JP2023539649A - High strength low carbon martensitic high hole expandability steel and its manufacturing method - Google Patents

High strength low carbon martensitic high hole expandability steel and its manufacturing method Download PDF

Info

Publication number
JP2023539649A
JP2023539649A JP2023513798A JP2023513798A JP2023539649A JP 2023539649 A JP2023539649 A JP 2023539649A JP 2023513798 A JP2023513798 A JP 2023513798A JP 2023513798 A JP2023513798 A JP 2023513798A JP 2023539649 A JP2023539649 A JP 2023539649A
Authority
JP
Japan
Prior art keywords
steel
mpa
hole expandability
high hole
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023513798A
Other languages
Japanese (ja)
Inventor
煥 榮 王
峰 楊
晨 張
阿 娜 楊
亞 平 倪
明 王
明 卓 柏
Original Assignee
宝山鋼鉄股▲分▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010896455.1A external-priority patent/CN114107790B/en
Priority claimed from CN202010896521.5A external-priority patent/CN114107796A/en
Priority claimed from CN202010897941.5A external-priority patent/CN114107835A/en
Application filed by 宝山鋼鉄股▲分▼有限公司 filed Critical 宝山鋼鉄股▲分▼有限公司
Publication of JP2023539649A publication Critical patent/JP2023539649A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/06Ingot moulds or their manufacture
    • B22D7/064Cooling the ingot moulds
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/663Bell-type furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • B21B2001/022Blooms or billets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

その化学組成が重量百分率で、C 0.03~0.10%、Si 0.5~2.0%、Mn 1.0~2.0%、P≦0.02%、S≦0.003%、Al 0.02~0.08%、N≦0.004%、Mo 0.1~0.5%、Ti 0.01~0.05%、O≦0.0030%、残部はFeと他の不可避不純物である、引張強度980MPa以上の低炭素マルテンサイト高穴拡げ性鋼及びその製造方法。本発明にかかる高穴拡げ性鋼は、降伏強度≧800MPa、引張強度≧980MPa、横伸びA50≧8%、穴拡げ率≧30%であり、冷間曲げ性能テスト(d≦4a、180°)に合格しており、コントロールアームやサブフレームなどの、高強度・薄肉化が必要な乗用車シャーシ部品に使用可能である。Its chemical composition is in weight percentage: C 0.03-0.10%, Si 0.5-2.0%, Mn 1.0-2.0%, P≦0.02%, S≦0.003 %, Al 0.02-0.08%, N≦0.004%, Mo 0.1-0.5%, Ti 0.01-0.05%, O≦0.0030%, the balance is Fe. A low carbon martensitic high hole expandability steel with a tensile strength of 980 MPa or more and a method for manufacturing the same, which are other unavoidable impurities. The high hole expandability steel according to the present invention has yield strength≧800MPa, tensile strength≧980MPa, lateral elongation A50≧8%, hole expansion rate≧30%, and cold bending performance test (d≦4a, 180°). It has passed the test and can be used for passenger car chassis parts that require high strength and thin walls, such as control arms and subframes.

Description

本発明は、高強度鋼の分野に属し、特に、高強度低炭素マルテンサイト高穴拡げ性鋼及びその製造方法に関する。 TECHNICAL FIELD The present invention belongs to the field of high-strength steel, and particularly relates to a high-strength, low-carbon martensitic, high-hole expandability steel and a method for producing the same.

国民経済の発展に伴い、自動車の生産台数も大幅に増加し、板材の使用量も増え続けている。中国国内の自動車産業では、自動車のシャーシ部品、トーションビーム、セダンのサブフレーム、ホイールのスポークとリム、フロントとリアのアクスルアセンブリ、ボディ構造部品、シート、クラッチ、シートベルト、トラックのボックスパネル、保護ネット、車のビームなど、多くの車種の部品のオリジナル設計で、熱間圧延板や酸洗板の使用が要求されている。その中でも、シャーシ用鋼は、自動車に使われる鋼の総量の24~34%も占めている。 With the development of the national economy, the number of automobiles produced has increased significantly, and the amount of plate materials used has also continued to increase. China's domestic automobile industry produces automobile chassis parts, torsion beams, sedan subframes, wheel spokes and rims, front and rear axle assemblies, body structural parts, seats, clutches, seat belts, truck box panels, and protective nets. The original design of many car parts, such as car beams, requires the use of hot-rolled or pickled plates. Among these, chassis steel accounts for 24-34% of the total amount of steel used in automobiles.

乗用車の軽量化は、自動車業界のトレンドであるだけでなく、法規制での要求でもある。法規制では燃費が規定されているが、これは実質的にボディの軽量化に対する要求であり、材料に反映すると、高強度、薄肉化、軽量化という要求になる。高強度化と軽量化は、将来の新型車に対する必然的な要求であり、それは必然的に、鋼の使用レベルの向上とシャーシ構造の変更に繋がる:例えば部品の複雑化により、材料の性能や表面などへの要求、並びにハイドロフォーミング、ホットスタンピング、レーザー溶接などの成形技術も進歩し、その結果、材料の高強度、スタンピング、フランジング、反発、疲労などの性能に繋がる。 Reducing the weight of passenger cars is not only a trend in the automotive industry, but also a regulatory requirement. Legislation stipulates fuel efficiency, but this is essentially a requirement for lighter bodies, and when reflected in materials, it becomes a requirement for higher strength, thinner walls, and lighter weight. Higher strength and lighter weight are inevitable requirements for future new cars, which will inevitably lead to increased levels of steel usage and changes in chassis structure: e.g., increased component complexity, resulting in lower material performance and Advances in surface requirements and forming techniques such as hydroforming, hot stamping, and laser welding have resulted in materials with higher strength, stamping, flanging, rebound, and fatigue performance.

中国国内の高強度高穴拡げ性鋼の開発は、海外と比較すると、強度レベルが相対的に低いだけでなく、性能安定性も悪い。例えば、中国国内の自動車部品メーカーに使用されている高穴拡げ性鋼の殆どは、600MPa以下の高硬度鋼であり、440MPa以下レベルの高穴拡げ性鋼の競争は激化している。現在、引張強度780MPaレベルの高穴拡げ性鋼は徐々に量産されつつあるが、成形の2つの重要な指標である伸びと穴拡げ率に対する要求も高くなる。一方、980MPa以上の高穴拡げ性鋼は、まだ研究開発・認証の段階にあり、まだ量産化の段階に至っていない。1180MPa以上のようなより高い強度レベルの高強度高穴拡げ性鋼は、まだメーカーで開発されていない。しかし、より高い強度とより高い穴拡げ率を持つ980MPa高穴拡げ性鋼は、必然的に今後発展の方向になる。今後のユーザーの潜在的なニーズに応えるために、良好な穴拡げ性を持つ980MPa以上の高穴拡げ性鋼の開発が求められている。 The development of high-strength, high-hole-expandable steel in China not only has a relatively low strength level but also poor performance stability compared to overseas steels. For example, most of the high hole expandability steels used by automobile parts manufacturers in China are high hardness steels with a hardness of 600 MPa or less, and competition for high hole expandability steels with a level of 440 MPa or less is intensifying. Currently, high hole expandability steel with a tensile strength of 780 MPa level is gradually being mass-produced, but the requirements for elongation and hole expansion rate, which are two important indicators of forming, are also increasing. On the other hand, steel with high hole expandability of 980 MPa or more is still in the research, development and certification stage, and has not yet reached the stage of mass production. High-strength, high-hole expandability steels at higher strength levels, such as 1180 MPa and above, have not yet been developed by manufacturers. However, 980 MPa high hole expandability steel with higher strength and higher hole expansion rate will inevitably be the direction of future development. In order to meet the potential needs of future users, there is a need to develop steel with high hole expandability of 980 MPa or more that has good hole expandability.

980MPaレベルの高穴拡げ性鋼に関する文献は殆どなく、1180MPaレベルの高穴拡げ性鋼に関してはむしろ白紙の状態である。関する既存の特許文献の大半は、780MPa以下レベルの高穴拡げ性鋼に関するものである。980MPa以上の高穴拡げ性鋼に関する文献は殆どない。中国特許出願CN106119702Aでは、粒状ベイナイトと少量のマルテンサイトの微細組織を有すると共に、NbとCrが微量で添加された低炭素V-Ti微細合金化設計をその成分設計の主要な特徴とする980MPaレベルの熱間圧延高穴拡げ性鋼が開示される。本発明とは、成分、プロセスや組織などの点で大きく異なっている。 There is almost no literature regarding high hole expandability steels at the 980 MPa level, and there is rather a blank slate regarding high hole expandability steels at the 1180 MPa level. Most of the existing patent documents related to this relate to high hole expandability steels at a level of 780 MPa or less. There is almost no literature regarding high hole expandability steel of 980 MPa or higher. Chinese patent application CN106119702A has a microstructure of granular bainite and a small amount of martensite, and a low carbon V-Ti microalloying design with trace amounts of Nb and Cr added as the main feature of its composition design at 980 MPa level. A hot rolled high expandability steel is disclosed. This invention is significantly different from the present invention in terms of components, processes, organization, etc.

文献によると、材料の伸びは通常、その穴拡げ率と反比例の関係にあり、即ち、伸びが高いほど穴拡げ率は低くなり、逆に、伸びが低いほど穴拡げ率は高くなる。そうすると、高伸びと高穴拡げ性を有すると同時に、高強度も有する高穴拡げ性鋼を獲得することは、非常に困難である。また、同一又は類似の強化機構であれば、材料の強度が高いほど穴拡げ率は低くなる。 According to the literature, the elongation of a material is usually inversely related to its hole expansion rate, ie, the higher the elongation, the lower the hole expansion rate, and conversely, the lower the elongation, the higher the hole expansion rate. Therefore, it is extremely difficult to obtain a high hole expandability steel that has high elongation and high hole expandability, and also has high strength. Furthermore, if the reinforcement mechanism is the same or similar, the higher the strength of the material, the lower the hole expansion rate.

塑性と穴拡げ・フランジング性に優れた鋼材を得るためには、両者のバランスをより良く取る必要がある。もちろん、材料の穴拡げ率は多くの要因と密接に関係しているが、中でも組織の均質性、介在物や偏析の制御レベル、組織の種類、穴拡げ率の測定などは、最も重要な要因である。一般に、単一で均質な組織は穴拡げ率の向上に有利であるが、二相又は多相の組織は穴拡げ率の向上に不利である。 In order to obtain a steel material with excellent plasticity and hole expansion/flangeability, it is necessary to maintain a better balance between the two. Of course, the hole expansion rate of a material is closely related to many factors, but among them, the homogeneity of the structure, the control level of inclusions and segregation, the type of structure, and the measurement of the hole expansion rate are the most important factors. It is. Generally, a single, homogeneous structure is advantageous in improving the hole expansion rate, but a two-phase or multiphase structure is disadvantageous in improving the hole expansion rate.

本発明の目的は、引張強度980MPa以上の低炭素マルテンサイト高穴拡げ性鋼及びその製造方法を提供することであり、前記高穴拡げ性鋼は、降伏強度≧800MPa、引張強度≧980MPa、横伸びA50≧8%、穴拡げ率≧30%、好ましくは≧50%であり、コントロールアームやサブフレームなどの、高強度・薄肉化が必要な乗用車シャーシ部品に使用可能である。いくつかの実施形態において、前記高穴拡げ性鋼は、降伏強度≧900MPa、引張強度≧1180MPa、横伸びA50≧10%、穴拡げ率≧30%である。いくつかの実施形態において、本発明にかかる高穴拡げ性鋼は、冷間曲げ性能(d≦4a、180°)テストに合格している。 An object of the present invention is to provide a low carbon martensitic high hole expandability steel having a tensile strength of 980 MPa or more, and a method for producing the same. The elongation A 50 is ≧8%, the hole expansion rate is ≧30%, preferably ≧50%, and it can be used for passenger car chassis parts such as control arms and subframes that require high strength and thin walls. In some embodiments, the high hole expandability steel has a yield strength ≧900 MPa, a tensile strength ≧1180 MPa, a lateral elongation A 50 ≧10%, and a hole expansion rate ≧30%. In some embodiments, the high hole expandability steel of the present invention passes a cold bend performance (d≦4a, 180°) test.

上記目的を果たすために、本発明の技術方案は:
本発明の成分設計によれば、ユーザーの使用時に優れた溶接性、得られたマルテンサイト組織の良好な穴拡げ性と衝撃靭性を確保するために、C含有量を低く設計する;プロセスに合わせて、より多くの残留オーステナイトを得ることで、材料の塑性を改善するために、Si含有量を高く設計する;同時に、鋼の未再結晶温度を下げることに寄与し、より広い圧延終了温度範囲内で鋼に動的再結晶過程を完了させることで、オーステナイト結晶粒子及び最終のマルテンサイト結晶粒子のサイズを微細化させ、塑性と穴拡げ率を改善するために、Si含有量を高く設計する。
In order to achieve the above purpose, the technical solution of the present invention is:
According to the composition design of the present invention, the C content is designed to be low in order to ensure excellent weldability during use by the user, and good hole expandability and impact toughness of the obtained martensitic structure; In order to improve the plasticity of the material by obtaining more retained austenite, the Si content is designed to be high; at the same time, it contributes to lowering the non-recrystallization temperature of the steel, resulting in a wider rolling finish temperature range. The Si content is designed to be high in order to complete the dynamic recrystallization process in the steel, thereby refining the size of the austenite crystal grains and the final martensite crystal grains, and improving the plasticity and hole expansion rate. .

具体的には、本発明にかかる引張強度980MPa以上の低炭素マルテンサイト高穴拡げ性鋼は、その化学組成が重量百分率で、C 0.03~0.10%、Si 0.5~2.0%、Mn 1.0~2.0%、P≦0.02%、S≦0.003%、Al 0.02~0.08%、N≦0.004%、Mo 0.1~0.5%、Ti 0.01~0.05%、O≦0.0030%、残部はFeと他の不可避不純物である。 Specifically, the low carbon martensitic high hole expandability steel according to the present invention having a tensile strength of 980 MPa or more has a chemical composition in weight percentages of 0.03 to 0.10% C and 0.5 to 2.0% Si. 0%, Mn 1.0-2.0%, P≦0.02%, S≦0.003%, Al 0.02-0.08%, N≦0.004%, Mo 0.1-0 .5%, Ti 0.01-0.05%, O≦0.0030%, the remainder being Fe and other unavoidable impurities.

Cr≦0.5%、B≦0.002%、Ca≦0.005%、Nb≦0.06%、V≦0.05%、Cu≦0.5%、Ni≦0.5%の中の1種又は複数種の元素をさらに含む。 Cr≦0.5%, B≦0.002%, Ca≦0.005%, Nb≦0.06%, V≦0.05%, Cu≦0.5%, Ni≦0.5% It further contains one or more elements.

いくつかの実施形態において、本発明にかかる引張強度980MPa以上の低炭素マルテンサイト高穴拡げ性鋼は、その化学組成が重量百分率で、C 0.03~0.10%、Si 0.5~2.0%、Mn 1.0~2.0%、P≦0.02%、S≦0.003%、Al 0.02~0.08%、N≦0.004%、Mo 0.1~0.5%、Ti 0.01~0.05%、O≦0.0030%、Cr≦0.5%、B≦0.002%、Ca≦0.005%、Nb≦0.06%、V≦0.05%、Cu≦0.5%、Ni≦0.5%、残部はFeと他の不可避不純物である;好ましくは、当該低炭素マルテンサイト高穴拡げ性鋼は、Cr、B、Ca、Nb、V、Cu及びNiの中の少なくとも1種を含む。いくつかの好ましい実施形態において、当該低炭素マルテンサイト高穴拡げ性鋼は、少なくともNiを含み、好ましくは、Niの含有量は0.1~0.5%で、より好ましくは0.1~0.3%である。いくつかの好ましい実施形態において、当該低炭素マルテンサイト高穴拡げ性鋼は、少なくともCr及び/又はBを含み、好ましくは、Crの含有量は0.1~0.5%で、好ましくは0.2~0.4%であり、好ましくは、Bの含有量は0.0005~0.002%である。 In some embodiments, the low carbon martensitic high hole expandability steel having a tensile strength of 980 MPa or more according to the present invention has a chemical composition in weight percentage of C 0.03 to 0.10%, Si 0.5 to 2.0%, Mn 1.0-2.0%, P≦0.02%, S≦0.003%, Al 0.02-0.08%, N≦0.004%, Mo 0.1 ~0.5%, Ti 0.01~0.05%, O≦0.0030%, Cr≦0.5%, B≦0.002%, Ca≦0.005%, Nb≦0.06% , V≦0.05%, Cu≦0.5%, Ni≦0.5%, the remainder being Fe and other unavoidable impurities; Preferably, the low carbon martensitic high hole expandability steel contains Cr, Contains at least one of B, Ca, Nb, V, Cu, and Ni. In some preferred embodiments, the low carbon martensitic high hole expandability steel contains at least Ni, preferably the Ni content is 0.1 to 0.5%, more preferably 0.1 to 0.5%. It is 0.3%. In some preferred embodiments, the low carbon martensitic high hole expandability steel contains at least Cr and/or B, preferably the content of Cr is 0.1-0.5%, preferably 0. The content of B is preferably 0.0005 to 0.002%.

いくつかの実施形態において、前記Crの好ましい含有量は0.2~0.4%である;前記Bの好ましい含有量は0.0005~0.0015%である;前記Caの好ましい含有量は≦0.002%である;前記Nb、Vの好ましい含有量はそれぞれ≦0.03%である;前記Cu、Niの好ましい含有量はそれぞれ≦0.3%である。 In some embodiments, the preferable content of Cr is 0.2 to 0.4%; the preferable content of B is 0.0005 to 0.0015%; the preferable content of Ca is ≦0.002%; the preferable contents of Nb and V are each ≦0.03%; the preferable contents of Cu and Ni are ≦0.3%, respectively.

