JP2023550056A - 介入装置の位置の決定 - Google Patents

介入装置の位置の決定 Download PDF

Info

Publication number
JP2023550056A
JP2023550056A JP2023528478A JP2023528478A JP2023550056A JP 2023550056 A JP2023550056 A JP 2023550056A JP 2023528478 A JP2023528478 A JP 2023528478A JP 2023528478 A JP2023528478 A JP 2023528478A JP 2023550056 A JP2023550056 A JP 2023550056A
Authority
JP
Japan
Prior art keywords
interventional device
sequence
temporal
computer
neural network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023528478A
Other languages
English (en)
Inventor
アシシ サットヤヴラット パンセ
アユシ シンハ
グジェゴジュ アンジェイ トポレック
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV filed Critical Koninklijke Philips NV
Publication of JP2023550056A publication Critical patent/JP2023550056A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/74Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10132Ultrasound image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/03Recognition of patterns in medical or anatomical images
    • G06V2201/034Recognition of patterns in medical or anatomical images of medical instruments

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Databases & Information Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Multimedia (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

介入装置100の複数の部分の各々の位置を予測するためのニューラルネットワークを提供するコンピュータ実装方法は、シーケンス内の1つ又は複数の履歴時間ステップt1..tn-1における介入装置100の形状を表す時間的形状データ110から、シーケンス内の現在の時間ステップtnにおける介入装置100の複数の部分の各々の位置140を予測するようにニューラルネットワーク130を訓練するステップS130を含む。

