JP2023548890A - Coating agent for electron transport layer of reverse structure perovskite solar cell and reverse structure perovskite solar cell - Google Patents

Coating agent for electron transport layer of reverse structure perovskite solar cell and reverse structure perovskite solar cell Download PDF

Info

Publication number
JP2023548890A
JP2023548890A JP2023527781A JP2023527781A JP2023548890A JP 2023548890 A JP2023548890 A JP 2023548890A JP 2023527781 A JP2023527781 A JP 2023527781A JP 2023527781 A JP2023527781 A JP 2023527781A JP 2023548890 A JP2023548890 A JP 2023548890A
Authority
JP
Japan
Prior art keywords
transport layer
solar cell
electron transport
perovskite solar
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023527781A
Other languages
Japanese (ja)
Inventor
ヨン,ウンジュ
チョン,クァンホ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hanwha Solutions Corp
Original Assignee
Hanwha Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hanwha Solutions Corp filed Critical Hanwha Solutions Corp
Publication of JP2023548890A publication Critical patent/JP2023548890A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/04Compounds of zinc
    • C09C1/043Zinc oxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/407Aluminium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/102Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising tin oxides, e.g. fluorine-doped SnO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • H10K30/85Layers having high electron mobility, e.g. electron-transporting layers or hole-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • H10K30/86Layers having high hole mobility, e.g. hole-transporting layers or electron-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本発明は、電子伝達層(又は電子輸送層)形成用コーティング剤として、表面改質された金属酸化物ナノ粒子を分散液タイプで製造されたコーティング剤として提供し、これを利用して電子伝達層が形成した逆構造ペロブスカイトに関する。The present invention provides surface-modified metal oxide nanoparticles as a coating agent for forming an electron transport layer (or electron transport layer) in the form of a dispersion type coating agent, and utilizes the coating agent to transport electrons. Concerning inverted structure perovskites formed by layers.

Description

本発明は、太陽電池の電子伝達層形成用コーティング剤及びこれを利用して形成された電子伝達層を含む逆構造ペロブスカイト太陽電池に関する。 The present invention relates to a coating agent for forming an electron transport layer of a solar cell and an inverted perovskite solar cell containing an electron transport layer formed using the coating agent.

化石エネルギーの枯渇とその使用による地球の環境的な問題を解決するために、太陽エネルギー、風力、水力のような再生可能であり、清浄な代替エネルギー源に対する研究が活発に進行されている。 In order to solve the earth's environmental problems caused by the depletion of fossil energy and its use, research into renewable and clean alternative energy sources such as solar energy, wind power, and hydropower is actively underway.

その中で太陽光から直接電気的エネルギーを変化させる太陽電池に対する関心が大きく増加している。ここで、太陽電池とは、太陽光から光エネルギーを吸収して電子と正孔を発生する光電効果を利用して電流-電圧を生成する電池を意味する。 Under these circumstances, interest in solar cells that directly convert electrical energy from sunlight is increasing significantly. Here, the solar cell refers to a battery that generates current-voltage using the photoelectric effect that absorbs light energy from sunlight and generates electrons and holes.

現在、光エネルギーの変換効率が20%を越えるn-pダイオード型シリコン(Si)単結晶基盤の太陽電池の製造が可能で実際に太陽光の発電に用いられており、これより変換効率に優れたガリウムアーセナイド(GaAs)のような化合物半導体を利用した太陽電池もある。しかし、このような無機半導体基盤の太陽電池は、高効率化のために非常に高純度に精製した素材が必要なので、原素材の精製に多くのエネルギーが消費され、また、原素材を利用して単結晶あるいは薄膜化する過程で高価の工程装備が要求されて太陽電池の製造費用を低くするには限界があり、大規模的な活用への障害物となって来た。 Currently, it is possible to manufacture n-p diode type silicon (Si) single-crystal based solar cells with a light energy conversion efficiency of over 20%, and they are actually used for solar power generation. There are also solar cells that use compound semiconductors such as gallium arsenide (GaAs). However, solar cells based on inorganic semiconductors require highly purified materials in order to achieve high efficiency, so a lot of energy is consumed in refining the raw materials, and it is difficult to use the raw materials. The process of making solar cells into single crystals or thin films requires expensive process equipment, which limits the ability to reduce the manufacturing costs of solar cells and has become an obstacle to large-scale utilization.

それによって、太陽電池を低価で製造するためには、太陽電池で核心として用いられる素材あるいは製造工程の費用を大幅に減少させる必要があり、無機半導体基盤の太陽電池の代案として低価の素材と工程で製造が可能なペロブスカイト太陽電池に対する研究が進行されている。 Therefore, in order to manufacture solar cells at low cost, it is necessary to significantly reduce the cost of the materials used as the core of solar cells or the cost of the manufacturing process. Research is underway on perovskite solar cells that can be manufactured using this process.

最近、ペロブスカイト構造のハロゲン化合物である(NHCH)PbX(X=I、Br、Cl)を光活性体で用いるペロブスカイト太陽電池が開発されて商業化のための研究が進行されている。ペロブスカイト構造の一般的な構造式は、ABX構造であり、Xには陰イオンが位置し、Aには大きい陽イオンが位置し、Bにはサイズが小さい陽イオンが位置する構造を有する。 Recently, a perovskite solar cell that uses (NH 3 CH 3 )PbX 3 (X=I, Br, Cl), a halogen compound with a perovskite structure, as a photoactive substance has been developed, and research for commercialization is underway. . The general structural formula of a perovskite structure is an ABX 3 structure, in which an anion is located at X, a large cation is located at A, and a cation with a small size is located at B.

分子式(CHNH)PbXの有機金属ハロゲン化合物であるペロブスカイト太陽電池は、2009年に初めて太陽電池の光活性体で使われた。その後、2012年現在のような構造の固体型ペロブスカイト太陽電池が開発された以来、急速に効率向上が行われた。通常のペロブスカイト太陽電池は、電子伝達層に金属酸化物を用い、正孔輸送層(HTL)にspiro-OMETADのような有機物又は高分子物質を主に用いる。すなわち、FTOのような透明電極に金属酸化物の多孔性膜又は薄膜を製作してペロブスカイト物質をコーティングし、その後、正孔輸送層をコーティングした後に金(Au)又は銀(Ag)のような電極層を蒸着する。 Perovskite solar cells, organometallic halogen compounds with the molecular formula (CH 3 NH 3 )PbX 3 , were first used in photoactive materials in solar cells in 2009. Since then, solid-state perovskite solar cells with the current structure were developed in 2012, and efficiency has been rapidly improved. A typical perovskite solar cell uses a metal oxide for an electron transport layer, and mainly uses an organic material or a polymer material such as spiro-OMETAD for a hole transport layer (HTL). That is, a porous film or thin film of metal oxide is fabricated on a transparent electrode such as FTO and coated with a perovskite material, and then a hole transport layer is coated and then a metal oxide film such as gold (Au) or silver (Ag) is coated. Deposit the electrode layer.

ペロブスカイト太陽電池の商業化のための重要な課題は、安定性の確保及びフレキシブル(flexible)技術であるが、光活性層の上部に金属酸化物を利用して形成された既存の電子伝達層は、光活性層(又は光吸収層)の上部に金属酸化物を蒸着又は金属酸化物をコーティングさせた後、その上に別の有機バインダコーティング層を形成させた。ところが、金属酸化物を蒸着させて形成させる場合、製造工程が複雑多段となり製造費用を
大きく増加させ、蒸着工程過程で発生する物理的、化学的エネルギーにより光吸収層が損傷され得るという不利な問題がある。そして、有機バインダコーティング層を形成させる方法は、コーティング層の形成のために高温熱処理をするが、ペロブスカイト物質は、200℃以上の高温では分解される問題があり、太陽電池のフレキシブル性を低下させペロブスカイト太陽電池の適用範囲を狭小にする問題があった。
Important issues for the commercialization of perovskite solar cells are ensuring stability and flexible technology, but the existing electron transport layer formed using metal oxide on top of the photoactive layer is After depositing or coating a metal oxide on top of the photoactive layer (or light absorbing layer), another organic binder coating layer was formed thereon. However, when metal oxides are formed by vapor deposition, the manufacturing process is complicated and multi-step, which greatly increases manufacturing costs, and there are disadvantages in that the light absorption layer may be damaged by physical and chemical energy generated during the vapor deposition process. There is. The method for forming an organic binder coating layer involves high-temperature heat treatment to form the coating layer, but perovskite materials have the problem of being decomposed at high temperatures of 200°C or higher, reducing the flexibility of solar cells. There was a problem that narrowed the application range of perovskite solar cells.

本発明は、上述した課題を解決するために案出されたものであって、電子伝達層(又は電子輸送層、ETL、Electron Transporting Layer)形成用コーティング剤として、表面改質された金属酸化物ナノ粒子を分散液タイプで製造されたコーティング剤で提供し、これを利用して電子伝達層を形成した逆構造ペロブスカイトを提供しようとする。 The present invention was devised to solve the above-mentioned problems, and uses a surface-modified metal oxide as a coating agent for forming an electron transport layer (or electron transport layer, ETL, Electron Transporting Layer). Nanoparticles are provided as a dispersion-type coating agent, and using this, an inverted structure perovskite with an electron transport layer formed will be provided.

上述した課題を解決するために、本発明は、逆構造ペロブスカイト太陽電池の電子伝達層用コーティング剤に関するものであって、有機溶媒に表面改質された金属酸化物が分散された分散液を含む。 In order to solve the above-mentioned problems, the present invention relates to a coating agent for an electron transport layer of an inverted structure perovskite solar cell, which includes a dispersion liquid in which a surface-modified metal oxide is dispersed in an organic solvent. .