さらに、本発明にかかる引張強度980MPa以上の低炭素マルテンサイト高穴拡げ性鋼の微細組織は、マルテンサイトである。いくつかの実施形態において、微細組織はマルテンサイト又は焼戻しマルテンサイトである。好ましくは、体積比で、前記低炭素マルテンサイト高穴拡げ性鋼の微細組織における残留オーステナイトの含有量は≦5%である。いくつかの実施形態において、オーステナイトの含有量は0.5~5%である。 Furthermore, the microstructure of the low carbon martensitic high hole expandability steel having a tensile strength of 980 MPa or more according to the present invention is martensite. In some embodiments, the microstructure is martensite or tempered martensite. Preferably, by volume, the content of retained austenite in the microstructure of the low carbon martensitic high hole expandability steel is ≦5%. In some embodiments, the austenite content is 0.5-5%.

さらに、本発明にかかる引張強度980MPa以上の低炭素マルテンサイト高穴拡げ性鋼は、降伏強度≧800MPa、好ましくは≧900MPaであり、引張強度≧980MPa、好ましくは≧1180MPaであり、横伸びA50≧8%、好ましくは≧10%であり、穴拡げ率≧30%、好ましくは≧50%である。 Furthermore, the low carbon martensitic high hole expandability steel having a tensile strength of 980 MPa or more according to the present invention has a yield strength ≧800 MPa, preferably ≧900 MPa, a tensile strength ≧980 MPa, preferably ≧1180 MPa, and a lateral elongation A 50 The hole expansion rate is ≧8%, preferably ≧10%, and the hole expansion rate is ≧30%, preferably ≧50%.

好ましくは、本発明にかかる引張強度980MPa以上の低炭素マルテンサイト高穴拡げ性鋼は、-40℃衝撃靭性≧60J、好ましくは≧70Jである。いくつかの実施形態において、前記の引張強度980MPa以上の低炭素マルテンサイト高穴拡げ性鋼は、-40℃衝撃靭性≧140J、好ましくは≧150J、より好ましくは≧160Jである。 Preferably, the low carbon martensitic high hole expandability steel having a tensile strength of 980 MPa or more according to the present invention has a -40°C impact toughness of ≧60J, preferably ≧70J. In some embodiments, the low carbon martensitic high hole expandability steel with a tensile strength of 980 MPa or more has a -40°C impact toughness ≧140J, preferably ≧150J, more preferably ≧160J.

好ましくは、本発明にかかる引張強度980MPa以上の低炭素マルテンサイト高穴拡げ性鋼は、冷間曲げ性能テスト(d≦4a、180°)に合格している。 Preferably, the low carbon martensitic high hole expandability steel having a tensile strength of 980 MPa or more according to the present invention passes a cold bending performance test (d≦4a, 180°).

いくつかの実施形態において、本発明は、その化学組成が重量百分率で、C 0.03~0.06%、Si 0.5~2.0%、Mn 1.0~2.0%、P≦0.02%、S≦0.003%、Al 0.02~0.08%、N≦0.004%、Mo 0.1~0.5%、Ti 0.01~0.05%、O≦0.0030%、残部はFeと他の不可避不純物である引張強度980MPa以上の超低炭素マルテンサイト高穴拡げ性鋼を提供する。 In some embodiments, the present invention provides chemical compositions, in weight percentages, of C 0.03-0.06%, Si 0.5-2.0%, Mn 1.0-2.0%, P ≦0.02%, S≦0.003%, Al 0.02-0.08%, N≦0.004%, Mo 0.1-0.5%, Ti 0.01-0.05%, The present invention provides an ultra-low carbon martensitic high hole expandability steel with a tensile strength of 980 MPa or more, in which O≦0.0030% and the balance being Fe and other unavoidable impurities.

さらに、前記の引張強度980MPa以上の超低炭素マルテンサイト高穴拡げ性鋼は、Cr≦0.5%、B≦0.002%、Ca≦0.005%、Nb≦0.06%、V≦0.05%、Cu≦0.5%、Ni≦0.5%の中の1種又は複数種の元素をさらに含む。 Furthermore, the ultra-low carbon martensitic high hole expandability steel with a tensile strength of 980 MPa or more has Cr≦0.5%, B≦0.002%, Ca≦0.005%, Nb≦0.06%, V It further contains one or more elements selected from ≦0.05%, Cu≦0.5%, and Ni≦0.5%.

いくつかの実施形態において、前記の引張強度980MPa以上の超低炭素マルテンサイト高穴拡げ性鋼は、その化学組成が重量百分率で、C 0.03~0.06%、Si 0.5~2.0%、Mn 1.0~2.0%、P≦0.02%、S≦0.003%、Al 0.02~0.08%、N≦0.004%、Mo 0.1~0.5%、Ti 0.01~0.05%、O≦0.0030%、Cr≦0.5%、B≦0.002%、Ca≦0.005%、Nb≦0.06%、V≦0.05%、Cu≦0.5%、Ni≦0.5%、残部はFeと他の不可避不純物である。好ましくは、前記の引張強度980MPa以上の超低炭素マルテンサイト高穴拡げ性鋼は、少なくともCr及び/又はBを含み、好ましくは、Crの含有量は0.1~0.5%で、好ましくは0.2~0.4%であり、好ましくは、Bの含有量は0.0005~0.002%である。 In some embodiments, the ultra-low carbon martensitic high hole expandability steel having a tensile strength of 980 MPa or more has a chemical composition in weight percentages of 0.03 to 0.06% C, 0.5 to 2% Si. .0%, Mn 1.0-2.0%, P≦0.02%, S≦0.003%, Al 0.02-0.08%, N≦0.004%, Mo 0.1- 0.5%, Ti 0.01-0.05%, O≦0.0030%, Cr≦0.5%, B≦0.002%, Ca≦0.005%, Nb≦0.06%, V≦0.05%, Cu≦0.5%, Ni≦0.5%, and the remainder is Fe and other unavoidable impurities. Preferably, the ultra-low carbon martensitic high hole expandability steel having a tensile strength of 980 MPa or more contains at least Cr and/or B, preferably, the content of Cr is 0.1 to 0.5%, preferably is 0.2 to 0.4%, and preferably the B content is 0.0005 to 0.002%.

いくつかの実施形態において、前記Crの好ましい含有量は0.2~0.4%である;前記Bの好ましい含有量は0.0005~0.0015%である;前記Caの好ましい含有量は≦0.002%である;前記Nb、Vの好ましい含有量はそれぞれ≦0.03%である;前記Cu、Niの好ましい含有量はそれぞれ≦0.3%である。 In some embodiments, the preferable content of Cr is 0.2 to 0.4%; the preferable content of B is 0.0005 to 0.0015%; the preferable content of Ca is ≦0.002%; the preferable contents of Nb and V are each ≦0.03%; the preferable contents of Cu and Ni are ≦0.3%, respectively.

好ましい実施形態において、前記の引張強度980MPa以上の超低炭素マルテンサイト高穴拡げ性鋼の微細組織は、マルテンサイト又は焼戻しマルテンサイトである。いくつかの実施形態において、前記の引張強度980MPa以上の超低炭素マルテンサイト高穴拡げ性鋼の微細組織は、さらに、残留オーステナイトを少量で含む。好ましくは、体積比で、前記超低炭素マルテンサイト高穴拡げ性鋼の微細組織における残留オーステナイトの含有量は≦5%である。いくつかの実施形態において、オーステナイトの含有量は0.5~5%である。 In a preferred embodiment, the microstructure of the ultra-low carbon martensitic high hole expandability steel having a tensile strength of 980 MPa or more is martensite or tempered martensite. In some embodiments, the microstructure of the ultra-low carbon martensitic high hole expandability steel having a tensile strength of 980 MPa or more further includes a small amount of retained austenite. Preferably, by volume, the content of retained austenite in the microstructure of the ultra-low carbon martensitic high hole expandability steel is ≦5%. In some embodiments, the austenite content is 0.5-5%.

好ましい実施形態において、前記の引張強度980MPa以上の超低炭素マルテンサイト高穴拡げ性鋼は、降伏強度≧800MPa、好ましくは≧820MPaであり、引張強度≧980MPa、好ましくは≧1000MPaであり、横伸びA50≧8%、好ましくは≧10%であり、穴拡げ率≧50%、好ましくは≧55%であり、冷間曲げ性能テスト(d≦4a、180°)に合格している。好ましい実施形態において、前記の引張強度980MPa以上の超低炭素マルテンサイト高穴拡げ性鋼は、-40℃衝撃靭性≧140J、好ましくは≧150J、より好ましくは≧160Jである。好ましい実施形態において、前記の引張強度980MPa以上の超低炭素マルテンサイト高穴拡げ性鋼は、降伏強度が800~890MPaで、引張強度が980~1150MPaで、横伸びA50が8~13%で、穴拡げ率が50~85%で、-40℃衝撃靭性が140~185Jで、冷間曲げ性能テスト(d≦4a、180°)に合格している。好ましくは、前記の引張強度980MPa以上の超低炭素マルテンサイト高穴拡げ性鋼の微細組織は、マルテンサイトと残留オーステナイトであり、ただし、微細組織における残留オーステナイトの体積百分率は前記のように≦5%である。 In a preferred embodiment, the ultra-low carbon martensitic high hole expandability steel having a tensile strength of 980 MPa or more has a yield strength ≧800 MPa, preferably ≧820 MPa, a tensile strength ≧980 MPa, preferably ≧1000 MPa, and a lateral elongation. A 50 ≧8%, preferably ≧10%, hole expansion rate ≧50%, preferably ≧55%, and passes the cold bending performance test (d≦4a, 180°). In a preferred embodiment, the ultra-low carbon martensitic high hole expandability steel having a tensile strength of 980 MPa or more has a -40°C impact toughness of ≧140 J, preferably ≧150 J, more preferably ≧160 J. In a preferred embodiment, the ultra-low carbon martensitic high hole expandability steel with a tensile strength of 980 MPa or more has a yield strength of 800 to 890 MPa, a tensile strength of 980 to 1150 MPa, and a lateral elongation A50 of 8 to 13%. The hole expansion rate is 50 to 85%, the -40°C impact toughness is 140 to 185 J, and it passes the cold bending performance test (d≦4a, 180°). Preferably, the microstructure of the ultra-low carbon martensitic high hole expandability steel with a tensile strength of 980 MPa or more is martensite and retained austenite, provided that the volume percentage of retained austenite in the microstructure is ≦5 as described above. %.

いくつかの実施形態において、本発明にかかる引張強度980MPa以上の低炭素マルテンサイト高穴拡げ性鋼は、引張強度1180MPa以上の高塑性高穴拡げ性鋼であり、その化学組成が重量百分率で、C 0.06~0.10%、Si 0.8~2.0%、Mn 1.5~2.0%、P≦0.02%、S≦0.003%、Al 0.02~0.08%、N≦0.004%、Mo 0.1~0.5%、Ti 0.01~0.05%、O≦0.0030%、残部はFeと他の不可避不純物である。 In some embodiments, the low carbon martensitic high hole expandability steel with a tensile strength of 980 MPa or more according to the present invention is a high plasticity high hole expandability steel with a tensile strength of 1180 MPa or more, and the chemical composition thereof in weight percentage is C 0.06-0.10%, Si 0.8-2.0%, Mn 1.5-2.0%, P≦0.02%, S≦0.003%, Al 0.02-0 .08%, N≦0.004%, Mo 0.1-0.5%, Ti 0.01-0.05%, O≦0.0030%, the remainder being Fe and other unavoidable impurities.

さらに、前記の引張強度1180MPa以上の高塑性高穴拡げ性鋼は、Cr≦0.5%、B≦0.002%、Ca≦0.005%、Nb≦0.06%、V≦0.05%、Cu≦0.5%、Ni≦0.5%の中の1種又は複数種の元素をさらに含む。 Further, the high plasticity and high hole expandability steel having a tensile strength of 1180 MPa or more has Cr≦0.5%, B≦0.002%, Ca≦0.005%, Nb≦0.06%, V≦0. 05%, Cu≦0.5%, and Ni≦0.5%.

いくつかの実施形態において、前記の引張強度1180MPa以上の高塑性高穴拡げ性鋼は、その化学組成が重量百分率で、C 0.06~0.10%、Si 0.8~2.0%、Mn 1.5~2.0%、P≦0.02%、S≦0.003%、Al 0.02~0.08%、N≦0.004%、Mo 0.1~0.5%、Ti 0.01~0.05%、O≦0.0030%、Cr≦0.5%、B≦0.002%、Ca≦0.005%、Nb≦0.06%、V≦0.05%、Cu≦0.5%、Ni≦0.5%、残部はFeと他の不可避不純物である。好ましくは、いくつかの実施形態において、前記の引張強度1180MPa以上の高塑性高穴拡げ性鋼は、少なくともNiを含み、好ましくは、Niの含有量は0.1~0.3%である。好ましくは、前記の引張強度1180MPa以上の高塑性高穴拡げ性鋼は、少なくともCr及び/又はBを含み、好ましくは、Crの含有量は0.1~0.5%で、好ましくは0.2~0.4%であり、好ましくは、Bの含有量は0.0005~0.002%である。 In some embodiments, the high plasticity and high hole expandability steel having a tensile strength of 1180 MPa or more has a chemical composition in weight percentage of 0.06 to 0.10% C and 0.8 to 2.0% Si. , Mn 1.5-2.0%, P≦0.02%, S≦0.003%, Al 0.02-0.08%, N≦0.004%, Mo 0.1-0.5 %, Ti 0.01-0.05%, O≦0.0030%, Cr≦0.5%, B≦0.002%, Ca≦0.005%, Nb≦0.06%, V≦0 .05%, Cu≦0.5%, Ni≦0.5%, the remainder being Fe and other unavoidable impurities. Preferably, in some embodiments, the high plasticity and high hole expandability steel having a tensile strength of 1180 MPa or more contains at least Ni, and preferably the Ni content is 0.1 to 0.3%. Preferably, the high plasticity and high hole expandability steel having a tensile strength of 1180 MPa or more contains at least Cr and/or B, preferably the content of Cr is 0.1 to 0.5%, preferably 0.5%. The content of B is 2 to 0.4%, preferably 0.0005 to 0.002%.

いくつかの実施形態において、前記Crの好ましい含有量は0.2~0.4%である;前記Cu、Niの好ましい含有量はそれぞれ≦0.3%である;前記Nb、Vの好ましい含有量はそれぞれ≦0.03%である;前記Bの好ましい含有量は0.0005~0.0015%である;前記Caの好ましい含有量は≦0.002%である。 In some embodiments, the preferred content of Cr is 0.2 to 0.4%; the preferred content of Cu and Ni is each ≦0.3%; the preferred content of Nb and V is The amounts are each ≦0.03%; the preferable content of B is 0.0005-0.0015%; the preferable content of Ca is ≦0.002%.

好ましい実施形態において、前記の引張強度1180MPa以上の高塑性高穴拡げ性鋼の微細組織は、焼戻しマルテンサイトである。いくつかの実施形態において、前記の引張強度1180MPa以上の高塑性高穴拡げ性鋼の微細組織は、さらに、残留オーステナイトを少量で含む。好ましくは、体積比で、前記微細組織における残留オーステナイトの含有量は≦5%である。いくつかの実施形態において、オーステナイトの含有量は2~5%である。 In a preferred embodiment, the microstructure of the high plasticity and high hole expandability steel having a tensile strength of 1180 MPa or more is tempered martensite. In some embodiments, the microstructure of the high plasticity, high hole expandability steel having a tensile strength of 1180 MPa or more further includes a small amount of retained austenite. Preferably, by volume, the content of retained austenite in the microstructure is ≦5%. In some embodiments, the austenite content is 2-5%.

好ましい実施形態において、前記の引張強度1180MPa以上の高塑性高穴拡げ性鋼は、降伏強度≧900MPa、好ましくは≧930MPa、より好ましくは≧950MPaであり、引張強度≧1180MPa、好ましくは≧1200MPa、より好ましくは≧1220MPaであり、横伸びA50≧10%であり、穴拡げ率≧30%、好ましくは≧35%である。好ましい実施形態において、前記の引張強度980MPa以上の超低炭素マルテンサイト高穴拡げ性鋼は、-40℃衝撃靭性≧60J、好ましくは≧70J、より好ましくは≧80Jである。好ましくは、当該引張強度1180MPa以上の高塑性高穴拡げ性鋼は、冷間曲げ性能テスト(d≦4a、180°)に合格している。 In a preferred embodiment, the high plasticity and high hole expandability steel having a tensile strength of 1180 MPa or more has a yield strength ≧900 MPa, preferably ≧930 MPa, more preferably ≧950 MPa, and has a tensile strength ≧1180 MPa, preferably ≧1200 MPa, or more. It is preferably ≧1220 MPa, the lateral elongation A 50 ≧10%, and the hole expansion rate ≧30%, preferably ≧35%. In a preferred embodiment, the ultra-low carbon martensitic high hole expandability steel having a tensile strength of 980 MPa or more has a -40°C impact toughness of ≧60 J, preferably ≧70 J, more preferably ≧80 J. Preferably, the high plasticity and high hole expandability steel with a tensile strength of 1180 MPa or more passes a cold bending performance test (d≦4a, 180°).

好ましい実施形態において、前記の引張強度1180MPa以上の高塑性高穴拡げ性鋼は、降伏強度が900~1000MPaで、引張強度が1200~1280MPaで、横伸びが10~13%で、穴拡げ率が30~50%で、-40℃衝撃靭性が60~100Jである。好ましくは、前記の引張強度1180MPa以上の高塑性高穴拡げ性鋼の微細組織は、焼戻しマルテンサイトと残留オーステナイトであり、ただし、微細組織における残留オーステナイトの体積百分率は前記のように≦5%である。好ましくは、当該引張強度1180MPa以上の高塑性高穴拡げ性鋼は、冷間曲げ性能テスト(d≦4a、180°)に合格している。 In a preferred embodiment, the high plasticity and high hole expandability steel having a tensile strength of 1180 MPa or more has a yield strength of 900 to 1000 MPa, a tensile strength of 1200 to 1280 MPa, a lateral elongation of 10 to 13%, and a hole expansion rate of 10 to 13%. 30-50%, -40°C impact toughness is 60-100J. Preferably, the microstructure of the high plasticity and high hole expandability steel having a tensile strength of 1180 MPa or more is tempered martensite and retained austenite, provided that the volume percentage of retained austenite in the microstructure is ≦5% as described above. be. Preferably, the high plasticity and high hole expandability steel with a tensile strength of 1180 MPa or more passes a cold bending performance test (d≦4a, 180°).