Description

本開示は、介入装置の部分の位置を決定することに関する。コンピュータ実装方法、処理装置、システム、及びコンピュータプログラム製品が、開示される。
多くの介入医療処置は、ライブX線撮像下で実行される。ライブX線撮像中に生成される2次元画像は、解剖学的構造と、処置に使用されるガイドワイヤ及びカテーテルなどの介入装置との両方の視覚化を提供することによって、医師を支援する。
一例として、血管内処置は、心血管系内の特定の位置にナビゲートされる介入装置を必要とする。ナビゲーションは、しばしば、大腿骨、上腕、橈骨、頸静脈、又は足のアクセスポイントから始まり、そこから、介入装置が、撮像又は治療手順が行われる場所まで血管系を通る。血管系は、典型的には、高い患者間変動性を有し、罹患時にはより高く、介入装置のナビゲーションを妨げることができる。例えば、腎血管の小孔を通る腹部大動脈瘤からのナビゲーションは、動脈瘤が装置の位置決め及びカニューレ挿入を補助するために血管壁を使用する能力を低下させるので、困難であり得る。
そのような処置の間、ガイドワイヤ及びカテーテルなどの介入装置の部分は、X線撮像の下で不明瞭になるか、又は不可視にさえなり得、介入装置のナビゲーションを更に妨げる。介入装置は、例えば、密な解剖学的構造の背後に隠されてもよい。介入装置のX線透過性セクション、及び画像アーチファクトは、また、解剖学的構造内の介入装置の経路の決定を混乱させ得る。
これらの欠点に対処するために、介入装置上での放射線不透過性基準マーカの使用、及びセグメント化された画像の補間を含む様々な技術が、開発されてきた。しかしながら、X線撮像下での介入装置の位置を決定する際に改善の余地が残されている。
本開示の第1の態様によれば、介入装置の複数の部分の各々の位置を予測するためのニューラルネットワークを提供するコンピュータ実装方法が、提供される。本方法は、
時間ステップt1..tnのシーケンスにおける介入装置の形状を表す時間的形状データを受信するステップと、
シーケンス内の各時間ステップにおける介入装置の複数の部分の各々の位置を表す介入装置グラウンドトゥルース位置データを受信するステップS12と、
シーケンス内の各現在の時間ステップに対して、シーケンス内の1つ又は複数の履歴時間ステップにおける介入装置の形状を表す受信された時間的形状データをニューラルネットワークに入力し、現在の時間ステップにおける介入装置の各部分の予測された位置と受信された介入装置グラウンドトゥルース位置データからの現在の時間ステップにおける介入装置100の各対応する部分の位置との間の差を表す損失関数に基づいてニューラルネットワークのパラメータを調整することによって、シーケンス内の現在の時間ステップにおける介入装置の複数の位置の各々の位置を、シーケンス内の1つ又は複数の履歴時間ステップにおける介入装置の形状を表す時間的形状データから予測するようにニューラルネットワークを訓練するステップと、
を含む。
本開示の第2の態様によれば、介入装置の複数の部分の各々の位置を予測するコンピュータ実装方法が、提供される。本方法は、
時間ステップのシーケンスにおける介入装置の形状を表す時間的形状データを受信するステップと、
シーケンス内の1つ又は複数の履歴時間ステップにおける介入装置の形状を表す時間的形状データから、シーケンス内の現在の時間ステップにおける介入装置の複数の部分の各々の位置を予測するように訓練されたニューラルネットワークに、シーケンス内の1つ又は複数の履歴時間ステップにおける介入装置の形状を表す受信された時間的形状データを入力するステップと、入力に応答して、ニューラルネットワークを使用して、シーケンス内の現在の時間ステップにおける介入装置の複数の部分の各々の予測された位置を生成するステップと、
を含む。
本開示の更なる態様、特徴、及び利点は、添付の図面を参照してなされる例の以下の説明から明らかになるであろう。
カテーテル及びガイドワイヤの先端を含む、人間の解剖学的構造のX線画像を示す。 本開示のいくつかの態様による、介入装置の部分の位置を予測するためのニューラルネットワークを提供する例示的な方法のフローチャートである。 本開示のいくつかの態様による、介入装置の部分の位置を予測するためのニューラルネットワークを提供する例示的な方法を示す概略図である。 LSTMセルの一例を示す概略図である。 本開示のいくつかの態様による、介入装置の部分の位置を予測する例示的な方法を示すフローチャートである。 カテーテル及びガイドワイヤを含む、人間の解剖学的構造のX線画像を示し、ガイドワイヤの他の不可視部分の予測される位置が表示される。 介入装置の部分の位置を予測するためのシステム200を示す概略図である。
本開示の例は、以下の説明及び図面を参照して提供される。この説明では、説明の目的のために、いくつかの例の多くの具体的な詳細が、説明される。本明細書において、「例」、「実施態様」、又は同様の言語への言及は、例に関連して説明される特徴、構造、又は特性が少なくともその1つの例に含まれることを意味する。また、1つの例に関連して説明された特徴は、別の例においても使用され得、すべての特徴が、簡潔さのために各例において必ずしも複製されないことを理解されたい。例えば、コンピュータ実装方法に関連して説明される特徴は、対応する形で、処理装置において、システムにおいて、及びコンピュータプログラム製品において実装され得る。
以下の説明では、血管系内の介入装置の位置を予測することを伴うコンピュータ実装方法が、参照される。ガイドワイヤの形の介入装置が血管系内でナビゲートされる、ライブX線撮像手順が、参照される。しかしながら、本明細書に開示されるコンピュータ実装方法の例は、限定的ではないが、カテーテル、血管内超音波撮像装置、光コヒーレンストモグラフィ装置、イントロデューサシース、レーザアテローム切除装置、機械的アテローム切除装置、血圧装置及び/又は流量センサ装置、TEEプローブ、針、生検針、アブレーション装置、バルーン、又はエンドグラフトなどの、ガイドワイヤ以外の他のタイプの介入装置とともに使用され得ることを理解されたい。本明細書に開示されるコンピュータ実装方法の例は、限定的ではないが、コンピュータ断層撮影撮像、超音波撮像、及び磁気共鳴撮像などの他のタイプの撮像手順とともに使用され得ることも理解されたい。本明細書に開示されるコンピュータ実装方法の例は、必要に応じて、消化管、呼吸経路、尿路などを含むが、これらに限定されない、血管系以外の解剖学的領域に配置される介入装置とともに使用されてもよいことも理解されたい。
本明細書で開示されるコンピュータ実装方法は、少なくとも1つのプロセッサによって実行されると、少なくとも1つのプロセッサに方法を実行させる、記憶されたコンピュータ可読命令を含む非一時的コンピュータ可読記憶媒体として提供され得ることに留意されたい。言い換えれば、コンピュータ実装方法は、コンピュータプログラム製品において実装され得る。コンピュータプログラム製品は、専用のハードウェア又は適切なソフトウェアと関連してソフトウェアを実行することができるハードウェアによって提供されることができる。プロセッサ又は「処理装置」によって提供されるとき、方法特徴の機能は、単一の専用プロセッサによって、単一の共用プロセッサによって、又はそのうちのいくつかが共有されることができる複数の個々のプロセッサによって提供されることができる。「プロセッサ」又は「コントローラ」という用語の明示的な使用は、ソフトウェアを実行することができるハードウェアを排他的に指すものとして解釈されるべきではなく、デジタル信号プロセッサ「DSP」ハードウェア、ソフトウェアを記憶するための読取専用メモリ「ROM」、ランダムアクセスメモリ「RAM」、不揮発性記憶装置などを暗黙的に含むことができるが、これらに限定されない。更に、本開示の例は、コンピュータ使用可能記憶媒体又はコンピュータ可読記憶媒体からアクセス可能なコンピュータプログラム製品の形態をとることができ、コンピュータプログラム製品は、コンピュータ又は任意の命令実行システムによって、又はそれらと関連して使用するためのプログラムコードを提供する。本説明の目的のために、コンピュータ使用可能記憶媒体又はコンピュータ可読記憶媒体は、命令実行システム、機器、又は装置によって、又はそれに関連して使用するためのプログラムを有する、記憶する、通信する、伝播する、又は移送することができる任意の装置であることができる。媒体は、電子、磁気、光学、電磁気、赤外線、又は半導体システム、装置、装置、又は伝搬媒体であることができる。コンピュータ可読媒体の例は、半導体又は固体メモリ、磁気テープ、リムーバブルコンピュータディスク、ランダムアクセスメモリ「RAM」、読取専用メモリ「ROM」、剛体磁気ディスク、及び光ディスクを含む。光ディスクの現在の例は、コンパクトディスク読取専用メモリ「CD-ROM」、光ディスク読取/書込「CD-R/W」、ブルーレイTM、DVDを含む。