本発明の好ましい一実施例として、本発明の前記電子伝達層用コーティング剤は、表面改質された金属酸化物0.50~3.00重量%及び残量の有機溶媒を含んでもよい。 In a preferred embodiment of the present invention, the electron transport layer coating agent of the present invention may include 0.50 to 3.00% by weight of a surface-modified metal oxide and the remaining amount of an organic solvent.

本発明の好ましい一実施例として、前記有機溶媒は、誘電定数が20以下であってもよい。 In a preferred embodiment of the present invention, the organic solvent may have a dielectric constant of 20 or less.

本発明の好ましい一実施例として、前記有機溶媒は、イソプロピルアルコール、ブチルアルコール、2-メトキシエタノール及びエチルアセテートのうち選択された1種以上を含んでもよい。 In a preferred embodiment of the present invention, the organic solvent may include one or more selected from isopropyl alcohol, butyl alcohol, 2-methoxyethanol, and ethyl acetate.

本発明の好ましい一実施例として、前記表面改質された金属酸化物は、金属酸化物ナノ粒子を下記化学式1で表示される化合物と反応させて表面改質させたものであってもよい。 In a preferred embodiment of the present invention, the surface-modified metal oxide may be surface-modified by reacting metal oxide nanoparticles with a compound represented by Formula 1 below.

前記化学式1で、R~Rは、独立的に水素原子又はハロゲン原子であり、nは、0~5である。 In the chemical formula 1, R 1 to R 5 are independently hydrogen atoms or halogen atoms, and n is 0 to 5.

本発明の好ましい一実施例として、前記金属酸化物ナノ粒子は、スズ(Sn)、ジルコニウム(Zr)、ストロンチウム(Sr)、亜鉛(Zn)、バナジウム(V)、モリブデン(Mo)、タングステン(W)、ニオビウム(Nb)、アルミニウム(Al)及びガリウム(Ga)のうち選択された1種又は2種以上を含む金属の酸化物を含んでもよい。 In a preferred embodiment of the present invention, the metal oxide nanoparticles include tin (Sn), zirconium (Zr), strontium (Sr), zinc (Zn), vanadium (V), molybdenum (Mo), and tungsten (W). ), niobium (Nb), aluminum (Al), and gallium (Ga).

本発明の好ましい一実施例として、前記金属酸化物ナノ粒子は、平均粒径2~10nmであってもよい。 In a preferred embodiment of the present invention, the metal oxide nanoparticles may have an average particle size of 2 to 10 nm.

本発明の他の目的は、上述した電子伝達層用コーティング剤で形成されたコーティング層を含む逆構造ペロブスカイト太陽電池の電子伝達層に関する。 Another object of the present invention relates to an electron transport layer of an inverted structure perovskite solar cell comprising a coating layer formed with the above-mentioned coating agent for an electron transport layer.

本発明の好ましい一実施例として、前記コーティング層は、厚さ20~30nmであるとき、500~550nmの波長に対する光透過度(transmittance)が88~95%であってもよい。 In a preferred embodiment of the present invention, the coating layer may have a light transmittance of 88 to 95% for a wavelength of 500 to 550 nm when the thickness is 20 to 30 nm.

本発明のまた他の目的は、前記電子伝達層を含む逆構造ペロブスカイト太陽電池に関する。 Yet another object of the present invention relates to an inverted perovskite solar cell comprising the electron transport layer.

本発明の好ましい一実施例として、逆構造ペロブスカイト太陽電池は、伝導性基板、ドレイン電極(drain electrode)、正孔輸送層(Hole transport layer)、光吸収層、電子伝達層(Electron Transporting Layer)及びソース電極(source electrode)が順に積層された構造を含んでもよい。 As a preferred embodiment of the present invention, the inverted structure perovskite solar cell includes a conductive substrate, a drain electrode, a hole transport layer, a light absorption layer, an electron transport layer and The structure may include a structure in which source electrodes are sequentially stacked.

本発明の好ましい一実施例として、逆構造ペロブスカイト太陽電池は、前記光吸収層及び電子伝達層の間にパッシベーション(passivation)層をさらに含んでもよい。 In a preferred embodiment of the present invention, the inverted perovskite solar cell may further include a passivation layer between the light absorption layer and the electron transport layer.

本発明の電子伝達層形成用コーティング剤は、薄膜の形成のための高温処理過程なしに200℃以下の低温熱処理を通じて1~20nm厚さの超薄膜を形成させ得るので、ペロブスカイト光吸収層の損傷を防止することができ、本発明のコーティング液で形成された電子伝達層は、高い薄膜均一度を有するところ、太陽電池のVoc(open-circuit voltage)及びFF(fill factor)に優れ、高い光透過度(transmittance)でJsc(short-circuit current)に優れ、光-電変換効率に優れた太陽電池を製作することができる。 The coating agent for forming an electron transport layer of the present invention can form an ultra-thin film with a thickness of 1 to 20 nm through low-temperature heat treatment at 200°C or less without the need for a high-temperature treatment process for forming a thin film, thereby causing damage to the perovskite light-absorbing layer. The electron transport layer formed with the coating liquid of the present invention has high thin film uniformity, is excellent in V oc (open-circuit voltage) and FF (fill factor) of solar cells, and has a high A solar cell with excellent light transmittance (J sc (short-circuit current)) and excellent photo-electric conversion efficiency can be manufactured.

図1は、実施例1で製造したSnOナノ粒子のTEM測定イメージである。FIG. 1 is a TEM image of SnO 2 nanoparticles produced in Example 1.

図2は、実施例1で製造したSnOナノ粒子のXRD測定グラフである。FIG. 2 is an XRD measurement graph of SnO 2 nanoparticles produced in Example 1.

図3は、実施例1で製造した表面改質されたSnOナノ粒子のFT-IR測定グラフである。FIG. 3 is an FT-IR measurement graph of the surface-modified SnO 2 nanoparticles produced in Example 1.

図4の(a)は、改質されないSnOナノ粒子をイソプロピルアルコールに分散させた溶液を撮った写真であり、(b)は、実施例1で製造した電子伝達層形成用コーティング液を撮った写真である。Figure 4 (a) is a photograph of a solution in which unmodified SnO2 nanoparticles are dispersed in isopropyl alcohol, and (b) is a photograph of the coating liquid for forming an electron transport layer produced in Example 1. This is a photo.

図5は、実施例1の電子伝達層形成用コーティング液を利用して製造した薄膜の透過率を測定した結果である。FIG. 5 shows the results of measuring the transmittance of a thin film manufactured using the coating liquid for forming an electron transport layer of Example 1.

図6は、製造例1で製造した逆構造ペロブスカイト太陽電池の構造図面及び断面SEM測定イメージである。FIG. 6 is a structural drawing and a cross-sectional SEM measurement image of the inverted structure perovskite solar cell manufactured in Manufacturing Example 1.

図7は、製造例1で製造した逆構造ペロブスカイト太陽電池の電流密度を測定した結果である。FIG. 7 shows the results of measuring the current density of the inverted structure perovskite solar cell manufactured in Production Example 1.

以下、本発明をより詳しく説明する。 The present invention will be explained in more detail below.

本発明は、逆構造ペロブスカイト太陽電池の電子伝達層(又は電子輸送層、ETL、Electron Transporting Layer)形成用コーティング剤に関するものであって、表面改質された金属酸化物ナノ粒子が有機溶媒に分散した分散液を含む。 The present invention relates to a coating agent for forming an electron transporting layer (or electron transporting layer, ETL) of an inverted structure perovskite solar cell, in which surface-modified metal oxide nanoparticles are dispersed in an organic solvent. Contains a dispersion liquid.

本発明のコーティング剤は、全体重量のうち前記表面改質された金属酸化物0.50~3.00重量%及び残量の有機溶媒を含み、好ましくは、前記表面改質された金属酸化物0.58~2.88重量%及び残量の有機溶媒を含み、より好ましくは、前記表面改質された金属酸化物0.65~1.91重量%及び残量の有機溶媒を含む。 The coating agent of the present invention preferably contains 0.50 to 3.00% by weight of the surface-modified metal oxide and the remaining amount of an organic solvent, based on the total weight. 0.58 to 2.88% by weight of the organic solvent, more preferably 0.65 to 1.91% by weight of the surface-modified metal oxide and the remaining amount of the organic solvent.

このとき、コーティング剤内の表面改質された金属酸化物の含量が0.50重量%未満であると、SnO含量が不十分なのでSnO薄膜の形成時に光吸収層が露出する問題があり得、3.00重量%を超過すると、SnO薄膜の厚さが増加して太陽電池の短絡電流(Jsc)及び開放電圧(Voc)値が減少する問題があり得るので、前記範囲内に表面改質された金属酸化物を含む方が良い。 At this time, if the content of the surface-modified metal oxide in the coating agent is less than 0.50% by weight, there is a problem that the light absorption layer is exposed during the formation of the SnO 2 thin film because the SnO 2 content is insufficient. If the amount exceeds 3.00% by weight, the thickness of the SnO2 thin film may increase and the short circuit current (Jsc) and open circuit voltage (Voc) values of the solar cell may decrease. It is better to include modified metal oxides.

そして、前記有機溶媒は、誘電定数(dielectric constant)が20以下、好ましくは、誘電定数5~15である溶媒を用いることができる。このような有機溶媒の具体的な例としては、イソプロピルアルコール、ブチルアルコール、2-メトキシエタノール及びエチルアセテートなどがあり、これを本発明の有機溶媒として単独、又は混合して用いることができる。もし、誘電率が20を超過する溶媒を用いる場合、SnO粒子と極性溶媒間の引力が増加してSnO粒子が凝集する問題(分散性及び分散安定性の低下)があり得、SnO薄膜の形成過程で極性溶媒に光吸収層であるペロブスカイト物質が分解される問題があり得る。 The organic solvent may have a dielectric constant of 20 or less, preferably 5 to 15. Specific examples of such organic solvents include isopropyl alcohol, butyl alcohol, 2-methoxyethanol, and ethyl acetate, which can be used alone or in combination as the organic solvent of the present invention. If a solvent with a dielectric constant exceeding 20 is used, there may be a problem that the attractive force between the SnO 2 particles and the polar solvent increases, causing the SnO 2 particles to aggregate (decreased dispersibility and dispersion stability). There may be a problem that the perovskite material, which is the light absorption layer, is decomposed by the polar solvent during the process of forming the thin film.

