JP2023532897A - 量子ビット間の結合用のシステム及び方法 - Google Patents

量子ビット間の結合用のシステム及び方法 Download PDF

Info

Publication number
JP2023532897A
JP2023532897A JP2022580739A JP2022580739A JP2023532897A JP 2023532897 A JP2023532897 A JP 2023532897A JP 2022580739 A JP2022580739 A JP 2022580739A JP 2022580739 A JP2022580739 A JP 2022580739A JP 2023532897 A JP2023532897 A JP 2023532897A
Authority
JP
Japan
Prior art keywords
superconducting
loop
layer
coupling
trace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022580739A
Other languages
English (en)
Other versions
JPWO2022006114A5 (ja
Inventor
モウラヴィー,レーザ
ティー.アール. ブースビー,ケリー
エイチ. フォルクマン,マーク
アイ. ブニク,ポール
Original Assignee
ディー-ウェイブ システムズ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ディー-ウェイブ システムズ インコーポレイテッド filed Critical ディー-ウェイブ システムズ インコーポレイテッド
Publication of JP2023532897A publication Critical patent/JP2023532897A/ja
Publication of JPWO2022006114A5 publication Critical patent/JPWO2022006114A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/40Physical realisations or architectures of quantum processors or components for manipulating qubits, e.g. qubit coupling or qubit control
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/805Constructional details for Josephson-effect devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N69/00Integrated devices, or assemblies of multiple devices, comprising at least one superconducting element covered by group H10N60/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

超伝導集積回路は、超伝導集積回路の第1の層に第1の超伝導トレースを有する第1の超伝導ループを有する第1の超伝導デバイスと、第2の層に第2の超伝導トレースを有する第2の超伝導ループを有する第2の超伝導デバイスとを有する。第1の超伝導ループは、交差領域で第2の超伝導ループと交差する。交差領域の内側の第1及び第2の超伝導トレースの各々の少なくとも一部は、交差領域の外側のトレースの各々の少なくとも一部よりも狭く、他方の経路の少なくとも一部に誘導的に近接する各迂回経路をたどる。