図1は、カテーテル及びガイドワイヤの先端を含む、人間の解剖学的構造のX線画像を示す。図1では、肋骨などの解剖学的構造の密な領域が、画像内のより暗い領域として高度に可視である。カテーテル、及びそこから延びるガイドワイヤの先端も、また、高度に可視である。しかしながら、血管系などの軟組織領域は、不十分に可視であり、したがって、X線撮像下でのナビゲーション中にほとんどガイダンスを与えない。図1において「妨害」とラベル付けされた画像アーチファクト、及びガイドワイヤに類似して見えるX線画像における他の特徴も、また、X線画像におけるガイドワイヤの明確な可視化を妨げ得る。更なる複雑さは、X線撮像の下で、ガイドワイヤのいくつかの部分が不十分に可視であることである。例えば、ガイドワイヤの先端は、図1において明確に可視であるが、ガイドワイヤの部分は、「不可視部分」とラベル付けされた部分のように、不十分に可視であるか、又は完全に不可視である。他の介入装置の部分の可視性は、X線及び他の撮像システムによって撮像されるときに同様に損なわれることがある。
本発明者らは、介入装置の部分の位置を決定する改善された方法を見出した。図2は、本開示のいくつかの態様による、介入装置の部分の位置を予測するためのニューラルネットワークを提供する例示的な方法のフローチャートである。この方法は、図2乃至図4を参照して説明される。図2を参照すると、本方法は、介入装置100の複数の部分の各々の位置を予測するためのニューラルネットワークを提供するステップを含み、
時間ステップのシーケンスt1..tnにおける介入装置100の形状を表す時間的形状データ110を受信するステップS110と、
シーケンス内の各時間ステップt1..nで介入装置100の複数の部分の位置を表す介入装置グラウンドトゥルース位置データ120を受信するステップS120と、
シーケンス内の各現在時間ステップtnに対して、シーケンス内の1つ又は複数の履歴時間ステップt1..tn-1における介入装置100の形状を表す受信された時間的形状データ110を入力することS140、現在の時間ステップtnにおける介入装置100の各部分の予測された位置140と受信された介入装置グラウンドトゥルース位置データ120からの現在の時間ステップtnにおける介入装置100の各対応する部分の位置との間の差を表す損失関数に基づいて、ニューラルネットワーク130のパラメータを調整することS150によって、シーケンス内の1つ又は複数の履歴時間ステップt1..n-1における介入装置100の形状を表す時間的形状データ110から、シーケンス内の現在の時間ステップtnにおける介入装置100の複数の部分の各々の位置140を予測するようにニューラルネットワーク130を訓練するステップS130と、
を含む。
図3は、本開示のいくつかの態様による、介入装置の部分の位置を予測するためのニューラルネットワークを提供する例示的な方法を示す概略図である。図3は、複数の長期短期メモリLSTMセルを含むニューラルネットワーク130を含む。各LSTMセルの動作は、図4を参照して以下に説明される。
図3を参照すると、訓練動作S130の間、例えば、時間ステップt1..tn-1で生成される、セグメント化されたX線画像の時間シーケンスの形であってもよい時間的形状データ110は、ニューラルネットワーク130に入力される。X線画像は、図示の画像ではガイドワイヤである介入装置100を含む。X線画像は、各ステップt1..tnにおけるガイドワイヤの形状を表す。様々な既知のセグメンテーション技法が、X線画像から介入装置又はガイドワイヤの形状を抽出するのに使用され得る。Honnorat, N., et al.による文献"Robust guidewire segmentation through boosting, clustering and linear programming", 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Rotterdam, 2010, pp. 924-927に開示されるようなセグメンテーション技術が、例えば、使用されてもよい。X線画像は、ガイドワイヤの形状を二次元で提供する。次いで、ガイドワイヤの部分は、例えば、X線画像内のガイドワイヤ上の1つ又は複数の画素のグループを規定することによって、識別され得る。これらの部分は、ガイドワイヤの長さに沿って、任意に、又は一定の間隔で、規定され得る。その際、ガイドワイヤの各部分の位置は、各時間ステップt1..tnにおいて二次元で提供され得る。
一般に、時間的形状データ110は、介入装置100を含むX線画像の時間的シーケンス、又は介入装置100を含むコンピュータトモグラフィ画像の時間的シーケンス、又は介入装置100を含む超音波画像の時間的シーケンス、又は介入装置(100)を含む磁気共鳴画像の時間的シーケンス、又は介入装置100に機械的に結合された複数の電磁追跡センサ若しくはエミッタによって提供される位置の時間的シーケンス、又は介入装置100に機械的に結合された複数の光ファイバ形状センサによって提供される位置の時間的シーケンス、又は介入装置100に機械的に結合された複数の誘電センサによって提供される位置の時間的シーケンス、又は介入装置100に機械的に結合された複数の超音波追跡センサ又はエミッタによって提供される位置の時間的シーケンスを含み得る。したがって、時間的形状データ110を3次元形状データとして提供することも企図される。
時間ステップt1..tn-1におけるX線画像の生成と同時に、また、シーケンス内の各時間ステップt1..tnにおける介入装置100の複数の部分の各々の位置を表す対応する介入装置グランドトゥルース位置データ120も、生成されてもよい。介入装置グランドトゥルース位置データ120は、訓練データとして機能する。図3に示される例では、グランドトゥルース位置データ120は、時間的形状データ130を提供するために使用されるのと同じX線画像データによって提供される。したがって、グランドトゥルース位置データを2次元位置データとして提供することが企図される。更に、ガイドワイヤの同じ位置が、各時間ステップt1..tnにおいてグランドトゥルース位置データ120及び時間的形状データ110の両方を提供するのに使用されてもよい。
他のソースからグランドトゥルース位置データ120を提供することも企図される。いくつかの実装形態では、グランドトゥルース位置データ120が、時間的形状データ110のものとは異なるソースから生じ得る。グランドトゥルース位置データ120は、例えば、介入装置100を含むコンピュータトモグラフィ画像の時間的シーケンスによって提供されてもよい。したがって、グランドトゥルース位置データを3次元位置データとして提供することも企図される。コンピュータトモグラフィ画像は、例えば、コーンビームコンピュータトモグラフィ、CBCT、又はスペクトルコンピュータトモグラフィ画像であってもよい。グランドトゥルース位置データ120は、代替的に、介入装置100を含む超音波画像の時間的シーケンス、又は実際には磁気共鳴撮像などの別の撮像モダリティからの画像の時間的シーケンスによって提供されてもよい。