前記表面改質された金属酸化物ナノ粒子は、金属酸化物ナノ粒子を製造する1段階;前記金属酸化物を下記化学式1で表示される化合物と反応させて表面改質された金属酸化物ナノ粒子を製造する2段階;を含む工程を行って製造することができる。 The surface-modified metal oxide nanoparticles are produced in the first step of producing metal oxide nanoparticles; The particles can be manufactured by performing a process that includes two steps: manufacturing the particles.

前記化学式1で、R~Rは、独立的に水素原子又はハロゲン原子であり、好ましくは、ハロゲン原子であり、より好ましくは、-Fである。そして、nは、0~5であり、好ましくは、0~3であり、より好ましくは、0~2である。 In the chemical formula 1, R 1 to R 5 are independently a hydrogen atom or a halogen atom, preferably a halogen atom, and more preferably -F. And n is 0 to 5, preferably 0 to 3, and more preferably 0 to 2.

より具体的に、前記1段階は、金属前駆体及び超純水を混合して金属前駆体溶液を製造する1-1段階;前記金属前駆体溶液に塩基性水溶液を添加して反応溶液を製造する1-2段階;前記反応溶液を水熱合成を行い、水熱合成物から金属酸化物ナノ粒子を収得する1-3段階;を含む工程を行って製造することができる。 More specifically, the first step is step 1-1 of mixing a metal precursor and ultrapure water to produce a metal precursor solution; adding a basic aqueous solution to the metal precursor solution to produce a reaction solution. and step 1-3 of performing hydrothermal synthesis on the reaction solution and obtaining metal oxide nanoparticles from the hydrothermal synthesis product.

前記1-1段階の金属前駆体溶液は、金属前駆体及び超純水を含むことができ、金属前駆体溶液内の金属前駆体の濃度は、0.15~0.7M、好ましくは、0.16~0.5Mを含むことができる。このとき、金属前駆体溶液内の金属前駆体の濃度が0.15M未満であると、金属酸化物ナノ粒子の収得量が過度に少なくなり得、金属前駆体溶液内の金属前駆体の濃度が0.7Mを超過すると、金属前駆体水溶液の粘度が増加して、同一工程条件下で製造するとき金属酸化物ナノ粒子のサイズが不均一に形成されて均一なナノ粒子を収得することができないという問題があり得る。 The metal precursor solution of step 1-1 may include a metal precursor and ultrapure water, and the concentration of the metal precursor in the metal precursor solution is 0.15 to 0.7M, preferably 0. .16 to 0.5M. At this time, if the concentration of the metal precursor in the metal precursor solution is less than 0.15M, the amount of metal oxide nanoparticles obtained may be excessively small, and the concentration of the metal precursor in the metal precursor solution may be If it exceeds 0.7M, the viscosity of the metal precursor aqueous solution will increase, and the size of metal oxide nanoparticles will be non-uniform when manufactured under the same process conditions, making it impossible to obtain uniform nanoparticles. There may be a problem.

前記1-2段階の塩基性水溶液は、KOH水溶液、NaOH水溶液、ヒドラジン(Hydrazine)水溶液及びNHOH水溶液のうち選択された1種以上を含むことができる。そして、塩基性水溶液の使用量は、反応溶液のpHが8.0以上、好ましくは、pH8.0~pH9.0、より好ましくは、pH8.2~8.8程度となるように金属前駆体溶液に投入し、このとき、pHが8未満であると、金属酸化物ナノ粒子の収得量が過度に少なくなり得、また、金属前駆体溶液がゲル(Gel)化して撹拌がよく行われない問題があり得、pHが過度に高いと、金属酸化物粒子の粒径が過度に大きくなる問題があり得る。 The basic aqueous solution in steps 1-2 may include at least one selected from a KOH aqueous solution, a NaOH aqueous solution, a hydrazine aqueous solution, and an NH 4 OH aqueous solution. The amount of the basic aqueous solution to be used is such that the pH of the reaction solution is 8.0 or more, preferably about 8.0 to 9.0, more preferably about 8.2 to 8.8. If the pH is less than 8, the amount of metal oxide nanoparticles obtained may be excessively small, and the metal precursor solution will turn into a gel and cannot be stirred well. There can be problems, and if the pH is too high, there can be problems with the metal oxide particles becoming too large in size.

前記1-3段階の水熱合成は、当業界で用いられている一般的な水熱合成法を適用して行うことができ、前記水熱合成は、100~200℃、好ましくは、120~190℃、より好ましくは、140~180℃下で6~48時間の間、好ましくは、10~24時間、より好ましくは、12~18時間の間行った方が良い。このとき、水熱合成温度が100℃未満であると、金属酸化物の結晶性が低いという問題があり得、200℃を超過すると、金属酸化物粒子のサイズが増加する問題があり得る。また、水熱合成時間が6時間未満であると、金属酸化物ナノ粒子の収率が過度に落ちる問題があり得、48時間を超過すると、水熱合成物のサイズが過度に大きくなる問題があり得るので、前記時間内で水熱合成を行った方が良い。 The hydrothermal synthesis in steps 1-3 can be performed by applying a general hydrothermal synthesis method used in the industry, and the hydrothermal synthesis is carried out at a temperature of 100 to 200°C, preferably 120 to 200°C. It is better to carry out the reaction at 190°C, more preferably at 140 to 180°C, for 6 to 48 hours, preferably for 10 to 24 hours, more preferably for 12 to 18 hours. At this time, if the hydrothermal synthesis temperature is less than 100°C, there may be a problem that the crystallinity of the metal oxide is low, and if it exceeds 200°C, there may be a problem that the size of the metal oxide particles increases. Furthermore, if the hydrothermal synthesis time is less than 6 hours, there may be a problem in which the yield of metal oxide nanoparticles is excessively reduced, and if it exceeds 48 hours, there may be a problem in which the size of the hydrothermal composite becomes excessively large. Therefore, it is better to perform hydrothermal synthesis within the above-mentioned time.

水熱合成を通じて収得した金属酸化物ナノ粒子を超純水及びエタノールを利用して3~5回繰り返し洗浄することができる。 Metal oxide nanoparticles obtained through hydrothermal synthesis can be repeatedly washed 3 to 5 times using ultrapure water and ethanol.

このようにして収得された金属酸化物ナノ粒子は、平均粒径2~10nm、好ましくは、平均粒径2~8nm、より好ましくは、平均粒径3~5nmであってもよい。 The metal oxide nanoparticles thus obtained may have an average particle size of 2 to 10 nm, preferably 2 to 8 nm, more preferably 3 to 5 nm.

また、前記金属酸化物ナノ粒子の金属酸化物は、スズ(Sn)、チタン(Ti)、ジンク(Zn)、セリウム(Ce)、ジルコニウム(Zr)、ストロンチウム(Sr)、亜鉛(Zn)、バナジウム(V)、モリブデン(Mo)、タングステン(W)、ニオビウム(Nb)、アルミニウム(Al)及びガリウム(Ga)のうち選択された1種又は2種以上を含む金属の酸化物であってもよく、一具現例として、前記金属酸化物は、SnO、TiO、ZnO、CeO及び/又はZnSnOなどを含むことができ、好ましくは、SnO及び/又はZnOを含むことができる。 Further, the metal oxides of the metal oxide nanoparticles include tin (Sn), titanium (Ti), zinc (Zn), cerium (Ce), zirconium (Zr), strontium (Sr), zinc (Zn), and vanadium. (V), molybdenum (Mo), tungsten (W), niobium (Nb), aluminum (Al), and gallium (Ga). In one embodiment, the metal oxide may include SnO 2 , TiO 2 , ZnO, CeO 2 and/or Zn 2 SnO 4 , and preferably includes SnO 2 and/or ZnO. .

次に、2段階は、1段階で収得した金属酸化物ナノ粒子の表面を改質する工程であって、前記金属酸化物ナノ粒子及び超純水を混合して溶液を製造する2-1段階;前記溶液に前記化学式1で表示される化合物を添加して反応溶液を製造する2-2段階;前記反応溶液
に還流反応を行う2-3段階;還流反応を行って溶液から反応生成物を分離し、分離した反応生成物を洗浄する2-4段階;及び洗浄した反応生成物を乾燥して表面改質された金属酸化物ナノ粒子を収得する2-5段階;を含む工程を行うことができる。
Next, the second step is a step of modifying the surface of the metal oxide nanoparticles obtained in the first step, and the step 2-1 is to mix the metal oxide nanoparticles and ultrapure water to prepare a solution. step 2-2 of adding the compound represented by the chemical formula 1 to the solution to produce a reaction solution; step 2-3 of performing a reflux reaction on the reaction solution; performing a reflux reaction to remove a reaction product from the solution. performing a process including steps 2-4 of separating and washing the separated reaction product; and steps 2-5 of drying the washed reaction product to obtain surface-modified metal oxide nanoparticles; Can be done.

