JP2023534569A - 1つ又は複数のニューラル・ネットワークを使用した画像生成 - Google Patents
1つ又は複数のニューラル・ネットワークを使用した画像生成 Download PDFInfo
- Publication number
- JP2023534569A JP2023534569A JP2022525317A JP2022525317A JP2023534569A JP 2023534569 A JP2023534569 A JP 2023534569A JP 2022525317 A JP2022525317 A JP 2022525317A JP 2022525317 A JP2022525317 A JP 2022525317A JP 2023534569 A JP2023534569 A JP 2023534569A
- Authority
- JP
- Japan
- Prior art keywords
- memory
- processor
- images
- graphics
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000013528 artificial neural network Methods 0.000 title claims description 96
- 238000000034 method Methods 0.000 claims abstract description 161
- 230000015654 memory Effects 0.000 claims description 395
- 239000013598 vector Substances 0.000 claims description 23
- 239000003086 colorant Substances 0.000 claims description 3
- 238000012545 processing Methods 0.000 description 333
- 238000012549 training Methods 0.000 description 269
- 238000010801 machine learning Methods 0.000 description 110
- 230000008569 process Effects 0.000 description 108
- 238000007667 floating Methods 0.000 description 74
- 238000003860 storage Methods 0.000 description 71
- 230000006870 function Effects 0.000 description 66
- 210000002569 neuron Anatomy 0.000 description 64
- 238000004891 communication Methods 0.000 description 52
- 238000013473 artificial intelligence Methods 0.000 description 50
- 238000013500 data storage Methods 0.000 description 50
- 238000005192 partition Methods 0.000 description 49
- 230000001133 acceleration Effects 0.000 description 46
- 238000003384 imaging method Methods 0.000 description 44
- 238000005227 gel permeation chromatography Methods 0.000 description 41
- 238000013135 deep learning Methods 0.000 description 35
- 239000000872 buffer Substances 0.000 description 30
- 238000007726 management method Methods 0.000 description 28
- 239000012634 fragment Substances 0.000 description 25
- 238000009877 rendering Methods 0.000 description 25
- 238000010586 diagram Methods 0.000 description 22
- 238000009434 installation Methods 0.000 description 21
- 230000002093 peripheral effect Effects 0.000 description 21
- 238000009826 distribution Methods 0.000 description 19
- 238000004422 calculation algorithm Methods 0.000 description 18
- 239000011159 matrix material Substances 0.000 description 18
- 210000000225 synapse Anatomy 0.000 description 17
- 238000012800 visualization Methods 0.000 description 17
- 238000001514 detection method Methods 0.000 description 16
- 238000013519 translation Methods 0.000 description 16
- 230000014616 translation Effects 0.000 description 16
- 230000004913 activation Effects 0.000 description 12
- 238000001994 activation Methods 0.000 description 12
- 230000007246 mechanism Effects 0.000 description 12
- 238000005070 sampling Methods 0.000 description 12
- 230000011218 segmentation Effects 0.000 description 12
- 238000012546 transfer Methods 0.000 description 12
- 230000008859 change Effects 0.000 description 11
- 238000012163 sequencing technique Methods 0.000 description 11
- 230000010354 integration Effects 0.000 description 10
- 230000003068 static effect Effects 0.000 description 10
- 230000009471 action Effects 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 8
- 230000000670 limiting effect Effects 0.000 description 8
- 239000012528 membrane Substances 0.000 description 8
- 230000006835 compression Effects 0.000 description 7
- 238000007906 compression Methods 0.000 description 7
- 230000001419 dependent effect Effects 0.000 description 7
- 238000007781 pre-processing Methods 0.000 description 7
- 238000003491 array Methods 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 6
- 238000002595 magnetic resonance imaging Methods 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 241000023320 Luma <angiosperm> Species 0.000 description 5
- 239000004744 fabric Substances 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 210000000056 organ Anatomy 0.000 description 5
- 238000012805 post-processing Methods 0.000 description 5
- 238000012216 screening Methods 0.000 description 5
- 230000001360 synchronised effect Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 239000008186 active pharmaceutical agent Substances 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 230000003190 augmentative effect Effects 0.000 description 4
- 230000033228 biological regulation Effects 0.000 description 4
- 238000004590 computer program Methods 0.000 description 4
- 238000012937 correction Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 238000013507 mapping Methods 0.000 description 4
- 238000005457 optimization Methods 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 230000002123 temporal effect Effects 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- HPTJABJPZMULFH-UHFFFAOYSA-N 12-[(Cyclohexylcarbamoyl)amino]dodecanoic acid Chemical compound OC(=O)CCCCCCCCCCCNC(=O)NC1CCCCC1 HPTJABJPZMULFH-UHFFFAOYSA-N 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000013527 convolutional neural network Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 238000002059 diagnostic imaging Methods 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 229920001690 polydopamine Polymers 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 210000002370 ICC Anatomy 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000002591 computed tomography Methods 0.000 description 2
- 238000011960 computer-aided design Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000013136 deep learning model Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 235000019800 disodium phosphate Nutrition 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 238000011010 flushing procedure Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 238000010988 intraclass correlation coefficient Methods 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 230000001242 postsynaptic effect Effects 0.000 description 2
- 210000005215 presynaptic neuron Anatomy 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000000700 radioactive tracer Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 206010008263 Cervical dysplasia Diseases 0.000 description 1
- 206010011878 Deafness Diseases 0.000 description 1
- 241000027036 Hippa Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 241000492493 Oxymeris Species 0.000 description 1
- 101100285899 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) SSE2 gene Proteins 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000012884 algebraic function Methods 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013434 data augmentation Methods 0.000 description 1
- 238000013075 data extraction Methods 0.000 description 1
- 238000013501 data transformation Methods 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000009547 development abnormality Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000004980 dosimetry Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000011331 genomic analysis Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000003064 k means clustering Methods 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000007477 logistic regression Methods 0.000 description 1
- 230000007787 long-term memory Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000007620 mathematical function Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000329 molecular dynamics simulation Methods 0.000 description 1
- 238000012900 molecular simulation Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 238000002610 neuroimaging Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000007637 random forest analysis Methods 0.000 description 1
- 230000036279 refractory period Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- 230000006403 short-term memory Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 230000000946 synaptic effect Effects 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4046—Scaling of whole images or parts thereof, e.g. expanding or contracting using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/40—Filling a planar surface by adding surface attributes, e.g. colour or texture
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/001—Texturing; Colouring; Generation of texture or colour
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T15/00—3D [Three Dimensional] image rendering
- G06T15/005—General purpose rendering architectures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4053—Scaling of whole images or parts thereof, e.g. expanding or contracting based on super-resolution, i.e. the output image resolution being higher than the sensor resolution
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/50—Image enhancement or restoration using two or more images, e.g. averaging or subtraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/60—Image enhancement or restoration using machine learning, e.g. neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20172—Image enhancement details
- G06T2207/20182—Noise reduction or smoothing in the temporal domain; Spatio-temporal filtering
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Graphics (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Image Analysis (AREA)
- Processing Or Creating Images (AREA)
- Image Processing (AREA)
Abstract
画像コンテンツを生成するための装置、システム、及び技法が提示される。少なくとも一実施例では、1つ又は複数の第1の画像は、1つ又は複数の第2の画像からの1つ又は複数の変化に少なくとも部分的に基づいて生成され、1つ又は複数の変化は、1つ又は複数の第2の画像の1つ又は複数のピクセル内の1つ又は複数の固定されたジッタ位置について決定される。
Description
これは、2020年7月21日に出願された米国特許出願第16/934,661号のPCT出願である。その出願の開示は、すべての目的でその全体を参照により本明細書に組み込む。
少なくとも一実施例は、人工知能を実行し、促進するために使用されるリソースを処理することに関する。たとえば、少なくとも一実施例は、本明細書に記載の様々な新規の技法に従ってニューラル・ネットワークを訓練するために使用されるプロセッサ又はコンピューティング・システムに関する。
電子ディスプレイの解像度が増加し続けるにつれて、これらのより高い解像度でコンテンツを提示したいという対応する欲求がある。これらのより高い解像度でグラフィックス又はアニメーション・コンテンツをレンダリングするために必要とされる処理能力の量により、しかしながら、いくつかの手法は、最初に、より低い解像度でコンテンツをレンダリングし、次いで1つ又は複数のより高い解像度にアップスケールする。これらのアップスケールされた画像の視覚品質を改善するために、テンポラル・アンチエイリアシングなどの技法が使用されるが、これらの技法は、しばしば、動的シーンについてレンダリングされた画像又はビデオ・フレーム中にゴースト発生又はちらつきなどのアーティファクト又は細部の損失を生じる。必要な量の処理はまた、いくつかの事例ではフレームの欠落を生じることがある。
図面を参照しながら本開示による様々な実施例について説明する。
少なくとも一実施例では、画像100は、図1に示されているようにレンダリングされ得る。少なくとも一実施例では、これは、アニメーション、ビデオ・ゲーム、又は仮想現実(VR:virtual reality)エクスペリエンスの一部として生成され得るような、一連の画像又はビデオ・フレームのうちの1つであり得る。少なくとも一実施例では、仮想カメラで撮影されたシーンのビューに対応する画像が生成され得、そのシーンは、背景オブジェクト又は静的要素など、1つ又は複数の静的オブジェクト104、並びに、プレーヤ・アバター又は非プレーヤ・キャラクターに対応し得るように1つ又は複数の動的要素102を含んでもよい。少なくとも一実施例では、このシーンにおけるこの仮想カメラの位置又は向きは、動的オブジェクトでさえも、ビデオ・フレームのレンダリングされた画像のシーケンスにおいてレンダリングされた位置を変更するように、経時的に移動又は変化する能力を有してもよい。
少なくとも一実施例では、そのような画像コンテンツは、4K又は8K解像度など、様々な解像度で提示され得る。少なくとも一実施例では、これらの解像度におけるレンダリングのための処理要求により、このコンテンツは、初めは標準解像度又は高解像度(たとえば、1080p)などのより低い解像度でレンダリングされ、次いでアップスケールされ得る。少なくとも一実施例では、これらのアップスケールされた画像がそれらからアップスケールされた、より低い解像度のデータによるぎざぎざのエッジの存在を低減するためなど、これらの画像の外観を改善するために、テンポラル・アンチエイリアシング(TAA:temporal anti-aliasing)などのプロセスが使用され得る。少なくとも一実施例では、TAAは、現在のフレームのアンチエイリアス化された表現を再構成するためにカメラ又はオブジェクト動きベクトルを使用して経時的に蓄積されたサブピクセル・ジッタあり色サンプルに依拠する。少なくとも一実施例では、これは、ピクセル当たり1つのサンプルしか生成されないときに、さもなければ失われる追加の詳細を露出するために、サブピクセル・ジッタをフレームごとに適用することを含むことができる。少なくとも一実施例では、このジッタは、フレーム間の認識されたピクセル位置においてランダムなサブピクセル・シフトを行うことを伴い得る。少なくとも一実施例では、これらのジッタありサンプルは、改善された画像品質を与えるために経時的に蓄積される。少なくとも一実施例では、これらのベクトルは、蓄積された色値がそこから使用されるべきであるシーケンス中の1つ又は複数の以前のフレーム中の位置を決定するために使用され得る。
少なくとも一実施例では、TAAなどのプロセスは、ビューが変化しない静的オブジェクトの場合はうまく機能し得るが、変化若しくは動きがある動的オブジェクト又はシーンの場合は、問題又はアーティファクトを示すことがある。少なくとも一実施例では、過去及び現在のフレーム色値を経時的に単に組み合わせることは、静的画像のための望ましい画像品質を生成することができるが、過去の色が、現在のフレームにより良く一致するように調整されない限り、動的シーンにおいて激しいゴースト発生を起こすことがある。少なくとも一実施例では、これらの過去の色値は、たとえば、現在のフレーム中の各ピクセルを囲む3×3ピクセル色近傍から構築された色凸包(color convex hull)に対してクランピングされ得る。少なくとも一実施例では、色決定近傍中の色チャネルごとの最小値及び最大値を決定するためにクランピングが使用され、その過去の値がそれらの値から外れる場合、過去の寄与は廃棄され得る。少なくとも一実施例では、しかしながら、静的画像品質と、動的画像のためのゴースト発生を防ぐこととを適切に両立させることは困難であり得るので、これは最適な画像品質を与えないことがある。少なくとも一実施例では、ランダム・ジッタの使用はまた、シーンが完全である場合でも、連続フレーム間でいくつかの有効色(たとえば、鏡面ハイライト)を点滅させ、色ちらつき又は細部の全体的損失を生じることがある。
少なくとも一実施例では、ピクセル・レベルにおいて個々のピクセルのためのカテゴリ分類に関する決定が行われ得る。少なくとも一実施例では、これは、個々のピクセルが、十分に静的であり、関連付けられた動きベクトルによって決定されたように移動しているのか、或いは、動的ライティング、影、アニメ化されたテクスチャ、パーティクルの動き、又は個々のピクセルについての色値を変化させるが、適切な動きベクトルを伴わない他の動作などの要因によって引き起こされる色値の変化の結果として、動的又は「移動している」のかを決定することを含むことができる。
少なくとも一実施例では、これらのピクセル・カテゴリ分類は、固定されたサブピクセル・ジッタ位置のセットを使用して決定され得る。少なくとも一実施例では、図2Aに示されているようにジッタ位置のグリッド200が利用され得る。少なくとも一実施例では、このグリッドは4×4グリッドであるが、2×2グリッド若しくは8×8グリッド、又は通常のグリッドに対応しない固定されたサブピクセル位置のセットなど、他のグリッド・サイズも使用され得る。少なくとも一実施例では、グリッドのサイズは、1080pから4K解像度へなど、実行されるべきアップスケーリングの量に一致し得る、4×4グリッドが4×レンダリング解像度でデータを効果的に記憶するであろう場合など、解像度の増加に対応し得る。少なくとも一実施例では、固定されたジッタ位置202は、この4×4グリッド200中の各セルの中心点として定義され、このグリッド200のサイズは、対応するピクセルのサイズに対応する。少なくとも一実施例では、レンダリングされるべき画像の各ピクセルのために同じグリッド及び固定されたジッタ位置のセットが使用される。
少なくとも一実施例では、色は、中心ピクセル位置204を有するピクセルに対して決定される。少なくとも一実施例では、レンダリングされるべきより低い解像度画像は、その場合、この中心ピクセル位置204においてセンタリングされたこのピクセルに対して報告された単一の色値を有する。少なくとも一実施例では、しかしながら、ジッタリングは、シーケンス中のフレーム又は画像間で実行され得、色決定の中心点はこのピクセル中の別の点にわずかにシフトされる。少なくとも一実施例では、これらのピクセル位置は、これらの固定されたジッタ位置202に対応し、ここで、矢印は位置シフトの実例を示す。少なくとも一実施例では、依然として、所与のピクセルについての色情報を決定するために3×3ピクセル分析が使用され得るが、この3×3ピクセル分析の位置は、その3×3ピクセル分析をセンタリングするために使用されるジッタ位置に基づいてわずかにシフトする。少なくとも一実施例では、これらの固定されたジッタ位置は、各固定されたジッタ位置がシーケンス中で一度ビジットされ、このシーケンスが次いで反復される、事前決定されたシーケンスなど、シーケンス中で使用され得る。少なくとも一実施例では、固定されたジッタ位置の使用は、ランダム・ジッタ位置の使用とは対照的に、正確な履歴比較をもたらすことができる。
少なくとも一実施例では、これらの固定されたジッタ位置202の各々について行われた色決定は、次いで、図2Bに示されているように、より高い解像度のテクスチャ250の対応するセルに記憶され得る。少なくとも一実施例では、このテクスチャは、個々のピクセルに対応するが、この4×4グリッドに対応する16セルを含んでいる。少なくとも一実施例では、特定の固定されたジッタ位置202について色値決定が行われたとき、その色値はテクスチャ250の対応するセルに記憶され得る。少なくとも一実施例では、これにより、色値が個々のピクセルについて4×解像度で記憶されることになり、それにより、より高い解像度の色データ、又はサブピクセル色データをキャプチャし、記憶することが可能になり得る。
少なくとも一実施例では、記憶された色データはクロマ又はRGB(赤緑青(RGB:(red-green-blue))色値を含むことができる。少なくとも一実施例では、この色データ(又はピクセル・データ)は、それの最後の色値ではなくピクセルの明るさを表す光度(luminosity)(たとえば、ルーマ)値を含むことができ、ルーマは、一般に、最後のピクセル値を生成するためにクロマ色値と組み合わせられる。少なくとも一実施例では、これらのより高い解像度のテクスチャ中にルーマ値のみを記憶することにより、必要とされるメモリ及び処理能力が著しく少なくなり得、個々のピクセルについての色値の変化の信頼できる指示も与えられる。
少なくとも一実施例では、ルーマ値は、ピクセルのためのこれらの固定されたジッタ位置202の各々について決定され、対応するピクセル・テクスチャ250の対応するセル又は位置に記憶され得る。少なくとも一実施例では、これらのサブピクセル位置についてのルーマ値は、サブピクセル値の対応するテクスチャ又は他のグリッド又はアレイとの現在のフレームのピクセルの比較を可能にするために経時的に蓄積され得る。少なくとも一実施例では、固定されたサブピクセル位置についてこの色データを記憶することは、ピクセル値におけるサブピクセルの変化の決定を可能にし、より高い解像度でデータを効果的に記憶する。少なくとも一実施例では、このより高い解像度のデータに基づいてピクセル変化決定を行うことは、さもなければジッタリング動作から生じ得る、フレーム間のゴースト発生又はちらつきを防ぐのを助ける。
少なくとも一実施例では、これらの別個のテクスチャに記憶された値は、動きのタイプと呼ばれることもある、色値の変化の検出を可能にするために、サンプルを経時的に保持し、追跡することを可能にすることができる。少なくとも一実施例では、レンダリングされるべき現在のフレーム中の各ピクセルについて、このフレーム中のそのピクセルのための現在のジッタありサンプルと、前のフレーム中のその位置のために記憶された値との間の比較が行われ得る。少なくとも一実施例では、変化が生じると、そのピクセルに付けられた動きベクトルがない場合でも、そのピクセルを動いているか又は動的であることを決定させることができる。少なくとも一実施例では、この追加のピクセルの動きは、別個のチャネル履歴テクスチャにおいて経時的に追跡され得る。少なくとも一実施例では、それらのサンプルが安定し、ピクセルについての新しいジッタ値と対応する過去の値との間の差がもはや検出されなくなるまで、過去のデータを後続のフレーム中に適切にクランピングするためにこれらの追加のテクスチャが使用され得る。少なくとも一実施例では、そのような手法は、TAA包含プロセスにおいてピクセルをより正確に分類し、より低い解像度のジッタあり入力からフル解像度の画像を再構成するときに画像品質を著しく高めることができる。少なくとも一実施例では、そのような手法は、ちらつきなどの問題を回避し、より低い解像度におけるレンダリングの結果として生じ得るモアレ状のパターンを安定させながら、シーン中の細部を保存するのを助けることができる。
少なくとも一実施例では、図3のシステム・アーキテクチャ300に示されているように、ビデオ、アニメーション、又はグラフィカル・ゲーム、又は他のそのようなエクスペリエンスのためのコンテンツがクライアント・デバイス302上でローカルに与えられてもよい。少なくとも一実施例では、すべてのコンテンツがそのクライアント・デバイス302上に記憶又は生成され得る。少なくとも一実施例では、このコンテンツの少なくとも一部分が少なくとも1つのネットワーク340にわたってコンテンツ・サーバ320又は他のそのようなソースによって与えられてもよい。少なくとも一実施例では、提示されるべきコンテンツは、仮想現実(VR)、拡張現実(AR:augmented reality)、画像、テキスト、オーディオ、触覚、又はビデオ・コンテンツを含み得る、様々なタイプのコンテンツを含んでもよい。少なくとも一実施例では、クライアント・デバイス302は、デスクトップ・コンピュータ、ノートブック・コンピュータ、ゲーミング・コンソール、スマート・フォン、タブレット・コンピュータ、VRヘッドセット、ARゴーグル、ウェアラブル・コンピュータ、又はスマート・テレビジョンなどのデバイスを含むか又は備えてもよい。少なくとも一実施例では、コンテンツ・サーバ320上で実行しているゲーミング又は他のコンテンツ・アプリケーション324は、セッション・マネージャ326と、ユーザ・データベース334に記憶されたユーザ・データとを利用し得る、少なくともクライアント・デバイス302に関連付けられたセッションを開始することができ、このタイプのコンテンツ又はプラットフォームのために必要とされる場合、レンダリング・エンジン328を使用して画像又はビデオ・コンテンツ332をレンダリングさせ、適切な送信マネージャ322を使用してクライアント・デバイス302に送信させることができる。少なくとも一実施例では、このコンテンツを受信するクライアント・デバイス302は、ディスプレイ306によるビデオ・コンテンツ、及び、スピーカ又はヘッドフォンなど、少なくとも1つのオーディオ再生デバイス308によるサウンド及び音楽などのオーディオ・コンテンツなど、クライアント・デバイス302を介したプレゼンテーションのために、このコンテンツのうちの少なくとも一部をレンダリングするためのレンダリング・エンジン310をも含み得るか又は代替的にレンダリング・エンジン310を含む、コンテンツ・プレゼンテーション・アプリケーション304にこのコンテンツを与えることができる。少なくとも一実施例では、ネットワーク340を介した送信が必要とされないように、このコンテンツのうちの少なくとも一部は、すでに、クライアント・デバイス302上に記憶されるか、クライアント・デバイス302上にレンダリングされるか、又はクライアント・デバイス302にとってアクセス可能であり得る。少なくとも一実施例では、このコンテンツをサーバ320又はコンテンツ・データベース334からクライアント・デバイス302に伝達するためにデータ・ストリーミングなどの送信機構が使用され得る。少なくとも一実施例では、コンテンツはコンテンツ・サーバ320からクライアント・デバイス302に伝達され得るが、クライアント・デバイス302上のレンダリング・エンジン310は、表示のためにそのコンテンツを実際にレンダリングすることができる。少なくとも一実施例では、コンテンツ・アプリケーション324は、コンテンツがクライアント・デバイス302に送信される前にこのコンテンツを分析することができるコンテンツ・マネージャ330を含む。少なくとも一実施例では、コンテンツ・マネージャ330はまた、少なくとも1つのコンテンツ・リポジトリ334に記憶されたコンテンツを含み得るようなコンテンツをクライアント・デバイス302への送信のために生成又は選択することができる1つ又は複数のコンテンツ生成器332を含むか、又は1つ又は複数のコンテンツ生成器332とともに動作することができる。少なくとも一実施例では、コンテンツ生成器332は、NVIDIA社のディープ・ラーニング・スーパー・サンプリング(DLSS:Deep Learning Super Sampling)など、深層学習ベースのスーパー・サンプリング技術を含むことができる。少なくとも一実施例では、クライアント・デバイス302を介して提示されるべきコンテンツの少なくとも一部分は、そのコンテンツの少なくとも一部分を生成するためのコンテンツ生成器352を含み得る1つ又は複数のサード・パーティ・プロバイダ325から来得る。少なくとも一実施例では、コンテンツはまた、ダウンロード又はストリーミングのためなど、他のクライアント・デバイス360に与えられるか、又は他のクライアント・デバイス360にとって利用可能にされ得る。少なくとも一実施例では、これは、ビデオ・ストリーミング又はオンライン・ゲーミングなどのアプリケーションのために有用であり得る。
少なくとも一実施例では、レンダリング・エンジン310(又は328)は、本明細書で説明するように、ラスターライザ312と、TAAモジュール314と、レイ・トレーサ(ray tracer)316とを含み得る、画像をレンダリングするための有用な構成要素を含むことができる。少なくとも一実施例では、ラスターライザ312は、レンダリングされるべき画像についての色データと動きベクトルとを決定することができる。少なくとも一実施例では、この情報は、本明細書で説明するように、固定されたジッタ位置を使用してテンポラル・アンチエイリアシングを実行することができるTAAモジュール314に渡される。少なくとも一実施例では、TAAモジュール314はまた、追加の色データを与えることができるスパース・レイ・トレーサ316に与えられ得るセグメンテーション・データを与えてもよい。少なくとも一実施例では、これは、ラスタ化された画像のテンポラル・アンチエイリアシングに、適応するレイ・トレーシングを与えることができる。
少なくとも一実施例では、図4に示されているように、シーケンス中の画像をレンダリングするためのプロセス400が実行され得る。少なくとも一実施例では、レンダリングされるべき画像の各ピクセルに適用され得る固定されたサブピクセル・ジッタ・パターンが作成される。少なくとも一実施例では、このパターンは、ピクセルの中心点から[-0.5,+0.5]の範囲のオフセットに対応し得るような、ピクセル内の固定された数のジッタ位置を含むことができる。少なくとも一実施例では、これらはピクセル・グリッド中のセルの中心点に対応することができる。少なくとも一実施例では、これらのテクスチャのうちの1つは、各ピクセルについての色値データを記憶するためにそのピクセルについて割り振られ402得る。少なくとも一実施例では、これは、ピクセル中のそれぞれのジッタ位置についてのサンプリングされた輝度データを含むことができる。少なくとも一実施例では、これらのテクスチャは、それぞれ、サンプリングされた輝度データを4×入力解像度で記憶する4×4グリッドを含むことができる。少なくとも一実施例では、これらのテクスチャが対応する色テクスチャと同じサイズを有する場合、テクスチャはまた、ピクセル動きデータを記憶するために割り振られ得る。
少なくとも一実施例では、レンダリングされるべき現在のフレームについてのデータが取得される404。少なくとも一実施例では、これらの固定されたジッタ位置がそのフレーム中の各ピクセルについてのジッタ決定のために使用される場合、その位置のうちの1つが使用するために選択される。少なくとも一実施例では、このピクセル位置は、ピクセルごとのこの選択されたサブピクセル・オフセットにおけるピクセル値を決定する406ことによってなど、この画像のためのビューポート(viewport)に適用され、ジッタありサンプルを生成するために使用される。少なくとも一実施例では、これは、その固定されたジッタ位置の周りにセンタリングされたピクセルごとの3×3ピクセル・サンプリングに基づき得るような、比較のための輝度値を決定することを含むことができる。少なくとも一実施例では、このサブピクセル位置は、4×輝度テクスチャ中のどのピクセルが入力(x.y)ピクセルのためにそのサンプルを記憶するべきであるかを決定するために使用され得る。少なくとも一実施例では、これは、
pixel_in_4×_texture=floor(((×,y)+0.5f+jitter_offset)×4.0f)
によって決定され得る。
少なくとも一実施例では、各現在の入力ピクセルの周りのこの3×3近傍から色凸包が計算され得る。
pixel_in_4×_texture=floor(((×,y)+0.5f+jitter_offset)×4.0f)
によって決定され得る。
少なくとも一実施例では、各現在の入力ピクセルの周りのこの3×3近傍から色凸包が計算され得る。
少なくとも一実施例では、対応するサブピクセル・オフセット又はジッタ位置について過去のピクセル値が取得され408得る。少なくとも一実施例では、これは、適切な場合(たとえば、動きを表すとして分類されたピクセルについて)、現在の入力ピクセルに付けられた動きベクトルを使用して過去の色又は輝度データをサンプリングすることを含むことができる。少なくとも一実施例では、個々のピクセルについての現在の値と過去の値との間で差が計算される410。少なくとも一実施例では、これは、入来サンプルの輝度値と、それぞれのテクスチャ中の対応するサンプル位置において記憶された値との間のデルタを計算することを含むことができる。少なくとも一実施例では、この輝度デルタが、フレーム間の色偏差の最大量など、指定された閾値を下回ることが決定された412場合、所与のピクセルに関連付けられた動きベクトルがあるかどうかに関する別の決定が行われ414得る。少なくとも一実施例では、所与のピクセルに関連付けられた動きベクトルがあることが決定された場合、過去のデータがそれぞれの計算された凸包に対してクランピングされ416得る。少なくとも一実施例では、関連付けられた動きベクトルがない場合、このプロセスは、この過去のデータをクランピングせず418、すべての詳細を経時的に蓄積することを可能にする。少なくとも一実施例では、所与のピクセルについての輝度デルタが指定された閾値を上回ることが決定された場合、対応するより高い解像度のテクスチャにおいて指数平均を使用することによってなど、ピクセル動きデータが経時的に追跡され420始め得る。少なくとも一実施例では、経時的なピクセル動き平均に少なくとも部分的に基づいて、凸包サイズが調整され422、クランピングされた履歴を蓄積し得る。少なくとも一実施例では、これは、一度経時的な平均が約0に戻ると、これ一度ピクセルについての過去のデータをクランピングすることを含むことができる。
少なくとも一実施例では、図5に示されているように画像を生成するためのプロセス500が実行され得る。少なくとも一実施例では、生成されるべき1つ又は複数の第1の画像についてのピクセル・データが決定される502。少なくとも一実施例では、このピクセル・データは、固定されたサブピクセル・ジッタ位置のセットの中の固定されたジッタ位置について決定された輝度データを含むことができる。少なくとも一実施例では、この決定されたピクセル・データは、それらの固定されたジッタ位置において、シーケンス中の前に生成された画像など、1つ又は複数の第2の画像についての対応する過去のデータに対して比較され504得る。少なくとも一実施例では、この比較は、個々のピクセルに関連付けられた動きベクトルを考慮する。少なくとも一実施例では、対応する過去のデータをクランピングするべきか否かに関する決定を含み得るように、この比較に少なくとも部分的に基づいて1つ又は複数の第1の画像が生成され506得る。少なくとも一実施例では、そのようなプロセスは、ノイズ除去を含み得る他の目的のために、時間成分を有する任意のアルゴリズムを用いて利用され得る。
少なくとも一実施例では、そのような手法は、深層学習サンプリング・プロセスにおいて精度を高め、処理要件を低減するために使用され得る。少なくとも一実施例では、そのような深層学習プロセスは、生成された元の低い解像度の画像よりも高い解像度の画像に見える画像を作成する。少なくとも一実施例では、ニューラル・ネットワークは、スーパーコンピュータ上の超高解像度のビデオ・ゲームの「理想的な」画像と、これらの同じゲームの低い解像度の画像とを使用して訓練される。少なくとも一実施例では、結果はビデオ・カード・ドライバに記憶される。少なくとも一実施例では、このドライバに記憶されたこのニューラル・ネットワークは、実際の低い解像度の画像をこの参照と比較し、フル高解像度の結果を作成する。少なくとも一実施例では、この訓練されたニューラル・ネットワークによって使用された入力は、ゲーム・エンジンによってレンダリングされ得るような低い解像度のエイリアスされた画像と、このゲーム・エンジンによっても生成され得るような、これらの同じ画像からの低い解像度の動きベクトルである。少なくとも一実施例では、これらの動きベクトルは、次のフレームがどのように現れるかを予測するために、このネットワークにシーン中のオブジェクトがフレームからフレームにどの方向に移動するかを知らせる。
推論及び訓練の論理
図6Aは、1つ又は複数の実施例に関して推論及び/又は訓練の動作を実行するために使用される推論及び/又は訓練論理615を示す。推論及び/又は訓練論理615に関する詳細事項は、図6A及び/又は図6Bと併せて以下に提供される。
図6Aは、1つ又は複数の実施例に関して推論及び/又は訓練の動作を実行するために使用される推論及び/又は訓練論理615を示す。推論及び/又は訓練論理615に関する詳細事項は、図6A及び/又は図6Bと併せて以下に提供される。
少なくとも一実施例では、推論及び/又は訓練論理615は、1つ又は複数の実施例の態様において推論するように訓練及び/若しくは使用されるニューラル・ネットワークのニューロン若しくは層を構成するための順伝播及び/若しくは出力の重み、及び/若しくは入力/出力データ、及び/若しくは他のパラメータを記憶するためのコード並びに/又はデータ・ストレージ601を、限定することなく含んでもよい。少なくとも一実施例では、訓練論理615は、タイミング及び/又は順序を制御するためのグラフ・コード又は他のソフトウェアを記憶するためのコード及び/又はデータ・ストレージ601を含んでもよく、又はそれに結合されてもよく、コード及び/又はデータ・ストレージ601には、重み及び/又は他のパラメータ情報がロードされて、整数及び/又は浮動小数点ユニット(総称して算術論理演算ユニット(ALU))を含む論理が構成される。少なくとも一実施例では、グラフ・コードなどのコードは、このコードが対応するニューラル・ネットワークのアーキテクチャに基づき、重み又は他のパラメータ情報をプロセッサALUにロードする。少なくとも一実施例では、コード及び/又はデータ・ストレージ601は、1つ又は複数の実施例の態様を使用した訓練及び/又は推論中に、入力/出力データ及び/又は重みパラメータを順伝播する間に1つ又は複数の実施例と併せて訓練又は使用されるニューラル・ネットワークの各層の重みパラメータ及び/又は入力/出力データを記憶する。少なくとも一実施例では、コード及び/又はデータ・ストレージ601の任意の部分は、プロセッサのL1、L2、又はL3のキャッシュ、若しくはシステム・メモリを含む他のオン・チップ又はオフ・チップのデータ・ストレージとともに含められてもよい。
少なくとも一実施例では、コード及び/又はデータ・ストレージ601の任意の部分は、1つ若しくは複数のプロセッサ、又は他のハードウェア論理デバイス若しくは回路の内部にあっても外部にあってもよい。少なくとも一実施例では、コード及び/又はデータ・ストレージ601は、キャッシュ・メモリ、ダイナミック・ランダム・アドレス可能メモリ(「DRAM」:dynamic randomly addressable memory)、スタティック・ランダム・アドレス可能メモリ(「SRAM」:static randomly addressable memory)、不揮発性メモリ(たとえば、フラッシュ・メモリ)、又は他のストレージであってもよい。少なくとも一実施例では、コード及び/又はデータ・ストレージ601が、たとえばプロセッサの内部にあるか外部にあるかの選択、又はDRAM、SRAM、フラッシュ、若しくは何らか他のタイプのストレージを含むかの選択は、オン・チップ対オフ・チップで利用可能なストレージ、実行される訓練及び/又は推論の機能のレイテンシ要件、ニューラル・ネットワークの推論及び/又は訓練で使用されるデータのバッチ・サイズ、又はこれらの要因の何からの組合せに応じて決められてもよい。
少なくとも一実施例では、推論及び/又は訓練論理615は、1つ又は複数の実施例の態様において推論するために訓練及び/若しくは使用されるニューラル・ネットワークのニューロン若しくは層に対応した、逆伝播及び/若しくは出力の重み、及び/若しくは入力/出力データを記憶するためのコード並びに/又はデータ・ストレージ605を、限定することなく含んでもよい。少なくとも一実施例では、コード及び/又はデータ・ストレージ605は、1つ又は複数の実施例の態様を使用した訓練及び/又は推論中に、入力/出力データ及び/又は重みパラメータを逆伝播する間に1つ又は複数の実施例と併せて訓練又は使用されるニューラル・ネットワークの各層の重みパラメータ及び/又は入力/出力データを記憶する。少なくとも一実施例では、訓練論理615は、タイミング及び/又は順序を制御するためのグラフ・コード又は他のソフトウェアを記憶するためのコード及び/又はデータ・ストレージ605を含んでもよく、又はそれに結合されてもよく、コード及び/又はデータ・ストレージ605には、重み及び/又は他のパラメータ情報がロードされて、整数及び/又は浮動小数点ユニット(総称して算術論理演算ユニット(ALU)を含む論理が構成される。少なくとも一実施例では、グラフ・コードなどのコードは、このコードが対応するニューラル・ネットワークのアーキテクチャに基づき、重み又は他のパラメータ情報をプロセッサALUにロードする。少なくとも一実施例では、コード及び/又はデータ・ストレージ605の任意の部分は、プロセッサのL1、L2、又はL3のキャッシュ、若しくはシステム・メモリを含む他のオン・チップ又はオフ・チップのデータ・ストレージとともに含められてもよい。少なくとも一実施例では、コード及び/又はデータ・ストレージ605の任意の部分は、1つ又は複数のプロセッサ、又は他のハードウェア論理デバイス若しくは回路の内部にあっても外部にあってもよい。少なくとも一実施例では、コード及び/又はデータ・ストレージ605は、キャッシュ・メモリ、DRAM、SRAM、不揮発性メモリ(たとえば、フラッシュ・メモリ)、又は他のストレージであってもよい。少なくとも一実施例では、コード及び/又はデータ・ストレージ605が、たとえばプロセッサの内部にあるか外部にあるかの選択、又はDRAM、SRAM、フラッシュ、若しくは何らかの他のタイプのストレージを含むかの選択は、オン・チップ対オフ・チップで利用可能なストレージ、実行される訓練及び/又は推論の機能のレイテンシ要件、ニューラル・ネットワークの推論及び/又は訓練で使用されるデータのバッチ・サイズ、又はこれらの要因の何からの組合せに応じて決められてもよい。
少なくとも一実施例では、コード及び/又はデータ・ストレージ601と、コード及び/又はデータ・ストレージ605は、別々のストレージ構造であってもよい。少なくとも一実施例では、コード及び/又はデータ・ストレージ601と、コード及び/又はデータ・ストレージ605は、同じストレージ構造であってもよい。少なくとも一実施例では、コード及び/又はデータ・ストレージ601と、コード及び/又はデータ・ストレージ605は、部分的に同じストレージ構造、部分的に別々のストレージ構造であってもよい。少なくとも一実施例では、コード及び/又はデータ・ストレージ601と、コード及び/又はデータ・ストレージ605との任意の部分は、プロセッサのL1、L2、又はL3のキャッシュ、若しくはシステム・メモリを含む他のオン・チップ又はオフ・チップのデータ・ストレージとともに含められてもよい。
