマルチスレッド実行機能を備えるシングルプロセッサと、マルチコア・プロセッサと、ソフトウェアのマルチスレッド実行機能を備えるマルチコア・プロセッサと、ハードウェアのマルチスレッド技術を備えるマルチコア・プロセッサと、並列プラットフォームと、分散共有メモリを備える並列プラットフォームとを含むが、これらに限定されない、実質的に任意の計算処理ユニットまたはデバイスを指すことができる。さらに、プロセッサは、集積回路、特定用途向け集積回路(ASIC:application specific integrated circuit)、デジタル信号プロセッサ(DSP:digital signal processor)、フィールド・プログラマブル・ゲート・アレイ(FPGA:field programmable gate array)、プログラマブル・ロジック・コントローラ(PLC:programmable logic controller)、複合プログラム可能論理デバイス(CPLD:complex programmable logic device)、個別のゲートまたはトランジスタ論理、個別のハードウェア・コンポーネント、あるいは本明細書に記載された機能を実行するように設計されたこれらの任意の組み合わせを指すことができる。さらに、プロセッサは、空間利用を最適化し、ユーザ機器の性能を向上するために、分子および量子ドットベースのトランジスタ、スイッチ、およびゲートなどの、ただしこれらに限定されない、ナノスケール・アーキテクチャを利用することができる。プロセッサは、計算処理ユニットの組み合わせとして実装されてもよい。本開示では、コンポーネントの動作および機能に関連する「ストア」、「ストレージ」、「データ・ストア」、「データ・ストレージ」、「データベース」、および実質的に任意の他の情報格納コンポーネントなどの用語は、「メモリ・コンポーネント」、「メモリ」内に具現化された実体、またはメモリを備えているコンポーネントを指すために使用される。本明細書に記載されたメモリまたはメモリ・コンポーネントあるいはその両方が、揮発性メモリまたは不揮発性メモリのいずれかであることができ、あるいは揮発性メモリおよび不揮発性メモリの両方を含むことができるということが、理解されるべきである。不揮発性メモリの例としては、読み取り専用メモリ(ROM:read only memory)、プログラマブルROM(PROM:programmable ROM)、電気的プログラマブルROM(EPROM:electrically programmable ROM)、電気的消去可能ROM(EEPROM:electrically erasable ROM)、フラッシュ・メモリ、または不揮発性ランダム・アクセス・メモリ(RAM:random access memory)(例えば、強誘電体RAM(FeRAM:ferroelectric RAM))が挙げられるが、これらに限定されない。揮発性メモリは、例えば外部キャッシュ・メモリとして機能できる、RAMを含むことができる。例えばRAMは、シンクロナスRAM(SRAM)、ダイナミックRAM(DRAM:dynamic RAM)、シンクロナスDRAM(SDRAM:synchronous DRAM)、ダブル・データ・レートSDRAM(DDR SDRAM:double data rate SDRAM)、拡張SDRAM(ESDRAM:enhanced SDRAM)、シンクリンクDRAM(SLDRAM:Synchlink DRAM)、ダイレクト・ラムバスRAM(DRRAM:direct Rambus RAM)、ダイレクト・ラムバス・ダイナミックRAM(DRDRAM:direct Rambus dynamic RAM)、およびラムバス・ダイナミックRAM(RDRAM:Rambus dynamic RAM)などの、ただしこれらに限定されない、多くの形態で利用可能である。さらに、本明細書において開示されたシステムまたはコンピュータ実装方法のメモリ・コンポーネントは、これらおよび任意の他の適切な種類のメモリを含むが、これらに限定されない、メモリを含むよう意図されている。
前述した内容は、システムおよびコンピュータ実装方法の単なる例を含んでいる。当然ながら、本開示を説明する目的で、コンポーネントまたはコンピュータ実装方法の考えられるすべての組み合わせについて説明することは不可能であるが、当業者は、本開示の多くのその他の組み合わせおよび並べ替えが可能であるということを認識できる。さらに、「含む」、「有する」、「所有する」などの用語が、発明を実施するための形態、特許請求の範囲、付録、および図面において使用される範囲では、それらの用語は、「備えている」が特許請求における暫定的な用語として使用されるときに解釈されるような、用語「備えている」と同様の方法で、包含的であるよう意図されている。
さまざまな実施形態の説明は、例示の目的で提示されているが、網羅的であることは意図されておらず、開示された実施形態に制限されない。説明された実施形態の範囲および思想から逸脱しない多くの変更および変形が、当業者にとって明らかであろう。本明細書で使用された用語は、実施形態の原理、実際の適用、または市場で見られる技術を超える技術的改良を最も適切に説明するため、または他の当業者が本明細書で開示された実施形態を理解できるようにするために選択されている。