前記反応溶液は、金属酸化物ナノ粒子100重量部に対して超純水100~700重量部及び前記化学式1で表示される化合物300~1,500重量部を含むことができ、好ましくは、金属酸化物ナノ粒子100重量部に対して超純水350~600重量部及び前記化合物400~1,200重量部を含むことができ、より好ましくは、超純水350~550重量部及び前記化合物450~850重量部を含むことができる。このとき、超純水の使用量が100重量部未満であると、表面改質工程中に溶媒の還流が十分に行われず、表面改質が均一に行われない問題があり得、700重量部を超過すると、還流反応時間が過度に長くなる問題があり得る。また、前記化合物の使用量が300重量部未満であると、金属酸化物表面の改質程度が過度に不足又は不均一となって金属酸化物粒子が均一に溶媒に分散せず沈澱する問題があり得、1,500重量部を超過すると、非経済的であり、むしろ未反応化合物により太陽電池の素子特性が低下する問題があり得るので、前記範囲内で用いる方が良い。 The reaction solution may contain 100 to 700 parts by weight of ultrapure water and 300 to 1,500 parts by weight of the compound represented by Formula 1 based on 100 parts by weight of the metal oxide nanoparticles. It may contain 350 to 600 parts by weight of ultrapure water and 400 to 1,200 parts by weight of the compound, more preferably 350 to 550 parts by weight of ultrapure water and 450 parts by weight of the compound, based on 100 parts by weight of the oxide nanoparticles. ~850 parts by weight. At this time, if the amount of ultrapure water used is less than 100 parts by weight, there may be a problem that the solvent will not be refluxed sufficiently during the surface modification process and the surface modification will not be uniformly performed. If it exceeds , there may be a problem that the reflux reaction time becomes excessively long. Furthermore, if the amount of the compound used is less than 300 parts by weight, the degree of modification of the surface of the metal oxide may be excessively insufficient or uneven, leading to the problem that the metal oxide particles are not uniformly dispersed in the solvent and are precipitated. However, if it exceeds 1,500 parts by weight, it is uneconomical, and there may be a problem that the device characteristics of the solar cell are deteriorated due to unreacted compounds, so it is better to use it within the above range.

2-3段階の還流反応は、80~140℃下で、好ましくは、80~120℃下で行うことができ、このとき、還流反応温度が80℃未満であると、還流が十分に行われない問題があり得、140℃を超過すると、金属酸化物の表面が過度に改質されて太陽電池素子の駆動を阻害する問題があり得る。そして、還流反応時間は、1~4時間程度、好ましくは、1.5~3時間程度が適切である。 The reflux reaction in the 2-3 stages can be carried out at 80 to 140°C, preferably 80 to 120°C. At this time, if the reflux reaction temperature is less than 80°C, reflux is not sufficiently carried out. If the temperature exceeds 140° C., the surface of the metal oxide may be excessively modified, which may impede the operation of the solar cell element. The appropriate reflux reaction time is about 1 to 4 hours, preferably about 1.5 to 3 hours.

2-4段階の分離及び/又は洗浄は、当業界で用いられている一般的な方法で行うことができ、一具現例として、遠心分離を行って反応溶液から還流反応生成物を収得した後、これを超純水などで洗浄して行うことができる。 The 2-4 steps of separation and/or washing can be performed by common methods used in the industry, and in one embodiment, after centrifugation is performed to collect the refluxed reaction product from the reaction solution. This can be done by washing with ultrapure water or the like.

2-5段階の乾燥は、当業界で用いられている一般的な方法で行うことができ、一具現例として、洗浄を行って収得した反応生成物を50~80℃オーブンで熱を加えて行うことができる。 The drying steps 2 to 5 can be performed by a general method used in the industry, and in one embodiment, the reaction product obtained by washing is heated in an oven at 50 to 80°C. It can be carried out.

上述した本発明の電子伝達層形成用コーティング剤は、スピンコーティング(spin coating)、ブレードコーティング(blade coating)、バーコーティング(bar coating)、スプレーコーティング(spray coating)、グラビアコーティング、ダイコーティングなど一般的なコーティング方法でコーティングを行うことができ、一具現例として、コーティングした後に200℃以下で熱処理加工して厚さ100nm以下、好ましくは、厚さ1~40nm、より好ましくは、1~20nm厚さの超薄膜を形成させてもよい。 The above-mentioned coating agent for forming an electron transport layer of the present invention can be used in general methods such as spin coating, blade coating, bar coating, spray coating, gravure coating, and die coating. The coating can be performed by a coating method, and in one embodiment, after coating, heat treatment is performed at 200° C. or less to a thickness of 100 nm or less, preferably a thickness of 1 to 40 nm, more preferably a thickness of 1 to 20 nm. An ultra-thin film may be formed.

このような本発明の前記コーティング剤を利用して逆構造(inverted)又はピン構造ペロブスカイト太陽電池を次のように製造することができる。 An inverted or pin structure perovskite solar cell can be manufactured as follows using the coating agent of the present invention.

本発明の逆構造ペロブスカイト太陽電池は、伝導性基板、ドレイン電極(drainelectrode)、正孔輸送層(HTL、Hole transport layer)、光吸収層(又は光活性層)、電子伝達層(又は電子輸送層、ETL、Electron
Transporting Layer)及びソース電極(source electrode)が順に積層された構造の太陽電池であってもよい。
The inverted structure perovskite solar cell of the present invention comprises a conductive substrate, a drain electrode, a hole transport layer (HTL), a light absorption layer (or photoactive layer), an electron transport layer (or electron transport layer) , ETL, Electron
A solar cell may have a structure in which a transporting layer and a source electrode are stacked in order.

また、本発明の逆構造ペロブスカイト太陽電池は、伝導性基板、ドレイン電極、正孔輸送層、光吸収層、電子伝達層及びソース電極が順に積層された形態が1個のセットを構成し
、前記セットが単層又は多数層で積層されて形成されてもよい。
Further, in the inverted structure perovskite solar cell of the present invention, a conductive substrate, a drain electrode, a hole transport layer, a light absorption layer, an electron transport layer, and a source electrode are laminated in this order to constitute one set, and the above-mentioned The set may be formed by laminating a single layer or multiple layers.

前記伝導性基板は、当業界で用いられている一般的な伝導性基板を用いることができ、一例として、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエステルスルホン、芳香族ポリエステル又はポリイミドなどの素材で製造された透明プラスチック基板、ガラス基板、スズ基板、シリコン基板などを用いることができる。 The conductive substrate may be a general conductive substrate used in the industry, for example, made of a material such as polyethylene terephthalate, polyethylene naphthalate, polyester sulfone, aromatic polyester, or polyimide. A transparent plastic substrate, a glass substrate, a tin substrate, a silicon substrate, etc. can be used.

前記ドレイン電極は、伝導性金属、伝導性金属の合金、金属酸化物及び伝導性高分子のうち選択された1種以上を含む素材で製造することができ、好ましい一例として、ITO(lnduim Tin Oxide)、FTO(Fluorine doped Tin
Oxide)、ATO(Sb doped Tin Oxide)、GTO(Gallium doped Tin Oxide)、ZTO(tin doped zinc oxide)、ZTO:Ga(gallium doped ZTO)、IGZO(lndium gallium zinc oxide)、IZO(lndium doped zinc oxide)及び/又はAZO(Aluminum doped zinc oxide)などを含むことができる。
The drain electrode may be made of a material containing at least one selected from a conductive metal, a conductive metal alloy, a metal oxide, and a conductive polymer, and a preferable example is ITO (Induim Tin Oxide). ), FTO (Fluorine doped Tin
ZTO:Ga (gallium doped) ZTO) , IGZO (lndium gallium zinc oxide), IZO ( lndium doped zinc oxide) and/or AZO (aluminum doped zinc oxide).

そして、前記正孔輸送層(HTL)は、無機及び/又は有機正孔伝達物質を含むことができる。前記無機正孔伝達物質は、ニッケル酸化物(NiO)、CuSCN、CuCrO及びCuIのうち選択された1種以上を含むことができる。 The hole transport layer (HTL) may include an inorganic and/or organic hole transport material. The inorganic hole transport material may include one or more selected from nickel oxide (NiO x ), CuSCN, CuCrO 2 , and CuI.