他の好ましい実施形態において、前記の引張強度1180MPa以上の高塑性高穴拡げ性鋼は、降伏強度が940~1000MPaで、引張強度が1210~1300MPaで、横伸びが10~13%で、穴拡げ率が30~50%で、-40℃衝撃靭性が80~110Jで、且つ冷間曲げ性能テスト(d≦4a、180°)に合格している。好ましくは、前記の引張強度1180MPa以上の高塑性高穴拡げ性鋼の微細組織は、焼戻しマルテンサイトと残留オーステナイトであり、ただし、微細組織における残留オーステナイトの体積百分率は前記のように≦5%である。 In another preferred embodiment, the high plasticity and high hole expandability steel having a tensile strength of 1180 MPa or more has a yield strength of 940 to 1000 MPa, a tensile strength of 1210 to 1300 MPa, a lateral elongation of 10 to 13%, and a hole expansion property of 1180 MPa or more. It has a -40°C impact toughness of 80 to 110 J, and passes the cold bending performance test (d≦4a, 180°). Preferably, the microstructure of the high plasticity and high hole expandability steel having a tensile strength of 1180 MPa or more is tempered martensite and retained austenite, provided that the volume percentage of retained austenite in the microstructure is ≦5% as described above. be.

本発明にかかる高穴拡げ性鋼の成分設計において:
炭素は、鋼における基本元素であり、本発明にとって重要な元素の一つでもある。炭素はオーステナイト相領域を拡大させ、オーステナイトを安定化させる。炭素は鋼における間隙原子として、鋼の強度向上にとって非常に重要な役割を担い、鋼の降伏強度と引張強度に対する影響が一番大きい。本発明において、獲得しようとする組織は低炭素若しくは超低炭素マルテンサイトであるので、引張強度980MPaレベルに達する高強度鋼を得るために、炭素含有量を0.03%以上に確保しなければならず、さもないと、炭素含有量が0.03%を下回ると、完全に室温まで焼入しても、その引張強度を980MPaに達することができない。しかし、炭素含有量が0.10%を上回ることも許容されず、炭素含有量が高すぎると、形成される低炭素マルテンサイトの強度が高すぎて、伸びも穴拡げ率も低くなる。従って、炭素含有量を0.03~0.10%の間に制御すべきである。いくつかの実施形態において、Cの好ましい範囲は0.04~0.055%の間にある。他のいくつかの実施形態において、Cの好ましい範囲は0.07~0.09%である。
In the compositional design of the high hole expandability steel according to the present invention:
Carbon is a basic element in steel and is also one of the important elements for the present invention. Carbon expands the austenite phase region and stabilizes austenite. As an interstitial atom in steel, carbon plays a very important role in improving the strength of steel, and has the greatest influence on the yield strength and tensile strength of steel. In the present invention, the structure to be obtained is low carbon or ultra-low carbon martensite, so in order to obtain high strength steel that can reach the tensile strength level of 980 MPa, the carbon content must be maintained at 0.03% or more. Otherwise, if the carbon content is less than 0.03%, its tensile strength cannot reach 980 MPa even if it is completely quenched to room temperature. However, it is also not permissible for the carbon content to exceed 0.10%, and if the carbon content is too high, the strength of the low carbon martensite formed will be too high, and the elongation and hole expansion rate will be low. Therefore, the carbon content should be controlled between 0.03 and 0.10%. In some embodiments, a preferred range of C is between 0.04 and 0.055%. In some other embodiments, the preferred range for C is 0.07-0.09%.

ケイ素は、鋼における基本元素であり、本発明にとって重要な元素の一つでもある。Si含有量を増やすと、固溶強化効果を向上できるだけでなく、より重要なこととして、下記の2つの役割を担うこともできる。一つは、鋼の未再結晶温度を大幅に下げることで、非常に低い温度範囲内で鋼に動的再結晶を完了させることができる。そうすると、実際の圧延過程では、比較的広い圧延終了温度範囲内で、例えば800~900℃のような圧延終了温度範囲内で圧延することができ、組織の異方性を大幅に改善することにより、最終マルテンサイト組織の異方性を低減することができ、これで、強度と塑性の向上にも寄与するし、良好な穴拡げ率の獲得にも寄与する;Siのもう一つの重要な役割は、セメンタイトの析出に対する抑制であり、適切な圧延プロセス条件で、特にマルテンサイトを主体とする組織を得る場合に、残留オーステナイトを所定量で保留することができ、伸びの向上に寄与する。周知のように、同じ強度レベルでマルテンサイトの伸びが通常最も低いが、マルテンサイトの伸びを向上させるために、安定した残留オーステナイトを所定量で保留することは重要な手段の一つである。Siのこの役割は、一般にその含有量が0.5%以上になった時に発現し始めるが、Si含有量が多すぎることも許容されず、さもないと、実際の圧延過程で圧延力の負荷が過大となり、安定した製品生産に不利である。よって、鋼において、Si含有量は通常、0.5~2.0%の間に制御され、好ましい範囲は0.8~1.4%の間にある。いくつかの実施形態において、Si含有量は1.0~1.4%の間に制御される。 Silicon is a basic element in steel and is also one of the important elements for the present invention. Increasing the Si content can not only improve the solid solution strengthening effect, but more importantly, can also play the following two roles. One is to significantly lower the unrecrystallized temperature of the steel, allowing the steel to complete dynamic recrystallization within a very low temperature range. Then, in the actual rolling process, rolling can be carried out within a relatively wide rolling end temperature range, for example, 800 to 900°C, and the anisotropy of the structure can be significantly improved. , can reduce the anisotropy of the final martensitic structure, which contributes to improving the strength and plasticity, and also contributes to obtaining a good hole expansion rate; another important role of Si. This suppresses the precipitation of cementite, and under appropriate rolling process conditions, especially when obtaining a structure mainly composed of martensite, retained austenite can be retained in a predetermined amount, contributing to improved elongation. As is well known, the elongation of martensite is usually the lowest at the same strength level, but retaining a certain amount of stable retained austenite is one of the important measures to improve the elongation of martensite. This role of Si generally starts to appear when its content is 0.5% or more, but too much Si content is also not allowed, otherwise the rolling force load will be affected in the actual rolling process. becomes excessive, which is disadvantageous to stable product production. Therefore, in steel, the Si content is usually controlled between 0.5 and 2.0%, with a preferred range between 0.8 and 1.4%. In some embodiments, Si content is controlled between 1.0 and 1.4%.

マンガンは、鋼における一番の基本元素であり、本発明にとって一番重要な元素の一つでもある。周知のように、Mnはオーステナイト相領域を拡大させる重要な元素であり、鋼の臨界焼入速度を低下させ、オーステナイトを安定化させ、結晶粒を微細化させ、オーステナイトからパーライトへの変態を遅延させることができる。本発明において、鋼板の強度を確保すると共に、残留オーステナイトを安定化させるために、Mn含有量は通常、1.0%以上に制御されるが、Mn含有量は2.0%を超えることも通常許容されず、さもないと、製鋼時にMnの偏析が発生しやすくなると共に、スラブ連続鋳造時にも熱間割れが発生しやすくなる。よって、鋼において、Mn含有量は通常、1.0~2.0%に制御され、好ましい範囲は1.4~1.8%である。いくつかの実施形態において、Mn含有量は1.6~1.9%の間に制御される。 Manganese is the most basic element in steel and is also one of the most important elements for the present invention. As is well known, Mn is an important element that expands the austenite phase region, reduces the critical quenching rate of steel, stabilizes austenite, refines grains, and delays the transformation from austenite to pearlite. can be done. In the present invention, in order to ensure the strength of the steel sheet and stabilize retained austenite, the Mn content is usually controlled to 1.0% or more, but the Mn content may exceed 2.0%. This is normally not allowed, otherwise Mn segregation is likely to occur during steel manufacturing, and hot cracking is also likely to occur during continuous slab casting. Therefore, in steel, the Mn content is usually controlled to 1.0 to 2.0%, with a preferred range of 1.4 to 1.8%. In some embodiments, Mn content is controlled between 1.6-1.9%.

リンは、鋼における不純物元素である。Pは極めて結晶粒界に偏在しやすく、鋼におけるP含有量は高い(≧0.1%)と、FePを形成して結晶粒の周辺に析出し、鋼の塑性と靭性を低下させるので、その含有量は少ないほど良く、一般的には0.02%以内に制御することが好ましく、且つ製鋼コストも高騰しない。 Phosphorus is an impurity element in steel. P is extremely likely to be unevenly distributed at grain boundaries, and when the P content in steel is high (≧0.1%), it forms Fe 2 P and precipitates around the grains, reducing the plasticity and toughness of the steel. Therefore, the lower the content, the better, and it is generally preferable to control it within 0.02%, and the steel manufacturing cost does not increase.

硫黄は、鋼における不純物元素である。鋼におけるSはMnと結合してMnS介在物を形成することが普通であり、特にSとMnの含有量が両方とも高い場合、鋼において多くのMnSが形成されるが、MnS自身は若干の塑性を有し、後続の圧延過程において、MnSは圧延方向に沿って変形するので、鋼板の横方向の塑性を低下させるだけでなく、組織の異方性も増加させ、穴拡げ性に不利である。よって、鋼におけるS含有量は少ないほど良く、本発明におけるMn含有量を高いレベルにしなければならないことも考慮すると、MnS含有量を低減させるために、S含有量を厳しく制御しなければならず、S含有量を0.003%以内に制御する必要があり、好ましい範囲は0.0015%以下である。 Sulfur is an impurity element in steel. S in steel usually combines with Mn to form MnS inclusions, especially when both S and Mn contents are high, a lot of MnS is formed in steel, but MnS itself contains some MnS has plasticity and deforms along the rolling direction during the subsequent rolling process, which not only reduces the transverse plasticity of the steel sheet but also increases the anisotropy of the structure, which is detrimental to hole expandability. be. Therefore, the lower the S content in steel, the better. Considering that the Mn content in the present invention must be at a high level, the S content must be strictly controlled in order to reduce the MnS content. , it is necessary to control the S content within 0.003%, and the preferred range is 0.0015% or less.

アルミニウムは、鋼において主に脱酸と窒素固定の役割を担う。Ti、Nb、Vなどの強炭化物形成元素の存在を前提として、Alは主に脱酸と結晶粒微細化の役割を担う。本発明において、Alは一般的な脱酸元素及び結晶粒微細化元素として、その含有量は通常0.02~0.08%に制御すれば良い。Al含有量が0.02%未満であると、結晶粒微細化に寄与できず、同様に、Al含有量が0.08%以上であると、その結晶粒微細化効果は飽和してしまう。よって、鋼において、Al含有量は通常、0.02~0.08%の間に制御すれば良いが、好ましい範囲は0.02~0.05%の間にある。 Aluminum primarily plays the role of deoxidation and nitrogen fixation in steel. Assuming the presence of strong carbide-forming elements such as Ti, Nb, and V, Al mainly plays the role of deoxidation and crystal grain refinement. In the present invention, Al is a general deoxidizing element and grain refining element, and its content may be normally controlled to 0.02 to 0.08%. If the Al content is less than 0.02%, it cannot contribute to grain refinement, and similarly, if the Al content is 0.08% or more, the grain refinement effect is saturated. Therefore, in steel, the Al content should normally be controlled between 0.02 and 0.08%, but the preferred range is between 0.02 and 0.05%.

窒素は、本発明において不純物元素に属し、その含有量は低いほど良い。しかし、窒素は製鋼過程において不可避な元素である。その含有量が少ないが、Tiなどの強炭化物形成元素と結合すると、形成されたTiN粒子は鋼の性能、特に穴拡げ性に非常に悪い影響を与える。また、TiNは四角い形状をしているため、その鋭利な角と基板との間に大きな応力集中が存在し、穴拡げ変形過程で、TiNと基板との間の応力集中によりクラックが発生しやすく、穴拡げ性を大きく低下させる。窒素含有量を可能な限り制御することを前提として、Tiなどの強炭化物形成元素の含有量は少ないほど好ましい。本発明において、微量のTiを加えて窒素を固定することで、TiNによる悪影響を可能な限り低減させる。よって、窒素含有量を0.004%以下に制御すべきであり、好ましい範囲は0.003%以下である。 Nitrogen belongs to an impurity element in the present invention, and the lower the content, the better. However, nitrogen is an unavoidable element in the steelmaking process. Although the content is small, when combined with strong carbide-forming elements such as Ti, the formed TiN particles have a very negative effect on the performance of the steel, especially the hole expandability. In addition, since TiN has a square shape, there is a large stress concentration between its sharp corners and the substrate, and during the hole expansion process, cracks are likely to occur due to stress concentration between the TiN and the substrate. , greatly reduces hole expandability. On the premise that the nitrogen content is controlled as much as possible, the content of strong carbide-forming elements such as Ti is preferably as low as possible. In the present invention, by adding a small amount of Ti to fix nitrogen, the adverse effects of TiN are reduced as much as possible. Therefore, the nitrogen content should be controlled to 0.004% or less, and the preferred range is 0.003% or less.

チタンは、本発明にとって重要な元素の一つである。Tiは本発明において主に2つの役割を担う:一つは、鋼中の不純物元素Nと結合してTiNを形成し、一部の「窒素固定」の役割を担う;二つは、材料の後続の溶接過程で分散した微細なTiNを一定数形成し、オーステナイト結晶粒子のサイズを抑制し、組織を微細化させて低温靭性を改善することである。よって、鋼において、Ti含有量の範囲は0.01~0.05%に制御され、好ましい範囲は0.01~0.03%である。 Titanium is one of the important elements for the present invention. Ti plays two main roles in the present invention: one, it combines with the impurity element N in the steel to form TiN, and plays the role of some "nitrogen fixation"; The purpose is to form a certain number of dispersed fine TiN in the subsequent welding process, suppress the size of austenite crystal grains, refine the structure, and improve low-temperature toughness. Therefore, in steel, the range of Ti content is controlled to be 0.01 to 0.05%, and the preferred range is 0.01 to 0.03%.

モリブデンは、本発明にとって重要な元素の一つである。鋼にモリブデンを添加すると、フェライトとパーライトの変態を大幅に遅らせることができる。モリブデンのこの役割は、実際の圧延過程における様々なのプロセスの調整に有利であり、例えば、圧延終了時に、段階的冷却をしても良いが、空冷をしてから水冷などをしても良い。本発明において、空冷をしてから水冷をするプロセス、或いは圧延後に直接的に水冷するプロセスを採用しても、モリブデンを添加することにより、空冷過程でフェライトやパーライトなどの組織が形成されないことを確保できると共に、空冷過程で変形されたオーステナイトの動的回復が起こり、組織の均質性向上に寄与する;モリブデンは強い溶接軟化抵抗性を有する。本発明の主要な目的は、単一の低炭素マルテンサイトと少量の残留オーステナイトの組織を得ることであるが、低炭素マルテンサイトは溶接後に軟化現象が発生しやすいので、モリブデンを所定量で添加することにより、溶接軟化の度合いを効果的に低減させることができる。よって、モリブデン含有量を0.1~0.5%の間に制御すべきであり、好ましい範囲は0.15~0.35%である。 Molybdenum is one of the important elements for the present invention. Adding molybdenum to steel can significantly retard the transformation of ferrite and pearlite. This role of molybdenum is advantageous in adjusting various processes in the actual rolling process. For example, at the end of rolling, stepwise cooling may be performed, or air cooling may be followed by water cooling. In the present invention, even if a process of air cooling followed by water cooling or a process of directly water cooling after rolling is adopted, by adding molybdenum, structures such as ferrite and pearlite will not be formed during the air cooling process. At the same time, dynamic recovery of deformed austenite occurs during the air cooling process, contributing to improving the homogeneity of the structure; molybdenum has strong welding softening resistance. The main purpose of the present invention is to obtain a structure consisting of a single low carbon martensite and a small amount of retained austenite. However, since low carbon martensite tends to soften after welding, molybdenum is added in a predetermined amount. By doing so, the degree of weld softening can be effectively reduced. Therefore, the molybdenum content should be controlled between 0.1 and 0.5%, with a preferred range of 0.15 and 0.35%.

クロムは、本発明に添加可能な元素の一つである。少量のクロム元素の添加は、鋼の焼入性を向上させるためではなく、B相と結合して、溶接後の溶接熱影響部に針状のフェライト組織を形成することに寄与し、溶接熱影響部の低温靭性を大幅に向上させるためである。本発明にかかる最終応用部品は乗用車のシャーシ系製品であるため、溶接熱影響部の低温靭性が重要な指標となる。溶接熱影響部の強度が低下しすぎないように確保することに加え、溶接熱影響部の低温靭性も所定の要求を満たす必要がある。また、クロム自身もある程度の溶接軟化抵抗作用を有する。よって、鋼において、クロム元素添加量は通常≦0.5%であり、好ましい範囲は0.2~0.4%である。 Chromium is one of the elements that can be added to the present invention. The addition of a small amount of chromium does not improve the hardenability of the steel, but rather combines with the B phase and contributes to the formation of an acicular ferrite structure in the weld heat affected zone after welding, which reduces the welding heat. This is to significantly improve the low-temperature toughness of the affected zone. Since the final applied part according to the present invention is a chassis product for a passenger car, the low-temperature toughness of the weld heat affected zone is an important index. In addition to ensuring that the strength of the weld heat-affected zone does not decrease too much, the low-temperature toughness of the weld heat-affected zone must also meet certain requirements. In addition, chromium itself has some welding softening resistance effect. Therefore, in steel, the amount of chromium added is usually ≦0.5%, with a preferred range of 0.2 to 0.4%.