Claims (24)

  1. 各第1および第2の駆動線を介して第1および第2の量子ビットに動作可能に結合されたバイアス・コンポーネントを備える量子結合デバイスであって、前記バイアス・コンポーネントが、前記各第1および第2の駆動線を介して加えられた非共鳴マイクロ波信号を使用して、前記第1および第2の量子ビットの間のZZ相互作用の動的制御を容易にする、量子結合デバイス。
  2. 前記バイアス・コンポーネントが、前記非共鳴マイクロ波信号間の相対位相差を動的に調整することによって前記第1および第2の量子ビット間のZZ相互作用の動的制御を容易にする、請求項1に記載の量子結合デバイス。
  3. 共通の発生源が前記非共鳴マイクロ波信号を生成する、請求項1ないし2のいずれか一項に記載の量子結合デバイス。
  4. 前記非共鳴マイクロ波信号が、前記第1および第2の量子ビットの各共振周波数によって定義された周波数値を含む、請求項1ないし3のいずれか一項に記載の量子結合デバイス。
  5. 前記非共鳴マイクロ波信号が定電力値を含む、請求項1ないし4のいずれか一項に記載の量子結合デバイス。
  6. エコーまたはフレーム変更によって単一量子ビットZエラーが修正される、請求項1ないし5のいずれか一項に記載の量子結合デバイス。
  7. 第3の駆動線を介して前記バイアス・コンポーネントに動作可能に結合された第3の量子ビットをさらに備え、前記バイアス・コンポーネントが、前記各第1および第3の駆動線を介して加えられた前記非共鳴マイクロ波信号間の相対位相差を調整することによって、前記第1および第3の量子ビット間のZZ相互作用を引き起こす、請求項1ないし6のいずれか一項に記載の量子結合デバイス。
  8. 第3の駆動線を介して前記バイアス・コンポーネントに動作可能に結合された第3の量子ビットをさらに備え、前記バイアス・コンポーネントが、前記各第3および第1の駆動線を介して加えられた前記非共鳴マイクロ波信号間の位相差を維持することによって、前記第3の量子ビットと前記第1の量子ビットの間のZZ相互作用を抑制する、請求項1ないし7のいずれか一項に記載の量子結合デバイス。
  9. 前記バイアス・コンポーネントが、前記非共鳴マイクロ波信号のうちの少なくとも1つの振幅を動的に調整することによって前記第1および第2の量子ビット間のZZ相互作用を制御する、請求項1ないし8のいずれか一項に記載の量子結合デバイス。
  10. ZZゲート動作のために、エコーまたはフレーム変更によって量子ビットのシュタルク・シフトが取り消される、請求項1ないし9のいずれか一項に記載の量子結合デバイス。
  11. プロセッサに動作可能に結合されたシステムによって、各第1および第2の駆動線を介して、バイアス・コンポーネントを第1および第2の量子ビットに動作可能に結合することと、
    前記システムによって、前記バイアス・コンポーネントを使用して、前記各第1および第2の駆動線を介して加えられた非共鳴マイクロ波信号で、前記第1および第2の量子ビット間のZZ相互作用を動的に制御することとを含む、コンピュータ実装方法。
  12. 前記バイアス・コンポーネントを使用して前記第1および第2の量子ビット間のZZ相互作用を動的に制御することが、
    前記システムによって、前記非共鳴マイクロ波信号間の相対位相差を動的に調整することを含む、請求項11に記載のコンピュータ実装方法。
  13. 共通の発生源が前記非共鳴マイクロ波信号を生成する、請求項11ないし12のいずれか一項に記載のコンピュータ実装方法。
  14. 前記非共鳴マイクロ波信号が、前記第1および第2の量子ビットの各共振周波数によって定義された周波数値を含む、請求項11ないし13のいずれか一項に記載のコンピュータ実装方法。
  15. 前記非共鳴マイクロ波信号が定電力値を含む、請求項11ないし14のいずれか一項に記載のコンピュータ実装方法。
  16. 前記システムによって、第3の駆動線を介して第3の量子ビットを前記バイアス・コンポーネントに動作可能に結合することと、
    前記システムによって、前記バイアス・コンポーネントで、前記各第1および第3の駆動線を介して加えられた前記非共鳴マイクロ波信号間の相対位相差を調整することによって、前記第1および第3の量子ビット間のZZ相互作用を引き起こすこととをさらに含む、請求項11ないし15のいずれか一項に記載のコンピュータ実装方法。
  17. 前記システムによって、第3の駆動線を介して第3の量子ビットを前記バイアス・コンポーネントに動作可能に結合することと、