Description

背景
分野
この開示は一般的に、量子プロセッサの性能の向上に関し、特に、超伝導量子プロセッサにおける量子ビット間の結合に関する。
量子デバイス
量子デバイスは、量子力学的効果を観測することができる構造体である。量子デバイスは、電流輸送を量子力学的効果によって支配する回路を含む。このようなデバイスは、電子スピンを資源として使用するスピントロニクス、及び超伝導回路を含む。スピン及び超伝導性の両方は、量子力学的現象の例である。量子デバイスを、例えば、計器類及び計算システムで使用することができる。
量子計算
量子計算及び量子情報処理は、複数の種類の販売可能な製品を含む。量子コンピュータは、量子力学的現象(例えば、重ね合わせ、トンネル現象、及び量子エンタングルメント)を直接使用して、データに関する計算を実行するシステムである。
データを、量子2進数(本出願で、量子ビットとも呼ばれる)によって量子コンピュータで表すことができる。量子コンピュータは、特定の種類の計算問題(例えば、量子物理学シミュレーション)に指数関数的高速化を与えることがある。有利な高速化は、他の種類の問題に対して存在することがある。
幾つかの実装形態において、量子コンピュータは、量子回路モデルを含む。他の実装形態において、量子コンピュータは、断熱量子コンピュータを含む。断熱量子コンピュータは、例えば、NP困難最適化問題を解決するのに有用であることができる。
断熱量子計算
断熱量子計算は典型的に、ハミルトニアンを徐々に変更することによって、既知の初期ハミルトニアン(ハミルトニアンは、固有値がシステムの許容エネルギーである演算子である)から最終ハミルトニアンにシステムを進化させることを含む。断熱進化の単純な例は、初期ハミルトニアンと最終ハミルトニアンとの間の線形補間である。例を、下記によって挙げる。
=(1-s)H+sH
但し、Hは、初期ハミルトニアンであり、Hは、最終ハミルトニアンであり、Hは、進化又は瞬時ハミルトニアンであり、sは、進化速度を制御する進化係数である。システムが進化するにつれて、最初に(s=0)、進化ハミルトニアンHが初期ハミルトニアンHに等しく、最後に(s=1)、進化ハミルトニアンHが最終ハミルトニアンHに等しくなるように、進化係数sは、0から1に移行する。
進化が始まる前に、システムは典型的に、初期ハミルトニアンHの基底状態に初期化され、目標は、システムが最終ハミルトニアンHの基底状態になるような方法でシステムを進化させることである。進化が速過ぎる場合、システムは、より高いエネルギー状態(例えば、第1励起状態)に励起されることがある。
本出願で、断熱進化を、下記のように表される断熱条件を満たす進化として定義する。
Figure 2023532897000002
但し、
Figure 2023532897000003
は、sの時間導関数であり、g(s)は、sの関数としてシステムの基底状態と第1励起状態との間のエネルギー差(本出願で、ギャップサイズとも呼ばれる)であり、δは、1よりも非常に小さい係数(δ<<1)である。一般的に、初期ハミルトニアンH及び最終ハミルトニアンHは、交換できない、即ち、[H,H]≠0である。
断熱量子計算でハミルトニアンを変更する工程は、本出願で、進化と呼ばれる。進化係数sの変化速度は、システムが進化中に進化ハミルトニアンHの基底状態のままであり、(ギャップサイズが最小である場合)反交差における遷移を回避するのに十分遅いことが望ましい。進化スケジュールは、線形、非線形、パラメトリックなどであってもよい。断熱量子計算システム、方法、及び装置に関する更なる詳細は、例えば、米国特許第7,135,701号及び第7,418,283号に記載されている。
量子アニーリング
量子アニーリングは、システムの低エネルギー状態、典型的に好ましくは、システムの基底状態を見付けるために使用可能な計算方法である。古典的アニーリングと概念が似ているように、量子アニーリングは、より低エネルギー状態がより安定しているので、自然系がより低エネルギー状態の傾向があるという基本原理を当てにする。古典的アニーリングは、古典的熱変動を使用して、システムを低エネルギー状態(理想的に、大域的エネルギー最小値)に導くけれども、量子アニーリングは、量子効果(例えば、量子トンネル現象)を使用して、古典的アニーリングよりも正確に及び/又は迅速に大域的エネルギー最小値に達することができる。量子アニーリングにおいて、熱的効果及び他の雑音は、アニーリングを支援するために存在することがある。最終低エネルギー状態は、大域的エネルギー最小値でないかもしれない。
断熱量子計算を、量子アニーリングの特別な場合と考えてもよい。断熱量子計算において、システムは理想的に、開始し、断熱進化全体にわたって基底状態のままである。
当業者は、一般的に、量子アニーリングシステム及び方法を断熱量子コンピュータで実施することができることが分かる。この明細書及び添付の特許請求の範囲全体にわたって、量子アニーリングへの任意の参照は、文脈上他の意味に解すべき場合を除き、断熱量子計算を含むように意図されている。
量子アニーリングは、アニーリング工程中に無秩序の原因として量子力学を使用することができる。量子アニーリングを使用して最適化問題を解決するために、最適化問題を、問題ハミルトニアンHに符号化し、アルゴリズムは、問題ハミルトニアンHと交換できない無秩序化ハミルトニアンHを追加することによって、量子効果を導入する。
進化の例は、下記の通りである。
∝A(t)H+B(t)H
但し、A(t)及びB(t)は、時間依存包絡関数であり、Hは、進化ハミルトニアン(断熱量子計算の文脈で上述の進化ハミルトニアンHと同様)である。
無秩序化ハミルトニアンHの効果を除去する、又は少なくとも減少する(即ち、A(t)を減少する)ことによって、無秩序を、除去する、又は少なくとも減少してもよい。無秩序を、まず追加し、次に除去してもよい。幾つかの実装形態において、時間変化包絡関数を、問題ハミルトニアンに置く。一般的な無秩序化ハミルトニアンHを、下記のように表すことができる。
Figure 2023532897000004
但し、Nは、量子ビットの数を表し、σ は、i番目の量子ビットに対するパウリx行列であり、Δは、i番目の量子ビットに誘導される単一量子ビットトンネル分裂である。ここで、σ 項は、非対角項の例である。
一般的な問題ハミルトニアンHは、対角単一量子ビット項に比例する第1の成分、及び対角多量子ビット項に比例する第2の成分を含む。問題ハミルトニアンを、例えば、下記のように表すことができる。
Figure 2023532897000005
但し、Nは、量子ビットの数を表し、σ は、i番目の量子ビットに対するパウリz行列であり、h及びJijは、量子ビットに対する無次元局所場、及び量子ビット間の結合であり、εは、Hに対するある特性エネルギー尺度である。
ここで、σ 及びσ σ 項は、対角項の例である。σ は、単一量子ビット項であり、σ σ は、2量子ビット項である。本出願で、用語「問題ハミルトニアン」及び「最終ハミルトニアン」を交換可能に使用する。
上述の式におけるハミルトニアン(例えば、H及びH)を、様々な異なる方法で物理的に実現してもよい。特定の例を、超伝導量子ビット(例えば、超伝導磁束量子ビット)の実装形態によって実現する。
システムの量子アニーリングは、システムが、初期ハミルトニアンで始まり、基底状態が問題に対する解決策を符号化する最終(問題)ハミルトニアンHに進化ハミルトニアンを介して進化するという断熱量子計算と同様である。進化が十分に遅い場合、システムは典型的に、大域的最小値(即ち、厳密解)、又はエネルギーで厳密解に近い局所的最小値に落ち着く。進化時間の関数として残留エネルギー(目的関数を用いた厳密解との差)を測定することによって、計算の性能を評価してもよい。計算時間は、許容閾値未満の残留エネルギーを生成するのに必要な時間である。量子アニーリングにおいて、問題ハミルトニアンHが最適化問題を符号化することができるけれども、システムは、常に基底状態に必ずしもとどまるとは限らない。大域的最小値が、解決されるべき最適化問題に対する解答であり、低い局所的最小値が、解答への良い近似値であるように、Hのエネルギーランドスケープを作ってもよい。
量子アニーリングにおける包絡関数A(t)の減少は、本出願でアニーリングスケジュールと呼ばれる規定スケジュールに従ってもよく、進化スケジュールの例である。断熱量子計算の従来の形態において、システムは典型的に、開始し、進化全体にわたって基底状態のままである。量子アニーリングにおいて、システムは、アニーリングスケジュール全体にわたって基底状態のままでないかもしれない。量子アニーリングを、発見的技法として実施してもよく、基底状態のエネルギーに近いエネルギーを有する低エネルギー状態は、問題に対する近似解を与えてもよい。
超伝導量子ビット
超伝導材料の回路に基づいている一種の固体量子ビットがある。超伝導材料は、特定の条件(例えば、臨界温度、臨界電流、又は磁場強度未満)の下で、又は特定の圧力を超える幾つかの材料の場合、電気抵抗無しで導通する。超伝導量子ビットが動作する方法の基礎となることができる超伝導効果は、a)磁束の量子化、及びb)ジョセフソントンネル現象を含む。
磁束によって通される超伝導材料のループを、磁場を切りながら、超伝導材料の超伝導臨界温度未満に冷却する場合、磁束を量子化することができる。超伝導電流は、磁束を維持しようとして続く。磁束は、量子化される。超伝導性は、量子力学的効果である。超伝導材料のループにおける電流を、単一波動関数によって制御することができる。ループにおける点で単独で評価されるべき波動関数の場合、磁束は、量子化される。
超伝導材料のループにおける電流が、ループにおける小さい障害物を通り抜ける場合、例えば、電流が数ナノメートルの絶縁ギャップを通り抜ける場合、ジョセフソントンネル現象が生じる。電流量は、ループにおける小さい障害物にわたって位相差への正弦波依存性を有することがある。正弦波依存性は、システムのエネルギー準位の非調和性を引き起こすことがある非線形性である。
超伝導効果は、異なるタイプの超伝導量子ビット(例えば、磁束量子ビット、位相量子ビット、電荷量子ビット、及びハイブリッド量子ビット)を生み出すために異なる構成で存在することができる。異なるタイプの量子ビットは、超伝導材料のループ、及び物理的パラメータ(例えば、インダクタンス、静電容量、及び永久電流)用の異なるトポロジーを有することができる。
永久電流
超伝導量子ビット(例えば、超伝導磁束量子ビット)は、少なくとも1つのジョセフソン接合部によって遮断される超伝導材料のループ(本出願で、量子ビットループとも呼ばれる)を含んでもよい。量子ビットループは、本出願で、超伝導量子ビットの本体とも呼ばれる。
量子ビットループは超伝導状態であるので、量子ビットループは、事実上電気抵抗を有しない。量子ビットループで移動する電流は、エネルギー散逸を受けないことがある。電流を、例えば、磁束信号によって、量子ビットループで発生させる場合、磁束信号の源を除去しても、電流は、量子ビットループの周りに循環し続けることがある。電流が妨げられるまで、又は量子ビットループがもはや超伝導状態でなくなるまで、電流は、無限に持続することがある。
本出願の目的で、用語「永久電流」は、超伝導材料のループ(少なくとも1つのジョセフソン接合部によって遮断されるループ)を循環する電流を説明するために使用される。永久電流の符号及び大きさは、a)超伝導ループに直接結合される磁束信号Φ、及びb)超伝導ループを遮断する複合ジョセフソン接合部に結合される磁束信号ΦCJJ(又はΦCO)(但し、これらに限定されない)を含む幾つかの要因に左右されることがある。
量子プロセッサ
量子プロセッサは、超伝導量子プロセッサの形をとってもよい。超伝導量子プロセッサは、2つ以上の超伝導量子ビット及び関連局所的バイアスデバイスを含んでもよい。更に、超伝導量子プロセッサは、超伝導量子ビットの間に連通可能結合を与えることができる結合デバイス(本出願で、結合器とも呼ばれる)を含んでもよい。本システム及びデバイスと併せて使用可能な量子プロセッサの更なる詳細及び例は、例えば、米国特許第7,533,068号、第8,008,942号、第8,195,596号、第8,190,548号、及び第8,421,053号に記載されている。
量子プロセッサの任意の特定の実装形態によって解決可能な複数の種類の問題、及びこのような問題の相対的サイズ及び複雑さは、量子プロセッサにおける量子ビットの数、及び量子プロセッサにおける量子ビットの間の接続性(即ち、連通可能結合の利用可能性)を含む多くの要因に左右されることがある。
この明細書全体にわたって、用語「接続性」は、介在量子ビットを使用せずに量子プロセッサにおける個々の量子ビットを連通可能に結合するように物理的に利用できる経路の数の上限を説明するために使用される。例えば、3つの接続性を有する量子ビットを、3つの他の量子ビットに直接連通可能に結合することができ、即ち、3つの接続性を有する量子ビットを、介在量子ビットを使用せずに3つの他の量子ビットに連通可能に結合することができる。換言すれば、任意の特定の用途で、連通可能結合経路の一部又は全部(例えば、0、1つ、2つ、又は3つ)を使用することができるけれども、3つの他の量子ビットが利用できる連通可能結合経路がある。
量子ビットの間の結合デバイスを使用する量子プロセッサにおいて、例えば、3つの接続性を有する量子ビットを、3つの結合デバイスのうち各1つを介して3つの他の量子ビットの各々に選択的に連通可能に結合することができる。典型的に、量子プロセッサにおける量子ビットの数は、解決可能な問題の大きさを制限することができ、量子ビットの間の接続性は、解決可能な問題の複雑さを制限することができる。
計算問題を解決するために断熱量子計算及び/又は量子アニーリングを使用する多くの先行技術技法は、量子プロセッサに問題の表現をマップする(又は組み込む)発見方法を含むことができる。例えば、米国特許出願公開第2008-0052055号には、まず、イジングスピングラス問題としてタンパク質折り畳み問題を割り当て、次に、量子プロセッサにイジングスピングラス問題を組み込むことによって、タンパク質折り畳み問題を解決することが記載されている。米国特許第8,073,808号には、まず、二次の制約なしバイナリ最適化(「QUBO」)問題として問題を割り当て、次に、量子プロセッサにQUBO問題を直接組み込むことによって、計算問題(例えば、画像マッチング問題)を解決することが記載されている。両方の場合、まず、考案された定式化(例えば、イジングスピングラス、QUBOなど)に問題を割り当てることによって、問題を解決する。なぜなら、その特定の定式化は、使用される量子プロセッサの特定の実装形態に直接マップするからである。換言すれば、中間定式化を使用して、量子プロセッサの特定の実装形態における量子ビットの数及び/又は接続性制約に対応する形式に元の問題を再度割り当て、次に、中間定式化を、量子プロセッサに組み込むことができる。組み込み手法を、使用される量子プロセッサのアーキテクチャに固有の制限によって動かすことができる。例えば、量子ビットの間の対相互作用だけを使用する量子プロセッサ(即ち、(例えば、3つ以上の量子ビットなどの量子ビットのより大きいセットの間にではなく)量子ビットの各対の間に連通可能結合を与える結合デバイスを使用する量子プロセッサ)は、問題における二次項を、量子プロセッサにおける量子ビットの間の対相互作用に直接マップすることができるので、二次項を有する問題(例えば、QUBO問題)を解決するのに本質的に適している。
簡単な概要
超伝導集積回路は、超伝導集積回路の第1の層に第1の超伝導トレースを含む第1の超伝導ループを含む第1の超伝導デバイスと、超伝導集積回路の第2の層に第2の超伝導トレースを含む第2の超伝導ループを含む第2の超伝導デバイスであって、第2の層は、第1の層の上に横たわり、及び/又は第1の層に隣接し、第2の層は、介在層によって第1の層から分離されている第2の超伝導デバイスと、第1の超伝導ループが第2の超伝導ループと投影で交差する交差領域であって、交差領域の内側の第1の超伝導トレースの少なくとも一部は、交差領域の外側の第1の超伝導トレースの少なくとも一部よりも狭く、交差領域の内側の第2の超伝導トレースの少なくとも一部は、交差領域の外側の第2の超伝導トレースの少なくとも一部よりも狭く、交差領域の内側の第1の超伝導トレースの少なくとも一部は、第1の迂回経路をたどり、交差領域の内側の第2の超伝導トレースの少なくとも一部は、第2の迂回経路をたどり、第1の迂回経路及び第2の迂回経路は、第1の迂回経路の長さの少なくとも一部に対して互いに誘導的に近接する交差領域を含むように要約可能である。
幾つかの実装形態において、第1の迂回経路及び第2の迂回経路は、第1の迂回経路の長さの少なくとも一部に対して少なくとも部分的に互いの上に横たわる。
様々な上述の実装形態において、第1の超伝導ループは、第2の超伝導ループと実質的に垂直に交差する。
様々な上述の実装形態において、第1の超伝導トレース及び第2の超伝導トレースの各々は、各超伝導金属を含む。各超伝導金属は、ニオブ及びアルミニウムからなる群から選択される超伝導金属を含む。
様々な上述の実装形態において、第1の超伝導デバイスは、第1のジョセフソン接合部を更に含み、第1のジョセフソン接合部は、第1の超伝導ループを遮断し、第2の超伝導デバイスは、第2のジョセフソン接合部を更に含み、第2のジョセフソン接合部は、第2の超伝導ループを遮断する。
様々な上述の実装形態において、第1の超伝導デバイスは、第1の超伝導磁束量子ビットであり、第2の超伝導デバイスは、第2の超伝導磁束量子ビットである。
様々な上述の実装形態において、交差領域の内側の第1の超伝導トレースの少なくとも一部は、4つの方向変更を含む。
様々な上述の実装形態において、第1の迂回経路の第1の形状は、第2の迂回経路の第2の形状と一致する。
様々な上述の実装形態において、介在層は、絶縁層を含む。絶縁層は、誘電材料及び/又はエアブリッジを含んでもよい。誘電材料は、二酸化ケイ素又は窒化ケイ素のうち少なくとも1つを含んでもよい。
様々な上述の実装形態において、第1の超伝導デバイス及び第2の超伝導デバイスに結合され、第1の超伝導デバイスと第2の超伝導デバイスとの間に媒介結合を与えるように連通可能に結合されている結合デバイスを更に含む。
様々な上述の実装形態において、交差領域の内側の第1の超伝導トレースの少なくとも一部及び交差領域の内側の第2の超伝導トレースの少なくとも一部の各々は、1つ又は複数のU字形輪郭を含む。
量子コンピュータは、様々な上述の実装形態の超伝導集積回路を含むように要約可能である。
第1の超伝導デバイスと第2の超伝導デバイスとの間の連通可能結合の大きさを同調させる方法であって、連通可能結合の大きさは、媒介連通可能結合及び直接連通可能結合の大きさの合計である方法は、第1及び第2の超伝導デバイスの間の連通可能結合の目標の大きさを判定することと、媒介連通可能結合の大きさと目標の大きさとの間の差を判定することと、媒介結合の大きさと目標の大きさとの間の差に少なくとも部分的に基づいて調整許容範囲を判定することと、第1の超伝導デバイスの第1の超伝導ループを第1の層に付着させることと、第2の超伝導デバイスの第2の超伝導ループを第2の層に付着させることであって、第2の超伝導ループは、第1の超伝導ループと交差して交差領域を形成することと、第1の迂回経路をたどり、交差領域の外側で第1の超伝導ループの少なくとも一部よりも狭くなるように、交差領域の内部で第1の超伝導ループの少なくとも一部を調整許容範囲だけ調整することと、第2の迂回経路をたどり、交差領域の外側で第2の超伝導ループの少なくとも一部よりも狭くなるように、交差領域の内部で第2の超伝導ループの少なくとも一部を調整許容範囲だけ調整することであって、その結果、第1の迂回経路及び第2の迂回経路は、第1の迂回経路の長さの少なくとも一部に対して互いに誘導的に近接することを含むように要約可能である。
幾つかの実装形態において、方法は、第1の層と第2の層との間に介在層を付着させることを更に含む。第1の層と第2の層との間に介在層を付着させることは、絶縁層を付着させることを含んでもよい。絶縁層を付着させることは、誘電材料の層を付着させること、及び/又はエアブリッジを形成することを含んでもよい。
様々な上述の実装形態において、第2の超伝導デバイスの第2の超伝導ループを第2の層に付着させることは、第2の層の少なくとも一部が第1の層の少なくとも一部の上に横たわるように、第2の超伝導デバイスの第2の超伝導ループを第2の層に付着させることを含む。
幾つかの実装形態において、第1の超伝導ループの少なくとも一部を調整許容範囲だけ調整することは、0.5μmと2.0μmとの間の幅に第1の超伝導ループの少なくとも一部を調整することを含む。
幾つかの実装形態において、第1の超伝導ループの少なくとも一部を調整許容範囲だけ調整することは、第1の超伝導ループの少なくとも一部の調整幅エッチングを実行することを含む。第1の超伝導ループの少なくとも一部の調整幅エッチングを実行することは、第1の硬質マスクを付着させ、第1の超伝導ループの少なくとも一部の少なくとも一部の上に横たわることと、第2の硬質マスクを付着させ、第1の硬質マスクの少なくとも一部の上に横たわることと、フォトレジスト層を付着させ、第2の硬質マスクの少なくとも一部の上に横たわることと、フォトレジスト層をパターン形成し、所定の調整幅を規定することと、第1の超伝導ループの少なくとも一部をエッチングし、所定の調整幅を除去することとを含んでもよい。
集積回路を形成する方法は、集積回路の第1の層に第1のトレースを含む第1のデバイスを形成することと、集積回路の第2の層に第2のトレースを含む第2のデバイスを形成することであって、第2のトレースの少なくとも一部は、第1のトレースの少なくとも一部に誘導的に近接し、これによって、第1のデバイスと第2のデバイスとの間に誘導連通可能結合があり、第1のトレースの少なくとも一部は、第1のトレースの少なくとも別の一部よりも狭いこととを含むように要約可能である。
幾つかの実装形態において、第2のデバイスを形成することは、第2のデバイスを形成することを含み、第2のトレースの少なくとも一部は、第2のトレースの少なくとも別の一部よりも狭い。
幾つかの実装形態において、第1のデバイスを形成することは、第1の超伝導デバイスを形成することを含み、第2のデバイスを形成することは、第2の超伝導デバイスを形成することを含む。第1の超伝導デバイスを形成することは、超伝導材料を付着させることを含んでもよい。第1の超伝導デバイスを形成することは、第1の迂回経路をたどり、第1のトレースの少なくとも別の一部よりも狭くなるように、第1のトレースの少なくとも一部を調整することを更に含んでもよい。
様々な上述の実装形態において、第2の超伝導デバイスを形成することは、媒介結合デバイスに誘導的に近接する第2の超伝導デバイスを形成することを含み、媒介結合デバイスは、第1の超伝導デバイスと第2の超伝導デバイスとの間に連通可能結合を与える。媒介結合デバイスに誘導的に近接する第2の超伝導デバイスを形成することは、第1の超伝導デバイスと第2の超伝導デバイスとの間に反強磁性(AFM)結合を与える媒介結合デバイスに誘導的に近接する第2の超伝導デバイスを形成することを含んでもよく、これによって、第1の超伝導デバイスと第2の超伝導デバイスとの間の誘導連通可能結合は、反強磁性結合を増加する。
超伝導集積回路は、超伝導集積回路の第1の層に第1の超伝導トレースを含む第1の超伝導ループを含む第1の超伝導デバイスと、超伝導集積回路の第2の層に第2の超伝導トレースを含む第2の超伝導ループを含む第2の超伝導デバイスと、第1の超伝導ループの一部が第2の超伝導ループの一部と重複する領域であって、領域の内部の第1の超伝導トレースの少なくとも一部は、領域の外側の第1の超伝導トレースの少なくとも一部よりも狭く、領域の内部の第2の超伝導トレースの少なくとも一部は、領域の外側の第2の超伝導トレースの少なくとも一部よりも狭く、領域の内部の第1の超伝導トレースの少なくとも一部は、第1の経路をたどり、領域の内部の第2の超伝導トレースの少なくとも一部は、第2の経路をたどり、第1の経路及び第2の経路は、第1の経路の長さの少なくとも一部に対して互いに誘導的に近接する領域を含むように要約可能である。
幾つかの実装形態において、第1の層は、第2の層と異なる層である。
幾つかの実装形態において、第1の層は、介在層によって第2の層から分離されている。
幾つかの実装形態において、第1の経路は、迂回経路である。第1の経路及び第2の経路は、一致してもよい。
幾つかの実装形態において、第1の経路及び第2の経路は、少なくとも部分的に互いの上に横たわる。
図面の幾つかの図の簡単な説明
図面において、同じ参照符号は、同様の要素又は動作を識別する。図面における要素のサイズ及び相対位置は、必ずしも原寸に比例しているとは限らない。例えば、様々な要素の形状及び角度は、必ずしも原寸に比例しているとは限らず、これらの要素の一部を、任意に拡大及び位置決めして、図面視認性を向上させてもよい。更に、図示のような要素の特定の形状は、特定の要素の実際の形状に関する任意の情報を伝えるように意図されていなく、図面における認識を簡単にするために選択されているだけである。
