JP2023540604A - 原子炉受動型反応度制御システム - Google Patents

原子炉受動型反応度制御システム Download PDF

Info

Publication number
JP2023540604A
JP2023540604A JP2023515587A JP2023515587A JP2023540604A JP 2023540604 A JP2023540604 A JP 2023540604A JP 2023515587 A JP2023515587 A JP 2023515587A JP 2023515587 A JP2023515587 A JP 2023515587A JP 2023540604 A JP2023540604 A JP 2023540604A
Authority
JP
Japan
Prior art keywords
passive
molten salt
control device
reactor
nuclear reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023515587A
Other languages
English (en)
Inventor
リチャード スコット,イアン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2023540604A publication Critical patent/JP2023540604A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/06Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
    • G21C7/22Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section by displacement of a fluid or fluent neutron-absorbing material, e.g. by adding neutron-absorbing material to the coolant
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/44Fluid or fluent reactor fuel
    • G21C3/54Fused salt, oxide or hydroxide compositions
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/02Control of nuclear reaction by using self-regulating properties of reactor materials, e.g. Doppler effect
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/06Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
    • G21C7/24Selection of substances for use as neutron-absorbing material
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/32Control of nuclear reaction by varying flow of coolant through the core by adjusting the coolant or moderator temperature
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/04Thermal reactors ; Epithermal reactors
    • G21C1/24Homogeneous reactors, i.e. in which the fuel and moderator present an effectively homogeneous medium to the neutrons
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/24Promoting flow of the coolant
    • G21C15/243Promoting flow of the coolant for liquids
    • G21C15/247Promoting flow of the coolant for liquids for liquid metals
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/24Promoting flow of the coolant
    • G21C15/26Promoting flow of the coolant by convection, e.g. using chimneys, using divergent channels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S376/00Induced nuclear reactions: processes, systems, and elements
    • Y10S376/90Particular material or material shapes for fission reactors
    • Y10S376/901Fuel
    • Y10S376/902Fuel with external lubricating or absorbing material

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

受動型原子炉制御装置である。受動型原子炉制御装置は密閉容器を有し、密閉容器はリザーバと、リザーバと流体連通しているチューブとを有する。密閉容器内に溶融塩があり、溶融塩は1価の金属ハロゲン化物、および1つ以上のランタニドおよび/またはハフニウムのフッ化物または塩化物のものの共晶混合物である。気体が密閉容器内にあり、その気体は溶融塩と反応しない。