前記有機正孔伝達物質は、カルバゾール誘導体、ポリアリールアルカン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第3級アミン化合物、スチリルアミン化合物、芳香族ジメチリジン系化合物、ポルフィリン系化合物、フタロシアニン系化合物、ポリチオフェン誘導体、ポリピロール誘導体、ポリパラフェニレンビニレン誘導体、ペンタセン(pentacene)、クマリン6(coumarin 6、3-(2-benzothiazolyl)-7-(diethylamina)coumarin)、ZnPC(zincphthalocyanine)、CuPC(copper phthalocyanine)、TiOPC(titanium oxide phthalocyanine)、Spiro-MeOTAD(2,2’,7,7’-tetrakis(N,N-p-dimethoxyphenylamino)-9,9’-spirobifluorene)、F16CuPC(copper(II)1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-hexadecafluoro-29H,31H-phthalocyanine)、SubPc(boron subphthalocyanine chloride)及びN3(cis-di(thiocyanato)-bis(2,2’bipyridyl-4,4’-dicarboxylic acid)-ruthenium(II)、P3HT(poly[3-hexylthiophene])、MDMO-PPV(poly[2-methoxy―5-(3’,7’-dimethyloctyloxyl)]-1,4-phenylene vinylene)、MEH-PPV(poly[2-methoxy-5-(2”-ethylhexyloxy)-p-phenylene vinylene]、P3OT(poly(3-octyl thiophene))、POT(poly(octyl thiophene))、P3DT(poly(3-decyl thiophene))、P3DDT(poly(3-dodecyl thiophene)、PPV(poly(p-phenylene vinylene))、TFB(poly(9,9’-dioctylfluorene-co-N-(4-butylphenyl)diphenyl amine)、ポリアニリン(Polyaniline)、Spiro-MeOTAD([2,22',7,77'-tetrkis(N,N-di-pmethoxyphenyl ami
ne)-9,9,9'-spirobi fluorine])、CuSCN、Cul、
PCPDTBT(Poly「2,1,3-benzothiadiazole-4,7-diyl「4,4-bis(2-ethylhexyl-4H-cyclopenta「2,1-b:3,4-b’」dithiophene-2,6-diyl)」、Si-PCPDTBT(poly[(4,4'-bis(2-ethylhexyl)dithi
eno[3,2-b:2',3'-d]silole)2,6-diyl-alt-(2,1,3-benzothiadiazole)―4,7-diyl])、PBDTTPD(poly((4,8-diethylhexyloxyl)、PFDTBT(poly「2,7-(9-(2-ethylhexyl)-9-hexyl-fluorene)-alt-5,5-(4’,7,-di-2-thienyl-2’,1’,3’-benzothiadiazole)」)、PFO-DBT(poly[2,7-9,9-(dioctyl-fluorene)-alt-5,5-(4’,7’-di-2-thienyl-2’,1’,3’-benzothiadiazole)])、PSiFDTBT(poly「(2,7-dioctylsilafluorene)-2,7-diyl-alt-(4,7-bis(2-thienyl)-2,1,3-benzot
hiadiazole)-5,5'-diyl」)、PCDTBT(Poly「「9-
(1-octylnonyl)-9H-carbazole-2,7-diyl」-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl」)、PFB(poly(9,9'-dioctylfluorene-co-bis(N,N'-(4,butylpheny))bis(N,N'-phenyl-1,4-phenylene)diamin
e)、F8BT(poly(9,9'-dioctylfluorene-cobenz
othiadiazole)、PEDOT(poly(3,4-ethylenedioxythiophene))、PEDOT:PSS poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate)、PTAA(poly(triarylamine))、2-PACz、及び/又はMeO-2PACzを含むことができる。
The organic hole transmitting substances include carbazole derivatives, polyarylalkane derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styryl anthracene derivatives, fluorene derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, and aromatic tertiary derivatives. Amine compounds, styrylamine compounds, aromatic dimethylidine compounds, porphyrin compounds, phthalocyanine compounds, polythiophene derivatives, polypyrrole derivatives, polyparaphenylene vinylene derivatives, pentacene, coumarin 6, 3-(2-benzothiazolyl) )-7-(diethylamina)coumarin), ZnPC (zincphthalocyanine), CuPC (copper phthalocyanine), TiOPC (titanium oxide phthalocyanine) , Spiro-MeOTAD (2,2',7,7'-tetrakis(N,N-p- dimethoxyphenylamino)-9,9'-spirobifluorene), F16CuPC(copper(II)1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-hexadecafluoro -29H,31H-phthalocyanine), SubPc (boron subphthalocyanine chloride) and N3 (cis-di(thiocyanato)-bis(2,2'bipyridyl-4,4'-dicarboxyl) ic acid)-ruthenium(II), P3HT(poly[ 3-hexylthiophene]), MDMO-PPV (poly[2-methoxy-5-(3',7'-dimethyloctyloxyl)]-1,4-phenylene vinylene), MEH-PPV (poly[2-methoxy-5- ( 2”-ethylhexyloxy)-p-phenylene vinylene], P3OT (poly (3-octyl thiophene)), POT (poly (octyl thiophene)), P3DT (poly (3-decyl thiophene)) ene)), P3DDT(poly(3-dodecyl thiophene), PPV (poly(p-phenylene vinylene)), TFB(poly(9,9'-dioctylfluorene-co-N-(4-butylphenyl)diphenyl amine), polyaniline (Polyaniline) ine), Spiro-MeOTAD ([2, 22',7,77'-tetrkis (N,N-di-pmethoxyphenyl ami
ne)-9,9,9'-spirobi fluorine]), CuSCN, Cul,
PCPDTBT(Poly"2,1,3-benzothiadiazole-4,7-diyl"4,4-bis(2-ethylhexyl-4H-cyclopenta "2,1-b:3,4-b'" dithiophene-2,6 -diyl)", Si-PCPDTBT(poly[(4,4'-bis(2-ethylhexyl) dithi
eno[3,2-b:2',3'-d]silole)2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl]), PBDTTPD(poly((4 ,8-diethylhexyloxyl), PFDTBT(poly"2,7-(9-(2-ethylhexyl)-9-hexyl-fluorene)-alt-5,5-(4',7,-di-2-thienyl-2 ',1',3'-benzothiadiazole)'), PFO-DBT(poly[2,7-9,9-(dioctyl-fluorene)-alt-5,5-(4',7'-di-2- thienyl-2',1',3'-benzothiadiazole)]), PSiFDTBT(poly'(2,7-dioctylsilafluorene)-2,7-diyl-alt-(4,7-bis(2-thienyl)-2, 1,3-benzot
hiadiazole)-5,5'-diyl"), PCDTBT(Poly""9-
(1-octylnonyl)-9H-carbazole-2,7-diyl"-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl"), PFB (poly (9 ,9'-dioctylfluorene-co-bis(N,N'-(4,butylpheny))bis(N,N'-phenyl-1,4-phenylene)diamin
e), F8BT(poly(9,9'-dioctylfluorene-cobenz
othiadiazole), PEDOT(poly(3,4-ethylenedioxythiophene)), PEDOT:PSS poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate), PTAA (poly(triarylamine)), 2-PACz, and/or MeO-2PACz can be included.

そして、前記正孔輸送層の形成方法としては、塗布法及び真空蒸着法などが挙げられ、塗布法としては、グラビア塗布法、バー塗布法、印刷法、スプレー法、スピンコーティング法、ディップ法及びダイコート法などが挙げられる。 Examples of the method for forming the hole transport layer include a coating method and a vacuum evaporation method. Examples of the coating method include a gravure coating method, a bar coating method, a printing method, a spray method, a spin coating method, a dipping method, and the like. Examples include die coating method.

また、本発明の太陽電池の構成のうち前記光吸収層は、太陽電池の光吸収層に適用される一般的なペロブスカイト素材を含むことができ、好ましい一例として、下記化学式2で表示されるペロブスカイト物質を含むことができる。 In addition, in the structure of the solar cell of the present invention, the light absorption layer may include a general perovskite material applied to a light absorption layer of a solar cell, and a preferable example is a perovskite material represented by the following chemical formula 2. Can contain substances.

化学式2で、Cは、1価陽イオンであって、アミン、アンモニウム、1族金属、2族金属及び/又は他の陽イオン又は陽イオン-類似化合物を含むことができ、好ましくは、ホルムアミジウム(FA、formamidinium)、メチルアンモニウム(MA、methylammonium)、FAMA、CsFAMA又はN(R) (ここで、Rは、同一であるか又は相異なっている基であってもよく、Rは、炭素数1~の直鎖型アルキル基、炭素数3~5の分枝鎖型アルキル基、フェニル基、アルキルフェニル基、アルコキシフェニル基又はアルキルハライドである)。 In Formula 2, C is a monovalent cation, which may include amines, ammonium, Group 1 metals, Group 2 metals, and/or other cations or cation-like compounds, preferably formamide. formamidinium (FA), methylammonium (MA), FAMA, CsFAMA or N(R) 4 + (wherein R may be the same or different groups, R is , a straight-chain alkyl group having 1 or more carbon atoms, a branched-chain alkyl group having 3 to 5 carbon atoms, a phenyl group, an alkylphenyl group, an alkoxyphenyl group, or an alkyl halide).

また、化学式2のMは、2価陽イオンであって、Fe、Co、Ni、Cu、Sn、Pb、
Bi、Ge、Ti、Eu及びZrのうち選択された1種又は2種を含むことができる。
Moreover, M in chemical formula 2 is a divalent cation, and includes Fe, Co, Ni, Cu, Sn, Pb,
It can contain one or two selected from Bi, Ge, Ti, Eu, and Zr.

また、化学式2のXは、1価陰イオンであって、F、Cl、Br及びIのうち選択された1種以上のハライド元素及び/又は16族陰イオンを含むことができ、好ましい一例として、Xは、1Br3x(O≦x≦3)であってもよい。 Further, X in chemical formula 2 is a monovalent anion, and may contain one or more halide elements selected from F, Cl, Br, and I and/or a group 16 anion; a preferable example is , X may be 1 x Br 3x (O≦x≦3).

そして、前記化学式2の好ましい一具現例として、FAPbIBr3x(O≦x≦3)、MAPblBr3-x(O≦x≦3)、CSMAFAPblBr3-x(O≦x≦3)、CHNHPbX(X=Cl、Br、I、Brl又はBrI)、CHNHSnX(X=Cl、Br又はI)、CH(=NH)NHPbX(X=Cl、Br、I、Brl又はBrI)、CH(=NH)NHSnX(X=Cl、Br又はI)などがある。 As a preferred embodiment of the chemical formula 2, FAPbI x Br 3x (O≦x≦3), MAPbl x Br 3-x (O≦x≦3), CSMA FAPbl x Br 3-x (O≦x≦3) ), CH3NH3PbX3 (X=Cl, Br, I , Brl2 or Br2I ), CH3NH3SnX3 (X=Cl, Br or I), CH( = NH ) NH3PbX3 (X=Cl, Br, I, Brl 2 or Br 2 I), CH(=NH)NH 3 SnX 3 (X=Cl, Br or I), and the like.

また、本発明の太陽電池において、前記光吸収層は、同一のペロブスカイト物質で構成された単層であるか、又は他のペロブスカイト物質で構成された層が多数積層された多層構造であってもよく、1種のペロブスカイト物質からなった光吸収層の内部に柱形状、板状、針状、ワイヤ形状、棒状などのフィラー形状を有する前記1種のペロブスカイト物質と他の異種のペロブスカイト物質を含んでもよい。 Furthermore, in the solar cell of the present invention, the light absorption layer may be a single layer made of the same perovskite material, or a multilayer structure in which many layers made of other perovskite materials are laminated. Often, a light absorption layer made of one type of perovskite material contains the one type of perovskite material and another different type of perovskite material, which has a filler shape such as a columnar shape, a plate shape, a needle shape, a wire shape, or a rod shape. But that's fine.