少なくとも一実施例では、推論及び/又は訓練論理615は、訓練及び/又は推論コード(たとえばグラフ・コード)に少なくとも部分的に基づく、又はそれにより示される論理演算及び/又は算術演算を実行するための、整数及び/又は浮動小数点ユニットを含む1つ又は複数の算術論理演算ユニット(「ALU」)610を、限定することなく含んでもよく、その結果が、アクティブ化ストレージ620に記憶されるアクティブ化(たとえば、ニューラル・ネットワーク内の層若しくはニューロンからの出力値)を生成してもよく、これらは、コード及び/若しくはデータ・ストレージ601、並びに/又はコード及び/若しくはデータ・ストレージ605に記憶される入力/出力及び/又は重みパラメータのデータの関数である。少なくとも一実施例では、アクティブ化ストレージ620に記憶されるアクティブ化は、命令又は他のコードを実行したことに応答して、ALU610によって実行される線形代数計算及び又は行列ベースの計算に従って生成され、ここでコード及び/若しくはデータ・ストレージ605並びに/又はコード及び/若しくはデータ・ストレージ601に記憶された重み値は、バイアス値、勾配情報、運動量値などの他の値、又は他のパラメータ若しくはハイパーパラメータとともにオペランドとして使用され、これらのいずれか又はすべてが、コード及び/若しくはデータ・ストレージ605、又はコード及び/若しくはデータ・ストレージ601、又はオン・チップ若しくはオフ・チップの別のストレージに記憶されてもよい。
少なくとも一実施例では、ALU610は、1つ若しくは複数のプロセッサ、又は他のハードウェア論理デバイス若しくは回路内に含まれるが、別の実施例では、ALU610は、それらを使用するプロセッサ又は他のハードウェア論理デバイス若しくは回路の外部にあってもよい(たとえばコプロセッサ)。少なくとも一実施例では、ALU610は、プロセッサの実行ユニット内に含まれてもよく、又は同じプロセッサ内にあるか異なるタイプの異なるプロセッサ(たとえば、中央処理装置、グラフィックス・プロセッシング・ユニット、固定機能ユニットなど)の間で分散されているかのいずれかであるプロセッサの実行ユニットによりアクセス可能なALUバンク内に、他のやり方で含まれてもよい。少なくとも一実施例では、コード及び/又はデータ・ストレージ601、コード及び/又はデータ・ストレージ605、並びにアクティブ化ストレージ620は、同じプロセッサ又は他のハードウェア論理デバイス若しくは回路にあってもよく、別の実施例では、それらは異なるプロセッサ又は他のハードウェア論理デバイス若しくは回路にあってもよく、或いは同じプロセッサ又は他のハードウェア論理デバイス若しくは回路と、異なるプロセッサ又は他のハードウェア論理デバイス若しくは回路との何らかの組合せにあってもよい。少なくとも一実施例では、アクティブ化ストレージ620の任意の部分は、プロセッサのL1、L2、又はL3のキャッシュ、若しくはシステム・メモリを含む他のオン・チップ又はオフ・チップのデータ・ストレージとともに含められてもよい。さらに、推論及び/又は訓練コードが、プロセッサ又は他のハードウェア論理若しくは回路にアクセス可能な他のコードとともに記憶されてもよく、プロセッサのフェッチ、デコード、スケジューリング、実行、リタイア、及び/又は他の論理回路を使用してフェッチ及び/又は処理されてもよい。
少なくとも一実施例では、アクティブ化ストレージ620は、キャッシュ・メモリ、DRAM、SRAM、不揮発性メモリ(たとえば、フラッシュ・メモリ)、又は他のストレージであってもよい。少なくとも一実施例では、アクティブ化ストレージ620は、完全に又は部分的に、1つ若しくは複数のプロセッサ又は他の論理回路の内部にあってもよく、又は外部にあってもよい。少なくとも一実施例では、アクティブ化ストレージ620が、たとえばプロセッサの内部にあるか外部にあるかの選択、又はDRAM、SRAM、フラッシュ、若しくは何らか他のタイプのストレージを含むかの選択は、オン・チップ対オフ・チップの利用可能なストレージ、実行される訓練及び/又は推論機能のレイテンシ要件、ニューラル・ネットワークの推論及び/又は訓練で使用されるデータのバッチ・サイズ、又はこれらの要因の何からの組合せに応じて決められてもよい。少なくとも一実施例では、図6Aに示す推論及び/又は訓練論理615は、グーグルからのTensorFlow(登録商標)処理ユニット、Graphcore(商標)からの推論処理ユニット(IPU:inference processing unit)、又はIntel CorpからのNervana(登録商標)(たとえば「Lake Crest」)プロセッサなどの特定用途向け集積回路(「ASIC:application-specific integrated circuit」)と併せて使用されてもよい。少なくとも一実施例では、図6Aに示す推論及び/又は訓練論理615は、中央処理装置(「CPU」:central processing unit)ハードウェア、グラフィックス・プロセッシング・ユニット(「GPU」:graphics processing unit)ハードウェア、又はフィールド・プログラマブル・ゲート・アレイ(「FPGA」:field programmable gate array)など他のハードウェアと併せて使用されてもよい。
図6Bは、少なくとも1つ又は複数の実施例による、推論及び/又は訓練論理615を示す。少なくとも一実施例では、推論及び/又は訓練論理615は、ハードウェア論理を限定することなく含んでもよく、このハードウェア論理では、計算リソースが、ニューラル・ネットワーク内のニューロンの1つ若しくは複数の層に対応する重み値又は他の情報の専用のものであるか、又は他のやり方でそれらと併せてしか使用されない。少なくとも一実施例では、図6Bに示す推論及び/又は訓練論理615は、グーグルからのTensorFlow(登録商標)処理ユニット、Graphcore(商標)からの推論処理ユニット(IPU)、又はインテルコーポレーションからのNervana(登録商標)(たとえば「Lake Crest」)プロセッサなどの特定用途向け集積回路(ASIC)と併せて使用されてもよい。少なくとも一実施例では、図6Bに示す推論及び/又は訓練論理615は、中央処理装置(CPU)ハードウェア、グラフィックス・プロセッシング・ユニット(「GPU」)ハードウェア、又はフィールド・プログラマブル・ゲート・アレイ(FPGA)など他のハードウェアと併せて使用されてもよい。少なくとも一実施例では、推論及び/又は訓練論理615は、限定することなく、コード及び/又はデータ・ストレージ601、並びにコード及び/又はデータ・ストレージ605を含み、これらを使用して、コード(たとえばグラフ・コード)、重み値、並びに/又はバイアス値、勾配情報、運動量値、及び/若しくは他のパラメータ若しくはハイパーパラメータ情報を含む他の情報を記憶してもよい。図6Bに示す少なくとも一実施例では、コード及び/又はデータ・ストレージ601並びにコード及び/又はデータ・ストレージ605のそれぞれは、それぞれ計算ハードウェア602及び計算ハードウェア606などの専用計算リソースに関連付けられる。少なくとも一実施例では、計算ハードウェア602及び計算ハードウェア606のそれぞれは、線形代数関数などの数学的関数を、それぞれコード及び/又はデータ・ストレージ601並びにコード及び/又はデータ・ストレージ605に記憶された情報に対してのみ実行する1つ又は複数のALUを備え、その結果は、アクティブ化ストレージ620に記憶される。
少なくとも一実施例では、コード並びに/又はデータ・ストレージ601及び605のそれぞれ、並びに対応する計算ハードウェア602及び606は、ニューラル・ネットワークの異なる層にそれぞれ対応し、それにより、コード及び/又はデータ・ストレージ601並びに計算ハードウェア602との1つのストレージ/計算の対601/602から結果的に生じるアクティブ化は、ニューラル・ネットワークの概念的組織化を反映させるために、コード及び/又はデータ・ストレージ605並びに計算ハードウェア606との「ストレージ/計算の対605/606」への入力として提供される。少なくとも一実施例では、ストレージ/計算の対601/602、及び605/606は、2つ以上のニューラル・ネットワークの層に対応してもよい。少なくとも一実施例では、ストレージ/計算の対601/602、及び605/606の後に、又はそれと並列に、追加のストレージ/計算の対(図示せず)が、推論及び/又は訓練論理615に含まれてもよい。
データ・センタ
図7は、少なくとも一実施例が使用されてもよい例示的なデータ・センタ700を示す。少なくとも一実施例では、データ・センタ700は、データ・センタ・インフラストラクチャ層710、フレームワーク層720、ソフトウェア層730、及びアプリケーション層740を含む。
図7は、少なくとも一実施例が使用されてもよい例示的なデータ・センタ700を示す。少なくとも一実施例では、データ・センタ700は、データ・センタ・インフラストラクチャ層710、フレームワーク層720、ソフトウェア層730、及びアプリケーション層740を含む。
図7に示すように、少なくとも一実施例では、データ・センタ・インフラストラクチャ層710は、リソース・オーケストレータ712と、グループ化済みコンピューティング・リソース714と、ノード・コンピューティング・リソース(「ノードC.R.」)716(1)~716(N)とを含んでもよく、ここで「N」は任意の正の整数を表す。少なくとも一実施例では、ノードC.R.716(1)~716(N)は、任意の数の中央処理装置(「CPU」)又は(アクセラレータ、フィールド・プログラマブル・ゲート・アレイ(FPGA)、グラフィックス・プロセッサなどを含む)他のプロセッサ、メモリ・デバイス(たとえば、ダイナミック読取り専用メモリ)、ストレージ・デバイス(たとえば、ソリッド・ステート・ドライブ又はディスク・ドライブ)、ネットワーク入力/出力(「NW I/O」:network input/output)デバイス、ネットワーク・スイッチ、仮想機械(「VM」:virtual machine)、電源モジュール、及び冷却モジュールを含んでもよいが、これらに限定されない。少なくとも一実施例では、ノードC.R.716(1)~716(N)のうち1つ又は複数のノードC.R.は、上述したコンピューティング・リソースのうちの1つ又は複数を有するサーバであってもよい。
少なくとも一実施例では、グループ化済みコンピューティング・リソース714は、1つ若しくは複数のラック(図示せず)内に収容されたノードC.R.の別々のグループ、又は様々なグラフィカル・ロケーション(同じく図示せず)においてデータ・センタに収容された多数のラックを含んでもよい。グループ化済みコンピューティング・リソース714内のノードC.R.の別々のグループは、1つ若しくは複数のワークロードをサポートするように構成又は配分されてもよいグループ化済みのコンピュート・リソース、ネットワーク・リソース、メモリ・リソース、又はストレージ・リソースを含んでもよい。少なくとも一実施例では、CPU又はプロセッサを含むいくつかのノードC.R.は、1つ又は複数のラック内でグループ化されて、1つ又は複数のワークロードをサポートするためのコンピュート・リソースが提供されてもよい。少なくとも一実施例では、1つ又は複数のラックはまた、任意の数の電源モジュール、冷却モジュール、及びネットワーク・スイッチを任意の組合せで含んでもよい。
少なくとも一実施例では、リソース・オーケストレータ712は、1つ又は複数のノードC.R.716(1)~716(N)及び/若しくはグループ化済みコンピューティング・リソース714を構成してもよく、又は他のやり方で制御してもよい。少なくとも一実施例では、リソース・オーケストレータ712は、データ・センタ700用のソフトウェア設計インフラストラクチャ(「SDI」:software design infrastructure)管理エンティティを含んでもよい。少なくとも一実施例では、リソース・オーケストレータは、ハードウェア、ソフトウェア、又はこれらの何らかの組合せを含んでもよい。
図7に示す少なくとも一実施例では、フレームワーク層720は、ジョブ・スケジューラ722、構成マネージャ724、リソース・マネージャ726、及び分配ファイル・システム728を含む。少なくとも一実施例では、フレームワーク層720は、ソフトウェア層730のソフトウェア732、及び/又はアプリケーション層740の1つ若しくは複数のアプリケーション742をサポートするためのフレームワークを含んでもよい。少なくとも一実施例では、ソフトウェア732又はアプリケーション742はそれぞれ、アマゾン・ウェブ・サービス、グーグル・クラウド、及びマイクロソフト・アジュールによって提供されるものなど、ウェブ・ベースのサービス・ソフトウェア又はアプリケーションを含んでもよい。少なくとも一実施例では、フレームワーク層720は、大規模なデータ処理(たとえば「ビック・データ」)のために分配ファイル・システム728を使用することができるApache Spark(登録商標)(以下「Spark」)など、無料でオープン・ソースのソフトウェア・ウェブ・アプリケーション・フレームワークの一種であってもよいが、これに限定されない。少なくとも一実施例では、ジョブ・スケジューラ722は、データ・センタ700の様々な層によってサポートされるワークロードのスケジューリングを容易にするために、Sparkドライバを含んでもよい。少なくとも一実施例では、構成マネージャ724は、ソフトウェア層730、並びに大規模なデータ処理をサポートするためのSpark及び分配ファイル・システム728を含むフレームワーク層720などの異なる層を構成することが可能であってもよい。少なくとも一実施例では、リソース・マネージャ726は、分配ファイル・システム728及びジョブ・スケジューラ722をサポートするようにマッピング若しくは配分されたクラスタ化済み又はグループ化済みのコンピューティング・リソースを管理することが可能であってもよい。少なくとも一実施例では、クラスタ化済み又はグループ化済みのコンピューティング・リソースは、データ・センタ・インフラストラクチャ層710にあるグループ化済みコンピューティング・リソース714を含んでもよい。少なくとも一実施例では、リソース・マネージャ726は、リソース・オーケストレータ712と連携して、これらのマッピング又は配分されたコンピューティング・リソースを管理してもよい。
少なくとも一実施例では、ソフトウェア層730に含まれるソフトウェア732は、ノードC.R.716(1)~716(N)、グループ化済みコンピューティング・リソース714、及び/又はフレームワーク層720の分配ファイル・システム728のうちの少なくとも一部分によって使用されるソフトウェアを含んでもよい。1つ又は複数のタイプのソフトウェアは、インターネット・ウェブ・ページ検索ソフトウェア、電子メール・ウイルス・スキャン・ソフトウェア、データベース・ソフトウェア、及びストリーミング・ビデオ・コンテンツ・ソフトウェアを含んでもよいが、これらに限定されない。
少なくとも一実施例では、アプリケーション層740に含まれるアプリケーション742は、ノードC.R.716(1)~716(N)、グループ化済みコンピューティング・リソース714、及び/又はフレームワーク層720の分配ファイル・システム728のうちの少なくとも一部分によって使用される1つ若しくは複数のタイプのアプリケーションを含んでもよい。1つ若しくは複数のタイプのアプリケーションは、任意の数のゲノム学アプリケーション、認識コンピュート、並びに訓練若しくは推論のソフトウェア、機械学習フレームワーク・ソフトウェア(たとえば、PyTorch、TensorFlow、Caffeなど)を含む機械学習アプリケーション、又は1つ若しくは複数の実施例と併せて使用される他の機械学習アプリケーションを含んでもよいが、これらに限定されない。
少なくとも一実施例では、構成マネージャ724、リソース・マネージャ726、及びリソース・オーケストレータ712のうちのいずれかは、任意の技術的に実行可能なやり方で取得された任意の量及びタイプのデータに基づき、任意の数及びタイプの自己修正措置を実装してもよい。少なくとも一実施例では、自己修正措置は、データ・センタ700のデータ・センタ演算子が、不良の恐れのある構成を決定しないようにし、十分に利用されていない且つ/又は性能の低いデータ・センタの部分をなくせるようにしてもよい。
少なくとも一実施例では、データ・センタ700は、1つ若しくは複数の機械学習モデルを訓練し、又は本明細書に記載の1つ若しくは複数の実施例による1つ若しくは複数の機械学習モデルを使用して情報を予測若しくは推論するためのツール、サービス、ソフトウェア、又は他のリソースを含んでもよい。たとえば、少なくとも一実施例では、機械学習モデルは、データ・センタ700に関して上述したソフトウェア及びコンピューティング・リソースを使用して、ニューラル・ネットワーク・アーキテクチャに従って重みパラメータを計算することによって、訓練されてもよい。少なくとも一実施例では、1つ又は複数のニューラル・ネットワークに対応する訓練済み機械学習モデルは、本明細書に記載の1つ又は複数の技法によって計算された重みパラメータを使用することにより、データ・センタ700に関して上述したリソースを使用して、情報を推論又は予測するために使用されてもよい。
少なくとも一実施例では、データ・センタは、上述したリソースを使用して訓練及び/又は推論を実行するために、CPU、特定用途向け集積回路(ASIC)、GPU、FPGA、又は他のハードウェアを使用してもよい。さらに、上述した1つ又は複数のソフトウェア及び/又はハードウェアのリソースは、画像認識、音声認識、又は他の人工知能サービスなどの情報の訓練又は推論の実行を、ユーザが行えるようにするためのサービスとして構成されてもよい。
推論及び/又は訓練論理615を使用して、1つ若しくは複数の実施例に関連する推論及び/又は訓練の動作が実行される。推論及び/又は訓練論理615に関する詳細事項は、図6A及び/又は図6Bと併せて以下に提供される。少なくとも一実施例では、推論及び/又は訓練論理615は、本明細書に記載のニューラル・ネットワークの訓練動作、ニューラル・ネットワークの機能及び/若しくはアーキテクチャ、又はニューラル・ネットワークのユース・ケースを使用して計算された重みパラメータに少なくとも部分的に基づき、推論又は予測の動作のために図7のシステムにおいて使用されてもよい。
1つ若しくは複数の実施例に関連する推論及び/又は訓練の動作を実行するために、推論及び/又は訓練論理615が使用される。少なくとも一実施例では、固定されたジッタ位置と、より正確なピクセル色決定のための高解像度テクスチャとを使用して画像を生成するために、この論理がこれらの図の構成要素とともに使用され得る。
コンピュータ・システム
図8は、例示的なコンピュータ・システムを示すブロック図であり、このコンピュータ・システムは、少なくとも一実施例による、命令を実行するための実行ユニットを含んでもよいプロセッサとともに形成された、相互接続されたデバイス及び構成要素、システム・オン・チップ(SoC)、又はこれらの何らかの組合せを有するシステム800であってもよい。少なくとも一実施例では、コンピュータ・システム800は、本明細書に記載の実施例などにおいて本開示に従ってデータを処理するためのアルゴリズムを実行する論理を含む実行ユニットを使用するための、プロセッサ802などの構成要素を、限定することなく含んでもよい。少なくとも一実施例では、コンピュータ・システム800は、カリフォルニア州サンタクララのインテルコーポレーションから入手可能なPENTIUM(登録商標)プロセッサ・ファミリー、XeonTM、Itanium(登録商標)、XScaleTM及び/又はStrongARMTM、Intel(登録商標)Core(商標)、又はIntel(登録商標)Nervana(商標)マイクロプロセッサなどのプロセッサを含んでもよいが、(他のマイクロプロセッサ、エンジニアリング・ワークステーション、セット・トップ・ボックスなどを有するPCを含め)他のシステムが使用されてもよい。少なくとも一実施例では、コンピュータ・システム800は、ワシントン州、レドモンドのマイクロソフトコーポレーションから入手可能なWINDOWS(登録商標)のオペレーティング・システムのあるバージョンを実行してもよいが、他のオペレーティング・システム(たとえば、UNIX(登録商標)及びLinux(登録商標))、組み込みソフトウェア、及び/又はグラフィカル・ユーザ・インターフェースが使用されてもよい。
図8は、例示的なコンピュータ・システムを示すブロック図であり、このコンピュータ・システムは、少なくとも一実施例による、命令を実行するための実行ユニットを含んでもよいプロセッサとともに形成された、相互接続されたデバイス及び構成要素、システム・オン・チップ(SoC)、又はこれらの何らかの組合せを有するシステム800であってもよい。少なくとも一実施例では、コンピュータ・システム800は、本明細書に記載の実施例などにおいて本開示に従ってデータを処理するためのアルゴリズムを実行する論理を含む実行ユニットを使用するための、プロセッサ802などの構成要素を、限定することなく含んでもよい。少なくとも一実施例では、コンピュータ・システム800は、カリフォルニア州サンタクララのインテルコーポレーションから入手可能なPENTIUM(登録商標)プロセッサ・ファミリー、XeonTM、Itanium(登録商標)、XScaleTM及び/又はStrongARMTM、Intel(登録商標)Core(商標)、又はIntel(登録商標)Nervana(商標)マイクロプロセッサなどのプロセッサを含んでもよいが、(他のマイクロプロセッサ、エンジニアリング・ワークステーション、セット・トップ・ボックスなどを有するPCを含め)他のシステムが使用されてもよい。少なくとも一実施例では、コンピュータ・システム800は、ワシントン州、レドモンドのマイクロソフトコーポレーションから入手可能なWINDOWS(登録商標)のオペレーティング・システムのあるバージョンを実行してもよいが、他のオペレーティング・システム(たとえば、UNIX(登録商標)及びLinux(登録商標))、組み込みソフトウェア、及び/又はグラフィカル・ユーザ・インターフェースが使用されてもよい。
実施例は、携帯型デバイス及び組み込みアプリケーションなど、他のデバイスで使用されてもよい。携帯型デバイスのいくつかの例は、セルラー・フォン、インターネット・プロトコル・デバイス、デジタル・カメラ、パーソナル・デジタル・アシスタント(「PDA」:personal digital assistants)、及び携帯型PCを含む。少なくとも一実施例では、組み込みアプリケーションは、マイクロコントローラ、デジタル信号プロセッサ(「DSP」:digital signal processor)、システム・オン・チップ、ネットワーク・コンピュータ(「NetPC」:network computers)、セット・トップ・ボックス、ネットワーク・ハブ、広域ネットワーク(「WAN」:wide area network)スイッチ、又は少なくとも一実施例による1つ又は複数の命令を実行することができる任意の他のシステムを含んでもよい。
少なくとも一実施例では、コンピュータ・システム800は、限定することなくプロセッサ802を含んでもよく、このプロセッサ802は限定することなく、本明細書に記載の技法による機械学習モデルの訓練及び/又は推論を実行するための1つ又は複数の実行ユニット808を含んでもよい。少なくとも一実施例では、コンピュータ・システム800は、シングル・プロセッサのデスクトップ又はサーバ・システムであるが、別の実施例では、コンピュータ・システム800はマルチプロセッサ・システムであってもよい。少なくとも一実施例では、プロセッサ802は、限定することなく、複合命令セット・コンピュータ(「CISC」:complex instruction set computer)マイクロプロセッサ、縮小命令セット・コンピューティング(「RISC」)マイクロプロセッサ、超長命令語(「VLIW」)マイクロプロセッサ、命令セットの組合せを実装するプロセッサ、又は任意の他のプロセッサ・デバイス、たとえばデジタル信号プロセッサなどを含んでもよい。少なくとも一実施例では、プロセッサ802は、プロセッサ・バス810に結合されてもよく、このプロセッサ・バスは、プロセッサ802とコンピュータ・システム800内の他の構成要素との間でデジタル信号を送信してもよい。
少なくとも一実施例では、プロセッサ802は、限定することなく、レベル1(「L1」)の内部キャッシュ・メモリ(「キャッシュ」)804を含んでもよい。少なくとも一実施例では、プロセッサ802は、単一の内部キャッシュ又は複数レベルの内部キャッシュを有してもよい。少なくとも一実施例では、キャッシュ・メモリは、プロセッサ802の外部にあってもよい。他の実施例は、特定の実装形態及び必要性に応じて、内部キャッシュと外部キャッシュの両方の組合せも含んでよい。少なくとも一実施例では、レジスタ・ファイル806は、整数レジスタ、浮動小数点レジスタ、状態レジスタ、及び命令ポインタ・レジスタを限定することなく含む様々レジスタに、異なるタイプのデータを記憶してもよい。
少なくとも一実施例では、整数及び浮動小数点の演算を実行するための論理を限定することなく含む実行ユニット808も、プロセッサ802にある。少なくとも一実施例では、プロセッサ802は、ある一定のマクロ命令のためのマイクロコードを記憶するマイクロコード(「uコード」)読取り専用メモリ(「ROM」:read only memory)も含んでよい。少なくとも一実施例では、実行ユニット808は、パック命令セット809に対処する論理を含んでもよい。少なくとも一実施例では、パック命令セット809を、命令を実行する関連回路とともに汎用プロセッサ802の命令セットに含めることにより、多くのマルチメディア・アプリケーションによって使用される演算を、汎用プロセッサ802のパック・データを使用して実行することができる。1つ又は複数の実施例では、プロセッサのデータ・バスの全幅を使用してパック・データの演算を実行することによって、多くのマルチメディア・アプリケーションを加速し、より効率的に実行することができ、これにより、1度に1つのデータ要素に対して1つ又は複数の演算を実行するためにプロセッサのデータ・バス間でより小さい単位のデータを転送する必要をなくすことができる。
少なくとも一実施例では、実行ユニット808はまた、マイクロコントローラ、組み込みプロセッサ、グラフィックス・デバイス、DSP、及び他のタイプの論理回路において使用されてもよい。少なくとも一実施例では、コンピュータ・システム800は、限定することなくメモリ820を含んでもよい。少なくとも一実施例では、メモリ820は、ダイナミック・ランダム・アクセス・メモリ(「DRAM」)デバイス、スタティック・ランダム・アクセス・メモリ(「SRAM」)デバイス、フラッシュ・メモリ・デバイス、又は他のメモリ・デバイスとして実装されてもよい。少なくとも一実施例では、メモリ820は、プロセッサ802によって実行されてもよいデータ信号によって表される命令819、及び/又はデータ821を記憶してもよい。
少なくとも一実施例では、システム論理チップが、プロセッサ・バス810及びメモリ820に結合されてもよい。少なくとも一実施例では、システム論理チップは、限定することなく、メモリ・コントローラ・ハブ(「MCH」:memory controller hub)816を含んでもよく、プロセッサ802は、プロセッサ・バス810を介してMCH816と通信してもよい。少なくとも一実施例では、MCH816は、命令及びデータを記憶するため、及びグラフィックス・コマンド、データ、及びテクスチャを記憶するために、高帯域幅メモリ経路818をメモリ820に提供してもよい。少なくとも一実施例では、MCH816は、プロセッサ802と、メモリ820と、コンピュータ・システム800の他の構成要素との間でデータ信号を導き、プロセッサ・バス810と、メモリ820と、システムI/O822との間でデータ信号をブリッジしてもよい。少なくとも一実施例では、システム論理チップは、グラフィックス・コントローラに結合するためのグラフィックス・ポートを提供してもよい。少なくとも一実施例では、MCH816は、高帯域幅メモリ経路818を介してメモリ820に結合されてもよく、グラフィックス/ビデオカード812は、アクセラレーテッド・グラフィックス・ポート(「AGP」:Accelerated Graphics Port)相互接続814を介してMCH816に結合されてもよい。
少なくとも一実施例では、コンピュータ・システム800は、MCH816をI/Oコントローラ・ハブ(「ICH」:I/O controller hub)830に結合するためのプロプライエタリ・ハブ・インターフェース・バスであるシステムI/O822を使用してもよい。少なくとも一実施例では、ICH830は、ローカルのI/Oバスを介していくつかのI/Oデバイスに直接接続を提供してもよい。少なくとも一実施例では、ローカルI/Oバスは、周辺装置をメモリ820、チップセット、及びプロセッサ802に接続するための高速I/Oバスを、限定することなく含んでもよい。例としては、オーディオ・コントローラ829、ファームウェア・ハブ(「フラッシュBIOS」)828、ワイヤレス・トランシーバ826、データ・ストレージ824、ユーザ入力及びキーボードのインターフェース825を含むレガシーI/Oコントローラ823、ユニバーサル・シリアル・バス(「USB」:Universal Serial Bus)などのシリアル拡張ポート827、及びネットワーク・コントローラ834が、限定することなく含まれてもよい。データ・ストレージ824は、ハード・ディスク・ドライブ、フロッピー(登録商標)・ディスク・ドライブ、CD-ROMデバイス、フラッシュ・メモリ・デバイス、又は他の大容量ストレージ・デバイスを備えてもよい。
少なくとも一実施例では、図8は、相互接続されたハードウェア・デバイス又は「チップ」を含むシステムを示すが、一方他の実施例では、図8は例示的なシステム・オン・チップ(「SoC」:system on chip)を示してもよい。少なくとも一実施例では、図ccで示すデバイスは、プロプライエタリ相互接続、標準相互接続(たとえば、PCIe)、又はこれらの何らかの組合せで相互接続されてもよい。少なくとも一実施例では、コンピュータ・システム800の1つ又は複数の構成要素は、コンピュート・エクスプレス・リンク(CXL:compute express link)相互接続を使用して相互接続されてもよい。
1つ若しくは複数の実施例に関連する推論及び/又は訓練の動作を実行するために、推論及び/又は訓練論理615が使用される。推論及び/又は訓練論理615に関する詳細事項は、図6A及び/又は図6Bと併せて以下に提供される。少なくとも一実施例では、推論及び/又は訓練論理615は、本明細書に記載のニューラル・ネットワークの訓練動作、ニューラル・ネットワークの機能及び/若しくはアーキテクチャ、又はニューラル・ネットワークのユース・ケースを使用して計算された重みパラメータに少なくとも部分的に基づき、推論又は予測の動作のために図8のシステムにおいて使用されてもよい。
推論及び/又は訓練論理615は、1つ又は複数の実施例に関連付けられた推論及び/又は訓練の動作を実行するために使用される。少なくとも一実施例では、固定されたジッタ位置と、より正確なピクセル色決定のための高解像度テクスチャとを使用して画像を生成するために、この論理がこれらの図の構成要素とともに使用され得る。
図9は、少なくとも一実施例による、プロセッサ910を利用するための電子デバイス900を示すブロック図である。少なくとも一実施例では、電子デバイス900は、たとえば限定することなく、ノートブック、タワー・サーバ、ラック・サーバ、ブレード・サーバ、ラップトップ、デスクトップ、タブレット、モバイル・デバイス、電話、組み込みコンピュータ、又は任意の他の好適な電子デバイスであってもよい。
少なくとも一実施例では、システム900は、任意の好適な数又は種類の構成要素、周辺装置、モジュール、若しくはデバイスに通信可能に結合されたプロセッサ910を、限定することなく含んでもよい。少なくとも一実施例では、プロセッサ910は、1℃バス、システム・マネージメント・バス(「SMBus」:System Management Bus)、ロー・ピン・カウント(LPC:Low Pin Count)バス、シリアル・ペリフェラル・インターフェース(「SPI」:Serial Peripheral Interface)、ハイ・デフィニション・オーディオ(「HDA」:High Definition Audio)バス、シリアル・アドバンス・テクノロジー・アタッチメント(「SATA」:Serial Advance Technology Attachment)バス、ユニバーサル・シリアル・バス(「USB」)(バージョン1、2、3)、又はユニバーサル非同期レシーバ/トランスミッタ(「UART」:Universal Asynchronous Receiver/Transmitter)バスなどのバス若しくはインターフェースを使用して結合される。少なくとも一実施例では、図9は、相互接続されたハードウェア・デバイス又は「チップ」を含むシステムを示すが、一方他の実施例では、図9は例示的なシステム・オン・チップ(「SoC」)を示してもよい。少なくとも一実施例では、図9に示すデバイスは、プロプライエタリ相互接続、標準相互接続(たとえば、PCIe)、又はこれらの何らかの組合せで相互接続されてもよい。少なくとも一実施例では、図9の1つ又は複数の構成要素は、コンピュート・エクスプレス・リンク(CXL)相互接続を使用して相互接続されてもよい。
少なくとも一実施例では、図9は、ディスプレイ924、タッチ画面925、タッチ・パッド930、近距離無線通信ユニット(「NFC」:Near Field Communications unit)945、センサ・ハブ940、熱センサ946、エクスプレス・チップセット(「EC」:Express Chipset)935、トラステッド・プラットフォーム・モジュール(「TPM」:Trusted Platform Module)938、BIOS/ファームウェア/フラッシュ・メモリ(「BIOS、FWフラッシュ」:BIOS/firmware/flash memory)922、DSP960、ソリッド・ステート・ディスク(「SSD」:Solid State Disk)若しくはハード・ディスク・ドライブ(「HDD」:Hard Disk Drive)などのドライブ920、ワイヤレス・ローカル・エリア・ネットワーク・ユニット(「WLAN」:wireless local area network unit)950、Bluetoothユニット952、ワイヤレス広域ネットワーク・ユニット(「WWAN」:Wireless Wide Area Network unit)956、全地球測位システム(GPS:Global Positioning System)955、USB3.0カメラなどのカメラ(「USB3.0カメラ」)954、及び/又は、たとえばLPDDR3規格に実装された低電力ダブル・データ・レート(「LPDDR」:Low Power Double Data Rate)メモリ・ユニット(「LPDDR3」)915を含んでもよい。これらの構成要素は、それぞれ任意の好適なやり方で実装されてもよい。
少なくとも一実施例では、上記の説明のように構成要素を介して、他の構成要素がプロセッサ910に通信可能に結合されてもよい。少なくとも一実施例では、加速度計941、周囲光センサ(「ALS」:Ambient Light Sensor)942、コンパス943、及びジャイロスコープ944が、センサ・ハブ940に通信可能に結合されてもよい。少なくとも一実施例では、熱センサ939、ファン937、キーボード946、及びタッチ・パッド930が、EC935に通信可能に結合されてもよい。少なくとも一実施例では、スピーカ963、ヘッドフォン964、及びマイクロフォン(「mic」)965が、オーディオ・ユニット(「オーディオ・コーデック及びクラスDアンプ」)962に通信可能に結合されてもよく、このオーディオ・ユニットが、DSP960に通信可能に結合されてもよい。少なくとも一実施例では、オーディオ・ユニット964は、たとえば限定することなく、オーディオ・コーダ/デコーダ(「コーデック」)及びクラスDアンプリファイアを含んでもよい。少なくとも一実施例では、SIMカード(「SIM」)957は、WWANユニット956に通信可能に結合されてもよい。少なくとも一実施例では、WLANユニット950及びBluetoothユニット952などの構成要素、並びにWWAN956は、次世代フォーム・ファクタ(「NGFF」:Next Generation Form Factor)に実装されてもよい。
推論及び/又は訓練論理615は、1つ又は複数の実施例に関連付けられた推論及び/又は訓練の動作を実行するために使用される。推論及び/又は訓練論理615に関する詳細は図6A及び/又は図6Bと併せて以下に提供される。少なくとも一実施例では、推論及び/又は訓練論理615は、ニューラル・ネットワークの訓練動作、ニューラル・ネットワークの機能及び/若しくはアーキテクチャ、又は本明細書に記載のニューラル・ネットワークのユース・ケースを使用して計算された重みパラメータに少なくとも部分的に基づいて、動作を推論又は予測するために図9のシステムにおいて使用されてもよい。
推論及び/又は訓練論理615は、1つ又は複数の実施例に関連付けられた推論及び/又は訓練の動作を実行するために使用される。少なくとも一実施例では、固定されたジッタ位置と、より正確なピクセル色決定のための高解像度テクスチャとを使用して画像を生成するために、この論理がこれらの図の構成要素とともに使用され得る。
図10は、少なくとも一実施例による、コンピュータ・システム1000を示す。少なくとも一実施例では、コンピュータ・システム1000は、本開示全体を通して説明する様々なプロセス及び方法を実装するように構成される。
少なくとも一実施例では、コンピュータ・システム1000は、限定することなく、少なくとも1つの中央処理装置(「CPU」)1002を含み、この処理装置は、PCI:Peripheral Component Interconnect(「ペリフェラル・コンポーネント・インターコネクト」)、ペリフェラル・コンポーネント・インターコネクト・エクスプレス(「PCI-Express」:peripheral component interconnect express)、AGP:Accelerated Graphics Port(「アクセラレーテッド・グラフィックス・ポート」)、ハイパートランスポート、又は任意の他のバス若しくはポイントツーポイントの通信プロトコルなど、任意の好適なプロトコルを使用して実装された通信バス1010に接続される。少なくとも一実施例では、コンピュータ・システム1000は、メイン・メモリ1004、及び(たとえば、ハードウェア、ソフトウェア、又はこれらの組合せとして実装される)制御論理を限定することなく含み、データは、ランダム・アクセス・メモリ(「RAM」:random access memory)の形をとってもよいメイン・メモリ1004に記憶される。少なくとも一実施例では、ネットワーク・インターフェース・サブシステム(「ネットワーク・インターフェース」)1022は、コンピュータ・システム1000からデータを受信し、コンピュータ・システム1000から他のシステムにデータを送信するための他のコンピューティング・デバイス及びネットワークとのインターフェースを提供する。
少なくとも一実施例では、コンピュータ・システム1000は、少なくとも一実施例では、限定することなく、入力デバイス1008、パラレル処理システム1012、及びディスプレイ・デバイス1006を含み、このディスプレイ・デバイスは、従来の陰極線管(「CRT」:cathode ray tube)、液晶ディスプレイ(「LCD」:liquid crystal display)、発光ダイオード(「LED」:light emitting diode)、プラズマ・ディスプレイ、又は他の好適なディスプレイ技術を使用して実装することができる。少なくとも一実施例では、ユーザ入力は、キーボード、マウス、タッチ・パッド、マイクロフォンなどの入力デバイス1008から受け取る。少なくとも一実施例では、上記の各モジュールを単一の半導体プラットフォームに置いて、処理システムを形成することができる。
1つ若しくは複数の実施例に関連する推論及び/又は訓練の動作を実行するために、推論及び/又は訓練論理615が使用される。推論及び/又は訓練論理615に関する詳細事項は、図6A及び/又は図6Bと併せ以下に提供される。少なくとも一実施例では、訓練論理615は、本明細書に記載のニューラル・ネットワークの訓練動作、ニューラル・ネットワークの機能及び/若しくはアーキテクチャ、又はニューラル・ネットワークのユース・ケースを使用して計算された重みパラメータに少なくとも部分的に基づき、推論又は予測の動作のために図10のシステムにおいて使用されてもよい。
推論及び/又は訓練論理615は、1つ又は複数の実施例に関連付けられた推論及び/又は訓練の動作を実行するために使用される。少なくとも一実施例では、固定されたジッタ位置と、より正確なピクセル色決定のための高解像度テクスチャとを使用して画像を生成するために、この論理がこれらの図の構成要素とともに使用され得る。
図11は、少なくとも一実施例によるコンピュータ・システム1100を示す。少なくとも一実施例では、コンピュータ・システム1100は、限定することなく、コンピュータ1110及びUSBスティック1120を含んでもよい。少なくとも一実施例では、コンピュータ1110は、限定することなく、任意の数及びタイプのプロセッサ(図示せず)、並びにメモリを含んでもよい。少なくとも一実施例では、コンピュータ1110は、限定することなく、サーバ、クラウド・インスタンス、ラップトップ、及びデスクトップ・コンピュータを含む。
少なくとも一実施例では、USBスティック1120は、限定することなく、処理ユニット1130、USBインターフェース1140、及びUSBインターフェース論理1150を含む。少なくとも一実施例では、処理ユニット1130は、命令を実行することができる任意の命令実行システム、装置、又はデバイスであってもよい。少なくとも一実施例では、処理ユニット1130は、限定することなく、任意の数及びタイプの処理コア(図示せず)を含んでもよい。少なくとも一実施例では、処理コア1130は、機械学習に関連する任意の量及びタイプの演算を実行するように最適化された特定用途向け集積回路(「ASIC」)を備える。たとえば、少なくとも一実施例では、処理コア1130は、機械学習の推論演算を実行するように最適化されたテンソル処理ユニット(「TPC」:tensor processing unit)である。少なくとも一実施例では、処理コア1130は、機械視覚及び機械学習の推論演算を実行するように最適化された視覚処理ユニット(「VPU」)である。
少なくとも一実施例では、USBインターフェース1140は、任意のタイプのUSBコネクタ又はUSBソケットであってもよい。たとえば、少なくとも一実施例では、USBインターフェース1140は、データ及び電源用のUSB3.0 Type-Cのソケットである。少なくとも一実施例では、USBインターフェース1140は、USB3.0 Type-Aのコネクタである。少なくとも一実施例では、USBインターフェース論理1150は、処理ユニット1130がUSBコネクタ1140を介してデバイス(たとえばコンピュータ1110)と又はインターフェースをとることを可能にする任意の量及びタイプの論理を含んでもよい。
1つ若しくは複数の実施例に関連する推論及び/又は訓練の動作を実行するために、推論及び/又は訓練論理615が使用される。推論及び/又は訓練論理615に関する詳細事項は、図6A及び/又は図6Bと併せて以下に提供される。少なくとも一実施例では、推論及び/又は訓練論理615は、本明細書に記載のニューラル・ネットワークの訓練動作、ニューラル・ネットワークの機能及び/若しくはアーキテクチャ、又はニューラル・ネットワークのユース・ケースを使用して計算された重みパラメータに少なくとも部分的に基づき、推論又は予測の動作のために図11のシステムにおいて使用されてもよい。
推論及び/又は訓練論理615は、1つ又は複数の実施例に関連付けられた推論及び/又は訓練の動作を実行するために使用される。少なくとも一実施例では、固定されたジッタ位置と、より正確なピクセル色決定のための高解像度テクスチャとを使用して画像を生成するために、この論理がこれらの図の構成要素とともに使用され得る。
図12Aは、複数のGPU1210~1213が、高速リンク1240~1243(たとえば、バス、ポイントツーポイント相互接続など)を介して複数のマルチ・コア・プロセッサ1205~1206に通信可能に結合されている例示的なアーキテクチャを示す。一実施例では、高速リンク1240~1243は、4GB/秒、30GB/秒、80GB/秒、又はそれ以上の通信スループットをサポートする。PCIe4.0又は5.0、及びNVLink2.0を含むがこれらに限定されない様々な相互接続プロトコルが使用されてもよい。
さらに、一実施例では、GPU1210~1213のうちの2つ以上は高速リンク1229~1230を介して相互接続され、これらは、高速リンク1240~1243に使用されたものと同じ又は異なるプロトコル/リンクを使用して実装されてもよい。同様に、マルチ・コア・プロセッサ1205~1206のうちの2つ以上は、高速リンク1228を介して接続されてもよく、この高速リンク1228は、20GB/秒、30GB/秒、120GB/秒、又はそれ以上で動作する対称型マルチプロセッサ(SMP)バスとすることができる。或いは、図12Aに示す様々なシステム構成要素間のすべての通信は、同じプロトコル/リンクを使用して(たとえば、共通の相互接続ファブリックを介して)実現されてもよい。
一実施例では、各マルチ・コア・プロセッサ1205~1206は、それぞれメモリ相互接続1226~1227を介してプロセッサ・メモリ1201~1202に通信可能に結合され、各GPU1210~1213は、それぞれGPUメモリ相互接続1250~1253を介してGPUメモリ1220~1223に通信可能に結合される。メモリ相互接続1226~1227及び1250~1253は、同じ又は異なるメモリ・アクセス技術を利用してもよい。例として、限定ではなく、プロセッサ・メモリ1201~1202及びGPUメモリ1220~1223は、(積層DRAMを含む)ダイナミック・ランダム・アクセス・メモリ(DRAM)、グラフィックスDDR SDRAM(GDDR)(たとえば、GDDR5、GDDR6)、又は高帯域幅メモリ(HBM)などの揮発性メモリであってもよく、且つ/又は3D XPoint又はNano-Ramなどの不揮発性メモリであってもよい。一実施例では、(たとえば、2レベルのメモリ(2LM)階層を使用して)、プロセッサ・メモリ1201~1202のいくつかの部分は揮発性メモリであってもよく、別の部分は不揮発性メモリであってもよい。
以下に記載するように、様々なプロセッサ1205~1206及びGPU1210~1213は、それぞれ特定のメモリ1201~1202、1220~1223に物理的に結合されてもよいが、同じ仮想システムのアドレス空間(「実効アドレス」空間とも呼ぶ)が様々な物理メモリ間に分配されている統合されたメモリ・アーキテクチャが実装されてもよい。たとえば、プロセッサ・メモリ1201~1202はそれぞれ、64GBのシステム・メモリ・アドレス空間を備えてもよく、GPUメモリ1220~1223はそれぞれ、32GBのシステム・メモリ・アドレス空間を備えてもよい(本実例では合計256GBのアドレス指定可能メモリが得られる)。
図12Bは、1つの例示的な実施例によるマルチ・コア・プロセッサ1207とグラフィックス加速モジュール1246との相互接続のさらなる詳細事項を示す。グラフィックス加速モジュール1246は、高速リンク1240を介してプロセッサ1207に結合されるライン・カードに集積された1つ又は複数のGPUチップを含んでもよい。或いは、グラフィックス加速モジュール1246は、プロセッサ1207と同じパッケージ又はチップに集積されてもよい。
少なくとも一実施例では、示されるプロセッサ1207は、複数のコア1260A~1260Dを含み、それぞれのコアが、トランスレーション・ルックアサイド・バッファ1261A~1261Dと、1つ又は複数のキャッシュ1262A~1262Dとを有する。少なくとも一実施例では、コア1260A~1260Dは、命令を実行しデータを処理するための、図示していない様々な他の構成要素を含んでもよい。キャッシュ1262A~1262Dは、レベル1(L1)及びレベル2(L2)のキャッシュを備えてもよい。さらに、1つ又は複数の共有キャッシュ1256が、キャッシュ1262A~1262Dに含まれ、コア1260A~1260Dのセットによって共有されてもよい。たとえば、プロセッサ1207の一実施例は、24個のコアを含み、各コアが、独自のL1キャッシュ、12個の共有L2キャッシュ、及び12個の共有L3キャッシュを有する。この実施例では、1つ又は複数のL2及びL3のキャッシュが、2つの隣接するコアによって共有される。プロセッサ1207及びグラフィックス加速モジュール1246は、システム・メモリ1214に接続されており、このシステム・メモリは、図12Aのプロセッサ・メモリ1201~1202を含んでもよい。
様々なキャッシュ1262A~1262D、1256、及びシステム・メモリ1214に記憶されたデータ及び命令については、コヒーレンス・バス1264を介したコア間通信によって、コヒーレンスが維持される。たとえば、各キャッシュは、特定のキャッシュ・ラインに対する読取り又は書込みを検出したことに応答して、コヒーレンス・バス1264を介して通信するために、それに関連するキャッシュ・コヒーレンス論理/回路を有してもよい。一実装形態では、キャッシュ・アクセスを監視するために、コヒーレンス・バス1264を介してキャッシュ・スヌーピング・プロトコルが実装される。
一実施例では、プロキシ回路1225が、グラフィックス加速モジュール1246をコヒーレンス・バス1264に通信可能に結合して、グラフィックス加速モジュール1246がコア1260A~1260Dのピアとしてキャッシュ・コヒーレンス・プロトコルに参加できるようにする。特に、インターフェース1235は、高速リンク1240(たとえば、PCIeバス、NVLinkなど)を介してプロキシ回路1225への接続を提供し、インターフェース1237は、グラフィックス加速モジュール1246をリンク1240に接続する。
一実装形態では、アクセラレータ統合回路1236は、グラフィックス加速モジュール1246の複数のグラフィックス処理エンジン1231、1232、Nの代わりに、キャッシュ管理、メモリ・アクセス、コンテンツ管理、及び割込み管理のサービスを提供する。グラフィックス処理エンジン1231、1232、Nはそれぞれ、別個のグラフィックス・プロセッシング・ユニット(GPU)を備えてもよい。或いは、グラフィックス処理エンジン1231、1232、Nは、GPUの中に、グラフィックス実行ユニット、メディア処理エンジン(たとえば、ビデオ・エンコーダ/デコーダ)、サンプラ、及びブリット・エンジンなど、異なるタイプのグラフィックス処理エンジンを備えてもよい。少なくとも一実施例では、グラフィックス加速モジュール1246は、複数のグラフィックス処理エンジン1231~1232、Nを有するGPUであってもよく、又はグラフィックス処理エンジン1231~1232、Nは、共通のパッケージ、ライン・カード、若しくはチップに集積された個々のGPUであってもよい。
一実施例では、アクセラレータ統合回路1236は、仮想から物理のメモリ・トランスレーション(実効から実(effective-to-real)のメモリ・トランスレーションとも呼ばれる)など、様々なメモリ管理機能を実行するためのメモリ管理ユニット(MMU)1239、及びシステム・メモリ1214にアクセスするためのメモリ・アクセス・プロトコルを含む。MMU1239は、仮想/実効から物理/実へのアドレス・トランスレーションをキャッシュするためのトランスレーション・ルックアサイド・バッファ(TLB)(図示せず)も含むことができる。一実装形態では、キャッシュ1238は、グラフィックス処理エンジン1231~1232、Nから効率的にアクセスできるように、コマンド及びデータを記憶する。一実施例では、キャッシュ1238及びグラフィックス・メモリ1233~1234、Mに記憶されたデータは、コア・キャッシュ1262A~1262D、1256、及びシステム・メモリ1214とコヒーレントに保たれる。上述のように、これは、キャッシュ1238及びメモリ1233~1234、Mの代わりにプロキシ回路1225を介して(たとえば、プロセッサ・キャッシュ1262A~1262D、1256におけるキャッシュ・ラインの修正/アクセスに関するアップデートをキャッシュ1238に送り、キャッシュ1238からのアップデートを受け取って)実現されてもよい。
レジスタ1245のセットが、グラフィックス処理エンジン1231~1232、Nによって実行されるスレッドのためのコンテキスト・データを記憶し、コンテキスト管理回路1248が、スレッド・コンテキストを管理する。たとえば、コンテキスト管理回路1248は、コンテキスト・スイッチ中に様々なスレッドのコンテキストを保存及び復元するために、保存及び復元の動作を実行してもよい(たとえば、ここで、第2のスレッドをグラフィックス処理エンジンによって実行できるように、第1のスレッドが保存され、第2のスレッドが記憶される)。たとえば、コンテキスト・スイッチ時に、コンテキスト管理回路1248は、現在のレジスタ値を(たとえば、コンテキスト・ポインタによって識別された)メモリの指定領域に記憶してもよい。次いで、コンテキストに戻るときに、コンテキスト管理回路1248がレジスタ値を復元してもよい。一実施例では、割込み管理回路1247は、システム・デバイスから受け取った割込みを受け取り、処理する。
一実装形態では、グラフィックス処理エンジン1231からの仮想/実効アドレスは、MMU1239によってシステム・メモリ1214の実/物理アドレスにトランスレートされる。アクセラレータ統合回路1236の一実施例は、複数(たとえば、4個、8個、16個)のグラフィックス・アクセラレータ・モジュール1246、及び/又は他のアクセラレータ・デバイスをサポートする。グラフィックス・アクセラレータ・モジュール1246は、プロセッサ1207上で実行される単一のアプリケーション専用のものであってもよく、又は複数のアプリケーション間で共有されてもよい。一実施例では、グラフィックス処理エンジン1231~1232、Nのリソースが複数のアプリケーション又は仮想機械(VM)と共有される仮想化グラフィックス実行環境が存在する。少なくとも一実施例では、リソースは、「スライス」に細分化されてもよく、このスライスが、処理要件、並びにVM及び/又はアプリケーションに関連付けられた優先度に基づき、異なるVM及び/又はアプリケーションに割り振られる。