Description

本発明は、原子炉の制御装置に関する。
核分裂炉は、通常運転時の核反応度(有効k)が正確に1であることに依存している。反応度が1をわずかに上回るだけでも核分裂によるエネルギー生成量が指数関数的に増加し、反応度が1を下回るとエネルギー生成量が指数関数的に減少し0になる。
この非常に正確な反応度の制御は、通常、人的制御や自動制御を必要としない受動的なシステムと、能動的なシステムとの組み合わせによって達成される。最も重要な受動的なシステムは、原子炉の反応度の温度係数が負であり、出力が増加すると、温度が上昇し反応度が低下するようになっていなければならないことである。もう一つの受動的なシステムは、炉心に「可燃性」中性子吸収材(ポイズン)を組み込むことであり、これは最初は反応度を抑制するが、中性子吸収によって破壊されると、反応度を徐々に抑制する。
能動的なシステムは、一般的には、炉心に中性子吸収材を挿入または引き抜く機械的制御棒である。
どのような機械的システムも故障したり不適切に使用されたりする可能性があるため、これらの能動的なシステムへの依存は安全上の危険の主要な原因である。チェルノブイリの災害は、結局は、人為的ミスによる制御棒システムの誤った使用により引き起こされたものである。
それゆえ、制御棒を交換したり補充したりするための受動的な作動システムが、何十年にもわたって原子力産業の目標とされてきた。このような受動的なシステムの現状についての優れた要約は、IAEA文書NR-T-1.16「高速中性子炉のための受動的停止システム」に記載されている。
説明されている機械的に最も単純なシステムは、溶融したリチウム金属が加熱によって膨張し、強制的にチューブを原子炉の炉心に押し下げられる(forced down a tube into the reactor core)ものである。これは非常に信頼性の高いエレガントなシステムであり、出力冷却材温度を定められた範囲内に維持するために原子炉の出力を継続的に制御するために使用できるように可逆的である。
残念ながら、このようなリチウムベースのデバイスは、Li-6が中性子を吸収するとトリチウムとヘリウム原子を放出するという欠点に悩まされている。これは非常に急速にシステムを圧迫するが、さらに重要なことに、トリチウムは放射性が非常に高く、移動性も非常に高いガスであるため、その生成は安全上でさらなる危険をもたらす。
これまでの研究のほとんどは、軽水炉または溶融金属冷却高速炉の受動型反応度制御装置に関するものである。近年、燃料または冷却材のいずれかが溶融塩である溶融塩炉への関心が大きく高まっている。これらの原子炉は他の原子炉よりもはるかに優れているが、その理由の一つは、溶融塩燃料の膨張が異常に強い負の反応度係数を生み出し、反応度を強く自己安定化させるためである。しかし、溶融塩はリチウムベースの受動型反応度制御システムの使用に問題をもたらすが、その理由は、生成されるトリチウムは溶融塩中で非常に移動性が高く、実際に金属壁を通って拡散するため、その封じ込めが非常に困難だからである。
そのため、トリチウム管理の問題を生じさせない、単純で効果的で信頼性の高い溶融塩ベースの原子炉の受動型反応度制御システムが依然として必要である。
第1の側面によれば、受動型原子炉制御装置が提供される。受動型原子炉制御装置は密閉容器を有し、密閉容器はリザーバと、リザーバと流体連通しているチューブとを有する。密閉容器内に溶融塩があり、溶融塩は1価の金属ハロゲン化物、および1つ以上のランタニドおよび/またはハフニウムのフッ化物または塩化物のものの共晶混合物である。気体が密閉容器内にあり、その気体は溶融塩と反応しない。
第2の側面によると、炉心と、第1の側面による受動型原子炉制御装置とを含む原子炉であって、少なくとも密閉容器のチューブが炉心内に延在しているものが提供される。
炉心の概略図である。 3つの異なる温度における受動型原子炉制御装置の概略図である。 代替的な炉心の概略図である。
受動型反応度制御装置は、ランタニド族またはハフニウムからの強力な中性子吸収体を含む、1価の塩と混合されたフッ化物塩または塩化物塩の形で、低融点の共晶混合物を形成する溶融塩のリザーバを組み込んでいる。
ランタニドは、照射によって顕著なトリチウムまたはヘリウムを生成しない。しかし、これらは高融点金属であるため、反応度制御デバイスでよく知られているリチウムを単純に置き換えることはできない。フッ化物または塩化物塩に変換し、1価の金属ハロゲン化物と共晶塩の混合物を形成すると、融点が使用可能なレベルに低下する。
この装置は水銀温度計に似ている。リザーバ、すなわち温度計バルブは高温出口冷却材(または燃料と組み合わせた冷却材)塩の中にあり、細いチューブ、すなわち温度計のステム(stem)は原子炉の炉心に伸びている(runs into the reactor core)。ステムには不活性ガス(すなわち溶融塩とあまり反応しないガス)が含まれており、このガスは中性子吸収塩がステムの下に膨張し、そのガスの圧力がリザーバの冷却時に中性子吸収塩をバルブに戻す際に圧縮される。熱スペクトル炉で使用するために特に有用なランタニドは、ガドリニウム、ユーロピウム、サマリウムであり、それぞれ数1000バーン(barn)の中性子吸収断面積を持つ。しかし、ジスプロシウム、エルビウムまたはハフニウムのような他のあまり強く吸収しないランタニドも使用することができ、複数のランタニドの混合物を使用することもでき、これは、塩の中性子吸収を減らして中性子に対して「黒」ではなく「灰色」にしたい場合に有利である。
高速炉の場合、最も効果的なランタニドはユーロピウムとハフニウムであるが、やはり、あまり強く吸収されないランタニドの混合物は有用性を持つことができる。
膨張と収縮の間に溶融塩流体カラムの破損を避けるための2つの方法が考えられる。第1の方法では、リザーバーはチューブの下に配置され、チューブは概ね上向きにされる(すなわち、重力によってカラムが維持され、溶融塩が上方に膨張するように)。第2の方法では、チューブは溶融塩流体のカラムが反転してもそのまま維持されるように十分に狭い。必要な半径は、溶融塩流体とチューブの内面との接触角に依存する。第1のケースでは、チューブの幅は任意である。第2のケースでは、チューブは任意の方向でよい。
いずれの場合も、膨張と収縮の間に溶融塩流体カラムが元のままであるためには、それを含むステムの表面が溶融塩流体と大きな接触角を持ち、特に表面が流体によって濡れないことが望ましい。金属表面の濡れが問題となる場合は、溶融塩が高い接触角を持つ材料の濡れた表面にコーティングをデポジションすることで改善できる。熱分解炭素(Pyrolytic carbon)はそのような適切なコーティングの1つである。
実施例1
原子炉の炉心は、フッ化ウランとフッ化ナトリウムの混合物を含む一連のモリブデンチューブから形成される。ウランはU235同位体で濃縮される。チューブはグラファイトブロック内のチャネルに配置され、冷却液がグラファイトとチューブの間のチャネルを上に向かって通過する。
図1は、黒鉛減速液体溶融塩燃料炉心内の受動型反応度装置100のアレイを示す。
受動型反応度装置のリザーバ101は、図1に示すように、チューブ内の燃料塩110のレベルの上に位置する。装置のステム102は、黒鉛120とチューブの間の環状部を通して下に突き出し、燃料チューブの底で終端する。図2は、異なる冷媒出力温度T1<T2<T3におけるバルブ101とステム102内の中性子吸収流体103の位置を示している。各受動型反応装置の残りの部分には、中性子吸収流体と反応しないガス104が含まれている。左側は通常の原子炉動作温度以下の温度における装置で、中央は通常の動作温度における装置で、右側は通常の動作温度以上である。
実施例2
原子炉の炉心は、フッ化ウランとフッ化ナトリウムの混合物を含む一連のモリブデンチューブから形成される。ウランはU235同位体で濃縮される。チューブはグラファイトブロック内のチャネルに配置され、冷却液がグラファイトとチューブの間のチャネルを下向きに通過する。
図3は、受動型原子炉制御装置のバルブ301が燃料チューブの下、すなわち燃料塩310の下に配置され、ステム302が黒鉛減速材320と燃料塩310の間に上に延在する配置を示している。