    前記システムによって、前記バイアス・コンポーネントで、前記各第3および第1の駆動線を介して加えられた前記非共鳴マイクロ波信号間の位相差を維持することによって、前記第3および第1の量子ビット間のZZ相互作用を抑制することとをさらに含む、請求項11ないし16のいずれか一項に記載のコンピュータ実装方法。
  18. 前記バイアス・コンポーネントを使用して前記第1および第2の量子ビット間のZZ相互作用の動的制御を容易にすることが、
    前記システムによって、前記非共鳴マイクロ波信号のうちの少なくとも1つの振幅を動的に調整することを含む、請求項11ないし17のいずれか一項に記載のコンピュータ実装方法。
  19. 前記第1および第2の量子ビットが、第3の量子ビットを含む量子ビットの格子を備え、前記バイアス・コンポーネントを使用して前記第1および第2の量子ビット間のZZ相互作用の動的制御を容易にすることが、
    前記格子内の選択された量子ビットの対の間の対でのZZ相互作用を連続的に適用し、量子アルゴリズムを実行することを含む、請求項11ないし18のいずれか一項に記載のコンピュータ実装方法。
  20. 前記第1および第2の量子ビットが、第3の量子ビットを含む量子ビットの格子を備え、前記バイアス・コンポーネントを使用して前記第1および第2の量子ビット間のZZ相互作用の動的制御を容易にすることが、
    前記格子内の選択された量子ビットの対の間の対でのZZ相互作用を適用し、断熱量子コンピューティングを実行することを含む、請求項11ないし19のいずれか一項に記載のコンピュータ実装方法。
  21. 前記システムによって、第3の駆動線を介して第3の量子ビットを前記バイアス・コンポーネントに動作可能に結合することと、
    前記第1および第3の駆動線を介して加えられる第1の非共鳴マイクロ波信号を、高いZZ結合点に対応する第1の振幅に動的に調整することと、
    低いZZ結合点に対応する第2の振幅で前記第1および第2の駆動線を介して加えられた第2の非共鳴マイクロ波信号を加えることとをさらに含み、前記非共鳴マイクロ波信号が前記第1および第2の非共鳴マイクロ波信号を含み、前記第1の非共鳴マイクロ波信号が第1の周波数を含み、前記第2の非共鳴マイクロ波信号が前記第1の周波数と異なる第2の周波数を含む、請求項11ないし20のいずれか一項に記載のコンピュータ実装方法。
  22. プログラム命令が具現化されているコンピュータ可読ストレージ媒体を備えるコンピュータ・プログラム製品であって、前記プログラム命令が、プロセッサによって実行可能であり、前記プロセッサに、
    各第1および第2の駆動線を介して、バイアス・コンポーネントを第1および第2の量子ビットに動作可能に結合することと、
    前記バイアス・コンポーネントを使用して、前記各第1および第2の駆動線を介して加えられた非共鳴マイクロ波信号で、前記第1および第2の量子ビット間のZZ相互作用の動的制御を容易にすることとを実行させる、コンピュータ・プログラム製品。
  23. 前記プログラム命令が、前記プロセッサによってさらに実行可能であり、前記プロセッサに、
    前記バイアス・コンポーネントを使用して、前記非共鳴マイクロ波信号間の相対位相差を動的に調整することによって、または前記非共鳴マイクロ波信号のうちの少なくとも1つの振幅を調整することによって、前記第1および第2の量子ビット間のZZ相互作用の動的制御を容易にすることを実行させる、請求項22に記載のコンピュータ・プログラム製品。
  24. 前記プログラム命令が、前記プロセッサによってさらに実行可能であり、前記プロセッサに、
    前記バイアス・コンポーネントを使用して、前記非共鳴マイクロ波信号のうちの少なくとも1つの振幅を動的に調整することによって、前記第1および第2の量子ビット間のZZ相互作用の動的制御を容易にすることを実行させる、請求項22ないし23のいずれか一項に記載のコンピュータ・プログラム製品。
JP2023530243A 2020-12-03 2021-11-30 全マイクロ波zz制御 Pending JP2023551168A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US17/110,557 2020-12-03
US17/110,557 US11223347B1 (en) 2020-12-03 2020-12-03 All microwave ZZ control
PCT/EP2021/083647 WO2022117589A1 (en) 2020-12-03 2021-11-30 All microwave zz control