少なくとも一実施例では、アクセラレータ統合回路1236は、グラフィックス加速モジュール1246のためのシステムへのブリッジとして機能し、アドレス・トランスレーション及びシステム・メモリのキャッシュ・サービスを提供する。さらに、アクセラレータ統合回路1236は、グラフィックス処理エンジン1231~1232、Nの仮想化、割込み、及びメモリ管理をホスト・プロセッサが管理するための仮想化設備を提供してもよい。
グラフィックス処理エンジン1231~1232、Nのハードウェア・リソースは、ホスト・プロセッサ1207が見る実アドレス空間に明示的にマッピングされるので、いかなるホスト・プロセッサも、実効アドレス値を使用して、これらのリソースに直接アドレス指定することができる。アクセラレータ統合回路1236の1つの機能は、一実施例では、グラフィックス処理エンジン1231~1232、Nを、システムにとって独立したユニットに見えるように物理的に分離することである。
少なくとも一実施例では、1つ又は複数のグラフィックス・メモリ1233~1234、Mはそれぞれ、グラフィックス処理エンジン1231~1232、Nのそれぞれに結合される。グラフィックス・メモリ1233~1234、Mは、それぞれのグラフィックス処理エンジン1231~1232、Nによって処理される命令及びデータを記憶する。グラフィックス・メモリ1233~1234、Mは、(積層DRAMを含む)DRAM、GDDRメモリ、(たとえば、GDDR5、GDDR6)、又はHBMなどの揮発性メモリであってもよく、且つ/又は3D XPoint又はNano-Ramなどの不揮発性メモリであってもよい。
一実施例では、リンク1240を介したデータ・トラフィックを低減するために、グラフィックス・メモリ1233~1234、Mに記憶されるデータが、グラフィックス処理エンジン1231~1232、Nによって最も頻繁に使用されることになるデータであるようにし、好ましくはコア1260A~1260Dによっては使用されない(少なくとも頻繁には使用されない)データであるようにするためのバイアス技法が使用される。同様に、バイアス機構は、コアが必要とする(したがって、好ましくはグラフィックス処理エンジン1231~1232、Nは必要としない)データを、コアのキャッシュ1262A~1262D、1256、及びシステム・メモリ1214の中に保つよう試みる。
図12Cは、アクセラレータ統合回路1236がプロセッサ1207内に一体化されている別の例示的な実施例を示す。少なくともこの実施例では、グラフィックス処理エンジン1231~1232、Nは、インターフェース1237及びインターフェース1235により、高速リンク1240を介して直接アクセラレータ統合回路1236と通信する(この場合も任意の形のバス又はインターフェース・プロトコルを利用し得る)。アクセラレータ統合回路1236は、図12Bに関して説明したのと同じ動作を実行してもよいが、コヒーレンス・バス1264及びキャッシュ1262A~1262D、1256に近接していることを考えると、潜在的には、より高いスループットで動作してもよい。少なくとも一実施例は、(グラフィックス加速モジュールの仮想化のない)専用プロセスのプログラミング・モデルと、(仮想化のある)共有プログラミング・モデルとを含む異なるプログラミング・モデルをサポートし、これらは、アクセラレータ統合回路1236によって制御されるプログラミング・モデルと、グラフィックス加速モジュール1246によって制御されるプログラミング・モデルとを含んでもよい。
少なくとも一実施例では、グラフィックス処理エンジン1231~1232、Nは、単一のオペレーティング・システムの下で単一のアプリケーション又はプロセスに専用のものである。少なくとも一実施例では、単一のアプリケーションは、他のアプリケーション要求をグラフィックス処理エンジン1231~1232、Nに集中させて、VM/パーティション内で仮想化を実現することができる。
少なくとも一実施例では、グラフィックス処理エンジン1231~1232、Nは、複数のVM/アプリケーション・パーティションによって共有されてもよい。少なくとも一実施例では、共有モデルはシステム・ハイパーバイザを使用して、グラフィックス処理エンジン1231~1232、Nを仮想化して、各オペレーティング・システムによるアクセスを可能にしてもよい。ハイパーバイザのない単一パーティションのシステムでは、グラフィックス処理エンジン1231~1232、Nは、オペレーティング・システムによって所有される。少なくとも一実施例では、オペレーティング・システムは、グラフィックス処理エンジン1231~1232、Nを仮想化して、各プロセス又はアプリケーションへのアクセスを提供することができる。
少なくとも一実施例では、グラフィックス加速モジュール1246又は個々のグラフィックス処理エンジン1231~1232、Nは、プロセス・ハンドルを使用して、プロセス要素を選択する。少なくとも一実施例では、プロセス要素は、システム・メモリ1214に記憶されており、本明細書に記載の実効アドレスから実アドレスへのトランスレーション技法を使用してアドレス指定可能である。少なくとも一実施例では、プロセス・ハンドルは、ホスト・プロセスのコンテキストをグラフィックス処理エンジン1231~1232、Nに登録する(すなわち、プロセス要素リンク・リストにプロセス要素を追加するためのシステム・ソフトウェアをコールする)ときに、ホスト・プロセスに提供される実装固有の値であってもよい。少なくとも一実施例では、プロセス・ハンドルの下位16ビットは、プロセス要素リンク・リスト内のプロセス要素のオフセットであってもよい。
図12Dは、例示的なアクセラレータ統合スライス1290を示す。本明細書で使用する「スライス」は、アクセラレータ統合回路1236の処理リソースの指定部分を備える。システム・メモリ1214内のアプリケーション実効アドレス空間1282は、プロセス要素1283を記憶する。一実施例では、プロセス要素1283は、プロセッサ1207上で実行されているアプリケーション1280からのGPU呼出し1281に応答して、記憶される。プロセス要素1283は、対応するアプリケーション1280のプロセス状態を収容する。プロセス要素1283に収容されたワーク記述子(WD)1284は、アプリケーションによって要求される単一のジョブとすることができ、又はジョブのキューに対するポインタを収容してもよい。少なくとも一実施例では、WD1284は、アプリケーションのアドレス空間1282におけるジョブ要求キューに対するポインタである。
グラフィックス加速モジュール1246及び/又は個々のグラフィックス処理エンジン1231~1232、Nは、システム内のプロセスのすべて又はサブセットによって共有されることが可能である。少なくとも一実施例では、プロセス状態を設定し、WD1284をグラフィックス加速モジュール1246に送信して、仮想化環境においてジョブを開始するためのインフラストラクチャが、含められてもよい。
少なくとも一実施例では、専用のプロセス・プログラミング・モデルは、実装固有である。このモデルでは、単一のプロセスが、グラフィックス加速モジュール1246又は個々のグラフィックス処理エンジン1231を所有する。グラフィックス加速モジュール1246が単一のプロセスによって所有されるので、グラフィックス加速モジュール1246が割り当てられたときに、ハイパーバイザは、所有パーティションについてアクセラレータ統合回路1236を初期化し、オペレーティング・システムは、所有プロセスについてアクセラレータ統合回路1236を初期化する。
動作時、アクセラレータ統合スライス1290内のWDフェッチ・ユニット1291は、グラフィックス加速モジュール1246の1つ又は複数のグラフィックス処理エンジンによって行われることになるワークの表示を含む次のWD1284をフェッチする。図示してあるように、WD1284からのデータは、レジスタ1245に記憶され、MMU1239、割込み管理回路1247、及び/又はコンテキスト管理回路1248によって使用されてもよい。たとえば、MMU1239の一実施例は、OS仮想アドレス空間1285内のセグメント/ページ・テーブル1286にアクセスするためのセグメント/ページ・ウォーク回路を含む。割込み管理回路1247は、グラフィックス加速モジュール1246から受け取った割込みイベント1292を処理してもよい。グラフィックス動作を実行するとき、グラフィックス処理エンジン1231~1232、Nによって生成された実効アドレス1293は、MMU1239によって実アドレスにトランスレートされる。
一実施例では、同じレジスタのセット1245が、各グラフィックス処理エンジン1231~1232、N、及び/又はグラフィックス加速モジュール1246について複製され、ハイパーバイザ又はオペレーティング・システムによって初期化されてもよい。これらの複製されたレジスタのそれぞれは、アクセラレータ統合スライス1290に含まれてもよい。ハイパーバイザによって初期化されてもよい例示的なレジスタを、表1に示す。
オペレーティング・システムによって初期化されてもよい例示的なレジスタを、表2に示す。
一実施例では、各WD1284は、特定のグラフィックス加速モジュール1246及び/又はグラフィックス処理エンジン1231~1232、Nに固有のものである。WD1284は、グラフィックス処理エンジン1231~1232、Nがワークを行うために必要とするすべての情報を収容し、又は完了すべきワークのコマンド・キューをアプリケーションがセットアップした場所であるメモリ・ロケーションを指すポインタとすることができる。
図12Eは、共有モデルの例示的な一実施例のさらなる詳細事項を示す。この実施例は、プロセス要素リスト1299が記憶されているハイパーバイザ実アドレス空間1298を含む。ハイパーバイザ実アドレス空間1298は、オペレーティング・システム1295のグラフィックス加速モジュール・エンジンを仮想化するハイパーバイザ1296を介してアクセス可能である。
少なくとも一実施例では、共有プログラミング・モデルは、システム内のすべて又はサブセットのパーティションからのすべて又はサブセットのプロセスが、グラフィックス加速モジュール1246を使用できるようにする。グラフィックス加速モジュール1246が複数のプロセス及びパーティションによって共有されるプログラミング・モデルが、2つ、つまり時間スライス共有及びグラフィックス指定共有(graphics-directed shared)が存在する。
このモデルでは、システム・ハイパーバイザ1296がグラフィックス加速モジュール1246を所有しており、その機能をすべてのオペレーティング・システム1295にとって利用可能にする。システム・ハイパーバイザ1296による仮想化をグラフィックス加速モジュール1246がサポートするために、グラフィックス加速モジュール1246は、以下に準拠してもよい:1)アプリケーションのジョブ要求は自律でなくてはならず(すなわち、ジョブ間で状態を維持する必要はなく)、又はグラフィックス加速モジュール1246が、コンテキストの保存及び復元の機構を提供しなくてはならない、2)アプリケーションのジョブ要求は、あらゆるトランスレーション誤りも含めて指定された時間量で完了するようグラフィックス加速モジュール1246によって保証され、又はグラフィックス加速モジュール1246が、ジョブの処理をプリエンプションする機能を提供する、3)グラフィックス加速モジュール1246は、指定の共有プログラミング・モデルで動作しているとき、プロセス間で公平性が保証されなくてはならない。
少なくとも一実施例では、アプリケーション1280は、グラフィックス加速モジュール1246のタイプ、ワーク記述子(WD)、権限マスク・レジスタ(AMR)値、及びコンテキスト保存/復元エリア・ポインタ(CSRP)を伴って、オペレーティング・システム1295のシステム・コールを行う必要がある。少なくとも一実施例では、グラフィックス加速モジュール1246のタイプは、システム・コールで目的とする加速機能を記述している。少なくとも一実施例では、グラフィックス加速モジュール1246のタイプは、システム固有値であってもよい。少なくとも一実施例では、WDは、グラフィックス加速モジュール1246のために特にフォーマット化されており、グラフィックス加速モジュール1246のコマンド、ユーザ定義の構造を指す実効アドレス・ポインタ、コマンドのキューを指す実効アドレス・ポインタ、又はグラフィックス加速モジュール1246によって行われるワークを記述するための任意の他のデータ構造の形とすることができる。一実施例では、AMR値は、現在のプロセスに使用するためのAMR状態である。少なくとも一実施例では、オペレーティング・システムに渡される値は、AMRをセッティングするアプリケーションと同様である。アクセラレータ統合回路1236及びグラフィックス加速モジュール1246の実装形態が、ユーザ権限マスク・オーバーライド・レジスタ(UAMOR)をサポートしていない場合、オペレーティング・システムは、AMR値に現在のUAMOR値を適用してから、ハイパーバイザ・コールにAMRを渡してもよい。ハイパーバイザ1296は、任意選択で、現在の権限マスク・オーバーライド・レジスタ(AMOR)値を適用してから、AMRをプロセス要素1283に入れてもよい。少なくとも一実施例では、CSRPは、グラフィックス加速モジュール1246がコンテキスト状態を保存及び復元するためのアプリケーションの実効アドレス空間1282内のエリアの実効アドレスを収容するレジスタ1245のうちの1つである。ジョブ間で、又はジョブがプリエンプションされるときに、いかなる状態も保存する必要のない場合は、このポインタは任意選択である。少なくとも一実施例では、コンテキスト保存/復元エリアは、ピン留めされたシステム・メモリであってもよい。
システム・コールを受け取ると、オペレーティング・システム1295は、アプリケーション1280が登録済みであり、グラフィックス加速モジュール1246を使用する権限が与えられていることを検証してもよい。次いで、オペレーティング・システム1295は、表3に示す情報を伴ってハイパーバイザ1296にコールする。
ハイパーバイザ・コールを受け取ると、ハイパーバイザ1296は、オペレーティング・システム1295が登録済みであり、グラフィックス加速モジュール1246を使用する権限が与えられていることを検証する。次いでハイパーバイザ1296は、プロセス要素1283を、対応するグラフィックス加速モジュール1246のタイプのプロセス要素リンク・リストに入れる。プロセス要素は、表4に示す情報を含んでもよい。
少なくとも一実施例では、ハイパーバイザは、複数のアクセラレータ統合スライス1290のレジスタ1245を初期化する。
図12Fに示すように、少なくとも一実施例では、物理プロセッサ・メモリ1201~1202及びGPUメモリ1220~1223にアクセスするために使用される共通の仮想メモリ・アドレス空間を介してアドレス指定可能である統合メモリが使用される。この実装形態では、GPU1210~1213で実行される動作は、プロセッサ・メモリ1201~1202にアクセスするのと同じ仮想/実効メモリ・アドレス空間を利用し、且つその逆も同様であり、それによりプログラマビリティが簡単になる。一実施例では、仮想/実効アドレス空間の第1の部分はプロセッサ・メモリ1201に割り振られ、第2の部分は第2のプロセッサ・メモリ1202に割り振られ、第3の部分はGPUメモリ1220に割り振られるというように続く。少なくとも一実施例では、仮想/実効メモリ空間全体(実効アドレス空間と呼ばれることもある)は、これによりプロセッサ・メモリ1201~1202及びGPUメモリ1220~1223のそれぞれにわたって分配されて、仮想アドレスが物理メモリにマッピングされた状態で、いずれかのプロセッサ又はGPUが、いずれかの物理メモリにアクセスできるようになる。
一実施例では、MMU1239A~1239Eのうちの1つ又は複数の中のバイアス/コヒーレンス管理回路1294A~1294Eは、1つ又は複数のホスト・プロセッサ(たとえば、1205)のキャッシュとGPU1210~1213のキャッシュとの間でキャッシュ・コヒーレンスを確保し、バイアス技法を実装して、ある特定のタイプのデータが記憶されるべき物理メモリを示す。バイアス/コヒーレンス管理回路1294A~1294Eの複数のインスタンスが図12Fに示されるが、バイアス/コヒーレンス回路は、1つ又は複数のホスト・プロセッサ1205のMMU内に実装されてもよく、且つ/又はアクセラレータ統合回路1236内に実装されてもよい。
一実施例は、GPU付きメモリ1220~1223をシステム・メモリの一部としてマッピングできるようにし、共有仮想メモリ(SVM)技法を使用してアクセス可能にすることができるが、完全なシステム・キャッシュ・コヒーレンスに関連する性能の低下が生じることはない。少なくとも一実施例では、GPU付きメモリ1220~1223が、面倒なキャッシュ・コヒーレンス・オーバーヘッドなく、システム・メモリとしてアクセス可能であることにより、GPUオフロードのための有益な動作環境が提供される。この構成によって、従来のI/O DMAデータ・コピーのオーバーヘッドがなくても、ホスト・プロセッサ1205ソフトウェアがオペランドを設定し、計算結果にアクセスすることが可能になる。こうした従来のコピーは、ドライバ・コール、割込み、及びメモリ・マップドI/O(MMIO)アクセスを必要とし、これらはすべて、単純なメモリ・アクセスより非効率的である。少なくとも一実施例では、キャッシュ・コヒーレンス・オーバーヘッドなしでGPU付きメモリ1220~1223にアクセスできることが、オフロードされた計算の実行時間に不可欠であり得る。たとえば、かなりのストリーミング書込みメモリ・トラフィックがある場合には、キャッシュ・コヒーレンス・オーバーヘッドは、GPU1210~1213が見る有効な書込み帯域幅を大幅に低減することがある。少なくとも一実施例では、オペランド設定の効率、結果へのアクセスの効率、及びGPU計算の効率は、GPUオフロードの有効性を判定する際に役立つことがある。
少なくとも一実施例では、GPUバイアス及びホスト・プロセッサ・バイアスの選択は、バイアス・トラッカー・データ構造によって決められる。たとえばバイアス・テーブルが使用されてもよく、このテーブルは、GPU付きメモリ・ページ当たり1ビット又は2ビットを含むページ粒度構造であってもよい(すなわち、メモリ・ページの粒度で制御されてもよい)。少なくとも一実施例では、バイアス・テーブルは、(たとえば、バイアス・テーブルの頻繁に使用された/最近使用されたエントリをキャッシュするための)バイアス・キャッシュがGPU1210~1213にある状態又はない状態で、1つ又は複数のGPU付きメモリ1220~1223の奪われたメモリ範囲(stolen memory range)において実装されてもよい。或いは、バイアス・テーブル全体が、GPU内に維持されてもよい。
少なくとも一実施例では、GPU付きメモリ1220~1223への各アクセスに関連付けられたバイアス・テーブルのエントリが、GPUメモリへの実際のアクセスより先にアクセスされて、以下の動作を生じさせる。最初に、GPUバイアス内での自らのページを見いだすGPU1210~1213からのローカル要求が、対応するGPUメモリ1220~1223に直接転送される。ホスト・バイアスにおいて自らのページを見いだすGPUからのローカル要求は、(たとえば、上記の説明のように高速リンクを介して)プロセッサ1205に転送される。一実施例では、要求されたページをホスト・プロセッサ・バイアスにおいて見いだすプロセッサ1205からの要求は、通常のメモリ読取りと同様に要求を完了させる。或いは、GPUバイアス化ページに向けられた要求は、GPU1210~1213に転送されてもよい。少なくとも一実施例では、次いでGPUは、現在ページを使用していない場合、ホスト・プロセッサ・バイアスにページを移行してもよい。少なくとも一実施例では、ページのバイアス状態は、ソフトウェア・ベースの機構、ハードウェア支援型ソフトウェア・ベースの機構のいずれかによって、又は限られた事例のセットについては、単にハードウェア・ベースの機構によって、変更することができる。
バイアス状態を変更するための1つの機構は、APIコール(たとえば、OpenCL)を利用し、このAPIコールが、GPUのデバイス・ドライバをコールし、このデバイス・ドライバが、GPUにメッセージを送って(又はコマンド記述子をキューに加えて)、バイアス状態を変更し、一部の移行については、ホストにおいてキャッシュ・フラッシング動作を実行するよう、GPUを導く。少なくとも一実施例では、キャッシュ・フラッシング動作は、ホスト・プロセッサ1205のバイアスからGPUバイアスへの移行のために使用されるが、反対向きの移行には使用されない。
一実施例では、キャッシュ・コヒーレンスは、ホスト・プロセッサ1205によってキャッシュできないGPUバイアス化ページを一時的にレンダリングすることによって、維持される。これらのページにアクセスするために、プロセッサ1205は、GPU1210からのアクセスを要求してもよく、GPU1210は、すぐにアクセスを許可してもよく、又は許可しなくてもよい。したがって、プロセッサ1205とGPU1210との間の通信を低減するために、GPUバイアス化ページが、GPUによって要求されるが、ホスト・プロセッサ1205によっては要求されないようにすること、又はその逆にすることが有益である。
推論及び/又は訓練論理615は、1つ又は複数の実施例を実行するために使用される。推論及び/又は訓練論理615に関する詳細は図6A及び/又は図6Bと併せて以下に提供される。
推論及び/又は訓練論理615は、1つ又は複数の実施例に関連付けられた推論及び/又は訓練の動作を実行するために使用される。少なくとも一実施例では、固定されたジッタ位置と、より正確なピクセル色決定のための高解像度テクスチャとを使用して画像を生成するために、この論理がこれらの図の構成要素とともに使用され得る。
図13は、本明細書に記載の様々な実施例による、1つ又は複数のIPコアを使用して作製することができる例示的な集積回路及び関連グラフィックス・プロセッサを示す。図示してあるものに加えて、少なくとも一実施例では、追加のグラフィックス・プロセッサ/コア、周辺装置インターフェース・コントローラ、若しくは汎用プロセッサ・コアを含む他の論理及び回路が含まれてもよい。
図13は、少なくとも一実施例による1つ又は複数のIPコアを使用して作製することができる例示的なシステム・オン・チップ集積回路1300を示すブロック図である。少なくとも一実施例では、集積回路1300は、1つ又は複数のアプリケーション・プロセッサ1305(たとえば、CPU)、少なくとも1つのグラフィックス・プロセッサ1310を含み、さらに、画像プロセッサ1315及び/又はビデオ・プロセッサ1320を含んでもよく、これらのいずれもが、モジュール式IPコアであってもよい。少なくとも一実施例では、集積回路1300は、USBコントローラ1325、UARTコントローラ1330、SPI/SDIOコントローラ1335、及びI2S/I2Cコントローラ1340を含む周辺装置又はバス論理を含む。少なくとも一実施例では、集積回路1300は、ハイ・デフィニション・マルチメディア・インターフェース(HDMI(登録商標):high-definition multimedia interface(登録商標))コントローラ1350及びモバイル・インダストリ・プロセッサ・インターフェース(MIPI)ディスプレイ・インターフェース1355のうちの1つ又は複数に結合されるディスプレイ・デバイス1345を含むことができる。少なくとも一実施例では、フラッシュ・メモリ及びフラッシュ・メモリ・コントローラを含むフラッシュ・メモリ・サブシステム1360によって、ストレージが提供されてもよい。少なくとも一実施例では、SDRAM又はSRAMメモリ・デバイスにアクセスするために、メモリ・コントローラ1365を介してメモリ・インターフェースが提供されてもよい。少なくとも一実施例では、いくつかの集積回路はさらに、組み込みセキュリティ・エンジン1370を含む。
1つ若しくは複数の実施例に関連する推論及び/又は訓練の動作を実行するために、推論及び/又は訓練論理615が使用される。推論及び/又は訓練論理615に関する詳細事項は、図6A及び/又は図6Bと併せて以下に提供される。少なくとも一実施例では、推論及び/又は訓練論理615は、本明細書に記載のニューラル・ネットワークの訓練動作、ニューラル・ネットワークの機能及び/若しくはアーキテクチャ、又はニューラル・ネットワークのユース・ケースを使用して計算された重みパラメータに少なくとも部分的に基づき、推論又は予測の動作のために集積回路1300において使用されてもよい。
推論及び/又は訓練論理615は、1つ又は複数の実施例に関連付けられた推論及び/又は訓練の動作を実行するために使用される。少なくとも一実施例では、固定されたジッタ位置と、より正確なピクセル色決定のための高解像度テクスチャとを使用して画像を生成するために、この論理がこれらの図の構成要素とともに使用され得る。
図14A~図14Bは、本明細書に記載の様々実施例による、1つ又は複数のIPコアを使用して作製することができる例示的な集積回路及び関連グラフィックス・プロセッサを示す。図示してあるものに加えて、少なくとも一実施例では、追加のグラフィックス・プロセッサ/コア、周辺装置インターフェース・コントローラ、又は汎用プロセッサ・コアを含む他の論理及び回路が含まれてもよい。
図14A及び図14Bは、本明細書に記載の実施例による、SoC内で使用するための例示的なグラフィックス・プロセッサを示すブロック図である。図14Aは、少なくとも一実施例による、1つ又は複数のIPコアを使用して作製することができるシステム・オン・チップ集積回路の例示的なグラフィックス・プロセッサ1410を示す。図14Bは、少なくとも一実施例による、1つ又は複数のIPコアを使用して作製することができるシステム・オン・チップ集積回路のさらなる例示的なグラフィックス・プロセッサ1440を示す。少なくとも一実施例では、図14Aのグラフィックス・プロセッサ1410は、低電力グラフィックス・プロセッサ・コアである。少なくとも一実施例では、図14Bのグラフィックス・プロセッサ1440は、高性能グラフィックス・プロセッサ・コアである。少なくとも一実施例では、グラフィックス・プロセッサ1410、1440のそれぞれは、図13のグラフィックス・プロセッサ1310の変形形態とすることができる。
少なくとも一実施例では、グラフィックス・プロセッサ1410は、頂点プロセッサ1405と、1つ又は複数のフラグメント・プロセッサ1415A~1415N(たとえば、1415A、1415B、1415C、1415D~1415N-1、及び1415N)とを含む。少なくとも一実施例では、グラフィックス・プロセッサ1410は、別個の論理を介して異なるシェーダ・プログラムを実行することができ、それにより、頂点プロセッサ1405は、頂点シェーダ・プログラムのための動作を実行するように最適化され、一方、1つ又は複数のフラグメント・プロセッサ1415A~1415Nは、フラグメント又はピクセルのシェーダ・プログラムのためのフラグメント(たとえば、ピクセル)シェーディング動作を実行する。少なくとも一実施例では、頂点プロセッサ1405は、3Dグラフィックス・パイプラインの頂点処理ステージを実行し、プリミティブ及び頂点データを生成する。少なくとも一実施例では、フラグメント・プロセッサ1415A~1415Nは、頂点プロセッサ1405によって生成されたプリミティブ及び頂点データを使用して、ディスプレイ・デバイスに表示されるフレーム・バッファを生成する。少なくとも一実施例では、フラグメント・プロセッサ1415A~1415Nは、OpenGLのAPIにおいて提供されるフラグメント・シェーダ・プログラムを実行するように最適化され、OpenGLのAPIは、Direct 3D APIにおいて提供されるピクセル・シェーダ・プログラムと同様の動作を実行するために使用されてもよい。
少なくとも一実施例では、グラフィックス・プロセッサ1410はさらに、1つ又は複数のメモリ管理ユニット(MMU)1420A~1420B、キャッシュ1425A~1425B、及び回路相互接続1430A~1430Bを含む。少なくとも一実施例では、1つ又は複数のMMU1420A~1420Bは、頂点プロセッサ1405及び/又はフラグメント・プロセッサ1415A~1415Nを含め、グラフィックス・プロセッサ1410のための仮想から物理のアドレス・マッピングを提供し、それらは、1つ又は複数のキャッシュ1425A~1425Bに記憶された頂点又は画像/テクスチャのデータに加えて、メモリに記憶された頂点又は画像/テキストのデータを参照してもよい。少なくとも一実施例では、1つ又は複数のMMU1420A~1420Bは、図13の1つ若しくは複数のアプリケーション・プロセッサ1305、画像プロセッサ1315、及び/又はビデオ・プロセッサ1320に関連付けられた1つ若しくは複数のMMUを含む、システム内の他のMMUと同期されてもよく、それにより各プロセッサ1305~1320は、共有の又は統合された仮想メモリ・システムに参加することができる。少なくとも一実施例では、1つ又は複数の回路相互接続1430A~1430Bは、グラフィックス・プロセッサ1410が、SoCの内部バスを介して、又は直接接続を介して、SoC内の他のIPコアとインターフェースをとることができるようにする。
少なくとも一実施例では、グラフィックス・プロセッサ1440は、図14Aのグラフィックス・プロセッサ1410の1つ又は複数のMMU1420A、1420Bと、1つ又は複数のキャッシュ1425A、1425Bと、1つ又は複数の回路相互接続1430A、1430Bとを含む。少なくとも一実施例では、グラフィックス・プロセッサ1440は、単一のコア又はタイプ又はコアが、頂点シェーダ、フラグメント・シェーダ、及び/又はコンピュート・シェーダを実装するためのシェーダ・プログラム・コードを含む、すべてのタイプのプログラマブル・シェーダ・コードを実行することができる、統一されたシェーダ・コア・アーキテクチャを与える、1つ又は複数のシェーダ・コア1455A~1455N(たとえば、1455A、1455B、1455C、1455D、1455E、1455F、1455N-1を経て、1455N)を含む。少なくとも一実施例では、いくつかのシェーダ・コアは異なり得る。少なくとも一実施例では、グラフィックス・プロセッサ1440は、1つ又は複数のシェーダ・コア1455A~1455Nに実行スレッドをディスパッチするためのスレッド・ディスパッチャとして作用するコア間タスク・マネージャ1445と、たとえばシーン内のローカル空間コヒーレンスを利用するため、又は内部キャッシュの使用を最適化するために、シーンのレンダリング動作が画像空間において細分化される、タイル・ベースのレンダリングのためのタイリング動作を加速するためのタイリング・ユニット1458とを含む。
1つ若しくは複数の実施例に関連する推論及び/又は訓練の動作を実行するために、推論及び/又は訓練論理615が使用される。推論及び/又は訓練論理615に関する詳細事項は、図6A及び/又は図6Bと併せて以下に提供される。少なくとも一実施例では、推論及び/又は訓練論理615は、本明細書に記載のニューラル・ネットワークの訓練動作、ニューラル・ネットワークの機能及び/若しくはアーキテクチャ、又はニューラル・ネットワークのユース・ケースを使用して計算された重みパラメータに少なくとも部分的に基づき、推論又は予測の動作のために集積回路14A及び/又は14Bにおいて使用されてもよい。推論及び/又は訓練論理615は、1つ又は複数の実施例に関連付けられた推論及び/又は訓練の動作を実行するために使用される。少なくとも一実施例では、固定されたジッタ位置と、より正確なピクセル色決定のための高解像度テクスチャとを使用して画像を生成するために、この論理がこれらの図の構成要素とともに使用され得る。
図15A~図15Bは、本明細書に記載の実施例による、さらなる例示的なグラフィックス・プロセッサ論理を示す。図15Aは、グラフィックス・コア1500を示し、このグラフィックス・コア1500は、少なくとも一実施例では図13のグラフィックス・プロセッサ1310に含められてもよく、少なくとも一実施例では図14Bのように、統合されたシェーダ・コア1455A~1455Nであってもよい。図15Bは、少なくとも一実施例におけるマルチ・チップ・モジュールに導入するのに適した高並列の汎用グラフィックス・プロセッシング・ユニット1530を示す。
少なくとも一実施例では、グラフィックス・コア1500は、共有命令キャッシュ1502、テクスチャ・ユニット1518、及びキャッシュ/共有メモリ1520を含み、これらは、グラフィックス・コア1500内の実行リソースに共通である。少なくとも一実施例では、グラフィックス・コア1500は、複数のスライス1501A~1501N、又はコアごとのパーティションを含むことができ、グラフィックス・プロセッサは、グラフィックス・コア1500の複数のインスタンスを含むことができる。スライス1501A~1501Nは、ローカル命令キャッシュ1504A~1504N、スレッド・スケジューラ1506A~1506N、スレッド・ディスパッチャ1508A~1508N、及びレジスタのセット1510A~1510Nを含むサポート論理を含むことができる。少なくとも一実施例では、スライス1501A~1501Nは、追加機能ユニット(AFU1512A~1512N)、浮動小数点ユニット(FPU1514A~1514N)、整数算術論理演算ユニット(ALU1516~1516N)、アドレス計算ユニット(ACU1513A~1513N)、倍精度浮動小数点ユニット(DPFPU1515A~1515N)、及び行列処理ユニット(MPU1517A~1517N)のセットを含むことができる。
少なくとも一実施例では、FPU1514A~1514Nは、単精度(32ビット)及び半精度(16ビット)の浮動小数点演算を実行することができ、DPFPU1515A~1515Nは、倍精度(64ビット)の浮動小数点演算を実行する。少なくとも一実施例では、ALU1516A~1516Nは、8ビット、16ビット、及び32ビットの精度で可変精度の整数演算を実行することができ、混合精度の演算ができるように構成されることが可能である。少なくとも一実施例では、MPU1517A~1517Nも、半精度浮動小数点及び8ビット整数演算を含む混合精度の行列演算ができるように構成されることが可能である。少なくとも一実施例では、MPU1517A~1517Nは、汎用行列-行列乗算(GEMM)の加速をサポートできるようにすることを含め、機械学習アプリケーション・フレームワークを加速するための様々な行列演算を実行することができる。少なくとも一実施例では、AFU1512A~1512Nは、三角関数演算(たとえば、サイン、コサインなど)を含む、浮動小数点ユニット又は整数ユニットにサポートされていない追加の論理演算を実行することができる。
1つ又は複数の実施例に関連する推論及び/又は訓練の動作を実行するために、推論及び/又は訓練論理615が使用される。推論及び/又は訓練論理615に関する詳細事項は、図6A及び/又は図6Bと併せて以下に提供される。少なくとも一実施例では、推論及び/又は訓練論理615は、本明細書に記載のニューラル・ネットワークの訓練動作、ニューラル・ネットワークの機能及び/若しくはアーキテクチャ、又はニューラル・ネットワークのユース・ケースを使用して計算された重みパラメータに少なくとも部分的に基づき、推論又は予測の動作のためにグラフィックス・コア1500において使用されてもよい。
推論及び/又は訓練論理615は、1つ又は複数の実施例に関連付けられた推論及び/又は訓練の動作を実行するために使用される。少なくとも一実施例では、固定されたジッタ位置と、より正確なピクセル色決定のための高解像度テクスチャとを使用して画像を生成するために、この論理がこれらの図の構成要素とともに使用され得る。
図15Bは、汎用処理ユニット(GPGPU)1530を示し、この処理ユニットは、少なくとも一実施例において、グラフィックス・プロセッシング・ユニットのアレイによる高並列の計算動作を実行可能にするように構成されることが可能である。少なくとも一実施例では、GPGPU1530は、GPGPU1530の他のインスタンスに直接リンクされて、ディープ・ニューラル・ネットワークの訓練スピードを向上させるために複数のGPUクラスタを生成することができる。少なくとも一実施例では、GPGPU1530は、ホスト・プロセッサとの接続を可能にするためのホスト・インターフェース1532を含む。少なくとも一実施例では、ホスト・インターフェース1532は、PCIエクスプレス・インターフェースである。少なくとも一実施例では、ホスト・インターフェース1532は、ベンダー固有の通信インターフェース又は通信ファブリックとすることができる。少なくとも一実施例では、GPGPU1530は、ホスト・プロセッサからコマンドを受け取り、グローバル・スケジューラ1534を使用して、これらのコマンドに関連付けられた実行スレッドを、コンピュート・クラスタ1536A~1536Hのセットに分配する。少なくとも一実施例では、コンピュート・クラスタ1536A~1536Hは、キャッシュ・メモリ1538を共有する。少なくとも一実施例では、キャッシュ・メモリ1538は、コンピュート・クラスタ1536A~1536H内のキャッシュ・メモリ用の高レベル・キャッシュとして作用することができる。
少なくとも一実施例では、GPGPU1530は、メモリ・コントローラ1542A~1542Bのセットを介して、コンピュート・クラスタ1536A~1536Hに結合されたメモリ1544A~1544Bを含む。少なくとも一実施例では、メモリ1544A~1544Bは、グラフィックス・ダブル・データ・レート(GDDR:graphics double data rate)メモリを含む同期グラフィックス・ランダム・アクセス・メモリ(SGRAM)など、ダイナミック・ランダム・アクセス・メモリ(DRAM)又はグラフィックス・ランダム・アクセス・メモリを含む、様々なタイプのメモリ・デバイスを含むことができる。
少なくとも一実施例では、コンピュート・クラスタ1536A~1536Hはそれぞれ、図15Aのグラフィックス・コア1500などのグラフィックス・コアのセットを含み、このグラフィックス・コアのセットは、機械学習計算に適したものを含め、様々な精度で計算動作を実行することができる複数のタイプの整数及び浮動小数点の論理ユニットを含むことができる。たとえば、少なくとも一実施例では、コンピュート・クラスタ1536A~1536Hのそれぞれにおける浮動小数点ユニットの少なくともサブセットは、16ビット又は32ビットの浮動小数点演算を実行するように構成されることが可能であり、一方、浮動小数点ユニットの別のサブセットは、64ビットの浮動小数点演算を実行するように構成されることが可能である。
少なくとも一実施例では、GPGPU1530の複数のインスタンスは、コンピュート・クラスタとして動作するように構成されることが可能である。少なくとも一実施例では、コンピュート・クラスタ1536A~1536Hにより同期及びデータ交換のために使用される通信は、実施例にわたって異なる。少なくとも一実施例では、GPGPU1530の複数のインスタンスは、ホスト・インターフェース1532を介して通信する。少なくとも一実施例では、GPGPU1530は、I/Oハブ1539を含み、このハブは、GPGPU1530の他のインスタンスへの直接接続を可能にするGPUリンク1540に、GPGPU1530を結合する。少なくとも一実施例では、GPUリンク1540は、GPGPU1530の複数のインスタンス間での通信及び同期を可能にするGPUからGPUへの専用のブリッジに結合される。少なくとも一実施例では、GPUリンク1540は、他のGPGPU又は並列プロセッサにデータを送受信するための高速相互接続に結合される。少なくとも一実施例では、GPGPU1530の複数のインスタンスは、別々のデータ処理システムに位置付けられ、ホスト・インターフェース1532を介してアクセス可能なネットワーク・デバイスを介して通信する。少なくとも一実施例では、GPUリンク1540は、ホスト・インターフェース1532に加えて、又はその代わりに、ホスト・プロセッサへの接続を可能にするように構成することができる。
少なくとも一実施例では、GPGPU1530は、ニューラル・ネットワークを訓練するように構成されることが可能である。少なくとも一実施例では、GPGPU1530は、推論プラットフォーム内で使用することができる。GPGPU1530が推論のために使用される少なくとも一実施例では、GPGPUは、GPGPUがニューラル・ネットワークの訓練に使用されるときよりも少数のコンピュート・クラスタ1536A~1536Hを含んでもよい。少なくとも一実施例では、メモリ1544A~1544Bに関連するメモリ技術は、推論の構成と訓練の構成とで異なってもよく、高帯域幅のメモリ技術が、訓練構成に当てられる。少なくとも一実施例では、GPGPU1530の推論構成は、推論固有の命令をサポートすることができる。たとえば、少なくとも一実施例では、推論構成は、1つ又は複数の8ビットの整数のドット積命令をサポートすることができ、これは、導入済みニューラル・ネットワークの推論動作中に使用されてもよい。
1つ若しくは複数の実施例に関連する推論及び/又は訓練の動作を実行するために、推論及び/又は訓練論理615が使用される。推論及び/又は訓練論理615に関する詳細事項は、図6A及び/又は図6Bと併せて以下に提供される。少なくとも一実施例では、推論及び/又は訓練論理615は、本明細書に記載のニューラル・ネットワークの訓練動作、ニューラル・ネットワークの機能及び/若しくはアーキテクチャ、又はニューラル・ネットワークのユース・ケースを使用して計算された重みパラメータに少なくとも部分的に基づき、推論又は予測の動作のためにGPGPU1530において使用されてもよい。
推論及び/又は訓練論理615は、1つ又は複数の実施例に関連付けられた推論及び/又は訓練の動作を実行するために使用される。少なくとも一実施例では、固定されたジッタ位置と、より正確なピクセル色決定のための高解像度テクスチャとを使用して画像を生成するために、この論理がこれらの図の構成要素とともに使用され得る。
図16は、少なくとも一実施例によるコンピューティング・システム1600を示すブロック図である。少なくとも一実施例では、コンピューティング・システム1600は、メモリ・ハブ1605を含んでもよい相互接続経路を介して通信する1つ又は複数のプロセッサ1602とシステム・メモリ1604とを有する処理サブシステム1601を含む。少なくとも一実施例では、メモリ・ハブ1605は、チップセット構成要素内の別個の構成要素であってもよく、又は1つ若しくは複数のプロセッサ1602内に一体化されていてもよい。少なくとも一実施例では、メモリ・ハブ1605は、通信リンク1606を介してI/Oサブシステム1611に結合される。少なくとも一実施例では、I/Oサブシステム1611は、コンピューティング・システム1600が1つ又は複数の入力デバイス1608からの入力を受け取れるようにすることができるI/Oハブ1607を含む。少なくとも一実施例では、I/Oハブ1607は、ディスプレイ・コントローラを有効にすることができ、このディスプレイ・コントローラは、1つ又は複数のプロセッサ1602に含まれて、1つ又は複数のディスプレイ・デバイス1610Aに出力を提供してもよい。少なくとも一実施例では、I/Oハブ1607に結合された1つ又は複数のディスプレイ・デバイス1610Aは、ローカルの、内部の、又は組み込まれたディスプレイ・デバイスを含むことができる。
少なくとも一実施例では、処理サブシステム1601は、バス又は他の通信リンク1613を介してメモリ・ハブ1605に結合された1つ又は複数の並列プロセッサ1612を含む。少なくとも一実施例では、通信リンク1613は、PCIエクスプレスなどであるがこれに限定されない任意の数の規格に基づく通信リンク技術若しくはプロトコルのうちの1つであることができ、又はベンダー固有の通信インターフェース若しくは通信ファブリックであってもよい。少なくとも一実施例では、1つ又は複数の並列プロセッサ1612は、メニー・インテグレーテッド・コア(MIC:many integrated core)プロセッサなど、多数の処理コア及び/又は処理クラスタを含むことのできる、計算に集中した並列又はベクトルの処理システムを形成する。少なくとも一実施例では、1つ又は複数の並列プロセッサ1612は、グラフィックス処理サブシステムを形成し、このサブシステムは、I/Oハブ1607を介して結合された1つ又は複数のディスプレイ・デバイス1610Aのうちの1つに、ピクセルを出力することができる。少なくとも一実施例では、1つ又は複数の並列プロセッサ1612はまた、1つ又は複数のディスプレイ・デバイス1610Bへの直接接続を可能にするディスプレイ・コントローラ及びディスプレイ・インターフェース(図示せず)を含むことができる。
少なくとも一実施例では、システム・ストレージ・ユニット1614は、I/Oハブ1607に接続されて、コンピューティング・システム1600のためのストレージ機構を提供することができる。少なくとも一実施例では、I/Oスイッチ1616を使用して、I/Oハブ1607と、プラットフォームに一体化されてもよいネットワーク・アダプタ1618及び/又はワイヤレス・ネットワーク・アダプタ1619などの他の構成要素、並びに1つ又は複数のアドイン・デバイス1620を介して加えることができる様々な他のデバイスとの通信を可能にするためのインターフェース機構を提供することができる。少なくとも一実施例では、ネットワーク・アダプタ1618は、イーサネット(登録商標)・アダプタ、又は別の有線ネットワーク・アダプタとすることができる。少なくとも一実施例では、ワイヤレス・ネットワーク・アダプタ1619は、Wi-Fi、Bluetooth、近距離無線通信(NFC)、又は1つ若しくは複数のワイヤレス無線を含む他のネットワーク・デバイスのうちの1つ又は複数を含むことができる。
少なくとも一実施例では、コンピューティング・システム1600は、USB又は他のポート接続、光学ストレージ・ドライブ、ビデオ捕捉デバイスなどを含む明示されていない他の構成要素を含むことができ、これらもI/Oハブ1607に接続されてもよい。少なくとも一実施例では、図16の様々な構成要素を相互接続する通信経路が、PCI(ペリフェラル・コンポーネント・インターコネクト)ベースのプロトコル(たとえば、PCI-エクスプレス)などの任意の好適なプロトコル、又はNV-Link高速相互接続などの他のバス若しくはポイントツーポイント通信インターフェース、又は他の相互接続プロトコルを使用して、実装されてもよい。
少なくとも一実施例では、1つ又は複数の並列プロセッサ1612は、たとえばビデオ出力回路を含むグラフィックス及びビデオの処理に最適化された回路を組み込んでおり、グラフィックス・プロセッシング・ユニット(GPU)を構成する。少なくとも一実施例では、1つ又は複数の並列プロセッサ1612は、汎用処理に最適化された回路を組み込んでいる。少なくとも一実施例では、コンピューティング・システム1600の構成要素は、単一の集積回路上の1つ又は複数の他のシステム要素と一体化されてもよい。たとえば、少なくとも一実施例では、1つ又は複数の並列プロセッサ1612、メモリ・ハブ1605、プロセッサ1602、及びI/Oハブ1607を、システム・オン・チップ(SoC)集積回路に一体化することができる。少なくとも一実施例では、コンピューティング・システム1600の構成要素は、単一のパッケージに一体化されて、システム・イン・パッケージ(SIP:system in package)構成を形成することができる。少なくとも一実施例では、コンピューティング・システム1600の構成要素の少なくとも一部分を、マルチ・チップ・モジュール(MCM:multi-chip module)に一体化することができ、このモジュールを、他のマルチ・チップ・モジュールと相互接続して、モジュール式コンピューティング・システムにすることができる。
1つ若しくは複数の実施例に関連する推論及び/又は訓練の動作を実行するために、推論及び/又は訓練論理615が使用される。推論及び/又は訓練論理615に関する詳細事項は、図6A及び/又は図6Bと併せて以下に提供される。少なくとも一実施例では、推論及び/又は訓練論理615は、本明細書に記載のニューラル・ネットワークの訓練動作、ニューラル・ネットワークの機能及び/若しくはアーキテクチャ、又はニューラル・ネットワークのユース・ケースを使用して計算された重みパラメータに少なくとも部分的に基づき、推論又は予測の動作のために図1600のシステムにおいて使用されてもよい。
推論及び/又は訓練論理615は、1つ又は複数の実施例に関連付けられた推論及び/又は訓練の動作を実行するために使用される。少なくとも一実施例では、固定されたジッタ位置と、より正確なピクセル色決定のための高解像度テクスチャとを使用して画像を生成するために、この論理がこれらの図の構成要素とともに使用され得る。
プロセッサ
図17Aは、少なくとも一実施例による並列プロセッサ1700を示す。少なくとも一実施例では、並列プロセッサ1700の様々な構成要素は、プログラム可能なプロセッサ、特定用途向け集積回路(ASIC)、又はフィールド・プログラマブル・ゲート・アレイ(FPGA)などの1つ又は複数の集積回路デバイスを使用して実装されてもよい。少なくとも一実施例では、図示してある並列プロセッサ1700は、例示的な実施例による図16に示す1つ又は複数の並列プロセッサ1612の変形形態である。
図17Aは、少なくとも一実施例による並列プロセッサ1700を示す。少なくとも一実施例では、並列プロセッサ1700の様々な構成要素は、プログラム可能なプロセッサ、特定用途向け集積回路(ASIC)、又はフィールド・プログラマブル・ゲート・アレイ(FPGA)などの1つ又は複数の集積回路デバイスを使用して実装されてもよい。少なくとも一実施例では、図示してある並列プロセッサ1700は、例示的な実施例による図16に示す1つ又は複数の並列プロセッサ1612の変形形態である。
少なくとも一実施例では、並列プロセッサ1700は並列処理ユニット1702を含む。少なくとも一実施例では、並列処理ユニット1702は、並列処理ユニット1702の他のインスタンスを含む他のデバイスとの通信を可能にするI/Oユニット1704を含む。少なくとも一実施例では、I/Oユニット1704は、他のデバイスに直接接続されてもよい。少なくとも一実施例では、I/Oユニット1704は、メモリ・ハブ1605などのハブ又はスイッチ・インターフェースの使用を介して、他のデバイスと接続される。少なくとも一実施例では、メモリ・ハブ1605とI/Oユニット1704との間の接続は、通信リンク1613を形成する。少なくとも一実施例では、I/Oユニット1704は、ホスト・インターフェース1706及びメモリ・クロスバー1716に接続され、ここでホスト・インターフェース1706は、処理動作の実行を対象とするコマンドを受け取り、メモリ・クロスバー1716は、メモリ動作の実行を対象とするコマンドを受け取る。
少なくとも一実施例では、ホスト・インターフェース1706が、I/Oユニット1704を介してコマンド・バッファを受け取るとき、ホスト・インターフェース1706は、これらのコマンドを実行するためのワーク動作をフロント・エンド1708に向けることができる。少なくとも一実施例では、フロント・エンド1708はスケジューラ1710に結合され、このスケジューラは、コマンド又は他のワーク・アイテムを処理クラスタ・アレイ1712に分配するように構成される。少なくとも一実施例では、スケジューラ1710は、処理クラスタ・アレイ1712にタスクが分配される前に、処理クラスタ・アレイ1712が適切に構成され、有効な状態にあることを確実にする。少なくとも一実施例では、スケジューラ1710は、マイクロコントローラで実行しているファームウェア論理を介して実装される。少なくとも一実施例では、マイクロコントローラ実装スケジューラ1710は、複雑なスケジューリング及びワーク分配動作を、粗い粒度と細かい粒度で実行するように構成可能であり、処理アレイ1712で実行しているスレッドの迅速なプリエンプション及びコンテキストのスイッチングを可能にする。少なくとも一実施例では、ホスト・ソフトウェアは、処理アレイ1712でのスケジューリングのワークロードを、複数のグラフィックス処理のドアベルのうちの1つを介して証明することができる。少なくとも一実施例では、次いで、スケジューラ1710を含むマイクロコントローラ内のスケジューラ1710論理によって、ワークロードを自動的に処理アレイ1712全体に分配することができる。
少なくとも一実施例では、処理クラスタ・アレイ1712は、最大「N個」の処理クラスタ(たとえば、クラスタ1714A、クラスタ1714B~クラスタ1714N)を含むことができる。少なくとも一実施例では、処理クラスタ・アレイ1712の各クラスタ1714A~1714Nは、大量の同時スレッドを実行することができる。少なくとも一実施例では、スケジューラ1710は、様々なスケジューリング及び/又はワーク分配のアルゴリズムを使用して、処理クラスタ・アレイ1712のクラスタ1714A~1714Nにワークを配分することができ、これらのアルゴリズムは、プログラム又は計算のタイプごとに生じるワークロードに応じて、異なってもよい。少なくとも一実施例では、スケジューリングは、スケジューラ1710によって動的に対処されてもよく、又は処理クラスタ・アレイ1712によって実行されるように構成されたプログラム論理のコンパイル中に、コンパイラ論理によって部分的に支援されてもよい。少なくとも一実施例では、処理クラスタ・アレイ1712の異なるクラスタ1714A~1714Nは、異なるタイプのプログラムを処理するように、又は異なるタイプの計算を実行するように配分されることが可能である。