本システム及び方法による、例示的な媒介結合レイアウトの略図である。 本システム及び方法による、例示的なハイブリッド媒介及び直接結合レイアウトの略図である。 本システム及び方法による、別の例示的なハイブリッド媒介及び直接結合レイアウトの略図である。 本システム及び方法による、別の例示的なハイブリッド媒介及び直接結合レイアウトの略図である。 本システム及び方法による、別の例示的なハイブリッド媒介及び直接結合レイアウトの略図である。 本システム及び方法による、各超伝導デバイスの各ループが交差領域に内向き湾曲部を有する、互いに連通可能に結合される1対の超伝導デバイスの例示的なレイアウトの略図である。 本システム及び方法による、図6Aのレイアウトの交差領域の実装形態の例の略図である。 本システム及び方法による、各超伝導デバイスの各ループが交差領域に外向き湾曲部を有する、互いに連通可能に結合される1対の超伝導デバイスの別の例示的なレイアウトの略図である。 本システム及び方法による、図7Aのレイアウトの交差領域の実装形態の例の略図である。 本システム及び方法による、各超伝導デバイスの各ループが交差領域に多数の湾曲部を有する、互いに連通可能に結合される1対の超伝導デバイスの別の例示的なレイアウトの略図である。 本システム及び方法による、図8Aのレイアウトの交差領域の実装形態の例の略図である。 本システム及び方法による、図8Aのレイアウトの交差領域の実装形態の別の例の略図である。 本システム及び方法による、例示的な超伝導量子プロセッサのトポロジーの略図である。 本システム及び方法による、互いに直接連通可能に結合される1対の超伝導デバイスの例示的なレイアウトの略図である。 本システム及び方法による、互いに直接連通可能に結合される1対の超伝導デバイスの別の例示的なレイアウトの略図である。 本システム、デバイス、物、及び方法による、アナログコンピュータに結合されたデジタルコンピュータを含むハイブリッド計算システムの例の略図である。 本システム及び方法による、超伝導集積回路の一部の断面である。 本システム及び方法による、超伝導集積回路の一部の別の断面である。 本システム及び方法による、集積回路を形成する方法の例のフローチャートである。 本システム及び方法による、図14Aの第1の経路の調整用の方法の例のフローチャートである。
詳細な説明
下記の説明において、様々な開示の実施形態を完全に理解するために、ある特定の詳細を記載する。しかし、当業者は、これらの特定の詳細のうち1つ又は複数の詳細無しで、又は他の方法、構成要素、材料などを用いて、実施形態を実施することができることが分かる。他の場合、実施形態の不必要に曖昧な説明を避けるために、量子プロセッサ、量子ビット、結合器、読み出しデバイス及び/又はインターフェースに関連する周知の構造は、詳細に示されていない又は説明されていない。
文脈上他の意味に解すべき場合を除き、下記の明細書及び特許請求の範囲全体にわたって、用語「含む(Comprise)」及び変型例、例えば、「含む(comprises)」及び「含む(comprising)」は、制約のない包含的な意味で、即ち、「含む(including)、但し、限定されない」と解釈されるべきである。
この明細書全体にわたる「1つの例(one example)」、「ある例(an example)」、「1つの実施形態(one embodiment)」又は「ある実施形態(an embodiment)」の参照は、実施形態に関連して説明される特定の特徴、構造又は特性を、少なくとも1つの実施形態に含むことを意味する。従って、この明細書全体にわたる様々な箇所における用語「1つの例で(in one example)」、「ある例で(in an example)」、「1つの実施形態で(in one embodiment)」又は「ある実施形態で(in an embodiment)」の出現は全て、必ずしも同じ実施形態を参照するとは限らない。更に、特定の特徴、構造又は特性を、1つ又は複数の実施形態に任意の適切な方法で組み合わせてもよい。
この明細書及び添付の特許請求の範囲で使用されるように、単数形「1つの(a)」、「1つの(an)」、及び「その(the)」は、他に明示的に指示がない限り、複数の指示対象を含む。用語「又は(or)」を、他に明示的に指示がない限り、「及び/又は(and/or)」を含む意味で一般的に使用することにも留意すべきである。
この明細書及び特許請求の範囲で使用されるように、「誘導的に近接する」は、適切に方向付けられ、構造体における電流の流れが他方の構造体における電流の流れを直接誘導するのに別の構造体に十分近い構造体(例えば、デバイス、線、又はトレース)を意味する。「適切に方向付けられ」は典型的に、平行、又は少なくとも非直交を意味する。
この明細書及び特許請求の範囲で使用されるように、「重複する」は、介在構造体の有無に関係なく、別の構造体と少なくとも部分的に交差する又は別の構造体を含む平面図又は立面図で構造体の投影を意味する。
この明細書及び特許請求の範囲で使用されるように、「上に横たわる」は、典型的に1つ又は複数の介在層を有する別の構造体と少なくとも部分的に交差する又は別の構造体を含む平面図で構造体の投影を意味する。
この明細書及び特許請求の範囲で使用されるように、「隣接する」は、典型的に1つ又は複数の介在材料を有する別の構造体と少なくとも部分的に交差する又は別の構造体を含む立面図で構造体の投影を意味する。
重複構造体は、製造物又はチップの平面図又は主面又は主表面(例えば、上部又は下部)に垂直な投影で上に横たわってもよく(例えば、上/下)、及び/又は、製造物又はチップの立面図又は副面又は副表面(例えば、エッジ)に垂直な投影で隣接していてもよい(例えば、並列又は直列)。重複構造体は、別の構造体に誘導的に近接してもよく、又は近接しなくてもよい。
構造体は、下から次の配線層、又は下から2つの配線層などの上で、別の構造体と重複してもよい。重複構造体は、部分的重複構造体及び完全重複構造体を含む。構造体は、例えば、超伝導ループ、又は超伝導ループの一部であってもよい。用語「重複」、「重複する」などは、向きに関係なく、即ち、1つの構造体が、別の構造体の上又は下に、又は別の構造体の側面に存在するかどうかに関係なく、適用される。
重複構造体は、互いに近接する、即ち、他方の構造体の少なくとも一部に平行に走る(又は、少なくとも非直交である)一方の構造体の少なくとも一部を有していてもよく、一部が、一方の構造体に流れる電流が他方の構造体に電流を誘導するように十分密に配置される。本出願で、誘導的に近接する構造体を、互いに直接誘導連通可能結合することができる。
構造体が多層集積回路の異なる層にある場合、構造体は、別の構造体に誘導的に近接してもよく、構造体は、他の構造体の上に少なくとも部分的に横たわる。構造体が多層集積回路の同じ層にある場合、構造体は、別の構造体に誘導的に近接してもよく、構造体は、他の構造体に少なくとも部分的に隣接する。構造体が、適切に方向付けられ、構造体における電流の流れが他方の構造体における電流の流れを直接誘導するのに他の構造体に十分近いという条件で、構造体が、異なる層にあり、上に横たわっていない場合、構造体は、別の構造体に誘導的に近接してもよい。
重複及び隣接構造体について、例えば、それぞれ下記の図13A及び図13Bを参照して説明する。本出願における隣接構造体を、少なくとも1つの介在層又は材料によって分離する。典型的に、介在層又は材料は、絶縁層である。多層集積回路の場合、隣接構造体は典型的に、互いに同じ層にあり、介在材料によって分離される。
ここで与えられる開示の見出し及び要約書は、単に便宜のためであり、実施形態の範囲又は意味を解釈しない。
量子プロセッサの性能を向上させることが望ましい。性能を向上させる1つの手法は、量子プロセッサのエネルギー尺度を増加することである。量子プロセッサにおける結合デバイスの臨界電流を増加することによって、量子プロセッサのエネルギー尺度を増加することができるけれども、どのくらいエネルギー尺度をこのように増加することができるかに対する制約がある。
後述のシステム及び方法は、単独で、又は結合デバイスを介した媒介結合と組み合わせて、直接量子ビット間結合(即ち、介在結合デバイスを有しない)を使用することによって、量子プロセッサのエネルギー尺度を増加することを目的としている。後述のシステム及び方法は、製造中に同調可能な直接結合を与えることができる。後述のシステム及び方法の利点は、有利なことに、a)(離散ステップにおける同調ではなく)連続可変同調、及びb)集積回路に対する空間の不利益を殆ど受けない又は全く受けないことを含む。
デバイス(例えば、量子プロセッサにおける1対の超伝導量子ビット)間の結合を、結合強度によって特徴付けることができる。結合強度は、デバイス間の相互作用の強度を定量化する。デバイス間の相互作用は、結合強度の符号に応じて、強磁性又は反強磁性であることができる。慣例により、正結合強度は、反強磁性相互作用を特徴付けることができ、負結合強度は、強磁性相互作用を特徴付けることができる。強磁性(FM)相互作用及び反強磁性(AFM)相互作用の両方を含むことは、量子プロセッサにとって有益であることができる。
FM及びAFM相互作用の定義は、1対の連通可能結合量子ビットの各量子ビットにおける永久電流の方向、及び永久電流が2量子ビットシステムのハミルトニアンにどの程度影響を与えるかに基づくことができる。2つの量子ビットの間の相互インダクタンス(即ち、結合)が正である場合、2つの量子ビットにおける電流が、反対方向に流れるということになる。これは、本出願で、AFM相互作用と呼ばれる。
幾つかの実装形態において、結合デバイスの複合ジョセフソン接合部にバイアスをかけることによって、FM結合を達成する。幾つかの実装形態において、連通可能結合量子ビットの直接結合を用いて、(FM結合ではなく)AFM結合を向上させることは、優先的に有益である。
相互インダクタンスは、2つの誘導子(例えば、2つの超伝導量子ビット)の間の結合の尺度であることができる。量子プロセッサにおける問題ハミルトニアンを指定するエネルギー尺度Eを、下記のように表すことができる。
E=MAFM
但し、MAFMは、2つの連通可能結合超伝導デバイス(例えば、結合デバイスによって連通可能に結合される2つの超伝導量子ビット)の間の反強磁性相互インダクタンスであり、Iは、2つの超伝導デバイスの平均永久電流である。
例えば、相互インダクタンスMAFM及び平均永久電流Iの片方又は両方を増加することによってエネルギー尺度Eを増加することによって、量子プロセッサの性能を向上させることができる。
結合デバイスによって連通可能に結合される2つの超伝導デバイスの間の相互インダクタンスは、a)結合デバイスのインダクタンス、及びb)各超伝導デバイスと結合デバイスとの間の各相互インダクタンスによって制限されることがある。
2つの連通可能結合超伝導デバイスの間の反強磁性相互インダクタンスを、下記のように表すことができる。
AFM=MχAFM
但し、Mは、第1の超伝導デバイスと結合デバイスとの間の相互インダクタンスであり、Mは、第2の超伝導デバイスと結合デバイスとの間の相互インダクタンスであり、χAFMは、結合デバイスの磁化率である。
結合デバイスの磁化率χAFMは、結合デバイスが2つの超伝導デバイスをどの程度強く連通可能に結合することができるかの尺度であることができる。結合デバイスの磁化率を、結合デバイスの磁束バイアスφCOによって少なくとも部分的に設定することができる。結合デバイスの臨界電流Iを増加すると、結合デバイスの磁化率χAFMは、1/LCO(但し、LCOは、結合デバイスのインダクタンスである)の上限まで増加するようにすることができる。結合デバイスの永久電流を増加すると、結合デバイスの磁化率χAFMは、増加するようにすることができる。例えば、幾つかの実装形態において、永久電流を10倍増加する場合、結合デバイスの磁化率χAFMを、少なくとも約2倍にすることができる。
結合デバイスの永久電流を増加すると、結合デバイスのスクリーニングパラメータ(本出願で、ベータβとも呼ばれる)を増加することもできる。結合デバイスのベータは、結合デバイスにおける超伝導ループの挙動を記述するパラメータである。結合デバイスのベータを、下記のように表すことができる。
β=2πLCO/φ
但し、φは、超伝導ループの磁束量子である。
例えば、臨界電流Iを増加することによって結合デバイスのベータを増加すると、強磁性領域で結合デバイスの磁化率χAFMの勾配を増加することができる。結合デバイスの臨界電流Iを増加すると、強磁性及び/又は反強磁性結合を指定することができる精度が減少することがある。
量子プロセッサのエネルギー尺度を増加する1つの手法は、結合デバイスの臨界電流を増加することである。上述のように、結合デバイスの臨界電流Iを増加すると、結合デバイスのベータβを増加することができる。結合デバイスの臨界電流を増加することによってベータβを増加すると、結合デバイスの磁化率χAFMを増加することができ、即ち、ベータβを増加すると、印加磁束に対して結合デバイスの本体に流れる電流の導関数dI/dφを増加することができる。臨界電流を増加することによって磁化率をどのくらい増加することができるかに対して限界がある。磁化率は、非線形関数であり、その結果、結合デバイスの臨界電流を増加すると、磁化率χAFMは、戻りの減少と共に増加することがある。
量子プロセッサのエネルギー尺度を増加する別の手法は、2つ以上の超伝導デバイスの本体の間の直接結合を実施することである。幾つかの実装形態において、結合デバイスによって更に連通可能に結合される1対の超伝導デバイスの間の直接結合(即ち、介在デバイスを有しない)がある。幾つかの実装形態において、直接結合は、誘導結合である。結合デバイスによって連通可能に結合される1対の超伝導デバイスは、a)1対の超伝導量子ビット、b)超伝導量子ビット及び別の超伝導デバイス、又はc)互いに結合可能な任意の対の超伝導ループ(例えば、超伝導量子ビット、量子磁束パラメトロン(QFP)、乗算器、及びL同調器)であってもよい。少なくとも1つのジョセフソン接合部によって遮断される超伝導材料のループを各々含む1対の超伝導デバイスは、超伝導デバイスの対の超伝導デバイスの間に直接結合を含むように構成されていてもよい。
このような他の超伝導デバイスの詳細な説明は、例えば、米国特許第8,169,231号及び第7,843,209号、及び米国特許出願公開第2011-0057169A1号及び第2011-0060780A1号で行われている。量子プロセッサのエネルギー尺度を増加するシステム及び方法の例は、米国特許第9,129,224号に挙げられている。
超伝導デバイスの間の直接結合は、例えば、直接結合が超伝導デバイスの間に不要なクロストークを引き起こすことがあるので、望ましくない。本出願は、2つの連通可能結合超伝導デバイスの間に既知の反強磁性又は強磁性直接結合を追加すると、結合デバイスの非対称感受性を有益に利用することができると分かる。
例えば、直接結合がない場合、(上述のように)相互インダクタンスMAFMが、MχAFMに制限されることがあるけれども、下記のように、直接結合を追加することによって、より強い反強磁性結合を実現してもよい。
AFM=MχAFM+MQQ
但し、MQQは、直接結合の相互インダクタンスである。
連通可能結合超伝導デバイスの間に直接強磁性又は反強磁性結合を誘導するようにデバイスを構成することによって、連通可能結合超伝導デバイス(例えば、1対の連通可能結合超伝導デバイス)の間に直接結合を追加してもよい。連通可能結合超伝導デバイスの間に直接結合を誘導するように量子ビット(例えば、1対の量子ビット)を構成することは、例えば、量子ビットの交差形状を構成することを含むことができる。
上述のように、各量子ビットは、少なくとも1つのジョセフソン接合部によって遮断される超伝導材料のループ(本出願で、超伝導ループとも呼ばれる)を含むことができる。幾つかの実装形態において、ジョセフソン接合部は、複合ジョセフソン接合部である。幾つかの実装形態において、ジョセフソン接合部は、複合-複合ジョセフソン接合部、即ち、構成ジョセフソン接合部のうち少なくとも1つがそれ自体複合ジョセフソン接合部である複合ジョセフソン接合部である。
量子ビットの間の直接結合は、反強磁性結合、強磁性結合、又はゼロ結合であってもよい。
幾つかの実装形態において、量子ビットが重複する領域における量子ビットトレースの調整の有無にかかわらず、互いに直交するように1対の連通可能結合量子ビットの各々の各長軸を配置することによって、ゼロ直接結合を達成することができる。
幾つかの実装形態において、例えば、量子ビットトレースが外向き湾曲部(例えば、図7参照)を有するように量子ビットトレースを調整することによって、強磁性結合を達成することができる。
本出願に記載の様々な実装形態は、連通可能結合超伝導デバイス(例えば、1対の超伝導量子ビット)の間に直接結合を追加することによって、量子プロセッサのエネルギー尺度を増加するシステム及び方法を提供する。更に、連通可能結合超伝導デバイスは、結合デバイスによって媒介される連通可能結合を有してもよい。
更に、本出願に記載の様々な実装形態は、量子プロセッサにおける結合デバイスの応答又は感受性の線形性を増加することによって、量子プロセッサのエネルギー尺度を増加するシステム及び方法を提供する。
説明に役立つ例として、断熱量子計算及び/又は量子アニーリングを実行するように設計されている超伝導量子プロセッサを、下記の説明で使用する。しかし、他の形態の量子プロセッサハードウェア、及び他の形態の量子アルゴリズム(例えば、断熱量子計算、量子アニーリング、及びゲート及び/又は回路ベースの量子計算)を実施する量子プロセッサに本システム及び方法を適用することができることが、当業者は分かる。
図1は、例示的な媒介結合レイアウト100の略図である。例示的な媒介結合レイアウト100は、結合デバイス106によって互いに連通可能に結合される1対の超伝導デバイス102及び104を含む。例示的な媒介結合レイアウト100において、2つの超伝導デバイス102及び104の間に誘導される直接結合が、殆どない又はない。例示的なレイアウト100において、超伝導デバイス102及び104の間に媒介連通可能結合がある。媒介連通可能結合を、結合デバイス106によって媒介することができる。
超伝導デバイス102は、ジョセフソン接合部110によって遮断される超伝導ループ108を含む。超伝導デバイス104は、ジョセフソン接合部114によって遮断される超伝導ループ112(図1に点線で示す)を含む。ジョセフソン接合部(例えば、ジョセフソン接合部110及び114)を、本出願の図1~図5、図6A、図7A、及び図8Aに×で表す。
本出願で、超伝導ループを、臨界温度未満で超伝導状態である材料の閉ループとして定義する。幾つかの実装形態において、超伝導ループは、超伝導線の閉ループである。幾つかの実装形態において、超伝導ループは、超伝導集積回路において閉ループで走る超伝導回路トレース(本出願で、トレースとも呼ばれる)である。超伝導トレースは、超伝導集積回路における経路である。超伝導トレースは、例えば、閉ループで、又は超伝導集積回路の構成要素回路の間に電流が流れることができる超伝導材料の線を含む。幾つかの実装形態において、超伝導ループは、超伝導線及び少なくとも1つの超伝導トレースを含む。
幾つかの実装形態において、超伝導ループは、長軸及び短軸を有する細長いループである。超伝導ループの向きを、長軸の方向として定義してもよい。例えば、超伝導ループ108は、長軸128及び短軸130を有する。超伝導ループ108の向き132を、長軸128の方向として定義してもよい。超伝導集積回路は、1つ又は複数の超伝導構成要素回路を含む集積回路である。
幾つかの実装形態において、超伝導ループは、多層超伝導集積回路の層で形成されたトレースである。幾つかの実装形態において、超伝導ループ108及び112の片方又は両方は、超伝導金属(例えば、ニオブ及び/又はアルミニウム)を含む。幾つかの実装形態において、超伝導ループ108及び112の各々は、多層超伝導集積回路の各層で形成されたトレースであり、各々の各層は、各絶縁層によって他方から分離されている。幾つかの実装形態において、各絶縁層は、二酸化ケイ素及び/又は窒化ケイ素を含む。
超伝導デバイス102及び104は、1つを超えるジョセフソン接合部を含んでもよい。幾つかの実装形態において、ジョセフソン接合部110及び114の片方又は両方は、複合ジョセフソン接合部である。幾つかの実装形態において、ジョセフソン接合部110及び114の片方又は両方は、複合-複合ジョセフソン接合部である。複合ジョセフソン接合部は、互いに電気的に平行な1対のジョセフソン接合部を含むジョセフソン接合部である。複合-複合ジョセフソン接合部は、少なくとも1つの構成ジョセフソン接合部が複合ジョセフソン接合部である複合ジョセフソン接合部である。
結合デバイス106は、それぞれ超伝導デバイス102及び104の超伝導ループ108及び112の間の相互インダクタンスによって超伝導デバイス102及び104を互いに連通可能に結合するように動作可能である。結合デバイス106は、超伝導ループ116を含む。図1のレイアウト100などの幾つかの実装形態において、超伝導ループ116を、ジョセフソン接合部118によって遮断する。ジョセフソン接合部118は、複合ジョセフソン接合部又は複合-複合ジョセフソン接合部であってもよい。幾つかの実装形態において、結合デバイス106は、1つを超えるジョセフソン接合部を含む。
図1において、超伝導デバイス102及び104の交差形状をより明確に説明するために、超伝導デバイス102を実線で描く一方、超伝導デバイス104を点線で描く。例示的なレイアウト100において、超伝導デバイス102は、超伝導デバイス104と実質的に垂直に交差する。超伝導デバイス102及び104が交差する領域は、本出願で、交差領域120と呼ばれる。本出願は、超伝導デバイス102の一部が超伝導デバイス104の一部の上に横たわって結合を与える交差領域120のレイアウトを説明する。例えば、図1の配置用に適している図6B、図7B、図8B、及び図8Cに示す交差領域のレイアウトを参照せよ。迂回経路を有する交差領域120の他のレイアウトを同様に使用してもよい。例えば、製造中に交差領域120における超伝導ループ108及び112の選択的調整によって、幾つかの実装形態において、超伝導回路に対する空間の不利益を受けることなく、超伝導デバイス102及び104の直接連通可能結合の大きさを制御することができる。
本出願で、1つの超伝導デバイスの一部(例えば、トレース又はループ)が、他方の超伝導デバイスの一部と90°±10°の角度で交差する場合、1つの超伝導デバイスは、別の超伝導デバイスと実質的に垂直に交差すると見なされる。
幾つかの実装形態において、超伝導デバイスは、超伝導ループを含む。超伝導デバイスの向きを、超伝導ループの向きによって定義してもよい。幾つかの実装形態において、超伝導ループは、長手方向に長軸を有し、長軸に垂直な短軸を有する細長い形状を有する。この場合、超伝導ループの向きを、長軸の向きによって定義することができる。1つの超伝導ループの長軸が、他方の超伝導ループの長軸と90°±10°の角度で交差する場合、1つの超伝導ループは、別の超伝導ループと実質的に垂直に交差すると見なされることができる。図1に示す実装形態について説明する。超伝導ループ108及び112の長軸(本出願で、長手方向軸とも呼ばれる)が90°±10°の角度で交差する時に、超伝導デバイス102は、超伝導デバイス104と実質的に垂直である。
超伝導ループ112における励磁電流122は、結合デバイス106に電流124を誘導することができ、次に、超伝導ループ108に電流126を誘導することができ、これによって、超伝導デバイス102及び104の間に媒介誘導連通可能結合を与える。
幾つかの実装形態において、結合デバイス106にバイアスをかけることによって、直接結合を無効にすることができる。幾つかの実装形態において、デジタル/アナログ変換器(DAC)を使用し、バイアスをかけ、直接結合を無効にし、及び/又は、組み合わせ直接及び媒介結合の強度を調節する。
幾つかの実装形態において、超伝導デバイス102及び104は、1対の超伝導量子ビットである。他の実装形態において、超伝導デバイス102は、超伝導量子ビットであり、超伝導デバイス104は、超伝導デバイス102を結合デバイス106によって連通可能に結合する別のタイプの超伝導デバイスである。例えば、超伝導デバイス104は、量子磁束パラメトロン(QFP)、乗算器、DAC、及び同調ジョセフソンインダクタンス(本出願で、略してインダクタンス同調器又はL同調器とも呼ばれる)のうち1つであってもよい。更に他の実装形態において、超伝導デバイス102及び104は、1対の連通可能結合超伝導デバイスの適切な組み合わせ(例えば、超伝導量子ビット、QFP、乗算器、及び/又はL同調器)を形成する。
超伝導デバイス102及び104の間の相互インダクタンスを、下記のように表すことができる。
AFM=M102104χ106
但し、M102は、超伝導デバイス102と結合デバイス106との間の相互インダクタンスであり、M104は、超伝導デバイス104と結合デバイス106との間の相互インダクタンスであり、χ106は、結合デバイス106の磁化率である。例示的なレイアウト100において、超伝導デバイス102の超伝導ループ108は、超伝導デバイス104の超伝導ループ112と実質的に垂直に走るので、超伝導ループ108及び112の間の相互インダクタンスによって超伝導デバイス102及び104の間に誘導される直接結合が、殆どない又はない。
直接結合を、超伝導デバイスの形状を互いに対して配置することによって1対の連通可能結合超伝導デバイスの間に誘導してもよい。例えば、超伝導デバイスのうち1つの超伝導デバイスの超伝導ループの少なくとも一部を、他方の超伝導デバイスの超伝導ループの少なくとも一部に対して非直交角度であるように配置することによって、直接結合を誘導してもよい。