他の実装形態では、グランドトゥルース位置データ120が、介入装置に機械的に結合された追跡センサ又はエミッタによって提供されてもよい。この点において、国際公開第2015/165736A1号に開示されているものなどの電磁気追跡センサ又はエミッタ、又は国際公開第2007/109778A1号に開示されているものなどの光ファイバ形状センサ、米国特許出願公開第2019/254564A1号に開示されているものなどの誘電体センサ、又は国際公開第2020/030557A1号に開示されているものなどの超音波追跡センサ又はエミッタは、介入装置100に機械的に結合され、シーケンス内の各時間ステップt1..tnにおける各センサ又はエミッタの位置に対応する位置の時間シーケンスを提供するために使用され得る。
グラウンドトゥルース位置データ120が時間的形状データ110のソースとは異なるソースによって提供されるとき、グラウンドトゥルース位置データ120の座標系は、損失関数の計算を容易にするために時間的形状データ110の座標系に位置合わせされ得る。
時間的形状データ110及びグランドトゥルース位置データ120は、データベース、撮像システム、コンピュータ可読記憶媒体、クラウドなどを含む様々なソースから受信され得る。データは、有線又は無線データ通信などの任意の形態のデータ通信を使用して受信されてもよく、インターネット、イーサネットを介して、又はUSBメモリ装置、光ディスク又は磁気ディスクなどの可搬型コンピュータ可読記憶媒体を用いてデータを転送することによって受信されてもよい。
図3に戻ると、次いで、ニューラルネットワーク130は、1つ又は複数の履歴時間ステップt1..tn-1におけるX線画像の時間的シーケンスの形態の時間的形状データ110から を予測するように訓練される。 、シーケンス内の現在の時間ステップtnにおける介入装置100の複数の部分の各々の位置140図3のニューラルネットワーク130の訓練は、Alahi, A., et alによる "Social LSTM: Human Trajectory Prediction in Crowded Spaces", 2016 IEEE Conference on Computer Vision and Pattern Recognition "CVPR", 10.1109/CVPR.2016.110と題された文献に更に詳細に記載される形で実行されてもよい。ニューラルネットワーク130への入力は、介入装置の複数の部分の各々の位置である。介入装置の各部分について、LSTMセルは、1つ又は複数の履歴時間ステップt1..tn-1からの当該部分の位置を使用して、現在の時間ステップtnの部分の位置を予測する。
いくつかの実施態様では、ニューラルネットワーク130が、複数の出力を含み、各出力は、シーケンス内の現在の時間ステップtnにおける介入装置100の別の部分の位置140を予測する。図3に示されるニューラルネットワーク130では、訓練は、1つ又は複数の履歴時間ステップt1..tn-1から介入装置の各部分の位置をニューラルネットワークに入力し、現在の時間ステップtnにおける介入装置100の各部分の予測位置140と、受信された介入装置グラウンドトゥルース位置データ120からの現在の時間ステップtnにおける介入装置100の各対応する部分の位置との間の差を表す損失関数を使用して、ニューラルネットワークのパラメータを調整することによって実行される。これらの実施態様では、ニューラルネットワーク130の各出力は、図3に示されるように、対応する入力を含むことができ、対応する入力は、シーケンス内の1つ又は複数の履歴時間ステップ(t1..tn-1)における介入装置の一部分の位置の形態で介入装置(100)の形状を表す時間的形状データ(110)を受信するように構成される。上述のように、ガイドワイヤの部分の位置は、例えば、セグメント化されたX線画像内のガイドワイヤ上の1つ又は複数の画素のグループを規定することによって、入力されたX線画像110から識別され得る。
より詳細には、図3に示されるニューラルネットワーク130は、複数の出力を含み、各出力は、現在の時間ステップ(tn)における介入装置(100)の1つ又は複数の近傍部分の予測された位置に少なくとも部分的に基づいて、シーケンス内の現在の時間ステップ(tn)における介入装置(100)の異なる部分の位置(140)を予測する。この機能は、隣接するLSTMセル間の隠れ状態における情報の共有を可能にするプーリング層によって提供される。これは、予測される装置の部分の動きに対する装置の近傍部分の影響を捕捉する。これは、介入装置の近傍部分に関する位置情報、ひいては介入装置形状の連続性を保存するので、予測の精度を改善する。近傍の範囲、すなわち、近傍部分の数、及び近傍部分の位置が介入装置の部分の位置を予測するのに使用される範囲は、介入装置全体に対する直接の近傍部分間に及び得る。近傍の範囲は、装置の可撓性にも依存し得る。例えば、剛性装置は、比較的大きい近傍を使用し得るのに対し、可撓性装置は、比較的小さい近傍を使用し得る。図示されたプーリング層の代替案は、装置の連続性を破る、又は所定の値を超える介入装置の曲率を予測する、予測位置を除去することによって、ニューラルネットワークの出力に拘束を適用することを含む。
いくつかの実装形態では、図3に示されるニューラルネットワークは、LSTMセルによって提供され得る。例えば、図3においてLSTMとしてラベル付けされた各ブロックは、図4に示されるようなLSTMセルによって提供されてもよい。介入装置の各部分の位置は、LSTMセルによって予測され得る。しかしながら、LSTMとラベル付けされたアイテムの機能は、他のタイプのニューラルネットワークによってLSTMに提供されてもよい。LSTMとラベル付けされたアイテムの機能は、例えば、リカレントニューラルネットワーク、RNN、畳み込みニューラルネットワーク、CNN、時間畳み込みニューラルネットワーク、TCN、及び変換器によって提供され得る。
訓練動作S130は、現在の時間ステップtnにおける介入装置100の各部分の予測位置140と、受信された介入装置グラウンドトゥルース位置データ120からの現在の時間ステップtnにおける介入装置100の各対応する部分の位置との間の差を表す損失関数に基づいて、ニューラルネットワーク130のパラメータを調整することS150を伴う。
訓練動作S130は、例示的なLSTMセルを示す概略図である図4を参照してより詳細に説明される。図4に示されるLSTMセルは、図3のLSTMセルを実装するために使用され得る。図4を参照すると、LSTMセルは、3つの入力、すなわち、ht-1、ct-1及びxtと、2つの出力、すなわち、ht及びctとを含む。シグマ及びtanhラベルは、それぞれ、シグモイド及びtanh活性化関数を表し、「x」及び「+」記号は、それぞれ、点ごとの乗算及び点ごとの加算演算を表す。時間tにおいて、出力htは、隠れ状態を表し、出力ctは、セル状態を表し、入力xtは、現在のデータ入力を表す。図4の左から右へ移動すると、第1のシグモイド活性化関数は、忘却ゲートを提供する。その入力、すなわち、ht-1及びxtは、それぞれ、以前のセルの隠れ状態を表し、現在のデータ入力は、連結され、シグモイド活性化関数を通される。シグモイド活性化関数の出力は、次いで、以前のセル状態ct-1により乗算される。忘却ゲートは、現在のセル状態ctに含まれる以前のセルからの情報の量を制御する。その寄与は、「+」記号によって表される点ごとの加算を介して含まれる。図1の右側に移動すると、入力ゲートが、セル状態ctの更新を制御する。前のセルの隠れ状態ht-1、及び現在のデータ入力xtは、連結され、シグモイド活性化関数を通され、更にtanh活性化関数を通される。これらの関数の出力の点ごとの乗算は、「+」記号によって表される点ごとの加算を介してセル状態に加算される情報の量を決定する。点ごとの乗算の結果は、現在のセル状態ctを提供するために、以前のセル状態ct-1で乗算された忘却ゲートの出力に加算される。図1の右側に更に移動すると、次の隠れ状態htが何であるべきかを決定する。隠れ状態は、以前の入力に関する情報を含み、予測のために使用される。次の隠れ状態htを決定するために、以前のセルの隠れた状態ht-1、及び現在のデータ入力xt-1は、連結され、シグモイド活性化関数を通される。新しいセル状態ctは、tanh活性化関数を通される。次いで、tanh活性化関数及びシグモイド活性化関数の出力が、次の隠れ状態ht における情報を決定するように乗算される。