Claims (7)

  1. 受動型原子炉制御装置であって、
    密閉容器であって、
    リザーバと、
    前記リザーバと流体連通しているチューブとを有する密閉容器と、
    前記密閉容器内の溶融塩であって、前記溶融塩は
    1価の金属ハロゲン化物、および
    1つ以上のランタニドおよび/またはハフニウムのフッ化物または塩化物の共晶混合物である、溶融塩と、
    前記密閉容器内の、前記溶融塩と反応しない気体と
    を有する受動型原子炉制御装置。
  2. 前記密閉容器の内面は前記溶融塩によって濡れない、
    請求項1に記載の受動型原子炉制御装置。
  3. 前記密閉容器の内面は熱分解炭素でコーティングされている、
    請求項2に記載の受動型原子炉制御装置。
  4. 前記溶融塩は、ガドリニウム、ユーロピウム、サマリウム、またはハフニウムのいずれか1つ以上のフッ化物または塩化物を含む、
    請求項1に記載の受動型原子炉制御装置。
  5. 炉心と、請求項1に記載の受動型原子炉制御装置とを含む原子炉であって、少なくとも前記密閉容器のチューブが前記炉心に伸びている、原子炉。
  6. 前記密閉容器のリザーバは、冷却材が前記炉心から前記密閉容器の前記リザーバに流れるように配置されている、請求項5に記載の原子炉。
  7. 前記炉心は、1つ以上の黒鉛ブロックと、前記1つ以上の黒鉛ブロック内の複数のチャネルとを有し、各チャネルは、核分裂性物質を含む燃料チューブと、少なくとも、請求項1に記載の前記受動型原子炉制御装置のチューブを含むチャネルのサブセットとを含む、請求項5に記載の原子炉。
JP2023515587A 2020-09-09 2021-09-01 原子炉受動型反応度制御システム Pending JP2023540604A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB2014182.6 2020-09-09
GBGB2014182.6A GB202014182D0 (en) 2020-09-09 2020-09-09 Nuclear reactor passive reactivity control system
PCT/EP2021/074175 WO2022053374A1 (en) 2020-09-09 2021-09-01 Nuclear reactor passive reactivity control system

Publications (1)

Publication Number Publication Date
JP2023540604A true JP2023540604A (ja) 2023-09-25

Family

ID=72841434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023515587A Pending JP2023540604A (ja) 2020-09-09 2021-09-01 原子炉受動型反応度制御システム

Country Status (8)