本発明の太陽電池の構成のうち電子伝達層は、上述した本発明のコーティング剤(表面改質された金属酸化物ナノ粒子が有機溶媒に分散された分散液)のコーティング液でコーティング処理した後、200℃以下、好ましくは、30~100℃以下で低温熱処理して薄膜形態のコーティング層を形成させて電子伝達層を光吸収層の上部に形成させ得る。 Among the components of the solar cell of the present invention, the electron transport layer is coated with a coating solution of the above-mentioned coating agent of the present invention (a dispersion of surface-modified metal oxide nanoparticles dispersed in an organic solvent). The electron transport layer may be formed on the light absorption layer by performing a low temperature heat treatment at 200° C. or lower, preferably 30 to 100° C. or lower to form a coating layer in the form of a thin film.

このとき、前記コーティングは、スピンコーティング(spin coating)、ブレードコーティング(blade coating)、バーコーティング(bar coating)、スプレーコーティング(spray coating)、グラビアコーティング又はダイコーティングを行うことができる。 At this time, the coating may be spin coating, blade coating, bar coating, spray coating, gravure coating, or die coating.

そして、前記電子伝達層の厚さが100nm以下、好ましくは、1~40nm、より好ましくは、1~20nmで形成させた方が良く、このとき、電子伝達層の厚さが100nmを超過すると、太陽電池の短絡電流(Jsc)及び開放電圧(Voc)が減少する問題があり得るので、前記範囲内の厚さで形成させた方が良い。 It is preferable that the electron transport layer has a thickness of 100 nm or less, preferably 1 to 40 nm, more preferably 1 to 20 nm; in this case, if the thickness of the electron transport layer exceeds 100 nm, Since there may be a problem that the short circuit current (J sc ) and open circuit voltage (V oc ) of the solar cell decrease, it is better to form the layer with a thickness within the above range.

このように形成されたコーティング層、すなわち、電子伝達層の表面は、粗さが非常に低く形成され得、RMS(root mean square)粗さ(roughness)が30nm以下、好ましくは、17.0~25.0nm、より好ましくは、17.5~24.0nmを満足することができる。 The surface of the coating layer thus formed, that is, the electron transport layer, may have a very low roughness, with an RMS (root mean square) roughness of 30 nm or less, preferably 17.0 to 17.0 nm. 25.0 nm, more preferably 17.5 to 24.0 nm.

そして、本発明の太陽電池の構成のうち前記ソース電極は、Pt、Au、Ni、Cu、Ag、In、Ru、Pd、Rh、Ir、Os、C及び伝導性高分子のうち選択された1種以上の物質をコーティング又は蒸着させて形成させ得る。 In the configuration of the solar cell of the present invention, the source electrode is made of one selected from Pt, Au, Ni, Cu, Ag, In, Ru, Pd, Rh, Ir, Os, C, and a conductive polymer. It can be formed by coating or depositing more than one material.

また、本発明の太陽電池は、前記光吸収層及び電子伝達層の間にパッシベーション(passivation)層をさらに含んでもよい。 In addition, the solar cell of the present invention may further include a passivation layer between the light absorption layer and the electron transport layer.

以下では、実施例を通じて本発明をより具体的に説明するが、下記実施例が本発明の範囲を制限するものではなく、これは本発明の理解を助けるためのものと解釈しなければならない。 Hereinafter, the present invention will be explained in more detail through examples, but the following examples are not intended to limit the scope of the present invention, and should be interpreted as helping the understanding of the present invention.

<実施例1> <Example 1>

実施例1:電子伝達層(ETL)形成用コーティング液の製造 Example 1: Production of coating liquid for forming electron transport layer (ETL)

(1)SnOナノ粒子の製造 (1) Production of SnO2 nanoparticles

SnCl・5HOを超純水が入っているビーカーに投入して撹拌してSnCl濃度0.33Mである金属前駆体溶液を製造した後、金属前駆体溶液265mlに塩基性水溶液であるNHOH 35mlを添加して水溶液のpHが約8.0~8.5である反応溶液を製造した。 SnCl4.5H2O was put into a beaker containing ultrapure water and stirred to produce a metal precursor solution with a SnCl4 concentration of 0.33M, and then a basic aqueous solution was added to 265 ml of the metal precursor solution . 35 ml of NH 4 OH was added to prepare a reaction solution with an aqueous pH of about 8.0-8.5.

前記反応性溶液を圧力容器(Autoclave or hydrothermal reactor)に入れ、180℃で12時間の間水熱合成を実施した。 The reactive solution was placed in a pressure vessel (autoclave or hydrothermal reactor), and hydrothermal synthesis was performed at 180° C. for 12 hours.

次に、水熱合成を通じて収得した収得物を超純水及びエタノールを利用して3~5回洗浄してSnOナノ粒子を製造した。 Next, the material obtained through hydrothermal synthesis was washed 3 to 5 times using ultrapure water and ethanol to prepare SnO 2 nanoparticles.

製造されたSnOナノ粒子の平均粒径は、3~5nmであった。 The average particle size of the SnO 2 nanoparticles produced was 3-5 nm.

そして、製造したSnOナノ粒子のTEM測定イメージを図1に示し、XRD測定結果を図2に示した。 A TEM measurement image of the manufactured SnO 2 nanoparticles is shown in FIG. 1, and an XRD measurement result is shown in FIG.

(2)表面改質されたSnOナノ粒子の製造 (2) Production of surface-modified SnO2 nanoparticles

先に製造した前記SnOナノ粒子8gを超純水40mLが入っている丸底フラスコに投入して撹拌した後、TFA(Trifluoroacetic acid)54gを添加して反応溶液を製造した。製造された反応溶液を含んでいる丸底フラスコにコンデンサー(condenser)を装着し、90℃で2時間の間還流反応を実施した。 8 g of the previously prepared SnO 2 nanoparticles were added to a round bottom flask containing 40 mL of ultrapure water and stirred, and then 54 g of TFA (trifluoroacetic acid) was added to prepare a reaction solution. A condenser was attached to a round bottom flask containing the prepared reaction solution, and a reflux reaction was carried out at 90° C. for 2 hours.

次に、前記還流反応させた反応溶液を遠心分離機を利用してナノ粒子を分離した後、60℃のオーブンで乾燥して表面改質されたSnOナノ粒子を製造した。 Next, nanoparticles were separated from the refluxed reaction solution using a centrifuge, and then dried in an oven at 60° C. to produce surface-modified SnO 2 nanoparticles.

そして、製造した表面改質されたSnOナノ粒子のFT-IR測定結果を図3に示した。 FIG. 3 shows the results of FT-IR measurement of the surface-modified SnO 2 nanoparticles produced.

(3)表面改質されたSnOナノ粒子の分散溶液(コーティング液)の製造 (3) Production of a dispersion solution (coating solution) of surface-modified SnO2 nanoparticles

先に製造した前記表面改質されたSnOナノ粒子30mgを極性が低いイソプロピルアルコール(誘電定数(dielectric constant)≦20)4mlに添加した後、超音波粉砕機を利用して分散溶液タイプの電子伝達層形成用コーティング液(表面改質された金属酸化物約0.74重量%)を製造した。 After adding 30 mg of the previously prepared surface-modified SnO2 nanoparticles to 4 ml of isopropyl alcohol with low polarity (dielectric constant ≦20), a dispersion solution type electron was added using an ultrasonic grinder. A coating liquid for forming a transmission layer (approximately 0.74% by weight of surface-modified metal oxide) was produced.

そして、分散溶液タイプの電子伝達層形成用コーティング液を撮った写真を図4の(b)に示し、図4の(a)は、表面改質されなかったSnOナノ粒子30mgをイソプロピルアルコールに添加した後、超音波粉砕機を利用して分散させた後に撮った写真である。 Figure 4(b) shows a photograph of the dispersion type coating liquid for forming an electron transport layer, and Figure 4(a) shows 30 mg of SnO2 nanoparticles that were not surface modified in isopropyl alcohol. This is a photograph taken after the addition and dispersion using an ultrasonic pulverizer.

<比較例1> <Comparative example 1>

実施例1の(1)で製造したSnOナノ粒子を表面改質工程なしに準備した。 The SnO 2 nanoparticles prepared in (1) of Example 1 were prepared without a surface modification process.

そして、前記表面加湿されなかったSnOナノ粒子を30mgをイソプロピルアルコール4mlに添加した後、超音波粉砕機を利用して分散溶液タイプの電子伝達層形成用コーティング液を製造した。製造したコーティング液を撮った写真を図4の(a)に示した。 After adding 30 mg of the SnO 2 nanoparticles whose surface was not moisturized to 4 ml of isopropyl alcohol, a dispersion type coating solution for forming an electron transport layer was prepared using an ultrasonic grinder. A photograph of the produced coating liquid is shown in FIG. 4(a).

<実施例2、実施例3及び比較例2、比較例3> <Example 2, Example 3 and Comparative Example 2, Comparative Example 3>

前記実施例1と同一に電子伝達層形成用コーティング液を製造するが、下記表1のような組成を有する表面改質されたSnOナノ粒子を製造した後、表面改質されたSnOナノ粒子を有機溶媒と混合した後に超音波粉砕機を利用して分散溶液タイプの電子伝達層形成用コーティング液をそれぞれ製造し、実施例2、実施例3及び比較例2、比較例3を実施した。 A coating solution for forming an electron transport layer was prepared in the same manner as in Example 1, but after preparing surface-modified SnO 2 nanoparticles having the composition shown in Table 1 below, surface-modified SnO 2 nanoparticles were prepared. After mixing the particles with an organic solvent, a dispersion solution type coating solution for forming an electron transport layer was prepared using an ultrasonic pulverizer, and Examples 2 and 3 and Comparative Examples 2 and 3 were carried out. .