Publications (2)

Publication Number Publication Date
JP2023551168A true JP2023551168A (ja) 2023-12-07
JPWO2022117589A5 JPWO2022117589A5 (ja) 2024-01-16

Family

ID=78829741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023530243A Pending JP2023551168A (ja) 2020-12-03 2021-11-30 全マイクロ波zz制御

Country Status (5)

Country Link
US (1) US11223347B1 (ja)
EP (1) EP4256483A1 (ja)
JP (1) JP2023551168A (ja)
CN (1) CN116583856A (ja)
WO (1) WO2022117589A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11366741B2 (en) * 2017-12-08 2022-06-21 Microsoft Technology Licensing, Llc Debugging quantum programs
US11625638B2 (en) * 2021-05-19 2023-04-11 International Business Machines Corporation Drive enhanced J/ZZ operation for superconducting qubits

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7018852B2 (en) * 2002-08-01 2006-03-28 D-Wave Systems, Inc. Methods for single qubit gate teleportation
FR2862151B1 (fr) 2003-11-07 2007-08-24 Commissariat Energie Atomique Dispositif de reinitialisation d'un dispositif de bit quantique a deux etats d'energie
FI117032B (fi) 2004-07-19 2006-05-15 Teknillinen Korkeakoulu Kapasitiivinen yhden elektronin transistori
US10467544B2 (en) * 2015-12-31 2019-11-05 International Business Machines Corporation Multi-qubit tunable coupling architecture using fixed-frequency superconducting qubits
US11170317B2 (en) 2016-03-14 2021-11-09 International Business Machines Corporation Procedure for systematic tune up of crosstalk in a cross-resonance gate and system performing the procedure and using results of the same
US10255557B2 (en) 2017-02-15 2019-04-09 Northrop Grumman Systems Corporation XX Coupler for flux qubits
WO2018236922A1 (en) 2017-06-19 2018-12-27 Rigetti & Co, Inc. QUANTITIC LOGIC DOORS WITH PARAMETRIC ACTIVATION
CN109389223B (zh) 2018-08-30 2022-05-24 温州大学 一种通用量子计算机中央处理器及其操纵方法
US20210099201A1 (en) * 2019-09-26 2021-04-01 Quantum Benchmark, Inc. Systems and methods for cancellation of crosstalk

Also Published As

Publication number Publication date
EP4256483A1 (en) 2023-10-11
WO2022117589A1 (en) 2022-06-09
US11223347B1 (en) 2022-01-11
CN116583856A (zh) 2023-08-11

Similar Documents

Publication Publication Date Title
US10915831B2 (en) Reduction and/or mitigation of crosstalk in quantum bit gates
US10963809B2 (en) Cost function deformation in quantum approximate optimization
JP2023551168A (ja) 全マイクロ波zz制御
JP2021512396A (ja) 量子ゲートを実現するための万能制御
US10924095B1 (en) Multi-resonant coupling architectures for ZZ interaction reduction
US11626555B2 (en) Mode-selective couplers for frequency collision reduction
US11727297B2 (en) Tunable quantum coupler facilitating a quantum gate between qubits
US20200394276A1 (en) Simulation-based optimization on a quantum computer
JP2023531861A (ja) 2接合超伝導キュービット間のzz相互作用の抑制を容易にする量子デバイス
JP2023547348A (ja) パーティション化されたテンプレート・マッチングおよびシンボリック・ピープホール最適化
Ball et al. Quantum firmware and the quantum computing stack
JP2023543725A (ja) 分散領域における交差共鳴動作を促進する量子デバイス
EP4242934A1 (en) Quantum-kernel-based regression
US11625638B2 (en) Drive enhanced J/ZZ operation for superconducting qubits
US20230153667A1 (en) Stark shift cancellation
Smith et al. Parity Quantum Computing as YZ-Plane Measurement-Based Quantum Computing
US11620562B2 (en) Driving dark modes to facilitate entanglement
CN112313677B (zh) 用于实现量子门的通用控制
Nishi et al. Simulation of a spin-boson model by iterative optimization of a parametrized quantum circuit
WO2022197806A1 (en) Opposite anharmonicity coupler for gates in quantum computers

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240516