少なくとも一実施例では、処理クラスタ・アレイ1712は、様々なタイプの並列処理動作を実行するように構成されることが可能である。少なくとも一実施例では、処理クラスタ・アレイ1712は、汎用の並列コンピュート動作を実行するように構成される。たとえば、少なくとも一実施例では、処理クラスタ・アレイ1712は、ビデオ及び/又はオーディオ・データのフィルタリング、物理動作を含むモデリング動作の実行、及びデータ変換の実行を含む処理タスクを実行するための論理を含むことができる。
少なくとも一実施例では、処理クラスタ・アレイ1712は、並列グラフィックス処理動作を実行するように構成される。少なくとも一実施例では、処理クラスタ・アレイ1712は、テクスチャ動作を実行するためのテクスチャ・サンプリング論理、並びにモザイク論理、及び他の頂点処理論理を含むがこれらに限定されないこうしたグラフィックス処理動作の実行をサポートするための追加の論理を含むことができる。少なくとも一実施例では、処理クラスタ・アレイ1712は、頂点シェーダ、モザイク・シェーダ、ジオメトリ・シェーダ、及びピクセル・シェーダなどであるが、これらに限定されないグラフィックス処理関連のシェーダ・プログラムを実行するように構成されることが可能である。少なくとも一実施例では、並列処理ユニット1702は、処理できるようにデータをシステム・メモリからI/Oユニット1704を介して転送することができる。少なくとも一実施例では、処理中、転送されたデータを、処理中にオン・チップ・メモリ(たとえば、並列プロセッサ・メモリ1722)に記憶し、次いでシステム・メモリに書き戻すことができる。
少なくとも一実施例では、並列処理ユニット1702を使用してグラフィックス処理が実行される場合には、処理クラスタ・アレイ1712の複数のクラスタ1714A~1714Nにグラフィックス処理動作をよりうまく分配できるようにするため、処理ワークロードをおおよそ等しい大きさのタスクに分割するようにスケジューラ1710を構成することができる。少なくとも一実施例では、処理クラスタ・アレイ1712の一部分は、異なるタイプの処理を実行するように構成されることが可能である。たとえば、少なくとも一実施例では、レンダリング画像を生成して表示するために、第1の部分は、頂点シェーディング及びトポロジ生成を実行するように構成されてもよく、第2の部分は、モザイク及びジオメトリのシェーディングを実行するように構成されてもよく、第3の部分は、ピクセル・シェーディング又は他の画面空間動作を実行するように構成されてもよい。少なくとも一実施例では、クラスタ1714A~1714Nのうちの1つ又は複数によって生成される中間データをバッファに記憶して、さらなる処理ができるようにクラスタ1714A~1714Nの間で中間データを送信できるようにしてもよい。
少なくとも一実施例では、処理クラスタ・アレイ1712は、実行される処理タスクをスケジューラ1710を介して受け取ることができ、スケジューラ1710は、処理タスクを定義するコマンドをフロント・エンド1708から受け取る。少なくとも一実施例では、処理タスクは、処理されるデータのインデックス、たとえば、表面(パッチ)データ、プリミティブ・データ、頂点データ、及び/又はピクセル・データ、並びに状態パラメータ、及びデータをどのように処理すべきかを定義するコマンド(たとえば、どのプログラムを実行すべきか)を含むことができる。少なくとも一実施例では、スケジューラ1710は、タスクに対応するインデックスをフェッチするように構成されてもよく、又はフロント・エンド1708からインデックスを受け取ってもよい。少なくとも一実施例では、フロント・エンド1708は、入ってくるコマンド・バッファ(たとえば、バッチ・バッファ、プッシュ・バッファなど)によって指定されるワークロードが開始される前に、処理クラスタ・アレイ1712が有効な状態に構成されていることを保証するように構成されることが可能である。
少なくとも一実施例では、並列処理ユニット1702の1つ又は複数のインスタンスのそれぞれは、並列プロセッサ・メモリ1722と結合することができる。少なくとも一実施例では、並列プロセッサ・メモリ1722には、メモリ・クロスバー1716を介してアクセスすることができ、メモリ・クロスバー1716は、処理クラスタ・アレイ1712並びにI/Oユニット1704からメモリ要求を受け取ることができる。少なくとも一実施例では、メモリ・クロスバー1716は、メモリ・インターフェース1718を介して並列プロセッサ・メモリ1722にアクセスすることができる。少なくとも一実施例では、メモリ・インターフェース1718は、複数のパーティション・ユニット(たとえば、パーティション・ユニット1720A、パーティション・ユニット1720B~パーティション・ユニット1720N)を含むことができ、これらのユニットはそれぞれ、並列プロセッサ・メモリ1722の一部分(たとえば、メモリ・ユニット)に結合することができる。少なくとも一実施例では、パーティション・ユニット1720A~1720Nの数は、メモリ・ユニットの数と等しくなるように構成され、それにより、第1のパーティション・ユニット1720Aは、対応する第1のメモリ・ユニット1724Aを有し、第2のパーティション・ユニット1720Bは、対応するメモリ・ユニット1724Bを有し、N番目のパーティション・ユニット1720Nは、対応するN番目のメモリ・ユニット1724Nを有する。少なくとも一実施例では、パーティション・ユニット1720A~1720Nの数は、メモリ・デバイスの数に等しくなくてもよい。
少なくとも一実施例では、メモリ・ユニット1724A~1724Nは、グラフィックス・ダブル・データ・レート(GDDR)メモリを含む同期グラフィックス・ランダム・アクセス・メモリ(SGRAM)など、ダイナミック・ランダム・アクセス・メモリ(DRAM)又はグラフィックス・ランダム・アクセス・メモリを含む、様々なタイプのメモリ・デバイスを含むことができる。少なくとも一実施例では、またメモリ・ユニット1724A~1724Nはまた、高帯域幅メモリ(HBM)を含むがこれに限定されない3D積層メモリを含んでもよい。少なくとも一実施例では、並列プロセッサ・メモリ1722の利用可能な帯域幅を効率的に使用するために、フレーム・バッファ又はテクスチャ・マップなどのレンダー・ターゲットが、メモリ・ユニット1724A~1724Nにわたって記憶されて、パーティション・ユニット1720A~1720Nが、各レンダー・ターゲットの部分を並列に書き込みできるようにしてもよい。少なくとも一実施例では、システム・メモリとローカル・キャッシュ・メモリを併用する統合メモリ設計に有利なように、並列プロセッサ・メモリ1722のローカル・インスタンスは除外されてもよい。
少なくとも一実施例では、処理クラスタ・アレイ1712のクラスタ1714A~1714Nのうちのいずれか1つは、並列プロセッサ・メモリ1722内のメモリ・ユニット1724A~1724Nのいずれかに書き込まれることになるデータを処理することができる。少なくとも一実施例では、メモリ・クロスバー1716は、各クラスタ1714A~1714Nの出力を、出力に対してさらなる処理動作を実行することができる任意のパーティション・ユニット1720A~1720N、又は別のクラスタ1714A~1714Nに転送するように構成されることが可能である。少なくとも一実施例では、各クラスタ1714A~1714Nは、メモリ・クロスバー1716を通ってメモリ・インターフェース1718と通信して、様々な外部メモリ・デバイスからの読取り、又はそれへの書込みを行うことができる。少なくとも一実施例では、メモリ・クロスバー1716は、I/Oユニット1704と通信するためのメモリ・インターフェース1718への接続部、並びに並列プロセッサ・メモリ1722のローカル・インスタンスへの接続部を有して、異なる処理クラスタ1714A~1714N内の処理ユニットが、システム・メモリ、又は並列処理ユニット1702のローカルにない他のメモリと通信できるようにする。少なくとも一実施例では、メモリ・クロスバー1716は、仮想チャネルを使用して、クラスタ1714A~1714Nと、パーティション・ユニット1720A~1720Nとの間でトラフィック・ストリームを分離することができる。
少なくとも一実施例では、並列処理ユニット1702の複数のインスタンスは、単一のアドイン・カードに提供されてもよく、又は複数のアドイン・カードが相互接続されてもよい。少なくとも一実施例では、異なるインスタンスが異なる数の処理コア、異なる量のローカル並列プロセッサ・メモリ、及び/又は他の異なる構成を有する場合でも、並列処理ユニット1702の異なるインスタンスは相互動作するように構成されることが可能である。たとえば、少なくとも一実施例では、並列処理ユニット1702のいくつかインスタンスは、他のインスタンスに比べて高い精度の浮動小数点ユニットを含むことができる。少なくとも一実施例では、並列処理ユニット1702又は並列プロセッサ1700のうちの1つ又は複数のインスタンスを組み込んだシステムは、デスクトップ、ラップトップ、若しくは携帯型のパーソナル・コンピュータ、サーバ、ワークステーション、ゲーム・コンソール、及び/又は組み込みシステムを含むが、これらに限定されない様々な構成及びフォーム・ファクタで実装することができる。
図17Bは、少なくとも一実施例によるパーティション・ユニット1720のブロック図である。少なくとも一実施例では、パーティション・ユニット1720は、図17Aのパーティション・ユニット1720A~1720Nのうちの1つのパーティション・ユニットのインスタンスである。少なくとも一実施例では、パーティション・ユニット1720は、L2キャッシュ1721、フレーム・バッファ・インターフェース1725、及びラスタ演算ユニット(「ROP」:raster operations unit)1726を含む。L2キャッシュ1721は、メモリ・クロスバー1716及びROP1726から受け取ったロード及びストアの動作を実行するように構成された読取り/書込みキャッシュである。少なくとも一実施例では、読取りミス及び至急の書戻し要求が、処理されるようにL2キャッシュ1721によってフレーム・バッファ・インターフェース1725に出力される。少なくとも一実施例では、更新も、処理されるようにフレーム・バッファ・インターフェース1725を介してフレームに送られる。少なくとも一実施例では、フレーム・バッファ・インターフェース1725は、図17の(たとえば並列プロセッサ・メモリ1722内の)メモリ・ユニット1724A~1724Nなど、並列プロセッサ・メモリのメモリ・ユニットのうちの1つとインターフェースをとる。
少なくとも一実施例では、ROP1726は、ステンシル、zテスト、ブレンディングなどのラスタ演算を実行する処理ユニットである。少なくとも一実施例では、次いでROP1726は、グラフィックス・メモリに記憶された処理済みグラフィックス・データを出力する。少なくとも一実施例では、ROP1726は、メモリに書き込まれる深度又は色データを圧縮し、メモリから読み取られた深度又は色データを解凍するための圧縮論理を含む。少なくとも一実施例では、圧縮論理は、複数の圧縮アルゴリズムのうちの1つ又は複数を利用するロスレス圧縮論理とすることができる。ROP1726によって実行される圧縮論理は、圧縮されるデータの統計的特徴に基づき変更することができる。たとえば、少なくとも一実施例では、深度及び色データに対してはタイルごとにデルタ色圧縮が実行される。
少なくとも一実施例では、ROP1726は、パーティション・ユニット1720内ではなく、各処理クラスタ内(たとえば、図17Aのクラスタ1714A~1714N)に含まれる。少なくとも一実施例では、ピクセル・フラグメント・データではなく、ピクセル・データの読取り及び書込み要求が、メモリ・クロスバー1716を介して送信される。少なくとも一実施例では、処理済みグラフィックス・データは、図16の1つ又は複数のディスプレイ・デバイス1610のうちの1つなどのディスプレイ・デバイスに表示されてもよく、プロセッサ1602によってさらに処理できるようにルーティングされてもよく、又は図17Aの並列プロセッサ1700内の処理エンティティのうちの1つによってさらに処理できるようにルーティングされてもよい。
図17Cは、少なくとも一実施例による並列処理ユニット内の処理クラスタ1714のブロック図である。少なくとも一実施例では、処理クラスタは、図17Aの処理クラスタ1714A~1714Nのうちの1つの処理クラスタのインスタンスである。少なくとも一実施例では、1つ又は複数の処理クラスタ1714は、多数のスレッドを並列で実行するように構成されてもよく、ここで「スレッド」とは、入力データの特定のセットに対して実行している特定のプログラムのインスタンスを指す。少なくとも一実施例では、複数の独立した命令ユニットを提供することなく、多数のスレッドの並列実行をサポートするために、単一命令複数データ(SIMD)の命令発行技法が使用される。少なくとも一実施例では、それぞれの処理クラスタ内の処理エンジンのセットに命令を発行するように構成された共通の命令ユニットを使用して、全体的に同期された多数のスレッドの並列実行をサポートするために、単一命令複数スレッド(SIMT:single-instruction, multiple-thread)の技法が使用される。
少なくとも一実施例では、処理クラスタ1714の動作は、SIMT並列プロセッサに処理タスクを分配するパイプライン・マネージャ1732を介して制御することができる。少なくとも一実施例では、パイプライン・マネージャ1732は、図17Aのスケジューラ1710から命令を受け取り、グラフィックス・マルチプロセッサ1734及び/又はテクスチャ・ユニット1736を介してこれらの命令の実行を管理する。少なくとも一実施例では、グラフィックス・マルチプロセッサ1734は、SIMT並列プロセッサの例示的なインスタンスである。しかし、少なくとも一実施例では、アーキテクチャの異なる様々なタイプのSIMT並列プロセッサが、処理クラスタ1714内に含まれてもよい。少なくとも一実施例では、グラフィックス・マルチプロセッサ1734の1つ又は複数のインスタンスは、処理クラスタ1714内に含めることができる。少なくとも一実施例では、グラフィックス・マルチプロセッサ1734はデータを処理することができ、処理済みデータを、他のシェーダ・ユニットを含む複数の可能な宛先のうちの1つに分配するためにデータ・クロスバー1740が使用されてもよい。少なくとも一実施例では、パイプライン・マネージャ1732は、データ・クロスバー1740を通して分配されることになる処理済みデータの宛先を指定することによって、処理済みデータの分配を容易にすることができる。
少なくとも一実施例では、処理クラスタ1714内の各グラフィックス・マルチプロセッサ1734は、関数実行論理(たとえば、算術論理演算ユニット、ロード・ストア・ユニットなど)の同一のセットを含むことができる。少なくとも一実施例では、関数実行論理は、前の命令が完了する前に新規の命令を発行することができるパイプライン式に構成されることが可能である。少なくとも一実施例では、関数実行論理は、整数及び浮動小数点の算術、比較演算、ブール演算、ビット・シフト、及び様々な代数関数の計算を含む様々な演算をサポートする。少なくとも一実施例では、同じ関数ユニットのハードウェアを活用して、異なる演算を実行することができ、関数ユニットの任意の組合せが存在してもよい。
少なくとも一実施例では、処理クラスタ1714に送信される命令がスレッドを構成する。少なくとも一実施例では、並列処理エンジンのセットにわたって実行されているスレッドのセットが、スレッド・グループである。少なくとも一実施例では、スレッド・グループは、異なる入力データに対してプログラムを実行する。少なくとも一実施例では、スレッド・グループ内の各スレッドを、グラフィックス・マルチプロセッサ1734内の異なる処理エンジンに割り当てることができる。少なくとも一実施例では、スレッド・グループは、グラフィックス・マルチプロセッサ1734内の処理エンジンの数よりも少ないスレッドを含んでもよい。少なくとも一実施例では、スレッド・グループが処理エンジンの数よりも少ないスレッドを含む場合、1つ又は複数の処理エンジンは、そのスレッド・グループが処理されているサイクル中にはアイドルであってもよい。少なくとも一実施例では、スレッド・グループはまた、グラフィックス・マルチプロセッサ1734内の処理エンジンの数よりも多いスレッドを含んでもよい。少なくとも一実施例では、スレッド・グループがグラフィックス・マルチプロセッサ1734内の処理エンジンより多くのスレッドを含む場合には、連続したクロック・サイクルにわたって処理を実行することができる。少なくとも一実施例では、複数のスレッド・グループを、グラフィックス・マルチプロセッサ1734上で同時に実行することができる。
少なくとも一実施例では、グラフィックス・マルチプロセッサ1734は、ロード及びストアの動作を実行するための内部キャッシュ・メモリを含む。少なくとも一実施例では、グラフィックス・マルチプロセッサ1734は、内部キャッシュをやめて、処理クラスタ1714内のキャッシュ・メモリ(たとえば、L1キャッシュ1748)を使用することができる。少なくとも一実施例では、各グラフィックス・マルチプロセッサ1734は、パーティション・ユニット(たとえば、図17Aのパーティション・ユニット1720A~1720N)内のL2キャッシュにもアクセスすることができ、これらのキャッシュが、すべての処理クラスタ1714間で共有され、スレッド間でデータを転送するために使用されてもよい。少なくとも一実施例では、グラフィックス・マルチプロセッサ1734は、オフ・チップのグローバル・メモリにもアクセスすることができ、このメモリは、ローカル並列プロセッサ・メモリ及び/又はシステム・メモリのうちの1つ又は複数を含むことができる。少なくとも一実施例では、並列処理ユニット1702の外部にある任意のメモリが、グローバル・メモリとして使用されてもよい。少なくとも一実施例では、処理クラスタ1714は、グラフィックス・マルチプロセッサ1734の複数のインスタンスを含み、共通の命令及びデータを共有することができ、これらはL1キャッシュ1748に記憶されてもよい。
少なくとも一実施例では、各処理クラスタ1714は、仮想アドレスを物理アドレスにマッピングするように構成されたメモリ管理ユニット(「MMU」)1745を含んでもよい。少なくとも一実施例では、MMU1745の1つ又は複数のインスタンスは、図17Aのメモリ・インターフェース1718内にあってもよい。少なくとも一実施例では、MMU1745は、仮想アドレスを、タイル及び任意選択でキャッシュ・ライン・インデックスの物理アドレスにマッピングするために使用されるページ・テーブル・エントリ(PTE)のセットを含む。少なくとも一実施例では、MMU1745は、アドレスのトランスレーション・ルックアサイド・バッファ(TLB:translation lookaside buffer)又はキャッシュを含んでもよく、これらは、グラフィックス・マルチプロセッサ1734若しくはL1キャッシュ、又は処理クラスタ1714内にあってもよい。少なくとも一実施例では、表面データ・アクセスをローカルに分散するように物理アドレスを処理して、パーティション・ユニット間で要求の効率的なインターリーブが可能になる。少なくとも一実施例では、キャッシュ・ライン・インデックスを使用して、キャッシュ・ラインの要求がヒットかミスかが判定されてもよい。
少なくとも一実施例では、各グラフィックス・マルチプロセッサ1734がテクスチャ・ユニット1736に結合されて、テクスチャ・マッピング動作、たとえば、テクスチャ・サンプル位置の判定、テクスチャ・データの読取り、及びテクスチャ・データのフィルタリングが実行されるように、処理クラスタ1714が構成されてもよい。少なくとも一実施例では、テクスチャ・データは、内部テクスチャL1キャッシュ(図示せず)から、又はグラフィックス・マルチプロセッサ1734内のL1キャッシュから読み取られ、必要に応じて、L2キャッシュ、ローカル並列プロセッサ・メモリ、又はシステム・メモリからフェッチされる。少なくとも一実施例では、各グラフィックス・マルチプロセッサ1734は、処理済みタスクをデータ・クロスバー1740に出力して、さらなる処理ができるように別の処理クラスタ1714に処理済みタスクを提供し、又はメモリ・クロスバー1716を介して、L2キャッシュ、ローカル並列プロセッサ・メモリ、又はシステム・メモリに処理済みタスクを記憶する。少なくとも一実施例では、プレROP1742(プレ・ラスタ演算ユニット)は、グラフィックス・マルチプロセッサ1734からデータを受け取り、ROPユニットにデータを仕向けるように構成されており、ROPユニットは、本明細書に記載のするように、パーティション・ユニット(たとえば、図17Aのパーティション・ユニット1720A~1720N)内に位置付けられてもよい。少なくとも一実施例では、プレROP1742ユニットは、色ブレンディングの最適化を実行し、ピクセル色データを組織化し、アドレス・トランスレーションを実行することができる。
1つ若しくは複数の実施例に関連する推論及び/又は訓練の動作を実行するために、推論及び/又は訓練論理615が使用される。推論及び/又は訓練論理615に関する詳細事項は、図6A及び/又は図6Bと併せて以下に提供される。少なくとも一実施例では、推論及び/又は訓練論理615は、本明細書に記載のニューラル・ネットワークの訓練動作、ニューラル・ネットワークの機能及び/若しくはアーキテクチャ、又はニューラル・ネットワークのユース・ケースを使用して計算された重みパラメータに少なくとも部分的に基づき、推論又は予測の動作のためにグラフィックス処理クラスタ1714において使用されてもよい。
推論及び/又は訓練論理615は、1つ又は複数の実施例に関連付けられた推論及び/又は訓練の動作を実行するために使用される。少なくとも一実施例では、固定されたジッタ位置と、より正確なピクセル色決定のための高解像度テクスチャとを使用して画像を生成するために、この論理がこれらの図の構成要素とともに使用され得る。
図17Dは、少なくとも一実施例によるグラフィックス・マルチプロセッサ1734を示す。少なくとも一実施例では、グラフィックス・マルチプロセッサ1734は、処理クラスタ1714のパイプライン・マネージャ1732と結合する。少なくとも一実施例では、グラフィックス・マルチプロセッサ1734は、命令キャッシュ1752、命令ユニット1754、アドレス・マッピング・ユニット1756、レジスタ・ファイル1758、1つ又は複数の汎用グラフィックス・プロセッシング・ユニット(GPGPU)コア1762、及び1つ又は複数のロード/ストア・ユニット1766を含むがこれらに限定されない実行パイプラインを有する。GPGPUコア1762、及びロード/ストア・ユニット1766は、メモリ及びキャッシュ相互接続1768を介して、キャッシュ・メモリ1772及び共有メモリ1770に結合される。
少なくとも一実施例では、命令キャッシュ1752は、実行すべき命令のストリームをパイプライン・マネージャ1732から受け取る。少なくとも一実施例では、命令は、命令キャッシュ1752にキャッシュされ、命令ユニット1754により実行されるようにディスパッチされる。少なくとも一実施例では、命令ユニット1754は、命令をスレッド・グループ(たとえば、ワープ)としてディスパッチすることができ、各スレッド・グループは、GPGPUコア1762内の異なる実行ユニットに割り当てられる。少なくとも一実施例では、命令は、統一アドレス空間内のアドレスを指定することによって、ローカル、共有、又はグローバルのアドレス空間のいずれかにアクセスすることができる。少なくとも一実施例では、アドレス・マッピング・ユニット1756を使用して、統一アドレス空間のアドレスを、ロード/ストア・ユニット1766がアクセスできる個別メモリ・アドレスにトランスレーションすることができる。
少なくとも一実施例では、レジスタ・ファイル1758は、グラフィックス・マルチプロセッサ1734の機能ユニットにレジスタのセットを提供する。少なくとも一実施例では、レジスタ・ファイル1758は、グラフィックス・マルチプロセッサ1734の機能ユニット(たとえばGPGPUコア1762、ロード/ストア・ユニット1766)のデータ経路に接続された、オペランドのための一時的なストレージを提供する。少なくとも一実施例では、レジスタ・ファイル1758は、レジスタ・ファイル1758の専用部分に各機能ユニットが配分されるように、それぞれの機能ユニット間で分割される。少なくとも一実施例では、レジスタ・ファイル1758は、グラフィックス・マルチプロセッサ1734によって実行されている異なるワープ間で分割される。
少なくとも一実施例では、GPGPUコア1762はそれぞれ、グラフィックス・マルチプロセッサ1734の命令を実行するために使用される浮動小数点ユニット(FPU)及び/又は整数算術論理演算ユニット(ALU)を含むことができる。GPGPUコア1762同士は、同様のアーキテクチャであってもよく、又は異なるアーキテクチャであってもよい。少なくとも一実施例では、GPGPUコア1762の第1の部分は、単精度FPU及び整数ALUを含み、GPGPUコアの第2の部分は、倍精度FPUを含む。少なくとも一実施例では、FPUは、浮動小数点演算に関するIEEE754-2008規格を実装することができ、又は、可変精度の浮動小数点演算を有効にすることができる。少なくとも一実施例では、グラフィックス・マルチプロセッサ1734はさらに、矩形コピー又はピクセル・ブレンディングの動作などの特定の機能を実行するための、1つ若しくは複数の固定機能ユニット又は特別機能ユニットをさらに含むことができる。少なくとも一実施例では、GPGPUコアの1つ又は複数は、固定の又は特別な機能論理も含むことができる。
少なくとも一実施例では、GPGPUコア1762は、複数のデータ・セットに対して単一の命令を実行することができるSIMD論理を含む。少なくとも一実施例では、GPGPUコア1762は、SIMD4、SIMD8、及びSIMD16の命令を物理的に実行することができ、SIMD1、SIMD2、及びSIMD32の命令を論理的に実行することができる。少なくとも一実施例では、GPGPUコアのためのSIMD命令は、シェーダ・コンパイラによるコンパイル時に生成されてもよく、又は単一プログラム複数データ(SPMD:single program multiple data)又はSIMTのアーキテクチャ向けに書かれコンパイルされたプログラムを実行しているときに、自動的に生成されてもよい。少なくとも一実施例では、SIMT実行モデルのために構成されたプログラムの複数のスレッドは、単一のSIMD命令を介して実行することができる。たとえば、少なくとも一実施例では、同じ又は同様の動作を実行する8個のSIMTスレッドを、単一のSIMD8の論理ユニットを介して並列に実行することができる。
少なくとも一実施例では、メモリ及びキャッシュ相互接続1768は、グラフィックス・マルチプロセッサ1734の各機能ユニットをレジスタ・ファイル1758及び共有メモリ1770に接続する相互接続ネットワークである。少なくとも一実施例では、メモリ及びキャッシュ相互接続1768は、ロード/ストア・ユニット1766が、共有メモリ1770とレジスタ・ファイル1758の間でロード及びストアの動作を実装できるようにするクロスバー相互接続である。少なくとも一実施例では、レジスタ・ファイル1758は、GPGPUコア1762と同じ周波数で動作することができ、したがって、GPGPUコア1762とレジスタ・ファイル1758の間のデータ転送は非常に低レイテンシである。少なくとも一実施例では、共有メモリ1770を使用して、グラフィックス・マルチプロセッサ1734内の機能ユニットで実行されるスレッド間の通信を可能にすることができる。少なくとも一実施例では、キャッシュ・メモリ1772を、たとえばデータ・キャッシュとして使用して、機能ユニットとテクスチャ・ユニット1736の間で通信されるテクスチャ・データをキャッシュすることができる。少なくとも一実施例では、共有メモリ1770は、プログラム管理キャッシュとしても使用することができる。少なくとも一実施例では、GPGPUコア1762で実行されているスレッドは、キャッシュ・メモリ1772内に記憶される自動キャッシュ・データに加えて、共有メモリ内にプログラム的にデータを記憶することができる。
少なくとも一実施例では、本明細書に記載の並列プロセッサ又はGPGPUは、ホスト/プロセッサ・コアに通信可能に結合されて、グラフィックス動作、機械学習動作、パターン分析動作、及び様々な汎用GPU(GPGPU)機能を加速する。少なくとも一実施例では、GPUは、バス又は他の相互接続(たとえば、PCIe又はNVLinkなどの高速相互接続)を介してホスト・プロセッサ/コアに通信可能に結合されてもよい。少なくとも一実施例では、GPUは、コアとして同じパッケージ又はチップに一体化されてもよく、内部プロセッサ・バス/相互接続(すなわち、パッケージ又はチップの内部)を介してコアに通信可能に結合されてもよい。少なくとも一実施例では、GPUの接続方法に関わらず、プロセッサ・コアは、ワーク記述子に含まれたコマンド/命令のシーケンスの形でワークをGPUに配分してもよい。少なくとも一実施例では、次いでGPUは、これらのコマンド/命令を効率的に処理するために専用の回路/論理を使用する。
1つ若しくは複数の実施例に関連する推論及び/又は訓練の動作を実行するために、推論及び/又は訓練論理615が使用される。推論及び/又は訓練論理615に関する詳細事項は、図6A及び/又は図6Bと併せて以下に提供される。少なくとも一実施例では、推論及び/又は訓練論理615は、本明細書に記載のニューラル・ネットワークの訓練動作、ニューラル・ネットワークの機能及び/若しくはアーキテクチャ、又はニューラル・ネットワークのユース・ケースを使用して計算された重みパラメータに少なくとも部分的に基づき、推論又は予測の動作のためにグラフィックス・マルチプロセッサ1734において使用されてもよい。
推論及び/又は訓練論理615は、1つ又は複数の実施例に関連付けられた推論及び/又は訓練の動作を実行するために使用される。少なくとも一実施例では、固定されたジッタ位置と、より正確なピクセル色決定のための高解像度テクスチャとを使用して画像を生成するために、この論理がこれらの図の構成要素とともに使用され得る。
図18は、少なくとも一実施例による、マルチGPUコンピューティング・システム1800を示す。少なくとも一実施例では、マルチGPUコンピューティング・システム1800は、ホスト・インターフェース・スイッチ1804を介して複数の汎用グラフィックス・プロセッシング・ユニット(GPGPU)1806A~Dに結合されたプロセッサ1802を含むことができる。少なくとも一実施例では、ホスト・インターフェース・スイッチ1804は、プロセッサ1802をPCIエクスプレス・バスに結合するPCIエクスプレス・スイッチ・デバイスであり、このPCIエクスプレス・バスを介して、プロセッサ1802は、GPGPU1806A~Dと通信することができる。GPGPU1806A~Dは、高速ポイントツーポイントGPUツーGPUリンク1816のセットを介して相互接続することができる。少なくとも一実施例では、GPUツーGPUリンク1816は、専用GPUリンクを介して、GPGPU1806A~Dのそれぞれに接続される。少なくとも一実施例では、P2PのGPUリンク1816は、プロセッサ1802が接続されているホスト・インターフェース・バス1804を介した通信を必要とせずに、GPGPU1806A~Dのそれぞれの間で直接通信を可能にする。少なくとも一実施例では、P2PのGPUリンク1816に仕向けられたGPUツーGPUトラフィックがあると、ホスト・インターフェース・バス1804は、システム・メモリへのアクセスができるように、又はたとえば1つ又は複数のネットワーク・デバイスを介して、マルチGPUコンピューティング・システム1800の他のインスタンスと通信するために、利用可能な状態に保たれる。少なくとも一実施例では、GPGPU1806A~Dは、ホスト・インターフェース・スイッチ1804を介してプロセッサ1802に接続され、少なくとも一実施例では、プロセッサ1802は、P2PのGPUリンク1816のための直接サポートを含み、GPGPU1806A~Dに直接接続することができる。
1つ又は複数の実施例に関連する推論及び/又は訓練の動作を実行するために、推論及び/又は訓練論理615が使用される。推論及び/又は訓練論理615に関する詳細事項は、図6A及び/又は図6Bと併せて以下に提供される。少なくとも一実施例では、推論及び/又は訓練論理615は、本明細書に記載のニューラル・ネットワークの訓練動作、ニューラル・ネットワークの機能及び/若しくはアーキテクチャ、又はニューラル・ネットワークのユース・ケースを使用して計算された重みパラメータに少なくとも部分的に基づき、推論又は予測の動作のためにマルチGPUコンピューティング・システム1800において使用されてもよい。
推論及び/又は訓練論理615は、1つ又は複数の実施例に関連付けられた推論及び/又は訓練の動作を実行するために使用される。少なくとも一実施例では、固定されたジッタ位置と、より正確なピクセル色決定のための高解像度テクスチャとを使用して画像を生成するために、この論理がこれらの図の構成要素とともに使用され得る。
図19は、少なくとも一実施例によるグラフィックス・プロセッサ1900のブロック図である。少なくとも一実施例では、グラフィックス・プロセッサ1900は、リング相互接続1902、パイプライン・フロント・エンド1904、メディア・エンジン1937、及びグラフィックス・コア1980A~1980Nを含む。少なくとも一実施例では、リング相互接続1902は、グラフィックス・プロセッサ1900を、他のグラフィックス・プロセッサ又は1つ又は複数の汎用プロセッサ・コアを含む他の処理ユニットに結合する。少なくとも一実施例では、グラフィックス・プロセッサ1900は、マルチ・コア処理システム内に一体化された多数のプロセッサのうちの1つである。
少なくとも一実施例では、グラフィックス・プロセッサ1900は、リング相互接続1902を介してコマンドのバッチを受け取る。少なくとも一実施例では、入ってくるコマンドは、パイプライン・フロント・エンド1904のコマンド・ストリーマ1903によって解釈される。少なくとも一実施例では、グラフィックス・プロセッサ1900は、グラフィックス・コア1980A~1980Nを介して3Dジオメトリ処理及びメディア処理を実行するためのスケーラブルな実行論理を含む。少なくとも一実施例では、3Dジオメトリ処理コマンドについては、コマンド・ストリーマ1903はコマンドをジオメトリ・パイプライン1936に供給する。少なくとも一実施例では、少なくとも一部のメディア処理コマンドについては、コマンド・ストリーマ1903はコマンドをビデオ・フロント・エンド1934に供給し、ビデオ・フロント・エンド1934はメディア・エンジン1937に結合される。少なくとも一実施例では、メディア・エンジン1937は、ビデオ及び画像の後処理のためのVideo Quality Engine(VQE)1930と、ハードウェア加速されたメディア・データのエンコード及びデコードを提供するマルチ・フォーマット・エンコード/デコード(MFX)1933エンジンとを含む。少なくとも一実施例では、ジオメトリ・パイプライン1936及びメディア・エンジン1937はそれぞれ、少なくとも1つのグラフィックス・コア1980Aによって提供されるスレッド実行リソースのための実行スレッドを生成する。
少なくとも一実施例では、グラフィックス・プロセッサ1900は、モジュール式コア1980A~1980N(コア・スライスと呼ばれることもある)を特徴とするスケーラブルなスレッド実行リソースを含み、それぞれのモジュール式コア1980A~1980Nは、複数のサブ・コア1950A~1950N、1960A~1960N(コア・サブ・スライスと呼ばれることもある)を有する。少なくとも一実施例では、グラフィックス・プロセッサ1900は、任意の数のグラフィックス・コア1980A~1980Nを有することができる。少なくとも一実施例では、グラフィックス・プロセッサ1900は、少なくとも第1のサブ・コア1950A及び第2のサブ・コア1960Aを有するグラフィックス・コア1980Aを含む。少なくとも一実施例では、グラフィックス・プロセッサ1900は、単一のサブ・コア(たとえば、1950A)を有する低電力プロセッサである。少なくとも一実施例では、グラフィックス・プロセッサ1900は、複数のグラフィックス・コア1980A~1980Nを含み、このそれぞれが、第1のサブ・コア1950A~1950Nのセット、及び第2のサブ・コア1960A~1960Nのセットを含む。少なくとも一実施例では、第1のサブ・コア1950A~1950Nの各サブ・コアは、少なくとも、実行ユニット1952A~1952Nとメディア/テクスチャ・サンプラ1954A~1954Nの第1のセットを含む。少なくとも一実施例では、第2のサブ・コア1960A~1960Nの各サブ・コアは、少なくとも、実行ユニット1962A~1962Nとサンプラ1964A~1964Nの第2のセットを含む。少なくとも一実施例では、各サブ・コア1950A~1950N、1960A~1960Nは、共有リソース1970A~1970Nのセットを共有する。少なくとも一実施例では、共有リソースは、共有キャッシュ・メモリ及びピクセル動作論理を含む。
1つ又は複数の実施例に関連付けられた推論及び/又は訓練の動作を実行するために、推論及び/又は訓練論理615が使用される。推論及び/又は訓練論理615に関する詳細は、図6A及び/又は図6Bと併せて以下に提供される。少なくとも一実施例では、推論及び/又は訓練論理615は、本明細書に記載のニューラル・ネットワークの訓練動作、ニューラル・ネットワークの機能及び/若しくはアーキテクチャ、又はニューラル・ネットワークのユース・ケースを使用して計算された重みパラメータに少なくとも部分的に基づき、推論又は予測の動作のためにグラフィックス・プロセッサ1900において使用されてもよい。
1つ又は複数の実施例に関連付けられた推論及び/又は訓練の動作を実行するために、推論及び/又は訓練論理615が使用される。少なくとも一実施例では、固定されたジッタ位置と、より正確なピクセル色決定のための高解像度テクスチャとを使用して画像を生成するために、この論理がこれらの図の構成要素とともに使用され得る。
図20は、少なくとも一実施例による、命令を実行するための論理回路を含んでもよいプロセッサ2000のマイクロ・アーキテクチャを示すブロック図である。少なくとも一実施例では、プロセッサ2000は、x86命令、AMR命令、特定用途向け集積回路(ASIC)用の特別命令などを含む命令を実行してもよい。少なくとも一実施例では、プロセッサ2000は、カリフォルニア州サンタクララのインテルコーポレーションによる、MMX技術で有効化されたマイクロプロセッサ内の64ビット幅MMXTMレジスタなど、パック・データを記憶するためのレジスタを含んでもよい。少なくとも一実施例では、整数形式と浮動小数点形式の両方で利用可能なMMXレジスタは、単一命令複数データ(「SIMD」)及びストリーミングSIMD拡張(「SSE」:streaming SIMD extensions)命令を伴うパック・データ要素で動作してもよい。少なくとも一実施例では、SSE2、SSE3、SSE4、AVX、又はそれ以上(総称して「SSEx」と呼ばれる)の技術に関する128ビット幅のXMMレジスタは、こうしたパック・データのオペランドを保持してもよい。少なくとも一実施例では、プロセッサ2000は、機械学習若しくは深層学習のアルゴリズム、訓練、又は推論を加速するために命令を実行してもよい。
少なくとも一実施例では、プロセッサ2000は、実行すべき命令をフェッチし、プロセッサ・パイプラインで後に使用すべき命令を準備するイン・オーダー・フロント・エンド(「フロント・エンド」)2001を含む。少なくとも一実施例では、フロント・エンド2001は、いくつかのユニットを含んでもよい。少なくとも一実施例では、命令プリフェッチャ2026が、メモリから命令をフェッチし、命令デコーダ2028に命令を供給し、命令デコーダが、命令をデコード又は解釈する。たとえば、少なくとも一実施例では、命令デコーダ2028は、受け取った命令を、機械が実行することのできる「マイクロ命令」又は「マイクロ・オペレーション」と呼ばれる(「マイクロ・オプス」又は「uops」とも呼ばれる)1つ又は複数のオペレーションにデコードする。少なくとも一実施例では、命令デコーダ2028は、命令を、オプコード及び対応するデータ、並びに制御フィールドに構文解析して、これらがマイクロ・アーキテクチャによって使用されて、少なくとも一実施例による動作が実行されてもよい。少なくとも一実施例では、トレース・キャッシュ2030は、デコードされたuopsを、実行できるようにuopキュー2034においてプログラム順のシーケンス又はトレースにアセンブルしてもよい。少なくとも一実施例では、トレース・キャッシュ2030が複雑な命令に遭遇すると、マイクロコードROM2032が、動作の完了に必要なuopsを提供する。
少なくとも一実施例では、単一のマイクロ・オプスに変換できる命令もあれば、全動作を完了するためにいくつかのマイクロ・オプスを必要とする命令もある。少なくとも一実施例では、命令を完了するために5つ以上のマイクロ・オプスが必要な場合、命令デコーダ2028は、マイクロコードROM2032にアクセスして、命令を実行してもよい。少なくとも一実施例では、命令は、命令デコーダ2028において処理できるように、少数のマイクロ・オプスにデコードされてもよい。少なくとも一実施例では、動作を完了するのに多数のマイクロ・オプスが必要な場合には、命令は、マイクロコードROM2032に記憶されてもよい。少なくとも一実施例では、トレース・キャッシュ2030は、少なくとも一実施例によるマイクロコードROM2032からの1つ又は複数の命令を完了するために、エントリ・ポイント・プログラマブル論理アレイ(「PLA」:programmable logic array)を参照して、マイクロコード・シーケンスを読み取るための正しいマイクロ命令ポインタを判定する。少なくとも一実施例では、マイクロコードROM2032が命令のためのマイクロ・オプスのシーケンシングを終了した後、機械のフロント・エンド2001は、トレース・キャッシュ2030からマイクロ・オプスのフェッチを再開してもよい。
少なくとも一実施例では、アウト・オブ・オーダー実行エンジン(「アウト・オブ・オーダー・エンジン」)2003は、実行できるように命令を準備してもよい。少なくとも一実施例では、アウト・オブ・オーダー実行論理は、命令のフローをなめらかにし、その順序を変更するために多数バッファを有し、命令がパイプラインを下り、実行されるようにスケジューリングされるときの性能を最適化する。少なくとも一実施例では、アウト・オブ・オーダー実行エンジン2003は、限定することなく、アロケータ/レジスタ・リネーマ2040、メモリuopキュー2042、整数/浮動小数点uopキュー2044、メモリ・スケジューラ2046、高速スケジューラ2002、低速/汎用浮動小数点スケジューラ(「低速/汎用FP:floating pointスケジューラ」)2004、及び単純浮動小数点スケジューラ(「単純FPスケジューラ」)2006を含む。少なくとも一実施例では、高速スケジューラ2002、低速/汎用浮動小数点スケジューラ2004、及び単純浮動小数点スケジューラ2006は、本明細書において集合的に「uopスケジューラ2002、2004、2006」とも呼ばれる。少なくとも一実施例では、アロケータ/レジスタ・リネーマ2040は、実行するために各uopが必要とする機械バッファ及びリソースを配分する。少なくとも一実施例では、アロケータ/レジスタ・リネーマ2040は、レジスタ・ファイルへのエントリ時に論理レジスタの名前を変更する。少なくとも一実施例では、アロケータ/レジスタ・リネーマ2040はまた、メモリ・スケジューラ2046及びuopスケジューラ2002、2004、2006の前の、2つのuopキュー、すなわちメモリ動作のためのメモリuopキュー2042と非メモリ動作のための整数/浮動小数点uopキュー2044のうちの1つに、各uopのエントリを配分する。少なくとも一実施例では、uopスケジューラ2002、2004、2006は、uopsがいつ実行準備されるかを、それらの従属入力レジスタ・オペランドのソースが準備されていること、及びそれらの動作を完了するためにuopが必要とする実行リソースが利用可能であることに基づき、判定する。少なくとも一実施例では、少なくとも一実施例の高速スケジューラ2002は、メイン・クロック・サイクルの半分ごとにスケジューリングしてもよく、低速/汎用浮動小数点スケジューラ2004及び単純浮動小数点スケジューラ2006は、メイン・プロセッサのクロック・サイクル当たりに1回スケジューリングしてもよい。少なくとも一実施例では、uopスケジューラ2002、2004、2006は、実行できるようにuopsをスケジューリングするためにディスパッチ・ポートを調停する。
少なくとも一実施例では、実行ブロック2011は、限定することなく、整数レジスタ・ファイル/バイパス・ネットワーク2008、浮動小数点レジスタ・ファイル/バイパス・ネットワーク(「FPレジスタ・ファイル/バイパス・ネットワーク」)2010、アドレス生成ユニット(「AGU」:address generation units)2012及び2014、高速算術論理演算ユニット(ALU)(「高速ALU」)2016及び2018、低速算術論理演算ユニット(「低速ALU」)2020、浮動小数点ALU(「FP」)2022、並びに浮動小数点移動ユニット(「FP移動」)2024を含む。少なくとも一実施例では、整数レジスタ・ファイル/バイパス・ネットワーク2008及び浮動小数点レジスタ・ファイル/バイパス・ネットワーク2010は、本明細書において「レジスタ・ファイル2008、2010」とも呼ばれる。少なくとも一実施例では、AGU2012及び2014、高速ALU2016及び2018、低速ALU2020、浮動小数点ALU2022、及び浮動小数点移動ユニット2024は、本明細書において「実行ユニット2012、2014、2016、2018、2020、2022、及び2024」とも呼ばれる。少なくとも一実施例では、実行ブロックb11は、限定することなく、(ゼロを含む)任意の数及びタイプのレジスタ・ファイル、バイパス・ネットワーク、アドレス生成ユニット、及び実行ユニットを、任意の組合せで含んでもよい。
少なくとも一実施例では、レジスタ・ファイル2008、2010は、uopスケジューラ2002、2004、2006と、実行ユニット2012、2014、2016、2018、2020、2022、及び2024との間に配置されてもよい。少なくとも一実施例では、整数レジスタ・ファイル/バイパス・ネットワーク2008は、整数演算を実行する。少なくとも一実施例では、浮動小数点レジスタ・ファイル/バイパス・ネットワーク2010は、浮動小数点演算を実行する。少なくとも一実施例では、レジスタ・ファイル2008、2010のそれぞれは、限定することなく、バイパス・ネットワークを含んでもよく、このバイパス・ネットワークは、レジスタ・ファイルにまだ書き込まれていない完了したばかりの結果を、新しい従属uopsにバイパス又は転送してもよい。少なくとも一実施例では、レジスタ・ファイル2008、2010は、互いにデータを通信してもよい。少なくとも一実施例では、整数レジスタ・ファイル/バイパス・ネットワーク2008は、限定することなく、2つの別々のレジスタ・ファイル、すなわち低次32ビットのデータ用の1つのレジスタ・ファイル、及び高次32ビットのデータ用の第2のレジスタ・ファイルを含んでもよい。少なくとも一実施例では、浮動小数点命令は、通常、64~128ビット幅のオペランドを有することから、浮動小数点レジスタ・ファイル/バイパス・ネットワーク2010は、限定することなく、128ビット幅のエントリを含んでもよい。
少なくとも一実施例では、実行ユニット2012、2014、2016、2018、2020、2022、2024は、命令を実行してもよい。少なくとも一実施例では、レジスタ・ファイル2008、2010は、マイクロ命令が実行する必要のある整数及び浮動小数点のデータのオペランド値を記憶する。少なくとも一実施例では、プロセッサ2000は、限定することなく、任意の数及び組合せの実行ユニット2012、2014、2016、2018、2020、2022、2024を含んでよい。少なくとも一実施例では、浮動小数点ALU2022及び浮動小数点移動ユニット2024は、浮動小数点、MMX、SIMD、AVX、及びSEE、又は特別な機械学習命令を含む他の演算を実行してもよい。少なくとも一実施例では、浮動小数点ALU2022は、限定することなく、64ビットずつの浮動小数点デバイダを含み、除算、平方根、及び残りのマイクロ・オプスを実行してもよい。少なくとも一実施例では、浮動小数点値を含む命令は、浮動小数点ハードウェアによって対処されてもよい。少なくとも一実施例では、ALU演算は、高速ALU2016、2018に渡されてもよい。少なくとも一実施例では、高速ALU2016、2018は、クロック・サイクルの半分の実効レイテンシで高速演算を実行してもよい。少なくとも一実施例では、低速ALU2020は、乗数、シフト、フラグ論理、及びブランチ処理などの長レイテンシ・タイプの演算のための整数実行ハードウェアを、限定することなく含んでもよいことから、ほとんどの複雑な整数演算は低速ALU2020に進む。少なくとも一実施例では、メモリのロード/ストア動作は、AGUS2012、2014によって実行されてもよい。少なくとも一実施例では、高速ALU2016、高速ALU2018、及び低速ALU2020は、64ビットのデータ・オペランドで整数演算を実行してもよい。少なくとも一実施例では、高速ALU2016、高速ALU2018、及び低速ALU2020は、16、32、128、256などを含む様々なデータ・ビット・サイズをサポートするように実装されてもよい。少なくとも一実施例では、浮動小数点ALU2022及び浮動小数点移動ユニット2024は、様々なビット幅を有する幅広いオペランドをサポートするように実装されてもよい。少なくとも一実施例では、浮動小数点ALU2022及び浮動小数点移動ユニット2024は、SIMD及びマルチメディア命令と併せた128ビット幅のパック・データ・オペランドで動作してもよい。
少なくとも一実施例では、uopスケジューラ2002、2004、2006は、親ロードが実行を終了する前に、従属演算をディスパッチする。少なくとも一実施例では、uopsは、プロセッサ2000において投機的にスケジューリング及び実行されてもよいので、プロセッサ2000は、メモリ・ミスに対処するための論理も含んでよい。少なくとも一実施例では、データ・キャッシュにおいてデータ・ロードがミスした場合、一時的に不正確なデータを有するスケジューラを通り過ぎたパイプラインに、進行中の従属演算が存在してもよい。少なくとも一実施例では、リプレイ機構が、不正確なデータを使用する命令を追跡及び再実行する。少なくとも一実施例では、従属演算は、リプレイされる必要があってもよく、独立した演算は、完了が許容されてもよい。少なくとも一実施例では、プロセッサの少なくとも一実施例のスケジューラ及びリプレイ機構はまた、テキスト・ストリング比較演算のための命令シーケンスを捕捉するように設計されてもよい。
少なくとも一実施例では、用語「レジスタ」は、オペランドを識別するための命令の一部として使用することができるオンボード・プロセッサのストレージ・ロケーションを指してもよい。少なくとも一実施例では、レジスタは、(プログラマの視点から見て)プロセッサの外部から使用可能であり得るものであってもよい。少なくとも一実施例では、レジスタは、特定のタイプの回路に限定されなくてもよい。むしろ、少なくとも一実施例では、レジスタは、データを記憶し、データを提供し、本明細書に記載の機能を実行してもよい。少なくとも一実施例では、本明細書に記載のレジスタは、専用物理レジスタ、レジスタ・リネーミングを使用して動的に配分される物理レジスタ、専用物理レジスタと動的に配分される物理レジスタとの組合せなど、任意の数の異なる技法を使用して、プロセッサ内の回路によって実装されてもよい。少なくとも一実施例では、整数レジスタは、32ビットの整数データを記憶する。少なくとも一実施例のレジスタ・ファイルは、パック・データのための8つのマルチメディアSIMDレジスタも含む。
1つ若しくは複数の実施例に関連する推論及び/又は訓練の動作を実行するために、推論及び/又は訓練論理615が使用される。推論及び/又は訓練論理615に関する詳細事項は、図6A及び/又は図6Bと併せて以下に提供される。少なくとも一実施例では、推論及び/又は訓練論理615の一部又はすべてが、実行ブロック2011、及び図示してある若しくは図示していない他のメモリ又はレジスタに組み込まれてもよい。たとえば、少なくとも一実施例では、本明細書に記載の訓練及び/又は推論の技法は、実行ブロック2011に示すALUのうちの1つ又は複数を使用してもよい。さらに、重みパラメータは、本明細書に記載の1つ又は複数の機械学習アルゴリズム、ニューラル・ネットワーク・アーキテクチャ、ユース・ケース、又は訓練技法を実行するための実行ブロック2011のALUを構成するオン・チップ若しくはオフ・チップのメモリ及び/又はレジスタ(図示する又は図示せず)に記憶されてもよい。
1つ又は複数の実施例に関連付けられた推論及び/又は訓練の動作を実行するために、推論及び/又は訓練論理615が使用される。少なくとも一実施例では、固定されたジッタ位置と、より正確なピクセル色決定のための高解像度テクスチャとを使用して画像を生成するために、この論理がこれらの図の構成要素とともに使用され得る。