他のニューラルネットワークと同様に、図4に示されるLSTMセルの訓練、したがってそれが使用され得るニューラルネットワークは、パラメータ、すなわち重み及びバイアスを調整することによって実行される。図4を参照すると、図4の下の4つの活性化関数は、重み及びバイアスによって制御される。これらは、図4において、記号w及びbを用いて識別される。図示のLSTMセルでは、これらの4つの活性化関数の各々が、典型的には2つの重み値、すなわち、各xt入力に対して1つ、及び各ht-1に対して1つ、並びに1つのバイアス値bを含む。したがって、図4に示される例示的なLSTMセルは、典型的には8つの重みパラメータと4つのバイアスパラメータとを含む。
したがって、図4に示されるLSTMセルの動作は、以下の式によって制御される。
t=σ((whf×ht-1)+(wxf×xt)+bf) 式1
t=σ((whu×ht-1)+(wxu×xt)+bu) 式2
c~t=tanh((whc×ht-1)+(wxc×xt)+bc) 式3
t=σ((who×ht-1)+(wxo×xt)+bo) 式4
t=[c~t+ut]+[ct-1+ft] 式5
t=[ot×tanhct] 式6
したがって、図4に示されるLSTMセルを含むニューラルネットワーク、及び他のニューラルネットワークの訓練は、活性化関数の重み及びバイアスを調整することを伴う。教師あり学習は、入力データ及び対応する期待出力データを含む訓練データセットをニューラルネットワークに提供することを含む。訓練データセットは、ニューラルネットワークが訓練後の分析に使用される可能性が高い入力データを表す。教師あり学習の間、入力データを提示されるときに、ニューラルネットワークが、対応する期待出力データを正確に提供するように、重み及びバイアスが、自動的に調整される。
ニューラルネットワークを訓練することは、典型的には、大きな訓練データセットをニューラルネットワークに入力することと、訓練されたニューラルネットワークが正確な出力を提供するまで、ニューラルネットワークパラメータを反復的に調整することとを伴う。訓練は、通常、グラフィック処理ユニット「GPU」、又はニューラル処理ユニット「NPU」又はテンソル処理ユニット「TPU」などの専用ニューラルプロセッサを使用して実行される。したがって、訓練は、典型的にはニューラルネットワークを訓練するためにクラウドベース又はメインフレームベースのニューラルプロセッサが使用される集中型アプローチを採用する。訓練データセットを用いたその訓練に続いて、訓練されたニューラルネットワークは、新しい入力データを分析するための装置、「推論」と呼ばれるプロセスに展開され得る。推論中の処理要件は、訓練中に必要とされるものよりも著しく低く、ニューラルネットワークがラップトップコンピュータ、タブレット、携帯電話などの様々なシステムに展開されることを可能にする。推論は、例えば、中央処理ユニット「CPU」、GPU、NPU、TPU、サーバ上、又はクラウド内で実行され得る。
上で概説したように、ニューラルネットワークを訓練するプロセスは、活性化関数の上記の重み及びバイアスを調整することを含む。教師付き学習では、訓練プロセスは、入力データを提示されるときに、ニューラルネットワークが対応する期待出力データを正確に提供するように、重み及びバイアスを自動的に調整する。損失関数の値又は誤差は、予測出力データと期待出力データとの間の差に基づいて計算される。損失関数の値は、負の対数尤度損失、平均二乗誤差、又はフーバー損失、又は交差エントロピーなどの関数を使用して計算され得る。訓練中、損失関数の値は、典型的には最小化され、訓練は、損失関数の値が停止基準を満たすときに終了される。場合によっては、訓練は、損失関数の値が複数の基準のうちの1つ以上を満たすときに、終了される。
勾配降下法、準ニュートン法など、損失最小化問題を解決するための様々な方法が、既知である。確率的勾配降下「SGD」、バッチ勾配降下、ミニバッチ勾配降下、ガウス・ニュートン法、レーベンバーグ・マルカート法、モーメンタム法、Adam、Nadam、Adagrad、Adadelta、RMSProp、及びAdamax「オプティマイザ」を含むが、これらに限定されない、これらの方法及びそれらの変形を実装するために、様々なアルゴリズムが開発されてきた。これらのアルゴリズムは、連鎖法を使用して、モデルパラメータに対する損失関数の導関数を計算する。このプロセスは、導関数が、最後の層又は出力層において開始して第1の層又は入力層に向かって移動して計算されるので、逆伝搬と呼ばれる。これらの導関数は、誤差関数を最小化するためにモデルパラメータがどのように調整されなければならないかをアルゴリズムに知らせる。すなわち、モデルパラメータに対する調整は、出力層から始まり、入力層が達されるまでネットワーク内で後方に動作するように行われる。第1の訓練反復において、初期重み及びバイアスは、しばしばランダム化される。次いで、ニューラルネットワークは、同様にランダムである出力データを予測する。次いで、逆伝搬が、重み及びバイアスを調整するために使用される。訓練プロセスは、各反復において重み及びバイアスを調整することによって反復的に実行される。訓練は、誤差、又は予測出力データと期待出力データとの間の差が、訓練データ又はいくつかの検証データについて許容可能な範囲内にあるときに、終了される。その後、ニューラルネットワークが、展開され得、訓練されたニューラルネットワークは、そのパラメータの訓練された値を使用して、新しい入力データについて予測を行う。訓練プロセスが成功した場合、訓練されたニューラルネットワークは、新しい入力データから期待される出力データを正確に予測する。
図3及び図4を参照して上述された例示的なLSTMニューラルネットワークは、例としてのみ機能し、他のニューラルネットワークも、同様に、上述された方法の機能を実装するために使用され得ることを理解されたい。LSTMニューラルネットワーク130に対する代替のニューラルネットワークは、また、リカレントニューラルネットワーク、RNN、畳み込みニューラルネットワーク、CNN、時間畳み込みニューラルネットワーク、TCN、及び変換器を含むが、これらに限定されない、訓練動作S130中に所望の予測を実行するために訓練され得る。
いくつかの実装形態では、動作S130におけるニューラルネットワークの訓練は、更に拘束される。1つの例示的な実装形態では、時間的形状データ110、又は介入装置グラウンドトゥルース位置データ120は、介入装置100を含むX線画像の時間的シーケンスを有し、介入装置100は、血管領域内に配置される。この例では、上述の方法は、更に、
時間的形状データ110又は介入装置グランドトゥルース位置データ120から、血管領域の形状を表す血管画像データを抽出するステップS160を含み、
ニューラルネットワーク130を訓練するステップS130は、更に、
現在の時間ステップtnにおける介入装置100の複数の領域の各々の予測された位置140が、抽出された血管画像データによって表される血管領域の形状内にフィットするように、調整S150を拘束することを有する。