互いに対して非直交角度での超伝導ループの少なくとも一部の交差は、超伝導ループの間にクロストークを引き起こすことがある。クロストークは、2つの連通可能結合超伝導ループの相互インダクタンスを増加することがある。2つの超伝導デバイスが量子プロセッサの要素である場合、クロストークは、量子プロセッサのエネルギー尺度を増加することになることがある。幾つかの状況において、クロストークは、望ましくないことがあるけれども、有利なことに、量子プロセッサの性能を有益に向上させることができる量子プロセッサのエネルギー尺度を制御可能に増加するために、1対の超伝導デバイスの間に誘導されるクロストークを使用してもよい。量子プロセッサの性能の向上は、量子プロセッサによって実現される解決策の質の向上、及び/又は解決策に達する時間の短縮を含んでもよい。
図2は、例示的なハイブリッド媒介及び直接結合レイアウト200の略図である。例示的なレイアウト200は、結合デバイス206によって互いに連通可能に結合される1対の超伝導デバイス202及び204を含む。超伝導デバイス202及び204の交差形状をより明確に説明するために、超伝導デバイス202を実線で描く一方、超伝導デバイス204を点線で描く。例示的なレイアウト200において、超伝導デバイス202は、超伝導デバイス204と実質的に垂直に交差する。
超伝導デバイス202は、ジョセフソン接合部210によって遮断される超伝導ループ208を含む。超伝導デバイス204は、ジョセフソン接合部214によって遮断される超伝導ループ212を含む。幾つかの実装形態において、超伝導ループ208及び212の片方又は両方は、超伝導金属(例えば、ニオブ及び/又はアルミニウム)を含む。
超伝導デバイス202及び204は、1つを超えるジョセフソン接合部を含んでもよい。幾つかの実装形態において、ジョセフソン接合部210及び214の片方又は両方は、複合ジョセフソン接合部である。幾つかの実装形態において、ジョセフソン接合部210及び214の片方又は両方は、複合-複合ジョセフソン接合部である。幾つかの実装形態において、超伝導デバイス202及び204は、超伝導量子ビット(例えば、超伝導磁束量子ビット)である。
結合デバイス206は、それぞれ超伝導ループ208及び212の間の相互インダクタンスによって超伝導デバイス202及び204を互いに連通可能に結合するように動作可能である。
図1の例示的なレイアウト100と違って、超伝導デバイス202の超伝導ループ208の一部を、成形領域216において超伝導デバイス204の超伝導ループ212の一部に対して非直交角度で配置する。このような配置は、超伝導デバイス202及び204の間の相互インダクタンスMQQ(本出願で、直接結合とも呼ばれる)を誘導することができる。直接結合は、直接誘導結合であってもよい。図2の例示的なレイアウト200において、超伝導デバイス202の超伝導ループ208の一部を、成形領域216において超伝導デバイス204の超伝導ループ212の一部と実質的に平行であるように配置する。
幾つかの実装形態において、超伝導デバイス202の超伝導ループ208の一部は、湾曲部、即ち、残りのループの向きを遮断する向きの短い急激な変化を有する。例えば、レイアウト200は、湾曲部218を含む。湾曲部218は、超伝導ループ208の一部が、超伝導デバイス204の超伝導ループ212の一部と実質的に平行であるようにする。幾つかの実装形態において、超伝導デバイス202の超伝導ループ208は、Z字形である。他の実装形態において、超伝導デバイス202の超伝導ループ208は、L字形である。
超伝導ループ212における励磁電流220は、超伝導ループ208に電流222を誘導することができる。
超伝導ループ208及び212の近接及び相対的向きによって誘導される相互インダクタンスMQQに加えて、結合デバイス206(超伝導デバイス202及び204の間に連通可能結合を与える)は、上述のように相互インダクタンスMAFMを与えることができる。誘導相互インダクタンスは、例えば、反強磁性結合を与えることができる。超伝導デバイス202及び204の間の全相互インダクタンスは、相互インダクタンスMAFM及びMQQからの寄与を含むことができる。
成形領域216又は成形領域216の近傍で超伝導デバイス202及び204の間に誘導される直接結合の向きは、超伝導デバイス202及び204の超伝導ループ208及び212の各々に流れる電流の方向に少なくとも部分的に左右されることがある。直接結合の向きは、超伝導デバイス202及び204のトレースが重複する領域における超伝導デバイス202及び204のトレースの形状に左右されることがある。(例えば、成形領域216又は成形領域216の近傍における)超伝導デバイス202及び204の交差形状は、相互インダクタンスMQQが、強磁性、反強磁性、又はゼロに近いかどうかを少なくとも部分的に判定することができる。図2に示す例において、相互インダクタンスMQQは、反強磁性であり、相互インダクタンスMQQは、相互インダクタンスMAFMを増加し、これによって、超伝導デバイス202及び204の反強磁性(AFM)結合を増加する。即ち、相互インダクタンスMQQがAFMである場合、結合デバイス206によって与えられる媒介結合を増加することによって、相互インダクタンスMQQは、相互インダクタンスMAFMを増加することができ、これによって、全相互インダクタンスを増加する。
本出願は、超伝導デバイス202の一部が超伝導デバイス204の一部の上に横たわって結合を与える成形領域216に適合可能なレイアウトの説明を含む。例えば、図2の配置用に適している図6B、図7B、図8B、及び図8Cに示す交差領域のレイアウトを参照せよ。迂回経路を有する成形領域216の他のレイアウトを同様に使用してもよい。例えば、製造中に超伝導ループ208及び212の選択的調整によって、幾つかの実装形態において、有利なことに、超伝導回路に対する空間の不利益を受けることなく、超伝導デバイス202及び204の直接連通可能結合の大きさを制御することができる。
本システム及び方法は、より一般的に、連通可能結合超伝導デバイスに当てはまり、各超伝導デバイスは、超伝導材料のループを含む。本システム及び方法は、製造中に調節可能な超伝導デバイスの間の直接誘導結合を超伝導デバイスの間の同調誘導結合に与えてもよい。
図3は、別の例示的な媒介及び直接結合レイアウト300の略図である。例示的なレイアウト300は、結合デバイス306によって互いに連通可能に結合される1対の超伝導デバイス302及び304を含む。超伝導デバイス302及び304の交差形状をより明確に説明するために、超伝導デバイス302を実線で描く一方、超伝導デバイス304を点線で描く。
超伝導デバイス302は、ジョセフソン接合部310によって遮断される超伝導ループ308を含む。超伝導デバイス304は、ジョセフソン接合部314によって遮断される超伝導ループ312を含む。
超伝導ループの一部の180°の面外回転によって位相的に形成された超伝導ループは、本出願で、クロスオーバーを有する超伝導ループと呼ばれる。クロスオーバーの一方の側で超伝導ループを通る電流は、ループの周りで時計回り方向に流れ、クロスオーバーの他方の側で超伝導ループを通る電流は、ループの周りで反時計回り方向に流れる。互いにクロスオーバーする超伝導ループの2つのセグメントを、クロスオーバーで互いに直流的に絶縁する。超伝導ループは、1つを超えるクロスオーバーを含んでもよく、例えば、超伝導ループ308は、2つのクロスオーバー316及び318を含む。
交差領域320又は交差領域320の近傍における図3の超伝導デバイス302及び304の交差形状は、それぞれ超伝導デバイス302及び304の超伝導ループ308及び312の間に直接結合MQQを生成することができる。明確にするために、交差領域320を、成形領域として図3に示す。
交差領域320で超伝導ループ308の区域を含む平面に垂直なベクトルは、i)交差領域320の外側で超伝導ループ308の区域を含む平面に垂直なベクトル、及びii)超伝導デバイス304の超伝導ループ312の区域を含む平面に垂直なベクトルの両方に対して実質的に反対の向きを有する。別のベクトルに対する1つのベクトルの実質的に反対の向きは、2つのベクトルの間の180°±10°の向きを意味する。
超伝導デバイス302の超伝導ループ308の一部は、超伝導ループ308の一部が超伝導デバイス304の超伝導ループ312の一部と実質的に平行であるようにする湾曲部322を有する。超伝導ループ308及び312の一部が互いに平行に走る場合、超伝導ループ308及び312の一部は、互いの上に横たわる、及び/又は互いに隣接することができる。幾つかの実装形態において、超伝導ループ308及び312は、多層超伝導集積回路の別々の層でトレースを定義する。超伝導ループ308及び312のトレースは、互いの上に横たわる、及び/又は互いに隣接してもよく、例えば、電気絶縁層(例えば、誘電材料の層)によって分離されてもよい。超伝導ループ308及び312の一部の横たわり及び/又は隣接は、相互インダクタンスを生成することができ、相互インダクタンスは、超伝導デバイス302及び304の間に直接誘導連通可能結合を与えることができる。
超伝導ループ312における励磁電流324は、超伝導ループ308に電流326を誘導することができる。
超伝導ループ308におけるクロスオーバー316及び318の存在により、交差領域320で反時計回り方向に流れる電流は、(誘導によって)交差領域320の外側の超伝導ループ308の一部で時計回り方向に流れるようにすることができる。交差領域320の外側の超伝導ループ308の一部は、本出願で、超伝導デバイス302の本体とも呼ばれる。相互インダクタンスMQQは、相互インダクタンスMAFMを増加し、これによって、超伝導デバイス302及び304のAFM結合を増加することができる。
本出願は、超伝導デバイス302の一部が超伝導デバイス304の一部の上に横たわって結合を与える交差領域320に適合可能なレイアウトの説明を含む。例えば、図3の媒介及び直接結合レイアウト300用に適している図6B、図7B、図8B、及び図8Cに示す交差領域のレイアウトを参照せよ。迂回経路を有する交差領域320の他のレイアウトを同様に使用してもよい。例えば、製造中に超伝導ループ308及び312の選択的調整によって、幾つかの実装形態において、有利なことに、超伝導回路に対する空間の不利益を受けることなく、超伝導デバイス302及び304の直接連通可能結合の大きさを制御することができる。
図4は、別の例示的なレイアウト400の略図である。レイアウト400は、結合デバイス406によって互いに連通可能に結合される1対の超伝導デバイス402及び404を含む。超伝導デバイス402及び404の交差形状をより明確に説明するために、超伝導デバイス402を実線で描く一方、超伝導デバイス404を点線で描く。
超伝導デバイス402は、ジョセフソン接合部410によって遮断される超伝導ループ408を含む。超伝導デバイス404は、ジョセフソン接合部414によって遮断される超伝導ループ412を含む。超伝導ループ408は、クロスオーバー416及び418を含む。
交差領域420又は交差領域420の近傍における図4の超伝導デバイス402及び404の交差形状は、それぞれ超伝導デバイス402及び404の超伝導ループ408及び412の間に直接結合MQQを生成することができる。明確にするために、交差領域420を、成形領域として図4に示す。
交差領域420で超伝導ループ408の区域を含む平面に垂直なベクトルは、i)交差領域420の外側で超伝導ループ408の区域を含む平面に垂直なベクトル、及びii)超伝導デバイス404の超伝導ループ412の区域を含む平面に垂直なベクトルの両方に対して実質的に反対の向きを有する。
超伝導デバイス402の超伝導ループ408の2つの部分の各々は、超伝導ループ408の各湾曲部分422及び424が超伝導デバイス404の超伝導ループ412の一部と実質的に平行であるようにする各湾曲部を有する。超伝導ループ408及び412の一部が互いに平行に走る場合、超伝導ループ408及び412の一部は、互いの上に横たわる、及び/又は互いに隣接することができる。幾つかの実装形態において、超伝導ループ408及び412は、多層超伝導集積回路の別々の層でトレースを定義する。超伝導ループ408及び412のトレースは、互いの上に横たわる、及び/又は互いに隣接してもよく、例えば、電気絶縁層(例えば、誘電材料の層)によって分離されてもよい。超伝導ループ408及び412の一部の横たわり及び/又は隣接は、相互インダクタンスを生成することができ、相互インダクタンスは、超伝導デバイス402及び404の間に直接誘導連通可能結合を与えることができる。
超伝導ループ412における励磁電流426は、超伝導ループ408に電流428を誘導することができる。
超伝導ループ408におけるクロスオーバー416及び418の存在により、交差領域420で反時計回り方向に流れる電流は、交差領域420の外側の超伝導ループ408の一部(本出願で、超伝導デバイス402の本体とも呼ばれる)で時計回り方向に流れるようにする。相互インダクタンスMQQは、相互インダクタンスMAFMを増加し、これによって、超伝導デバイス402及び404のAFM結合を増加することができる。
それぞれ図3及び図4のレイアウト300及び400の場合、超伝導ループ又はトレースが互いの上に横たわる及び/又は互いに隣接する長さを増加することによって、相互インダクタンスを増加してもよい。媒介結合(例えば、図3の結合デバイス306による)と組み合わせた2つの連通可能結合超伝導デバイス(例えば、図3の超伝導デバイス302及び304)の本体の間に生成される直接結合は、強磁性、反強磁性、又は実質的にゼロに等しい超伝導デバイスの間の連通可能結合になることがある。例えば、媒介結合及び直接結合が互いに打ち消し合う場合、ゼロ結合が生じることがある。
本出願は、超伝導デバイス402の一部が超伝導デバイス404の一部の上に横たわって結合を与える交差領域420に適合可能なレイアウトの説明を含む。例えば、図4のレイアウト400用に適している図6B、図7B、図8B、及び図8Cに示す交差領域のレイアウトを参照せよ。迂回経路を有する交差領域420の他のレイアウトを同様に使用してもよい。例えば、製造中に超伝導ループ408及び412の選択的調整によって、幾つかの実装形態において、有利なことに、超伝導回路に対する空間の不利益を受けることなく、超伝導デバイス402及び404の直接連通可能結合の大きさを制御することができる。
図5は、別の例示的なレイアウト500の略図である。レイアウト500は、結合デバイス506によって互いに連通可能に結合される1対の超伝導デバイス502及び504を含む。超伝導デバイス502及び504の交差形状をより明確に説明するために、超伝導デバイス502を実線で描く一方、超伝導デバイス504を点線で描く。
超伝導デバイス502は、ジョセフソン接合部510によって遮断される超伝導ループ508を含む。超伝導デバイス504は、ジョセフソン接合部514によって遮断される超伝導ループ512を含む。
交差領域516又は交差領域516の近傍における図5の超伝導デバイス502及び504の交差形状は、それぞれ超伝導デバイス502及び504の超伝導ループ508及び512の間に直接結合MQQを生成することができる。明確にするために、交差領域516を、成形領域として図5に示す。
超伝導デバイス502の超伝導ループ508の2つの部分の各々は、超伝導ループ508の各湾曲部分518及び520が超伝導デバイス504の超伝導ループ512の一部と実質的に平行であるようにする各外向き湾曲部(外向きを、ループの中心から離れた湾曲部として定義する)を有する。超伝導ループ508及び512の一部が互いに平行に走る(又は、少なくとも非直交である)場合、超伝導ループ508及び512の一部は、互いの上に横たわる、及び/又は互いに隣接することができる。幾つかの実装形態において、超伝導ループ508及び512は、多層超伝導集積回路の別々の層でトレースを定義する。超伝導ループ508及び512のトレースは、互いの上に横たわる、及び/又は互いに隣接してもよく、例えば、電気絶縁層(例えば、誘電材料の層)によって分離されてもよい。超伝導ループ508及び512の一部の横たわり及び/又は隣接は、相互インダクタンスを生成することができ、相互インダクタンスは、超伝導デバイス502及び504の間に直接誘導連通可能結合を与えることができる。
超伝導ループ512における励磁電流522は、超伝導ループ508に電流524を誘導することができる。
超伝導ループ508におけるクロスオーバー(例えば、図4の超伝導ループ408におけるクロスオーバー416及び418など)が超伝導ループ508に無いと、電流が、交差領域516で反時計回り方向に流れ、交差領域516の外側の超伝導ループ508の一部(本出願で、超伝導デバイス502の本体とも呼ばれる)で反時計回り方向に流れるシナリオになることができる。相互インダクタンスMQQは、強磁性(FM)結合を引き起こすことができ、相互インダクタンスMAFMから引くことができ、これによって、超伝導デバイス502及び504のAFM結合(例えば、結合デバイス506によって媒介されるAFM結合)を減少することができる。
成形交差領域516で超伝導ループ508の区域を含む平面に垂直なベクトルは、i)超伝導デバイス502の残りの超伝導ループ508の区域に垂直なベクトル、及びii)超伝導デバイス504の超伝導ループ512の区域に垂直なベクトルの両方と実質的に同じ向きを有する。
幾つかの実装形態において、超伝導デバイス502及び504は、超伝導量子ビット(例えば、超伝導磁束量子ビット)である。
本出願は、超伝導デバイス502の一部が超伝導デバイス504の一部の上に横たわって結合を与える交差領域516に適合可能なレイアウトの説明を含む。例えば、図5のレイアウト500用に適している図6B、図7B、図8B、及び図8Cに示す交差領域のレイアウトを参照せよ。迂回経路を有する交差領域516の他のレイアウトを同様に使用してもよい。例えば、製造中に超伝導ループ508及び512の選択的調整によって、幾つかの実装形態において、有利なことに、超伝導回路に対する空間の不利益を受けることなく、超伝導デバイス502及び504の直接連通可能結合の大きさを制御することができる。
図6Aは、本システム及び方法による、各超伝導デバイスの各ループが交差領域に内向き湾曲部を有する、互いに連通可能に結合される1対の超伝導デバイス602及び604の例示的なレイアウト600の略図である。
レイアウト600は、1対の超伝導デバイス602及び604を含む。超伝導デバイス602は、ジョセフソン接合部608によって遮断される超伝導ループ606を含む。超伝導デバイス604は、ジョセフソン接合部612によって遮断される超伝導ループ610を含む。超伝導ループ606及び/又は超伝導ループ610は、各ジョセフソン接合部によって遮断されてもよく又は遮断されなくてもよい。超伝導デバイス602及び/又は604は、図6Aに示さない他の要素を含んでもよい。超伝導デバイス602及び/又は604は、超伝導量子ビット(例えば、超伝導磁束量子ビット)であってもよい。
図6Aを参照して説明された結合は、直接誘導結合であるけれども(即ち、介在結合デバイスを有しない)、代わりに、更に、又は任意選択的に、超伝導デバイス602及び604を、少なくとも1つの介在結合デバイスを介して流電結合及び/又は媒介結合によって結合してもよい。同じことが、それぞれ図7A及び図7B、図8A、図8B及び図8C、図10、及び図11のデバイス702及び704、802及び804、902及び904、及び1002及び1004にも当てはまる。
超伝導デバイス602及び604の各々は、それぞれ内向き湾曲部614及び616(本出願で、各内向き湾曲部を、各ループの中心に向かう湾曲部として定義する)を有する。内向き湾曲部614及び616を、超伝導デバイス602及び604が互いに交差する場所又はこの場所の近くで交差領域618に設置する。内向き湾曲部614及び616は、超伝導デバイス602の超伝導ループ606の一部が、レイアウト600の領域620、622、624、及び626において超伝導デバイス604の超伝導ループ610の一部と実質的に平行(又は、少なくとも非直交)であるようにする。
超伝導ループ606及び610の一部が互いに平行に走る(又は、少なくとも非直交である)場合、超伝導ループ606及び610の一部は、互いの上に横たわる、及び/又は互いに隣接することができる。幾つかの実装形態において、超伝導ループ606及び610は、多層超伝導集積回路の別々の層でトレースを定義する。超伝導ループ606及び610のトレースは、互いの上に横たわる、及び/又は互いに隣接してもよく、例えば、電気絶縁層(例えば、誘電材料の層)によって分離されてもよい。超伝導ループ606及び610の一部の横たわり及び/又は隣接は、相互インダクタンスを生成することができ、相互インダクタンスは、超伝導デバイス602及び604の間に直接誘導連通可能結合を与えることができる。本出願で、超伝導ループの一部の上に横たわり、相互インダクタンス及び直接誘導連通可能結合を生成することを説明する場合、実装形態は、超伝導ループの一部の上に横たわること、及び/又は、超伝導ループの一部を配置し、互いに隣接し、相互インダクタンス及び直接誘導連通可能結合を生成することを含むことができることが、当業者は分かる。
超伝導ループ610で方向628に流れる励磁電流は、超伝導ループ606で方向630に流れる電流を誘導することができる。
図6Bは、本システム及び方法による、図6Aのレイアウト600の交差領域618の実装形態の例の略図である。交差領域618は、図6Aの超伝導デバイス602及び604の超伝導ループ606及び610が互いに交差する領域を含む。
超伝導ループ606及び610は、重複し(例えば、多層超伝導集積回路で互いの上に横たわる)、各領域632、634、636及び638で互いに平行に走る(又は、少なくとも非直交である)。
図6Bは、平面図でレイアウト600のレイアウトの例を示す。幾つかの実装形態において、超伝導ループ606及び610に対して異なる層を用いて、レイアウト600を、多層超伝導集積回路で製造する。幾つかの実装形態において、層を、超伝導金属を用いて製造し、絶縁層(例えば、誘電材料の層)によって分離する。幾つかの実装形態において、超伝導ループ606及び610は、ニオブを含む。幾つかの実装形態において、超伝導ループ606及び610は、アルミニウム及び/又は別の適切な超伝導材料を含む。幾つかの実装形態において、絶縁層は、二酸化ケイ素を含む。
超伝導ループ606及び610は、超伝導線のループであってもよい。超伝導線は、領域632、634、636及び638で互いの上に横たわってもよく、超伝導デバイス602及び604の直接連通可能結合を与えてもよい。レイアウト600の製造は、超伝導線を調整して所望の湾曲及び重複(即ち、線が互いの上に横たわる程度)を達成する方法を含むことができる。例えば、図6Bにおいて、超伝導ループ606の左側の脚の領域640、642及び644は、図6Aの内向き湾曲部616を生成するように調整されている。
超伝導集積回路における超伝導ループ(例えば、レイアウト600の多層超伝導集積回路の超伝導ループ606)は、超伝導材料の1つ又は複数のトレースを含むことができる。各トレース(本出願で、超伝導トレースとも呼ばれる)は、各厚さ及び各幅を有する。超伝導トレースの長さは、電流が流れることができる経路の長さである。幅を、長さに沿った任意の所与の点における超伝導トレースの対向外側エッジの間の垂直距離として定義する。幅は、多層集積回路の層の平面で測定される距離である。厚さを、超伝導トレースの長さ及び幅に垂直であるとして定義する。厚さは、積み重ね方向(即ち、層の平面に直交)に測定される距離である。
本出願で、領域の外側よりも領域内の狭い超伝導ループの一部への説明は、領域の外側よりも領域内の小さい幅を有する超伝導ループの一部のトレースを意味する。より狭いトレースは、同じ長さのより広いトレースよりも集積回路上の小さい表面積を占める。
幾つかの実装形態(例えば、図6Bに例示の実装形態)において、各超伝導ループ606及び610の少なくとも一部は、交差領域618の外側よりも交差領域618の内側で狭い。即ち、交差領域618の内側の各超伝導ループ606及び610の各幅は、交差領域618の外側の各超伝導ループ606及び610の各幅よりも狭い。
レイアウト600の製造は、交差領域618の内側で超伝導ループ606及び610の超伝導トレース用の迂回経路を生成することを含むことができる。迂回経路は、最も直接的な道(例えば、最も短い線)よりも長いルートをとる2つの点の間の経路である。迂回経路は、1つ又は複数の方向転換又は変更を含んでもよい。例えば、2つの点の間の迂回経路は、順々に直角左折、直角右折、別の直角右折、及び別の直角左折によって妨げられる2つの点の間の直線経路を含んでもよく、各転換の後に、適切な長さの直線経路が続く。図6Bにおいて、例えば、交差領域618を通る超伝導ループ606の超伝導トレースの経路は、電流630の方向に進む4つの方向変更を行い、経路は、直角右折、直角左折、別の直角左折、及び別の直角右折を行う。
交差領域618における超伝導ループ606の超伝導トレースの迂回経路は、交差領域618における超伝導ループ610の超伝導トレースの迂回経路と一致してもよい。