図21は、少なくとも一実施例による深層学習アプリケーション・プロセッサ2100を示す。少なくとも一実施例では、深層学習アプリケーション・プロセッサ2100は、深層学習アプリケーション・プロセッサ2100によって実行される場合に、本開示全体を通して記載するプロセス及び技法の一部又はすべてを、深層学習アプリケーション・プロセッサ2100に実行させる命令を使用する。少なくとも一実施例では、深層学習アプリケーション・プロセッサ2100は、特定用途向け集積回路(ASIC)である。少なくとも一実施例では、アプリケーション・プロセッサ2100は、1つ若しくは複数の命令又は両方を実行した結果としていずれもハードウェアに「ハード・ワイヤード」された行列乗算演算を実行する。少なくとも一実施例では、深層学習アプリケーション・プロセッサ2100は、限定することなく、処理クラスタ2110(1)~2110(12)、チップ間リンク(「ICL」)2120(1)~2120(12)、チップ間コントローラ(「ICC」)2130(1)~2130(2)、メモリ・コントローラ(「Mem Ctrlrs」)2142(1)~2142(4)、高帯域幅メモリ物理層(「HBM PHY」)2144(1)~2144(4)、管理-コントローラ中央処理装置(「管理-コントローラCPU」)2150、周辺構成要素相互接続エクスプレス・コントローラ及びダイレクト・メモリ・アクセス・ブロック(「PCIeコントローラ及びDMA」)2170、並びに16レーン周辺構成要素相互接続エクスプレス・ポート(「PCI Expressx16」)2180を含む。
少なくとも一実施例では、処理クラスタ2110は、本明細書に記載の技法を含む1つ又は複数の訓練技法を使用して計算された重みパラメータに基づき、推論又は予測の演算を含む深層学習演算を実行してもよい。少なくとも一実施例では、各処理クラスタ2110は、限定することなく、任意の数及びタイプのプロセッサを含んでもよい。少なくとも一実施例では、深層学習アプリケーション・プロセッサ2100は、任意の数及びタイプの処理クラスタ2100を含んでもよい。少なくとも一実施例では、チップ間リンク2120は、双方向性である。少なくとも一実施例では、チップ間リンク2120及びチップ間コントローラ2130は、1つ又は複数のニューラル・ネットワークに具体化された1つ又は複数の機械学習アルゴリズムを実行した結果得られるアクティブ化情報を含む情報を、複数の深層学習アプリケーション・プロセッサ2100が交換できるようにする。少なくとも一実施例では、深層学習アプリケーション・プロセッサ2100は、(ゼロを含む)任意の数及びタイプのICL2120及びICC2130を含んでもよい。
少なくとも一実施例では、HBM2 2140は、合計32ギガバイト(GB:Gigabyte)のメモリを提供する。HBM2 2140(i)は、メモリ・コントローラ2142(i)とHBM PHY2144(i)の両方に関連付けられる。少なくとも一実施例では、任意の数のHBM2 2140が、任意のタイプ及び合計量の高帯域幅メモリを提供してもよく、(ゼロを含む)任意の数及びタイプのメモリ・コントローラ2142及びHBM PHY2144に関連付けられてもよい。少なくとも一実施例では、SPI、I2C、GPIO2160、PCIeコントローラ及びDMA2170、並びに/又はPCIe2180は、任意の技術的に実行可能なやり方で任意の数及びタイプの通信規格を有効にする任意の数及びタイプのブロックに置き換えられてもよい。
1つ若しくは複数の実施例に関連する推論及び/又は訓練の動作を実行するために、推論及び/又は訓練論理615が使用される。推論及び/又は訓練論理615に関する詳細事項は、図6A及び/又は図6Bと併せて以下に提供される。少なくとも一実施例では、深層学習アプリケーション・プロセッサ2100は、深層学習アプリケーション・プロセッサ2100に提供される情報を予測又は推論するようにニューラル・ネットワークなどの機械学習モデルを訓練するために使用される。少なくとも一実施例では、深層学習アプリケーション・プロセッサ2100は、別のプロセッサ若しくはシステムによって、又は深層学習アプリケーション・プロセッサ2100によって訓練されてきた訓練済み機械学習モデル(たとえば、ニューラル・ネットワーク)に基づき、情報を推論又は予測するために使用される。少なくとも一実施例では、プロセッサ2100は、本明細書に記載の1つ又は複数のニューラル・ネットワークのユース・ケースを実行するために使用されてもよい。
1つ又は複数の実施例に関連付けられた推論及び/又は訓練の動作を実行するために、推論及び/又は訓練論理615が使用される。少なくとも一実施例では、固定されたジッタ位置と、より正確なピクセル色決定のための高解像度テクスチャとを使用して画像を生成するために、この論理がこれらの図の構成要素とともに使用され得る。
図22は、少なくとも一実施例による、ニューロモーフィック・プロセッサ2200のブロック図である。少なくとも一実施例では、ニューロモーフィック・プロセッサ2200は、ニューロモーフィック・プロセッサ2200の外部のソースから1つ又は複数の入力を受信する。少なくとも一実施例では、これらの入力は、ニューロモーフィック・プロセッサ2200内の1つ又は複数のニューロン2202に送信されてもよい。少なくとも一実施例では、ニューロン2202及びその構成要素は、1つ又は複数の算術論理演算ユニット(ALU)を含む回路又は論理を使用して、実装されてもよい。少なくとも一実施例では、ニューロモーフィック・プロセッサ2200は、限定することなく、ニューロン2202の数千又は数百万のインスタンスを含んでもよいが、任意の好適な数のニューロン2202が使用されてもよい。少なくとも一実施例では、ニューロン2202の各インスタンスは、ニューロン入力2204及びニューロン出力2206を含んでもよい。少なくとも一実施例では、ニューロン2202は出力を生成してもよく、この出力は、ニューロン2202の他のインスタンスの入力に送信されてもよい。たとえば、少なくとも一実施例では、ニューロン入力2204及びニューロン出力2206は、シナプス2208を介して相互接続されてもよい。
少なくとも一実施例では、ニューロン2202とシナプス2208は、ニューロモーフィック・プロセッサ2200が受信した情報をニューロモーフィック・プロセッサ2200が動作して処理又は分析するように、相互接続されてもよい。少なくとも一実施例では、ニューロン2202は、ニューロン入力2204を介して受信した入力が、閾値を超えているとき、出力パルス(又は「発火」若しくは「スパイク」)を送信してもよい。少なくとも一実施例では、ニューロン2202は、ニューロン入力2204において受信した信号を合計又は積分してもよい。たとえば、少なくとも一実施例では、ニューロン2202は、漏れ積分発火ニューロン(leaky integrate-and-fire neuron)として実装されてもよく、ここで、合計(「膜電位」と呼ばれる)が閾値を超える場合には、ニューロン2202は、シグモイド関数又は閾値関数などの伝達関数を使用して、出力(又は「発火」)を生成してもよい。少なくとも一実施例では、漏れ積分発火ニューロンは、ニューロン入力2204で受信した信号を合計して膜電位にしてもよく、また、崩壊因子(又は漏れ)を適用して膜電位を低減してもよい。少なくとも一実施例では、複数の入力信号が、閾値を超えるほど十分に素早く(すなわち、膜電位の崩壊が少なすぎて発火できなくなる前に)ニューロン入力2204において受信された場合には、漏れ積分発火ニューロンが発火してもよい。少なくとも一実施例では、ニューロン2202は、入力を受信し、入力を積分して膜電位にし、膜電位を崩壊させる回路又は論理を使用して、実装されてもよい。少なくとも一実施例では、入力は平均化されてもよく、又は任意の他の好適な伝達関数が使用されてもよい。さらに、少なくとも一実施例では、ニューロン2202は、ニューロン入力2204に伝達関数を適用した結果が閾値を超えるとき、ニューロン出力2206において出力スパイクを生成するコンパレータ回路又は論理を、限定することなく含んでもよい。少なくとも一実施例では、ニューロン2202は発火すると、前に受信した入力情報を、たとえば膜電位を0又は他の好適なデフォルト値に再設定することによって、無視してもよい。少なくとも一実施例では、膜電位が0にリセットされると、ニューロン2202は、好適な期間(又は不応期)の後に通常の動作を再開してもよい。
少なくとも一実施例では、ニューロン2202は、シナプス2208を通して相互接続されてもよい。少なくとも一実施例では、シナプス2208は、第1のニューロン2202の出力から第2のニューロン2202の入力に信号を送信するように動作してもよい。少なくとも一実施例では、ニューロン2202は、シナプス2208の2つ以上のインスタンスを介して情報を送信してもよい。少なくとも一実施例では、ニューロン出力2206の1つ又は複数のインスタンスは、シナプス2208のインスタンスを介して、同じニューロン2202のニューロン入力2204のインスタンスに接続されてもよい。少なくとも一実施例では、シナプス2208のインスタンスを介して送信されることになる出力を生成するニューロン2202のインスタンスは、シナプス2208のそのインスタンスに対して「シナプス前ニューロン」と呼ばれてもよい。少なくとも一実施例では、シナプス2208のインスタンスを介して送信されることになる入力を受信するニューロン2202のインスタンスは、シナプス2208のそのインスタンスに対して「シナプス後ニューロン」と呼ばれてもよい。少なくとも一実施例では、ニューロン2202のインスタンスは、シナプス2208の1つ又は複数のインスタンスから入力を受信してもよく、また、シナプス2208の1つ又は複数のインスタンスを介して出力を送信してもよいので、ニューロン2202の単一のインスタンスは、したがって、シナプス2208の様々なインスタンスに対して「シナプス前ニューロン」と「シナプス後ニューロン」の両方であってもよい。
少なくとも一実施例では、ニューロン2202は、1つ又は複数の層に組織化されてもよい。ニューロン2202の各インスタンスは、1つ又は複数のシナプス2208を通って1つ又は複数のニューロン入力2204にファン・アウトすることができる1つのニューロン出力2206を有してもよい。少なくとも一実施例では、第1の層2210のニューロン2202のニューロン出力2206は、第2の層2212のニューロン2202のニューロン入力2204に接続されてもよい。少なくとも一実施例では、層2210は、「フィード・フォワード」層と呼ばれてもよい。少なくとも一実施例では、第1の層2210のインスタンスにおけるニューロン2202の各インスタンスは、第2の層2212におけるニューロン2202の各インスタンスにファン・アウトしてもよい。少なくとも一実施例では、第1の層2210は、「完全に接続されたフィード・フォワード層」と呼ばれてもよい。少なくとも一実施例では、第2の層2212のインスタンスにおけるニューロン2202の各インスタンスは、第3の層2214におけるニューロン2202の全インスタンスより少ないインスタンスにファン・アウトしてもよい。少なくとも一実施例では、第2の層2212は、「疎に接続されたフィード・フォワード層」と呼ばれてもよい。少なくとも一実施例では、第2の層2212のニューロン2202は、(同じ)第2の層2212におけるニューロン2202を含め、複数の他の層のニューロン2202にファン・アウトしてもよい。少なくとも一実施例では、第2の層2212は、「回帰層」と呼ばれてもよい。少なくとも一実施例では、ニューロモーフィック・プロセッサ2200は、疎に接続されたフィード・フォワード層と完全に接続されたフィード・フォワード層の両方を限定することなく含む、回帰層とフィード・フォワード層の任意の好適な組合せを限定することなく含んでもよい。
少なくとも一実施例では、ニューロモーフィック・プロセッサ2200は、シナプス2208をニューロン2202に接続するための再構成可能相互接続アーキテクチャ、又は専用ハード・ワイヤード相互接続を、限定することなく含んでもよい。少なくとも一実施例では、ニューロモーフィック・プロセッサ2200は、ニューラル・ネットワーク・トポロジ、及びニューロンのファン・イン/ファン・アウトに基づき、必要に応じてシナプスを異なるニューロン2202に配分できるようにする回路又は論理を、限定することなく含んでもよい。たとえば、少なくとも一実施例では、シナプス2208は、ネットワーク・オン・チップなどの相互接続ファブリックを使用して、又は専用の接続を用いて、ニューロン2202に接続されてもよい。少なくとも一実施例では、シナプス相互接続及びその構成要素は、回路又は論理を使用して実装されてもよい。
1つ又は複数の実施例に関連付けられた推論及び/又は訓練の動作を実行するために、推論及び/又は訓練論理615が使用される。少なくとも一実施例では、固定されたジッタ位置と、より正確なピクセル色決定のための高解像度テクスチャとを使用して画像を生成するために、この論理がこれらの図の構成要素とともに使用され得る。
図23は、少なくとも一実施例による処理システムのブロック図である。少なくとも一実施例では、システム2300は、1つ又は複数のプロセッサ2302、及び1つ又は複数のグラフィックス・プロセッサ2308を含み、単一プロセッサのデスクトップ・システム、マルチプロセッサのワークステーション・システム、又は多数のプロセッサ2302若しくはプロセッサ・コア2307を有するサーバ・システムであってもよい。少なくとも一実施例では、システム2300は、モバイル・デバイス、携帯型デバイス、又は組み込みデバイスで使用するためのシステム・オン・チップ(SoC)集積回路内に組み込まれた処理プラットフォームである。
少なくとも一実施例では、システム2300は、サーバ・ベースのゲーミング・プラットフォーム、ゲーム及びメディアのコンソールを含むゲーム・コンソール、モバイル・ゲーミング・コンソール、携帯型ゲーム・コンソール、若しくはオンライン・ゲーム・コンソールを含んでもよく、又はそれらに組み込まれてもよい。少なくとも一実施例では、システム2300は、モバイル・フォン、スマート・フォン、タブレット・コンピューティング・デバイス、又はモバイル・インターネット・デバイスである。少なくとも一実施例では、処理システム2300はまた、スマート・ウォッチ・ウェアラブル・デバイス、スマート・アイウェア・デバイス、拡張現実デバイス、若しくは仮想現実デバイスなどのウェアラブル・デバイスを含んでもよく、それらに結合されてもよく、又はそれらの中に一体化されてもよい。少なくとも一実施例では、処理システム2300は、1つ又は複数のプロセッサ2302と、1つ又は複数のグラフィックス・プロセッサ2308によって生成されるグラフィカル・インターフェースとを有するテレビ又はセット・トップ・ボックス・デバイスである。
少なくとも一実施例では、1つ又は複数のプロセッサ2302はそれぞれ、実行されたときにシステム及びユーザ・ソフトウェアのための動作を実行する命令を処理するための1つ又は複数のプロセッサ・コア2307を含む。少なくとも一実施例では、1つ又は複数のプロセッサ・コア2307のそれぞれは、特定の命令セット2309を処理するように構成される。少なくとも一実施例では、命令セット2309は、複合命令セット・コンピューティング(CISC)、縮小命令セット・コンピューティング(RISC)、又は超長命令語(VLIW)を介したコンピューティングを容易にしてもよい。少なくとも一実施例では、プロセッサ・コア2307はそれぞれ、異なる命令セット2309を処理してもよく、この命令セットは、他の命令セットのエミュレーションを容易にする命令を含んでもよい。少なくとも一実施例では、プロセッサ・コア2307はまた、デジタル信号プロセッサ(DSP)などの他の処理デバイスを含んでもよい。
少なくとも一実施例では、プロセッサ2302はキャッシュ・メモリ2304を含む。少なくとも一実施例では、プロセッサ2302は、単一の内部キャッシュ又は複数レベルの内部キャッシュを有してもよい。少なくとも一実施例では、キャッシュ・メモリは、プロセッサ2302の様々な構成要素間で共有される。少なくとも一実施例では、プロセッサ2302はまた、外部キャッシュ(たとえば、レベル3(L3)キャッシュ又はラスト・レベル・キャッシュ(LLC))(図示せず)を使用し、このキャッシュは、知られているキャッシュ・コヒーレンス技法を使用して、プロセッサ・コア2307間で共有されてもよい。少なくとも一実施例では、さらにレジスタ・ファイル2306がプロセッサ2302に含まれ、このレジスタ・ファイルは、異なるタイプのデータを記憶するための異なるタイプのレジスタ(たとえば、整数レジスタ、浮動小数点レジスタ、状態レジスタ、及び命令ポインタ・レジスタ)を含んでもよい。少なくとも一実施例では、レジスタ・ファイル2306は、汎用レジスタ又は他のレジスタを含んでもよい。
少なくとも一実施例では、1つ又は複数のプロセッサ2302は、1つ又は複数のインターフェース・バス2310に結合されて、アドレス、データ、又は制御信号などの通信信号を、プロセッサ2302とシステム2300内の他の構成要素との間で送信する。少なくとも一実施例では、インターフェース・バス2310は、一実施例では、ダイレクト・メディア・インターフェース(DMI)バスのバージョンなどのプロセッサ・バスとすることができる。少なくとも一実施例では、インターフェース2310は、DMIバスに限定されず、1つ又は複数のペリフェラル・コンポーネント・インターコネクト・バス(たとえば、PCI、PCIエクスプレス)、メモリ・バス、又は他のタイプのインターフェース・バスを含んでもよい。少なくとも一実施例では、プロセッサ2302は、統合メモリ・コントローラ2316、及びプラットフォーム・コントローラ・ハブ2330を含む。少なくとも一実施例では、メモリ・コントローラ2316は、メモリ・デバイスとシステム2300の他の構成要素との間の通信を容易にし、一方でプラットフォーム・コントローラ・ハブ(PCH)2330は、ローカルI/Oバスを介してI/Oデバイスへの接続を提供する。
少なくとも一実施例では、メモリ・デバイス2320は、ダイナミック・ランダム・アクセス・メモリ(DRAM)デバイス、スタティック・ランダム・アクセス・メモリ(SRAM)デバイス、フラッシュ・メモリ・デバイス、相変化メモリ・デバイス、又はプロセス・メモリとしての役割を果たすのに好適な性能を有する何らかの他のメモリ・デバイスとすることができる。少なくとも一実施例では、メモリ・デバイス2320は、システム2300のためのシステム・メモリとして動作して、1つ又は複数のプロセッサ2302がアプリケーション若しくはプロセスを実行するときに使用するためのデータ2322及び命令2321を記憶することができる。少なくとも一実施例では、メモリ・コントローラ2316はまた、任意選択の外部グラフィックス・プロセッサ2312と結合しており、このグラフィックス・プロセッサは、プロセッサ2302内の1つ又は複数のグラフィックス・プロセッサ2308と通信して、グラフィックス及びメディアの動作を実行してもよい。少なくとも一実施例では、ディスプレイ・デバイス2311は、プロセッサ2302に接続することができる。少なくとも一実施例では、ディスプレイ・デバイス2311は、モバイル電子デバイス又はラップトップ・デバイスのような内部ディスプレイ・デバイス、又はディスプレイ・インターフェース(たとえば、ディスプレイ・ポートなど)を介して取り付けられる外部ディスプレイ・デバイスのうちの1つ又は複数を含むことができる。少なくとも一実施例では、ディスプレイ・デバイス2311は、仮想現実(VR)アプリケーション又は拡張現実(AR)アプリケーションで使用するための立体ディスプレイ・デバイスなどの頭部装着型ディスプレイ(HMD)を含むことができる。
少なくとも一実施例では、プラットフォーム・コントローラ・ハブ2330は、周辺装置が高速I/Oバスを介してメモリ・デバイス2320及びプロセッサ2302に接続できるようにする。少なくとも一実施例では、I/O周辺装置は、オーディオ・コントローラ2346、ネットワーク・コントローラ2334、ファームウェア・インターフェース2328、ワイヤレス・トランシーバ2326、タッチ・センサ2325、データ・ストレージ・デバイス2324(たとえば、ハード・ディスク・ドライブ、フラッシュ・メモリなど)を含むが、これらに限定されない。少なくとも一実施例では、データ・ストレージ・デバイス2324は、ストレージ・インターフェース(たとえば、SATA)を介して、又はペリフェラル・コンポーネント・インターコネクト・バス(たとえば、PCI、PCIエクスプレス)などのペリフェラル・バスを介して、接続することができる。少なくとも一実施例では、タッチ・センサ2325は、タッチ画面センサ、圧力センサ、又は指紋センサを含むことができる。少なくとも一実施例では、ワイヤレス・トランシーバ2326は、WiFiトランシーバ、Bluetoothトランシーバ、又は3G、4G、若しくはLong Term Evolution(LTE)トランシーバなどのモバイル・ネットワーク・トランシーバとすることができる。少なくとも一実施例では、ファームウェア・インターフェース2328は、システム・ファームウェアとの通信を可能にし、たとえば、ユニファイド・エクステンシブル・ファームウェア・インターフェース(UEFI)とすることができる。少なくとも一実施例では、ネットワーク・コントローラ2334は、有線ネットワークへのネットワーク接続を可能にすることができる。少なくとも一実施例では、高性能ネットワーク・コントローラ(図示せず)は、インターフェース・バス2310と結合する。少なくとも一実施例では、オーディオ・コントローラ2346は、多チャネル・ハイ・デフィニション・オーディオ・コントローラである。少なくとも一実施例では、システム2300は、レガシー(たとえば、パーソナル・システム2(PS/2))デバイスをシステムに結合するための任意選択のレガシーI/Oコントローラ2340を含む。少なくとも一実施例では、プラットフォーム・コントローラ・ハブ2330は、キーボードとマウス2343の組合せ、カメラ2344、又は他のUSB入力デバイスなど、1つ又は複数のユニバーサル・シリアル・バス(USB)コントローラ2342の接続入力デバイスにも接続することができる。
少なくとも一実施例では、メモリ・コントローラ2316及びプラットフォーム・コントローラ・ハブ2330のインスタンスは、外部グラフィックス・プロセッサ2312などの個別の外部グラフィックス・プロセッサに一体化されてもよい。少なくとも一実施例では、プラットフォーム・コントローラ・ハブ2330及び/又はメモリ・コントローラ2316は、1つ又は複数のプロセッサ2302の外部にあってもよい。たとえば、少なくとも一実施例では、システム2300は、外部のメモリ・コントローラ2316及びプラットフォーム・コントローラ・ハブ2330を含むことができ、これらは、プロセッサ2302と通信するシステム・チップセット内のメモリ・コントローラ・ハブ及び周辺装置コントローラ・ハブとして構成されてもよい。
1つ又は複数の実施例に関連する推論及び/又は訓練の動作を実行するために、推論及び/又は訓練論理615が使用される。推論及び/又は訓練論理615に関する詳細事項は、図6A及び/又は図6Bと併せて以下に提供される。少なくとも一実施例では、推論及び/又は訓練論理615の一部又はすべてが、グラフィックス・プロセッサ2300に組み込まれてもよい。たとえば、少なくとも一実施例では、本明細書に記載の訓練及び/又は推論の技法は、グラフィックス・プロセッサ2312に具体化されたALUのうちの1つ又は複数を使用してもよい。さらに、少なくとも一実施例では、本明細書に記載の推論及び/又は訓練の動作は、図6A又は図6Bに示す論理以外の論理を使用して行われてもよい。少なくとも一実施例では、重みパラメータは、本明細書に記載の1つ又は複数の機械学習アルゴリズム、ニューラル・ネットワーク・アーキテクチャ、ユース・ケース、又は訓練技法を実行するためのグラフィックス・プロセッサ2300のALUを構成するオン・チップ若しくはオフ・チップのメモリ及び/又はレジスタ(図示している又は図示せず)に記憶されてもよい。
1つ又は複数の実施例に関連付けられた推論及び/又は訓練の動作を実行するために、推論及び/又は訓練論理615が使用される。少なくとも一実施例では、固定されたジッタ位置と、より正確なピクセル色決定のための高解像度テクスチャとを使用して画像を生成するために、この論理がこれらの図の構成要素とともに使用され得る。
図24は、少なくとも一実施例による、1つ又は複数のプロセッサ・コア2402A~2402N、統合メモリ・コントローラ2414、及び統合グラフィックス・プロセッサ2408を有するプロセッサ2400のブロック図である。少なくとも一実施例では、プロセッサ2400は、破線の四角によって表される追加コア2402Nを含むそれ以下の数の追加コアを含むことができる。少なくとも一実施例では、プロセッサ・コア2402A~2402Nのそれぞれは、1つ又は複数の内部キャッシュ・ユニット2404A~2404Nを含む。少なくとも一実施例では、各プロセッサ・コアはまた、1つ又は複数の共有キャッシュ・ユニット2406にアクセスできる。
少なくとも一実施例では、内部キャッシュ・ユニット2404A~2404N、及び共有キャッシュ・ユニット2406は、プロセッサ2400内のキャッシュ・メモリ階層を表す。少なくとも一実施例では、キャッシュ・メモリ・ユニット2404A~2404Nは、各プロセッサ・コア内の命令及びデータのキャッシュの少なくとも1つのレベル、並びにレベル2(L2)、レベル3(L3)、レベル4(L4)などの共有中間レベル・キャッシュの1つ又は複数のレベル、又はキャッシュの他のレベルを含んでもよく、ここで外部メモリの前の最高レベルのキャッシュは、LLCとして分類される。少なくとも一実施例では、キャッシュ・コヒーレンス論理は、様々なキャッシュ・ユニット2406及び2404A~2404N間でコヒーレンスを維持する。
少なくとも一実施例では、プロセッサ2400はまた、1つ又は複数のバス・コントローラ・ユニット2416とシステム・エージェント・コア2410のセットを含んでもよい。少なくとも一実施例では、1つ又は複数のバス・コントローラ・ユニット2416は、1つ又は複数のPCI若しくはPCIエクスプレス・バスなどのペリフェラル・バスのセットを管理する。少なくとも一実施例では、システム・エージェント・コア2410は、様々なプロセッサ構成要素のための管理機能を提供する。少なくとも一実施例では、システム・エージェント・コア2410は、様々な外部メモリ・デバイス(図示せず)へのアクセスを管理するための1つ又は複数の統合メモリ・コントローラ2414を含む。
少なくとも一実施例では、プロセッサ・コア2402A~2402Nの1つ又は複数は、同時マルチスレッディングのサポートを含む。少なくとも一実施例では、システム・エージェント・コア2410は、マルチスレッドの処理中にコア2402A~2402Nを調整し動作させるための構成要素を含む。少なくとも一実施例では、システム・エージェント・コア2410はさらに、電力制御ユニット(PCU)を含んでもよく、このユニットは、プロセッサ・コア2402A~2402N及びグラフィックス・プロセッサ2408の1つ又は複数の電力状態を調整するための論理及び構成要素を含む。
少なくとも一実施例では、プロセッサ2400はさらに、グラフィックス処理動作を実行するためのグラフィックス・プロセッサ2408を含む。少なくとも一実施例では、グラフィックス・プロセッサ2408は、共有キャッシュ・ユニット2406と、1つ又は複数の統合メモリ・コントローラ2414を含むシステム・エージェント・コア2410とに結合する。少なくとも一実施例では、システム・エージェント・コア2410はまた、1つ又は複数の結合されたディスプレイに対してグラフィックス・プロセッサの出力を行わせるためのディスプレイ・コントローラ2411を含む。少なくとも一実施例では、ディスプレイ・コントローラ2411はまた、少なくとも1つの相互接続を介してグラフィックス・プロセッサ2408に結合された別個のモジュールであってもよく、又はグラフィックス・プロセッサ2408内に一体化されていてもよい。
少なくとも一実施例では、プロセッサ2400の内部構成要素を結合するために、リング・ベースの相互接続ユニット2412が使用される。少なくとも一実施例では、ポイントツーポイント相互接続、スイッチ相互接続、又は他の技法などの代替的な相互接続ユニットが使用されてもよい。少なくとも一実施例では、グラフィックス・プロセッサ2408は、I/Oリンク2413を介してリング相互接続2412と結合する。
少なくとも一実施例では、I/Oリンク2413は、様々なプロセッサ構成要素と、eDRAMモジュールなどの高性能組み込みメモリ・モジュール2418との間の通信を容易にするオン・パッケージI/O相互接続を含む多様なI/O相互接続のうちの少なくとも1つを表す。少なくとも一実施例では、プロセッサ・コア2402A~2402Nのそれぞれ及びグラフィックス・プロセッサ2408は、共有ラスト・レベル・キャッシュとして組み込みメモリ・モジュール2418を使用する。
少なくとも一実施例では、プロセッサ・コア2402A~2402Nは、共通の命令セット・アーキテクチャを実行する同種のコアである。少なくとも一実施例では、プロセッサ・コア2402A~2402Nは、命令セット・アーキテクチャ(ISA)の観点から見れば異種であり、ここでプロセッサ・コア2402A~2402Nのうちの1つ又は複数は、共通の命令セットを実行するが、プロセッサ・コア2402A~2402Nのうちの1つ又は複数の他のコアは、共通の命令セットのサブセット、又は異なる命令セットを実行する。少なくとも一実施例では、プロセッサ・コア2402A~2402Nは、マイクロ・アーキテクチャの観点から見れば異種であり、ここで電力消費量が相対的に高い1つ又は複数のコアは、電力消費量がより低い1つ又は複数のコアと結合する。少なくとも一実施例では、プロセッサ2400は、1つ又は複数のチップ上に、又はSoC集積回路として実装することができる。
1つ又は複数の実施例に関連する推論及び/又は訓練の動作を実行するために、推論及び/又は訓練論理615が使用される。推論及び/又は訓練論理615に関する詳細事項は、図6A及び/又は図6Bと併せて以下に提供される。少なくとも一実施例では、推論及び/又は訓練論理615の一部又はすべてが、プロセッサ2400に組み込まれてもよい。たとえば、少なくとも一実施例では、本明細書に記載の訓練及び/又は推論の技法は、グラフィックス・プロセッサ2312、グラフィックス・コア2402A~2402N、又は図24の他の構成要素に具体化されたALUのうちの1つ又は複数を使用してもよい。さらに、少なくとも一実施例では、本明細書に記載の推論及び/又は訓練の動作は、図6A又は図6Bに示す論理以外の論理を使用して行われてもよい。少なくとも一実施例では、重みパラメータは、本明細書に記載の1つ又は複数の機械学習アルゴリズム、ニューラル・ネットワーク・アーキテクチャ、ユース・ケース、又は訓練技法を実行するためのグラフィックス・プロセッサ2400のALUを構成するオン・チップ若しくはオフ・チップのメモリ及び/又はレジスタ(図示している又は図示せず)に記憶されてもよい。
1つ又は複数の実施例に関連付けられた推論及び/又は訓練の動作を実行するために、推論及び/又は訓練論理615が使用される。少なくとも一実施例では、固定されたジッタ位置と、より正確なピクセル色決定のための高解像度テクスチャとを使用して画像を生成するために、この論理がこれらの図の構成要素とともに使用され得る。
図25は、本明細書に記載の少なくとも一実施例による、グラフィックス・プロセッサ・コア2500のハードウェア論理のブロック図である。少なくとも一実施例では、グラフィックス・プロセッサ・コア2500はグラフィックス・コア・アレイ内に含まれる。少なくとも一実施例では、コア・スライスと呼ばれることがあるグラフィックス・プロセッサ・コア2500は、モジュール式グラフィックス・プロセッサ内の1つ又は複数のグラフィックス・コアとすることができる。少なくとも一実施例では、グラフィックス・プロセッサ・コア2500は、1つのグラフィックス・コア・スライスの例示であり、本明細書に記載のグラフィックス・プロセッサは、目的の電力及び性能のエンベロープに基づき、複数のグラフィックス・コア・スライスを含んでもよい。少なくとも一実施例では、各グラフィックス・コア2500は、汎用及び固定の機能論理のモジュール式ブロックを含むサブ・スライスとも呼ばれる複数のサブ・コア2501A~2501Fに結合された固定機能ブロック2530を含むことができる。
少なくとも一実施例では、固定機能ブロック2530は、たとえば低性能及び/又は低電力のグラフィックス・プロセッサ実装形態において、グラフィックス・プロセッサ2500中のすべてのサブ・コアが共有できるジオメトリ/固定機能パイプライン2536を含む。少なくとも一実施例では、ジオメトリ/固定機能パイプライン2536は、3D固定機能パイプライン、ビデオ・フロント・エンド・ユニット、スレッド・スポーナ及びスレッド・ディスパッチャ、並びに統合リターン・バッファを管理する統合リターン・バッファ・マネージャを含む。
少なくとも一実施例では、固定機能ブロック2530はまた、グラフィックスSoCインターフェース2537と、グラフィックス・マイクロコントローラ2538と、メディア・パイプライン2539とを含む。少なくとも一実施例では、固定されたグラフィックスSoCインターフェース2537は、グラフィックス・コア2500とシステム・オン・チップ集積回路内の他のプロセッサ・コアとの間のインターフェースを提供する。少なくとも一実施例では、グラフィックス・マイクロコントローラ2538は、スレッド・ディスパッチ、スケジューリング、及びプリエンプションを含む、グラフィックス・プロセッサ2500の様々な機能を管理するように構成可能なプログラム可能サブプロセッサである。少なくとも一実施例では、メディア・パイプライン2539は、画像及びビデオのデータを含むマルチメディア・データのデコーディング、エンコーディング、前処理、及び/又は後処理を容易にする論理を含む。少なくとも一実施例では、メディア・パイプライン2539は、サブ・コア2501~2501F内のコンピュート論理又はサンプリング論理への要求を介してメディア動作を実装する。
少なくとも一実施例では、SoCインターフェース2537は、汎用アプリケーション・プロセッサ・コア(たとえば、CPU)及び/又はSoC内の他の構成要素と、グラフィックス・コア2500が通信できるようにし、SoC内の他の構成要素は、共有ラスト・レベル・キャッシュ・メモリ、システムRAM、及び/又は組み込みオン・チップ若しくはオンパッケージDRAMなどのメモリ階層要素を含む。少なくとも一実施例では、SoCインターフェース2537はまた、カメラ・イメージング・パイプラインなど、SoC内の固定機能デバイスとの通信を可能にし、グラフィックス・コア2500とSoC内のCPUとの間で共有することができるグローバル・メモリ・アトミックの使用を可能にし、且つ/又はそれを実装する。少なくとも一実施例では、SoCインターフェース2537はまた、グラフィックス・コア2500の電力管理制御を実装することができ、グラフィックス・コア2500のクロック・ドメインと、SoC内の他のクロック・ドメインとの間のインターフェースをとれるようにする。少なくとも一実施例では、SoCインターフェース2537は、グラフィックス・プロセッサ内の1つ又は複数のグラフィックス・コアのそれぞれにコマンド及び命令を提供するように構成されたコマンド・ストリーマ及びグローバル・スレッド・ディスパッチャから、コマンド・バッファを受信できるようにする。少なくとも一実施例では、コマンド及び命令は、メディア動作が実行されるときにはメディア・パイプライン2539にディスパッチされることが可能であり、又はグラフィックス処理動作が実行されるときには、ジオメトリ及び固定機能パイプライン(たとえば、ジオメトリ及び固定機能パイプライン2536、ジオメトリ及び固定機能パイプライン2514)にディスパッチされることが可能である。
少なくとも一実施例では、グラフィックス・マイクロコントローラ2538は、グラフィックス・コア2500のための様々なスケジューリング及び管理タスクを実行するように構成されることが可能である。少なくとも一実施例では、グラフィックス・マイクロコントローラ2538は、サブ・コア2501A~2501F内の実行ユニット(EU:execution unit)アレイ2502A~2502F、2504A~2504F内の様々なグラフィックス並列エンジンでグラフィックスを実行し、且つ/又はワークロードのスケジューリングを算出することができる。少なくとも一実施例では、グラフィックス・コア2500を含むSoCのCPUコア上で実行されているホスト・ソフトウェアは、複数のグラフィック・プロセッサ・ドアベルのうちの1つにワークロードを送出することができ、このドアベルが、適切なグラフィックス・エンジンに対するスケジューリング動作を呼び出す。少なくとも一実施例では、スケジューリング動作は、どのワークロードを次に実行すべきかを判定すること、コマンド・ストリーマにワークロードを送出すること、エンジン上で実行されている既存のワークロードをプリエンプションすること、ワークロードの進行を管理すること、及びワークロードが完了したときにホスト・ソフトウェアに通知することを含む。少なくとも一実施例では、グラフィックス・マイクロコントローラ2538はまた、グラフィックス・コア2500の低電力又はアイドル状態を促進して、オペレーティング・システム及び/又はシステム上のグラフィックス・ドライバ・ソフトウェアとは無関係に、低電力状態の移行にわたってグラフィックス・コア2500内のレジスタを保存及び復元する機能をグラフィックス・コア2500に提供することができる。
少なくとも一実施例では、グラフィックス・コア2500は、図示してあるサブ・コア2501A~2501Fより多くの、又はそれより少ない、N個までのモジュール式サブ・コアを有してもよい。N個のサブ・コアのセットごとに、少なくとも一実施例では、グラフィックス・コア2500はまた、共有機能論理2510、共有及び/又はキャッシュ・メモリ2512、ジオメトリ/固定機能パイプライン2514、並びに様々なグラフィックスを加速し、処理動作を算出するための追加の固定機能論理2516を含むことができる。少なくとも一実施例では、共有機能論理2510は、グラフィックス・コア2500内の各N個のサブ・コアが共有できる論理ユニット(たとえば、サンプラ、数理、及び/又はスレッド間通信の論理)を含むことができる。少なくとも一実施例では、固定された、共有及び/又はキャッシュ・メモリ2512は、グラフィックス・コア2500内のN個のサブ・コア2501A~2501Fのためのラスト・レベル・キャッシュとすることができ、また、複数のサブ・コアによってアクセス可能な共有メモリとして働くことができる。少なくとも一実施例では、ジオメトリ/固定機能パイプライン2514は、固定機能ブロック2530内のジオメトリ/固定機能パイプライン2536の代わりに含まれてもよく、同じ又は同様の論理ユニットを含むことができる。
少なくとも一実施例では、グラフィックス・コア2500は、グラフィックス・コア2500が使用するための様々な固定機能加速論理を含むことができる追加の固定機能論理2516を含む。少なくとも一実施例では、追加の固定機能論理2516は、位置限定シェーディングに使用するための追加のジオメトリ・パイプラインを含む。位置限定シェーディングでは、少なくとも2つのジオメトリ・パイプラインが存在しているが、ジオメトリ/固定機能パイプライン2516、2536内の完全ジオメトリ・パイプラインと選別パイプラインにおいてであり、この選別パイプラインは、追加の固定機能論理2516内に含まれてもよい追加のジオメトリ・パイプラインである。少なくとも一実施例では、選別パイプラインは完全ジオメトリ・パイプラインの縮小版である。少なくとも一実施例では、完全パイプライン及び選別パイプラインはアプリケーションの異なるインスタンスを実行することができ、各インスタンスは別個のコンテキストを有する。少なくとも一実施例では、位置限定シェーディングは、切り捨てられた三角形の長い選別ランを隠すことができ、いくつかのインスタンスにおいてシェーディングを早く完了させることができる。たとえば、少なくとも一実施例では、選別パイプラインは、ピクセルをフレーム・バッファにラスタ化及びレンダリングすることなく、頂点の位置属性をフェッチしシェーディングするので、追加の固定機能論理2516内の選別パイプライン論理は、メイン・アプリケーションと並列に位置シェーダを実行することができ、完全パイプラインよりも全体的に早く臨界結果を生成する。少なくとも一実施例では、選別パイプラインは、生成された臨界結果を使用して、すべての三角形について、それらの三角形が選別されているかどうかに関わらず、可視性情報を算出することができる。少なくとも一実施例では、(このインスタンスではリプレイ・パイプラインと呼ばれることもある)完全パイプラインは、可視性情報を消費して、選別された三角形を飛ばして可視三角形だけをシェーディングすることができ、この可視性三角形が最終的にラスタ化フェーズに渡される。
少なくとも一実施例では、追加の固定機能論理2516はまた、機械学習の訓練又は推論の最適化を含む実装形態のために、固定機能の行列乗算論理など、機械学習の加速論理を含むことができる。
少なくとも一実施例では、各グラフィックス・サブ・コア2501A~2501F内において、実行リソースのセットを含み、このセットは、グラフィックス・パイプライン、メディア・パイプライン、又はシェーダ・プログラムからの要求に応答して、グラフィックス動作、メディア動作、及びコンピュート動作を実行するために使用されてもよい。少なくとも一実施例では、グラフィックス・サブ・コア2501A~2501Fは、複数のEUアレイ2502A~2502F、2504A~2504F、スレッド・ディスパッチ及びスレッド間通信(TD/IC: thread dispatch and inter-thread communication)論理2503A~2503F、3D(たとえば、テクスチャ)サンプラ2505A~2505F、メディア・サンプラ2506A~2506F、シェーダ・プロセッサ2507A~2507F、及び共有ローカル・メモリ(SLM:shared local memory)2508A~2508Fを含む。EUアレイ2502A~2502F、2504A~2504Fはそれぞれ複数の実行ユニットを含み、これらは、グラフィックス、メディア、又はコンピュート・シェーダ・プログラムを含むグラフィックス動作、メディア動作、又はコンピュート動作のサービスにおいて浮動小数点及び整数/固定小数点の論理演算を実行することができる汎用グラフィックス・プロセッシング・ユニットである。少なくとも一実施例では、TD/IC論理2503A~2503Fは、サブ・コア内の実行ユニットのためのローカル・スレッド・ディスパッチ及びスレッド制御動作を実行し、サブ・コアの実行ユニット上で実行しているスレッド間の通信を容易にする。少なくとも一実施例では、3Dサンプラ2505A~2505Fは、テクスチャ又は他の3Dグラフィックス関連のデータをメモリに読み込むことができる。少なくとも一実施例では、3Dサンプラは、所与のテクスチャに関連付けられた構成済みサンプル状態及びテクスチャ・フォーマットに基づき、テクスチャ・データを異なるやり方で読み取ることができる。少なくとも一実施例では、メディア・サンプラ2506A~2506Fは、メディア・データに関連付けられたタイプ及びフォーマットに基づき、同様の読取り動作を実行することができる。少なくとも一実施例では、各グラフィックス・サブ・コア2501A~2501Fは3Dとメディアの統合サンプラを交互に含むことができる。少なくとも一実施例では、各サブ・コア2501A~2501F内の実行ユニット上で実行しているスレッドは、スレッド・グループ内で実行しているスレッドが、オン・チップ・メモリの共通プールを使用して実行できるようにするために、各サブ・コア内の共有ローカル・メモリ2508A~2508Fを利用することができる。
1つ若しくは複数の実施例に関連する推論及び/又は訓練の動作を実行するために、推論及び/又は訓練論理615が使用される。推論及び/又は訓練論理615に関する詳細事項は、図6A及び/又は図6Bと併せて以下に提供される。少なくとも一実施例では、推論及び/又は訓練論理615の一部又はすべてが、グラフィックス・プロセッサ2510に組み込まれてもよい。たとえば、少なくとも一実施例では、本明細書に記載の訓練及び/又は推論の技法は、グラフィックス・プロセッサ2312、グラフィックス・マイクロコントローラ2538、ジオメトリ及び固定機能パイプライン2514及び2536、又は図24の他の論理において実施されたALUのうちの1つ又は複数を使用してもよい。さらに、少なくとも一実施例では、本明細書に記載の推論及び/又は訓練の動作は、図6A又は図6Bに示す論理以外の論理を使用して行われてもよい。少なくとも一実施例では、重みパラメータは、本明細書に記載の1つ又は複数の機械学習アルゴリズム、ニューラル・ネットワーク・アーキテクチャ、ユース・ケース、又は訓練技法を実行するためのグラフィックス・プロセッサ2500のALUを構成するオン・チップ若しくはオフ・チップのメモリ及び/又はレジスタ(図示する又は図示せず)に記憶されてもよい。
1つ又は複数の実施例に関連付けられた推論及び/又は訓練の動作を実行するために、推論及び/又は訓練論理615が使用される。少なくとも一実施例では、固定されたジッタ位置と、より正確なピクセル色決定のための高解像度テクスチャとを使用して画像を生成するために、この論理がこれらの図の構成要素とともに使用され得る。
図26A、図26Bは、少なくとも一実施例によるグラフィックス・プロセッサ・コアの処理要素のアレイを含むスレッド実行論理2600示す。図26Aは、スレッド実行論理2600が使用される少なくとも一実施例を示す。図26Bは、少なくとも一実施例による、実行ユニットの例示的な内部詳細を示す。
図26Aに示すように、少なくとも一実施例では、スレッド実行論理2600は、シェーダ・プロセッサ2602、スレッド・ディスパッチャ2604、命令キャッシュ2606、複数の実行ユニット2608A~2608Nを含むスケーラブル実行ユニット・アレイ、サンプラ2610、データ・キャッシュ2612、及びデータ・ポート2614を含む。少なくとも一実施例では、スケーラブル実行ユニット・アレイは、1つ又は複数の実行ユニット(たとえば、実行ユニット2608A、2608B、2608C、2608D~2608N-1及び2608Nのうちのいずれか)を、たとえばワークロードの計算要件に基づき有効又は無効にすることによって、動的に拡大縮小することができる。少なくとも一実施例では、スケーラブル実行ユニットは、実行ユニットのそれぞれにリンクされる相互接続ファブリックを介して相互接続される。少なくとも一実施例では、スレッド実行論理2600は、命令キャッシュ2606、データ・ポート2614、サンプラ2610、及び実行ユニット2608A~2608Nのうちの1つ又は複数を介した、システム・メモリ又はキャッシュ・メモリなどのメモリへの1つ又は複数の接続を含む。少なくとも一実施例では、各実行ユニット(たとえば、2608A)は、スレッドごとに複数のデータ要素を並列で処理しながら、複数の同時のハードウェア・スレッドを実行することができるスタンドアロンのプログラム可能な汎用計算ユニットである。少なくとも一実施例では、実行ユニット2608A~2608Nのアレイは、任意の数の個々の実行ユニットを含むように拡大縮小可能である。
少なくとも一実施例では、実行ユニット2608A~2608Nは、シェーダ・プログラムを実行するために主に使用される。少なくとも一実施例では、シェーダ・プロセッサ2602は、様々なシェーダ・プログラムを処理し、シェーダ・プログラムに関連付けられた実行スレッドを、スレッド・ディスパッチャ2604を介してディスパッチすることができる。少なくとも一実施例では、スレッド・ディスパッチャ2604は、グラフィックス及びメディア・パイプラインからのスレッド開始要求を調停し、要求されたスレッドを、実行ユニット2608A~2608Nの1つ又は複数の実行ユニット上でインスタンス化するための論理を含む。たとえば、少なくとも一実施例では、ジオメトリ・パイプラインは、頂点シェーダ、モザイク・シェーダ、又はジオメトリ・シェーダを、処理できるようにスレッド実行論理にディスパッチすることができる。少なくとも一実施例では、スレッド・ディスパッチャ2604はまた、実行しているシェーダ・プログラムからのラン・タイム・スレッド・スポーニング要求(spawning request)を処理することができる。
少なくとも一実施例では、実行ユニット2608A~2608Nは、多くの標準的な3Dグラフィックス・シェーダ命令のネイティブ・サポートを含む命令セットをサポートし、それにより、グラフィックス・ライブラリ(たとえば、Direct3D及びOpenGL)からのシェーダ・プログラムが、最小のトランスレーションで実行される。少なくとも一実施例では、実行ユニットは、頂点及びジオメトリの処理(たとえば、頂点プログラム、ジオメトリ・プログラム、頂点シェーダ)、ピクセル処理(たとえば、ピクセル・シェーダ、フラグメント・シェーダ)、及び汎用処理(たとえば、コンピュート及びメディアのシェーダ)をサポートする。少なくとも一実施例では、1つ又は複数の算術論理演算ユニット(ALU)を含む各実行ユニット2608A~2608Nのそれぞれは、単一命令複数データ(SIMD)の実行を複数発行することができ、マルチスレッド化された動作によって、メモリ・アクセスのレイテンシが高いにもかかわらず、効率的な実行環境が可能になる。少なくとも一実施例では、各実行ユニット内の各ハードウェア・スレッドは、専用の高帯域幅レジスタ・ファイル及び関連する独立したスレッド状態を有する。少なくとも一実施例では、実行は、整数演算、単精度及び倍精度の浮動小数点演算、SIMDブランチ性能、論理演算、超越演算、及び他の種々の演算を行うことができるパイプラインに対して、クロック当たり複数発行される。少なくとも一実施例では、メモリ、又は共有機能のうちの1つからのデータを待機している間に、実行ユニット2608A~2608N内の従属論理は、要求したデータが戻されるまで、待機スレッドをスリープ状態にする。少なくとも一実施例では、待機スレッドがスリープ状態の間に、ハードウェア・リソースは他のスレッドの処理に専念してもよい。たとえば、少なくとも一実施例では、頂点シェーダ動作に関連する遅延中に、実行ユニットは、ピクセル・シェーダ、フラグメント・シェーダ、又は異なる頂点シェーダを含む別のタイプのシェーダ・プログラムを実行することができる。
少なくとも一実施例では、実行ユニット2608A~2608Nの各実行ユニットは、データ要素のアレイに対して動作する。少なくとも一実施例では、データ要素の数は「実行サイズ」であり、又は命令に対するチャネルの数である。少なくとも一実施例では、実行チャネルは、データ要素のアクセス、マスキング、及び命令内のフロー制御に関する実行の論理ユニットである。少なくとも一実施例では、チャネルの数は、特定のグラフィックス・プロセッサのための物理的な算術論理演算ユニット(ALU)又は浮動小数点ユニット(FPU)の数とは無関係であってもよい。少なくとも一実施例では、実行ユニット2608A~2608Nは、整数及び浮動小数点のデータ・タイプをサポートしてもよい。
少なくとも一実施例では、実行ユニット命令セットは、SIMD命令を含む。少なくとも一実施例では、様々なデータ要素が、パック・データ・タイプとしてレジスタに記憶されてもよく、実行ユニットは、要素のデータ・サイズに基づき様々な要素を処理する。たとえば、少なくとも一実施例では、256ビット幅ベクトルで動作しているとき、ベクトルの256ビットがレジスタに記憶され、実行ユニットは、4個の別々の64ビット・パック・データ要素(クワッド・ワード(QW:Quad-Word)サイズのデータ要素)、8個の別々の32ビット・パック・データ要素(ダブル・ワード(DW:Double Word)サイズのデータ要素)、16個の別々の16ビット・パック・データ要素(ワード(W:Word)サイズのデータ要素)、又は32個の別々の8ビット・データ要素(バイト(B:byte)サイズのデータ要素)としてベクトル上で動作する。しかし少なくとも一実施例では、異なるベクトル幅及びレジスタサイズが考えられる。
少なくとも一実施例では、1つ又は複数の実行ユニットを組み合わせて、融合EUに共通のスレッド制御論理(2607A~2607N)を有する融合実行ユニット2609A~2609Nにすることができる。少なくとも一実施例では、複数のEUを融合して、EUグループにすることができる。少なくとも一実施例では、融合EUグループの各EUは、別々のSIMDハードウェア・スレッドを実行するように構成されることが可能である。融合EUグループのEUの数が、様々な実施例に応じて異なっている可能性がある。少なくとも一実施例では、SIMD8、SIMD16、及びSIMD32を含むがこれに限定されない様々なSIMD幅を、EUごとに実行することができる。少なくとも一実施例では、各融合グラフィックス実行ユニット2609A~2609Nは、少なくとも2つの実行ユニットを含む。たとえば、少なくとも一実施例では、融合実行ユニット2609Aは、第1のEU2608A、第2のEU2608B、及び第1のEU2608Aと第2のEU2608Aに共通のスレッド制御論理2607Aを含む。少なくとも一実施例では、スレッド制御論理2607Aは、融合グラフィックス実行ユニット2609Aで実行されているスレッドを制御して、融合実行ユニット2609A~2609N内の各EUを、共通の命令ポインタ・レジスタを使用して実行できるようにする。
少なくとも一実施例では、1つ又は複数の内部命令キャッシュ(たとえば、2606)は、実行ユニットに対するスレッド命令をキャッシュするためにスレッド実行論理2600に含まれる。少なくとも一実施例では、1つ又は複数のデータ・キャッシュ(たとえば、2612)は、スレッド実行中にスレッド・データをキャッシュするために含まれる。少なくとも一実施例では、サンプラ2610は、3D動作のためのテクスチャ・サンプリング、及びメディア動作のためのメディア・サンプリングを実行するために含まれる。少なくとも一実施例では、サンプラ2610は、特別なテクスチャ又はメディア・サンプリング機能を含み、サンプリングされたデータを実行ユニットに提供する前に、サンプリング処理中にテクスチャ又はメディアのデータを処理する。