ホウ素は、本発明に添加可能な元素の一つである。鋼におけるホウ素の役割は主に、旧オーステナイト粒界に偏在し、初析フェライトの形成を抑制することである;鋼にホウ素を添加することにより、鋼の焼入性を大きく向上させることもできる。しかし、本発明において、微量のホウ素元素の添加の主要な目的は、焼入性を向上させるためではなく、クロム相と結合して、溶接熱影響部の組織を改善し、低温靭性で優れた針状フェライト組織を得るためである。鋼に添加されるホウ素元素は通常、0.002%以下に制御され、好ましい範囲は0.0005~0.0015%の間にある。 Boron is one of the elements that can be added to the present invention. The role of boron in steel is mainly to suppress the formation of pro-eutectoid ferrite by being unevenly distributed in prior austenite grain boundaries; adding boron to steel can also greatly improve the hardenability of steel. . However, in the present invention, the main purpose of adding a trace amount of boron is not to improve hardenability, but to combine with the chromium phase, improve the structure of the weld heat affected zone, and achieve excellent low-temperature toughness. This is to obtain an acicular ferrite structure. The boron element added to steel is usually controlled to 0.002% or less, and the preferred range is between 0.0005 and 0.0015%.

カルシウムは、本発明に添加可能な元素である。カルシウムは、MnSなどの硫化物の形態を改善し、長い縞状のMnSなどの硫化物を球状のCaSに変えて、介在物の形態の改善に寄与し、それにより長い縞状の硫化物が穴拡げ性に与える悪影響を低減することができるが、添加されるカルシウムが多すぎると、酸化カルシウムの数が増えてしまい、穴拡げ性に不利である。よって、鋼において、カルシウム添加量は通常≦0.005%であり、好ましい範囲は≦0.002%である。 Calcium is an element that can be added to the present invention. Calcium improves the morphology of sulfides such as MnS and changes long striped sulfides such as MnS to spherical CaS, contributing to the improvement of the morphology of inclusions, thereby changing the long striped sulfides to spherical CaS. Although the negative effect on hole expandability can be reduced, if too much calcium is added, the number of calcium oxides increases, which is disadvantageous for hole expandability. Therefore, in steel, the amount of calcium added is usually ≦0.005%, with a preferred range being ≦0.002%.

酸素は、製鋼過程において不可避な元素であり、本発明にとって、鋼におけるO含有量は、脱酸後に、普通は30ppm以下に達することができ、鋼板の性能に明らかな悪影響を与えない。よって、鋼において、O含有量を30ppm以内に制御すれば良い。 Oxygen is an unavoidable element in the steelmaking process, and for the present invention, the O content in the steel can normally reach 30 ppm or less after deoxidation, without any obvious negative impact on the performance of the steel plate. Therefore, in steel, the O content may be controlled within 30 ppm.

ニオブは、本発明に添加可能な元素の一つである。ニオブは、チタンと同様に、鋼中の強炭化物形成元素であり、ニオブを鋼に添加することにより、鋼の未再結晶温度を大幅に上昇させ、仕上圧延段階で転位密度がより高い変形オーステナイトを獲得し、後続の変態過程で最終の変態組織を微細化させることができる。しかし、ニオブの添加量は多すぎてはならず、一方では、ニオブの添加量が0.06%を超えると、組織で比較的に粗いニオブ炭素窒化物を形成しやすく、炭素原子の一部を消費し、炭化物による析出強化効果を低下させる。それに、ニオブ含有量が多いと、熱間圧延状態のオーステナイト組織に異方性が生じやすくなり、後続の冷却変態過程で最終の組織に引き継がれ、穴拡げ性に不利である。よって、鋼において、ニオブ含有量は通常≦0.06%に制御され、好ましい範囲は≦0.03%である。 Niobium is one of the elements that can be added to the present invention. Niobium, like titanium, is a strong carbide-forming element in steel, and adding niobium to steel can significantly increase the non-recrystallization temperature of steel, resulting in deformed austenite with higher dislocation density in the finish rolling stage. can be obtained, and the final metamorphosed structure can be refined in the subsequent metamorphosis process. However, the amount of niobium added should not be too large; on the other hand, if the amount of niobium added exceeds 0.06%, it tends to form relatively coarse niobium carbon nitride in the structure, and some of the carbon atoms is consumed, reducing the precipitation strengthening effect of carbides. In addition, when the niobium content is high, anisotropy tends to occur in the austenite structure in the hot rolled state, which is carried over to the final structure in the subsequent cooling transformation process, which is disadvantageous for hole expandability. Therefore, in steel, the niobium content is usually controlled to ≦0.06%, with a preferred range being ≦0.03%.

バナジウムは、本発明に添加可能な元素である。バナジウムは、チタンやニオブと同様に、強炭化物形成元素である。しかし、バナジウムの炭化物は固溶温度や析出温度が低く、通常、仕上圧延段階で全てオーステナイトに固溶している。温度が下がって変態が始まると、フェライト中でバナジウムが形成し始まる。本発明において、バナジウムを添加する目的は主に、モリブデンと共に、溶接熱影響部の軟化抵抗性を改善させることである。溶接軟化抵抗効果の点で、モリブデンとバナジウムの効果が一番強いが、モリブデンが含有される場合、バナジウムを選択的に添加してもよい。よって、鋼において、バナジウム添加量は通常≦0.05%であり、好ましい範囲は≦0.03%である。 Vanadium is an element that can be added to the present invention. Vanadium, like titanium and niobium, is a strong carbide-forming element. However, vanadium carbide has a low solid solution temperature and low precipitation temperature, and is usually completely dissolved in austenite during the finish rolling stage. As the temperature drops and transformation begins, vanadium begins to form in the ferrite. In the present invention, the purpose of adding vanadium is mainly to improve the softening resistance of the weld heat affected zone together with molybdenum. In terms of weld softening resistance effect, molybdenum and vanadium have the strongest effect, but when molybdenum is contained, vanadium may be selectively added. Thus, in steel, the amount of vanadium added is usually ≦0.05%, with a preferred range of ≦0.03%.

銅は、本発明に添加可能な元素の一つである。鋼に銅を添加することにより、鋼の耐食性を向上されることができ、P元素と共に添加されると、耐食性がより一層優れる;Cuの添加量が1%を超えると、所定の条件下でε-Cu析出相を形成し、強い析出強化効果を奏することができる。しかし、Cuの添加により、圧延過程で「Cu脆化」現象が発生しやすく、ある応用環境で「Cu脆化」現象を著しく引き起こすことなくCuによる耐食性改善効果を十分に活用するために、Cu元素含有量は通常、0.5%以内に制御され、好ましい範囲は0.3%以内である。 Copper is one of the elements that can be added to the present invention. By adding copper to steel, the corrosion resistance of steel can be improved, and when added together with P element, the corrosion resistance is even better; when the amount of Cu added exceeds 1%, under certain conditions It can form an ε-Cu precipitate phase and exhibit a strong precipitation strengthening effect. However, the addition of Cu tends to cause "Cu embrittlement" phenomenon during the rolling process, and in some application environments, in order to fully utilize the corrosion resistance improvement effect of Cu without significantly causing "Cu embrittlement" The elemental content is usually controlled within 0.5%, with a preferred range being within 0.3%.

ニッケルは、本発明に添加可能な元素の一つである。鋼にニッケルを添加することにより、ある程度の耐食性を与えるが、耐食効果は銅より弱く、鋼にニッケルを添加することにより、鋼の引張性能にあまり影響を与えないが、鋼の組織と析出相を微細化させ、鋼の低温靭性を大幅に向上させることができる;それに、銅元素が添加された鋼に、ニッケルを少量で添加することにより、「Cu脆化」の発生を抑制できる。大量のニッケルの添加は、鋼自身の性能に明らかな悪影響がない。銅とニッケルを同時に添加すると、耐食性を向上させるだけでなく、鋼の組織や析出相も微細化させ、低温靭性を大幅に向上させることができる。しかし、銅もニッケルも比較的高価な合金元素であるので、合金のコストを最小限に抑えるため、ニッケル添加量は通常≦0.5%であり、好ましい範囲は≦0.3%である。 Nickel is one of the elements that can be added to the present invention. Adding nickel to steel provides a certain degree of corrosion resistance, but the corrosion resistance effect is weaker than that of copper. Adding nickel to steel does not affect the tensile performance of the steel much, but it improves the structure and precipitate phase of the steel. The low-temperature toughness of the steel can be greatly improved by making it fine; and by adding a small amount of nickel to steel to which copper has been added, the occurrence of "Cu embrittlement" can be suppressed. The addition of large amounts of nickel has no obvious negative effect on the performance of the steel itself. Adding copper and nickel at the same time not only improves corrosion resistance, but also refines the structure and precipitated phases of steel, significantly improving low-temperature toughness. However, since both copper and nickel are relatively expensive alloying elements, to minimize the cost of the alloy, the nickel addition is typically ≦0.5%, with a preferred range of ≦0.3%.

本発明にかかる引張強度980MPa以上の低炭素マルテンサイト高穴拡げ性鋼の製造方法は、以下の工程を含む:
1) 製錬、鋳込み
記載された組成に従い、転炉又は電気炉で製錬し、真空炉で二次精錬した後、ビレット又はインゴットに鋳込む;
2) ビレット又はインゴットを、加熱温度1100~1200℃、保温時間1~2時間で再加熱する;
3) 熱間圧延
オーステナイト結晶粒子の微細化を主要な目的として、圧延開始温度を950~1100℃とし、950℃以上で大圧下で3~5パス行い、且つ累計変形量を≧50%とする;任意的に、中間ビレットの温度を900~950℃にした後、最終に圧延を3~7パス行い、且つ累計変形量を≧70%とする;圧延終了温度を800~950℃とする;
4) 冷却
まず動的回復と動的再結晶するように0~10秒の空冷を行い、次にMs点以下(室温~Ms点の間)のある温度まで≧30℃/sの冷却速度で帯鋼を水冷して巻取ってから、室温まで(好ましくは≦20℃/hの冷却速度で)冷却する;或いは、まず0~10秒の空冷を行い、次に直接に室温まで≧30℃/sの冷却速度で帯鋼を水冷して巻取る;或いは、まず0~10秒の空冷を行い、次に、マルテンサイト変態開始点であるMs点以下のある温度まで≧30℃/sの冷却速度で鋼板を水冷して巻取ってから、室温まで(好ましくは≦20℃/hの冷却速度で)徐冷する;
5) 酸洗
帯鋼の酸洗実行速度を30~100m/minの区間で調整し、酸洗温度を75~85℃の間に制御し、帯鋼の伸びロスを低減させるように引張矯正率を≦2%に制御し、それからすすぎ洗い、帯鋼表面を乾燥し、油を塗布する。
The method for manufacturing low carbon martensitic high hole expandability steel having a tensile strength of 980 MPa or more according to the present invention includes the following steps:
1) Smelting and casting Smelting in a converter or electric furnace according to the stated composition, secondary smelting in a vacuum furnace, and then casting into billets or ingots;
2) Reheat the billet or ingot at a heating temperature of 1100 to 1200°C and a heat retention time of 1 to 2 hours;
3) Hot rolling The main purpose is to refine the austenite crystal grains, the rolling start temperature is 950 to 1100°C, 3 to 5 passes are performed at 950°C or higher under heavy reduction, and the cumulative amount of deformation is ≧50%. Optionally, after setting the temperature of the intermediate billet to 900-950°C, final rolling is performed for 3-7 passes, and the cumulative amount of deformation is ≧70%; the rolling end temperature is 800-950°C;
4) Cooling First, perform air cooling for 0 to 10 seconds to ensure dynamic recovery and dynamic recrystallization, then cool at a cooling rate of 30°C/s to a certain temperature below the Ms point (between room temperature and Ms point). The steel strip is water-cooled, coiled, and then cooled to room temperature (preferably at a cooling rate of ≦20°C/h); alternatively, it is first air-cooled for 0-10 seconds and then directly to room temperature≧30°C. The steel strip is water-cooled and coiled at a cooling rate of /s; alternatively, it is first air-cooled for 0 to 10 seconds, and then cooled at a rate of ≥30°C/s to a certain temperature below the Ms point, which is the starting point of martensitic transformation. Water-cool the steel plate at a cooling rate, coil it, and then slowly cool it to room temperature (preferably at a cooling rate of ≦20°C/h);
5) Pickling Adjust the pickling speed of the steel strip in the range of 30 to 100 m/min, control the pickling temperature between 75 to 85°C, and adjust the tensile straightening rate to reduce the elongation loss of the steel strip. ≦2%, then rinse, dry the strip surface and apply oil.

好ましくは、工程5)の酸洗後に、帯鋼の表面品質を確保するように35~50℃の温度区間ですすぎ洗い、且つ120~140℃の間で表面を乾燥し、油を塗布する。 Preferably, after pickling in step 5), the steel strip is rinsed at a temperature range of 35-50° C. to ensure the surface quality, and the surface is dried at a temperature of 120-140° C. and coated with oil.

いくつかの実施形態において、工程4)と5)の間には、さらに、工程4-1):ベル型焼鈍で焼鈍し、加熱速度を≧20℃/hとし、ベル型焼鈍温度を100~300℃とし、ベル型焼鈍時間を12~48hとする;≦50℃/hの冷却速度で鋼板を≦100℃に冷却して出鋼すること、が含まれる。 In some embodiments, between steps 4) and 5), further step 4-1): annealing with bell-shaped annealing, the heating rate is ≧20 ° C / h, and the bell-shaped annealing temperature is 100 ~ The temperature is 300° C., and the bell-type annealing time is 12 to 48 h; the steel plate is cooled to ≦100° C. and tapped at a cooling rate of ≦50° C./h.

いくつかの実施形態において、本発明にかかる引張強度980MPa以上の低炭素マルテンサイト高穴拡げ性鋼の製造方法は、以下の工程を含む:
1) 製錬、鋳込み
記載された組成に従い、転炉又は電気炉で製錬し、真空炉で二次精錬した後、ビレット又はインゴットに鋳込む;
2) ビレット又はインゴットを、加熱温度1100~1200℃、保温時間1~2時間で再加熱する;
3) 熱間圧延
オーステナイト結晶粒子の微細化を主要な目的として、圧延開始温度を950~1100℃とし、950℃以上で大圧下で3~5パス行い、且つ累計変形量を≧50%、好ましくは≧60%とする;次に、中間ビレットの温度を920~950℃にした後、最終に圧延を3~5パス行い、且つ累計変形量を≧70%、好ましくは≧85%とする;圧延終了温度を800~920℃とする;
4) 冷却
まず動的回復と動的再結晶するように0~10秒の空冷を行い、次にMs点以下(室温~Ms点の間)のある温度まで≧50℃/s、好ましくは50~85℃/sの冷却速度で帯鋼を水冷して巻取ってから、室温まで(好ましくは≦20℃/hの冷却速度で)冷却する;
5) 酸洗
帯鋼の酸洗実行速度を30~100m/minの区間で調整し、酸洗温度を75~85℃の間に制御し、帯鋼の伸びロスを低減させるように引張矯正率を≦2%に制御し、それからすすぎ洗い、帯鋼表面を乾燥し、油を塗布する。
In some embodiments, the method of manufacturing a low carbon martensitic high hole expandability steel having a tensile strength of 980 MPa or more according to the present invention includes the following steps:
1) Smelting and casting Smelting in a converter or electric furnace according to the stated composition, secondary smelting in a vacuum furnace, and then casting into billets or ingots;
2) Reheat the billet or ingot at a heating temperature of 1100 to 1200°C and a heat retention time of 1 to 2 hours;
3) Hot rolling The main purpose is to refine the austenite crystal grains, the rolling start temperature is set at 950 to 1100°C, and 3 to 5 passes are performed at 950°C or higher under heavy reduction, and the cumulative deformation is ≧50%, preferably. is ≧60%; Next, after setting the temperature of the intermediate billet to 920 to 950°C, rolling is finally performed for 3 to 5 passes, and the cumulative amount of deformation is ≧70%, preferably ≧85%; The rolling end temperature is 800 to 920°C;
4) Cooling First, perform air cooling for 0 to 10 seconds to allow dynamic recovery and dynamic recrystallization, then cool to a certain temperature below the Ms point (between room temperature and the Ms point) at ≥50°C/s, preferably at 50°C/s. Water-cooling the steel strip at a cooling rate of ~85°C/s, coiling, and then cooling to room temperature (preferably at a cooling rate of ≦20°C/h);
5) Pickling Adjust the pickling speed of the steel strip in the range of 30 to 100 m/min, control the pickling temperature between 75 to 85°C, and adjust the tensile straightening rate to reduce the elongation loss of the steel strip. ≦2%, then rinse, dry the strip surface and apply oil.

いくつかの実施形態において、本発明にかかる引張強度1180MPa以上の高塑性高穴拡げ性鋼の製造方法は、以下の工程を含む:
1) 製錬、鋳込み
記載された組成に従い、転炉又は電気炉で製錬し、真空炉で二次精錬した後、ビレット又はインゴットに鋳込む;
2) ビレット又はインゴットを、加熱温度1100~1200℃、保温時間1~2時間で再加熱する;
3) 熱間圧延
圧延開始温度を950~1100℃とし、950℃以上で大圧下で3~5パス行い、且つ累計変形量を≧50%、好ましくは≧60%とする;次に、圧延を3~7パス行い、且つ累計変形量を≧70%、好ましくは≧85%とする;圧延終了温度を800~950℃とする;
4) 冷却
まず0~10秒の空冷を行い、次に室温まで≧30℃/s、好ましくは30~65℃/sの冷却速度で帯鋼を水冷して巻取る;
5) 焼鈍
ベル型焼鈍で焼鈍し、加熱速度を≧20℃/h、好ましくは20~40℃/hとし、ベル型焼鈍温度を100~300℃とし、ベル型焼鈍時間を12~48hとする;≦50℃/h、好ましくは15~50℃/hの冷却速度で鋼板を100℃以下に冷却して出鋼する;
6) 酸洗
帯鋼の酸洗実行速度を30~90m/minの区間で調整し、酸洗温度を75~85℃の間に制御し、引張矯正率を≦1.5%に制御し、35~50℃の温度区間ですすぎ洗い、且つ120~140℃の間で表面を乾燥し、油を塗布する。
In some embodiments, the method for manufacturing high plasticity and high hole expandability steel with a tensile strength of 1180 MPa or more according to the present invention includes the following steps:
1) Smelting and casting Smelting in a converter or electric furnace according to the stated composition, secondary smelting in a vacuum furnace, and then casting into billets or ingots;
2) Reheat the billet or ingot at a heating temperature of 1100 to 1200°C and a heat retention time of 1 to 2 hours;
3) Hot rolling The rolling start temperature is 950 to 1100°C, and 3 to 5 passes are performed at 950°C or higher under heavy reduction, and the cumulative deformation is ≧50%, preferably ≧60%; then, rolling is carried out. Perform 3 to 7 passes, and set the cumulative deformation amount to ≧70%, preferably ≧85%; set the rolling end temperature to 800 to 950°C;
4) Cooling First air cooling for 0-10 seconds, then water-cooling the steel strip to room temperature at a cooling rate of ≧30°C/s, preferably 30-65°C/s, and winding;
5) Annealing Anneal using bell-shaped annealing, heating rate ≧20°C/h, preferably 20-40°C/h, bell-shaped annealing temperature 100-300°C, and bell-shaped annealing time 12-48h. ; Cool the steel plate to 100°C or less at a cooling rate of ≦50°C/h, preferably 15 to 50°C/h, and tap the steel plate;
6) Pickling Adjust the pickling speed of the steel strip in the range of 30 to 90 m/min, control the pickling temperature between 75 to 85°C, and control the tensile straightening rate to ≦1.5%. Rinse at a temperature range of 35-50°C, dry the surface at a temperature of 120-140°C, and apply oil.

