JP2023531397A - ワイヤレスチャネル推定および追跡のためのニューラルネットワーク拡張 - Google Patents

ワイヤレスチャネル推定および追跡のためのニューラルネットワーク拡張 Download PDF

Info

Publication number
JP2023531397A
JP2023531397A JP2022576141A JP2022576141A JP2023531397A JP 2023531397 A JP2023531397 A JP 2023531397A JP 2022576141 A JP2022576141 A JP 2022576141A JP 2022576141 A JP2022576141 A JP 2022576141A JP 2023531397 A JP2023531397 A JP 2023531397A
Authority
JP
Japan
Prior art keywords
time step
current time
channel estimate
residual
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022576141A
Other languages
English (en)
Other versions
JPWO2021257907A5 (ja
Inventor
アムジャド、ラナ・アリ
プラティク、クマール
ウェリング、マックス
ベーブーディ、アラシュ
ソリアガ、ジョセフ・ビナミラ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of JP2023531397A publication Critical patent/JP2023531397A/ja
Publication of JPWO2021257907A5 publication Critical patent/JPWO2021257907A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0254Channel estimation channel estimation algorithms using neural network algorithms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • G06N3/0442Recurrent networks, e.g. Hopfield networks characterised by memory or gating, e.g. long short-term memory [LSTM] or gated recurrent units [GRU]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/047Probabilistic or stochastic networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/09Supervised learning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/021Estimation of channel covariance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0222Estimation of channel variability, e.g. coherence bandwidth, coherence time, fading frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0464Convolutional networks [CNN, ConvNet]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/048Activation functions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/01Probabilistic graphical models, e.g. probabilistic networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03592Adaptation methods
    • H04L2025/03598Algorithms
    • H04L2025/03611Iterative algorithms
    • H04L2025/03656Initialisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Biophysics (AREA)
  • Computing Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Probability & Statistics with Applications (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

通信デバイスによって実施される方法が、通信デバイスにおいて受信された第1の信号に基づいて、カルマンフィルタを用いて現在の時間ステップについてのチャネルの初期チャネル推定値を生成することを含む。本方法は、ニューラルネットワークを用いて、現在の時間ステップの初期チャネル推定値の残差を推論することをも含む。本方法は、残差に基づいて現在の時間ステップの初期チャネル推定値を更新することをさらに含む。【選択図】図7