実行中、少なくとも一実施例では、グラフィックス及びメディア・パイプラインは、スレッド開始要求を、スレッド・スポーニング及びディスパッチ論理を介してスレッド実行論理2600に送る。少なくとも一実施例では、幾何学的物体のグループが処理され、ピクセル・データにラスタ化されたら、シェーダ・プロセッサ2602内のピクセル・プロセッサ論理(たとえば、ピクセル・シェーダ論理、フラグメント・シェーダ論理など)が呼び出されて、出力情報をさらにコンピュートし、結果を出力面(たとえば、色バッファ、深度バッファ、ステンシル・バッファなど)に書き込ませる。少なくとも一実施例では、ピクセル・シェーダ又はフラグメント・シェーダは、ラスタ化された物体間で補間されることになる様々な頂点属性の値を計算する。少なくとも一実施例では、次いで、シェーダ・プロセッサ2602内のピクセル・プロセッサ論理が、アプリケーション・プログラミング・インターフェース(API)付きのピクセル・シェーダ・プログラム又はフラグメント・シェーダ・プログラムを実行する。少なくとも一実施例では、シェーダ・プログラムを実行するために、シェーダ・プロセッサ2602は、スレッド・ディスパッチャ2604を介してスレッドを実行ユニット(たとえば、2608A)にディスパッチする。少なくとも一実施例では、シェーダ・プロセッサ2602は、サンプラ2610のテクスチャ・サンプリング論理を使用して、メモリに記憶されたテクスチャ・マップのテクスチャ・データにアクセスする。少なくとも一実施例では、テクスチャ・データ及び入力ジオメトリ・データに対する算術演算によって、各ジオメトリ・フラグメントのピクセル色データがコンピュートされ、又はさらに処理されないように1つ又は複数のピクセルが切り捨てられる。
少なくとも一実施例では、データ・ポート2614は、スレッド実行論理2600のためのメモリ・アクセス機構を提供して、処理済みデータを、グラフィックス・プロセッサ出力パイプラインでさらに処理できるようにメモリに出力する。少なくとも一実施例では、データ・ポート2614は、1つ又は複数のキャッシュ・メモリ(たとえば、データ・キャッシュ2612)を含み、又はそれに結合されて、データ・ポートを介したメモリ・アクセスのためのデータをキャッシュする。
図26Bに示してあるように、少なくとも一実施例では、グラフィック実行ユニット2608は、命令フェッチ・ユニット2637、汎用レジスタ・ファイル・アレイ(GRF:general register file array)2624、アーキテクチャ・レジスタ・ファイル・アレイ(ARF)2626、スレッド調停装置(arbiter)2622、送信ユニット2630、ブランチ・ユニット2632、SIMD浮動小数点ユニット(FPU)2634のセット、及び、少なくとも一実施例では、専用整数SIMD ALU2635のセットを含むことができる。少なくとも一実施例では、GRF2624及びARF2626は、各同時ハードウェア・スレッドに関連付けられた汎用レジスタ・ファイルとアーキテクチャ・レジスタ・ファイルのセットを含み、このハードウェア・スレッドは、グラフィックス実行ユニット2608においてアクティブであってもよい。少なくとも一実施例では、スレッドごとのアーキテクチャ状態が、ARF2626において維持され、スレッド実行中に使用されるデータが、GRF2624に記憶される。少なくとも一実施例では、各スレッドに対する命令ポインタを含む各スレッドの実行状態は、ARF2626のスレッド専用レジスタに保持することが可能である。
少なくとも一実施例では、グラフィックス実行ユニット2608は、同時マルチスレッディング(SMT:Simultaneous Multi-Threading)と微細化インターリーブ・マルチスレッディング(IMT:Interleaved Multi-Threading)の組合せであるアーキテクチャを有する。少なくとも一実施例では、アーキテクチャは、実行ユニット当たりの同時スレッドのターゲット数及びレジスタ数に基づき設計時に微調整することができるモジュール式構成を有し、ここで実行ユニットのリソースは、複数の同時スレッドを実行するために使用される論理にわたって分割される。
少なくとも一実施例では、グラフィックス実行ユニット2608は複数の命令を共同発行することができ、この命令は、それぞれ異なる命令であってもよい。少なくとも一実施例では、グラフィックス実行ユニット・スレッド2608のスレッド調停装置2622は、送信ユニット2630、ブランチ・ユニット2642、又はSIMD FPU2634のうちの1つに命令をディスパッチして実行できるようにすることができる。少なくとも一実施例では、各実行スレッドは、GRF2624内の128個の汎用レジスタにアクセスすることができ、ここで各レジスタは、32ビットのデータ要素のSIMD8要素のベクトルとしてアクセス可能な32バイトを記憶することができる。少なくとも一実施例では、各実行ユニット・スレッドは、GRF2624内の4キロバイトにアクセスすることができるが、実施例はこのように限定されず、他の実施例ではより多くの、又はより少ないリソースが提供されてもよい。少なくとも一実施例では、最大7個のスレッドを同時に実行できるが、実行ユニット当たりのスレッド数も、実施例に応じて変えることができる。7個のスレッドが4キロバイトにアクセスできる少なくとも一実施例では、GRF2624は、合計28キロバイトを記憶することができる。少なくとも一実施例では、フレキシブルなアドレッシング・モードにより、複数のレジスタがともにアドレスされてより幅広いレジスタを構築したり、ストライド設定された矩形ブロック・データ構造を表したりできるようにすることができる。
少なくとも一実施例では、メモリ動作、サンプラ動作、及び他のレイテンシの長いシステム通信は、メッセージ引渡し送信ユニット2630によって実行される「送信」命令を介してディスパッチされる。少なくとも一実施例では、ブランチ命令は、SIMDの発散及び最終的な収束を容易にするために、専用ブランチ・ユニット2632にディスパッチされる。
少なくとも一実施例では、グラフィックス実行ユニット2608は、浮動小数点演算を実行するための1つ又は複数のSIMD浮動小数点ユニット(FPU)2634を含む。少なくとも一実施例では、FPU2634は、整数計算もサポートする。少なくとも一実施例ではFPU2634は、最大M個の32ビット浮動小数点(若しくは整数)演算をSIMDで実行し、又は最大で2M個の16ビット整数演算、若しくは16ビット浮動小数点演算をSIMDで実行することができる。少なくとも一実施例では、FPUの少なくとも1つは、拡張数理機能を提供して、高スループットの超越数理関数、及び倍精度の64ビット浮動小数点をサポートする。少なくとも一実施例では、8ビットの整数SIMD ALU2635のセットも存在し、機械学習計算に関連する動作を実行するように特に最適化されてもよい。
少なくとも一実施例では、グラフィックス実行ユニット2608の複数のインスタンスのアレイが、グラフィックス・サブ・コア・グループ(たとえば、サブ・スライス)においてインスタンス化されてもよい。少なくとも一実施例では、実行ユニット2608は、複数の実行チャネルにわたって命令を実行することができる。少なくとも一実施例では、グラフィックス実行ユニット2608で実行される各スレッドは、異なるチャネルで実行される。
1つ若しくは複数の実施例に関連する推論及び/又は訓練の動作を実行するために、推論及び/又は訓練論理615が使用される。推論及び/又は訓練論理615に関する詳細事項は、図6A及び/又は図6Bと併せて以下に提供される。少なくとも一実施例では、推論及び/又は訓練論理615の一部又はすべてが、実行論理2600に組み込まれてもよい。さらに、少なくとも一実施例では、本明細書に記載の推論及び/又は訓練の動作は、図6A又は図6Bに示す論理以外の論理を使用して行われてもよい。少なくとも一実施例では、重みパラメータは、本明細書に記載の1つ又は複数の機械学習アルゴリズム、ニューラル・ネットワーク・アーキテクチャ、ユース・ケース、又は訓練技法を実行するための実行論理2600のALUを構成するオン・チップ若しくはオフ・チップのメモリ及び/又はレジスタ(図示する又は図示せず)に記憶されてもよい。
1つ又は複数の実施例に関連付けられた推論及び/又は訓練の動作を実行するために、推論及び/又は訓練論理615が使用される。少なくとも一実施例では、固定されたジッタ位置と、より正確なピクセル色決定のための高解像度テクスチャとを使用して画像を生成するために、この論理がこれらの図の構成要素とともに使用され得る。
図27は、少なくとも一実施例による並列処理ユニット(「PPU」)2700を示す。少なくとも一実施例では、PPU2700は、PPU2700によって実行された場合に、本開示全体を通して記載するプロセス及び技法の一部又はすべてを、PPU2700に実行させる機械可読コードで構成される。少なくとも一実施例では、PPU2700はマルチスレッド・プロセッサであり、このプロセッサは、1つ又は複数の集積回路デバイスに実装され、コンピュータ可読命令(機械可読命令若しくは単に命令とも呼ばれる)を、複数のスレッドで並列に処理するように設計されたレイテンシ隠蔽技法としてマルチスレッディングを利用する。少なくとも一実施例では、スレッドとは、実行スレッドを指し、PPU2700によって実行されるように構成された命令のセットをインスタンス化したものである。少なくとも一実施例では、PPU2700は、液晶ディスプレイ(「LCD」)デバイスなどのディスプレイ・デバイスに表示できるように2次元(「2D」)画像データを生成するために、3次元(「3D」)グラフィックス・データを処理するためのグラフィックス・レンダリング・パイプラインを実装するように構成されたグラフィックス・プロセッシング・ユニット(「GPU」)である。少なくとも一実施例では、PPU2700を利用して、線形代数演算及び機械学習演算などの計算が実行される。図27は、単に例示を目的とした例示的な並列プロセッサを示しており、本開示の範囲内で企図されるプロセッサ・アーキテクチャの非限定的な例として解釈されるべきであり、同プロセッサに追加するため、且つ/又はそれを置き換えるために、任意の好適なプロセッサが利用されてもよいことが解釈されるべきである。
少なくとも一実施例では、1つ又は複数のPPU2700は、高性能コンピューティング(「HPC」:High Performance Computing)、データ・センタ、及び機械学習のアプリケーションを加速するように構成される。少なくとも一実施例では、PPU2700は、以下の非限定的な例を含む深層学習システム及びアプリケーションを加速するように構成される:自律車両プラットフォーム、深層学習、高精度音声、画像、テキスト認識システム、インテリジェント・ビデオ分析、分子シミュレーション、創薬、病気診断、天気予報、ビッグ・データ分析、天文学、分子動態シミュレーション、金融モデリング、ロボット工学、工場自動化、リアル・タイム言語翻訳、オンライン検索最適化、及び個別化ユーザ推奨など。
少なくとも一実施例では、PPU2700は、限定することなく、入力/出力(「I/O」)ユニット2706、フロント・エンド・ユニット2710、スケジューラ・ユニット2712、ワーク分配ユニット2714、ハブ2716、クロスバー(「Xbar」:crossbar)2720、1つ又は複数の汎用処理クラスタ(「GPC」:general processing cluster)2718、及び1つ又は複数のパーティション・ユニット(「メモリ・パーティション・ユニット」)2722を含む。少なくとも一実施例では、PPU2700は、1つ又は複数の高速GPU相互接続(「GPU相互接続」)2708を介してホスト・プロセッサ又は他のPPU2700に接続される。少なくとも一実施例では、PPU2700は、相互接続2702を介してホスト・プロセッサ又は他の周辺デバイスに接続される。少なくとも一実施例では、PPU2700は、1つ又は複数のメモリ・デバイス(「メモリ」)2704を備えるローカル・メモリに接続される。少なくとも一実施例では、メモリ・デバイス2704は、限定することなく、1つ又は複数のダイナミック・ランダム・アクセス・メモリ(「DRAM」)デバイスを含む。少なくとも一実施例では、1つ又は複数のDRAMデバイスは、複数のDRAMダイが各デバイス内で積層された高帯域幅メモリ(「HBM」)サブシステムとして構成されても、且つ/又は構成可能であってもよい。
少なくとも一実施例では、高速GPU相互接続2708は、有線ベースのマルチ・レーン通信リンクを指してもよく、このリンクは、拡張縮小するためにシステムによって使用され、1つ又は複数の中央処理装置(「CPU」)と組み合わされた1つ又は複数のPPU2700を含み、PPU2700とCPUとの間のキャッシュ・コヒーレンス、及びCPUマスタリングをサポートする。少なくとも一実施例では、データ及び/又はコマンドは、高速GPU相互接続2708により、ハブ2716を介して、1つ又は複数のコピー・エンジン、ビデオ・エンコーダ、ビデオ・デコーダ、電力管理ユニット、及び図27に明示されていないこともある他の構成要素などのPPU2700の別のユニットに/から送信される。
少なくとも一実施例では、I/Oユニット2706は、システム・バス2702を介してホスト・プロセッサ(図27には示さず)から通信(たとえば、コマンド、データ)を送受信するように構成される。少なくとも一実施例では、I/Oユニット2706は、システム・バス2702を介して直接、又は1つ若しくは複数の、メモリ・ブリッジなどの中間デバイスを介して、ホスト・プロセッサと通信する。少なくとも一実施例では、I/Oユニット2706は、システム・バス2702を介してPPU2700のうちの1つ又は複数などの1つ又は複数の他のプロセッサと通信してもよい。少なくとも一実施例では、I/Oユニット2706は、ペリフェラル・コンポーネント・インターコネクト・エクスプレス(「PCIe」)インターフェースを実装して、PCIeバスを介して通信できるようにする。少なくとも一実施例では、I/Oユニット2706は、外部デバイスと通信するためのインターフェースを実装する。
少なくとも一実施例では、I/Oユニット2706は、システム・バス2702を介して受信したパケットをデコードする。少なくとも一実施例では、少なくともいくつかのパケットは、PPU2700に様々な動作を実行させるように構成されたコマンドを表す。少なくとも一実施例では、I/Oユニット2706は、デコードされたコマンドを、コマンドによって指定されるPPU2700の様々な他のユニットに送信する。少なくとも一実施例では、コマンドは、フロント・エンド・ユニット2710に送信され、且つ/又はハブ2716、若しくは(図27には明示していない)1つ若しくは複数のコピー・エンジン、ビデオ・エンコーダ、ビデオ・デコーダ、電力管理ユニットなどのPPU2700の他のユニットに送信される。少なくとも一実施例では、I/Oユニット2706はPPU2700の様々な論理ユニット間で、通信をルーティングするように構成される。
少なくとも一実施例では、ホスト・プロセッサによって実行されるプログラムは、ワークロードをPPU2700に提供して処理できるようにするバッファにおいて、コマンド・ストリームをエンコードする。少なくとも一実施例では、ワークロードは、命令と、これらの命令によって処理されることになるデータとを含む。少なくとも一実施例では、バッファは、ホスト・プロセッサとPPU2700の両方がアクセス(たとえば、書込み/読取り)可能なメモリ内の領域であり、ホスト・インターフェース・ユニットは、I/Oユニット2706によってシステム・バス2702を介して送信されるメモリ要求を介して、システム・バス2702に接続されたシステム・メモリ内のバッファにアクセスするように構成されてもよい。少なくとも一実施例では、ホスト・プロセッサは、バッファにコマンド・ストリームを書き込み、次いでコマンド・ストリームの開始点を指すポインタをPPU2700に送信し、それによりフロント・エンド・ユニット2710は、1つ又は複数のコマンド・ストリームを指すポインタを受信し、1つ又は複数のコマンド・ストリームを管理して、コマンド・ストリームからコマンドを読み取り、コマンドをPPU2700の様々なユニットに転送する。
少なくとも一実施例では、フロント・エンド・ユニット2710は、1つ又は複数のコマンド・ストリームによって定義されるタスクを処理するように様々なGPC2718を構成するスケジューラ・ユニット2712に結合される。少なくとも一実施例では、スケジューラ・ユニット2712は、スケジューラ・ユニット2712によって管理される様々タスクに関連する状態情報を追跡するように構成され、ここで状態情報は、どのGPC2718にタスクが割り当てられるか、タスクがアクティブか非アクティブか、タスクに関連付けられた優先レベルなどを示してもよい。少なくとも一実施例では、スケジューラ・ユニット2712は、GPC2718のうちの1つ又は複数において、複数のタスクの実行を管理する。
少なくとも一実施例では、スケジューラ・ユニット2712は、GPC2718で実行するためのタスクをディスパッチするように構成されたワーク分配ユニット2714に結合される。少なくとも一実施例では、ワーク分配ユニット2714は、スケジューラ・ユニット2712から受信したスケジュール済みタスクの数を追跡し、ワーク分配ユニット2714は、GPC2718のそれぞれについて、ペンディング・タスク・プール、及びアクティブ・タスク・プールを管理する。少なくとも一実施例では、ペンディング・タスク・プールは、特定のGPC2718によって処理されるように割り当てられたタスクを含むいくつかのスロット(たとえば、32スロット)を備え、アクティブ・タスク・プールは、GPC2718によりアクティブに処理されているタスクのためのいくつかのスロット(たとえば、4スロット)を備え、それにより、GPC2718のうちの1つがタスクの実行を完了すると、GPC2718のアクティブ・タスク・プールからそのタスクが排除され、ペンディング・タスク・プールからの他のタスクのうちの1つが選択され、GPC2718で実行されるようにスケジューリングされる。少なくとも一実施例では、データ依存性が解決されるのを待機している間など、アクティブ・タスクがGPC2718上でアイドルである場合には、アクティブ・タスクがGPC2718から排除され、ペンディング・タスク・プールに戻され、その間に、ペンディング・タスク・プールの別のタスクが選択され、GPC2718で実行されるようにスケジューリングされる。
少なくとも一実施例では、ワーク分配ユニット2714は、Xバー2720を介して1つ又は複数のGPC2718と通信する。少なくとも一実施例では、Xバー2720は、PPU2700のユニットのうちの多くを、PPU2700の別のユニットに結合する相互接続ネットワークであり、ワーク分配ユニット2714を特定のGPC2718に結合するように構成されることが可能である。少なくとも一実施例では、PPU2700の1つ又は複数の他のユニットも、ハブ2716を介してXバー2720に接続されてもよい。
少なくとも一実施例では、タスクはスケジューラ・ユニット2712によって管理され、ワーク分配ユニット2714によってGPC2718のうちの1つにディスパッチされる。GPC2718は、タスクを処理し、結果を生成するように構成される。少なくとも一実施例では、結果は、GPC2718内の他のタスクによって消費されてもよく、Xバー2720を介して異なるGPC2718にルーティングされてもよく、又はメモリ2704に記憶されてもよい。少なくとも一実施例では、結果を、パーティション・ユニット2722を介してメモリ2704に書き込むことができ、パーティション・ユニット2722は、メモリ2704への/からのデータの読取り及び書込みを行うためのメモリ・インターフェースを実装する。少なくとも一実施例では、結果を、高速GPU相互接続2708を介して別のPPU2704又はCPUに送信することができる。少なくとも一実施例では、PPU2700は、PPU2700に結合された別々の個別メモリ・デバイス2704の数に等しいU個のパーティション・ユニット2722を、限定することなく含む。少なくとも一実施例では、パーティション・ユニット2722は、図29と併せて以下でさらに詳細に説明される。
少なくとも一実施例では、ホスト・プロセッサはドライバ・カーネルを実行し、このカーネルは、ホスト・プロセッサで実行されている1つ又は複数のアプリケーションがPPU2700で実行するための動作をスケジューリングできるようにするアプリケーション・プログラミング・インターフェース(API)を実装している。少なくとも一実施例では、複数のコンピュート・アプリケーションが、PPU2700によって同時に実行され、PPU2700は、複数のコンピュート・アプリケーションに対して、隔離、サービス品質(「QoS」:quality of service)、及び独立したアドレス空間を提供する。少なくとも一実施例では、アプリケーションは、PPU2700によって実行するための1つ又は複数のタスクをドライバ・カーネルに生成させる(たとえば、APIコールの形の)命令を生成し、ドライバ・カーネルは、PPU2700によって処理されている1つ又は複数のストリームにタスクを出力する。少なくとも一実施例では、各タスクは、ワープと呼ばれてもよい関連スレッドの1つ又は複数のグループを備える。少なくとも一実施例では、ワープは、並列に実行することができる複数の関連スレッド(たとえば、32個のスレッド)を備える。少なくとも一実施例では、連動スレッドとは、タスクを実行するための命令を含み、共有メモリを介してデータを交換する複数のスレッドを指してもよい。少なくとも一実施例では、スレッド及び連動スレッドは、少なくとも一実施例に従って、図29と併せてさらに詳細に説明される。
1つ若しくは複数の実施例に関連する推論及び/又は訓練の動作を実行するために、推論及び/又は訓練論理615が使用される。推論及び/又は訓練論理615に関する詳細事項は、図6A及び/又は図6Bと併せて以下に提供される。少なくとも一実施例では、深層学習アプリケーション・プロセッサは、PPU2700に提供される情報を予測又は推論するようにニューラル・ネットワークなどの機械学習モデルを訓練するために使用される。少なくとも一実施例では、PPU2700は、別のプロセッサ若しくはシステムによって、又はPPU2700によって訓練されてきた訓練済み機械学習モデル(たとえば、ニューラル・ネットワーク)に基づき、情報を推論又は予測するために使用される。少なくとも一実施例では、PPU2700は、本明細書に記載の1つ又は複数のニューラル・ネットワークのユース・ケースを実行するために使用されてもよい。
1つ又は複数の実施例に関連付けられた推論及び/又は訓練の動作を実行するために、推論及び/又は訓練論理615が使用される。少なくとも一実施例では、固定されたジッタ位置と、より正確なピクセル色決定のための高解像度テクスチャとを使用して画像を生成するために、この論理がこれらの図の構成要素とともに使用され得る。
図28は、少なくとも一実施例による汎用処理クラスタ(「GPC」)2800を示す。少なくとも一実施例では、GPC2800は、図27のGPC2718である。少なくとも一実施例では、各GPC2800は、限定することなく、タスクを処理するためのいくつかのハードウェア・ユニットを含み、各GPC2800は、限定することなく、パイプライン・マネージャ2802、プレ・ラスタ演算ユニット(「PROP」:pre-raster operations unit)2804、ラスタ・エンジン2808、ワーク分配クロスバー(「WDX」:work distribution crossbar)2816、メモリ管理ユニット(「MMU」)2818、1つ又は複数のデータ処理クラスタ(「DPC」:Data Processing Clusters)2806、及びパーツの任意の好適な組合せを含む。
少なくとも一実施例では、GPC2800の動作は、パイプライン・マネージャ2802によって制御される。少なくとも一実施例では、パイプライン・マネージャ2802は、GPC2800に配分されたタスクを処理するために1つ又は複数のDPC2806の構成を管理する。少なくとも一実施例では、パイプライン・マネージャ2802は、グラフィックス・レンダリング・パイプラインの少なくとも一部分を実装するように、1つ又は複数のDPC2806のうちの少なくとも1つを構成する。少なくとも一実施例では、DPC2806は、プログラム可能なストリーミング・マルチプロセッサ(「SM」:streaming multi-processor)2814で頂点シェーダ・プログラムを実行するように構成される。少なくとも一実施例では、パイプライン・マネージャ2802は、少なくとも一実施例では、ワーク分配ユニットから受信したパケットを、GPC2800内の適切な論理ユニットにルーティングするように構成され、いくつかのパケットは、PROP2804の固定機能ハードウェア・ユニット及び/又はラスタ・エンジン2808にルーティングされてもよく、他のパケットは、プリミティブ・エンジン2812又はSM2814によって処理されるようにDPC2806にルーティングされてもよい。少なくとも一実施例では、パイプライン・マネージャ2802は、ニューラル・ネットワーク・モデル及び/又はコンピューティング・パイプラインを実装するように、DPC2806のうちの少なくとも1つを構成する。
少なくとも一実施例では、PROPユニット2804は、少なくとも一実施例では、ラスタ・エンジン2808及びDPC2806によって生成されたデータを、図27と併せて上でより詳細に説明したパーティション・ユニット2722のラスタ動作(ROP)ユニットにルーティングするように構成される。少なくとも一実施例では、PROPユニット2804は、色ブレンディングの最適化を実行し、ピクセル・データを組織化し、アドレス・トランスレーションを実行し、その他の動作を行うように構成される。少なくとも一実施例では、ラスタ・エンジン2808は、少なくとも一実施例では様々なラスタ動作を実行するように構成されたいくつかの固定機能ハードウェア・ユニットを、限定することなく含み、ラスタ・エンジン2808は、限定することなく、セットアップ・エンジン、粗いラスタ・エンジン、選別エンジン、クリッピング・エンジン、細かいラスタ・エンジン、タイル合体エンジン、及びこれらの任意の好適な組合せを含む。少なくとも一実施例では、セットアップ・エンジンは、変換された頂点を受信し、頂点によって定義された幾何プリミティブに関連付けられた平面方程式を生成し、平面方程式が、粗いラスタ・エンジンに送信されて、プリミティブに対するカバレッジ情報(たとえば、タイルのx、yカバレッジ・マスク)が生成され、粗いラスタ・エンジンの出力が、選別エンジンに送信され、ここでzテストに落ちたプリミティブに関連付けられたフラグメントが選別され、クリッピング・エンジンに送信され、ここで視錐台の外側にあるフラグメントがクリップされる。少なくとも一実施例では、クリッピング及び選別を通過したフラグメントは、細かいラスタ・エンジンに渡されて、セットアップ・エンジンによって生成された平面方程式に基づき、ピクセル・フラグメントに対する属性が生成される。少なくとも一実施例では、ラスタ・エンジン2808の出力は、DPC2806内に実装されたフラグメント・シェーダによってなど任意の好適なエンティティによって処理されることになるフラグメントを含む。
少なくとも一実施例では、GPC2800に含まれる各DPC2806は、限定することなく、Mパイプ・コントローラ(「MPC」:M-Pipe Controller)2810、プリミティブ・エンジン2812、1つ又は複数のSM2814、及びこれらの任意の好適な組合せを含む。少なくとも一実施例では、MPC2810は、DPC2806の動作を制御して、パイプライン・マネージャ2802から受信したパケットを、DPC2806内の適切なユニットにルーティングする。少なくとも一実施例では、頂点に関連付けられたパケットは、頂点に関連付けられた頂点属性をメモリからフェッチするように構成されたプリミティブ・エンジン2812にルーティングされ、対照的に、シェーダ・プログラムに関連付けられたパケットは、SM2814に送信されてもよい。
少なくとも一実施例では、SM2814は、いくつかのスレッドにより表されたタスクを処理するように構成されたプログラム可能なストリーミング・プロセッサを、限定することなく含む。少なくとも一実施例では、SM2814はマルチスレッド化されており、スレッドの特定のグループからの複数のスレッド(たとえば、32個のスレッド)を同時に実行するように構成され、単一命令複数データ(SIMD)アーキテクチャを実装し、ここでスレッドのグループ(ワープ)内の各スレッドは、同じ命令セットに基づき、異なるデータ・セットを処理するように構成される。少なくとも一実施例では、スレッド・グループ内のすべてのスレッドが同じ命令を実行する。少なくとも一実施例では、SM2814は、単一命令複数スレッド(SIMT)アーキテクチャを実装し、ここで、スレッド・グループの各スレッドは、命令の同じセットに基づき、異なるデータ・セットを処理するように構成されるが、スレッド・グループ内の個々のスレッドは、実行中に発散することが許容される。少なくとも一実施例では、プログラム・カウンタ、コール・スタック、及び実行状態がワープごとに維持されて、ワープ内のスレッドが発散するときに、ワープ間の同時処理、及びワープ内での直列実行が可能になる。別の実施例では、プログラム・カウンタ、コール・スタック、及び実行状態が個々のスレッドごとに維持されて、すべてのスレッド間、ワープ内、及びワープ間で等しい同時処理が可能になる。少なくとも一実施例では、実行状態が個々のスレッドごとに維持され、同じ命令を実行しているスレッドが、より効率的になるように収束され並列に実行されてもよい。SM2814の少なくとも一実施例は、以下でさらに詳細に説明される。
少なくとも一実施例では、MMU2818は、GPC2800とメモリ・パーティション・ユニット(たとえば、図27のパーティション・ユニット2722)との間でインターフェースを提供し、MMU2818は、仮想アドレスから物理アドレスへのトランスレーション、メモリ保護、及びメモリ要求の調停を提供する。少なくとも一実施例では、MMU2818は、仮想アドレスからメモリの物理アドレスへのトランスレーションを実行するための1つ又は複数のトランスレーション・ルックアサイド・バッファ(「TLB」)を提供する。
1つ若しくは複数の実施例に関連する推論及び/又は訓練の動作を実行するために、推論及び/又は訓練論理615が使用される。推論及び/又は訓練論理615に関する詳細事項は、図6A及び/又は図6Bと併せて以下に提供される。少なくとも一実施例では、深層学習アプリケーション・プロセッサは、GPC2800に提供される情報を予測又は推論するようにニューラル・ネットワークなどの機械学習モデルを訓練するために使用される。少なくとも一実施例では、GPC2800は、別のプロセッサ若しくはシステムによって、又はGPC2800によって訓練されてきた訓練済み機械学習モデル(たとえば、ニューラル・ネットワーク)に基づき、情報を推論又は予測するために使用される。少なくとも一実施例では、GPC2800は、本明細書に記載の1つ又は複数のニューラル・ネットワークのユース・ケースを実行するために使用されてもよい。
1つ又は複数の実施例に関連付けられた推論及び/又は訓練の動作を実行するために、推論及び/又は訓練論理615が使用される。少なくとも一実施例では、固定されたジッタ位置と、より正確なピクセル色決定のための高解像度テクスチャとを使用して画像を生成するために、この論理がこれらの図の構成要素とともに使用され得る。
図29は、少なくとも一実施例による並列処理ユニット(「PPU」)のメモリ・パーティション・ユニット2900を示す。少なくとも一実施例では、メモリ・パーティション・ユニット2900は、限定することなく、ラスタ演算(「ROP」)ユニット2902、レベル2(「L2」)キャッシュ2904、メモリ・インターフェース2906、及びそれらの任意の好適な組合せを含む。少なくとも一実施例では、メモリ・インターフェース2906はメモリに結合される。少なくとも一実施例では、メモリ・インターフェース2906は、高速データ転送のために、32、64、128、1024ビットのデータ・バス、又は同様の実装形態を実装してもよい。少なくとも一実施例では、PPUは、U個のメモリ・インターフェース2906をパーティション・ユニット2900の対当たりに1つのメモリ・インターフェース2906に組み込んでおり、ここでパーティション・ユニット2900の各対は、対応するメモリ・デバイスに接続される。たとえば、少なくとも一実施例では、PPUは、高帯域幅メモリ・スタック、又はグラフィックス・ダブル・データ・レート、バージョン5、同期ダイナミック・ランダム・アクセス・メモリ(「GDDR5 SDRAM」)など、最大Y個のメモリ・デバイスに接続されてもよい。
少なくとも一実施例では、メモリ・インターフェース2906は、高帯域幅メモリの第2世代(「HBM2」:high bandwidth memory second generation)メモリ・インターフェースを実装し、YはUの半分に等しい。少なくとも一実施例では、HBM2メモリ・スタックは、PPUと同じ物理パッケージに位置付けられて、従来のGDDR5 SDRAMシステムに比べて実質的な電力と面積の節約を実現する。少なくとも一実施例では、各HBM2スタックは、限定することなく4個のメモリ・ダイを含み、Yは4に等しく、各HBM2スタックは、1つのダイ当たりに2つの128ビット・チャネルの合計8チャネル、及び1024ビットのデータ・バス幅を含む。少なくとも一実施例では、メモリは、1ビット・エラー訂正2ビット・エラー検出(「SECDED」:Single-Error Correcting Double-Error Detecting)エラー訂正コード(「ECC」)をサポートしてデータを保護する。少なくとも一実施例では、ECCは、データ破損を受けやすいコンピュート・アプリケーションに、より高い信頼性を提供する。
少なくとも一実施例では、PPUは、マルチ・レベルのメモリ階層を実装する。少なくとも一実施例では、メモリ・パーティション・ユニット2900は、統合されたメモリをサポートして、中央処理装置(「CPU」)及びPPUメモリに単一の統合された仮想アドレス空間を提供し、仮想メモリ・システム間でのデータの共有を可能にする。少なくとも一実施例では、他のプロセッサに位置付けられたメモリにPPUがアクセスする頻度を追跡して、より頻繁にページにアクセスしているPPUの物理メモリに、メモリ・ページが確実に移動されるようにする。少なくとも一実施例では、高速GPU相互接続2708は、アドレス・トランスレーション・サービスをサポートして、PPUが直接CPUのページ・テーブルにアクセスできるようにし、PPUによるCPUメモリへのフル・アクセスを実現する。
少なくとも一実施例では、コピー・エンジンは、複数のPPU間、又はPPUとCPUの間で、データを転送する。少なくとも一実施例では、コピー・エンジンは、ページ・テーブルにマッピングされていないアドレスについてページ誤りを生成することができ、次いでメモリ・パーティション・ユニット2900がページ誤りに対応して、アドレスをページ・テーブルにマッピングし、その後で、コピー・エンジンが転送を実行する。少なくとも一実施例では、メモリは、複数のプロセッサ間でコピー・エンジンの複数の動作についてピン留めされて(たとえば、ページ移動不可能にされて)、実質的に利用可能なメモリを低減させる。少なくとも一実施例では、ハードウェアのページ誤りがある場合、メモリ・ページが常駐であるかどうかに関わらず、アドレスをコピー・エンジンに渡すことができ、コピー・プロセスは透過的である。
少なくとも一実施例によれば、図27のメモリ2704又は他のシステム・メモリからのデータは、メモリ・パーティション・ユニット2900によってフェッチされ、L2キャッシュ2904に記憶され、このL2キャッシュは、オン・チップに位置付けられ、様々なGPC間で共有される。少なくとも一実施例では、各メモリ・パーティション・ユニット2900は、対応するメモリ・デバイスに関連付けられたL2キャッシュの少なくとも一部分を、限定することなく含む。少なくとも一実施例では、より低いレベルのキャッシュが、GPC内の様々なユニットに実装される。少なくとも一実施例では、SM2814のそれぞれは、レベル1(「L1」)キャッシュを実装してもよく、ここでL1キャッシュは、特定のSM2814専用のプライベート・メモリであり、L2キャッシュ2904からのデータは、SM2814の機能ユニットで処理するために、L1キャッシュのそれぞれにフェッチされ記憶される。少なくとも一実施例では、L2キャッシュ2904は、メモリ・インターフェース2906及びXバー2720に結合される。
少なくとも一実施例では、ROPユニット2902は、色圧縮、ピクセル・ブレンディングなど、ピクセル色に関係するグラフィックス・ラスタ演算を実行する。ROPユニット2902は、少なくとも一実施例では、ラスタ・エンジン2808と併せて深度テストを実装して、ピクセル・フラグメントに関連付けられたサンプル・ロケーションの深度を、ラスタ・エンジン2808の選別エンジンから受信する。少なくとも一実施例では、深度は、フラグメントに関連付けられたサンプル・ロケーションの深度バッファにおける対応する深度と比べてテストされる。少なくとも一実施例では、フラグメントが、サンプル・ロケーションの深度テストを通過すると、ROPユニット2902は、深度バッファを更新し、深度テストの結果をラスタ・エンジン2808に送信する。パーティション・ユニット2900の数はGPCの数とは異なってもよく、したがって、各ROPユニット2902は、少なくとも一実施例では、GPCのそれぞれに結合されてもよいことが理解されよう。少なくとも一実施例では、ROPユニット2902は、異なるGPCから受信したパケットを追跡し、ROPユニット2902によって生成された結果が、Xバー2720を通してルーティングされることを判定する。
図30は、少なくとも一実施例による、ストリーミング・マルチプロセッサ(「SM」)3000を示す。少なくとも一実施例では、SM3000は、図28のSM2814である。少なくとも一実施例では、SM3000は、限定することなく、命令キャッシュ3002、1つ又は複数のスケジューラ・ユニット3004、レジスタ・ファイル3008、1つ又は複数の処理コア(「コア」)3010、1つ又は複数の特殊機能ユニット(「SFU」:special function unit)3012、1つ又は複数のロード/ストア・ユニット(「LSU」load/store unit)3014、相互接続ネットワーク3016、共有メモリ/レベル1(「L1」)キャッシュ3018、及びこれらの任意の好適な組合せを含む。少なくとも一実施例では、ワーク分配ユニットは、並列処理ユニット(「PPU」)の汎用処理クラスタ(「GPC」)で実行するためにタスクをディスパッチし、各タスクは、GPC内の特定のデータ処理クラスタ(「DPC」)に配分され、タスクがシェーダ・プログラムに関連する場合には、タスクはSM3000のうちの1つに配分される。少なくとも一実施例では、スケジューラ・ユニット3004は、ワーク分配ユニットからタスクを受信し、SM3000に割り当てられた1つ又は複数のスレッド・ブロックについて命令スケジューリングを管理する。少なくとも一実施例では、スケジューラ・ユニット3004は、並列スレッドのワープとして実行できるようにスレッド・ブロックをスケジューリングし、ここで各スレッド・ブロックは、少なくとも1つのワープに配分される。少なくとも一実施例では、各ワープは、スレッドを実行する。少なくとも一実施例では、スケジューラ・ユニット3004は、複数の異なるスレッド・ブロックを管理して、異なるスレッド・ブロックにワープを配分し、次いで複数の異なる連動グループからの命令を、各クロック・サイクル中に様々な機能ユニット(たとえば、処理コア3010、SFU3012、及びLSU3014)にディスパッチする。
少なくとも一実施例では、連動グループとは、通信するスレッドのグループを組織化するためのプログラミング・モデルを指し、このモデルは、スレッドが通信する粒度をデベロッパが表せるようにして、より豊富でより効率的な並列分解の表現を可能にする。少なくとも一実施例では、連動した起動APIは、並列アルゴリズムを実行できるようにスレッド・ブロック間の同期をサポートする。少なくとも一実施例では、従来のプログラミング・モデルのアプリケーションは、連動スレッドを同期するための単一の簡単な構造、すなわちスレッド・ブロックのすべてのスレッドにわたるバリア(たとえば、syncthreads()関数)を提供する。しかし、少なくとも一実施例では、プログラマは、スレッド・ブロックの粒度よりも小さいスレッド・グループを定義し、定義されたグループ内で同期して、集合的なグループ全般にわたる機能インターフェースの形で、より高い性能、設計の融通性、及びソフトウェア再利用を可能にしてもよい。少なくとも一実施例では、連動グループによって、プログラマは、サブ・ブロック(すなわち、単一スレッドと同じ大きさ)の粒度及びマルチ・ブロックの粒度において、スレッドのグループを明示的に定義し、連動グループ内のスレッドに対する同期などの集合的な動作を実行できるようになる。少なくとも一実施例では、プログラミング・モデルは、ソフトウェア境界を横切るクリーンな合成をサポートし、それにより、ライブラリ及びユーティリティ関数を、収束について仮定する必要なくそれらのローカルなコンテキスト内で安全に同期することができる。少なくとも一実施例では、連動グループのプリミティブは、プロデューサ-コンシューマ並列性、日和見並列性(opportunistic parallelism)、及びスレッド・ブロックのグリッド全体にわたるグローバルな同期を限定することなく含む新しいパターンの連動並列性を可能にする。
少なくとも一実施例では、ディスパッチ・ユニット3006は、機能ユニットの1つ又は複数に命令を送信するように構成され、スケジューラ・ユニット3004は、同じワープからの2つの異なる命令を、各クロック・サイクル中にディスパッチできるようにする2つのディスパッチ・ユニット3006を限定することなく含む。少なくとも一実施例では、各スケジューラ・ユニット3004は、単一のディスパッチ・ユニット3006又は追加のディスパッチ・ユニット3006を含む。
少なくとも一実施例では、各SM3000は、少なくとも一実施例では、SM3000の機能ユニットにレジスタのセットを提供するレジスタ・ファイル3008を限定することなく含む。少なくとも一実施例では、レジスタ・ファイル3008は、各機能ユニットがレジスタ・ファイル3008の専用部分に配分されるように、各機能ユニット間で分割される。少なくとも一実施例では、レジスタ・ファイル3008は、SM3000によって実行されている異なるワープ間で分割され、レジスタ・ファイル3008は、機能ユニットのデータ経路に接続されたオペランド用の一時的なストレージを提供する。少なくとも一実施例では、各SM3000は、限定することなく複数のL処理コア3010を含む。少なくとも一実施例では、各SM3000は、限定することなく、多数の(たとえば、128個以上の)個別の処理コア3010を含む。少なくとも一実施例では、各処理コア3010は、少なくとも一実施例では、浮動小数点算術論理演算ユニット及び整数算術論理演算ユニットを限定することなく含む完全にパイプライン化された、単精度の、倍精度の、及び/又は混合精度の処理ユニットを限定することなく含む。少なくとも一実施例では、浮動小数点算術論理演算ユニットは、浮動小数点演算のためのIEEE754-2008規格を実装する。少なくとも一実施例では、処理コア3010は、限定することなく、64個の単精度(32ビット)浮動小数点コア、64個の整数コア、32個の倍精度(64ビット)浮動小数点コア、及び8個のテンソル・コアを含む。
テンソル・コアは、少なくとも一実施例による行列演算を実行するように構成される。少なくとも一実施例では、1つ又は複数のテンソル・コアは、処理コア3010に含まれる。少なくとも一実施例では、テンソル・コアは、ニューラル・ネットワークの訓練及び推論のための畳み込み演算など、深層学習の行列演算を実行するように構成される。少なくとも一実施例では、各テンソル・コアは、4×4の行列で動作し、行列の積和演算(matrix multiply and accumulate operation)D=A×B+Cを実行し、ここでA、B、C、及びDは4×4の行列である。
少なくとも一実施例では、行列乗算の入力A及びBは、16ビットの浮動小数点行列であり、和の行列C及びDは、16ビットの浮動小数点又は32ビットの浮動小数点行列である。少なくとも一実施例では、テンソル・コアは、32ビットの浮動小数点の和を有する16ビットの浮動小数点入力データで動作する。少なくとも一実施例では、16ビットの浮動小数点乗算は、64個の演算を使用し、結果的に完全精度の積をもたらし、次いでその積が、4×4×4の行列乗算の他の中間積との32ビット浮動小数点加算を使用して加算される。テンソル・コアを使用して、少なくとも一実施例では、これらの小さい要素から構築される、はるかに大きい2次元又はさらに高次元の行列演算が実行される。少なくとも一実施例では、CUDA9C++APIなどのAPIは、CUDA-C++プログラムからテンソル・コアを効率的に使用するために、特殊な行列ロード演算、行列積和演算、及び行列ストア演算を公開している。少なくとも一実施例では、CUDAレベルにおいて、ワープ・レベル・インターフェースは、ワープの32スレッドすべてにわたる16×16のサイズの行列を仮定している。
少なくとも一実施例では、各SM3000は、特殊関数(たとえば、属性評価、逆数平方根など)を実行するM個のSFU3012を、限定することなく含む。少なくとも一実施例では、SFU3012は、限定することなく、階層ツリー・データ構造をトラバースするように構成されたツリー・トラバーサル・ユニットを含む。少なくとも一実施例では、SFU3012は、テクスチャ・マップのフィルタリング動作を実行するように構成されたテクスチャ・ユニットを、限定することなく含む。少なくとも一実施例では、テクスチャ・ユニットは、メモリ及びサンプル・テクスチャ・マップからテクスチャ・マップ(たとえば、テクセルの2Dアレイ)をロードして、SM3000により実行されるシェーダ・プログラムで使用するためのサンプリングされたテクスチャ値を生成するように構成される。少なくとも一実施例では、テクスチャ・マップは、共有メモリ/レベル1キャッシュ3018に記憶される。少なくとも一実施例では、テクスチャ・ユニットは、少なくとも一実施例によれば、ミップ・マップ(たとえば、詳細さのレベルが異なるテクスチャ・マップ)を使用したフィルタリング動作などのテクスチャ動作を実装する。少なくとも一実施例では、各SM3000は、限定することなく、2つのテクスチャ・ユニットを含む。
各SM3000は、少なくとも一実施例では、共有メモリ/L1キャッシュ3018とレジスタ・ファイル3008の間でロード及びストア動作を実装するN個のLSU3014を、限定することなく含む。少なくとも一実施例では、各SM3000は、各機能ユニットをレジスタ・ファイル3008に接続し、LSU3014をレジスタ・ファイル3008及び共有メモリ/L1キャッシュ3018に接続する相互接続ネットワーク3016を、限定することなく含む。少なくとも一実施例では、相互接続ネットワーク3016はクロスバーであり、このクロスバーは、任意の機能ユニットをレジスタ・ファイル3008の任意のレジスタに接続し、LSU3014をレジスタ・ファイル3008と共有メモリ/L1キャッシュ3018のメモリ・ロケーションとに接続するように構成されてもよい。
少なくとも一実施例では、共有メモリ/L1キャッシュ3018は、少なくとも一実施例では、SM3000とプリミティブ・エンジンの間、及びSM3000のスレッド間でデータ・ストレージ及び通信を可能にするオン・チップ・メモリのアレイである。少なくとも一実施例では、共有メモリ/L1キャッシュ3018は、限定することなく、128KBのストレージ容量を備え、SM3000からパーティション・ユニットに向かう経路にある。少なくとも一実施例では、共有メモリ/L1キャッシュ3018は、少なくとも一実施例では、読取り及び書込みをキャッシュするために使用される。少なくとも一実施例では、共有メモリ/L1キャッシュ3018、L2キャッシュ、及びメモリのうちの1つ又は複数は、補助ストレージである。
少なくとも一実施例では、データ・キャッシュと共有メモリ機能とを単一のメモリ・ブロックに組み合わせることによって、両方のタイプのメモリ・アクセスについて性能が向上する。少なくとも一実施例では、容量は、共有メモリを使用しないプログラムによってキャッシュとして使用され、又は使用可能であり、それにより、共有メモリが容量の半分を使用するように構成されている場合、テクスチャ及びロード/ストア動作が、残りの容量を使用することができる。少なくとも一実施例によれば、共有メモリ/L1キャッシュ3018内に統合することによって、共有メモリ/L1キャッシュ3018が、データをストリームするための高スループットの管として機能しながら、同時に高帯域幅及び低レイテンシのアクセスを、頻繁に再使用されるデータに提供できるようになる。少なくとも一実施例では、汎用並列計算向けに構成されるときには、グラフィックス処理と比べてより簡単な構成を使用することができる。少なくとも一実施例では、固定機能のグラフィックス・プロセッシング・ユニットがバイパスされて、はるかに簡単なプログラミング・モデルが作製される。汎用並列計算の構成では、ワーク分配ユニットは、少なくとも一実施例においてスレッド・ブロックを直接DPCに割当て及び分配する。少なくとも一実施例では、ブロック内のスレッドは、各スレッドが確実に一意の結果を生成するように、計算において一意のスレッドIDを使用して同じプログラムを実行し、SM3000を使用して、プログラムを実行し計算を行い、共有メモリ/L1キャッシュ3018を使用してスレッド間で通信し、LSU3014を使用して、共有メモリ/L1キャッシュ3018及びメモリ・パーティション・ユニットを介してグローバル・メモリを読み取り、書き込む。少なくとも一実施例では、汎用並列計算向けに構成されるときには、SM3000は、DCP上で新規のワークを起動するためにスケジューラ・ユニット3004が使用できるコマンドを書き込む。
少なくとも一実施例では、PPUは、デスクトップ・コンピュータ、ラップトップ・コンピュータ、タブレット・コンピュータ、サーバ、スーパーコンピュータ、スマート・フォン(たとえば、ワイヤレスの携帯型デバイス)、パーソナル・デジタル・アシスタント(「PDA」)、デジタル・カメラ、車両、頭装着型ディスプレイ、携帯型電子デバイスなどに含まれ、又はこれらに結合される。少なくとも一実施例では、PPUは、単一の半導体基板に具体化される。少なくとも一実施例では、PPUは、追加のPPU、メモリ、縮小命令セット・コンピュータ(「RISC」)CPU、メモリ管理ユニット(「MMU」)、デジタル-アナログ変換器(「DAC」:digital-to-analog converter)などの1つ又は複数の他のデバイスとともにシステム・オン・チップ(「SoC」)に含まれる。
少なくとも一実施例では、PPUは、1つ又は複数のメモリ・デバイスを含むグラフィックス・カードに含まれてもよい。グラフィックス・カードは、デスクトップ・コンピュータのマザーボード上のPCIeスロットとインターフェースをとるように構成されてもよい。少なくとも一実施例では、PPUは、マザーボードのチップセットに含まれる統合グラフィックス・プロセッシング・ユニット(「iGPU」:integrated graphics processing unit)であってもよい。
1つ若しくは複数の実施例に関連する推論及び/又は訓練の動作を実行するために、推論及び/又は訓練論理615が使用される。推論及び/又は訓練論理615に関する詳細事項は、図6A及び/又は図6Bと併せて以下に提供される。少なくとも一実施例では、深層学習アプリケーション・プロセッサは、SM3000に提供される情報を予測又は推論するようにニューラル・ネットワークなどの機械学習モデルを訓練するために使用される。少なくとも一実施例では、SM3000は、別のプロセッサ若しくはシステムによって、又はSM3000によって訓練されてきた訓練済み機械学習モデル(たとえば、ニューラル・ネットワーク)に基づき、情報を推論又は予測するために使用される。少なくとも一実施例では、SM3000は、本明細書に記載の1つ又は複数のニューラル・ネットワークのユース・ケースを実行するために使用されてもよい。
1つ又は複数の実施例に関連付けられた推論及び/又は訓練の動作を実行するために、推論及び/又は訓練論理615が使用される。少なくとも一実施例では、固定されたジッタ位置と、より正確なピクセル色決定のための高解像度テクスチャとを使用して画像を生成するために、この論理がこれらの図の構成要素とともに使用され得る。
少なくとも一実施例では、単一の半導体プラットフォームは単独で単体の半導体ベースの集積回路又はチップを指してもよい。少なくとも一実施例では、マルチ・チップ・モジュールは、オン・チップ動作をシミュレートする接続性が向上した状態で使用されてもよく、従来の中央処理ユニット(「CPU」)及びバス実装の利用を大幅に改善する。少なくとも一実施例では、ユーザの希望に応じて、半導体プラットフォームとは別々に、又は半導体プラットフォームとの様々な組合せで、様々なモジュールがさらに設置されてもよい。