好ましくは、工程6)の酸洗後に、35~50℃の温度区間ですすぎ洗い、且つ120~140℃の間で表面を乾燥し、油を塗布する。 Preferably, after the pickling in step 6), the surface is rinsed at a temperature of 35 to 50°C, dried at a temperature of 120 to 140°C, and coated with oil.

他のいくつかの実施形態において、本発明にかかる引張強度1180MPa以上の高塑性高穴拡げ性鋼の製造方法は、以下の工程を含む:
1) 製錬、鋳込み
記載された組成に従い、転炉又は電気炉で製錬し、真空炉で二次精錬した後、ビレット又はインゴットに鋳込む;
2) ビレット又はインゴットを、加熱温度:1100~1200℃、保温時間:1~2時間で再加熱する;
3) 熱間圧延
圧延開始温度を950~1100℃とし、950℃以上で大圧下で3~5パス行い、且つ累計変形量を≧50%、好ましくは≧60%とする;次に、中間ビレットの温度を900~950℃にした後、圧延を3~7パス行い、且つ累計変形量を≧70%、好ましくは≧85%とする;圧延終了温度を800~900℃とする;
4) 冷却
まず0~10秒の空冷を行い、次にマルテンサイト変態開始点であるMs点以下のある温度まで≧30℃/s、好ましくは30~70℃/sの冷却速度で鋼板を水冷して巻取ってから、室温まで(好ましくは≦20℃/hの冷却速度で)徐冷する;
5) 焼鈍
ベル型焼鈍で焼鈍し、加熱速度を≧20℃/h、好ましくは20~50℃/hとし、ベル型焼鈍温度を100~300℃とし、ベル型焼鈍時間を12~48hとする;≦50℃/h、好ましくは20~50℃/hの冷却速度で鋼板を≦100℃に冷却して出鋼する;
6) 酸洗
帯鋼の酸洗実行速度を30~90m/minの区間で調整し、酸洗温度を75~85℃の間に制御し、帯鋼の伸びロスを低減させるように引張矯正率を≦1.5%に制御し、それからすすぎ洗い、帯鋼表面を乾燥し、油を塗布する。
In some other embodiments, the method for manufacturing high plasticity and high hole expandability steel with a tensile strength of 1180 MPa or more according to the present invention includes the following steps:
1) Smelting and casting Smelting in a converter or electric furnace according to the stated composition, secondary smelting in a vacuum furnace, and then casting into billets or ingots;
2) Reheat the billet or ingot at a heating temperature of 1100 to 1200°C and a heat retention time of 1 to 2 hours;
3) Hot rolling The rolling start temperature is 950 to 1100°C, and 3 to 5 passes are performed at 950°C or higher and under large reduction, and the cumulative deformation is ≧50%, preferably ≧60%; Next, the intermediate billet After setting the temperature to 900 to 950°C, perform 3 to 7 passes of rolling, and make the cumulative amount of deformation ≧70%, preferably ≧85%; the rolling end temperature should be 800 to 900°C;
4) Cooling First, air cooling is performed for 0 to 10 seconds, and then the steel plate is water cooled at a cooling rate of ≧30°C/s, preferably 30 to 70°C/s, to a certain temperature below the Ms point, which is the starting point of martensitic transformation. and then winding it up and slowly cooling it to room temperature (preferably at a cooling rate of ≦20°C/h);
5) Annealing Anneal using bell-shaped annealing, heating rate ≧20°C/h, preferably 20-50°C/h, bell-shaped annealing temperature 100-300°C, and bell-shaped annealing time 12-48h. ; Cool the steel plate to ≦100°C at a cooling rate of ≦50°C/h, preferably 20 to 50°C/h, and tap the steel plate;
6) Pickling Adjust the pickling speed of the steel strip in the range of 30 to 90 m/min, control the pickling temperature between 75 to 85°C, and adjust the tensile straightening rate to reduce the elongation loss of the steel strip. ≦1.5%, then rinse, dry the strip surface and apply oil.

好ましくは、工程6)の酸洗後に、35~50℃の温度区間ですすぎ洗い、且つ120~140℃の間で表面を乾燥し、油を塗布する。 Preferably, after the pickling in step 6), the surface is rinsed at a temperature of 35 to 50°C, dried at a temperature of 120 to 140°C, and coated with oil.

本発明の革新点は、以下の通りである。
本発明の成分設計によれば、ユーザーの使用時に優れた溶接性、得られたマルテンサイト組織の良好な穴拡げ性と衝撃靭性を確保するために、C含有量を低く設計する。引張強度≧1180MPaの場合に、引張強度≧1180MPaを満たす上で、炭素含有量が少ないほど良い。プロセスに合わせて、より多くの残留オーステナイトを得ることで、材料の塑性を改善するために、Si含有量を高く設計する;同時に、鋼の未再結晶温度を下げることに寄与し、より広い最終圧延温度域内で鋼に動的再結晶過程を完了させることで、オーステナイト結晶粒子及び最終のマルテンサイト結晶粒子のサイズを微細化させ、塑性と穴拡げ率を改善するために、Si含有量を高く設計する。また、ベル型焼鈍の過程において、焼入応力の一部を除去することで、組織の均質性を改善し、塑性と穴拡げ率を向上させるという目的を果たすことができる。
The innovations of the present invention are as follows.
According to the component design of the present invention, the C content is designed to be low in order to ensure excellent weldability during use by the user, and good hole expandability and impact toughness of the obtained martensitic structure. In the case of tensile strength≧1180MPa, the lower the carbon content, the better in satisfying the tensile strength≧1180MPa. In line with the process, the Si content is designed higher to obtain more retained austenite and improve the plasticity of the material; at the same time, it contributes to lowering the unrecrystallized temperature of the steel, resulting in a wider final The Si content is increased to allow the steel to complete a dynamic recrystallization process within the rolling temperature range, thereby refining the size of the austenite grains and the final martensite grains and improving the plasticity and hole expansion rate. design. In addition, in the process of bell-shaped annealing, by removing part of the quenching stress, the purpose of improving the homogeneity of the structure and improving the plasticity and hole expansion rate can be achieved.

成分設計では、低炭素マルテンサイトの設計構想を採用し、より多くのケイ素を添加することで、セメンタイトの形成を抑制して低減しながら、未再結晶温度を下げ、圧延と圧延後の空冷を比較的に広い圧延終了温度範囲で行うことにより、結晶粒子が微細で、均質で等軸な旧オーステナイト粒を得ることができ、最終的にマルテンサイトと残留オーステナイト組織の均質な組織を得る。残留オーステナイトが高い塑性と冷間曲げ性能を、マルテンサイトが高い強度を、均質で微細な組織がより高い穴拡げ性と低温靭性を、それぞれ鋼板に与える。 In composition design, we adopt the design concept of low carbon martensite and add more silicon to suppress and reduce the formation of cementite, while lowering the non-recrystallization temperature and improving rolling and post-rolling air cooling. By carrying out the rolling in a relatively wide rolling end temperature range, it is possible to obtain homogeneous and equiaxed prior austenite grains with fine crystal grains, and finally to obtain a homogeneous structure of martensite and retained austenite structure. Retained austenite gives steel sheets high plasticity and cold bending performance, martensite gives them high strength, and a homogeneous, fine structure gives them better hole expandability and low-temperature toughness.

圧延プロセスの設計において、粗圧延と仕上圧延段階において、圧延過程をなるべく速いペースで完成すべきである。圧延終了後、まずは所定の時間で空冷を行う。空冷の主要な目的は、マンガンとモリブデンを多く含む成分設計により、マンガンはオーステナイトを安定化させる元素であり、モリブデンはフェライトとパーライト変態を大幅に遅らせる。よって、所定の時間で空冷する過程において、圧延された変形オーステナイトは変態せずに、即ちフェライト組織を形成することなく、動的再結晶と緩和過程を起こす。変形オーステナイトは、動的再結晶を起こすと、組織が均質で擬等軸なオーステナイトを形成することができ、緩和後に、オーステナイト粒内部の転位が大幅に減少し、両者の組み合わせにより、後続の水冷焼入過程で組織が均質なマルテンサイトが得られる。マルテンサイト組織を得るためには、水冷速度が低炭素マルテンサイトの臨界冷却速度を上回るべきであるが、本発明において、全ての成分設計でマルテンサイトが得られるように、帯鋼の水冷速度を30℃/s以上とする必要がある。 In the design of the rolling process, the rolling process should be completed as quickly as possible in the rough rolling and finishing rolling stages. After rolling, air cooling is first performed for a predetermined period of time. The main purpose of air cooling is the composition design, which is rich in manganese and molybdenum, manganese is an element that stabilizes austenite, and molybdenum significantly retards ferrite and pearlite transformation. Therefore, during the process of air cooling for a predetermined period of time, the rolled deformed austenite undergoes dynamic recrystallization and relaxation processes without being transformed, that is, without forming a ferrite structure. When deformed austenite undergoes dynamic recrystallization, it can form austenite with a homogeneous structure and quasi-equiaxed structure, and after relaxation, the dislocations inside the austenite grains are significantly reduced, and the combination of both makes it possible to form a quasi-equiaxed austenite with a homogeneous structure. Martensite with a homogeneous structure is obtained during the quenching process. In order to obtain a martensitic structure, the water cooling rate should exceed the critical cooling rate of low carbon martensite. It is necessary to set it to 30 degrees C/s or more.

本発明にかかる微細組織は低炭素若しくは超低炭素マルテンサイトであるので、圧延終了後に帯鋼を臨界冷却速度を超える冷却速度でマルテンサイト変態開始点であるMs以下まで冷却すれば良い。冷却停止温度の違いによって、室温での残留オーステナイトの含有量も異なる。通常、最適な焼入・冷却停止温度範囲が存在しており、その範囲は合金組成によって異なるが、一般的には150~350℃の間にある。塑性と穴拡げ率が両方とも良好な高強度鋼を得るために、Ms点以下のある温度範囲まで帯鋼を焼入する必要があるが、理論計算と実際の試験によると、帯鋼を≦400℃まで焼入すると、総合性能に優れた組織を得ることができる。また、焼入温度≧400℃の場合、残留オーステナイトの数は多いが、組織にベイナイト組織が生じてしまい、980MPa以上の強度要求を満たすことができなくなる。以上の原因で、巻取り温度を≦400℃に制御する必要がある。本発明は、このような革新的な成分とプロセス設計構想に基づき、強度、塑性、靭性、冷間曲げ、穴拡げ性などの性能に優れた980MPaレベルの超低炭素マルテンサイト高穴拡げ性鋼を得ることができる。 Since the microstructure according to the present invention is low carbon or ultra-low carbon martensite, after rolling, the steel strip may be cooled to below Ms, which is the martensitic transformation starting point, at a cooling rate exceeding the critical cooling rate. The content of retained austenite at room temperature also differs depending on the cooling stop temperature. There is usually an optimum quenching/cooling stop temperature range, which varies depending on the alloy composition, but is generally between 150 and 350°C. In order to obtain high-strength steel with good plasticity and hole expansion rate, it is necessary to quench the steel strip to a certain temperature range below the Ms point, but according to theoretical calculations and actual tests, the steel strip must be quenched to When quenched to 400°C, a structure with excellent overall performance can be obtained. Further, when the quenching temperature is 400° C., although there is a large number of retained austenite, a bainite structure is generated in the structure, making it impossible to satisfy the strength requirement of 980 MPa or more. Due to the above reasons, it is necessary to control the winding temperature to ≦400°C. Based on these innovative ingredients and process design concepts, the present invention has developed an ultra-low carbon martensitic high hole expandability steel at the 980 MPa level that has excellent properties such as strength, plasticity, toughness, cold bending, and hole expandability. can be obtained.

いくつかの実施形態において、本発明にかかる微細組織は低炭素焼戻しマルテンサイトであるため、圧延終了後に帯鋼を臨界冷却速度を超える冷却速度で室温まで冷却すれば良く、後段のベル型焼鈍の過程でベル型焼鈍温度と時間を所定の範囲内に制御すれば、強度、塑性、穴拡げ性などの性能が均一な超高強度穴拡げ性鋼を得ることができる。 In some embodiments, the microstructure according to the present invention is low carbon tempered martensite, so that after rolling, the steel strip may be cooled to room temperature at a cooling rate exceeding the critical cooling rate, and the subsequent bell annealing may be performed. By controlling the bell-shaped annealing temperature and time within a predetermined range during the process, it is possible to obtain ultra-high strength steel with uniform properties such as strength, plasticity, and hole expandability.

ベル型焼鈍の過程では、まず鋼コイルを≧20℃/sの速度で100~300℃に加熱し、当該温度区間で12~48h長時間保温することにより、鋼コイル全体の温度を均一化させ、組織と性能の安定化に寄与する。保温温度が低いほど、保温時間は相応に長くなる;逆に保温温度が高いほど、保温時間は相応に短くなる。最後に、鋼コイルを≦50℃/sの冷却速度で100℃以下まで冷却し、ベル型焼鈍炉から出鋼し、自然冷却すれば良い。 In the process of bell-type annealing, the steel coil is first heated to 100 to 300 °C at a rate of 20 °C/s or more, and kept in that temperature range for a long time of 12 to 48 hours, thereby making the temperature of the entire steel coil uniform. , contributes to stabilization of organization and performance. The lower the insulating temperature, the longer the insulating time will be; conversely, the higher the insulating temperature, the shorter the insulating time will be. Finally, the steel coil may be cooled to 100° C. or less at a cooling rate of ≦50° C./s, tapped from a bell-shaped annealing furnace, and allowed to cool naturally.

通常、ベル型焼鈍温度とベル型焼鈍時間は反比例の関係にあり、ベル型焼鈍温度が低いほど、ベル型焼鈍時間は長くなる;逆に、ベル型焼鈍温度が高いほど、ベル型焼鈍時間は短くなる。ベル型焼鈍温度が100℃未満であると、強度は高くなり、穴拡げ率は低くなり、30%以上の穴拡げ率に達することはできなくなる;ベル型焼鈍温度が300℃を超えると、強度≧1180MPaの要件を満たしにくくなる。よって、ベル型焼鈍温度を100~300℃の間にする。高ケイ素の成分設計構想を採用したからこそ、低温ベル型焼鈍過程において、ケイ素は鋼中のセメンタイトの形成を効果的に抑制できると共に、マルテンサイトから残留オーステナイトへの炭素原子の拡散にも寄与し、残留オーステナイトの安定性をさらに向上させ、同じ強度レベルの高強度鋼よりも高い伸びと優れた成形性能を帯鋼に与える。 Generally, the bell annealing temperature and the bell annealing time are inversely proportional; the lower the bell annealing temperature, the longer the bell annealing time; conversely, the higher the bell annealing temperature, the longer the bell annealing time. Becomes shorter. If the bell-shaped annealing temperature is less than 100℃, the strength will be high, but the hole expansion rate will be low, and it will not be possible to reach a hole expansion rate of 30% or more; if the bell-shaped annealing temperature exceeds 300℃, the strength will be low. It becomes difficult to satisfy the requirement of ≧1180 MPa. Therefore, the bell-shaped annealing temperature is set between 100 and 300°C. Because we adopted a high-silicon composition design concept, silicon can effectively suppress the formation of cementite in steel during the low-temperature bell annealing process, and also contribute to the diffusion of carbon atoms from martensite to retained austenite. , further improves the stability of retained austenite, giving the steel strip higher elongation and better forming performance than high-strength steels at the same strength level.

本発明の有利な効果は、
(1)比較的に経済的な成分設計構想を採用したと共に、革新的な冷却プロセスルートを採用したことで、強度、塑性、靭性、冷間曲げ、穴拡げ性などの性能に優れた980MPaレベルの高穴拡げ性鋼を得た;
(2)鋼コイル又は鋼板は優れた強度、塑性と靭性の適合を有すると共に、良好な冷間曲げ性能と穴拡げ・フランジング性能も兼ねて有し、その降伏強度が≧800MPaで、引張強度が≧980MPaであると共に、良好な伸び(横向A50≧8%)も有し、冷間曲げ性能(d≦4a、180°)テスト及び穴拡げ性(穴拡げ率≧30%)に合格しており、高強度・薄肉化と穴拡げ・フランジングが必要な自動車シャーシやサブフレームなどの部品の製造に使用可能であり、その非常に幅広い応用が期待される。
The advantageous effect of the present invention is that
(1) By adopting a relatively economical component design concept and an innovative cooling process route, the 980 MPa level provides excellent performance in terms of strength, plasticity, toughness, cold bending, hole expandability, etc. A steel with high hole expandability was obtained;
(2) The steel coil or steel plate has excellent strength, compatibility between plasticity and toughness, and also has good cold bending performance, hole expansion and flanging performance, and its yield strength is ≧800 MPa and tensile strength is ≧980 MPa, and also has good elongation (lateral A 50 ≧8%), passing the cold bending performance (d≦4a, 180°) test and hole expandability (hole expansion rate≧30%). It can be used to manufacture parts such as automobile chassis and subframes that require high strength, thin walls, hole expansion, and flanging, and is expected to have a wide range of applications.