そうすることで、介入装置の部分の位置が、より高い精度で予測され得る。拘束は、拘束に基づいて第2の損失関数を計算し、この第2の損失関数を、前述の損失関数と共に、目的関数に組み込むことによって適用され得、その値は、次いで、訓練動作S130中に最小化される。
血管領域の形状を表す血管画像データは、例えば、X線画像の時間的シーケンス110を1つ又は複数のデジタルサブトラクション血管造影DSA画像として提供することによって、X線画像から決定され得る。
上で説明された訓練方法の態様は、方法を実行するように構成された1つ又は複数のプロセッサを有する処理装置によって提供され得る。処理装置は、例えば、クラウドベースの処理システム又はサーバベースの処理システム又はメインフレームベースの処理システムであり得、いくつかの例では、1つ又は複数のプロセッサが、1つ又は複数のニューラルプロセッサ又はニューラル処理ユニット「NPU」、1つ又は複数のCPU、又は1つ又は複数のGPUを含み得る。処理装置は、分散コンピューティングシステムによって提供されてもよいことも企図される。処理装置は、方法を実行するための命令及びそれに関連するデータを集合的に記憶する1つ又は複数の非一時的コンピュータ可読記憶媒体と通信し得る。
訓練されたニューラルネットワーク130の上述の例は、「推論」と呼ばれるプロセスにおける新しいデータに関する予測を行うために使用され得る。訓練されたニューラルネットワークは、例えば、ラップトップコンピュータ、タブレット、携帯電話などのシステムに展開されてもよい。推論は、例えば、中央処理ユニット「CPU」、GPU、NPU、サーバ上、又はクラウド内で実行され得る。図5は、本開示のいくつかの態様による、介入装置の部分の位置を予測する例示的な方法を示すフローチャートである。図5を参照すると、介入装置100の複数の部分の各々の位置を予測するコンピュータ実装方法は、
時間ステップのシーケンスt1..tnにおける介入装置100の形状を表す時間的形状データ210を受信するステップS210と、
時間的形状データ210を、シーケンス内の1つ又は複数の履歴的時間t1..tn-1における介入装置100の形状を表す時間的形状データ210から、シーケンス内の現在の時間ステップtnにおける介入装置100の複数の部分の各々の位置140を予測するように訓練されたニューラルネットワーク130に、シーケンス内の1つ又は複数の履歴的時間t1..tn-1における介入装置100の形状を表す受信された時間的形状データ210を入力するステップS220と、入力S220に応じて、ニューラルネットワークを使用して、シーケンス内の現在の時間ステップtnにおける介入装置100の複数の部分の各々の予測された位置140を生成するステップS230と、
を含む。
現在の時間ステップtnにおける介入装置100の複数の部分の各々の予測位置140は、予測位置140を表示装置に表示する、又はメモリ装置に記憶すること等によって出力されてもよい。
上述のように、時間的形状データ210は、例えば、
介入装置100を含むX線画像の時間的シーケンス、又は
介入装置100を含むコンピュータトモグラフィ画像の時間的シーケンス、又は
介入装置100を含む超音波画像の時間的シーケンス、又は
介入装置100に機械的に結合された複数の電磁追跡センサ又はエミッタによって提供される位置の時間的シーケンス、又は
介入装置100に機械的に結合された複数の光ファイバ形状センサによって提供される位置の時間的シーケンス、又は
介入装置100に機械的に結合された複数の誘電センサによって提供される位置の時間的シーケンス、又は
介入装置100に機械的に結合された複数の超音波追跡センサ又はエミッタによって提供される位置の時間的シーケンス、
を含む。
ニューラルネットワーク130によって予測されるシーケンス内の現在の時間ステップtnにおける介入装置100の複数の部分の各々の予測位置140は、時間的形状データ210が介入装置を明確に識別しないとき、現在の時間ステップtnにおける介入装置の1つ又は複数の部分の予測位置を提供するために使用され得る。したがって、一例では、時間的形状データ210が、介入装置100を含むX線画像の時間的シーケンスを含み、推論方法は、
現在の時間ステップtnに対応する時間的シーケンスからの現在のX線画像を表示するステップと、
現在のX線画像内の介入装置100の少なくとも1つの部分の予測位置140を現在のX線画像内に表示するステップと、
を含む。
そうすることで、推論方法は、介入装置の部分の不十分な可視性に関連する欠点を軽減する。
訓練動作S130中に上述されたもののような時間的形状データ210の他のソースは、同様に、推論中に受信され、対応する形で表示されてもよい。
一例として、図6は、カテーテル及びガイドワイヤを含む、人間の解剖学的構造のX線画像を示し、ガイドワイヤの他の不可視部分の予測される位置が、表示される。介入装置100の(複数の)部分の(複数の)予測位置は、例えば、現在のX線画像においてオーバーレイとして表示されてもよい。
いくつかの例では、信頼スコアも、計算され、介入装置の表示された位置について表示装置上に表示され得る。信頼スコアは、現在のX線画像における介入装置100の(複数の)部分の(複数の)予測位置上のオーバーレイとして提供されてもよい。信頼スコアは、例えば、装置位置が正しい確率のヒートマップとして提供されてもよい。その数値を表示すること、棒グラフを表示することなどを含む、信頼性スコアを提示する他の形態は、代替的に使用されてもよい。信頼スコアは、例えば図3の各LSTMセルの出力におけるSoftmax層によって提供され得る、ニューラルネットワークの出力を使用して計算され得る。
システム200は、また、介入装置100の複数の部分の各々の位置を予測するために提供される。それに加えて、図7は、介入装置の部分の位置を予測するためのシステム200を示す概略図である。システム200は、コンピュータ実施推論方法に関連して上述した動作のうちの1つ又は複数を実行するように構成された1つ又は複数のプロセッサ270を含む。システムは、また、図7に示されるX線撮像システム280、又は別の撮像システムのような撮像システムを含んでもよい。使用時には、X線撮像装置280は、X線画像のシーケンスの形態での時間ステップt1..tnにおける介入装置100の形状を表す時間的形状データ210を生成してもよく、これは、本方法への入力として使用されてもよい。システム200は、また、図7に示されるような1つ又は複数の表示装置、及び/又はキーボードなどのユーザインターフェース装置、及び/又は方法の実行を制御するためのマウスなどのポインティング装置、及び/又は患者ベッドを含み得る。
上記の例は、本開示を例示するものとして理解されるべきであり、限定するものではない。更なる例も、企図される。例えば、コンピュータ実装方法に関連して説明された例は、対応する形で、コンピュータプログラム製品によって、又はコンピュータ可読記憶媒体によって、又は処理装置によって、又はシステム200によっても提供され得る。任意の1つの例に関連して記載される特徴は、単独で、又は他の記載される特徴と組み合わせて使用され得、また、別の例の1つ又は複数の特徴、又は他の例の組み合わせと組み合わせて使用され得ることを理解されたい。更に、添付の特許請求の範囲で定義される本発明の範囲から逸脱することなく、上記で説明されていない均等物及び修正物も使用され得る。請求項において、単語「有する」は、他の要素又は動作を排除するものではなく、不定冠詞「a」又は「an」は、複数性を排除するものではない。特定の特徴が相互に異なる従属請求項に記載されているという単なる事実は、これらの特徴の組み合わせが有利に使用されることができないことを示すものではない。請求項におけるいかなる参照符号も、それらの範囲を限定するものとして解釈されるべきではない。