少なくとも一実施例では、機械可読実行可能コード又はコンピュータ制御論理アルゴリズムの形態におけるコンピュータ・プログラムがメイン・メモリ1004及び/又は二次ストレージに記憶される。コンピュータ・プログラムは、1つ又は複数のプロセッサによって実行された場合に、少なくとも一実施例による様々な機能をシステム1000が実行できるようにする。少なくとも一実施例では、メモリ1004、ストレージ、及び/又は任意の他のストレージが、コンピュータ可読媒体の考えられる例である。少なくとも一実施例では、二次ストレージは、フロッピー・ディスク・ドライブ、磁気テープ・ドライブ、コンパクト・ディスク・ドライブ、デジタル多用途ディスク(「DVD:digital versatile disk」)ドライブ、記録デバイス、ユニバーサル・シリアル・バス(「USB」)フラッシュ・メモリなどを表すハード・ディスク・ドライブ及び/又はリムーバブル・ストレージ・ドライブなどの任意の好適なストレージ・デバイス又はシステムを指してもよい。少なくとも一実施例では、様々な先の図面のアーキテクチャ及び/又は機能は、CPU1002、並列処理システム1012、CPU1002の両方の機能の少なくとも一部分を実現可能な集積回路、並列処理システム1012、チップセット(たとえば、関連機能を実行するためのユニットとして働き、販売されるように設計された集積回路のグループなど)、及び1つ又は複数の集積回路の任意の好適な組合せの文脈において実装される。
少なくとも一実施例では、様々な先の図のアーキテクチャ及び/又は機能は、汎用コンピュータ・システム、回路板システム、エンタテイメント目的専用のゲーム・コンソール・システム、特定用途システム、などの文脈において実装される。少なくとも一実施例では、コンピュータ・システム1000は、デスクトップ・コンピュータ、ラップトップ・コンピュータ、タブレット・コンピュータ、サーバ、スーパーコンピュータ、スマート・フォン(たとえば、ワイヤレスの携帯型デバイス)、パーソナル・デジタル・アシスタント(「PDA」)、デジタル・カメラ、車両、頭装着型ディスプレイ、携帯型電子デバイス、モバイル・フォン・デバイス、テレビ、ワークステーション、ゲーム・コンソール、組み込みシステム、及び/又は任意の他のタイプの論理の形をとってもよい。
少なくとも一実施例では、並列処理システム1012は、限定することなく、複数の並列処理ユニット(「PPU」)1014、及び関連メモリ1016を含む。少なくとも一実施例では、PPU1014は相互接続1018及びスイッチ1020又はマルチプレクサを介してホストプロセッサ又は他の周辺デバイスに接続される。少なくとも一実施例では、並列処理システム1012は、計算タスクをPPU1014にわたって分配し、これは、たとえば複数のグラフィックス処理ユニット(「GPU」)スレッド・ブロックにわたる計算タスクの分配の一部として、並列化可能とすることができる。少なくとも一実施例では、メモリは、PPU1014の一部又は全部にわたって共有され、(たとえば、読取り及び/又は書込みアクセスのために)アクセス可能であるが、こうした共有メモリは、PPU1014に常駐しているローカル・メモリ及びレジスタの使用に対して、性能に不利益をもたらすことがある。少なくとも一実施例では、PPU1014の動作は、_syncthreads()などのコマンドの使用によって同期され、ここで、(たとえば、複数のPPU1014にわたって動作している)ブロック中のすべてのスレッドが、進行前にコードのある一定の実行ポイントに到達する。
仮想化コンピューティング・プラットフォーム
画像推論及び画像処理など、先進コンピューティングのための仮想化コンピューティング・プラットフォームに関する実施例が開示される。図31を参照すると、少なくとも一実施例による、画像処理及び推論のパイプラインを生成及び導入するプロセス3100の実例データ・フロー図である。少なくとも一実施例では、プロセス3100は、医療施設、病院、ヘルスケア機関、クリニック、リサーチ若しくは診断の研究所などの1つ又は複数の施設3102において、撮像デバイス、処理デバイス、ゲノミクス・デバイス、遺伝子配列デバイス、放射線デバイス、及び/又は他のタイプのデバイスとともに使用するために導入されてもよい。少なくとも一実施例では、プロセス3100は、シーケンシング・データについてゲノミクスの分析及び推論を実行するために導入されてもよい。本明細書に記載のシステム及びプロセスを使用して実行することができるゲノム分析の実例は、限定することなく、バリアント・コール、変異検出、及び遺伝子発現の定量化を含む。プロセス3100は、訓練システム3104内及び/又は導入システム3106内で実行されてもよい。少なくとも一実施例では、訓練システム3104を使用して、導入システム3106で使用するための機械学習モデル(たとえば、ニューラル・ネットワーク、物体検出アルゴリズム、コンピュータ・ビジョン・アルゴリズムなど)の訓練、導入、及び実装が実行されてもよい。少なくとも一実施例では、導入システム3106は、処理及び計算のリソースを分散コンピューティング環境間でオフロードするように構成されて、施設3102におけるインフラストラクチャ要件を低減してもよい。少なくとも一実施例では、導入システム3106は、施設3102において撮像デバイス(たとえば、MRI、CTスキャン、X線、超音波など)又はシーケンシング・デバイスとともに使用するための仮想機器を選択し、カスタマイズし、実装するための合理化されたプラットフォームを提供してもよい。少なくとも一実施例では、仮想機器は、撮像デバイス、シーケンシング・デバイス、放射線デバイス、及び/又は他のタイプのデバイスによって生成された撮像データに対して1つ又は複数の処理動作を実行するためのソフトウェア定義アプリケーションを含んでもよい。少なくとも一実施例では、パイプライン内の1つ又は複数のアプリケーションは、アプリケーションの実行中に導入システム3106のサービス(たとえば、推論、仮想化、計算、AIなど)を使用又はコールしてもよい。
画像推論及び画像処理など、先進コンピューティングのための仮想化コンピューティング・プラットフォームに関する実施例が開示される。図31を参照すると、少なくとも一実施例による、画像処理及び推論のパイプラインを生成及び導入するプロセス3100の実例データ・フロー図である。少なくとも一実施例では、プロセス3100は、医療施設、病院、ヘルスケア機関、クリニック、リサーチ若しくは診断の研究所などの1つ又は複数の施設3102において、撮像デバイス、処理デバイス、ゲノミクス・デバイス、遺伝子配列デバイス、放射線デバイス、及び/又は他のタイプのデバイスとともに使用するために導入されてもよい。少なくとも一実施例では、プロセス3100は、シーケンシング・データについてゲノミクスの分析及び推論を実行するために導入されてもよい。本明細書に記載のシステム及びプロセスを使用して実行することができるゲノム分析の実例は、限定することなく、バリアント・コール、変異検出、及び遺伝子発現の定量化を含む。プロセス3100は、訓練システム3104内及び/又は導入システム3106内で実行されてもよい。少なくとも一実施例では、訓練システム3104を使用して、導入システム3106で使用するための機械学習モデル(たとえば、ニューラル・ネットワーク、物体検出アルゴリズム、コンピュータ・ビジョン・アルゴリズムなど)の訓練、導入、及び実装が実行されてもよい。少なくとも一実施例では、導入システム3106は、処理及び計算のリソースを分散コンピューティング環境間でオフロードするように構成されて、施設3102におけるインフラストラクチャ要件を低減してもよい。少なくとも一実施例では、導入システム3106は、施設3102において撮像デバイス(たとえば、MRI、CTスキャン、X線、超音波など)又はシーケンシング・デバイスとともに使用するための仮想機器を選択し、カスタマイズし、実装するための合理化されたプラットフォームを提供してもよい。少なくとも一実施例では、仮想機器は、撮像デバイス、シーケンシング・デバイス、放射線デバイス、及び/又は他のタイプのデバイスによって生成された撮像データに対して1つ又は複数の処理動作を実行するためのソフトウェア定義アプリケーションを含んでもよい。少なくとも一実施例では、パイプライン内の1つ又は複数のアプリケーションは、アプリケーションの実行中に導入システム3106のサービス(たとえば、推論、仮想化、計算、AIなど)を使用又はコールしてもよい。
少なくとも一実施例では、先進処理及び推論パイプラインで使用されるアプリケーションのいくつかは、1つ又は複数の処理ステップを実行するために機械学習モデル又は他のAIを使用してもよい。少なくとも一実施例では、機械学習モデルは、施設3102で生成された(且つ、施設3102において1つ若しくは複数の画像アーカイブ及び通信システム(PACS)サーバに記憶された)(撮像データなどの)データ3108を使用して、施設3102において訓練されてもよく、別の施設(たとえば、異なる病院、研究所、クリニックなど)からの撮像若しくはシーケンシングのデータ3108を使用して訓練されてもよく、又はそれらの組合せであってもよい。少なくとも一実施例では、訓練システム3104を使用して、導入システム3106向けの実用的で導入可能な機械学習モデルを生成するためのアプリケーション、サービス、及び/又は他のリソースが提供されてもよい。
少なくとも一実施例では、モデル・レジストリ3124は、バージョン管理及び物体メタデータをサポートすることができる物体ストレージによってバックアップされてもよい。少なくとも一実施例では、物体ストレージには、たとえば、クラウド・プラットフォーム内から、クラウド・ストレージ(たとえば、図32のクラウド3226)の互換性アプリケーション・プログラミング・インターフェース(API)を介してアクセス可能であってもよい。少なくとも一実施例では、モデル・レジストリ3124内の機械学習モデルは、システムの開発者又はパートナがAPIと対話することによって、アップロード、リスト化、修正、又は削除されてもよい。少なくとも一実施例では、APIは、適切な資格を有するユーザがモデルをアプリケーションに関連付けできるようにする方法へのアクセスを提供してもよく、それによりアプリケーションのコンテナ化されたインスタンスを実行することの一部として、モデルを実行できるようになる。
少なくとも一実施例では、訓練パイプライン3204(図32)は、施設3102が独自の機械学習モデルを訓練している状況、又は最適化若しくは更新される必要がある既存の機械学習モデルを有している状況を含んでもよい。少なくとも一実施例では、撮像デバイス、シーケンシング・デバイス、及び/又は他のタイプのデバイスによって生成された撮像データ3108が受信されてもよい。少なくとも一実施例では、撮像データ3108が受信されると、機械学習モデルのグラウンド・トゥルース・データとして使用されることになる撮像データ3108に対応するアノテーションの生成を支援するために、AI支援アノテーション3110が使用されてもよい。少なくとも一実施例では、AI支援アノテーション3110は、1つ又は複数の機械学習モデル(たとえば、畳み込みニューラル・ネットワーク(CNN))を含んでもよく、これは(たとえば特定のデバイスからの)特定のタイプの撮像データ3108、及び/又は撮像データ3108内の特定のタイプの異常に対応するアノテーションを生成するように訓練されてもよい。少なくとも一実施例では、次いでAI支援アノテーション3110は、グラウンド・トゥルース・データを生成するために直接使用されてもよく、又は(たとえば、研究者、臨床医、医師、科学者などによって)アノテーション・ツールを使用して調節若しくは微調整されてもよい。少なくとも一実施例では、いくつかの実例において、ラベル付けされたクリニック・データ3112(たとえば、臨床医、医師、科学者、技術者などによって提供されたアノテーション)が、機械学習モデルを訓練するためのグラウンド・トゥルース・データとして使用されてもよい。少なくとも一実施例では、AI支援アノテーション3110、ラベル付けされたクリニック・データ3112、又はそれらの組合せが、機械学習モデルを訓練するためのグラウンド・トゥルース・データとして使用されてもよい。少なくとも一実施例では、訓練済み機械学習モデルは出力モデル3116と呼ばれてもよく、本明細書に記載の導入システム3106によって使用されてもよい。
少なくとも一実施例では、訓練パイプライン3204(図32)は、施設3102が、導入システム3106内の1つ又は複数のアプリケーションのための1つ又は複数の処理タスクを実行する際に使用する機械学習モデルを必要としているが、施設3102は現在そのような機械学習モデルを有していないかもしれない(又はそうした目的のために最適化された、効率よい、若しくは有効なモデルを有していないかもしれない)という状況を含んでもよい。少なくとも一実施例では、既存の機械学習モデルが、モデル・レジストリ3124から選択されてもよい。少なくとも一実施例では、モデル・レジストリ3124は、撮像データに対して様々な異なる推論タスクを実行するように訓練された機械学習モデルを含んでもよい。少なくとも一実施例では、モデル・レジストリ3124の機械学習モデルは、施設3102とは異なる施設(たとえば、離れた場所にある施設)からの撮像データについて訓練されたものであってもよい。少なくとも一実施例では、機械学習モデルは、1つの場所、2つの場所、又は任意の数の場所からの撮像データについて訓練されたものであってもよい。少なくとも一実施例では、特定の場所からの撮像データについて訓練されるとき、訓練は、その場所で行われてもよく、又は少なくとも、撮像データの機密性を保護するようなやり方で、若しくは撮像データが構外へ転送されるのを制限するようなやり方で(たとえば、HIPPA規定、プライバシー規定に準拠するように)行われてもよい。少なくとも一実施例では、1つの場所においてモデルが訓練されると、又は部分的に訓練されると、機械学習モデルはモデル・レジストリ3124に加えられてもよい。少なくとも一実施例では、次いで機械学習モデルは、任意の数の他の施設において再訓練又は更新されてもよく、再訓練又は更新されたモデルが、モデル・レジストリ3124において利用可能にされてもよい。少なくとも一実施例では、次いで機械学習モデルは、モデル・レジストリ3124から選択されてもよく、出力モデル3116と呼ばれてもよく、導入システム3106において使用されて、導入システムの1つ又は複数のアプリケーションのための1つ又は複数の処理タスクを実行してもよい。
少なくとも一実施例では、訓練パイプライン3204(図32)は、シナリオは、導入システム3106内の1つ又は複数のアプリケーションのための1つ又は複数の処理タスクを実行する際に使用する機械学習モデルを必要としている施設3102を含むかもしれないが、施設3102は現在そのような機械学習モデルを有していないかもしれない(又はそうした目的のために最適化された、効率よい、若しくは有効なモデルを有していないかもしれない)。少なくとも一実施例では、モデル・レジストリ3124から選択された機械学習モデルは、母集団、遺伝的差異、機械学習モデルを訓練するために使用される訓練データの頑健性、訓練データの異常の多様性、及び/又は訓練データに伴う他の問題に違いがあることから、施設3102において生成される撮像データ3108向けに微調整又は最適化されないことがある。少なくとも一実施例では、機械学習モデルを再訓練又は更新するためのグラウンド・トゥルース・データとして使用されることになる撮像データ3108に対応するアノテーションの生成を支援するために、AI支援アノテーション3110が使用されてもよい。少なくとも一実施例では、ラベル付けされたクリニック・データ3112(たとえば、臨床医、医師、科学者、技術者などによって提供されたアノテーション)が、機械学習モデルを訓練するためのグラウンド・トゥルース・データとして使用されてもよい。少なくとも一実施例では、機械学習モデルを再訓練又は更新することは、モデル訓練3114と呼ばれてもよい。少なくとも一実施例では、モデル訓練3114、たとえばAI支援アノテーション3110、ラベル付けされたクリニック・データ3112、又はこれらの組合せは、機械学習モデルを再訓練若しくは更新するためのグラウンド・トゥルース・データとして使用されてもよい。少なくとも一実施例では、訓練済み機械学習モデルは出力モデル3116と呼ばれることもあり、本明細書に記載の導入システム3106によって使用されてもよい。
少なくとも一実施例では、導入システム3106は、ソフトウェア3118、サービス3120、ハードウェア3122、並びに/又は他の構成要素、特徴、及び機能を含んでもよい。少なくとも一実施例では、導入システム3106は、ソフトウェア「スタック」を含んでもよく、それによりソフトウェア3118は、サービス3120の上に構築されてもよく、サービス3120を使用して一部若しくはすべての処理タスクを実行してもよく、サービス3120及びソフトウェア3118は、ハードウェア3122の上に構築され、ハードウェア3122を使用して、導入システム3106の処理、ストレージ、及び/又は他の計算のタスクを実行してもよい。少なくとも一実施例では、ソフトウェア3118は、任意の数の異なるコンテナを含んでもよく、ここで各コンテナは、アプリケーションのインスタンス化を実行してもよい。少なくとも一実施例では、各アプリケーションは、先進処理及び推論パイプラインの1つ又は複数の処理タスク(たとえば、推論、物体検出、特徴検出、セグメント化、画像強調、キャリブレーションなど)を実行してもよい。少なくとも一実施例では、撮像デバイス(たとえば、CT、MRI、X線、超音波、ソノグラフィ、心エコーなど)、シーケンシング・デバイス、放射線デバイス、ゲノミクス・デバイスなどのタイプごとに、デバイスによって生成された撮像データ3108(又は、本明細書に記載のものなどの他のタイプのデータ)に対してデータ処理タスクを実行できる任意の数のコンテナが存在してもよい。少なくとも一実施例では、先進処理及び推論パイプラインは、(たとえば、医用におけるデジタル画像と通信(digital imaging and communications in medicine:DICOM)データ、放射線医学情報システム(RIS)データ、臨床情報システム(CIS)データ、リモート・プロシージャ・コール(RPC)データ、表現状態転送(REST)インターフェースに実質的に準拠したデータ、ファイルベースのインターフェースに実質的に準拠したデータ、及び/又は生のデータなどの使用可能なタイプのデータに出力を再変換して、施設3102において記憶及び表示するように)パイプラインを通して処理した後に、各コンテナによって使用される、且つ/又は施設3102によって使用される撮像データを受信及び構成するコンテナに加えて、撮像データ3108を処理するのに所望される又は必要とされる異なるコンテナの選択に基づき定義されてもよい。少なくとも一実施例では、(たとえばパイプラインを構成する)ソフトウェア3118内のコンテナの組合せは、(本明細書においてより詳細に記載する)仮想機器と呼ばれてもよく、仮想機器は、サービス3120及びハードウェア3122を利用して、コンテナにおいてインスタンス化されたアプリケーションの一部又はすべての処理タスクを実行してもよい。
少なくとも一実施例では、データ処理パイプラインは、推論要求(たとえば、臨床医、医師、放射線医など、導入システム3106のユーザからの要求)に応答して、DICOM、RIS、CIS、REST準拠、RPC、生、及び/又は他のフォーマットで入力データ(たとえば、撮像データ3108)を受け取ってもよい。少なくとも一実施例では、入力データは、1つ又は複数の撮像デバイス、シーケンシング・デバイス、放射線デバイス、ゲノミクス・デバイス、及び/又は他のタイプのデバイスによって生成される1つ又は複数の画像、ビデオ、及び/又は他のデータ表現を表してもよい。少なくとも一実施例では、データは、データ処理パイプラインの一部としての事前処理を受けて、1つ又は複数のアプリケーションによって処理できるようにデータが準備されてもよい。少なくとも一実施例では、パイプラインの1つ若しくは複数の推論タスク又は他の処理タスクの出力に対して後処理が実行されて、次のアプリケーション用に出力データが準備されてもよく、且つ/又は送信及び/若しくはユーザによる使用のために(たとえば、推論要求への応答として)出力データが準備されてもよい。少なくとも一実施例では、推論タスクは、訓練済み若しくは導入済みのニューラル・ネットワークなど、1つ又は複数の機械学習モデルによって実行されてもよく、このモデルは、訓練システム3104の出力モデル3116を含んでもよい。
少なくとも一実施例では、データ処理パイプラインのタスクはコンテナにカプセル化されてもよく、コンテナはそれぞれ、アプリケーションの個別の完全に機能的なインスタンス化、及び機械学習モデルを参照できる仮想化コンピューティング環境を表す少なくとも一実施例では、コンテナ又はアプリケーションは、(本明細書においてより詳細に記載する)コンテナ・レジストリのプライベート(たとえば、アクセスの制限された)区域に発行されてもよく、訓練済み又は導入済みのモデルは、モデル・レジストリ3124に記憶され、1つ又は複数のアプリケーションに関連付けられてもよい。少なくとも一実施例では、アプリケーションの画像(たとえば、コンテナの画像)は、コンテナ・レジストリにおいて入手可能であってもよく、パイプラインに導入するためにユーザによってコンテナ・レジストリから選択されると、画像は、ユーザのシステムで使用できるようにアプリケーションをインスタンス化するためのコンテナを生成するために使用されてもよい。
少なくとも一実施例では、開発者(たとえば、ソフトウェア開発者、臨床医、医師など)は、供給されたデータに対して画像処理及び/又は推論を実行するために、アプリケーションを(たとえばコンテナとして)開発、公開、及び記憶してもよい。少なくとも一実施例では、開発、公開、及び/又は記憶は、(たとえば、開発されたアプリケーション及び/又はコンテナが、確実にシステムに準拠するように、又はシステムと互換性があるようにするために)システムに関連付けられたソフトウェア開発キット(SDK)を使用して実行されてもよい。少なくとも一実施例では、開発されたアプリケーションは、システム(たとえば図32のシステム3200)としてサービス3120の少なくとも一部をサポートすることができるSDKを用いて、ローカルに(たとえば第1の施設において、第1の施設からのデータについて)テストされてもよい。少なくとも一実施例では、DICOM物体は、1個から数百個にわたる画像又は他のタイプのデータをどこにでも含むことができるうえに、データのバリエーションがあることから、開発者は、入力されるDICOMデータの抽出及び準備を管理する(たとえば、アプリケーション用の構成を設定する、事前処理をアプリケーションに構築するなどの)責任を負うことがある。少なくとも一実施例では、システム3200によって(たとえば、精度、安全性、患者のプライバシーなどが)検証されると、アプリケーションは、ユーザ(たとえば、病院、クリニック、研究所、ヘルスケア提供者など)によって選択及び/又は実装できるようにコンテナ・レジストリにおいて利用可能にされて、ユーザの施設(たとえば、第2の施設)におけるデータに対して1つ又は複数の処理タスクが実行されてもよい。
少なくとも一実施例では、次いで開発者は、アプリケーション又はコンテナを、システム(たとえば、図32のシステム3200)のユーザによってアクセス及び使用できるようにネットワークを通して共有してもよい。少なくとも一実施例では、完成し検証されたアプリケーション又はコンテナは、コンテナ・レジストリに記憶されてもよく、関連する機械学習モデルは、モデル・レジストリ3124に記憶されてもよい。少なくとも一実施例では、推論又は画像処理の要求を出す要求元エンティティ(たとえば、医療施設のユーザ)は、コンテナ・レジストリ及び/又はモデル・レジストリ3124をブラウジングしてアプリケーション、コンテナ、データセット、機械学習モデルなどを探し、データ処理パイプラインに含めるための要素の所望の組合せを選択し、撮像処理要求を送出してもよい。少なくとも一実施例では、要求は、要求を実行するために必要な入力データ(及びいくつかの実例では、関連する患者データ)を含んでもよく、且つ/又は要求を処理する際に実行されることになるアプリケーション及び/又は機械学習モデルの選択を含んでもよい。少なくとも一実施例では、次いで要求は、導入システム3106(たとえばクラウド)の1つ又は複数の構成要素に渡されて、データ処理パイプラインの処理が実行されてもよい。少なくとも一実施例では、導入システム3106による処理は、コンテナ・レジストリ及び/又はモデル・レジストリ3124から選択された要素(たとえば、アプリケーション、コンテナ、モデルなど)を参照することを含んでもよい。少なくとも一実施例では、パイプラインによって結果が生成されると、結果がユーザに返されて参照されてもよい(たとえば、ローカルで、構内のワークステーション又は端末で実行している視聴アプリケーション・スイートで視聴されてもよい)。少なくとも一実施例では、放射線医は、任意の数のアプリケーション及び/又はコンテナを含むデータ処理パイプラインから結果を受信してもよく、ここで結果は、X線、CTスキャン、MRIなどにおける異常検出を含んでもよい。
少なくとも一実施例では、パイプラインにおけるアプリケーション又はコンテナの処理又は実行を支援するために、サービス3120が利用されてもよい。少なくとも一実施例では、サービス3120は、計算サービス、人工知能(AI)サービス、視覚化サービス、及び/又は他のタイプのサービスを含んでもよい。少なくとも一実施例では、サービス3120は、ソフトウェア3118の1つ又は複数のアプリケーションに共通の機能を提供してもよく、それにより機能は、アプリケーションによってコール又は利用されることが可能なサービスに対して抽象化されてもよい。少なくとも一実施例では、サービス3120によって提供される機能は、動的でより効率的に実行されてもよく、それと同時に、(たとえば、並列コンピューティング・プラットフォーム3230(図32)を使用して)アプリケーションが並列にデータを処理できるようにすることにより、良好にスケーリングされてもよい。少なくとも一実施例では、サービス3120により提供される同じ機能を共有する各アプリケーションに、サービス3120のそれぞれのインスタンスを有するよう要求するのではなく、サービス3120が、様々なアプリケーション間で共有されてもよい。少なくとも一実施例では、サービスは、非限定的な実例として、検出又はセグメント化のタスクを実行するために使用されてもよい推論のサーバ又はエンジンを含んでもよい。少なくとも一実施例では、機械学習モデルの訓練及び/又は再訓練の機能を提供することができるモデル訓練サービスが含まれてもよい。少なくとも一実施例では、GPU加速化データ(たとえば、DICOM、RIS、CIS、REST準拠、RPC、生など)の抽出、リサイズ、スケーリング、及び/又は他の拡張を提供することができるデータ拡張サービスがさらに含まれてもよい。少なくとも一実施例では、レイ・トレーシング、ラスタ化、ノイズ除去、鮮鋭化などの画像レンダリング効果を加えることができる視覚化サービスが使用されて、2次元(2D)及び/又は3次元(3D)のモデルにリアル感が付加されてもよい。少なくとも一実施例では、仮想機器のパイプライン内の他のアプリケーションについてビーム形成、セグメント化、推論、撮像、及び/又はサポートを実現する仮想機器サービスが含まれてもよい。
少なくとも一実施例では、サービス3120がAIサービス(たとえば、推論サービス)を含む場合、異常検出(たとえば、腫瘍、発育異常、瘢痕化など)のためのアプリケーションに関連付けられた1つ又は複数の機械学習モデルは、機械学習モデル、又はその処理を、アプリケーション実行の一部として実行するように推論サービス(たとえば、推論サーバ)に(APIコールとして)コールすることによって、実行されてもよい。少なくとも一実施例では、セグメント化タスクのための1つ又は複数の機械学習モデルを別のアプリケーションが含む場合、セグメント化タスクに関連付けられた処理動作のうちの1つ又は複数を実行するための機械学習モデルを実行するように、アプリケーションは推論サービスをコールしてもよい。少なくとも一実施例では、セグメント化アプリケーション及び異常検出アプリケーションを含む先進処理及び推論パイプラインを実装するソフトウェア3118は、1つ又は複数の推論タスクを実行するためにそれぞれのアプリケーションが同じ推論サービスをコールすることがあるので、合理化されてもよい。
少なくとも一実施例では、ハードウェア3122は、GPU、CPU、グラフィックス・カード、AI/深層学習システム(たとえば、NVIDIAのDGXなどのAIスーパーコンピュータ)、クラウド・プラットフォーム、又はそれらの組合せを含んでもよい。少なくとも一実施例では、異なるタイプのハードウェア3122を使用して、導入システム3106のソフトウェア3118及びサービス3120のための効率的で専用のサポートが提供されてもよい。少なくとも一実施例では、画像処理、画像再構築、セグメント化、MRI検査、脳卒中又は心臓発作の(たとえばリアルタイムの)検出、レンダリングの画像品質などの効率、精度、及び有効性を向上させるために、AI/深層学習システム内、クラウド・システム、及び/又は導入システム3106の他の処理構成要素において、ローカルで(たとえば、施設3102で)処理をおこなうためのGPU処理の使用が実装されてもよい。少なくとも一実施例では、施設は、撮像デバイス、ゲノミクス・デバイス、シーケンシング・デバイス、及び/又は他のタイプのデバイスを構内に含んでもよく、これらは、GPUを利用して、対象者の解剖学的組織を表す撮像データを生成してもよい。少なくとも一実施例では、ソフトウェア3118及び/又はサービス3120は、非限定的な実例として深層学習、機械学習、及び/又は高性能コンピューティングに関するGPU処理のために最適化されてもよい。少なくとも一実施例では、導入システム3106及び/又は訓練システム3104のコンピューティング環境のうちの少なくとも一部は、データ・センタの1つ若しくは複数のスーパーコンピュータ、又は高性能コンピューティング・システムにおいて、GPU最適化ソフトウェア(たとえば、NVIDIAのDGXシステムのハードウェアとソフトウェアの組合せ)を用いて実行されてもよい。少なくとも一実施例では、データセンサは、HIPAAの条項に準拠してもよく、したがって、撮像データ及び/又は他の患者データの受信、処理、及び送信は、患者データのプライバシーに関して安全に取り扱われる。少なくとも一実施例では、ハードウェア3122は、任意の数のGPUを含んでもよく、これらのGPUは、本明細書に記載するように、データの並列処理を実行するためにコールされてもよい。少なくとも一実施例では、クラウド・プラットフォームはさらに、深層学習タスク、機械学習タスク、又は他のコンピューティング・タスクのGPU最適化された実行のためのGPU処理を含んでもよい。少なくとも一実施例では、クラウド・プラットフォーム(たとえば、NVIDIAのNGC)は、(たとえば、NVIDIAのDGXシステムによって提供される)AI/深層学習スーパーコンピュータ、及び/又はGPU最適化ソフトウェアをハードウェア抽象化及びスケーリングのプラットフォームとして使用して、実行されてもよい。少なくとも一実施例では、クラウド・プラットフォームは、シームレスなスケーリング及びロード・バランシングを可能にするために、複数のGPUに対するアプリケーション・コンテナ・クラスタリング・システム又はオーケストレーション・システム(たとえば、KUBERNETES)を統合してもよい。
図32は、少なくとも一実施例による、撮像導入パイプラインを生成及び導入するための実例システム3200のシステム図である。少なくとも一実施例では、システム3200は、図31のプロセス3100、及び/又は先進処理及び推論パイプラインを含む他のプロセスを実装するために使用されてもよい。少なくとも一実施例では、システム3200は、訓練システム3104及び導入システム3106を含んでもよい。少なくとも一実施例では、訓練システム3104及び導入システム3106は、本明細書に記載するように、ソフトウェア3118、サービス3120、及び/又はハードウェア3122を使用して実装されてもよい。
少なくとも一実施例では、システム3200(たとえば、訓練システム3104及び/又は導入システム3106)は、クラウド・コンピューティング環境(たとえば、クラウド3226)において実装されてもよい。少なくとも一実施例では、システム3200は、ヘルスケア・サービス施設に関してローカルに実装されてもよく、又はクラウドとローカル・コンピューティング・リソースとの組合せとして実装されてもよい。少なくとも一実施例では、クラウド・コンピューティングが実装される実施例では、HIPAA並びに/又は他のデータ取扱い及びプライバシーの規定若しくは法律に準拠していない処理を提供するシステム3200の1つ又は複数の構成要素から、患者データは分離されてもよく、又はそれらによって処理されなくてもよい。少なくとも一実施例では、クラウド3226のAPIへのアクセスは、制定されたセキュリティ対策又はプロトコルを介して許可されたユーザに限定されてもよい。少なくとも一実施例では、セキュリティ・プロトコルはウェブ・トークンを含んでもよく、このウェブ・トークンは、認証(たとえば、AuthN、AuthZ、Glueconなど)のサービスによって署名されてもよく、適切な許可を持っていてもよい。少なくとも一実施例では、(本明細書に記載の)仮想機器のAPI、又はシステム3200の他のインスタンス化は、対話について検査済み又は許可済みのパブリックIPのセットに限定されてもよい。
少なくとも一実施例では、システム3200の様々な構成要素は、有線及び/又は無線の通信プロトコルを介して、ローカル・エリア・ネットワーク(LAN)及び/又は広域ネットワーク(WAN)を含むがこれらに限定されない様々な異なるタイプのネットワークのうちの任意のものを使用して、相互に通信してもよい。少なくとも一実施例では、(たとえば推論要求を送信するため、推論要求の結果を受信するためなど)施設とシステム3200の構成要素との間の通信は、データ・バス、無線データ・プロトコル(Wi-Fi)、有線データ・プロトコル(たとえば、イーサネット(登録商標))などを介して通信されてもよい。
少なくとも一実施例では、訓練システム3104は、図31に関して本明細書に記載したものと同様の訓練パイプライン3204を実行してもよい。少なくとも一実施例では、1つ又は複数の機械学習モデルが導入システム3106により導入パイプライン3210において使用されることになる場合、訓練パイプライン3204を使用して、1つ又は複数の(たとえば、事前訓練された)モデルが訓練若しくは再訓練されてもよく、且つ/又は事前訓練されたモデル3206のうちの1つ又は複数が(たとえば再訓練若しくは更新を必要とせずに)実装されてもよい。少なくとも一実施例では、訓練パイプライン3204の結果として、出力モデル3116が生成されてもよい。少なくとも一実施例では、訓練パイプライン3204は、(たとえばDICOM画像を、それぞれの機械学習モデルによって処理するのに適した別のフォーマット、たとえばNeuroimaging Informatics Technology Initiative(NIfTI)フォーマットなどに変換するためのDICOMアダプタ3202Aを使用した)撮像データ(若しくは他の入力データ)の変換若しくは適合、AI支援アノテーション3110、ラベル付きクリニック・データ3112を生成するための撮像データ3108のラベル付け又はアノテーション付け、モデル・レジストリからのモデル選択、モデル訓練3114、モデルの訓練、再訓練、若しくは更新、及び/又は他の処理ステップなどであるがこれらに限定されない任意の数の処理ステップを含んでもよい。少なくとも一実施例では、導入システム3106によって使用される異なる機械学習モデルについて、異なる訓練パイプライン3204が使用されてもよい。少なくとも一実施例では、図31に関して記載した第1の実例と同様の訓練パイプライン3204は、第1の機械学習モデルに使用されてもよく、図31に関して記載した第2の実例と同様の訓練パイプライン3204は、第2の機械学習モデルに使用されてもよく、図31に関して記載した第3の実例と同様の訓練パイプライン3204は、第3の機械学習モデルに使用されてもよい。少なくとも一実施例では、それぞれの各機械学習モデルに要求されるものに応じて、訓練システム3104内のタスクの任意の組合せが使用されてもよい。少なくとも一実施例では、機械学習モデルのうちの1つ又は複数は、すでに訓練済みで導入の準備が整っていてもよく、それにより機械学習モデルは、訓練システム3104によるいかなる処理も受けなくてもよく、導入システム3106によって実装されてもよい。
少なくとも一実施例では、出力モデル3116及び/又は事前訓練されたモデル3206は、実装形態又は実施例に応じて任意のタイプの機械学習モデルを含んでもよい。少なくとも一実施例では、限定することなく、システム3200によって使用される機械学習モデルは、線形回帰、ロジスティック回帰、決定木、サポート・ベクター・マシン(SVM)、ナイーブ・ベイズ、k近傍法(k-nearest neighbor:Knn)、k平均クラスタリング、ランダム・フォレスト、次元縮小アルゴリズム、勾配ブースティング・アルゴリズム、ニューラル・ネットワーク(たとえば、オート・エンコーダ、畳み込み、再帰、パーセプトロン、長/短期メモリ(LSTM)、ホップフィールド、ボルツマン、ディープ・ビリーフ、逆畳み込み、敵対的生成、液体状態マシンなど)を使用する機械学習モデル、及び/又は他のタイプの機械学習モデルを含んでもよい。
少なくとも一実施例では、訓練パイプライン3204は、少なくとも図35Bに関して、より詳細に本明細書に記載するAI支援アノテーションを含んでもよい。少なくとも一実施例では、ラベル付きクリニック・データ3112(たとえば、従来のアノテーション)は、任意の数の技法によって生成されてもよい。少なくとも一実施例では、ラベル又は他のアノテーションは、描画プログラム(たとえば、アノテーション・プログラム)、コンピュータ支援設計(CAD)プログラム、ラベル付けプログラム、グラウンド・トゥルース用のアノテーション若しくはラベルの生成に適した別のタイプのプログラム内で生成されてもよく、且つ/又はいくつかの実例では、手書きされてもよい。少なくとも一実施例では、グラウンド・トゥルース・データは、合成により生成されてもよく(たとえば、コンピュータ・モデル又はレンダリングから生成されてもよく)、現実的に生成されてもよく(たとえば、実世界のデータから設計及び生成されてもよく)、機械自動化されてもよく(たとえば、特徴の分析及び学習を使用して、データから特徴を抽出し、次いでラベルを生成してもよく)、人間によりアノテーション付けされてもよく(たとえば、ラベラ、又はアノテーション専門家がラベルのロケーションを定義してもよく)、且つ/又はこれらの組合せであってもよい。少なくとも一実施例では、撮像データ3108のインスタンス(又は機械学習モデルによって使用される他のタイプのデータ)ごとに、訓練システム3104によって生成される対応するグラウンド・トゥルース・データが存在してもよい。少なくとも一実施例では、訓練パイプライン3204に含まれるAI支援アノテーションに加えて又はその代わりに、導入パイプライン3210の一部としてAI支援アノテーションが実行されてもよい。少なくとも一実施例では、システム3200は多層プラットフォームを含んでもよく、このプラットフォームは、1つ又は複数の医療用撮像及び診断の機能を実行することができる診断アプリケーション(又は他のタイプのアプリケーション)のソフトウェア層(たとえば、ソフトウェア3118)を含んでもよい。少なくとも一実施例では、システム3200は、1つ又は複数の施設のPACSサーバ・ネットワークに、(たとえば、暗号化リンクを介して)通信可能に結合されてもよい。少なくとも一実施例では、システム3200は、PACSサーバからのデータ(たとえば、DICOMデータ、RISデータ、生データ、CISデータ、REST準拠データ、RPCデータ、生データなど)に(たとえば、DICOMアダプタ3202、又はRIS、CIS、REST準拠、RPC、生など別のタイプのデータ・アダプタを介して)アクセスし、それを参照するように構成されて、機械学習モデルの訓練、機械学習モデルの導入、画像処理、推論、及び/又は他の動作などの動作を実行してもよい。
少なくとも一実施例では、ソフトウェア層は、セキュアな、暗号化された、且つ/又は認証されたAPIとして実装されてもよく、これを介して、アプリケーション又はコンテナが、外部環境(たとえば、施設3102)から呼び出し(たとえばコール)されてもよい。少なくとも一実施例では、次いでアプリケーションは、それぞれのアプリケーションに関連付けられた計算、AI、又は視覚化のタスクを実行するために1つ又は複数のサービス3120をコール又は実行してもよく、ソフトウェア3118及び/又はサービス3120は、ハードウェア3122を利用して、処理タスクを有効且つ効率的なやり方で実行してもよい。
少なくとも一実施例では、導入システム3106は、導入パイプライン3210を実行してもよい。少なくとも一実施例では、導入パイプライン3210は任意の数のアプリケーションを含んでもよく、これらは、上に記載のAI支援アノテーションを含め、撮像デバイス、シーケンシング・デバイス、ゲノミクス・デバイスなどによって生成された撮像データ(及び/又は他のタイプのデータ)に連続的に、非連続的に、又は他のやり方で適用されてもよい。少なくとも一実施例では、本明細書に記載するように、個々のデバイス用の導入パイプライン3210は、デバイス用の仮想機器(たとえば、仮想超音波機器、仮想CTスキャン機器、仮想シーケンシング機器など)と呼ばれてもよい。少なくとも一実施例では、デバイスによって生成されるデータに必要な情報に応じて、1つのデバイスにつき2つ以上の導入パイプライン3210が存在してもよい。少なくとも一実施例では、異常検出がMRIマシンに必要とされる場合、第1の導入パイプライン3210が存在してもよく、画像強調がMRIマシンの出力に必要とされる場合、第2の導入パイプライン3210が存在してもよい。
少なくとも一実施例では、導入パイプライン3210にとって利用可能なアプリケーションは、デバイスからの撮像データ又は他のデータに対して処理タスクを実行するために使用することができる任意のアプリケーションを含んでもよい。少なくとも一実施例では、画像強調、セグメント化、再構築、異常検出、物体検出、特徴検出、処置計画、線量測定、ビーム計画(又は他の放射線処置手順)、及び/又は他の分析、画像処理、又は推論のタスクを、異なるアプリケーションが担当してもよい。少なくとも一実施例では、導入システム3106は、それぞれのアプリケーションの構造を定義してもよく、それにより導入システム3106のユーザ(たとえば、医療施設、研修所、クリニックなど)は、構造を理解し、自らのそれぞれの施設内で実装できるようにアプリケーションを適応させてもよい。少なくとも一実施例では、導入パイプライン3210に含めるために、画像再構築用のアプリケーションが選択されてもよいが、撮像デバイスによって生成されるデータのタイプは、アプリケーション内で使用されるデータのタイプとは異なってもよい。少なくとも一実施例では、DICOMアダプタ3202B(及び/又はDICOMリーダ)は、又は別のタイプのデータ・アダプタ若しくはリーダ(たとえば、RIS、CIS、REST準拠、RPC、生など)が導入パイプライン3210内で使用されて、導入システム3106内のアプリケーションによって使用可能な形にデータを変換してもよい。少なくとも一実施例では、DICOM、RIS、CIS、REST準拠、RPC、生、及び/又は他のタイプのデータ・ライブラリへのアクセスは、データに対する任意の畳み込み、色補正、鮮明度、ガンマ、及び/又は他の拡張を、デコード、抽出、及び/又は実行することを含め、累積され、事前処理されてもよい。少なくとも一実施例では、DICOM、RIS、CIS、REST準拠、RPC、及び/又は生データは、順序なしであってもよく、収集されたデータを整理しソートするために、事前パスが実行されてもよい。少なくとも一実施例では、様々なアプリケーションは共通の画像動作を共有することがあるので、いくつかの実施例では、(たとえば、サービス3120の1つとして)データ拡張ライブラリを使用して、これらの動作が加速化されてもよい。少なくとも一実施例では、CPU処理に依存する従来の処理手法のボトルネックを回避するために、並列コンピューティング・プラットフォーム3230を使用して、これらの処理タスクがGPU加速化されてもよい。
少なくとも一実施例では、画像再構築アプリケーションは、機械学習モデルの使用を含む処理タスクを含んでもよい。少なくとも一実施例では、ユーザは、独自の機械学習モデルを使用すること、又はモデル・レジストリ3124から機械学習モデルを選択することを望む場合がある。少なくとも一実施例では、ユーザは、処理タスクを実行するために、独自の機械学習モデルを実装してもよく、又は機械学習モデルを選択してアプリケーションに含めてもよい。少なくとも一実施例では、アプリケーションは選択可能及びカスタマイズ可能であってもよく、アプリケーションの構造を定義することにより、特定のユーザ向けのアプリケーションの導入及び実装が、よりシームレスなユーザ・エクスペリエンスとして提示される。少なくとも一実施例では、システム3200の他の特徴、たとえばサービス3120及びハードウェア3122などを利用することにより、導入パイプライン3210は、さらによりユーザ・フレンドリになることができ、より容易な統合を実現でき、より正確で、効率的で、タイムリーな結果を生み出すことができる。
少なくとも一実施例では、導入システム3106はユーザ・インターフェース3214(たとえば、グラフィカル・ユーザ・インターフェース、ウェブ・インターフェースなど)を含んでもよく、これらは、アプリケーションを選択して導入パイプライン3210に含める、アプリケーションを構成する、アプリケーション又はそのパラメータ若しくは構造を修正又は変更する、セットアップ及び/又は導入中に導入パイプライン3210を使用しそれと対話する、且つ/又は他のやり方で導入システム3106と対話するために使用されてもよい。少なくとも一実施例では、訓練システム3104に関して図示されていないが、ユーザ・インターフェース3214(又は異なるユーザ・インターフェース)は、導入システム3106で使用するモデルを選択するため、訓練システム3104において訓練若しくは再訓練するモデルを選択するため、且つ/又は他のやり方で訓練システム3104と対話するために使用されてもよい。
少なくとも一実施例では、アプリケーション・オーケストレーション・システム3228に加えてパイプライン・マネージャ3212を使用して、導入パイプライン3210のアプリケーション又はコンテナと、サービス3120及び/又はハードウェア3122との間で対話が管理されてもよい。少なくとも一実施例では、パイプライン・マネージャ3212は、アプリケーションからアプリケーションへの対話、アプリケーションからサービス3120への対話、及び/又はアプリケーション若しくはサービスからハードウェア3122への対話を容易にするように構成されてもよい。少なくとも一実施例では、ソフトウェア3118に含まれるように図示してあるが、これは限定を意図しておらず、いくつかの事例では、パイプライン・マネージャ3212は、サービス3120に含まれてもよい。少なくとも一実施例では、アプリケーション・オーケストレーション・システム3228(たとえば、Kubernetes、DOCKERなど)は、コンテナ・オーケストレーション・システムを含んでもよく、このシステムは、アプリケーションを、調整、管理、スケーリング、及び導入のための論理ユニットとして、コンテナにグループ化することができる。少なくとも一実施例では、導入パイプライン3210からのアプリケーション(たとえば、再構築アプリケーション、セグメント化アプリケーションなど)を個々のコンテナに関連付けることより、各アプリケーションは自己完結型環境内(たとえば、カーネル・レベル)で実行して、スピード及び効率を向上させることができる。
少なくとも一実施例では、各アプリケーション及び/又はコンテナ(又はその画像)は、個々に開発、修正、及び導入されてもよく(たとえば、第1のユーザ又は開発者が、第1のアプリケーションを開発、修正、及び導入し、第2のユーザ又は開発者が、第1のユーザ又は開発者とは別に第2のアプリケーションを開発、修正、及び導入してもよく)、これにより、別のアプリケーション又はコンテナのタスクに邪魔されることなく、1つのアプリケーション及び/又はコンテナのタスクに集中し、注意を払うことが可能になる。少なくとも一実施例では、異なるコンテナ間又はアプリケーション間の通信、及び協調が、パイプライン・マネージャ3212及びアプリケーション・オーケストレーション・システム3228によって支援されてもよい。少なくとも一実施例では、各コンテナ又はアプリケーションの予測される入力及び/又は出力が、(たとえば、アプリケーション又はコンテナの構造に基づき)システムによって知られている限り、アプリケーション・オーケストレーション・システム3228及び/又はパイプライン・マネージャ3212は、アプリケーション又はコンテナのそれぞれ間の通信、及びそれらの間でのリソースの共有を容易にすることができる。少なくとも一実施例では、導入パイプライン3210のアプリケーション又はコンテナのうちの1つ又は複数は、同じサービス及びリソースを共有することができるので、アプリケーション・オーケストレーション・システム3228は、様々なアプリケーション間又はコンテナ間でサービス又はリソースをオーケストレートし、ロード・バランシングをおこない、共有を決定してもよい。少なくとも一実施例では、スケジューラを使用して、アプリケーション又はコンテナのリソース要件、これらのリソースの現在の使用量又は計画された使用量、及びリソースの利用可能性が追跡されてもよい。少なくとも一実施例では、こうしてスケジューラは、異なるアプリケーションにリソースを配分し、システムの要件及び利用可能性を考慮してアプリケーション間でリソースを分配してもよい。いくつかの実例では、スケジューラ(及び/又はアプリケーション・オーケストレーション・システム3228の他の構成要素)は、サービスの品質(QoS)、(たとえば、リアルタイム処理を実行するか、遅延処理を実行するかを決定するための)データ出力を必要とする緊急度など、システムに課される制約(たとえば、ユーザ制約)に基づき、リソースの利用可能性及び分配を決定してもよい。
少なくとも一実施例では、導入システム3106のアプリケーション又はコンテナによって利用及び共有されるサービス3120は、計算サービス3216、AIサービス3218、視覚化サービス3220、及び/又は他のタイプのサービスを含んでもよい。少なくとも一実施例では、アプリケーションは、サービス3120のうちの1つ又は複数をコール(たとえば実行)して、アプリケーションのための処理動作を実行してもよい。少なくとも一実施例では、計算サービス3216は、スーパーコンピューティング又は他の高性能コンピューティング(HPC)のタスクを実行するために、アプリケーションによって利用されてもよい。少なくとも一実施例では、アプリケーションのうちの1つ又は複数を介してデータを実質的に同時に処理するため、且つ/又は1つのアプリケーションの1つ又は複数のタスクを実質的に同時に処理するために、計算サービス3216を利用して(たとえば、並列コンピューティング・プラットフォーム3230を使用して)並列処理が実行されてもよい。少なくとも一実施例では、並列コンピューティング・プラットフォーム3230(たとえば、NVIDIAのCUDA)は、GPU(たとえば、GPU3222)上での汎用コンピューティング(GPGPU)を可能にしてもよい。少なくとも一実施例では、並列コンピューティング・プラットフォーム3230のソフトウェア層は、計算カーネルを実行するために仮想命令セット及びGPUの並列計算要素へのアクセスを提供してもよい。少なくとも一実施例では、並列コンピューティング・プラットフォーム3230はメモリを含んでもよく、いくつかの実施例では、メモリは、複数のコンテナ間で、且つ/又は1つのコンテナ内の異なる処理タスク間で共有されてもよい。少なくとも一実施例では、複数のコンテナ、及び/又はコンテナ内の複数のプロセスが、並列コンピューティング・プラットフォーム3230のメモリの共有セグメントからの同じデータを使用するために(たとえば、アプリケーションの複数の異なるステージ、又は複数のアプリケーションが、同じ情報を処理する場合)、プロセス間通信(IPC)コールが生成されてもよい。少なくとも一実施例では、データのコピーを作成し、データをメモリの異なるロケーションに移動(たとえば、読取り/書込みの動作)させるのではなく、メモリの同じロケーションの同じデータが、任意の数の処理タスクに(たとえば、同じ時間、異なる時間などに)使用されてもよい。少なくとも一実施例では、データが使用されて、処理の結果として新規データが生成されるとき、データの新規ロケーションのこの情報は、様々なアプリケーションに記憶され、それらの間で共有されてもよい。少なくとも一実施例では、データのロケーション及び更新済み又は修正済みのデータのロケーションは、コンテナ内でペイロードがどのように理解されるかという定義の一部であってもよい。
少なくとも一実施例では、AIサービス3218は、アプリケーションに関連付けられた(たとえば、アプリケーションの1つ又は複数の処理タスクを実行する役割を課された)機械学習モデルを実行するための推論サービスを実行するために利用されてもよい少なくとも一実施例では、AIサービス3218は、セグメント化、再構築、物体検出、特徴検出、分類、及び/又は他の推論タスクのための機械学習モデル(たとえば、CNNなどのニューラル・ネットワーク)を実行するために、AIシステム3224を利用してもよい。少なくとも一実施例では、導入パイプライン3210のアプリケーションは、訓練システム3104からの出力モデル3116及び/又はアプリケーションの他のモデルのうちの1つ又は複数を使用して、撮像データ(たとえば、DICOMデータ、RISデータ、CISデータ、REST準拠データ、RPCデータ、生データなど)について推論を実行してもよい。少なくとも一実施例では、アプリケーション・オーケストレーション・システム3228(たとえば、スケジューラ)を使用する推論の2つ以上の実例が利用可能であってもよい。少なくとも一実施例では、第1のカテゴリは、緊急時の緊急要求について推論を実行するため、又は診断時の放射線医のためなど、より高いサービス・レベル合意を達成できる高優先順位/低レイテンシの経路を含むことができる。少なくとも一実施例では、第2のカテゴリは、緊急ではない要求のため、又は分析が後で実行されてもよい場合に使用することができる標準優先順位の経路を含んでもよい。少なくとも一実施例では、アプリケーション・オーケストレーション・システム3228は、AIサービス3218の異なる推論タスク向けの優先順位経路に基づき、リソース(たとえば、サービス3120及び/又はハードウェア3122)を分配してもよい。