図1は、本発明にかかる980MPaレベルの超低炭素マルテンサイト高穴拡げ性鋼の製造方法のプロセスフローチャートである。FIG. 1 is a process flowchart of a method for manufacturing ultra-low carbon martensitic high hole expandability steel of 980 MPa level according to the present invention. 図2は、本発明にかかる980MPaレベルの超低炭素マルテンサイト高穴拡げ性鋼の製造方法における圧延プロセスの概念図である。FIG. 2 is a conceptual diagram of the rolling process in the method for manufacturing ultra-low carbon martensitic high hole expandability steel of 980 MPa level according to the present invention. 図3は、本発明にかかる980MPaレベルの超低炭素マルテンサイト高穴拡げ性鋼の製造方法における冷却プロセスの概念図である。FIG. 3 is a conceptual diagram of the cooling process in the method for manufacturing ultra-low carbon martensitic high hole expandability steel of 980 MPa level according to the present invention. 図4は、本発明の調製例II及びIIIにかかる1180MPaレベルの高塑性高穴拡げ性鋼の製造方法のプロセスフローチャートである。FIG. 4 is a process flowchart of a method for manufacturing high plasticity and high hole expandability steel of 1180 MPa level according to Preparation Examples II and III of the present invention. 図5は、本発明の調製例IIにかかる1180MPaレベルの高塑性高穴拡げ性鋼の製造方法における圧延プロセスの概念図である。FIG. 5 is a conceptual diagram of a rolling process in a method for manufacturing a high plasticity and high hole expandability steel at a level of 1180 MPa according to Preparation Example II of the present invention. 図6は、本発明の調製例IIにかかる1180MPaレベルの高塑性高穴拡げ性鋼の製造方法における冷却プロセスの概念図である。FIG. 6 is a conceptual diagram of the cooling process in the method for producing high plasticity and high hole expandability steel at the 1180 MPa level according to Preparation Example II of the present invention. 図7は、本発明の調製例II及びIIIにかかる1180MPaレベルの高塑性高穴拡げ性鋼の製造方法におけるベル型焼鈍プロセスの概念図である。FIG. 7 is a conceptual diagram of the bell-shaped annealing process in the method for manufacturing high plasticity and high hole expandability steel at the 1180 MPa level according to Preparation Examples II and III of the present invention. 図8は、本発明にかかる高穴拡げ性鋼の実施例10の典型的な金属組織写真である。FIG. 8 is a typical metallographic photograph of Example 10 of the high hole expandability steel according to the present invention. 図9は、本発明にかかる高穴拡げ性鋼の実施例12の典型的な金属組織写真である。FIG. 9 is a typical metallographic photograph of Example 12 of the high hole expandability steel according to the present invention. 図10は、本発明にかかる高穴拡げ性鋼の実施例14の典型的な金属組織写真である。FIG. 10 is a typical metallographic photograph of Example 14 of the high hole expandability steel according to the present invention. 図11は、本発明にかかる高穴拡げ性鋼の実施例16の典型的な金属組織写真である。FIG. 11 is a typical metallographic photograph of Example 16 of the high hole expandability steel according to the present invention. 図12は、本発明の調製例IIIIにかかる1180MPaレベルの高塑性高穴拡げ性鋼の製造方法における圧延プロセスの概念図である。FIG. 12 is a conceptual diagram of the rolling process in the method for manufacturing high plasticity and high hole expandability steel at the 1180 MPa level according to Preparation Example III of the present invention. 図13は、本発明の調製例IIIにかかる1180MPaレベルの高塑性高穴拡げ性鋼の製造方法における冷却プロセスの概念図である。FIG. 13 is a conceptual diagram of a cooling process in a method for manufacturing a high plasticity and high hole expandability steel at a level of 1180 MPa according to Preparation Example III of the present invention.

下記の各実施例において、引張性能(降伏強度、引張強度、伸び)は、ISO 6892-2-2018国際規格に基づいて測定し、穴拡げ率は、ISO 16630-2017国際規格に基づいて測定し、-40℃衝撃靭性は、ISO 14556-2015国際規格に基づいて測定し、冷間曲げ性能は、ISO 7438-2005国際規格に基づいて測定した。 In each example below, tensile performance (yield strength, tensile strength, elongation) was measured based on the ISO 6892-2-2018 international standard, and hole expansion rate was measured based on the ISO 16630-2017 international standard. , -40°C impact toughness was measured based on the ISO 14556-2015 international standard, and cold bending performance was measured based on the ISO 7438-2005 international standard.

調製例I
図1~図3を参照として、本発明にかかる980MPaレベルの超低炭素マルテンサイト高穴拡げ性鋼の製造方法は、以下の工程を含む:
1) 製錬、鋳込み
記載された組成に従い、転炉又は電気炉で製錬し、真空炉で二次精錬した後、ビレット又はインゴットに鋳込む;
2) ビレット又はインゴットを、加熱温度1100~1200℃、保温時間1~2時間で再加熱する;
3) 熱間圧延
圧延開始温度を950~1100℃とし、950℃以上で大圧下で3~5パス行い、且つ累計変形量を≧50%とする;次に、中間ビレットの温度を920~950℃にした後、最終に圧延を3~5パス行い、且つ累計変形量を≧70%とする;圧延終了温度を800~920℃とする;
4) 冷却
まず動的回復と動的再結晶するように0~10秒の空冷を行い、次にMs点以下(室温~Ms点の間)のある温度まで≧50℃/sの冷却速度で帯鋼を水冷して巻取ってから、室温まで(≦20℃/hの冷却速度で)冷却する;
5) 酸洗
帯鋼の酸洗実行速度を30~100m/minの区間で調整し、酸洗温度を75~85℃の間に制御し、引張矯正率を≦2%に制御し、35~50℃の温度区間ですすぎ洗い、且つ120~140℃の間で帯鋼の表面を乾燥し、油を塗布する。
Preparation example I
Referring to FIGS. 1 to 3, the method for manufacturing ultra-low carbon martensitic high hole expandability steel at 980 MPa level according to the present invention includes the following steps:
1) Smelting and casting Smelting in a converter or electric furnace according to the stated composition, secondary smelting in a vacuum furnace, and then casting into billets or ingots;
2) Reheat the billet or ingot at a heating temperature of 1100 to 1200°C and a heat retention time of 1 to 2 hours;
3) Hot rolling The rolling start temperature is 950 to 1100°C, and 3 to 5 passes are performed at 950°C or higher under large reduction, and the cumulative amount of deformation is ≧50%; Next, the temperature of the intermediate billet is set to 920 to 950°C. ℃, finally perform 3 to 5 passes of rolling, and make the cumulative amount of deformation ≧70%; set the rolling end temperature to 800 to 920 ℃;
4) Cooling First, perform air cooling for 0 to 10 seconds to ensure dynamic recovery and dynamic recrystallization, then cool at a cooling rate of ≥50°C/s to a certain temperature below the Ms point (between room temperature and Ms point). The steel strip is water-cooled and coiled, and then cooled to room temperature (with a cooling rate of ≦20°C/h);
5) Pickling Adjust the pickling execution speed of the strip steel in the range of 30 to 100 m/min, control the pickling temperature in the range of 75 to 85°C, control the tensile straightening rate to ≦2%, and Rinse in a temperature range of 50°C, dry the surface of the steel strip between 120-140°C, and apply oil.

本調製例にかかる高穴拡げ性鋼の実施例の成分は表1に示し、本発明にかかる鋼の実施例の生産プロセスパラメータは表2、表3に示し、ただし、圧延プロセスにおける鋼ビレットの厚さは120mmである;本発明の実施例にかかる鋼板の力学的性能は表4に示す。 The composition of the example of the high hole expandability steel according to this preparation example is shown in Table 1, and the production process parameters of the example of the steel according to the invention are shown in Tables 2 and 3. The thickness is 120 mm; the mechanical performance of the steel plate according to the example of the present invention is shown in Table 4.

表4から分かるように、鋼コイルはいずれも降伏強度≧800MPaであり、引張強度≧980MPaであり、伸びは通常8~13%の間にあり、衝撃エネルギーは比較的に安定しており、-40℃低温衝撃エネルギーは140~180Jで安定しており、残留オーステナイト含有量は巻取り温度によって、全体的に1.5~5%の間で変化し、穴拡げ率は≧50%を満たす。 As can be seen from Table 4, the steel coils all have yield strength ≧800MPa, tensile strength ≧980MPa, elongation is usually between 8-13%, impact energy is relatively stable, - The 40°C low-temperature impact energy is stable at 140-180J, the retained austenite content varies between 1.5-5% overall depending on the winding temperature, and the hole expansion rate satisfies ≧50%.

上記実施例から分かるように、本発明にかかる980MPa高強度鋼は、良好な強度、塑性、靭性と穴拡げ性の適合を有し、特にコントロールアームなどの、高強度・薄肉化と穴拡げ・フランジングが必要な自動車シャーシなどの部品の製造に適切であり、ホイールなどの穴フランジングが必要な部品にも適用することができ、その幅広い応用が期待される。 As can be seen from the above examples, the 980 MPa high-strength steel according to the present invention has good strength, plasticity, toughness, and hole expandability, and is particularly suitable for high strength, thinning, hole expansion, etc., such as control arms. It is suitable for manufacturing parts that require flanging, such as automobile chassis, and can also be applied to parts that require hole flanging, such as wheels, and is expected to have a wide range of applications.

Figure 2023539649000002
Figure 2023539649000002

Figure 2023539649000003
Figure 2023539649000003

Figure 2023539649000004
Figure 2023539649000004

Figure 2023539649000005
Figure 2023539649000005

調製例II
図4~図7を参照として、本発明にかかる1180MPaレベルの高塑性高穴拡げ性鋼の製造方法は、以下の工程を含む:
1) 製錬、鋳込み
記載された組成に従い、転炉又は電気炉で製錬し、真空炉で二次精錬した後、ビレット又はインゴットに鋳込む;
2) ビレット又はインゴットを、加熱温度1100~1200℃、保温時間1~2時間で再加熱する;
3) 熱間圧延
圧延開始温度を950~1100℃とし、950℃以上で大圧下で3~5パス行い、且つ累計変形量を≧50%とする;次に、圧延を3~7パス行い、且つ累計変形量を≧70%とする;圧延終了温度を800~950℃とする;
4) 冷却
まず0~10秒の空冷を行い、次に室温まで≧30℃/sの冷却速度で帯鋼を水冷して巻取る;
5) 焼鈍
ベル型焼鈍で焼鈍し、加熱速度を≧20℃/hとし、ベル型焼鈍温度を100~300℃とし、ベル型焼鈍時間を12~48hとする;≦50℃/hの冷却速度で鋼板を100℃以下に冷却して出鋼する;
6) 酸洗
帯鋼の酸洗実行速度を30~90m/minの区間で調整し、酸洗温度を75~85℃の間に制御し、引張矯正率を≦1.5%に制御し、35~50℃の温度区間ですすぎ洗い、且つ120~140℃の間で表面を乾燥し、油を塗布する。
Preparation example II
Referring to FIGS. 4 to 7, the method for manufacturing high plasticity and high hole expandability steel at 1180 MPa level according to the present invention includes the following steps:
1) Smelting and casting Smelting in a converter or electric furnace according to the stated composition, secondary smelting in a vacuum furnace, and then casting into billets or ingots;
2) Reheat the billet or ingot at a heating temperature of 1100 to 1200°C and a heat retention time of 1 to 2 hours;
3) Hot rolling The rolling start temperature is 950 to 1100°C, and 3 to 5 passes are performed at 950°C or higher and under large reduction, and the cumulative amount of deformation is ≧50%; Next, 3 to 7 passes of rolling are performed, And the cumulative amount of deformation is ≧70%; the rolling end temperature is 800 to 950°C;
4) Cooling First, air cool for 0 to 10 seconds, then water cool the steel strip to room temperature at a cooling rate of ≧30°C/s and wind it;
5) Annealing Anneal by bell-type annealing, heating rate ≧20℃/h, bell-type annealing temperature 100-300℃, bell-type annealing time 12-48h; cooling rate ≦50℃/h. Cool the steel plate to below 100℃ and tap it;
6) Pickling Adjust the pickling speed of the steel strip in the range of 30 to 90 m/min, control the pickling temperature between 75 to 85°C, and control the tensile straightening rate to ≦1.5%. Rinse at a temperature range of 35-50°C, dry the surface at a temperature of 120-140°C, and apply oil.

本調製例にかかる高穴拡げ性鋼の実施例の成分は表5に示し、本発明にかかる鋼の実施例の生産プロセスパラメータは表6、表7に示し、ただし、圧延プロセスにおける鋼ビレットの厚さは120mmである;本発明の実施例にかかる鋼板の力学的性能は表8に示す。 The composition of the example of the high hole expandability steel according to this preparation example is shown in Table 5, and the production process parameters of the example of the steel according to the invention are shown in Tables 6 and 7. The thickness is 120 mm; the mechanical performance of the steel plate according to the example of the present invention is shown in Table 8.

表8から分かるように、鋼コイルはいずれも降伏強度≧900MPaであり、引張強度≧1180MPaであり、伸びは通常10~13%の間にあり、衝撃エネルギーは比較的に安定しており、-40℃低温衝撃エネルギーは60~100Jで安定しており、残留オーステナイト含有量は巻取り温度によって変化し、穴拡げ率は≧30%を満たす。 As can be seen from Table 8, the steel coils all have yield strength ≧900MPa, tensile strength ≧1180MPa, elongation is usually between 10-13%, impact energy is relatively stable, - The low-temperature impact energy at 40°C is stable at 60 to 100 J, the retained austenite content changes depending on the winding temperature, and the hole expansion rate satisfies ≧30%.

上記実施例から分かるように、本発明にかかる1180MPa高穴拡げ性鋼は、良好な強度、塑性、靭性と穴拡げ性の適合を有し、特にコントロールアームなどの、高強度・薄肉化と穴拡げ・フランジングが必要な自動車シャーシなどの部品の製造に適切であり、ホイールなどの穴フランジングが必要な部品にも適用することができ、その幅広い応用が期待される。 As can be seen from the above examples, the 1180 MPa high hole expandability steel according to the present invention has good strength, plasticity, toughness and hole expandability, and is particularly suitable for high strength, thin wall and hole expandability, such as control arms. It is suitable for manufacturing parts such as automobile chassis that require expansion and flanging, and can also be applied to parts such as wheels that require hole flanging, and is expected to have a wide range of applications.

図8~図11はそれぞれ、実施例10#、12#、14#及び16#にかかる鋼板の典型的な金属組織を示す。金属組織写真から分かるように、組織は単相低炭素マルテンサイトであると共に、残留オーステナイトを所定量で含有し、同じ強度レベルでのより高い伸びと穴拡げ率を表現した。 FIGS. 8 to 11 show typical metallographic structures of steel plates according to Examples 10#, 12#, 14#, and 16#, respectively. As can be seen from the metallographic photographs, the structure is single-phase low-carbon martensite and contains a certain amount of retained austenite, expressing higher elongation and hole expansion rate at the same strength level.

Figure 2023539649000006
Figure 2023539649000006

Figure 2023539649000007
Figure 2023539649000007

Figure 2023539649000008
Figure 2023539649000008

Figure 2023539649000009
Figure 2023539649000009

調製例III
図4、7、12と13を参照として、本発明にかかる1180MPaレベルの高塑性高穴拡げ性鋼の製造方法は、以下の工程を含む:
1) 製錬、鋳込み
記載された組成に従い、転炉又は電気炉で製錬し、真空炉で二次精錬した後、ビレット又はインゴットに鋳込む;
2) ビレット又はインゴットを、加熱温度:1100~1200℃、保温時間:1~2時間で再加熱する;
3) 熱間圧延
圧延開始温度を950~1100℃とし、950℃以上で大圧下で3~5パス行い、且つ累計変形量を≧50%とする;次に、中間ビレットの温度を900~950℃にした後、圧延を3~7パス行い、且つ累計変形量を≧70%とする;圧延終了温度を800~900℃とする;
4) 冷却
まず0~10秒の空冷を行い、次にMs点以下のある温度まで≧30℃/sの冷却速度で鋼板を水冷して巻取ってから、室温まで(≦20℃/hの冷却速度で)徐冷する;
5) 焼鈍
ベル型焼鈍で焼鈍し、加熱速度を≧20℃/hとし、ベル型焼鈍温度を100~300℃とし、ベル型焼鈍時間を12~48hとする;≦50℃/hの冷却速度で鋼板を≦100℃に冷却して出鋼する;
6) 酸洗
帯鋼の酸洗実行速度を30~90m/minの区間で調整し、酸洗温度を75~85℃の間に制御し、引張矯正率を≦1.5%に制御し、35~50℃の温度区間ですすぎ洗い、且つ120~140℃の間で帯鋼の表面を乾燥し、油を塗布する。
Preparation Example III
Referring to FIGS. 4, 7, 12 and 13, the method for producing 1180 MPa level high plasticity high hole expandability steel according to the present invention includes the following steps:
1) Smelting and casting Smelting in a converter or electric furnace according to the stated composition, secondary smelting in a vacuum furnace, and then casting into billets or ingots;
2) Reheat the billet or ingot at a heating temperature of 1100 to 1200°C and a heat retention time of 1 to 2 hours;
3) Hot rolling The rolling start temperature is 950 to 1100°C, and 3 to 5 passes are performed at 950°C or higher under large reduction, and the cumulative amount of deformation is ≧50%; Next, the temperature of the intermediate billet is set to 900 to 950°C. ℃, perform 3 to 7 passes of rolling, and make the cumulative amount of deformation ≧70%; set the rolling end temperature to 800 to 900 ℃;
4) Cooling First, the steel plate is air cooled for 0 to 10 seconds, then water cooled at a cooling rate of ≧30℃/s to a certain temperature below the Ms point, rolled up, and then cooled to room temperature (≦20℃/h). slow cooling (at cooling rate);
5) Annealing Anneal by bell-type annealing, heating rate ≧20℃/h, bell-type annealing temperature 100-300℃, bell-type annealing time 12-48h; cooling rate ≦50℃/h. Cool the steel plate to ≦100℃ and tap it;
6) Pickling Adjust the pickling speed of the steel strip in the range of 30 to 90 m/min, control the pickling temperature between 75 to 85°C, and control the tensile straightening rate to ≦1.5%. Rinse at a temperature range of 35-50°C, dry the surface of the steel strip at a temperature of 120-140°C, and apply oil.