例えば、製造中に超伝導ループ606及び610の選択的調整によって、超伝導デバイス602及び604の直接連通可能結合の大きさを制御することができる。例えば、超伝導回路に対する空間の不利益を受けることなく、選択的調整によって交差領域618における超伝導ループ606及び610の超伝導線の幅を調節することを達成することができる。製造中の超伝導線の選択的調整は、単に離散値ではなく、連続範囲にわたって、超伝導デバイス602及び604の直接連通可能結合の大きさの調節可能同調を行うことができる。1つの実装形態において、2つの超伝導デバイスの間の直接連通可能結合の大きさは、超伝導トレースを選択的に調整し、適切な迂回経路をたどるように超伝導トレースを構成することによって、0から媒介結合の大きさの2倍の範囲にわたって調節可能である。超伝導トレースの調整により、トレースの幅が減少する。1つの実装形態において、超伝導トレースを、2μmの幅から0.5μmの幅に選択的に調整する。
媒介結合を、図6A及び図6Bに示さない。媒介結合を、結合デバイス(例えば、図5の結合デバイス506)によって図6A及び図6Bのレイアウト600と組み合わせて実施することができる。
幾つかの実装形態において、超伝導デバイス602及び604の直接連通可能結合の大きさを制御することは、超伝導デバイス602及び604の間の連通可能結合の目標の大きさを判定することと、媒介連通可能結合の大きさと目標の大きさとの間の差を判定することと、媒介結合の大きさと目標の大きさとの間の差に少なくとも部分的に基づいて調整許容範囲を判定することと、交差領域618で超伝導ループ606及び610の超伝導トレースの幅を調整することとを含む。
上述のように、レイアウト600の製造は、超伝導トレースを調整して所望の湾曲及び重複(即ち、線が互いの上に横たわる程度)を達成する方法を含むことができる。例えば、図6Bにおいて、超伝導ループ606の領域642は、調整許容範囲646だけ調整されている。
図7Aは、本システム及び方法による、各超伝導デバイスの各ループが交差領域に外向き湾曲部を有する、互いに連通可能に結合される1対の超伝導デバイス702及び704の別の例示的なレイアウト700の略図である。
レイアウト700は、1対の超伝導デバイス702及び704を含む。超伝導デバイス702は、ジョセフソン接合部708によって遮断される超伝導ループ706を含む。超伝導デバイス704は、ジョセフソン接合部712によって遮断される超伝導ループ710を含む。
超伝導デバイス702及び704の各々は、それぞれ外向き湾曲部714及び716(本出願で、各外向き湾曲部を、各超伝導ループの中心から離れた湾曲部として定義する)を有する。外向き湾曲部714及び716を、超伝導デバイス702及び704が互いに交差する場所又はこの場所の近くで交差領域718に設置する。外向き湾曲部714及び716は、超伝導デバイス702の超伝導ループ706の一部が、レイアウト700の領域720、722、724、及び726において超伝導デバイス704の超伝導ループ710の一部と実質的に平行(又は、少なくとも非直交)であるようにする。
超伝導ループ706及び710の一部が互いに平行に走る(又は、少なくとも非直交である)場合、超伝導ループ706及び710の一部は、互いの上に横たわる、及び/又は互いに隣接することができる。幾つかの実装形態において、超伝導ループ706及び710は、多層超伝導集積回路の別々の層でトレースを定義する。超伝導ループ706及び710のトレースは、互いの上に横たわる、及び/又は互いに隣接してもよく、例えば、電気絶縁層(例えば、誘電材料の層)によって分離されてもよい。超伝導ループ706及び710の一部の横たわり及び/又は隣接は、相互インダクタンスを生成することができ、相互インダクタンスは、超伝導デバイス702及び704の間に直接誘導連通可能結合を与えることができる。
超伝導ループ710で方向728に流れる励磁電流は、超伝導ループ706で方向730に流れる電流を誘導することができる。
図7Bは、本システム及び方法による、図7Aのレイアウト700の交差領域718の実装形態の例の略図である。交差領域718は、図7Aの超伝導デバイス702及び704の超伝導ループ706及び710が互いに交差する領域を含む。
超伝導ループ706及び710は、重複し(例えば、多層超伝導集積回路で互いの上に横たわる)、各領域732、734、736及び738で互いに平行に走る(又は、少なくとも非直交である)。
図7Bは、平面図でレイアウト700のレイアウトの例を示す。幾つかの実装形態において、超伝導ループ706及び710に対して異なる層を用いて、レイアウト700を、多層超伝導集積回路で製造する。幾つかの実装形態において、層を、超伝導金属を用いて製造し、絶縁層(例えば、誘電材料の層)によって分離する。幾つかの実装形態において、超伝導ループ706及び710は、ニオブを含む。幾つかの実装形態において、超伝導ループ706及び710は、アルミニウム及び/又は別の適切な超伝導材料を含む。幾つかの実装形態において、絶縁層は、二酸化ケイ素を含む。
超伝導ループ706及び710は、超伝導線のループであってもよい。超伝導線は、領域732、734、736及び738で互いの上に横たわってもよく、超伝導デバイス702及び704の直接連通可能結合を与えてもよい。レイアウト700の製造は、超伝導線を調整して所望の湾曲及び重複(即ち、線が互いの上に横たわる程度)を達成する方法を含むことができる。例えば、図7Bにおいて、超伝導ループ706の右側の脚の領域740、742及び744は、図7Aの外向き湾曲部716を生成するように調整されている。
レイアウト700の製造は、交差領域718の内側で超伝導ループ706及び710の超伝導トレース用の迂回経路を生成することを含むことができる。
例えば、製造中に超伝導ループ706及び710の選択的調整によって、超伝導デバイス702及び704の直接連通可能結合の大きさを制御することができる。例えば、超伝導回路に対する空間の不利益を受けることなく、選択的調整によって交差領域718における超伝導ループ706及び710の超伝導線の幅を調節することを達成することができる。超伝導線の選択的調整は、単に離散値ではなく、連続範囲にわたって、超伝導デバイス702及び704の直接連通可能結合の大きさの調節可能同調を行うことができる。1つの実装形態において、2つの超伝導デバイスの間の直接連通可能結合の大きさは、超伝導トレースを選択的に調整し、適切な迂回経路をたどるように超伝導トレースを構成することによって、0から媒介結合の大きさの2倍の範囲にわたって調節可能である。1つの実装形態において、超伝導トレースを、2μmの幅から0.5μmの幅に選択的に調整する。
超伝導トレースの選択的調整を、適切な調整幅エッチング工程によって達成してもよい。調整幅エッチング工程は、例えば、超伝導材料の層の上に第1の硬質マスク層を付着させることと、第1の硬質マスク層の上に第2の硬質マスク層を付着させることと、第2の硬質マスク層の上にフォトレジスト層を付着させることと、フォトレジスト層にパターンを形成することと、パターンを第2の硬質マスク層に転写することと、第2の硬質マスク層の上のフォトレジスト層で第2の硬質マスク層を調整することとを含んでもよい。調整幅エッチング中に、フォトレジストによって、第2の硬質マスク層の上面を保護し、上に横たわる第1の硬質マスク層によって、基板を保護する。
所望の幅を有する超伝導トレースの製造を、超伝導材料の付着によって達成してもよい。
媒介結合を、図7A及び図7Bに示さない。媒介結合を、結合デバイス(例えば、図5の結合デバイス506)によって図7A及び図7Bのレイアウト700と組み合わせて実施することができる。
図8Aは、本システム及び方法による、各超伝導デバイスの各ループが交差領域に多数の湾曲部を有する、互いに連通可能に結合される1対の超伝導デバイス802及び804の別の例示的なレイアウト800の略図である。
レイアウト800は、1対の超伝導デバイス802及び804を含む。超伝導デバイス802は、ジョセフソン接合部808によって遮断される超伝導ループ806を含む。超伝導デバイス804は、ジョセフソン接合部812によって遮断される超伝導ループ810を含む。超伝導デバイス802及び804は、交差領域814(図8Aに斜線で示す)で互いに交差する。
超伝導ループ810で方向816に流れる励磁電流は、超伝導ループ806に電流(図8Aに示さない)を誘導することができる。
図8Bは、本システム及び方法による、図8Aのレイアウト800の交差領域814の実装形態の例の略図である。交差領域814は、図8Aの超伝導デバイス802及び804の超伝導ループ806及び810が互いに交差する領域を含む。
超伝導ループ806及び810は、重複し(例えば、多層超伝導集積回路で互いの上に横たわる)、各領域820、822、824及び826で互いに平行に走る(又は、少なくとも非直交である)。
図8Bは、平面図でレイアウト800のレイアウトの例を示す。幾つかの実装形態において、超伝導ループ806及び810に対して異なる層を用いて、レイアウト800を、多層超伝導集積回路で製造する。幾つかの実装形態において、層を、超伝導金属を用いて製造し、誘電材料の絶縁層によって分離する。幾つかの実装形態において、超伝導ループ806及び810は、ニオブを含む。幾つかの実装形態において、超伝導ループ806及び810は、アルミニウム及び/又は別の適切な超伝導材料を含む。幾つかの実装形態において、絶縁層は、二酸化ケイ素を含む。
超伝導ループ806及び810は、超伝導線のループであってもよい。超伝導線は、領域820、822、824及び826で互いの上に横たわってもよく、超伝導デバイス802及び804の直接連通可能結合を与えてもよい。レイアウト800の製造は、超伝導線を調整して所望の湾曲及び重複(即ち、線が互いの上に横たわる程度)を達成する方法を含むことができる。例えば、図8Bにおいて、超伝導ループ806の右側の脚の領域828、830、832、834、836及び838は、交差領域814を通る迂回経路を生成するように調整されている。
レイアウト800の製造は、交差領域814の内側で超伝導ループ806及び810の超伝導トレース用の迂回経路を生成することを含むことができる。
例えば、製造中に超伝導ループ806及び810の選択的調整によって、超伝導デバイス802及び804の直接連通可能結合の大きさを制御することができる。例えば、超伝導回路に対する空間の不利益を受けることなく、選択的調整によって交差領域814における超伝導ループ806及び810の超伝導線の幅を調節することを達成することができる。超伝導線の選択的調整は、単に離散値ではなく、連続範囲にわたって、超伝導デバイス802及び804の直接連通可能結合の大きさの調節可能同調(製造中)を行うことができる。前の手法で直接結合の大きさを変更するために、一般的に、集積回路のレイアウト、及び/又は集積回路が占める面積を変更する必要がある。これらの変更は典型的に、直接結合の大きさを離散値に制約することになる。
1つの実装形態において、2つの超伝導デバイスの間の直接連通可能結合の大きさは、超伝導トレースを選択的に調整し、適切な迂回経路をたどるように超伝導トレースを構成することによって、0から媒介結合の大きさの2倍の範囲にわたって調節可能である。1つの実装形態において、超伝導トレースを、2μmの幅から0.5μmの幅に選択的に調整する。
図8Cは、本システム及び方法による、図8Aのレイアウト800の交差領域814の実装形態の別の例の略図である。交差領域814は、図8Aの超伝導デバイス802及び804の超伝導ループ806及び810が互いに交差する領域を含む。誘導電流840は、超伝導ループ806で矢印に示す方向に流れ、励磁電流816は、超伝導ループ810で矢印に示す方向に流れる。
超伝導ループ806及び810は、重複し(例えば、多層超伝導集積回路で互いの上に横たわる)、各領域842、844、846及び848で互いに平行に走る(又は、少なくとも非直交である)。
図8Cは、平面図でレイアウト800のレイアウトの例を示す。幾つかの実装形態において、超伝導ループ806及び810に対して異なる層を用いて、レイアウト800を、多層超伝導集積回路で製造する。幾つかの実装形態において、層を、超伝導金属を用いて製造し、介在層によって分離する。幾つかの実装形態において、介在層は、誘電材料の絶縁層を含む。幾つかの実装形態において、超伝導ループ806及び810は、ニオブを含む。幾つかの実装形態において、超伝導ループ806及び810は、アルミニウム及び/又は別の適切な超伝導材料を含む。幾つかの実装形態において、絶縁層は、二酸化ケイ素及び/又は窒化ケイ素を含む。幾つかの実装形態において、集積回路エアブリッジは、超伝導ループ806及び810を絶縁する。犠牲材料の上に付着及びパターン化された金属の層を用いて、典型的なエアブリッジを形成することができる。その後、犠牲材料を除去し、誘電体(例えば、二酸化ケイ素)ではなく、流体(例えば、空気)によって他の金属トレース又は特性から少なくとも部分的に絶縁された金属トレースを残すことができる。
超伝導ループ806及び810は、超伝導線のループであってもよい。超伝導線は、領域842、844、846及び848で互いの上に横たわってもよく、超伝導デバイス802及び804の直接連通可能結合を与えてもよい。レイアウト800の製造は、超伝導線を調整して所望の湾曲及び重複(即ち、線が互いの上に横たわる程度)を達成する方法を含むことができる。例えば、図8Bにおいて、超伝導ループ806の右側の脚の領域850、852及び854は、交差領域814を通る迂回経路を生成するように調整されている。
レイアウト800の製造は、交差領域814の内側で超伝導ループ806及び810の超伝導トレース用の迂回経路を生成することを含むことができる。
例えば、製造中に超伝導ループ806及び810の選択的調整によって、超伝導デバイス802及び804の直接連通可能結合の大きさを制御することができる。例えば、超伝導回路に対する空間の不利益を受けることなく、選択的調整によって交差領域814における超伝導ループ806及び810の超伝導線の幅を調節することを達成することができる。超伝導線の選択的調整は、単に離散値ではなく、連続範囲にわたって、超伝導デバイス802及び804の直接連通可能結合の大きさの調節可能同調を行うことができる。1つの実装形態において、2つの超伝導デバイスの間の直接連通可能結合の大きさは、超伝導トレースを選択的に調整し、適切な迂回経路をたどるように超伝導トレースを構成することによって、0から媒介結合の大きさの2倍の範囲にわたって調節可能である。1つの実装形態において、超伝導トレースを、2μmの幅から0.5μmの幅に選択的に調整する。
媒介結合を、図8A、図8B及び図8Cに示さない。媒介結合を、結合デバイス(例えば、図5の結合デバイス506)によって図8A、図8B及び図8Cのレイアウト800と組み合わせて実施することができる。
本出願のシステム及び方法の1つの利益は、製造誤差及び/又は整列不良に対するロバスト性の改善である。本出願のシステム及び方法の別の利益は、超伝導デバイス及び/又は超伝導集積回路上の他のデバイスによって使用されるスペースの量に影響を与えることなく、超伝導集積回路のレイアウト及び/又は製造中の超伝導デバイスの間の直接連通可能結合の同調性の改善である。
本出願のシステム及び方法の更に別の利益は、隣接デバイスに対するクロストークの低減である。本出願に記載の実装形態は、前の手法よりも小型、内蔵型、及び対称であり、その結果、隣接デバイスに対するクロストークが、殆どない又はない。
図6B、図7B、図8B、及び図8Cに示す交差領域のレイアウトは、第1の超伝導デバイスの一部が第2の超伝導デバイスの一部の上に横たわって結合を与える場合、上述の配置の何れかで用いるのに適しており、迂回経路を有する交差領域の他のレイアウトを同様に使用することができるものとする。
図9は、本開示による例示的な超伝導量子プロセッサのトポロジー900の略図である。例えば、量子アニーリング及び/又は断熱量子計算のために、トポロジー900を有する超伝導量子プロセッサを使用してもよい。
上述の図1、図2、図3、図4、図5、図6A、図6B、図7A、図7B、図8A、図8B及び図8C、及び後述の図10及び図11を参照して説明された結合レイアウトを、トポロジー900を有する超伝導量子プロセッサで使用してもよい。更に、結合レイアウトを、別の適切なトポロジーを有する超伝導量子プロセッサ、及び/又は他の超伝導集積回路で使用してもよい。
トポロジー900は、複数の量子ビット、例えば、量子ビット902a、902b、902c、及び902d(総称して量子ビット902と呼ばれる)を含む。量子ビット902を、点として図9のトポロジー900に示す。1つの実装形態において、量子ビット902の第1のサブセットの各量子ビットは、第1の方向に方向付けられたそれぞれの細長い超伝導ループを含み、第2のサブセットの各量子ビットは、第1の方向と少なくとも略直交する第2の方向に方向付けられたそれぞれの細長い超伝導ループを含む。
更に、トポロジー900は、複数の結合デバイス、例えば、結合デバイス904a、904b、及び904c(総称して結合デバイス904と呼ばれる)を含む。結合デバイス904を、線として図9のトポロジー900に示す。結合デバイス904は、量子ビット902の対の間に連通可能結合を与えることができる。
各量子ビット902は、長軸及び短軸を有するそれぞれの細長い超伝導ループを含む。量子ビットの向きを、長軸の方向として定義してもよい。
量子ビット902a及び902bを、互いに少なくとも略直交して方向付ける。即ち、それぞれの細長い超伝導ループの長軸を、互いに少なくとも略直交して方向付ける。結合デバイス904a(本出願で、内部結合デバイスとも呼ばれる)は、量子ビット902a及び902bの間に連通可能結合を与えることができる。図1、図2、図3、図4、図5、図6A、図6B、図7A、図7B、図8A、図8B及び図8Cは、互いに少なくとも略直交して方向付けられ、図9のアーキテクチャで内部結合デバイスと呼ばれる媒介結合デバイスによって結合可能な超伝導デバイス(例えば、量子ビット)の例を含む。
量子ビット902b及び902cを、互いに少なくとも略平行に方向付ける。即ち、各量子ビット902c及び902dのそれぞれの細長い超伝導ループの長軸を、互いに少なくとも略平行に方向付ける。量子ビット902c及び902dは、トポロジー900で量子ビットの同じ行又は列にある。結合デバイス904bは、量子ビット902b及び902cの間に連通可能結合を与えることができる。
量子ビット902a及び902dを、互いに少なくとも略平行に方向付ける。即ち、各量子ビット902a及び902dのそれぞれの細長い超伝導ループの長軸を、互いに少なくとも略平行に方向付ける。量子ビット902a及び902dは、トポロジー900で量子ビットの互いに隣接する行又は列にある。結合デバイス904cは、量子ビット902a及び902dの間に連通可能結合を与えることができる。
トポロジー900において、各量子ビットを、12個の直交方向付け量子ビットに連通可能に結合することができ、12個の直交方向付け量子ビットを含む合計15個の量子ビットに連通可能に結合することができる。トポロジー900における量子ビットの対の間の連通可能結合は、直接結合、及び/又は中間結合デバイスによる媒介結合を含むことができる。
図6A、図6B、図7A、図7B、図8A、図8B及び図8Cは、互いに直交して(少なくとも平行でない)走る超伝導デバイスの超伝導ループの少なくとも一部を有する超伝導デバイス(例えば、量子ビット)の対を説明する。超伝導ループは、各交差領域において投影で互いに交差する。交差領域で、超伝導ループの超伝導トレースの一部を、互いに平行に走る(又は、少なくとも非直交である)ように配置することができ、超伝導ループの対のうち1つに流れる電流が他方の超伝導ループに電流を誘導するように十分密に配置することができる(即ち、超伝導ループの超伝導トレースの一部を、互いに誘導的に近接するように配置することができる)。
他の実装形態において、超伝導デバイスの超伝導ループの長軸は、互いに平行に走る(又は、少なくとも非直交である)。これらの実装形態の一部において、ループを、少なくとも部分的に並列に配置し、これらの実装形態の残りにおいて、ループを、直列に配置する。超伝導ループの一部を、互いに誘導的に近接することができ、即ち、超伝導ループの対のうち1つに流れる電流が他方の超伝導ループに電流を誘導するように十分密に配置することができる。
図10Aは、本システム及び方法による、互いに直接連通可能に結合される1対の超伝導デバイス1002及び1004の別の例示的なレイアウト1000の略図である。
各超伝導デバイス1002及び1004は、各超伝導ループ1006及び1008を含む。超伝導ループ1002及び1004を、直列に配置する。各超伝導ループ1006及び1008を、各ジョセフソン接合部1010及び1012によって遮断してもよい。超伝導デバイス1002及び1004は、超伝導量子ビット(例えば、超伝導磁束量子ビット)であってもよい。超伝導ループ1006及び1008は、互いに同じ層又は平面に、又は互いに異なる層又は平面に存在することができる。互いに直接誘導結合されるのに加えて、超伝導デバイス1002及び1004を、媒介結合デバイス(例えば、図9の結合デバイス904b)によって連通可能に結合してもよい。明確にするために、媒介結合デバイスを図10Aに示さない。
レイアウト1000は、会合領域1014を含む。会合領域1014は、図10Aの超伝導デバイス1002及び1004の超伝導ループ1006及び1008の一部が互いに誘導的に近接する集積回路の領域である。本出願で、2つの超伝導デバイスを、互いに対して適切に方向付け、十分密に配置して、2つの超伝導デバイスのうち第1の超伝導デバイスを、電流が第1の超伝導デバイスの超伝導ループに流れる場合に2つの超伝導デバイスのうち第2の超伝導デバイスに直接誘導連通可能結合するようにする場合、2つの超伝導デバイスは、互いに誘導的に近接する。
超伝導デバイス1002及び1004を、会合領域1014で互いに直接誘導連通可能結合することができる。例えば、超伝導ループ1006に流れる励磁電流は、超伝導ループ1008に流れる電流を誘導することができる。
超伝導ループ1006及び1008の一部は、互いに平行に走り(又は、少なくとも非直交)、会合領域1014で互いに誘導的に近接する。
超伝導集積回路の同じ層で製造された超伝導ループ1006及び1008を用いて、図10のレイアウト1000を実施することができる。超伝導集積回路は、多層超伝導集積回路であってもよい。幾つかの実装形態において、層を、超伝導金属を用いて製造し、誘電材料の絶縁層によって分離する。超伝導ループ1006及び1008は、ニオブ、アルミニウム及び/又は別の適切な超伝導材料を含んでもよい。絶縁層は、二酸化ケイ素を含んでもよい。
超伝導ループ1006及び1008は、超伝導線のループであってもよい。超伝導線を、例えば、製造スタックにおける配線層で、1つ又は複数の超伝導トレースとして実装することができる。超伝導トレースを、相互接続線と呼ぶこともできる。超伝導トレースの幅を、相互接続線の線幅と呼ぶこともできる。
レイアウト1000の製造は、超伝導トレースを調整して、トレースの少なくとも一部が、互いに誘導的に近接し、即ち、互いに平行に走り、又は少なくとも非直交であり、一方のトレースにおける電流の流れが他方のトレースにおける電流の流れを直接誘導するのに十分密になるようにする方法を含んでもよい。会合領域1014は、会合領域1014を通る超伝導ループ1006及び1008の一部のための迂回経路を生成するように付着及び/又は調整されているトレースを含んでもよい。
例えば、製造中に超伝導ループ1006及び1008の選択的付着及び/又は調整によって、超伝導デバイス1002及び1004の直接連通可能結合の大きさを制御することができる。例えば、超伝導回路に対する空間の不利益を受けることなく、選択的調整によって会合領域1014における超伝導ループ1006及び1008の超伝導トレースの幅を調節することを達成することができる。超伝導トレースの選択的調整は、単に離散値ではなく、連続範囲にわたって、超伝導デバイス1002及び1004の直接連通可能結合の大きさの調節可能同調を行うことができる。1つの実装形態において、2つの超伝導デバイスの間の直接連通可能結合の大きさは、超伝導トレースを選択的に調整し、適切な迂回経路をたどるように超伝導トレースを構成することによって、0から媒介結合の大きさの2倍の範囲にわたって調節可能である。1つの実装形態において、超伝導トレースを、2μmの幅から0.5μmの幅に選択的に調整する。
図10Bは、本システム及び方法による、図10Aのレイアウト1000の会合領域1014の実装形態の例の略図である。会合領域1014は、各超伝導ループ1006及び1008の超伝導トレースが各迂回経路をたどる領域1016を含む。
図11は、本システム及び方法による、互いに直接連通可能に結合される1対の超伝導デバイス1102及び1104の別の例示的なレイアウト1100の略図である。
各超伝導デバイス1102及び1104は、各超伝導ループ1106及び1108を含む。超伝導ループ1102及び1104を、少なくとも部分的に並列に配置する。各超伝導ループ1106及び1108を、各ジョセフソン接合部1110及び1112によって遮断してもよい。超伝導デバイス1102及び1104は、超伝導量子ビット(例えば、超伝導磁束量子ビット)であってもよい。超伝導デバイス1102及び1104を、媒介結合デバイス(例えば、図9の結合デバイス904のうち1つ)によって連通可能に結合してもよい。