Description

優先権の主張
関連出願の相互参照
[0001]本出願は、それらの全体が参照により明確に組み込まれる、2020年6月19日に出願された、「NEURAL NETWORK AUGMENTATION FOR WIRELESS CHANNEL ESTIMATION AND TRACKING」と題する米国仮特許出願第63/041,637号の利益を主張する、2021年6月16日に出願された、「NEURAL NETWORK AUGMENTATION FOR WIRELESS CHANNEL ESTIMATION AND TRACKING」と題する米国特許出願第17/349,744号の優先権を主張する。
[0002]本開示の態様は、一般にワイヤレス通信に関し、より詳細には、ニューラルネットワーク拡張(neural network augmentation)を用いたチャネル推定のための技法および装置に関する。
[0003]ワイヤレス通信システムは、電話、ビデオ、データ、メッセージング、およびブロードキャストなど、様々な電気通信サービスを提供するために広く展開されている。典型的なワイヤレス通信システムは、利用可能なシステムリソース(たとえば、帯域幅、送信電力など)を共有することによって複数のユーザとの通信をサポートすることが可能な多元接続技術を採用し得る。そのような多元接続技術の例は、符号分割多元接続(CDMA)システム、時分割多元接続(TDMA)システム、周波数分割多元接続(FDMA)システム、直交周波数分割多元接続(OFDMA)システム、シングルキャリア周波数分割多元接続(SC-FDMA)システム、時分割同期符号分割多元接続(TD-SCDMA)システム、およびロングタームエボリューション(LTE(登録商標))を含む。LTE/LTEアドバンストは、第3世代パートナーシッププロジェクト(3GPP(登録商標))によって公表されたユニバーサルモバイルテレコミュニケーションズシステム(UMTS)モバイル規格の拡張のセットである。
[0004]ワイヤレス通信ネットワークは、いくつかのユーザ機器(UE)のための通信をサポートすることができるいくつかの基地局(BS)を含み得る。UEは、ダウンリンクおよびアップリンクを介してBSと通信し得る。ダウンリンク(または順方向リンク)はBSからUEへの通信リンクを指し、アップリンク(または逆方向リンク)はUEからBSへの通信リンクを指す。より詳細に説明されるように、BSは、ノードB、gNB、アクセスポイント(AP)、ラジオヘッド、送信受信ポイント(TRP)、新無線(NR)BS、5GノードBなどと呼ばれることがある。
[0005]上記の多元接続技術は、異なるユーザ機器が都市、国家、地域、さらには地球規模で通信することを可能にする共通プロトコルを提供するために、様々な電気通信規格において採用されている。5Gと呼ばれることもある、新無線(NR)は、第3世代パートナーシッププロジェクト(3GPP)によって公表されたLTEモバイル規格の拡張のセットである。NRは、スペクトル効率を改善すること、コストを下げること、サービスを改善すること、新しいスペクトルを利用すること、および、ダウンリンク(DL)上でサイクリックプレフィックス(CP)を伴う直交周波数分割多重化(OFDM)(CP-OFDM)を使用して、アップリンク(UL)上でCP-OFDMおよび/または(たとえば、離散フーリエ変換拡散OFDM(DFT-s-OFDM)としても知られる)SC-FDMを使用して、他のオープン規格とより良く統合すること、ならびに、ビームフォーミング、多入力多出力(MIMO)アンテナ技術、およびキャリアアグリゲーションをサポートすることによって、モバイルブロードバンドインターネットアクセスをより良くサポートするように設計されている。
[0006]人工ニューラルネットワークは、人工ニューロン(たとえば、ニューロンモデル)の相互結合されたグループを備え得る。人工ニューラルネットワークは、算出デバイスであるか、または算出デバイスによって実施されるべき方法として表され得る。深層畳み込みニューラルネットワークなど、畳み込みニューラルネットワークは、フィードフォワード人工ニューラルネットワークのタイプである。畳み込みニューラルネットワークは、タイリングされた受容野(a tiled receptive field)において構成され得るニューロンの層を含み得る。より高い効率を達成するためにニューラルネットワーク処理をワイヤレス通信に適用することが望ましいことがある。
[0007]本開示の一態様では、通信デバイスによって実施される方法が、通信デバイスにおいて受信された第1の信号に基づいて、カルマンフィルタを用いて現在の時間ステップについてのチャネルの初期チャネル推定値を生成することを含む。本方法は、ニューラルネットワークを用いて、現在の時間ステップの初期チャネル推定値の残差を推論することをさらに含む。本方法は、残差に基づいて現在の時間ステップの初期チャネル推定値を更新することをまたさらに含む。
[0008]本開示の別の態様は、通信デバイスにおける装置を対象とする。本装置は、通信デバイスにおいて受信された第1の信号に基づいて、カルマンフィルタを用いて現在の時間ステップについてのチャネルの初期チャネル推定値を生成するための手段を含む。本装置は、ニューラルネットワークを用いて、現在の時間ステップの初期チャネル推定値の残差を推論するための手段をさらに含む。本装置は、残差に基づいて現在の時間ステップの初期チャネル推定値を更新するための手段をまたさらに含む。
[0009]本開示の別の態様では、通信デバイスにおける、非一時的プログラムコードが記録された非一時的コンピュータ可読媒体が開示される。プログラムコードは、プロセッサによって実行され、通信デバイスにおいて受信された第1の信号に基づいて、カルマンフィルタを用いて現在の時間ステップについてのチャネルの初期チャネル推定値を生成するためのプログラムコードを含む。プログラムコードは、ニューラルネットワークを用いて、現在の時間ステップの初期チャネル推定値の残差を推論するためのプログラムコードをさらに含む。プログラムコードは、残差に基づいて現在の時間ステップの初期チャネル推定値を更新するためのプログラムコードをまたさらに含む。