<比較例4> <Comparative example 4>

前記実施例1と同一に電子伝達層形成用コーティング液を製造するが、実施例1の前記表面改質されたSnOナノ粒子を誘電定数が25であるエチルアルコールと混合した後に超音波粉砕機を利用して分散溶液タイプの電子伝達層形成用コーティング液をそれぞれ製造し、比較例4を実施した。 A coating solution for forming an electron transport layer is prepared in the same manner as in Example 1, except that the surface-modified SnO2 nanoparticles of Example 1 are mixed with ethyl alcohol having a dielectric constant of 25, and then subjected to an ultrasonic pulverizer. Comparative Example 4 was conducted using a dispersion solution type coating solution for forming an electron transport layer.

実験例1:超薄膜の製造及びコーティング層の表面粗さ、光透過率の測定 Experimental example 1: Production of ultra-thin film and measurement of surface roughness and light transmittance of coating layer

前記実施例及び比較例で製造したコーティング液それぞれをガラス基板とガラス基板を含
むペロブスカイト薄膜の上部にスピンコーティングした後、30℃で熱処理して20nm厚さの超薄膜を製造した。
Each of the coating solutions prepared in the Examples and Comparative Examples was spin-coated on a glass substrate and a perovskite thin film including a glass substrate, and then heat-treated at 30° C. to prepare an ultra-thin film with a thickness of 20 nm.

そして、ガラス基板を含むペロブスカイト薄膜の上部に形成した超薄膜の表面粗さを非接触式方法で測定した後、粗さの二乗平均平方根(root-mean-squre、rms)で算出し、任意の3ポイント(point)の表面粗さを測定した後、測定された3ポイントの表面粗さの平均値を下記表2に示した。 Then, after measuring the surface roughness of the ultra-thin film formed on the top of the perovskite thin film including the glass substrate using a non-contact method, the roughness is calculated by the root-mean-square (rms), and an arbitrary value is determined. After measuring the surface roughness at 3 points, the average value of the surface roughness at the 3 points is shown in Table 2 below.

また、ガラス基板に形成した前記超薄膜をUVスペクトラム測定方法で近赤外線光線を超薄膜が形成された基板に走査して試料に対する吸光度と光透過率(transmittance、%)を測定し、その結果を下記表2に示し、実施例1に対する光透過率測定結果を図5に示した。このとき、光透過率は、500~550nmでの光透過率である。 In addition, the ultra-thin film formed on a glass substrate was scanned with near-infrared rays on the substrate on which the ultra-thin film was formed using a UV spectrum measurement method to measure the absorbance and light transmittance (%) of the sample. The results are shown in Table 2 below, and the light transmittance measurement results for Example 1 are shown in FIG. At this time, the light transmittance is the light transmittance at 500 to 550 nm.

前記表2のRMS粗さ及び光透過は、前記実施例1~3の場合、RMS粗さ18.0~23.0nmと非常に低い表面粗さを有し、光透過度90%以上の優れた光学的特性を有することを確認することができた。それに反して、表面改質されたSnOナノ粒子の合成時にTFAを300重量部未満である270重量部のみ使用して製造した表面改質されたSnOナノ粒子を利用したコーティング液である比較例2の場合、実施例1又は実施例2と比較するとき、光透過率が低調であるだけでなく、粗さが相対的に過度に高い問題があり、TFAを1500重量部を超過した1570重量部を使用した比較例3の場合、実施例3と比較するとき、むしろ粗さも増加して部分的に光透過率が落ちる部分があったが、これは表面改質されたSnOナノ粒子のうち一部のナノ粒子間が固まる現象によると判断される。 The RMS roughness and light transmission in Table 2 show that Examples 1 to 3 have a very low RMS roughness of 18.0 to 23.0 nm and an excellent light transmittance of 90% or more. It was confirmed that the material had excellent optical properties. On the other hand, the coating liquid using surface-modified SnO 2 nanoparticles was prepared by using only 270 parts by weight of TFA, which is less than 300 parts by weight, during the synthesis of the surface-modified SnO 2 nanoparticles. In the case of Example 2, when compared with Example 1 or Example 2, there was a problem that not only the light transmittance was low but also the roughness was relatively excessively high. In the case of Comparative Example 3 using parts by weight, when compared with Example 3, the roughness increased and the light transmittance decreased in some areas, but this was due to surface-modified SnO 2 nanoparticles. This is thought to be due to a phenomenon in which some of the nanoparticles solidify.

そして、比較例4の場合、SnOナノ粒が分散せずに凝集された粒子がガラス基板の上端に島形態でコーティングされて薄膜が形成されない問題があった。 In the case of Comparative Example 4, there was a problem in that the SnO 2 nanoparticles were not dispersed but aggregated and coated on the upper end of the glass substrate in the form of islands, so that a thin film was not formed.

製造例1:表面改質されたSnOナノ粒子が適用された逆構造ペロブスカイト(Perovskite)太陽電池の製造 Production Example 1: Production of a reverse structure perovskite solar cell to which surface-modified SnO2 nanoparticles are applied

ドレイン電極(Drain electrode)として、酸化インジウムスズ(indium tin oxide、ITO)が約110nm厚さでコーティングされた有機基板(厚さ1.1mm、15.0Ω/sq)をアセトン及びイソプロピルアルコール(is
opropyl alchol、IPA)で順次に超音波洗浄機を利用して1時間ずつ洗浄した。
As a drain electrode, an organic substrate (1.1 mm thick, 15.0 Ω/sq) coated with indium tin oxide (ITO) to a thickness of about 110 nm was prepared using acetone and isopropyl alcohol (ITO).
Opropyl alcohol (IPA) was sequentially used for 1 hour at a time using an ultrasonic cleaner.

次に、前記ITO基板上にE-beam真空蒸着方法条件を通じて30nm厚さの正孔輸送層(NiO)を形成させた。 Next, a 30 nm thick hole transport layer (NiO x ) was formed on the ITO substrate using E-beam vacuum deposition conditions.

次に、前記正孔輸送層の上部にジメチルホルムアミド(dimethylformamide、DMF)及びジメチルスルホキシド(Dimethyl sulfoxide、DMSO)に溶解させて形成した黄色光吸収層溶液をスピンコーティングを通じて形成し、100℃で20分間熱処理することによって、NiOx正孔輸送層と450~500nm厚さのペロブスカイト結晶構造を有する光吸収層(CSMAFAPblBr3-x(0≦x≦3))を形成させた。 Next, a yellow light absorption layer solution prepared by dissolving dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) was formed on the hole transport layer by spin coating, and the layer was coated at 100° C. for 20 minutes. By heat treatment, a NiOx hole transport layer and a light absorption layer (CSMAFAPbl x Br 3-x (0≦x≦3)) having a perovskite crystal structure with a thickness of 450 to 500 nm were formed.

次に、前記光吸収層の上部に熱蒸着(thermal evaporation)方法条件を通じて13nm厚さのパッシベーション層(C60フラーレン)を形成させた。 Next, a 13 nm thick passivation layer (C 60 fullerene) was formed on the light absorption layer using thermal evaporation method conditions.

次に、前記パッシベーション層の上部に実施例1で製造した表面改質されたコーティング液を1,500rpmで1分間の条件でスピンコーティングした後、30℃で熱処理して20nm厚さの電子伝達層を形成させた。 Next, the surface-modified coating solution prepared in Example 1 was spin-coated on the passivation layer at 1,500 rpm for 1 minute, and then heat-treated at 30° C. to form an electron transport layer with a thickness of 20 nm. formed.

次に、電子伝達層の上部に銀(Ag)を1X10-8torrの圧力で150nmの厚さで蒸着してソース電極(source electrode)を形成することによって逆構造のペロブスカイト太陽電池を製造した。 Next, a perovskite solar cell with an inverted structure was fabricated by depositing silver (Ag) on the electron transport layer to a thickness of 150 nm at a pressure of 1×10 −8 torr to form a source electrode.

そして、製造した太陽電池のSEM測定イメージを図6に示した。 FIG. 6 shows an SEM measurement image of the manufactured solar cell.

製造例2、製造例3及び比較製造例1~3 Production Example 2, Production Example 3, and Comparative Production Examples 1 to 3

前記製造例1と同一の方法で逆構造のペロブスカイト太陽電池を製造するが、実施例1のコーティング剤の代わりに実施例2、実施例3及び比較例1~3のコーティング剤それぞれを使用して電子伝達層を形成させた太陽電池それぞれを製造して製造例2、製造例3及び比較製造例1~3をそれぞれ実施した。 A perovskite solar cell with an inverted structure was manufactured by the same method as in Production Example 1, but each of the coating agents of Examples 2, 3, and Comparative Examples 1 to 3 was used instead of the coating agent of Example 1. Production examples 2, 3, and comparative production examples 1 to 3 were conducted by producing solar cells each having an electron transport layer formed thereon.

実験例2:太陽電池の性能測定 Experimental example 2: Performance measurement of solar cells

前記製造例1で製造した太陽電池の電流-電圧の特性及び効率を測定し、その結果を下記表3に示した。そして、製造例1に対する短絡電流密度の測定結果を図7に示した。 The current-voltage characteristics and efficiency of the solar cell manufactured in Manufacturing Example 1 were measured, and the results are shown in Table 3 below. The measurement results of short circuit current density for Manufacturing Example 1 are shown in FIG.

前記表3及び図7の太陽電池の電流-電圧の特性及び効率の測定結果、非常に高いフィルファクター及び光電変換効率を有することを確認することができる。 The current-voltage characteristics and efficiency measurement results of the solar cell shown in Table 3 and FIG. 7 show that the solar cell has a very high fill factor and photoelectric conversion efficiency.