図11の超伝導デバイス1102及び1104の超伝導ループ1106及び1108の少なくとも一部は、会合領域1114で互いに誘導的に近接する。超伝導デバイス1102及び1104を、領域1110で互いに直接誘導連通可能結合することができる。例えば、超伝導ループ1106に流れる励磁電流は、誘導電流が超伝導ループ1108に流れるようにすることができる。
超伝導ループ1106及び1108の少なくとも一部は、領域1110で互いに平行に走り(又は、少なくとも非直交)、超伝導ループ1106の一部における電流の流れが超伝導ループ1108の一部における電流の流れを直接誘導するのに十分密である。
超伝導集積回路の同じ層で製造された超伝導ループ1106及び1108を用いて、図11のレイアウト1100を実施することができる。超伝導集積回路は、多層超伝導集積回路であってもよい。幾つかの実装形態において、層を、超伝導金属を用いて製造し、誘電材料の絶縁層によって分離する。超伝導ループ1106及び1108は、ニオブ、アルミニウム及び/又は別の適切な超伝導材料を含んでもよい。絶縁層は、二酸化ケイ素を含んでもよい。代わりに、多層超伝導集積回路の異なる層で製造された超伝導ループ1106及び1008を用いて、レイアウト1100を実施することができる。
超伝導ループ1106及び1108は、超伝導線のループであってもよい。超伝導線のループは、1つ又は複数の超伝導トレースを含むことができる。レイアウト1100の製造は、超伝導トレースを調整して、超伝導トレースの少なくとも一部が互いに誘導的に近接するようにする方法を含んでもよい。領域1110は、領域1110を通る超伝導ループ1106及び1108の一部のための迂回経路を生成するように付着及び/又は調整されているトレースを含んでもよい。
図10を参照して上述された方法と同様に、例えば、製造中に超伝導ループ1106及び1108の選択的調整及び/又は付着によって、超伝導デバイス1102及び1104の直接連通可能結合の大きさを制御することができる。例えば、超伝導回路に対する空間の不利益を受けることなく、選択的調整によって領域1110における超伝導ループ1106及び1108の超伝導線の幅を調節することを達成することができる。超伝導線の選択的調整は、単に離散値ではなく、連続範囲にわたって、超伝導デバイス1102及び1104の直接連通可能結合の大きさの調節可能同調を行うことができる。1つの実装形態において、2つの超伝導デバイスの間の直接連通可能結合の大きさは、超伝導線を選択的に調整し、適切な迂回経路をたどるように超伝導線を構成することによって、0から媒介結合の大きさの2倍の範囲にわたって調節可能である。1つの実装形態において、超伝導線を、2μmの幅から0.5μmの幅に選択的に調整する。
図11Bは、本システム及び方法による、図11Aのレイアウト1100の会合領域1114の実装形態の例の略図である。会合領域1114は、各超伝導ループ1106及び1108の超伝導トレースが各迂回経路をたどる領域1116を含む。
図12は、アナログコンピュータ1204に結合されたデジタルコンピュータ1202を含むハイブリッド計算システム1200の例を示す。幾つかの実装形態において、アナログコンピュータ1204は、量子コンピュータであり、デジタルコンピュータ1202は、古典的コンピュータである。
例示的なデジタルコンピュータ1202は、少なくとも1つのデジタルプロセッサ1206を含み、各デジタルプロセッサ1206は、1つ又は複数の中央処理装置(図12に示さない)を含んでもよい。1つだけのデジタルプロセッサ1206を図12に示す。デジタルプロセッサ1206を使用して、本システム及び方法に記載の古典的デジタル処理タスクを実行してもよい。他の実装形態において、デジタルコンピュータ1202は、1つを超えるデジタルプロセッサを含むことができる。専用機械を形成するように適切に構成又はプログラムされる場合、及び/又はアナログコンピュータ(例えば、量子コンピュータ)を制御するように連通可能に結合される場合、ハンドヘルドデバイス、マルチプロセッサシステム、マイクロプロセッサベース又はプログラマブル消費者エレクトロニクス、パーソナルコンピュータ(「PC」)、ネットワークPC、ミニコンピュータ、メインフレームコンピュータなどを含む他のデジタルコンピュータを用いて、本システム及び方法を実施することができることが当業者は分かる。
デジタルコンピュータ1202を、ここで、時には単数で説明するけれども、これは、アプリケーションを単一デジタルコンピュータに限定するように意図されていない。通信ネットワークを介してリンクされる遠隔処理デバイスによってタスク又は命令のセットを実施又は実行する分散計算環境で、本システム及び方法を実施することもできる。分散計算環境で、コンピュータ又はプロセッサ可読命令(本出願で、プログラムモジュールとも呼ばれる)、アプリケーションプログラム及び/又はデータを、ローカル及び遠隔メモリ記憶デバイス(例えば、持続性コンピュータ又はプロセッサ可読媒体)の両方に記憶してもよい。
デジタルコンピュータ1202は、少なくとも1つのデジタルプロセッサ1206、少なくとも1つのシステムメモリ1208、及び様々なシステム構成要素の間(例えば、システムメモリ1208とデジタルプロセッサ1206との間)に連通可能結合を与える少なくとも1つのシステムバス1210を含んでもよい。システムメモリ1208は、不揮発性メモリ(例えば、読み出し専用メモリ(「ROM」)、スタティックランダムアクセスメモリ(「SRAM」)、フラッシュNAND)、及び揮発性メモリ(例えば、ランダムアクセスメモリ(「RAM」))(図示せず)を含んでもよく、これらは全て、持続性コンピュータ又はプロセッサ可読媒体の例である。システムバス1210は、メモリ制御器を有するメモリバス、周辺バス、及びローカルバスを含む任意の既知のバス構造又はアーキテクチャを使用することができる。
デジタルプロセッサ1206は、例えば、1つ又は複数のコアを有する任意の論理処理ユニット(例えば、1つ又は複数の中央処理装置(「CPU」)、グラフィックス処理ユニット(「GPU」)、デジタル信号プロセッサ(「DSP」)、特定用途向け集積回路(「ASIC」)、プログラマブルゲートアレイ(「FPGA」)など)であってもよい。
他に説明がない限り、図12に示す様々なブロックの構成及び動作は、従来の設計である。その結果、このようなブロックを当業者は分かるので、ここで、このようなブロックをより詳細に説明する必要がない。
デジタルコンピュータ1202は、ユーザ入出力サブシステム1212を含んでもよい。幾つかの実装形態において、ユーザ入出力サブシステムは、1つ又は複数のユーザ入出力構成要素(例えば、ディスプレイ1214、マウス1216、及び/又はキーボード1218)を含む。
ROMの一部を形成することができる基本入出力システム(「BIOS」)1220は、例えば、起動中に、デジタルコンピュータ1202内の要素間の情報の転送を支援する基本ルーチンを含む。
更に、デジタルコンピュータ1202は、他の不揮発性メモリ1222を含んでもよい。不揮発性メモリ1222は、ハードディスクに読み書きするハードディスクドライブ、取り外し可能光ディスクに読み書きする光ディスクドライブ、及び/又は磁気ディスクに読み書きする磁気ディスクドライブを含む様々な形をとってもよく、これらは全て、持続性コンピュータ又はプロセッサ可読媒体の例である。光ディスクは、CD-ROM又はDVDであることができる一方、磁気ディスクは、磁気フロッピーディスク又はディスケットであることができる。不揮発性メモリ1222は、システムバス1210を介してデジタルプロセッサと通信してもよく、システムバス1210に結合された適切なインターフェース又は制御器1224を含んでもよい。不揮発性メモリ1222は、コンピュータ又はプロセッサ可読命令、データ構造、又はデジタルコンピュータ1202用の他のデータ(プログラムモジュールとも呼ばれる)のための長期記憶装置としての機能を果たしてもよい。
デジタルコンピュータ1202は、ハードディスク、光ディスク及び/又は磁気ディスクを使用するとして説明されているけれども、当業者は、他のタイプの不揮発性コンピュータ可読媒体(このような磁気カセット、フラッシュメモリカード、フラッシュ、ROM、スマートカードなど、これらは全て、持続性コンピュータ又はプロセッサ可読媒体の更なる例である)を使用することができることが分かる。当業者は、幾つかのコンピュータアーキテクチャが揮発性メモリ及び不揮発性メモリを合成することが分かる。例えば、揮発性メモリにおけるデータを、不揮発性メモリにキャッシュすることができる。又は、ソリッドステートディスクは、集積回路を使用して不揮発性メモリを提供する。幾つかのコンピュータは、メモリにおけるディスクに従来記憶されるデータを置く。同様に、揮発性と従来見なされる幾つかの媒体は、不揮発性の形態(例えば、デュアルインラインメモリモジュールの不揮発性デュアルインラインメモリモジュールの変型例)を有することができる。
コンピュータ又はプロセッサ可読命令(本出願で、プログラムモジュールとも呼ばれる)、アプリケーションプログラム及び/又はデータの様々なセットを、システムメモリ1208に記憶することができる。例えば、システムメモリ1208は、オペレーティングシステム1226、及びコンピュータ又はプロセッサ可読サーバー命令(即ち、サーバーモジュール)1228のセットを記憶してもよい。幾つかの実装形態において、サーバーモジュール1228は、遠隔クライアントと通信し、デジタルコンピュータ1202及びアナログコンピュータ1204上の資源を含む資源の使用をスケジュールする命令を含む。例えば、デジタルコンピュータ1202が、インターネット、企業イントラネット、又は他のネットワークを介して、ソース、及びサーバーコンピュータで実行する他のサーバーアプリケーションとデータを交換することができるウェブサーバーアプリケーション及び/又はウェブクライアント又はブラウザーアプリケーション。
幾つかの実装形態において、システムメモリ1208は、コンピュータ又はプロセッサ可読命令1230の他のセット(例えば、計算命令、アナログコンピュータインターフェース命令など)を記憶してもよい。
サーバー命令1228、他の命令1230、及び他のデータ(図12に示さない)を、システムメモリ1208に記憶するように図12に示しているけれども、不揮発性メモリ1222、又は1つ又は複数の他の持続性コンピュータ又はプロセッサ可読媒体を含む他の場所に記憶することもできる。
アナログコンピュータ1204を、分離環境(図12に示さない)に設けることができる。例えば、アナログコンピュータ1204が量子コンピュータである場合、分離環境は、熱、磁場など、及び他の外部雑音(図12に示さない)から量子コンピュータの内部構成要素を遮蔽し、及び/又は、アナログプロセッサ1204の回路が超伝導状態になる温度又はこの温度未満にアナログプロセッサを冷却する。対照的に、デジタルコンピュータ1202は典型的に、超伝導が生じない非常に高い温度(例えば、室温)で動作し、及び/又は、臨界温度又は臨界温度未満でも超伝導でない材料を使用することができる。アナログコンピュータ1204は、アナログプロセッサ1232を含む。アナログプロセッサ1232の例は、量子プロセッサ(例えば、超伝導量子プロセッサ)を含む。
量子プロセッサは、プログラマブル要素(例えば、量子ビット、結合器、及び他のデバイス)を含む。読み出しシステム1234を介して、量子ビットを読み出すことができる。サーバーモジュール1228、又はネットワークなどの上で戻される不揮発性メモリ1222に記憶される他のモジュール1230を含む、デジタルコンピュータ1202用のコンピュータ又はプロセッサ可読命令の様々なセットに、読み出し値を供給することができる。量子ビット制御システム1236を介して、量子ビットを制御することができる。幾つかの実装形態において、量子ビット制御システム1236及び結合器制御システム1238を使用して、本出願に記載のように、アナログプロセッサ1232で量子アニーリングを実施する。幾つかの実装形態において、アナログプロセッサ1232は、上述の様々な実装形態に従って媒介及び/又は直接量子ビット-量子ビット結合を有する超伝導量子ビットを含む伝導集積回路1240を含む。
幾つかの実装形態において、デジタルコンピュータ1202は、少なくとも1つのクライアントコンピュータシステムへの論理接続を用いたネットワーキング環境で動作することができる。幾つかの実装形態において、少なくとも1つのデータベースシステムへの論理接続を介して、デジタルコンピュータ1202を結合する。例えば、インターネットを含むローカルエリアネットワーク(「LAN」)又はワイドエリアネットワーク(「WAN」)などのネットワークを介したデジタル通信の任意の手段を用いて、これらの論理接続を形成してもよい。ネットワーキング環境は、有線又は無線の企業規模のコンピュータネットワーク、イントラネット、エクストラネット、及び/又はインターネットを含んでもよい。他の実施形態は、他のタイプの通信ネットワーク(例えば、電気通信ネットワーク、セルラーネットワーク、ページングネットワーク、及び他のモバイルネットワーク)を含んでもよい。論理接続を介して送信又は受信される情報を、暗号化してもよく、又は暗号化しなくてもよい。LANネットワーキング環境で使用される場合、アダプター又はネットワークインターフェースカード(「NIC」)(システムバス1210に通信可能にリンクされる)を介して、デジタルコンピュータ1202をLANに接続してもよい。WANネットワーキング環境で使用される場合、デジタルコンピュータ1202は、インターフェース及びモデム(図示せず)、又はWAN上で通信を確立するデバイス(例えば、NIC)を含んでもよい。更に又は代わりに、非ネットワーク化通信を使用してもよい。
図13Aは、本システム及び方法による、超伝導集積回路1300aの一部の断面である。超伝導集積回路1300aは、基板1302を含む。基板1302は、例えば、シリコン基板、又は誘電材料の層であってもよい。更に、超伝導集積回路1300aは、介在層1308によって互いに分離された1対の超伝導トレース1304及び1306を含み、超伝導トレース1306は、超伝導トレース1304の上に横たわる。超伝導トレース1304及び1306は、超伝導金属(例えば、ニオブ又はアルミニウム)を含んでもよく、又は超伝導金属からなってもよい。超伝導トレース1304及び1306は、それぞれ誘電材料1310及び1312の層に隣接していてもよい。介在層1308は、絶縁層であってもよい。絶縁層は、誘電材料の層又はエアブリッジを含む。介在層1308の厚さを選択して、超伝導トレース1304及び1306を、互いに直接誘導連通可能結合するようにしてもよい。
図13Bは、本システム及び方法による、超伝導集積回路1300bの一部の断面である。超伝導集積回路1300bは、基板1314を含む。基板1314は、例えば、シリコン基板、又は誘電材料の層であってもよい。更に、超伝導集積回路1300bは、介在層1320によって互いに分離された1対の隣接超伝導トレース1316及び1318を含む。超伝導トレース1316及び1318は、超伝導金属(例えば、ニオブ又はアルミニウム)を含んでもよく、又は超伝導金属からなってもよい。超伝導トレース1316及び1318は、誘電材料1322の上部層に隣接していてもよい。介在層1320は、絶縁層であってもよい。絶縁層は、誘電材料の層又はエアブリッジを含む。介在層1320による隣接超伝導トレース1316及び1318の分離を選択して、超伝導トレース1316及び1318を、互いに直接誘導連通可能結合するようにしてもよい。
図13Aの超伝導トレース1304及び1306は、互いの上に横たわっている。超伝導トレース1304及び1306を、介在層1308によって分離する。超伝導トレース1304及び1306は、互いに誘導的に近接することができ、即ち、超伝導集積回路の向きにかかわらず、超伝導トレース1304における電流が超伝導トレース1306における電流を誘導することができる(逆もまた同様)ように、適切に方向付けされて十分密に配置されることができる。図13Bの超伝導トレース1316及び1318は、互いに隣接している。超伝導トレース1316及び1318を、介在層1320によって分離する。超伝導トレースは、互いに誘導的に近接することができ、即ち、超伝導集積回路の向きにかかわらず、超伝導トレース1316における電流が超伝導トレース1318における電流を誘導することができる(逆もまた同様)ように、適切に方向付けされて十分密に配置されることができる。
図14Aは、本システム及び方法による、集積回路を形成する方法1400の例のフローチャートである。当業者は、代替の実装形態において、特定の動作を省略する、及び/又は追加動作を追加することができることが分かるけれども、方法1400は、動作1402~1418を含む。当業者は、動作の図示の順序が、単に例示的な目的で示され、代替の実装形態において、変わることができることが分かる。
1402で、方法1400を呼び出す。幾つかの実装形態において、製造システムが、集積回路の製造を開始する、又は部分的に完成された集積回路の製造を継続する準備ができている場合、方法1400を呼び出す。1404で、システムは、集積回路上の1対のデバイス(例えば、超伝導デバイス)の間の連通可能結合の目標の大きさを判定する。1406で、システムは、媒介連通可能結合の大きさと目標の大きさとの間の差を判定する。媒介連通可能結合を、媒介結合デバイス(例えば、図9の結合デバイス904のうち1つ)によって与えてもよい。
1408で、システムは、媒介結合の大きさと目標の大きさとの間の差に少なくとも部分的に基づいて調整許容範囲(本出願で、調整幅とも呼ばれる)を判定する。1408で判定される調整幅は、図14Bを参照して判定調整幅と呼ばれる。
1410で、システムは、材料(例えば、超伝導金属)の第1のループを付着させ、1412で、システムは、材料の第2のループを付着させる。幾つかの実装形態において、システムは、材料の第1及び第2のループを付着させ、上述のように、交差領域又は会合領域で、トレースの狭小を含む所定の連通可能結合、及び/又は迂回経路を達成する。他の実装形態において、システムは、調整幅エッチングを実行して、1414で第1の経路を形成し、1416で第2の経路を形成する。
1418で、方法は、終了する。
図14Bは、本システム及び方法による、方法1400(図14A)の第1の経路1414の調整用の方法1419の例のフローチャートである。当業者は、代替の実装形態において、特定の動作を省略する、及び/又は追加動作を追加することができることが分かるけれども、方法1419は、動作1420~1428を含む。当業者は、動作の図示の順序が、単に例示的な目的で示され、代替の実装形態において、変わることができることが分かる。同様の方法を使用して、調整幅エッチングを実行し、方法1400(図14A)の1416における第2の経路を形成することができる。
1420で、システムは、第1の硬質マスクを付着させ、1422で、システムは、第2の硬質マスクを付着させる。1424で、システムは、フォトレジスト層を付着させ、1426で、フォトレジスト層をパターン形成する。1428で、システムは、エッチングを実行して、第1の経路から材料を除去し、所定の調整幅及び目標の大きさを達成する。
上述の本技術の実装形態の例は、超伝導デバイスの間の直接誘導連通可能結合を含むけれども、他の実装形態は、超伝導デバイスの間の直接流電連通可能結合を含む。同じ超伝導デバイスの間の直接誘導連通可能結合の代わりに、又は直接誘導連通可能結合に加えて、超伝導デバイスの間の直接流電連通可能結合があってもよい。2つの超伝導デバイスの間の直接流電連通可能結合は、一方のデバイスの超伝導ループの他方のデバイスの超伝導ループとの共用部分を含んでもよい。直接流電連通可能結合は、超伝導デバイスの間の結合の大きさを増加してもよい。他の実装形態は、単独で又は本システム及び方法による直接結合と組み合わせて、及び/又は本システム及び方法による媒介結合、及び/又は直接及び媒介結合の組み合わせで、超伝導デバイスの間の容量結合を含む。流電結合及び容量結合を含む様々な結合トポロジーの説明に対して、例えば、PCT特許出願公開第WO2019126396A1号、「SYSTEMS AND METHODS FOR COUPLING QUBITS IN A QUANTUM PROCESSOR」を参照せよ。
上述の本技術の実装形態の例は、1対の超伝導デバイスの間の直接連通可能結合を含むけれども、他の実装形態は、2つを超える超伝導デバイスの間の直接連通可能結合を含む。一般的に、本技術による2つ以上の超伝導デバイスの間の連通可能結合は、誘導、流電、直接及び媒介連通可能結合の組み合わせを含んでもよい。上述のレイアウト、及び所望の結合の大きさを達成する超伝導トレースの選択的調整は、様々なこれらの配置で用いるのに適している。
幾つかの実装形態において、量子プロセッサにおける超伝導デバイスの間の直接結合を、量子プロセッサにおける超伝導デバイスの選択サブセットだけに使用する。
本技術の利点は、下記を含むことができる。
・レイアウトの実装形態は、対称及び小型であることができ、レイアウトは、(他の手法と違って)量子ビット本体で追加の工夫を必要としない。
・レイアウト空間の不利益を受けることなく、調整金属片の幅の適切な選択によって、直接結合の大きさを制御することができる。例えば、0から典型的な媒介結合の大きさの2倍の結合の大きさの連続同調を達成することができる。トレースを、例えば、2μmの幅から0.5μmの幅に調整することができる。
・技術は、より対称/多重の実装形態に拡張可能である。
・技術は、製造整列不良及び欠陥に対してロバストである。製造誤差(例えば、層間整列不良)に対するロバスト性の1つの理由は、製造誤差からの直接結合の大きさの少なくともある程度の保護を与える対称配置である。1つの実装形態において、直接結合は、最大120nmの層間整列不良に対してロバストである。
この明細書及び添付の特許請求の範囲全体にわたって、例えば、結合デバイスの感受性を説明するために使用される場合、用語「強磁性領域」は、結合デバイスによって連通可能に結合される1対の超伝導デバイスを強磁性的に結合するように、結合デバイスに印加可能な磁束バイアスの範囲を説明するために使用される。同様に、この明細書及び添付の特許請求の範囲全体にわたって、例えば、結合デバイスの感受性を説明するために使用される場合、用語「反強磁性領域」は、結合デバイスによって連通可能に結合される1対の超伝導デバイスを反強磁性的に結合するように、結合デバイスに印加可能な磁束バイアスの範囲を説明するために使用される。
この明細書及び添付の特許請求の範囲全体にわたって、用語「結合器」及び「結合デバイス」は、交換可能に使用される。しかし、「結合器」及び「結合デバイス」の両方は、1対の超伝導デバイスを一緒に強磁性的に又は反強磁性的に結合するために使用可能な少なくとも1つのジョセフソン接合部によって遮断される超伝導材料の結合ループを説明するために使用される。更に、この明細書及び添付の特許請求の範囲全体にわたって、用語「1対の連通可能結合超伝導デバイス」は、直接結合又は結合デバイスによって一緒に強磁性的に又は反強磁性的に結合可能な1対の超伝導デバイスを説明するために使用される。
この明細書及び添付の特許請求の範囲全体にわたって、「超伝導材料のループ」などの物理的構造を説明するために使用される場合、用語「超伝導」は、適切な温度で超伝導体として振る舞うことができる材料を示すために使用される。超伝導材料は、本システム及び方法の全実施形態で常に超伝導体としての機能を必ずしも果たすとは限らない。
要約書に記載の内容を含む例示の実装形態の上述の説明は、網羅的であるように、又は実施形態を開示の正確な形態に限定するように意図されていない。特定の実施形態及び例は、例示の目的でここに記載されているけれども、当業者が分かるように、開示の精神及び範囲から逸脱することなく、様々な均等物の修正を加えることができる。様々な実施形態のここで与えられる教示を、他のアナログプロセッサ(必ずしも、一般的に上述の例示的な量子プロセッサとは限らない)に適用することができる。
上述の様々な実施形態を組み合わせて、更なる実施形態を与えることができる。2015年9月8日に発行の「SYSTEMS AND METHODS FOR INCREASING THE ENERGY SCALE OF A QUANTUM PROCESSOR」と称する米国特許第9,129,224号、「SYSTEMS AND METHODS FOR COUPLING QUBITS IN A QUANTUM PROCESSOR」と称するPCT特許出願公開第WO2019/126396A1号、及び「SYSTEMS AND METHODS FOR COUPLING BETWEEN QUBITS」と称する米国特許出願第63/046,394号(但し、これらに限定されない)を含む、この明細書に参照される、及び/又は出願データシートに列挙される同一出願人による米国特許出願公開、米国特許出願、外国特許、及び外国特許出願の全部を、全体として参照により本明細書に引用したものとする。上述の詳細な説明を踏まえて、これらの変更及び他の変更を実施形態実装形態に加えることができる。一般的に、下記の特許請求の範囲において、使用される用語は、明細書及び特許請求の範囲に開示の特定の実施形態に特許請求の範囲を限定するように解釈されるべきではなく、このような特許請求の範囲に与えられる均等物の全範囲と一緒に全ての可能な実施形態を含むように解釈されるべきである。従って、特許請求の範囲は、開示によって限定されない。