本調製例にかかる高穴拡げ性鋼の実施例の成分は表9に示し、本発明にかかる鋼の実施例の生産プロセスパラメータは表10、表11に示し、ただし、圧延プロセスにおける鋼ビレットの厚さは120mmである;本発明の実施例にかかる鋼板の力学的性能は表12に示す。 The composition of the example of the high hole expandability steel according to this preparation example is shown in Table 9, and the production process parameters of the example of the steel according to the invention are shown in Tables 10 and 11. The thickness is 120 mm; the mechanical performance of the steel plate according to the example of the present invention is shown in Table 12.

表12から分かるように、鋼コイルはいずれも降伏強度≧900MPaであり、引張強度≧1180MPaであり、伸びは通常10~13%の間にあり、衝撃エネルギーは比較的に安定しており、-40℃低温衝撃エネルギーは80~110Jで安定しており、残留オーステナイト含有量は巻取り温度によって変化し、穴拡げ率は≧30%を満たす。 As can be seen from Table 12, all steel coils have yield strength ≧900MPa, tensile strength ≧1180MPa, elongation is usually between 10-13%, impact energy is relatively stable, - The low-temperature impact energy at 40°C is stable at 80 to 110 J, the retained austenite content changes depending on the winding temperature, and the hole expansion rate satisfies ≧30%.

上記実施例から分かるように、本発明にかかる1180MPa高強度鋼は、良好な強度、塑性、靭性と穴拡げ性の適合を有し、特にコントロールアームなどの、高強度・薄肉化と穴拡げ・フランジングが必要な自動車シャーシなどの部品の製造に適切であり、ホイールなどの穴フランジングが必要な部品にも適用することができ、その幅広い応用が期待される。 As can be seen from the above examples, the 1180 MPa high-strength steel according to the present invention has good strength, plasticity, toughness, and hole expandability, and is particularly suitable for high strength, thinning, hole expansion, etc., such as control arms. It is suitable for manufacturing parts that require flanging, such as automobile chassis, and can also be applied to parts that require hole flanging, such as wheels, and is expected to have a wide range of applications.

Figure 2023539649000010
Figure 2023539649000010

Figure 2023539649000011
Figure 2023539649000011

Figure 2023539649000012
Figure 2023539649000012

Figure 2023539649000013
Figure 2023539649000013

Claims (18)

その化学組成が重量百分率で、C 0.03~0.10%、Si 0.5~2.0%、Mn 1.0~2.0%、P≦0.02%、S≦0.003%、Al 0.02~0.08%、N≦0.004%、Mo 0.1~0.5%、Ti 0.01~0.05%、O≦0.0030%、残部はFeと他の不可避不純物である、引張強度980MPa以上の低炭素マルテンサイト高穴拡げ性鋼。 Its chemical composition is in weight percentage: C 0.03-0.10%, Si 0.5-2.0%, Mn 1.0-2.0%, P≦0.02%, S≦0.003 %, Al 0.02-0.08%, N≦0.004%, Mo 0.1-0.5%, Ti 0.01-0.05%, O≦0.0030%, the balance is Fe. Low carbon martensitic high hole expandability steel with tensile strength of 980 MPa or more, other unavoidable impurities. その化学組成が重量百分率で、C 0.03~0.06%、Si 0.5~2.0%、Mn 1.0~2.0%、P≦0.02%、S≦0.003%、Al 0.02~0.08%、N≦0.004%、Mo 0.1~0.5%、Ti 0.01~0.05%、O≦0.0030%、残部はFeと他の不可避不純物である、請求項1に記載の引張強度980MPa以上の低炭素マルテンサイト高穴拡げ性鋼。 Its chemical composition is in weight percentage: C 0.03-0.06%, Si 0.5-2.0%, Mn 1.0-2.0%, P≦0.02%, S≦0.003 %, Al 0.02-0.08%, N≦0.004%, Mo 0.1-0.5%, Ti 0.01-0.05%, O≦0.0030%, the balance is Fe. The low carbon martensitic high hole expandability steel having a tensile strength of 980 MPa or more according to claim 1, which is other unavoidable impurities. その化学組成が重量百分率で、C 0.06~0.10%、Si 0.8~2.0%、Mn 1.5~2.0%、P≦0.02%、S≦0.003%、Al 0.02~0.08%、N≦0.004%、Mo 0.1~0.5%、Ti 0.01~0.05%、O≦0.0030%、残部はFeと他の不可避不純物である、請求項1に記載の引張強度980MPa以上の低炭素マルテンサイト高穴拡げ性鋼。 Its chemical composition is in weight percentage: C 0.06-0.10%, Si 0.8-2.0%, Mn 1.5-2.0%, P≦0.02%, S≦0.003 %, Al 0.02-0.08%, N≦0.004%, Mo 0.1-0.5%, Ti 0.01-0.05%, O≦0.0030%, the balance is Fe. The low carbon martensitic high hole expandability steel having a tensile strength of 980 MPa or more according to claim 1, which is other unavoidable impurities. Cr≦0.5%、B≦0.002%、Ca≦0.005%、Nb≦0.06%、V≦0.05%、Cu≦0.5%、Ni≦0.5%の中の1種又は複数種の元素をさらに含み、ただし、前記Crの好ましい含有量は0.2~0.4%であり、前記Bの好ましい含有量は0.0005~0.0015%であり、前記Caの好ましい含有量は≦0.002%であり、前記Nb、Vの好ましい含有量はそれぞれ≦0.03%であり、前記Cu、Niの好ましい含有量はそれぞれ≦0.3%であることを特徴とする、請求項1~3のいずれか一項に記載の引張強度980MPa以上の低炭素マルテンサイト高穴拡げ性鋼。 Cr≦0.5%, B≦0.002%, Ca≦0.005%, Nb≦0.06%, V≦0.05%, Cu≦0.5%, Ni≦0.5% further comprising one or more elements, provided that the preferred content of Cr is 0.2 to 0.4%, and the preferred content of B is 0.0005 to 0.0015%, The preferable content of Ca is ≦0.002%, the preferable content of Nb and V is each ≦0.03%, and the preferable content of Cu and Ni is ≦0.3%, respectively. The low carbon martensitic high hole expandability steel having a tensile strength of 980 MPa or more according to any one of claims 1 to 3, characterized in that: 前記Cの含有量は0.04~0.055%であり、前記Siの含有量は0.8~1.4%であり、前記Mnの含有量は1.4~1.8%であり、前記Sの含有量は0.0015%以下に制御され、前記Alの含有量は0.02~0.05%であり、前記Nの含有量は0.003%以下に制御され、前記Tiの含有量は0.01~0.03%であり、並びに前記Moの含有量は0.15~0.35%であるということからなら群から選ばれる1つ又は複数の特徴を有することを特徴とする、請求項2又は4に記載の引張強度980MPa以上の低炭素マルテンサイト高穴拡げ性鋼。 The C content is 0.04 to 0.055%, the Si content is 0.8 to 1.4%, and the Mn content is 1.4 to 1.8%. , the S content is controlled to 0.0015% or less, the Al content is 0.02 to 0.05%, the N content is controlled to 0.003% or less, and the Ti The content of Mo is 0.01 to 0.03%, and the content of Mo is 0.15 to 0.35%, indicating that the Mo content has one or more characteristics selected from the group. The low carbon martensitic high hole expandability steel having a tensile strength of 980 MPa or more according to claim 2 or 4. 前記Cの含有量は0.07~0.09%であり、前記Siの含有量は1.0~1.4%であり、前記Mnの含有量は1.6~1.9%であり、前記Sの含有量は0.0015%以下に制御され、前記Alの含有量は0.02~0.05%であり、前記Nの含有量は0.003%以下に制御され、前記Tiの含有量は0.01~0.03%であり、並びに前記Moの含有量は0.15~0.35%であるということからなら群から選ばれる1つ又は複数の特徴を有することを特徴とする、請求項3又は4に記載の引張強度980MPa以上の低炭素マルテンサイト高穴拡げ性鋼。 The C content is 0.07 to 0.09%, the Si content is 1.0 to 1.4%, and the Mn content is 1.6 to 1.9%. , the S content is controlled to 0.0015% or less, the Al content is 0.02 to 0.05%, the N content is controlled to 0.003% or less, and the Ti The content of Mo is 0.01 to 0.03%, and the content of Mo is 0.15 to 0.35%, indicating that the Mo content has one or more characteristics selected from the group. The low carbon martensitic high hole expandability steel having a tensile strength of 980 MPa or more according to claim 3 or 4. 前記高穴拡げ性鋼の微細組織は、マルテンサイト又は焼戻しマルテンサイトと残留オーステナイトであり、ただし、微細組織における残留オーステナイトの体積百分率は≦5%であることを特徴とする、請求項1~6のいずれか一項に記載の引張強度980MPa以上の低炭素マルテンサイト高穴拡げ性鋼。 Claims 1 to 6, characterized in that the microstructure of the high hole expandability steel is martensite or tempered martensite and retained austenite, provided that the volume percentage of retained austenite in the microstructure is ≦5%. The low carbon martensitic high hole expandability steel having a tensile strength of 980 MPa or more according to any one of the above. 前記高穴拡げ性鋼は、降伏強度≧800MPa、引張強度≧980MPa、横伸びA50≧8%、穴拡げ率≧30%であり、好ましくは、前記高穴拡げ性鋼は、-40℃衝撃靭性≧60Jであることを特徴とする、請求項1~7のいずれか一項に記載の引張強度980MPa以上の低炭素マルテンサイト高穴拡げ性鋼。 The high hole expandability steel has a yield strength ≧800 MPa, a tensile strength ≧980 MPa, a lateral elongation A 50 ≧8%, and a hole expansion rate ≧30%. Preferably, the high hole expandability steel has a -40°C impact resistance. The low carbon martensitic high hole expandability steel having a tensile strength of 980 MPa or more according to any one of claims 1 to 7, characterized in that the toughness is 60 J or more. 前記高穴拡げ性鋼は、降伏強度≧800MPa、引張強度≧980MPa、横伸びA50≧8%、穴拡げ率≧50%であり、冷間曲げ性能テスト(d≦4a、180°)に合格しており、好ましくは、前記高穴拡げ性鋼は、-40℃衝撃靭性≧140Jであることを特徴とする、請求項2又は5に記載の引張強度980MPa以上の低炭素マルテンサイト高穴拡げ性鋼。 The high hole expandability steel has yield strength ≧800 MPa, tensile strength ≧980 MPa, lateral elongation A 50 ≧8%, hole expansion rate ≧50%, and passes the cold bending performance test (d≦4a, 180°). and preferably the low carbon martensite high hole expandability steel having a tensile strength of 980 MPa or more according to claim 2 or 5, wherein the high hole expandability steel has a -40°C impact toughness ≧140J. Sex steel. 前記の引張強度980MPa以上の超低炭素マルテンサイト高穴拡げ性鋼は、降伏強度が800~890MPaで、引張強度が980~1150MPaで、横伸びA50が8~13%で、穴拡げ率が50~85%で、-40℃衝撃靭性が140~185Jで、冷間曲げ性能テスト(d≦4a、180°)に合格しており、前記の引張強度980MPa以上の超低炭素マルテンサイト高穴拡げ性鋼の微細組織は、マルテンサイトと残留オーステナイトであり、ただし、微細組織における残留オーステナイトの体積百分率は≦5%であることを特徴とする、請求項9に記載の引張強度980MPa以上の低炭素マルテンサイト高穴拡げ性鋼。 The ultra-low carbon martensitic high hole expandability steel with a tensile strength of 980 MPa or more has a yield strength of 800 to 890 MPa, a tensile strength of 980 to 1150 MPa, a lateral elongation A50 of 8 to 13%, and a hole expansion rate of 800 to 890 MPa. 50 to 85%, -40℃ impact toughness of 140 to 185 J, passed cold bending performance test (d≦4a, 180°), and ultra-low carbon martensite high hole with tensile strength of 980 MPa or more. A low tensile strength of 980 MPa or more according to claim 9, characterized in that the microstructure of the expandable steel is martensite and retained austenite, provided that the volume percentage of retained austenite in the microstructure is ≦5%. Carbon martensitic high hole expandability steel. 前記高穴拡げ性鋼は、降伏強度≧900MPa、引張強度≧1180MPa、横伸びA50≧10%、穴拡げ率≧30%であり、好ましくは、前記高穴拡げ性鋼は、-40℃衝撃靭性≧60Jであり、好ましくは、冷間曲げ性能テスト(d≦4a、180°)に合格していることを特徴とする、請求項3又は6に記載の引張強度980MPa以上の低炭素マルテンサイト高穴拡げ性鋼。 The high hole expandability steel has a yield strength ≧900 MPa, a tensile strength ≧1180 MPa, a lateral elongation A 50 ≧10%, and a hole expansion ratio ≧30%. Preferably, the high hole expandability steel has a -40°C impact resistance. The low carbon martensite with a tensile strength of 980 MPa or more according to claim 3 or 6, characterized in that the toughness is ≧60 J and preferably passes a cold bending performance test (d≦4a, 180°). High hole expandability steel. 前記高穴拡げ性鋼は、降伏強度が900~1000MPaで、引張強度が1200~1280MPaで、横伸びが10~13%で、穴拡げ率が30~50%で、-40℃衝撃靭性が60~100Jであり、好ましくは、前記高穴拡げ性鋼の微細組織は、焼戻しマルテンサイトと残留オーステナイトであり、ただし、微細組織における残留オーステナイトの体積百分率は前記のように≦5%であり、或いは、前記高穴拡げ性鋼は、降伏強度が940~1000MPaで、引張強度が1210~1300MPaで、横伸びが10~13%で、穴拡げ率が30~50%で、-40℃衝撃靭性が80~110Jで、且つ冷間曲げ性能テスト(d≦4a、180°)に合格しており、好ましくは、前記高穴拡げ性鋼の微細組織は、焼戻しマルテンサイトと残留オーステナイトであり、ただし、微細組織における残留オーステナイトの体積百分率は前記のように≦5%であることを特徴とする、請求項11に記載の引張強度980MPa以上の低炭素マルテンサイト高穴拡げ性鋼。 The high hole expandability steel has a yield strength of 900 to 1000 MPa, a tensile strength of 1200 to 1280 MPa, a lateral elongation of 10 to 13%, a hole expansion rate of 30 to 50%, and a -40°C impact toughness of 60. ~100J, and preferably, the microstructure of the high hole expandability steel is tempered martensite and retained austenite, provided that the volume percentage of retained austenite in the microstructure is ≦5% as described above, or The high hole expandability steel has a yield strength of 940 to 1000 MPa, a tensile strength of 1210 to 1300 MPa, a lateral elongation of 10 to 13%, a hole expansion rate of 30 to 50%, and a -40°C impact toughness. 80 to 110 J and passes a cold bending performance test (d≦4a, 180°), and preferably the microstructure of the high hole expandability steel is tempered martensite and retained austenite, provided that: The low carbon martensitic high hole expandability steel with a tensile strength of 980 MPa or more according to claim 11, characterized in that the volume percentage of retained austenite in the microstructure is ≦5% as described above. 以下の工程を含むことを特徴とする、請求項1~12に記載の引張強度980MPa以上の低炭素マルテンサイト高穴拡げ性鋼の製造方法。
1) 製錬、鋳込み
請求項1~6に記載された組成に従い、転炉又は電気炉で製錬し、真空炉で二次精錬した後、ビレット又はインゴットに鋳込む;
2) ビレット又はインゴットを、加熱温度1100~1200℃、保温時間1~2時間で再加熱する;
3) 熱間圧延
圧延開始温度を950~1100℃とし、950℃以上で大圧下で3~5パス行い、且つ累計変形量を≧50%とする;次に、最終に圧延を3~7パス行い、且つ累計変形量を≧70%とする;圧延終了温度を800~950℃とする;任意的に、前記の大圧下で3~5パス行ってから、中間ビレットの温度を900~950℃にした後、前記の圧延を3~7パス行う;
4) 冷却
まず0~10秒の空冷を行い、次に室温~Ms点の間まで≧50℃/sの冷却速度で帯鋼を水冷して巻取ってから、室温まで冷却する;或いは、まず0~10秒の空冷を行い、次に直接に室温まで≧30℃/sの冷却速度で帯鋼を水冷して巻取る;或いは、まず0~10秒の空冷を行い、次にマルテンサイト変態開始点であるMs点以下のある温度まで≧30℃/sの冷却速度で鋼板を水冷して巻取ってから、室温まで徐冷する;
5) 酸洗
帯鋼の酸洗実行速度を30~100m/minの区間で調整し、酸洗温度を75~85℃の間に制御し、引張矯正率を≦2%に制御し、それからすすぎ洗い、帯鋼表面を乾燥し、油を塗布する。
A method for producing a low carbon martensitic high hole expandability steel having a tensile strength of 980 MPa or more according to claims 1 to 12, which comprises the following steps.
1) Smelting and casting According to the compositions described in claims 1 to 6, smelting in a converter or electric furnace, secondary smelting in a vacuum furnace, and then casting into billets or ingots;
2) Reheat the billet or ingot at a heating temperature of 1100 to 1200°C and a heat retention time of 1 to 2 hours;
3) Hot rolling The rolling start temperature is 950 to 1100°C, and 3 to 5 passes are performed at 950°C or higher under heavy reduction, and the cumulative amount of deformation is ≧50%; Next, the final rolling is performed for 3 to 7 passes. and the cumulative amount of deformation is ≧70%; the rolling end temperature is 800 to 950°C; optionally, after performing 3 to 5 passes under the above-mentioned high pressure, the temperature of the intermediate billet is set to 900 to 950°C. After that, perform the above rolling for 3 to 7 passes;
4) Cooling First, air cool for 0 to 10 seconds, then water cool the steel strip at a cooling rate of ≧50°C/s between room temperature and Ms point, coil it, and then cool it to room temperature; Air cooling for 0-10 seconds, then water cooling the steel strip directly to room temperature at a cooling rate of ≧30 °C/s and winding; alternatively, first air cooling for 0-10 seconds, then martensitic transformation. The steel plate is water-cooled at a cooling rate of ≧30°C/s to a certain temperature below the Ms point, which is the starting point, and then coiled, and then slowly cooled to room temperature;
5) Pickling Adjust the pickling speed of the strip steel in the range of 30 to 100 m/min, control the pickling temperature between 75 to 85°C, control the tensile straightening rate to ≦2%, and then rinse. Wash, dry the strip surface and apply oil.
工程5)の酸洗の後に、35~50℃の温度区間ですすぎ洗い、且つ120~140℃の間で表面を乾燥し、油を塗布することを特徴とする、請求項13に記載の引張強度980MPa以上の低炭素マルテンサイト高穴拡げ性鋼の製造方法。 The tensile material according to claim 13, characterized in that after the pickling in step 5), rinsing is carried out in a temperature range of 35 to 50 °C, and the surface is dried in a range of 120 to 140 °C and coated with oil. A method for producing low carbon martensitic high hole expandability steel having a strength of 980 MPa or more. 工程4)と5)の間には、さらに、工程4-1):ベル型焼鈍で焼鈍し、加熱速度を≧20℃/hとし、ベル型焼鈍温度を100~300℃とし、ベル型焼鈍時間を12~48hとする;≦50℃/hの冷却速度で鋼板を≦100℃に冷却して出鋼すること、が含まれることを特徴とする、請求項13又は14に記載の引張強度980MPa以上の低炭素マルテンサイト高穴拡げ性鋼の製造方法。 Between steps 4) and 5), further step 4-1): annealing with bell-shaped annealing, with a heating rate of ≧20°C/h, a bell-shaped annealing temperature of 100 to 300°C, and bell-shaped annealing. The tensile strength according to claim 13 or 14, characterized in that the method includes: cooling the steel plate to ≦100°C at a cooling rate of ≦50°C/h and tapping the steel plate for a time of 12 to 48 hours. A method for producing low carbon martensitic high hole expandability steel of 980 MPa or more. 以下の工程を含むことを特徴とする、請求項13又は14に記載の引張強度980MPa以上の低炭素マルテンサイト高穴拡げ性鋼の製造方法。
6) 製錬、鋳込み
請求項2、4又は5に記載された組成に従い、転炉又は電気炉で製錬し、真空炉で二次精錬した後、ビレット又はインゴットに鋳込む;
7) ビレット又はインゴットを、加熱温度1100~1200℃、保温時間1~2時間で再加熱する;
8) 熱間圧延
圧延開始温度を950~1100℃とし、950℃以上で大圧下で3~5パス行い、且つ累計変形量を≧50%、好ましくは≧60%とする;次に、中間ビレットの温度を920~950℃にした後、最終に圧延を3~5パス行い、且つ累計変形量を≧70%、好ましくは≧85%とする;圧延終了温度を800~920℃とする;
9) 冷却
まず動的回復と動的再結晶するように0~10秒の空冷を行い、次にMs点以下(室温~Ms点の間)のある温度まで≧50℃/s、好ましくは50~85℃/sの冷却速度で帯鋼を水冷して巻取ってから、室温まで冷却する;
10) 酸洗
帯鋼の酸洗実行速度を30~100m/minの区間で調整し、酸洗温度を75~85℃の間に制御し、帯鋼の伸びロスを低減させるように引張矯正率を≦2%に制御し、それからすすぎ洗い、帯鋼表面を乾燥し、油を塗布する。
The method for producing a low carbon martensitic high hole expandability steel having a tensile strength of 980 MPa or more according to claim 13 or 14, which comprises the following steps.
6) Smelting and casting According to the composition described in claim 2, 4 or 5, smelting in a converter or electric furnace, secondary smelting in a vacuum furnace, and then casting into billets or ingots;
7) Reheat the billet or ingot at a heating temperature of 1100 to 1200°C and a heat retention time of 1 to 2 hours;
8) Hot rolling The rolling start temperature is 950 to 1100°C, and 3 to 5 passes are performed at 950°C or higher and under large reduction, and the cumulative amount of deformation is ≧50%, preferably ≧60%; Next, the intermediate billet After setting the temperature to 920 to 950°C, finally perform 3 to 5 passes of rolling, and make the cumulative amount of deformation ≧70%, preferably ≧85%; set the rolling end temperature to 800 to 920°C;
9) Cooling First, perform air cooling for 0 to 10 seconds to ensure dynamic recovery and dynamic recrystallization, then cool to a certain temperature below the Ms point (between room temperature and the Ms point) at ≥50°C/s, preferably at 50°C/s. Water-cool the steel strip at a cooling rate of ~85°C/s, coil it, and then cool it to room temperature;
10) Pickling Adjust the pickling speed of the steel strip in the range of 30 to 100 m/min, control the pickling temperature between 75 to 85°C, and adjust the tensile straightening rate to reduce the elongation loss of the steel strip. ≦2%, then rinse, dry the strip surface and apply oil.
以下の工程を含むことを特徴とする、請求項13又は14に記載の引張強度980MPa以上の低炭素マルテンサイト高穴拡げ性鋼の製造方法。
7) 製錬、鋳込み
請求項3、4又は6に記載された組成に従い、転炉又は電気炉で製錬し、真空炉で二次精錬した後、ビレット又はインゴットに鋳込む;
8) ビレット又はインゴットを、加熱温度1100~1200℃、保温時間1~2時間で再加熱する;
9) 熱間圧延
圧延開始温度を950~1100℃とし、950℃以上で大圧下で3~5パス行い、且つ累計変形量を≧50%、好ましくは≧60%とする;次に、圧延を3~7パス行い、且つ累計変形量を≧70%、好ましくは≧85%とする;圧延終了温度を800~950℃とする;
10) 冷却
まず0~10秒の空冷を行い、次に室温まで≧30℃/s、好ましくは30~65℃/sの冷却速度で帯鋼を水冷して巻取る;
11) 焼鈍
ベル型焼鈍で焼鈍し、加熱速度を≧20℃/h、好ましくは20~40℃/hとし、ベル型焼鈍温度を100~300℃とし、ベル型焼鈍時間を12~48hとする;≦50℃/h、好ましくは15~50℃/hの冷却速度で鋼板を≦100℃に冷却して出鋼する;
12) 酸洗
帯鋼の酸洗実行速度を30~90m/minの区間で調整し、酸洗温度を75~85℃の間に制御し、引張矯正率を≦1.5%に制御し、35~50℃の温度区間ですすぎ洗い、且つ120~140℃の間で表面を乾燥し、油を塗布する。
The method for producing a low carbon martensitic high hole expandability steel having a tensile strength of 980 MPa or more according to claim 13 or 14, which comprises the following steps.
7) Smelting, casting According to the composition described in claim 3, 4 or 6, smelting in a converter or electric furnace, secondary refining in a vacuum furnace, and then casting into billets or ingots;
8) Reheat the billet or ingot at a heating temperature of 1100 to 1200°C and a heat retention time of 1 to 2 hours;
9) Hot rolling The rolling start temperature is 950 to 1100°C, and 3 to 5 passes are performed at 950°C or higher under heavy reduction, and the cumulative deformation is ≧50%, preferably ≧60%; then, rolling is carried out. Perform 3 to 7 passes, and set the cumulative deformation amount to ≧70%, preferably ≧85%; set the rolling end temperature to 800 to 950°C;
10) Cooling First air cooling for 0-10 seconds, then water-cooling the steel strip to room temperature at a cooling rate of ≧30°C/s, preferably 30-65°C/s, and winding;
11) Annealing Anneal using bell-shaped annealing, heating rate ≧20°C/h, preferably 20-40°C/h, bell-shaped annealing temperature 100-300°C, and bell-shaped annealing time 12-48h. ; Cool the steel plate to ≦100°C at a cooling rate of ≦50°C/h, preferably 15 to 50°C/h, and tap the steel plate;
12) Pickling Adjust the pickling speed of the steel strip in the range of 30 to 90 m/min, control the pickling temperature between 75 and 85°C, and control the tensile straightening rate to ≦1.5%. Rinse at a temperature range of 35-50°C, dry the surface at a temperature of 120-140°C, and apply oil.
以下の工程を含むことを特徴とする、請求項13又は14に記載の引張強度980MPa以上の低炭素マルテンサイト高穴拡げ性鋼の製造方法。
7) 製錬、鋳込み
請求項3、4又は6に記載された組成に従い、転炉又は電気炉で製錬し、真空炉で二次精錬した後、ビレット又はインゴットに鋳込む;
8) ビレット又はインゴットを、加熱温度:1100~1200℃、保温時間:1~2時間で再加熱する;
9) 熱間圧延
圧延開始温度を950~1100℃とし、950℃以上で大圧下で3~5パス行い、且つ累計変形量を≧50%、好ましくは≧60%とする;次に、中間ビレットの温度を900~950℃にした後、圧延を3~7パス行い、且つ累計変形量を≧70%、好ましくは≧85%とする;圧延終了温度を800~900℃とする;
10) 冷却
まず0~10秒の空冷を行い、次にマルテンサイト変体開始点であるMs点以下のある温度まで≧30℃/s、好ましくは30~70℃/sの冷却速度で鋼板を水冷して巻取ってから、室温まで徐冷する;
11) 焼鈍
ベル型焼鈍で焼鈍し、加熱速度を≧20℃/h、好ましくは20~50℃/hとし、ベル型焼鈍温度を100~300℃とし、ベル型焼鈍時間を12~48hとする;≦50℃/h、好ましくは20~50℃/hの冷却速度で鋼板を≦100℃に冷却して出鋼する;
12) 酸洗
帯鋼の酸洗実行速度を30~90m/minの区間で調整し、酸洗温度を75~85℃の間に制御し、帯鋼の伸びロスを低減させるように引張矯正率を≦1.5%に制御し、それからすすぎ洗い、帯鋼表面を乾燥し、油を塗布する。
The method for producing a low carbon martensitic high hole expandability steel having a tensile strength of 980 MPa or more according to claim 13 or 14, which comprises the following steps.
7) Smelting, casting According to the composition described in claim 3, 4 or 6, smelting in a converter or electric furnace, secondary refining in a vacuum furnace, and then casting into billets or ingots;
8) Reheat the billet or ingot at a heating temperature of 1100 to 1200°C and a heat retention time of 1 to 2 hours;
9) Hot rolling The rolling start temperature is 950 to 1100°C, and 3 to 5 passes are performed at 950°C or higher under large reduction, and the cumulative amount of deformation is ≧50%, preferably ≧60%; Next, the intermediate billet After setting the temperature to 900 to 950°C, perform 3 to 7 passes of rolling, and make the cumulative amount of deformation ≧70%, preferably ≧85%; the rolling end temperature should be 800 to 900°C;
10) Cooling First, air cooling is performed for 0 to 10 seconds, and then the steel plate is water cooled at a cooling rate of ≧30°C/s, preferably 30 to 70°C/s, to a certain temperature below the Ms point, which is the starting point of martensitic transformation. Roll it up and slowly cool it to room temperature;
11) Annealing Anneal using bell-shaped annealing, heating rate ≧20°C/h, preferably 20-50°C/h, bell-shaped annealing temperature 100-300°C, and bell-shaped annealing time 12-48h. ; Cool the steel plate to ≦100°C at a cooling rate of ≦50°C/h, preferably 20 to 50°C/h, and tap the steel plate;
12) Pickling Adjust the pickling speed of the steel strip in the range of 30 to 90 m/min, control the pickling temperature between 75 to 85°C, and adjust the tensile straightening rate to reduce the elongation loss of the steel strip. ≦1.5%, then rinse, dry the strip surface and apply oil.
JP2023513798A 2020-08-31 2021-08-30 High strength low carbon martensitic high hole expandability steel and its manufacturing method Pending JP2023539649A (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
CN202010896455.1A CN114107790B (en) 2020-08-31 2020-08-31 980 MPa-grade ultralow-carbon martensitic high-reaming steel and manufacturing method thereof
CN202010896521.5A CN114107796A (en) 2020-08-31 2020-08-31 1180 MPa-grade high-plasticity high-hole-expansion steel and manufacturing method thereof
CN202010897941.5A CN114107835A (en) 2020-08-31 2020-08-31 1180 MPa-grade high-plasticity high-hole-expansion steel and manufacturing method thereof
CN202010897941.5 2020-08-31
CN202010896455.1 2020-08-31
CN202010896521.5 2020-08-31
PCT/CN2021/115431 WO2022042730A1 (en) 2020-08-31 2021-08-30 High-strength low-carbon martensitic high hole expansion steel and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2023539649A true JP2023539649A (en) 2023-09-15