Country Link
US (1) US11862354B2 (ja)
EP (1) EP4211704A1 (ja)
JP (1) JP2023540604A (ja)
KR (1) KR20230065327A (ja)
CN (1) CN116134550B (ja)
CA (1) CA3192273A1 (ja)
GB (1) GB202014182D0 (ja)
WO (1) WO2022053374A1 (ja)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1084255A (ja) * 1963-10-30
US3620315A (en) * 1967-05-01 1971-11-16 Atomic Energy Authority Uk Nuclear reactor with oscillating liquid coolant moderator
FR2262853B1 (ja) * 1974-02-28 1976-12-10 Pechiney Ugine Kuhlmann
JP3874309B2 (ja) 1995-08-28 2007-01-31 財団法人電力中央研究所 高速炉用自己作動型出力制御装置
CN1155968C (zh) * 1997-02-18 2004-06-30 国营莫斯科多金属工厂 水冷却容器式反应堆中的控制棒
US9281083B2 (en) * 2009-04-06 2016-03-08 Terrapower, Llc Traveling wave nuclear fission reactor, fuel assembly, and method of controlling burnup therein
CN102714065B (zh) * 2009-11-06 2016-08-24 泰拉能源有限责任公司 用于控制核反应堆中的反应性的系统和方法
KR20170052701A (ko) * 2010-11-15 2017-05-12 아토믹 에너지 오브 캐나다 리미티드 중성자 흡수제를 함유하는 핵연료
US20130083878A1 (en) * 2011-10-03 2013-04-04 Mark Massie Nuclear reactors and related methods and apparatus
US9362010B2 (en) 2011-12-06 2016-06-07 Terrapower, Llc Passive reactivity control apparatus
GB201318470D0 (en) * 2013-02-25 2013-12-04 Scott Ian R A practical molten salt fission reactor
GB2544243B (en) * 2014-10-12 2022-04-13 Richard Scott Ian Reactivity control in a molten salt reactor
CA2967473A1 (en) * 2014-12-29 2016-07-07 Terrapower, Llc Nuclear materials processing
GB2543084A (en) * 2015-10-08 2017-04-12 Richard Scott Ian Control of corrosion by molten salts
CA3045967C (en) * 2016-12-22 2024-06-04 Terrapower, Llc Passive reactivity control in a nuclear fission reactor

Also Published As

Publication number Publication date
CA3192273A1 (en) 2022-03-17
WO2022053374A1 (en) 2022-03-17
CN116134550A (zh) 2023-05-16
GB202014182D0 (en) 2020-10-21
CN116134550B (zh) 2024-04-12
EP4211704A1 (en) 2023-07-19
US11862354B2 (en) 2024-01-02
US20230260668A1 (en) 2023-08-17
KR20230065327A (ko) 2023-05-11

Similar Documents

Publication Publication Date Title
Glantz et al. DRACCAR: A multi-physics code for computational analysis of multi-rod ballooning, coolability and fuel relocation during LOCA transients Part one: General modeling description
Bushman et al. The Martian surface reactor: An advanced nuclear power station for manned extraterrestrial exploration
CA3045967C (en) Passive reactivity control in a nuclear fission reactor
RU2699229C1 (ru) Модульный ядерный реактор на быстрых нейтронах малой мощности с жидкометаллическим теплоносителем и активная зона реактора (варианты)
US20230395270A1 (en) Pool type liquid metal cooled molten salt reactor
Forsberg et al. Fluoride-salt-cooled high-temperature reactor (fhr) using british advanced gas-cooled reactor (agr) refueling technology and decay heat removal systems that prevent salt freezing
Alameri A coupled nuclear reactor thermal energy storage system for enhanced load following operation
Kim et al. Development of passive in-core cooling system for nuclear safety using hybrid heat pipe
Cui et al. An improved core design of a 50 kWth heat pipe cooled micro Molten Salt Reactor (micro-MSR)
Nakaya et al. Study on a method for loading a Li compound to produce tritium using high-temperature gas-cooled reactor
Forsberg et al. Understanding and Pathways to Avoid Major Fuel Failures and Radionuclide Releases in Fluoride Salt–Cooled High-Temperature Reactor Severe Accidents
JP2023540604A (ja) 原子炉受動型反応度制御システム
Lin et al. Feasibility of an innovative long-life molten chloride-cooled reactor
Ignat’ev et al. Accident resistance of molten-salt nuclear reactor
Kasam Conceptual design of a breed & burn molten salt reactor
Banerjee et al. 10 Nuclear Fuels
Wang et al. Molten salt reactors
Xiao et al. Licensing considerations of a fluoride salt cooled high temperature test reactor
Nightingale Graphite in nuclear industry
Senor et al. A new innovative spherical cermet nuclear fuel element to achieve an ultra-long core life for use in grid-appropriate LWRs
Scott The stable salt reactor—a radically simpler option for use of molten salt fuel
KR102556952B1 (ko) 초소형 원자로 구현을 위한 용융염-금속 원자로
Gabaraev et al. Vessel and channel fast reactors cooled by boiling water or water with supercritical parameters
Scott Static liquid fuel reactors
Burden The ‘Fast Neutron’Breeder Can Be a Truly Cost-Cutting Nuclear Power Plant