Claims (36)

  1. 超伝導集積回路の第1の層に第1の超伝導トレースを含む第1の超伝導ループを含む第1の超伝導デバイスと、
    前記超伝導集積回路の第2の層に第2の超伝導トレースを含む第2の超伝導ループを含む第2の超伝導デバイスであって、前記第2の層は、前記第1の層の上に横たわり、及び/又は前記第1の層に隣接し、前記第2の層は、介在層によって前記第1の層から分離されている第2の超伝導デバイスと、
    前記第1の超伝導ループが前記第2の超伝導ループと投影で交差する交差領域であって、前記交差領域の内側の前記第1の超伝導トレースの少なくとも一部は、前記交差領域の外側の前記第1の超伝導トレースの少なくとも一部よりも狭く、前記交差領域の内側の前記第2の超伝導トレースの少なくとも一部は、前記交差領域の外側の前記第2の超伝導トレースの少なくとも一部よりも狭く、前記交差領域の内側の前記第1の超伝導トレースの前記少なくとも一部は、第1の迂回経路をたどり、前記交差領域の内側の前記第2の超伝導トレースの前記少なくとも一部は、第2の迂回経路をたどり、前記第1の迂回経路及び前記第2の迂回経路は、前記第1の迂回経路の長さの少なくとも一部に対して互いに誘導的に近接する交差領域と
    を含む超伝導集積回路。
  2. 前記第1の迂回経路及び前記第2の迂回経路は、前記第1の迂回経路の長さの少なくとも一部に対して少なくとも部分的に互いの上に横たわる、請求項1に記載の超伝導集積回路。
  3. 前記第1の超伝導ループは、前記第2の超伝導ループと実質的に垂直に交差する、請求項1又は2に記載の超伝導集積回路。
  4. 前記第1の超伝導トレース及び前記第2の超伝導トレースの各々は、各超伝導金属を含む、請求項1又は2に記載の超伝導集積回路。
  5. 前記各超伝導金属は、ニオブ及びアルミニウムからなる群から選択される超伝導金属を含む、請求項4に記載の超伝導集積回路。
  6. 前記第1の超伝導デバイスは、第1のジョセフソン接合部を更に含み、前記第1のジョセフソン接合部は、前記第1の超伝導ループを遮断し、前記第2の超伝導デバイスは、第2のジョセフソン接合部を更に含み、前記第2のジョセフソン接合部は、前記第2の超伝導ループを遮断する、請求項1又は2に記載の超伝導集積回路。
  7. 前記第1の超伝導デバイスは、第1の超伝導磁束量子ビットであり、前記第2の超伝導デバイスは、第2の超伝導磁束量子ビットである、請求項1又は2に記載の超伝導集積回路。
  8. 前記交差領域の内側の前記第1の超伝導トレースの前記少なくとも一部は、4つの方向変更を含む、請求項1又は2に記載の超伝導集積回路。
  9. 前記第1の迂回経路の第1の形状は、前記第2の迂回経路の第2の形状と一致する、請求項1又は2に記載の超伝導集積回路。
  10. 前記介在層は、絶縁層を含む、請求項1又は2に記載の超伝導集積回路。
  11. 前記絶縁層は、誘電材料及び/又はエアブリッジを含む、請求項10に記載の超伝導集積回路。
  12. 前記誘電材料は、二酸化ケイ素又は窒化ケイ素のうち少なくとも1つを含む、請求項11に記載の超伝導集積回路。
  13. 前記第1の超伝導デバイス及び前記第2の超伝導デバイスに結合され、前記第1の超伝導デバイスと前記第2の超伝導デバイスとの間に媒介結合を与えるように連通可能に結合されている結合デバイスを更に含む、請求項1又は2に記載の超伝導集積回路。
  14. 前記交差領域の内側の前記第1の超伝導トレースの前記少なくとも一部及び前記交差領域の内側の前記第2の超伝導トレースの前記少なくとも一部の各々は、1つ又は複数のU字形輪郭を含む、請求項1又は2に記載の超伝導集積回路。
  15. 請求項1~14のいずれか一項に記載の超伝導集積回路を含む量子コンピュータ。
  16. 第1の超伝導デバイスと第2の超伝導デバイスとの間の連通可能結合の大きさを同調させる方法であって、前記連通可能結合の前記大きさは、媒介連通可能結合及び直接連通可能結合の大きさの合計であり、
    前記第1及び第2の超伝導デバイスの間の前記連通可能結合の目標の大きさを判定することと、
    前記媒介連通可能結合の前記大きさと前記目標の大きさとの間の差を判定することと、
    前記媒介結合の前記大きさと前記目標の大きさとの間の前記差に少なくとも部分的に基づいて調整許容範囲を判定することと、
    前記第1の超伝導デバイスの第1の超伝導ループを第1の層に付着させることと、
    前記第2の超伝導デバイスの第2の超伝導ループを第2の層に付着させることであって、前記第2の超伝導ループは、前記第1の超伝導ループと交差して交差領域を形成することと、
    第1の迂回経路をたどり、前記交差領域の外側で前記第1の超伝導ループの少なくとも一部よりも狭くなるように、前記交差領域の内部で前記第1の超伝導ループの少なくとも一部を前記調整許容範囲だけ調整することと、
    第2の迂回経路をたどり、前記交差領域の外側で前記第2の超伝導ループの少なくとも一部よりも狭くなるように、前記交差領域の内部で前記第2の超伝導ループの少なくとも一部を前記調整許容範囲だけ調整することであって、その結果、前記第1の迂回経路及び前記第2の迂回経路は、前記第1の迂回経路の長さの少なくとも一部に対して互いに誘導的に近接することと
    を含む方法。
  17. 前記第1の層と前記第2の層との間に介在層を付着させることを更に含む、請求項16に記載の方法。
  18. 前記第1の層と前記第2の層との間に介在層を付着させることは、絶縁層を付着させることを含む、請求項17に記載の方法。
  19. 絶縁層を付着させることは、誘電材料の層を付着させること、及び/又はエアブリッジを形成することを含む、請求項18に記載の方法。
  20. 前記第2の超伝導デバイスの第2の超伝導ループを第2の層に付着させることは、前記第2の層の少なくとも一部が前記第1の層の少なくとも一部の上に横たわるように、前記第2の超伝導デバイスの第2の超伝導ループを第2の層に付着させることを含む、請求項16~19のいずれか一項に記載の方法。
  21. 前記第1の超伝導ループの少なくとも一部を前記調整許容範囲だけ調整することは、0.5μmと2.0μmとの間の幅に前記第1の超伝導ループの前記少なくとも一部を調整することを含む、請求項16に記載の方法。
  22. 前記第1の超伝導ループの少なくとも一部を前記調整許容範囲だけ調整することは、前記第1の超伝導ループの前記少なくとも一部の調整幅エッチングを実行することを含む、請求項16に記載の方法。
  23. 前記第1の超伝導ループの前記少なくとも一部の調整幅エッチングを実行することは、
    第1の硬質マスクを付着させ、前記第1の超伝導ループの前記少なくとも一部の少なくとも一部の上に横たわることと、
    第2の硬質マスクを付着させ、前記第1の硬質マスクの少なくとも一部の上に横たわることと、
    フォトレジスト層を付着させ、前記第2の硬質マスクの少なくとも一部の上に横たわることと、
    前記フォトレジスト層をパターン形成し、所定の調整幅を規定することと、
    前記第1の超伝導ループの前記少なくとも一部をエッチングし、前記所定の調整幅を除去することと
    を含む、請求項22に記載の方法。
  24. 集積回路を形成する方法であって、
    前記集積回路の第1の層に第1のトレースを含む第1のデバイスを形成することと、
    前記集積回路の第2の層に第2のトレースを含む第2のデバイスを形成することであって、前記第2のトレースの少なくとも一部は、前記第1のトレースの少なくとも一部に誘導的に近接し、これによって、前記第1のデバイスと前記第2のデバイスとの間に誘導連通可能結合があり、前記第1のトレースの前記少なくとも一部は、前記第1のトレースの少なくとも別の一部よりも狭いことと
    を含む方法。
  25. 第2のデバイスを形成することは、第2のデバイスを形成することを含み、前記第2のトレースの少なくとも一部は、前記第2のトレースの少なくとも別の一部よりも狭い、請求項24に記載の方法。
  26. 第1のデバイスを形成することは、第1の超伝導デバイスを形成することを含み、第2のデバイスを形成することは、第2の超伝導デバイスを形成することを含む、請求項24に記載の方法。
  27. 第1の超伝導デバイスを形成することは、超伝導材料を付着させることを含む、請求項26に記載の方法。
  28. 第1の超伝導デバイスを形成することは、第1の迂回経路をたどり、前記第1のトレースの少なくとも別の一部よりも狭くなるように、前記第1のトレースの少なくとも一部を調整することを更に含む、請求項27に記載の方法。
  29. 第2の超伝導デバイスを形成することは、媒介結合デバイスに誘導的に近接する前記第2の超伝導デバイスを形成することを含み、前記媒介結合デバイスは、前記第1の超伝導デバイスと前記第2の超伝導デバイスとの間に連通可能結合を与える、請求項24~28のいずれか一項に記載の方法。
  30. 媒介結合デバイスに誘導的に近接する前記第2の超伝導デバイスを形成することは、前記第1の超伝導デバイスと前記第2の超伝導デバイスとの間に反強磁性(AFM)結合を与える媒介結合デバイスに誘導的に近接する前記第2の超伝導デバイスを形成することを含み、これによって、前記第1の超伝導デバイスと前記第2の超伝導デバイスとの間の前記誘導連通可能結合は、前記反強磁性結合を増加する、請求項29に記載の方法。
  31. 超伝導集積回路の第1の層に第1の超伝導トレースを含む第1の超伝導ループを含む第1の超伝導デバイスと、
    前記超伝導集積回路の第2の層に第2の超伝導トレースを含む第2の超伝導ループを含む第2の超伝導デバイスと、
    前記第1の超伝導ループの一部が前記第2の超伝導ループの一部と重複する領域であって、前記領域の内部の前記第1の超伝導トレースの少なくとも一部は、前記領域の外側の前記第1の超伝導トレースの少なくとも一部よりも狭く、前記領域の内部の前記第2の超伝導トレースの少なくとも一部は、前記領域の外側の前記第2の超伝導トレースの少なくとも一部よりも狭く、前記領域の内部の前記第1の超伝導トレースの前記少なくとも一部は、第1の経路をたどり、前記領域の内部の前記第2の超伝導トレースの前記少なくとも一部は、第2の経路をたどり、前記第1の経路及び前記第2の経路は、前記第1の経路の長さの少なくとも一部に対して互いに誘導的に近接する領域と
    を含む超伝導集積回路。
  32. 前記第1の層は、前記第2の層と異なる層である、請求項31に記載の超伝導集積回路。
  33. 前記第1の層は、介在層によって前記第2の層から分離されている、請求項31に記載の超伝導集積回路。
  34. 前記第1の経路は、迂回経路である、請求項31に記載の超伝導集積回路。
  35. 前記第1の経路及び前記第2の経路は、一致する、請求項34に記載の超伝導集積回路。
  36. 前記第1の経路及び前記第2の経路は、少なくとも部分的に互いの上に横たわる、請求項31に記載の超伝導集積回路。
JP2022580739A 2020-06-30 2021-06-29 量子ビット間の結合用のシステム及び方法 Pending JP2023532897A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202063046394P 2020-06-30 2020-06-30
US63/046,394 2020-06-30
PCT/US2021/039625 WO2022006114A1 (en) 2020-06-30 2021-06-29 Systems and methods for coupling between qubits