Claims (11)

有機溶媒に表面改質された金属酸化物が分散された分散液を含み、前記有機溶媒は、誘電定数が20以下であることを特徴とする、逆構造ペロブスカイト太陽電池の電子伝達層用コーティング剤。 A coating agent for an electron transport layer of an inverted perovskite solar cell, comprising a dispersion in which a surface-modified metal oxide is dispersed in an organic solvent, the organic solvent having a dielectric constant of 20 or less. . 表面改質された金属酸化物0.50~3.00重量%及び残量の有機溶媒を含むことを特徴とする、請求項1に記載の逆構造ペロブスカイト太陽電池の電子伝達層用コーティング剤。 The coating agent for an electron transport layer of an inverted perovskite solar cell according to claim 1, comprising 0.50 to 3.00% by weight of a surface-modified metal oxide and the remaining amount of an organic solvent. 前記有機溶媒は、イソプロピルアルコール、ブチルアルコール、2-メトキシエタノール及びエチルアセテートのうち選択された1種以上を含むことを特徴とする、請求項1に記載の逆構造ペロブスカイト太陽電池の電子伝達層用コーティング剤。 2. The electron transport layer of an inverted perovskite solar cell according to claim 1, wherein the organic solvent contains one or more selected from isopropyl alcohol, butyl alcohol, 2-methoxyethanol, and ethyl acetate. Coating agent. 前記表面改質された金属酸化物は、金属酸化物ナノ粒子を下記化学式1で表示される化合物と反応させて表面改質させたことを特徴とする、請求項1に記載の逆構造ペロブスカイト太陽電池の電子伝達層用コーティング剤。

(前記化学式1で、R~Rは、独立的に水素原子又はハロゲン原子であり、nは、0~5である。)
The inverted structure perovskite solar according to claim 1, wherein the surface-modified metal oxide is surface-modified by reacting metal oxide nanoparticles with a compound represented by the following chemical formula 1. Coating agent for the electron transport layer of batteries.

(In the chemical formula 1, R 1 to R 5 are independently hydrogen atoms or halogen atoms, and n is 0 to 5.)
前記金属酸化物ナノ粒子は、スズ(Sn)、ジルコニウム(Zr)、ストロンチウム(Sr)、亜鉛(Zn)、バナジウム(V)、モリブデン(Mo)、タングステン(W)、ニオビウム(Nb)、アルミニウム(Al)及びガリウム(Ga)のうち選択された1種又は2種以上を含む金属の酸化物を含むことを特徴とする、請求項4に記載の逆構造ペロブスカイト太陽電池の電子伝達層用コーティング剤。 The metal oxide nanoparticles include tin (Sn), zirconium (Zr), strontium (Sr), zinc (Zn), vanadium (V), molybdenum (Mo), tungsten (W), niobium (Nb), aluminum ( The coating agent for an electron transport layer of an inverted structure perovskite solar cell according to claim 4, characterized in that it contains a metal oxide containing one or more selected from Al) and gallium (Ga). . 金属酸化物ナノ粒子は、平均粒径2~10nmであることを特徴とする、請求項4に記載の逆構造ペロブスカイト太陽電池の電子伝達層用コーティング剤。 The coating agent for an electron transport layer of an inverted structure perovskite solar cell according to claim 4, wherein the metal oxide nanoparticles have an average particle size of 2 to 10 nm. 請求項1~請求項6のうちいずれか一項に記載のコーティング剤で形成されたコーティング層を含むことを特徴とする、逆構造ペロブスカイト太陽電池の電子伝達層。 An electron transport layer for an inverted perovskite solar cell, comprising a coating layer formed from the coating agent according to any one of claims 1 to 6. 前記コーティング層は、厚さ20~30nmであるとき、500~550nmの波長に対する光透過度(transmittance)が88~95%であることを特徴とする、請求項7に記載の逆構造ペロブスカイト太陽電池の電子伝達層。 The inverted structure perovskite solar cell according to claim 7, wherein the coating layer has a light transmittance of 88 to 95% for a wavelength of 500 to 550 nm when the thickness is 20 to 30 nm. electron transport layer. 請求項7に記載の電子伝達層を含むことを特徴とする、逆構造ペロブスカイト太陽電池。 An inverted perovskite solar cell comprising the electron transport layer according to claim 7. 伝導性基板、ドレイン電極(drain electrode)、正孔輸送層(Hole
transport layer)、光吸収層、電子伝達層(Electron Transporting Layer)及びソース電極(source electrode)が順に積層された構造を含むことを特徴とする、請求項9に記載の逆構造ペロブスカイト太陽電池。
conductive substrate, drain electrode, hole transport layer
The inverted structure perovskite solar cell according to claim 9, characterized in that the inverted structure perovskite solar cell includes a structure in which a transport layer, a light absorption layer, an electron transport layer, and a source electrode are sequentially stacked.
前記光吸収層及び電子伝達層の間にパッシベーション(passivation)層をさらに含むことを特徴とする、請求項10に記載の逆構造ペロブスカイト太陽電池。 The inverted perovskite solar cell of claim 10, further comprising a passivation layer between the light absorption layer and the electron transport layer.
JP2023527781A 2020-11-09 2021-10-19 Coating agent for electron transport layer of reverse structure perovskite solar cell and reverse structure perovskite solar cell Pending JP2023548890A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020200148473A KR102462209B1 (en) 2020-11-09 2020-11-09 Coating agent for electron transport layer of inverted perovskite solar cell and Inverted perovskite solar cell containing the same
KR10-2020-0148473 2020-11-09
PCT/KR2021/014538 WO2022097963A1 (en) 2020-11-09 2021-10-19 Coating agent for electron transfer layer of inverted perovskite solar cell, and inverted perovskite solar cell

Publications (1)

Publication Number Publication Date
JP2023548890A true JP2023548890A (en) 2023-11-21

Family

ID=81457206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023527781A Pending JP2023548890A (en) 2020-11-09 2021-10-19 Coating agent for electron transport layer of reverse structure perovskite solar cell and reverse structure perovskite solar cell

Country Status (6)

Country Link
US (1) US20230407111A1 (en)
EP (1) EP4243104A1 (en)
JP (1) JP2023548890A (en)
KR (1) KR102462209B1 (en)
CN (1) CN116569669A (en)
WO (1) WO2022097963A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100876947B1 (en) 2007-10-24 2009-01-07 연세대학교 산학협력단 Method of fabricating liquid for oxide thin film
KR20160133988A (en) 2015-05-14 2016-11-23 주식회사 엘지화학 Composition for hole transport layer, hole transport layer and organic solar cell comprising the same
KR102213083B1 (en) * 2019-01-30 2021-02-05 울산과학기술원 Composition for producing functionalized ZnO nanoparticles, functionalized ZnO nanoparticles produced therefrom and producing method of the same

Also Published As

Publication number Publication date
US20230407111A1 (en) 2023-12-21
KR20220062827A (en) 2022-05-17
WO2022097963A1 (en) 2022-05-12
KR102462209B1 (en) 2022-11-02
CN116569669A (en) 2023-08-08
EP4243104A1 (en) 2023-09-13

Similar Documents

Publication Publication Date Title
JP7245527B2 (en) optoelectronic device
Wan et al. Achieving over 21% efficiency in inverted perovskite solar cells by fluorinating a dopant-free hole transporting material
Liu et al. Highly crystalline Zn 2 SnO 4 nanoparticles as efficient electron-transporting layers toward stable inverted and flexible conventional perovskite solar cells
Wang et al. Recent progress of inorganic hole transport materials for efficient and stable perovskite solar cells
WO2018137048A1 (en) Contact passivation for perovskite optoelectronics
WO2017121984A1 (en) Photoactive polymer-perovskite composite materials
KR20180137431A (en) Perovskite Solar Cell with Wide Band-Gap and Fabrication Method Thereof
Ahmad et al. ZnO for stable and efficient perovskite bulk heterojunction solar cell fabricated under ambient atmosphere
Li et al. Preheating-assisted deposition of solution-processed perovskite layer for an efficiency-improved inverted planar composite heterojunction solar cell
Zhang et al. Thermo-evaporated pentacene and perylene as hole transport materials for perovskite solar cells
WO2019072163A1 (en) Materials and processes for tandem organic solar cells
KR102160474B1 (en) A method for manufacturing a inorganic hole transport layer and a perovskite solar cell containing the same
Dahal et al. Configuration of methylammonium lead iodide perovskite solar cell and its effect on the device's performance: a review
Zhong et al. Enhancing efficiency and stability of polymer solar cells based on CuI Nanoparticles as the hole transport layer
He et al. Recent Advances in Bismuth‐Based Solar Cells: Fundamentals, Fabrication, and Optimization Strategies
Zhou et al. High-efficiency organic photovoltaic cells with an antimony quantum sheet modified hole extraction layer
KR20230052558A (en) Coating solution of electron transport layer for perovskite solar cell, Electron transport layer using the same and Manufacturing method thereof
KR20230167223A (en) Composition for preparing of large-area perovskite thin film and Preparing method of large-area perovskite thin film using the same
KR20230130200A (en) Manufacturing method of highly purified cesium halide and Perovskite complex materials
KR102462209B1 (en) Coating agent for electron transport layer of inverted perovskite solar cell and Inverted perovskite solar cell containing the same
KR102647777B1 (en) Method for manufacturing perovskites photovoltaic cell, perovskites photovoltaic cell manufactured therefrom, and solar cell comprising the same
EP4325589A1 (en) Perovskite solar cell and manufacturing method therefor
KR20240039732A (en) Electron carrier for electron transport layer of perovskite solar cell, Coating agent for electron transport layer containing the same, Electron transport layer of perovskite solar cell and Perovskite solar cell containing the same
KR102182902B1 (en) Transparent Electrodes for Solar Cells and Solar Cells Utilizing the Same Approach
KR20240000198A (en) A perovskite photoelectric device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240416