Claims (15)

  1. 介入装置の複数の部分の各々の位置を予測するためのニューラルネットワークを提供するコンピュータ実装方法において、
    時間ステップのシーケンスにおける介入装置の形状を表す時間的形状データを受信するステップと、
    前記シーケンス内の各時間ステップにおける前記介入装置の複数の部分の各々の位置を表す介入装置グラウンドトゥルース位置データを受信するステップと、
    前記シーケンス内の各現在の時間ステップについて、前記シーケンス内の1つ又は複数の履歴時間ステップにおける前記介入装置の形状を表す前記受信された時間的形状データをニューラルネットワークに入力し、前記現在の時間ステップにおける前記介入装置の各部分の前記予測された位置と前記受信された介入装置グラウンドトゥルース位置データからの前記現在の時間ステップにおける前記介入装置の各対応する部分の位置との間の差を表す損失関数に基づいて前記ニューラルネットワークのパラメータを調整することによって、前記シーケンス内の1つ又は複数の履歴時間ステップにおける前記介入装置の形状を表す前記時間的形状データから、前記シーケンス内の現在の時間ステップにおける前記介入装置の前記複数の部分の各々の位置を予測するようにニューラルネットワークを訓練するステップと、
    を有するコンピュータ実装方法。
  2. 前記時間的形状データ、又は前記介入装置グランドトゥルース位置データが、
    前記介入装置を含むX線画像の時間的シーケンス、又は
    前記介入装置を含むコンピュータトモグラフィ画像の時間的シーケンス、又は
    前記介入装置を含む超音波画像の時間的シーケンス、又は
    前記介入装置を含む磁気共鳴画像の時間的シーケンス、又は
    前記介入装置に機械的に結合された複数の電磁追跡センサ又はエミッタによって提供される位置の時間的シーケンス、又は
    前記介入装置に機械的に結合された複数の光ファイバ形状センサによって提供される位置の時間的シーケンス、又は
    前記介入装置に機械的に結合された複数の誘電センサによって提供される位置の時間的シーケンス、又は
    前記介入装置に機械的に結合された複数の超音波追跡センサ又はエミッタによって提供される位置の時間的シーケンス、
    を有する、請求項1に記載のコンピュータ実装方法。
  3. 前記ニューラルネットワークは、複数の出力を有し、各出力は、前記シーケンス内の前記現在の時間ステップにおける前記介入装置の異なる部分の位置を予測するように構成される、請求項1又は2に記載のコンピュータ実装方法。
  4. 各出力が、前記現在の時間ステップにおける前記介入装置の1つ又は複数の近傍部分の前記予測された位置に少なくとも部分的に基づいて、前記シーケンス内の前記現在の時間ステップにおける前記介入装置の前記異なる部分の位置を予測するように構成される、請求項1乃至3のいずれか一項に記載のコンピュータ実装方法。
  5. 前記ニューラルネットワークが、複数のLSTMセルを有するLSTMニューラルネットワークを有し、各LSTMセルが、前記シーケンス内の前記現在の時間ステップにおける前記介入装置の異なる部分の位置を予測するように構成された出力を有し、
    各LSTMセルについて、前記セルが、前記シーケンス内の前記1つ又は複数の履歴時間ステップにおける前記介入装置の形状を表す前記受信された時間的形データと、前記現在の時間ステップにおける前記介入装置の1つ又は複数の近傍部分の予測された位置とに基づいて、前記シーケンス内の前記現在の時間ステップにおける前記介入装置の前記部分の位置を予測するように構成される、請求項3に形状のコンピュータ実装方法。
  6. 前記時間的形状データ又は前記介入装置グランドトゥルース位置データは、前記介入装置を含むX線画像の時間的シーケンスを有し、前記コンピュータ実装方法は、各時間ステップにおいて、前記介入装置の形状又は前記介入装置の前記複数の部分の各々の位置をそれぞれ提供するように前記シーケンス内の各X線画像をセグメント化するステップを更に有する、請求項2に記載のコンピュータ実装方法。
  7. 前記時間的形状データ、又は前記介入装置グラウンドトゥルース位置データは、前記介入装置を含むX線画像の時間的シーケンスを有し、前記介入装置は、血管領域内に配置され、前記コンピュータ実装方法が、
    前記時間的形状データ、又は前記介入装置グランドトゥルース位置データから、前記血管領域の形状を表す血管画像データを抽出するステップ、
    を更に有し、
    前記ニューラルネットワークを訓練するステップが、前記シーケンス内の前記現在の時間ステップにおける前記介入装置の前記複数の部分の各々の前記予測された位置が前記抽出された血管画像データによって表される前記血管領域の形状内にフィットするように、前記調整するステップを拘束することを更に含む、
    請求項1に記載のコンピュータ実装方法。
  8. 前記X線画像の時間的シーケンスは、デジタルサブトラクション血管造影画像を有する、請求項7に記載のコンピュータ実装方法。
  9. 前記介入装置が、ガイドワイヤ、カテーテル、血管内超音波撮像装置、光コヒーレンストモグラフィ装置、イントロデューサシース、レーザアテレクトミー装置、機械的アテレクトミー装置、血圧装置及び/又は流量センサ装置、TEEプローブ、針、生検針、アブレーション装置、バルーン、又はエンドグラフトを有する、請求項1に記載のコンピュータ実装方法。
  10. 介入装置の複数の部分の各々の位置を予測するためのニューラルネットワークを提供するための処理装置において、前記処理装置は、請求項1乃至9のいずれか一項に記載の方法を実行するように構成された1つ又は複数のプロセッサを有する、処理装置。
  11. 介入装置の複数の部分の各々の位置を予測するコンピュータ実装方法において、
    時間ステップのシーケンスにおける介入装置の形状を表す時間的形状データを受信するステップと、
    前記シーケンス内の1つ又は複数の履歴時間ステップにおける前記介入装置の形状を表す前記時間的形状データから、前記シーケンス内の現在の時間ステップにおける前記介入装置の前記複数の部分の各々の位置を予測するように訓練されたニューラルネットワークに、前記シーケンス内の1つ又は複数の履歴時間ステップにおける前記介入装置の形状を表す前記受信された時間的形状データを入力し、前記入力に応答して、前記ニューラルネットワークを使用して、前記シーケンス内の前記現在の時間ステップにおける前記介入装置の前記複数の部分の各々の予測された位置を生成するステップと、
    を有する、コンピュータ実装方法。
  12. 前記時間的形状データは、前記介入装置を含むX線画像の時間的シーケンスを有し、前記方法が、更に、
    前記現在の時間ステップに対応する前記時間的シーケンスからの現在のX線画像を表示するステップと、
    前記現在のX線画像内の前記介入装置の少なくとも一部の前記予測された位置を前記現在のX線画像内に表示するステップと、
    を有する、請求項11に記載のコンピュータ実装方法。
  13. 前記少なくとも1つの表示された位置の信頼スコアを計算するステップと、
    前記計算された信頼スコアを表示するステップと、
    を更に有する、請求項11に記載のコンピュータ実装方法。
  14. 介入装置)の複数の部分の各々の位置を予測するためのシステムにおいて、請求項11に記載の方法を実行するように構成された1つ又は複数のプロセッサを有する、システム。
  15. 1つ又は複数のプロセッサによって実行されると、前記1つ又は複数のプロセッサに、請求項1又は請求項11に記載の方法を実行させる命令を有するコンピュータプログラム。
JP2023528478A 2020-11-24 2021-11-18 介入装置の位置の決定 Pending JP2023550056A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202063117543P 2020-11-24 2020-11-24
US63/117,543 2020-11-24
PCT/EP2021/082056 WO2022112076A1 (en) 2020-11-24 2021-11-18 Determining interventional device position