Publications (2)

Publication Number Publication Date
JP2023532897A true JP2023532897A (ja) 2023-08-01
JPWO2022006114A5 JPWO2022006114A5 (ja) 2024-06-26

Family

ID=79315562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022580739A Pending JP2023532897A (ja) 2020-06-30 2021-06-29 量子ビット間の結合用のシステム及び方法

Country Status (4)

Country Link
US (1) US20230297869A1 (ja)
EP (1) EP4172883A1 (ja)
JP (1) JP2023532897A (ja)
WO (1) WO2022006114A1 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015013532A1 (en) * 2013-07-24 2015-01-29 D-Wave Systems Inc. Systems and methods for increasing the energy scale of a quantum processor
US10037493B2 (en) * 2013-10-22 2018-07-31 D-Wave Systems Inc. Universal adiabatic quantum computing with superconducting qubits
US10283696B2 (en) * 2015-06-30 2019-05-07 International Business Machines Corporation Architecture for coupling quantum bits using localized resonators
WO2017015432A1 (en) * 2015-07-23 2017-01-26 Massachusetts Institute Of Technology Superconducting integrated circuit
US10467544B2 (en) * 2015-12-31 2019-11-05 International Business Machines Corporation Multi-qubit tunable coupling architecture using fixed-frequency superconducting qubits

Also Published As

Publication number Publication date
WO2022006114A1 (en) 2022-01-06
EP4172883A1 (en) 2023-05-03
US20230297869A1 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
US11188843B2 (en) Programmable universal quantum annealing with co-planar waveguide flux qubits
US10832156B2 (en) Coupling architectures for superconducting flux qubits
US10803396B2 (en) Quantum circuit assemblies with Josephson junctions utilizing resistive switching materials
JP6728234B2 (ja) 共面導波管の磁束量子ビット
AU2019203536B2 (en) Magnetic flux control in superconducting devices
US9129224B2 (en) Systems and methods for increasing the energy scale of a quantum processor
US9547826B2 (en) Systems and devices for quantum processor architectures
US7898282B2 (en) Systems, devices, and methods for controllably coupling qubits
US20140097405A1 (en) Systems and devices for quantum processor architectures
US20100085827A1 (en) Coupling methods and architectures for information processing
JP2022111146A (ja) 共面導波管の磁束量子ビット
JP2023532897A (ja) 量子ビット間の結合用のシステム及び方法
US20230027682A1 (en) Systems and methods for tuning capacitance of qubits
JP6840818B2 (ja) 共面導波管の磁束量子ビットを有するプログラム可能な汎用量子アニーリング
US20240138268A1 (en) Systems and methods for fabrication of superconducting integrated circuits with improved coherence

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240618

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240618