Family

ID=80354696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023513798A Pending JP2023539649A (en) 2020-08-31 2021-08-30 High strength low carbon martensitic high hole expandability steel and its manufacturing method

Country Status (5)

Country Link
US (1) US20230313332A1 (en)
EP (1) EP4206350A4 (en)
JP (1) JP2023539649A (en)
KR (1) KR20230061413A (en)
WO (1) WO2022042730A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024111525A1 (en) * 2022-11-22 2024-05-30 Jfeスチール株式会社 High-strength hot-rolled steel sheet, and method for producing same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3729108B2 (en) * 2000-09-12 2005-12-21 Jfeスチール株式会社 Ultra-high tensile cold-rolled steel sheet and manufacturing method thereof
EP1325966B1 (en) * 2000-09-12 2009-04-01 JFE Steel Corporation Super-high strength cold-rolled steel sheet and method for production thereof
JP5609383B2 (en) * 2009-08-06 2014-10-22 Jfeスチール株式会社 High strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
KR20120121811A (en) * 2011-04-27 2012-11-06 현대제철 주식회사 High strength steel sheet and method of manufacturing the steel sheet
EP3054025B1 (en) * 2013-12-18 2018-02-21 JFE Steel Corporation High-strength galvanized steel sheet and method for manufacturing the same
WO2015185956A1 (en) * 2014-06-06 2015-12-10 ArcelorMittal Investigación y Desarrollo, S.L. High strength multiphase galvanized steel sheet, production method and use
CN105506494B (en) * 2014-09-26 2017-08-25 宝山钢铁股份有限公司 A kind of yield strength 800MPa grade high ductilities hot-rolling high-strength steel and its manufacture method
CN106119702B (en) 2016-06-21 2018-10-02 宝山钢铁股份有限公司 A kind of high reaming steel of 980MPa grades of hot-rolled high-strength and its manufacturing method
CN110088326B (en) * 2016-12-14 2022-06-24 蒂森克虏伯钢铁欧洲股份公司 Hot-rolled flat steel product and method for the production thereof
EP3592871A1 (en) * 2017-03-10 2020-01-15 Tata Steel Limited Hot rolled steel product with ultra-high strength minimum 1100mpa and good elongation 21%
CN109576579A (en) * 2018-11-29 2019-04-05 宝山钢铁股份有限公司 It is a kind of with high hole expansibility and compared with the 980MPa grade cold-rolled steel sheet and its manufacturing method of high-elongation

Also Published As

Publication number Publication date
KR20230061413A (en) 2023-05-08
US20230313332A1 (en) 2023-10-05
EP4206350A4 (en) 2024-03-13
EP4206350A1 (en) 2023-07-05
WO2022042730A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
JP5463685B2 (en) High-strength cold-rolled steel sheet excellent in workability and impact resistance and method for producing the same
WO2022042731A1 (en) 980 mpa-grade bainite high hole expansion steel and manufacturing method therefor
CN114107791B (en) 980 MPa-grade full bainite type ultra-high reaming steel and manufacturing method thereof
CN112048681A (en) 980 MPa-grade high-formability cold-rolled DH steel and preparation method thereof
CN102251170A (en) Ultrahigh-strength bainitic steel and manufacture method thereof
WO2013073136A1 (en) Thin steel sheet and process for producing same
CN105925912A (en) Tensile strength-780 MPa-stage vanadium-contained cold-rolled dual-phase steel and preparation method thereof
US20230323500A1 (en) 780 mpa-grade ultra-high reaming steel having high surface quality and high performance stability, and manufacturing method therefor
CN114107797A (en) 980 MPa-level bainite precipitation strengthening type high-reaming steel and manufacturing method thereof
CN114107795B (en) 1180MPa low-temperature tempered martensite high-reaming steel and manufacturing method thereof
JP2023539649A (en) High strength low carbon martensitic high hole expandability steel and its manufacturing method
WO2022042729A1 (en) 980 mpa-grade ultra-low-carbon martensite and retained austenite ultra-high hole expansion steel and manufacturing method therefor
JP3525812B2 (en) High strength steel plate excellent in impact energy absorption and manufacturing method thereof
CN114107788B (en) 980 MPa-grade tempered martensite type high-reaming steel and manufacturing method thereof
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
CN116497266A (en) Hot-rolled high-strength high-plasticity steel and manufacturing method thereof
JPH0790482A (en) Thin steel sheet excellent in impact resistance and its production
CN114107793B (en) 1180 MPa-grade low-carbon martensitic high-reaming steel and manufacturing method thereof
CN114107790B (en) 980 MPa-grade ultralow-carbon martensitic high-reaming steel and manufacturing method thereof
WO2023246905A1 (en) High-hole-expansion-ratio and ultrahigh-plasticity steel and manufacturing method therefor
WO2023246898A1 (en) High-plasticity steel and manufacturing method therefor
CN114107835A (en) 1180 MPa-grade high-plasticity high-hole-expansion steel and manufacturing method thereof
CN114107796A (en) 1180 MPa-grade high-plasticity high-hole-expansion steel and manufacturing method thereof
CN117305730A (en) High-surface high-reaming steel and manufacturing method thereof
CN117305685A (en) High-strength ultrahigh-plasticity steel and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240820