少なくとも一実施例では、共有ストレージが、システム3200内でAIサービス3218に取り付けられてもよい。少なくとも一実施例では、共有ストレージは、キャッシュ(又は他のタイプのストレージ・デバイス)として動作してもよく、アプリケーションからの推論要求を処理するために使用されてもよい。少なくとも一実施例では、推論要求が送出されたとき、要求は、導入システム3106のAPIインスタンスのセットによって受信されてもよく、1つ又は複数のインスタンスが(たとえば、最良な適合のため、ロード・バランシングのためなどに)選択されて、要求が処理されてもよい。少なくとも一実施例では、要求を処理するために、要求がデータベースに入れられてもよく、機械学習モデルは、まだキャッシュにない場合には、モデル・レジストリ3124から特定されてもよく、検証ステップは、適切な機械学習モデルがキャッシュ(たとえば、共有ストレージ)に確実にロードされるようにしてもよく、且つ/又はモデルのコピーがキャッシュに保存されてもよい。少なくとも一実施例では、アプリケーションがまだ実行されていない場合、又はアプリケーションの充分なインスタンスが存在しない場合には、スケジューラ(たとえば、パイプライン・マネージャ3212)を使用して、要求において参照されたアプリケーションが起動されてもよい。少なくとも一実施例では、モデルを実行するための推論サーバがまだ起動されていない場合には、推論サーバが起動されてもよい。任意の数の推論サーバがモデルごとに起動されてもよい。少なくとも一実施例では、推論サーバがクラスタ化済みであるプル・モデルでは、ロード・バランシングが有利な場合にはいつでもモデルがキャッシュされてもよい。少なくとも一実施例では、推論サーバは、対応する分散サーバに静的にロードされてもよい。
少なくとも一実施例では、推論は、コンテナ内で実行される推論サーバを使用して実行されてもよい。少なくとも一実施例では、推論サーバのインスタンスは、モデルに(任意選択でモデルの複数のバージョンに)関連付けられてもよい。少なくとも一実施例では、モデルに対して推論を実行する要求が受信されたとき、推論サーバのインスタンスが存在しない場合には、新規のインスタンスがロードされてもよい。少なくとも一実施例では、推論サーバをスタートするとき、モデルが推論サーバに渡されてもよく、それにより、推論サーバが異なるインスタンスとして実行されている限り、同じコンテナを使用して異なるモデルにサービス提供されてもよい。
少なくとも一実施例では、アプリケーションの実行中、所与のアプリケーションについて推論要求が受信されてもよく、(たとえば、推論サーバのインスタンスをホストする)コンテナが(まだロードされていなければ)ロードされてもよく、開始プロシージャがコールされてもよい。少なくとも一実施例では、コンテナの事前処理論理が、(たとえばCPU及び/又はGPUを使用して)入力データに対する任意の追加的な事前処理をロード、デコード、及び/又は実行してもよい。少なくとも一実施例では、推論のためにデータが準備されると、コンテナは、必要に応じてデータに推論を実行してもよい。少なくとも一実施例では、これは1つの画像(たとえば手のX線)に対する単一の推論コールを含んでもよく、又は何百もの画像(たとえば胸のCT)について推論を要求してもよい。少なくとも一実施例では、アプリケーションは、完了前に結果を要約してもよく、これは限定することなく、単一の信頼性スコア、ピクセル・レベルのセグメント化、ボクセル・レベルのセグメント化、視覚化の生成、又は所見を要約するためのテキストの生成を含んでもよい。少なくとも一実施例では、異なるモデル又はアプリケーションには、異なる優先順位が割り当てられてもよい。たとえば、リアルタイム(TAT<1分)の優先順位を有するモデルもあれば、低優先順位(たとえば、TAT<10分)を有するモデルもある。少なくとも一実施例では、モデル実行時間は、要求元の施設又はエンティティから測定されてもよく、推論サービスに対する実行に加えてパートナー・ネットワーク横断時間を含んでもよい。
少なくとも一実施例では、サービス3120と推論アプリケーションの間での要求の移行は、ソフトウェア開発キット(SDK)の後ろに隠されてもよく、キューを通して頑健な移送が提供されてもよい。少なくとも一実施例では、個々のアプリケーション/テナントIDの組合せを求めて、要求がAPIを介してキューに入れられ、SDKは、キューから要求を引き出し、要求をアプリケーションに与える。少なくとも一実施例では、SDKが要求をピックアップする環境において、キューの名称が提供されてもよい。少なくとも一実施例では、キューを介した非同期の通信は、その通信が利用可能になったときに、その通信によって、アプリケーションの任意のインスタンスがワークをピックアップできるようになるので、有用な場合がある。結果はキューを介して返送されて、データが失われないようにしてもよい。少なくとも一実施例では、最高優先順位のワークは、アプリケーションのほとんどのインスタンスがキューに接続された状態のキューに進むことができ、一方で最低優先順位のワークは、1つのインスタンスがキューに接続された状態の、受信した順番にタスクを処理するキューに進むことができるので、キューは、ワークをセグメント化する機能も提供することができる。少なくとも一実施例では、アプリケーションは、クラウド3226に生成されたGPU加速インスタンス上で実行されてもよく、推論サービスは、GPU上で推論を実行してもよい。
少なくとも一実施例では、視覚化サービス3220を利用して、アプリケーション及び/又は導入パイプライン3210の出力を見るための視覚化が生成されてもよい。少なくとも一実施例では、視覚化を生成するために、視覚化サービス3220によってGPU3222が利用されてもよい。少なくとも一実施例では、レイ・トレーシングなどのレンダリング効果が、視覚化サービス3220によって実装されて、より高品質の視覚化が生成されてもよい。少なくとも一実施例では、視覚化は、2D画像のレンダリング、3Dボリュームのレンダリング、3Dボリュームの再構築、2Dトモグラフィ・スライス、仮想現実表示、拡張現実表示などを、限定することなく含んでもよい。少なくとも一実施例では、仮想化された環境を使用して、システムのユーザが対話するための仮想のインタラクティブ表示又はインタラクティブ環境(たとえば、仮想環境)が生成されてもよい。少なくとも一実施例では、視覚化サービス3220は、内部ビジュアライザ、シネマティクス、及び/又は他のレンダリング若しくは画像処理の能力若しくは機能(たとえば、レイ・トレーシング、ラスタ化、内部光学など)を含んでもよい。
少なくとも一実施例では、ハードウェア3122は、GPU3222、AIシステム3224、クラウド3226、並びに/又は訓練システム3104及び/若しくは導入システム3106を実行するために使用される任意の他のハードウェアを含んでもよい。少なくとも一実施例では、GPU3222(たとえば、NVIDIAのTESLA及び/又はQUADROのGPU)は、任意の数のGPUを含んでもよく、これらは、計算サービス3216、AIサービス3218、視覚化サービス3220、他のサービス、及び/又はソフトウェア3118の任意の特徴若しくは機能の処理タスクを実行するために使用されてもよい。たとえば、AIサービス3218に関して、GPU3222を使用して、撮像データ(又は機械学習モデルによって使用される他のタイプのデータ)に対して事前処理が実行されてもよく、機械学習モデルの出力に対して事後処理が実行されてもよく、且つ/又は推論が実行されてもよい(たとえば、機械学習モデルが実行されてもよい)。少なくとも一実施例では、クラウド3226、AIシステム3224、及び/又はシステム3200の他の構成要素は、GPU3222を使用してもよい。少なくとも一実施例では、クラウド3226は、深層学習タスクのためにGPU最適化されたプラットフォームを含んでもよい。少なくとも一実施例では、AIシステム3224は、GPUを使用してもよく、クラウド3226、又は深層学習若しくは推論の役割を課された少なくとも一部分は、1つ又は複数のAIシステム3224を使用して実行されてもよい。したがって、ハードウェア3122は、個別構成要素として示されているが、これは限定を意図したものではなく、ハードウェア3122の任意の構成要素が、ハードウェア3122の任意の他の構成要素と組み合わされてもよく、それらによって利用されてもよい。
少なくとも一実施例では、AIシステム3224は、推論、深層学習、機械学習、及び/又は他の人工知能タスク向けに構成された専用のコンピューティング・システム(たとえば、スーパーコンピュータ又はHPC)を含んでもよい。少なくとも一実施例では、AIシステム3224(たとえば、NVIDIAのDGX)は、GPU最適化されたソフトウェア(たとえば、ソフトウェア・スタック)を含んでもよく、これは、CPU、RAM、ストレージ、及び/又は他の構成要素、特徴、若しくは機能に加えて、複数のGPU3222を使用して実行されてもよい。少なくとも一実施例では、1つ又は複数のAIシステム3224は、システム3200の一部又はすべてのAIベースの処理タスクを実行するために、(たとえば、データ・センタにおいて)クラウド3226に実装されてもよい。
少なくとも一実施例では、クラウド3226は、GPU加速化インフラストラクチャ(たとえば、NVIDIAのNGC)を含んでもよく、これは、システム3200の処理タスクを実行するためのGPU最適化されたプラットフォームを提供してもよい。少なくとも一実施例では、クラウド3226は、システム3200のAIベースのタスクのうちの1つ又は複数を実行するためのAIシステム3224を(たとえば、ハードウェア抽象化及びスケーリングのプラットフォームとして)含んでもよい。少なくとも一実施例では、クラウド3226は、複数のGPUを利用してアプリケーション・オーケストレーション・システム3228と統合されて、アプリケーションとサービス3120の間でシームレスなスケーリング及びロード・バランシングを可能にしてもよい。少なくとも一実施例では、クラウド3226は、本明細書に記載する計算サービス3216、AIサービス3218、及び/又は視覚化サービス3220を含むシステム3200のサービス3120の少なくとも一部を実行する役割を課されてもよい。少なくとも一実施例では、クラウド3226は、大小のバッチ推論(たとえば、NVIDIAのテンソルRTの実行)を実行してもよく、加速化された並列コンピューティングのAPI及びプラットフォーム3230(たとえば、NVIDIAのCUDA)を提供してもよく、アプリケーション・オーケストレーション・システム3228(たとえば、KUBERNETES)を実行してもよく、グラフィックス・レンダリングのAPI及びプラットフォーム(たとえば、高品質のシネマティクスを生成するためのレイ・トレーシング、2Dグラフィックス、3Dグラフィックス、及び/又は他のレンダリング技法)を提供してもよく、且つ/又はシステム3200のための他の機能を提供してもよい。
少なくとも一実施例では、患者の機密性を保護するために(たとえば、患者のデータ又は記録が構外で使用されることになる場合)、クラウド3226は、深層学習コンテナ・レジストリなどのレジストリを含んでもよい。少なくとも一実施例では、レジストリは、患者データに対する事前処理、事後処理、又は他の処理タスクを実行できるアプリケーションのインスタンス化のためのコンテナを記憶してもよい。少なくとも一実施例では、クラウド3226は、患者データ並びにセンサ・データをコンテナに含むデータを受信してもよく、これらのコンテナにおいてセンサ・データについてのみ要求された処理を実行してもよく、次いで、いずれも患者データを抽出、記憶、又は他のやり方でそれにアクセスする必要なしに、結果の出力及び/又は視覚化を適切なパーティ及び/又はデバイス(たとえば、視覚化又は診断に使用される構内の医療デバイス)に転送してもよい。少なくとも一実施例では、患者データの機密性は、HIPAA及び/又は他のデータ規定に準拠して保護される。
図33Aは、少なくとも一実施例による、機械学習モデルを訓練、再訓練、又は更新するためのプロセス3300のデータ・フロー図を示す。少なくとも一実施例では、プロセス3300は、図32のシステム3200を非限定的な実例として使用して、実行されてもよい。少なくとも一実施例では、プロセス3300は、本明細書に記載のシステム3200のサービス3120及び/又はハードウェア3122を利用してもよい。少なくとも一実施例では、プロセス3300によって生成される精緻化モデル3312は、導入パイプライン3210内の1つ又は複数のコンテナ化アプリケーションのために、導入システム3106によって実行されてもよい。
少なくとも一実施例では、モデル訓練3114は、新規訓練データ(たとえば、顧客データセット3306、及び/又は入力データに関連付けられた新規グラウンド・トゥルース・データなどの新規入力データ)を使用して、初期モデル3304(たとえば、事前訓練済みモデル)を再訓練又は更新することを含んでもよい。少なくとも一実施例では、初期モデル3304を再訓練又は更新するために、初期モデル3304の出力又は損失層がリセットされてもよく、削除されてもよく、且つ/又は更新済み若しくは新規の出力若しくは損失層と置換されてもよい。少なくとも一実施例では、初期モデル3304は、以前に微調整された、前の訓練から残っているパラメータ(たとえば、重み及び/又はバイアス)を有してもよく、それにより、訓練又は再訓練3114は、最初からモデルを訓練するほど長い時間がかからず、又は多くの処理を必要としなくても済む。少なくとも一実施例では、モデル訓練3114の間に、初期モデル3304のリセット又は置換された出力又は損失層を有することにより、パラメータは、新規の顧客データセット3306(たとえば、図31の画像データ3108)について予測を生成する際の出力又は損失層の精度に関連付けられた損失計算に基づき、新規データセットのために更新又は再調整されてもよい。
少なくとも一実施例では、事前訓練済みモデル3206は、データストア又はレジストリ(たとえば、図31のモデル・レジストリ3124)に記憶されてもよい。少なくとも一実施例では、事前訓練済みモデル3206は、少なくとも部分的に、プロセス3300を実行する施設とは異なる1つ又は複数の施設において訓練済みであってもよい。少なくとも一実施例では、異なる施設の患者、対象者、顧客のプライバシー及び権利を保護するために、事前訓練済みモデル3206は、構内で生成された顧客又は患者のデータを使用して、構内で訓練されたものであってもよい。少なくとも一実施例では、事前訓練済みモデル3206は、クラウド3226及び/又は他のハードウェア3122を使用して訓練されてもよいが、プライバシー保護された機密の患者データは、クラウド3226(又は他の構外のハードウェア)の任意の構成要素に転送できず、それらの構成要素によって使用されず、又はアクセス不可能であってもよい。少なくとも一実施例では、事前訓練済みモデル3206が2つ以上の施設からの患者データを使用して訓練される場合、事前訓練済みモデル3206は、各施設について個々に訓練されてから、別の施設からの患者若しくは顧客のデータについて訓練されてもよい。少なくとも一実施例では、顧客又は患者のデータが(たとえば、実験での使用を目的とした権利放棄などによって)プライバシー問題から解放されている場合、又は顧客若しくは患者のデータがパブリック・データセットに含まれる場合などには、任意の数の施設からの顧客又は患者のデータを使用して、データ・センタ又は他のクラウド・コンピューティング・インフラストラクチャなど、構内及び/又は構外で事前訓練済みモデル3206が訓練されてもよい。
少なくとも一実施例では、導入パイプライン3210で使用するアプリケーションを選択するとき、ユーザは、特定のアプリケーションで使用することになる機械学習モデルも選択することができる。少なくとも一実施例では、ユーザは、使用するモデルを有していないことがあり、したがって、ユーザはアプリケーションとともに使用する事前訓練済みモデル3206を選択してもよい。少なくとも一実施例では、訓練済みモデル3206は、(たとえば、患者の多様性、人口統計、使用される医療用撮像デバイスのタイプなどに基づき)ユーザの施設の顧客データセット3306について正確な結果を生成するように最適化されてもよい。少なくとも一実施例では、事前訓練済みモデル3206を、アプリケーションとともに使用するために導入パイプライン3210に導入する前に、事前訓練済みモデル3206は、それぞれの施設において使用するために更新、再訓練、及び/又は微調整されてもよい。
少なくとも一実施例では、ユーザは、更新、再訓練、及び/又は微調整されることになる事前訓練済みモデル3206を選択してもよく、事前訓練済みモデル3206は、プロセス3300内でシステム3104を訓練するための初期モデル3304と呼ばれてもよい。少なくとも一実施例では、顧客データセット3306(たとえば、施設のデバイスによって生成された撮像データ、ゲノミクス・データ、シーケンシング・データ、又は他のタイプのデータ)を使用して、初期モデル3304について(限定することなく転送学習(transfer learning)を含んでもよい)モデル訓練3114が実行されて、精緻化モデル3312が生成されてもよい。少なくとも一実施例では、顧客データセット3306に対応するグラウンド・トゥルース・データが、訓練システム3104によって生成されてもよい。少なくとも一実施例では、グラウンド・トゥルース・データは、(たとえば、図31のラベル付けされたクリニック・データ3112として)施設において臨床医、科学者、医師、開業医によって、少なくとも部分的に生成されてもよい。
少なくとも一実施例では、AI支援アノテーション3110がいくつかの実例において使用されて、グラウンド・トゥルース・データが生成されてもよい。少なくとも一実施例では、(たとえば、AI支援アノテーションSDKを使用して実装された)AI支援アノテーション3110は、機械学習モデル(たとえば、ニューラル・ネットワーク)を利用して、顧客データセットについて示唆又は予測されるグラウンド・トゥルース・データを生成してもよい。少なくとも一実施例では、ユーザ3310は、コンピューティング・デバイス3308上のユーザ・インターフェース(グラフィカル・ユーザ・インターフェース(GUI))内でアノテーション・ツールを使用してもよい。
少なくとも一実施例では、ユーザ3310は、コンピューティング・デバイス3308を介してGUIと対話して、(自動)アノテーションを編集又は微調整してもよい。少なくとも一実施例では、ポリゴン編集特徴を使用して、ポリゴンの頂点をより正確なロケーション又は微調整されたロケーションに移動させてもよい。
少なくとも一実施例では、顧客データセット3306が、関連付けられたグラウンド・トゥルース・データを得ると、(たとえば、AI支援アノテーション、手動ラベリングなどからの)グラウンド・トゥルース・データが、モデル訓練3114中に使用されて、精緻化モデル3312が生成されてもよい。少なくとも一実施例では、顧客データセット3306は、初期モデル3304に任意の回数、適用されてもよく、グラウンド・トゥルース・データは、精緻化モデル3312について許容可能なレベルの精度が達成されるまで、初期モデル3304のパラメータを更新するために使用されてもよい。少なくとも一実施例では、精緻化モデル3312が生成されると、精緻化モデル3312は、医療用撮像データに対して1つ又は複数の処理タスクを実行するために、施設において1つ又は複数の導入パイプライン3210内に導入されてもよい。
少なくとも一実施例では、精緻化モデル3312は、別の施設によって選択されることになるモデル・レジストリ3124の事前訓練済みモデル3206にアップロードされてもよい。少なくとも一実施例では、このプロセスは任意の数の施設において完了されてもよく、それにより精緻化モデル3312は、新規データセットについて任意の回数さらに精緻化されて、より普遍的なモデルが生成されてもよい。
図33Bは、少なくとも一実施例による、事前訓練済みのアノテーション・モデルを用いてアノテーション・ツールを強化するためのクライアント・サーバのアーキテクチャ3332の実例の図である。少なくとも一実施例では、AI支援アノテーション・ツール3336は、クライアント・サーバのアーキテクチャ3332に基づきインスタンス化されてもよい。少なくとも一実施例では、撮像アプリケーションのアノテーション・ツール3336は、たとえば放射線医が器官及び異常を識別するのを支援してもよい。少なくとも一実施例では、撮像アプリケーションは、非限定的な実例として(たとえば、3DのMRI又はCRスキャンの)生画像3334において、特定の対象器官上の数少ない極値点をユーザ3310が識別するのを援助し、特定の器官の2Dスライスすべてについて自動アノテーション付けされた結果を受信するソフトウェア・ツールを含んでもよい。少なくとも一実施例では、結果は、訓練データ3338としてデータストアに記憶されてもよく、(たとえば、限定することなく)訓練用のグラウンド・トゥルース・データとして使用されてもよい。少なくとも一実施例では、コンピューティング・デバイス3308が、AI支援アノテーション3110のために極値点を送るとき、たとえば深層学習モデルがこのデータを入力として受信してもよく、セグメント化された器官又は異常の推論結果を返してもよい。少なくとも一実施例では、図33BのAI支援アノテーション・ツール3336Bなどの事前インスタンス化されたアノテーション・ツールは、たとえばアノテーション・モデル・レジストリに記憶された事前訓練済みモデル3342のセットを含むことができるアノテーション支援サーバ3340などのサーバに、APIコール(たとえば、APIコール3344)をおこなうことによって、拡張されてもよい。少なくとも一実施例では、アノテーション・モデル・レジストリは、特定の器官又は異常に対してAI支援アノテーションを実行するように事前訓練された事前訓練済みモデル3342(たとえば、深層学習モデルなどの機械学習モデル)を記憶してもよい。これらのモデルは、訓練パイプライン3204を使用することにより、さらに更新されてもよい。少なくとも一実施例では、事前インストールされたアノテーション・ツールは、ラベル付けされた新規クリニック・データ3112が加えられるにつれて、経時的に改善されてもよい。
1つ又は複数の実施例に関連する推論及び/又は訓練の動作を実行するために、推論及び/又は訓練論理615が使用される。少なくとも一実施例では、固定されたジッタ位置と、より正確なピクセル色決定のための高解像度テクスチャとを使用して画像を生成するために、この論理がこれらの図の構成要素とともに使用され得る。
他の変形形態は、本開示の範囲内にある。したがって、開示した技法は、様々な修正及び代替的な構成が可能であるが、それらのうち一定の例示的な実施例が図面に示され、上で詳細に説明されてきた。しかし、特定の1つ又は複数の開示された形に本開示を限定する意図はなく、その反対に、特許請求の範囲に定義される開示の趣旨及び範囲に入るすべての修正形態、代替的な構成、及び等価物を網羅することを意図している。
開示される実施例を説明する文脈において(特に、以下の特許請求の範囲の文脈において)「a」及び「an」及び「the」という用語、並びに同様の指示語を使用することは、本明細書に別段の記載のない限り、又は文脈によって明らかに否定されない限り、単数と複数の両方を網羅すると解釈されるべきであり、用語の定義であると解釈されるべきではない。「備える(comprising)」、「有する(having)」、「含む(including)」、「収容する(containing)」という用語は、別段の記載のない限り、オープンエンドの用語(「含むが、これに限定されない」を意味する)と解釈される。「接続される」という用語は、修飾されずに物理的接続を指している場合には、何か介在するものがあったとしても、部分的に又は完全に中に収容される、取り付けられる、又は互いに接合されるものとして解釈される。本明細書において値の範囲を詳述することは、本明細書において別段の記載がない限り、またそれぞれ別々の値が、本明細書に個々に詳述されているかのように明細書に組み込まれていない限り、範囲内に含まれるそれぞれ別々の値を個々に参照する簡潔な方法として機能することを単に意図しているにすぎない。「セット」(たとえば、「アイテムのセット」)又は「サブセット」という用語の使用は、文脈によって別段の記載がない、又は否定されていない限り、1つ又は複数の部材を備える空ではない集合として解釈されるべきである。さらに、文脈によって別段の記載がない、又は否定されていない限り、対応するセットの「サブセット」という用語は、対応するセットの厳密なサブセットを必ずしも指すのではなく、サブセットと対応するセットは等しくてもよい。
「A、B、及びCのうちの少なくとも1つ」又は「A、B、及びCのうちの少なくとも1つ」という形の言い回しなどの結合語は、別段の具体的な記載のない限り、又は文脈によって明確に否定されていない限り、項目、用語などが、AかBかCである、又はAとBとCのセットのいずれかの空でないサブセットであることを提示するために一般に使用される文脈で理解される。たとえば、3つの部材を有するセットの説明的な例では、「A、B、及びCのうちの少なくとも1つ」並びに「A、B、及びCのうちの少なくとも1つ」という結合句は、次のセットのうちのいずれかを指す:{A}、{B}、{C}、{A、B}、{A、C}、{B、C}、{A、B、C}。したがって、こうした結合語は、ある一定の実施例が、少なくとも1つのA、少なくとも1つのB、及び少なくとも1つのCのそれぞれの存在を必要とすることを全体的に暗示するものではない。さらに、別段の記載のない、又は文脈によって否定されていない限り、「複数」という用語は、複数である状態を示す(たとえば、「複数の項目(a plurality of items)」は複数の項目(multiple items)を示す)。複数は、少なくとも2つの項目であるが、明示的に、又は文脈によって示されている場合にはそれより多くてもよい。さらに、別段の記載のない、又は文脈からそうでないことが明らかでない限り、「~に基づく」という言い回しは、「少なくとも部分的に~に基づく」を意味し、「~だけに基づく」を意味しない。
本明細書に記載のプロセスの動作は、本明細書に別段の記載のない、又は文脈によって明確に否定されない限り、任意の好適な順序で実行することができる。少なくとも一実施例では、本明細書に記載のプロセス(又はその変形及び/又は組合せ)などのプロセスは、実行可能命令で構成された1つ又は複数のコンピュータ・システムの制御下で実行され、1つ又は複数のプロセッサ上で、ハードウェアによって、又はそれらの組合せによって集合的に実行されるコード(たとえば、実行可能な命令、1つ若しくは複数のコンピュータ・プログラム、又は1つ若しくは複数のアプリケーション)として実装される。少なくとも一実施例では、コードは、たとえば1つ又は複数のプロセッサによって実行可能な複数の命令を備えるコンピュータ・プログラムの形で、コンピュータ読取り可能ストレージ媒体に記憶される。少なくとも一実施例では、コンピュータ読取り可能ストレージ媒体は、一時的な信号(たとえば、伝播する一時的な電気若しくは電磁送信)を除外するが、一時的な信号のトランシーバ内の非一時的なデータ・ストレージ回路(たとえば、バッファ、キャッシュ、及びキュー)を含む非一時的なコンピュータ読取り可能ストレージ媒体である。少なくとも一実施例では、コード(たとえば、実行可能コード又はソース・コード)は、1つ又は複数の非一時的なコンピュータ読取り可能ストレージ媒体のセットに記憶され、このストレージ媒体には、コンピュータ・システムの1つ又は複数のプロセッサによって実行されたときに(すなわち、実行された結果として)、コンピュータ・システムに本明細書に記載の動作を実行させる実行可能命令が記憶されている(又は、実行可能命令を記憶するための他のメモリを有する)。非一時的なコンピュータ読取り可能ストレージ媒体のセットは、少なくとも一実施例では、複数の非一時的なコンピュータ読取り可能ストレージ媒体を備え、複数の非一時的なコンピュータ読取り可能ストレージ媒体の個々の非一時的なストレージ媒体のうちの1つ又は複数には、すべてのコードがないが、複数の非一時的なコンピュータ読取り可能ストレージ媒体は、集合的にすべてのコードを記憶している。少なくとも一実施例では、実行可能命令は、異なる命令が異なるプロセッサによって実行されるように実行され、たとえば、非一時的なコンピュータ読取り可能ストレージ媒体は命令を記憶し、メインの中央処理装置(「CPU」)は一部の命令を実行し、グラフィックス・プロセッシング・ユニット(「GPU」)は他の命令を実行する。少なくとも一実施例では、コンピュータ・システムの異なる構成要素は、別々のプロセッサを有し、異なるプロセッサは、命令の異なるサブセットを実行する。
したがって、少なくとも一実施例では、コンピュータ・システムは、本明細書に記載のプロセスの動作を単独で又は集合的に実行する1つ又は複数のサービスを実装するように構成され、こうしたコンピュータ・システムは、動作の実行を可能にする適用可能なハードウェア及び/又はソフトウェアで構成される。さらに、本開示の少なくとも一実施例を実装するコンピュータ・システムは、単一のデバイスであり、別の実施例では、異なるやり方で動作する複数のデバイスを備える分散型のコンピュータ・システムであり、それにより単一のデバイスがすべての動作を実行しないように分散型のコンピュータ・システムが本明細書に記載の動作を実行する。
本明細書に提供されるあらゆる例、又は例示的な言葉(たとえば、「など」)の使用は、本開示の実施例をより明らかにすることだけを意図しており、別段の主張のない限り、本開示の範囲に制限を加えるものではない。本明細書のいかなる言葉も、特許請求されていない任意の要素を、本開示の実践に不可欠なものとして示すと解釈されるべきではない。
本明細書に引用される出版物、特許出願、及び特許を含むすべての参考文献は、各参考文献が参照により組み込まれることがあたかも個別に明確に示され、その全体が本明細書に記載されたかのように、それと同程度まで参照により本明細書に組み込まれる。
明細書及び特許請求の範囲において、「結合される」及び「接続される」という用語が、その派生語とともに使用されてもよい。これらの用語は、互いに同義語として意図されていない場合があることを理解すべきである。むしろ、特定の例では、「接続される」又は「結合される」は、2つ以上の要素が物理的又は電気的に互いに直接又は間接的に接触していることを示すために使用されてもよい。また「結合される」は、2つ以上の要素が直接互いに接触していないが、なお互いに連動又は相互作用することを意味してもよい。
別段の具体的な記載のない限り、明細書全体を通して「処理する」、「コンピューティング」、「計算する」、又は「判定する」などの用語は、コンピューティング・システムのレジスタ及び/又はメモリ内の、電子的などの物理的な量として表されるデータをコンピューティング・システムのメモリ、レジスタ、又は他のそのような情報ストレージ・デバイス、送信デバイス、若しくはディスプレイ・デバイス内の物理的な量として同様に表される他のデータになるよう操作及び/又は変換するコンピュータ若しくはコンピューティング・システム、又は同様の電子コンピューティング・デバイスの行為及び/又はプロセスを指す。
同様に、「プロセッサ」という用語は、レジスタ及び/又はメモリからの電子データを処理し、その電子データを、レジスタ及び/又はメモリに記憶することができる他の電子データに変換する任意のデバイス、又はデバイスの一部分を指してもよい。非限定的な例として、「プロセッサ」は、CPU又はGPUであってもよい。「コンピューティング・プラットフォーム」は、1つ又は複数のプロセッサを備えてもよい。本明細書で使用する「ソフトウェア」プロセスは、たとえば、タスク、スレッド、及び知的エージェントなど、経時的にワークを実行するソフトウェア及び/又はハードウェアのエンティティを含んでもよい。また、各プロセスは、命令を直列で又は並列で連続的に又は断続的に実行するための複数のプロセスを指してもよい。「システム」及び「方法」は、1つ又は複数の方法をシステムが具体化することができ、方法がシステムと考えられてもよい場合に限り、本明細書において交換可能に使用される。
本明細書では、アナログ・データ又はデジタル・データを得る、取得する、受信する、又はそれらをサブシステム、コンピュータ・システム、又はコンピュータ実装機械に入力することに言及することができる。アナログ・データ又はデジタル・データを得る、取得する、受信する、又は入力することは、関数呼出し、又はアプリケーション・プログラミング・インターフェースへの呼出しのパラメータとしてデータを受信するなど、様々なやり方で実現することができる。いくつかの実装形態では、アナログ・データ又はデジタル・データを得る、取得する、受信する、又は入力するプロセスは、直列又は並列のインターフェースを介してデータを転送することによって実現することができる。別の実装形態では、アナログ・データ又はデジタル・データを得る、取得する、受信する、又は入力するプロセスは、提供するエンティティから取得するエンティティにコンピュータ・ネットワークを介してデータを転送することによって実現することができる。アナログ・データ又はデジタル・データを提供する、出力する、送信する、送る、又は提示することにも言及することができる。様々な例では、アナログ・データ又はデジタル・データを提供する、出力する、送信する、送る、又は提示するプロセスは、関数呼出しの入力又は出力のパラメータ、アプリケーション・プログラミング・インターフェース若しくはプロセス間通信機構のパラメータとしてデータを転送することによって実現することができる。
上記の説明は、記載した技法の例示的な実装形態について述べているが、記載した機能を実装するために他のアーキテクチャが使用されてもよく、この他のアーキテクチャは、本開示の範囲内にあることが意図される。さらに、説明を目的として、役割の具体的な分配が定義されるが、様々な機能及び役割は、状況に応じて異なるやり方で分配及び分割されてもよい。
さらに、主題は、構造的特徴及び/又は方法論的動作に特有の言語で説明されてきたが、添付の特許請求の範囲で特許請求される主題は、説明した特有の特徴又は動作に必ずしも限定されないことが理解されるべきである。むしろ、特有の特徴及び動作は、特許請求の範囲を実装する例示的な形として開示されている。
Claims (30)
- 1つ又は複数の第2の画像からの1つ又は複数の変化に少なくとも部分的に基づいて1つ又は複数の第1の画像を生成するための1つ又は複数の回路を備える、プロセッサであって、前記1つ又は複数の変化が、前記1つ又は複数の第2の画像の1つ又は複数のピクセル内の1つ又は複数の固定されたジッタ位置について決定される、プロセッサ。
- 前記1つ又は複数の回路が、さらに、前記1つ又は複数のピクセルについて、前記1つ又は複数の固定されたジッタ位置についての色値をテクスチャ中のセルのグリッドに記憶するものである、請求項1に記載のプロセッサ。
- 前記1つ又は複数の回路が、さらに、前記1つ又は複数の第1の画像についての前記色値を前記1つ又は複数の第2の画像についての前記テクスチャに記憶された以前の色値と比較することによって前記1つ又は複数の変化を部分的に決定するものであり、前記以前の色値にクランピングを適用するかどうかを決定する、請求項2に記載のプロセッサ。
- 前記1つ又は複数の回路が、さらに、前記1つ又は複数の第1の画像についての前記色値と比較するための前記以前の色値を決定するために、前記1つ又は複数のピクセルの少なくともサブセットのための動きベクトルを利用するものである、請求項3に記載のプロセッサ。
- 前記テクスチャに記憶されるべき前記色値が、前記1つ又は複数のピクセルについての前記1つ又は複数の固定されたジッタ位置の周りにセンタリングされたピクセル近傍から決定される輝度値である、請求項2に記載のプロセッサ。
- 前記1つ又は複数の回路が、さらに、前記1つ又は複数の変化に少なくとも部分的に基づいて前記1つ又は複数の第1の画像を生成するために1つ又は複数のニューラル・ネットワークを使用するものである、請求項1に記載のプロセッサ。
- 1つ又は複数の第2の画像からの1つ又は複数の変化に少なくとも部分的に基づいて1つ又は複数の第1の画像を生成するための1つ又は複数のプロセッサを備えるシステムであって、前記1つ又は複数の変化が、前記1つ又は複数の第2の画像の1つ又は複数のピクセル内の1つ又は複数の固定されたジッタ位置について決定される、システム。
- 前記1つ又は複数のプロセッサが、さらに、前記1つ又は複数のピクセルについて、前記1つ又は複数の固定されたジッタ位置についての色値をテクスチャ中のセルのグリッドに記憶するものである、請求項7に記載のシステム。
- 前記1つ又は複数のプロセッサが、さらに、前記1つ又は複数の第1の画像についての前記色値を前記1つ又は複数の第2の画像についての前記テクスチャに記憶された以前の色値と比較することによって前記1つ又は複数の変化を部分的に決定するものであり、前記以前の色値にクランピングを適用するかどうかを決定する、請求項8に記載のシステム。
- 前記1つ又は複数の回路が、さらに、前記1つ又は複数の第1の画像についての前記色値と比較するための前記以前の色値を決定するために、前記1つ又は複数のピクセルの少なくともサブセットのための動きベクトルを利用するものである、請求項9に記載のシステム。
- 前記テクスチャに記憶されるべき前記色値が、前記1つ又は複数のピクセルについての前記1つ又は複数の固定されたジッタ位置の周りにセンタリングされたピクセル近傍から決定される輝度値である、請求項8に記載のシステム。
- 前記1つ又は複数のプロセッサが、さらに、前記1つ又は複数の変化に少なくとも部分的に基づいて前記1つ又は複数の第1の画像を生成するために1つ又は複数のニューラル・ネットワークを使用するものである、請求項7に記載のシステム。
- 1つ又は複数の第2の画像からの1つ又は複数の変化に少なくとも部分的に基づいて1つ又は複数の第1の画像を生成することを含む方法であって、前記1つ又は複数の変化が、前記1つ又は複数の第2の画像の1つ又は複数のピクセル内の1つ又は複数の固定されたジッタ位置について決定される、方法。
- 前記1つ又は複数のピクセルについて、前記1つ又は複数の固定されたジッタ位置についての色値をテクスチャ中のセルのグリッドに記憶することをさらに含む、請求項13に記載の方法。
- 前記1つ又は複数の第1の画像についての前記色値を前記1つ又は複数の第2の画像についての前記テクスチャに記憶された以前の色値と比較することによって前記1つ又は複数の変化を部分的に決定することと、前記以前の色値にクランピングを適用するかどうかを決定することとをさらに含む、請求項14に記載の方法。
- 前記1つ又は複数の第1の画像についての前記色値を比較するための前記以前の色値を決定するために、前記1つ又は複数のピクセルの少なくともサブセットのための動きベクトルを利用することをさらに含む、請求項15に記載の方法。
- 前記テクスチャに記憶されるべき前記色値が、前記1つ又は複数のピクセルについての前記1つ又は複数の固定されたジッタ位置の周りにセンタリングされたピクセル近傍から決定される輝度値である、請求項14に記載の方法。
- 前記1つ又は複数の変化に少なくとも部分的に基づいて前記1つ又は複数の第1の画像を生成するために1つ又は複数のニューラル・ネットワークを使用することをさらに含む、請求項13に記載の方法。
- 命令のセットをその上に記憶した機械可読媒体であって、前記命令が、1つ又は複数のプロセッサによって実行された場合、前記1つ又は複数のプロセッサに、少なくとも、
1つ又は複数の第2の画像からの1つ又は複数の変化に少なくとも部分的に基づいて1つ又は複数の第1の画像を生成することを行わせ、前記1つ又は複数の変化が、前記1つ又は複数の第2の画像の1つ又は複数のピクセル内の1つ又は複数の固定されたジッタ位置について決定される、機械可読媒体。 - 前記命令が、実行された場合、さらに、前記1つ又は複数のプロセッサに、
前記1つ又は複数のピクセルについて、前記1つ又は複数の固定されたジッタ位置についての色値をテクスチャ中のセルのグリッドに記憶させる、請求項19に記載の機械可読媒体。 - 前記命令が、実行された場合、さらに、前記1つ又は複数のプロセッサに、
前記1つ又は複数の第1の画像についての前記色値を前記1つ又は複数の第2の画像についての前記テクスチャに記憶された以前の色値と比較することによって前記1つ又は複数の変化を部分的に決定させ、前記以前の色値にクランピングを適用するかどうかを決定する、請求項20に記載の機械可読媒体。 - 前記命令が、実行された場合、さらに、前記1つ又は複数のプロセッサに、
前記1つ又は複数の第1の画像についての前記色値を比較するための前記以前の色値を決定するために、前記1つ又は複数のピクセルの少なくともサブセットのための動きベクトルを利用させる、請求項21に記載の機械可読媒体。 - 前記テクスチャに記憶されるべき前記色値が、前記1つ又は複数のピクセルについての前記1つ又は複数の固定されたジッタ位置の周りにセンタリングされたピクセル近傍から決定された輝度値である、請求項20に記載の機械可読媒体。
- 前記命令が、実行された場合、さらに、前記1つ又は複数のプロセッサに、
前記1つ又は複数の変化に少なくとも部分的に基づいて前記1つ又は複数の第1の画像を生成するために1つ又は複数のニューラル・ネットワークを使用させる、請求項19に記載の機械可読媒体。 - 1つ又は複数の第2の画像からの1つ又は複数の変化に少なくとも部分的に基づいて1つ又は複数の第1の画像を生成するための1つ又は複数のプロセッサであって、前記1つ又は複数の変化が、前記1つ又は複数の第2の画像の1つ又は複数のピクセル内の1つ又は複数の固定されたジッタ位置について決定される、1つ又は複数のプロセッサと、
前記1つ又は複数の変化についてのデータを記憶するためのメモリと
を備える、コンテンツ生成システム。 - 前記1つ又は複数のプロセッサが、さらに、前記1つ又は複数のピクセルについて、前記1つ又は複数の固定されたジッタ位置についての色値をテクスチャ中のセルのグリッドに記憶する、請求項25に記載のコンテンツ生成システム。
- 前記1つ又は複数のプロセッサが、さらに、前記1つ又は複数の第1の画像についての前記色値を前記1つ又は複数の第2の画像のための前記テクスチャ中に記憶された以前の色値と比較することによって前記1つ又は複数の変化を部分的に決定し、前記以前の色値にクランピングを適用するかどうかを決定する、請求項26に記載のコンテンツ生成システム。
- 前記1つ又は複数のプロセッサが、さらに、前記1つ又は複数の第1の画像についての前記色値を比較するための前記以前の色値を決定するために、前記1つ又は複数のピクセルの少なくともサブセットのための動きベクトルを利用する、請求項27に記載のコンテンツ生成システム。
- 前記テクスチャに記憶されるべき前記色値が、前記1つ又は複数のピクセルについての前記1つ又は複数の固定されたジッタ位置の周りにセンタリングされたピクセル近傍から決定された輝度値である、請求項26に記載のコンテンツ生成システム。
- 前記1つ又は複数のプロセッサが、さらに、前記1つ又は複数の変化に少なくとも部分的に基づいて前記1つ又は複数の第1の画像を生成するために1つ又は複数のニューラル・ネットワークを使用するものである、請求項25に記載のコンテンツ生成システム。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/934,661 | 2020-07-21 | ||
US16/934,661 US20220028037A1 (en) | 2020-07-21 | 2020-07-21 | Image generation using one or more neural networks |
PCT/US2021/041855 WO2022020179A1 (en) | 2020-07-21 | 2021-07-15 | Image generation using one or more neural networks |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2023534569A true JP2023534569A (ja) | 2023-08-10 |
Family
ID=77265265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022525317A Pending JP2023534569A (ja) | 2020-07-21 | 2021-07-15 | 1つ又は複数のニューラル・ネットワークを使用した画像生成 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20220028037A1 (ja) |
JP (1) | JP2023534569A (ja) |
KR (1) | KR20220083755A (ja) |
CN (1) | CN115004233A (ja) |
DE (1) | DE112021000999T5 (ja) |
GB (1) | GB2600896A (ja) |
WO (1) | WO2022020179A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11776179B2 (en) * | 2021-09-10 | 2023-10-03 | Adobe Inc. | Rendering scalable multicolored vector content |
US11989807B2 (en) | 2021-09-10 | 2024-05-21 | Adobe Inc. | Rendering scalable raster content |
US20240232098A9 (en) * | 2022-10-20 | 2024-07-11 | International Business Machines Corporation | Dynamic tuning of larger pages during runtime |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10147203B2 (en) * | 2014-09-10 | 2018-12-04 | Nvidia Corporation | Enhanced anti-aliasing by varying sample patterns spatially and/or temporally |
CA2949383C (en) * | 2016-11-22 | 2023-09-05 | Square Enix, Ltd. | Image processing method and computer-readable medium |
US10728492B2 (en) * | 2017-04-24 | 2020-07-28 | Intel Corporation | Synergistic temporal anti-aliasing and coarse pixel shading technology |
US10853918B2 (en) * | 2017-06-09 | 2020-12-01 | Sony Interactive Entertainment Inc. | Foveal adaptation of temporal anti-aliasing |
US20190035113A1 (en) * | 2017-07-27 | 2019-01-31 | Nvidia Corporation | Temporally stable data reconstruction with an external recurrent neural network |
US11431955B1 (en) * | 2019-12-03 | 2022-08-30 | Facebook Technologies, Llc | Systems and methods for temporal anti-aliasing |
-
2020
- 2020-07-21 US US16/934,661 patent/US20220028037A1/en active Pending
-
2021
- 2021-07-15 JP JP2022525317A patent/JP2023534569A/ja active Pending
- 2021-07-15 KR KR1020227015961A patent/KR20220083755A/ko not_active Application Discontinuation
- 2021-07-15 GB GB2202261.0A patent/GB2600896A/en active Pending
- 2021-07-15 CN CN202180010967.6A patent/CN115004233A/zh active Pending
- 2021-07-15 WO PCT/US2021/041855 patent/WO2022020179A1/en active Application Filing
- 2021-07-15 DE DE112021000999.0T patent/DE112021000999T5/de active Pending
Also Published As
Publication number | Publication date |
---|---|
DE112021000999T5 (de) | 2022-12-01 |
CN115004233A (zh) | 2022-09-02 |
WO2022020179A1 (en) | 2022-01-27 |
GB202202261D0 (en) | 2022-04-06 |
KR20220083755A (ko) | 2022-06-20 |
US20220028037A1 (en) | 2022-01-27 |
GB2600896A (en) | 2022-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210375023A1 (en) | Content animation using one or more neural networks | |
US11810268B2 (en) | Image enhancement using one or more neural networks | |
US20220222778A1 (en) | Upsampling an image using one or more neural networks | |
US20220130013A1 (en) | Training one or more neural networks using synthetic data | |
US20220138903A1 (en) | Upsampling an image using one or more neural networks | |
US20220012858A1 (en) | Image generation using one or more neural networks | |
US20220148256A1 (en) | Image blending using one or more neural networks | |
US20220028037A1 (en) | Image generation using one or more neural networks | |
US20230206394A1 (en) | Generating image blending weights | |
WO2023009558A1 (en) | Conditional image generation using one or more neural networks | |
GB2610027A (en) | Pixel blending for neural network-based image generation | |
WO2022072685A1 (en) | Image generation using one or more neural networks | |
US20230196662A1 (en) | Image blending using one or more neural networks | |
US20230177649A1 (en) | Temporal image blending using one or more neural networks | |
US20230162021A1 (en) | Text classification using one or more neural networks | |
JP2023046230A (ja) | 1つ又は複数のニューラル・ネットワークを使用した時間的画像ブレンディング | |
JP2023067714A (ja) | 1つ又は複数のニューラル・ネットワークを使用した画像アップサンプリング | |
JP2023089900A (ja) | 1つ又は複数のニューラル・ネットワークを使用した空間的及び時間的な画像ブレンディング |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231024 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240828 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240927 |