Publications (1)

Publication Number Publication Date
JP2023550056A true JP2023550056A (ja) 2023-11-30

Family

ID=78770632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023528478A Pending JP2023550056A (ja) 2020-11-24 2021-11-18 介入装置の位置の決定

Country Status (5)

Country Link
US (1) US20240020877A1 (ja)
EP (1) EP4252199A1 (ja)
JP (1) JP2023550056A (ja)
CN (1) CN116472561A (ja)
WO (1) WO2022112076A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022218773A1 (en) * 2021-04-12 2022-10-20 Koninklijke Philips N.V. Navigating an interventional device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007109778A1 (en) 2006-03-22 2007-09-27 Hansen Medical, Inc. Fiber optic instrument sensing system
JP6581598B2 (ja) 2014-04-29 2019-09-25 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. カテーテルの特定の位置を決定するための装置
US10278616B2 (en) 2015-05-12 2019-05-07 Navix International Limited Systems and methods for tracking an intrabody catheter
US10529088B2 (en) * 2016-12-02 2020-01-07 Gabriel Fine Automatically determining orientation and position of medically invasive devices via image processing
WO2020030557A1 (en) 2018-08-08 2020-02-13 Koninklijke Philips N.V. Tracking an interventional device respective an ultrasound image plane

Also Published As

Publication number Publication date
CN116472561A (zh) 2023-07-21
US20240020877A1 (en) 2024-01-18
EP4252199A1 (en) 2023-10-04
WO2022112076A1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
JP7312301B2 (ja) 次数低減モデル及び/または機械学習を使用して血流特性を推定するためのシステム及び方法
US20210219935A1 (en) Data-driven plaque determination in medical imaging
JP2023550056A (ja) 介入装置の位置の決定
WO2021193019A1 (ja) プログラム、情報処理方法、情報処理装置及びモデル生成方法
JP7421689B2 (ja) 介入装置形状の決定
CN111954907A (zh) 基于机器学习的血管成像中的分辨和操纵决策焦点
WO2021193024A1 (ja) プログラム、情報処理方法、情報処理装置及びモデル生成方法
JP2024515068A (ja) 介入装置のナビゲート
EP4173585A1 (en) Method for identifying a vascular access site
EP4254428A1 (en) Intravascular procedure step prediction
EP4195215A1 (en) Thrombus treatment metric
EP4181058A1 (en) Time-resolved angiography
EP4252666A1 (en) Determining a value of a physical property of a thrombus
WO2023072973A1 (en) Identifying a vascular access site
KR102656944B1 (ko) 기계 학습 기반의 분획혈류예비력 예측 방법
WO2023186610A1 (en) Intravascular procedure step prediction
WO2021193018A1 (ja) プログラム、情報処理方法、情報処理装置及びモデル生成方法
WO2023104559A1 (en) Thrombus treatment metric
WO2023186514A1 (en) Determining a value of a physical property of a thrombus
JP2023130133A (ja) プログラム、情報処理方法、情報処理装置及びモデル生成方法
WO2023083700A1 (en) Time-resolved angiography
CN118265995A (en) Time resolved angiography
JP2023553728A (ja) 血管狭窄の位置特定