[0010]本開示の別の態様は、通信デバイスにおける装置を対象とする。本装置は、プロセッサと、プロセッサに結合されたメモリと、メモリに記憶された命令とを含み、命令は、プロセッサによって実行されたとき、本装置に、通信デバイスにおいて受信された第1の信号に基づいて、カルマンフィルタを用いて現在の時間ステップについてのチャネルの初期チャネル推定値を生成することを行わせるように動作可能である。命令の実行は、本装置に、ニューラルネットワークを用いて、現在の時間ステップの初期チャネル推定値の残差を推論することをも行わせる。命令の実行は、本装置に、残差に基づいて現在の時間ステップの初期チャネル推定値を更新することをも行わせる。態様は、概して、添付の図面および明細書を参照しながら実質的に説明され、添付の図面および明細書によって示されるように、方法、装置、システム、コンピュータプログラム製品、非一時的コンピュータ可読媒体、ユーザ機器、基地局、ワイヤレス通信デバイス、および処理システムを含む。
[0011]上記は、以下の発明を実施するための形態がより良く理解され得るように、本開示による例の特徴および技術的利点をかなり広く概説している。追加の特徴および利点が以下で説明される。開示される概念および具体例は、本開示の同じ目的を実施するために他の構造を変更または設計するための基礎として容易に利用され得る。そのような等価な構成は、添付の特許請求の範囲から逸脱しない。開示される概念の特性、それらの編成と動作方法の両方は、関連する利点とともに、添付の図に関連して以下の説明を検討するとより良く理解されよう。図の各々は、例示および説明のために提供され、特許請求の範囲の限定の定義として提供されるものではない。
[0012]本開示の特徴が詳細に理解され得るように、添付の図面にその一部が示される態様を参照することによって、具体的な説明が得られ得る。ただし、その説明は他の等しく有効な態様に通じ得るので、添付の図面は、本開示のいくつかの態様のみを示し、したがって、本開示の範囲を限定するものと見なされるべきではないことに留意されたい。異なる図面中の同じ参照番号は、同じまたは同様の要素を識別し得る。
[0013]本開示の様々な態様による、ワイヤレス通信ネットワークの一例を概念的に示すブロック図。 [0014]本開示の様々な態様による、ワイヤレス通信ネットワークにおいてユーザ機器(UE)と通信している基地局の一例を概念的に示すブロック図。 [0015]本開示のいくつかの態様による、汎用プロセッサを含むシステムオンチップ(SOC)を使用してニューラルネットワークを設計する例示的な実装形態を示す図。 [0016]本開示の態様による、ニューラルネットワークを示す図。 本開示の態様による、ニューラルネットワークを示す図。 本開示の態様による、ニューラルネットワークを示す図。 [0017]本開示の態様による、例示的な深層畳み込みネットワーク(DCN)を示す図。 [0018]本開示の態様による、例示的な深層畳み込みネットワーク(DCN)を示すブロック図。 [0019]本開示の態様による、リカレントニューラルネットワーク(RNN)を示す概略図。 [0020]本開示の態様による、複数の時間ステップにおいてニューラル拡張ユニットを用いてカルマンフィルタ(KF)の出力を拡張することの一例を示すブロック図。 [0021]本開示の態様による、ニューラル拡張された(neurally-augmented)カルマンフィルタを用いてチャネルを推定し、チャネルを追跡するように構成された、ワイヤレス通信デバイスの一例を示すブロック図。 [0022]本開示の様々な態様による、たとえば、受信デバイスによって実施される例示的なプロセスを示す図。
[0023]添付の図面を参照しながら本開示の様々な態様が以下でより十分に説明される。ただし、本開示は、多くの異なる形態で実施され得、本開示全体にわたって提示される任意の特定の構造または機能に限定されるものと解釈されるべきではない。むしろ、これらの態様は、本開示が周到で完全になり、本開示の範囲を当業者に十分に伝えるように提供される。これらの教示に基づいて、本開示の範囲は、本開示の他の態様とは無関係に実装されるにせよ、本開示の他の態様と組み合わせられるにせよ、本開示のいかなる態様をもカバーするものであることを、当業者は諒解されたい。たとえば、記載された態様をいくつ使用しても、装置が実装され得、または方法が実施され得る。さらに、本開示の範囲は、記載される本開示の様々な態様に加えてまたはそれらの態様以外に、他の構造、機能、または構造および機能を使用して実施されるそのような装置または方法をカバーするものとする。開示される本開示のいずれの態様も、請求項の1つまたは複数の要素によって実施され得ることを理解されたい。
[0024]次に、様々な装置および技法を参照しながら電気通信システムのいくつかの態様が提示される。これらの装置および技法は、以下の発明を実施するための形態において説明され、(「要素」と総称される)様々なブロック、モジュール、構成要素、回路、ステップ、プロセス、アルゴリズムなどによって添付の図面に示される。これらの要素は、ハードウェア、ソフトウェア、またはそれらの組合せを使用して実装され得る。そのような要素がハードウェアとして実装されるのかソフトウェアとして実装されるのかは、特定の適用例および全体的なシステムに課される設計制約に依存する。
[0025]5G以降のワイヤレス技術に一般に関連する用語を使用して態様が以下で説明され得るが、本開示の態様は、3Gおよび/または4G技術など、ならびに3Gおよび/または4G技術を含む、他の世代ベースの通信システムにおいて適用され得ることに留意されたい。
[0026]ワイヤレス通信システムでは、送信機が、データシンボルを生成するためにデータを処理(たとえば、符号化および変調)し得る。いくつかの例では、送信機は、パイロットシンボルをデータシンボルと多重化し、ワイヤレスチャネルを介して、多重化された信号を送信する。いくつかのそのような例では、ワイヤレスチャネルは、多重化された信号をチャネル応答によってひずませ得る。さらに、チャネル雑音などの干渉が、信号の品質を低減し得る。そのようなワイヤレス通信システムでは、受信機が、多重化された信号を受信し、データを復調および復号するために、受信された信号を処理する。詳細には、いくつかの例では、受信機は、受信されたパイロットシンボルに基づいてチャネルを推定し得る。受信機は、チャネル推定値に基づいてデータシンボル推定値を取得し得る。データシンボル推定値は、送信機によって送られたデータシンボルの推定値であり得る。受信機は、元のデータを取得するためにデータシンボル推定値を処理(たとえば、復調および復号)し得る。
[0027]データを検出する受信機の能力、データシンボル推定値の品質、および復号されたデータの信頼性は、チャネル推定値の品質に基づき得る。いくつかの例では、データを検出する受信機の能力、データシンボル推定値の品質、および復号されたデータの信頼性は、チャネル推定値の品質が増加するにつれて増加する。したがって、高品質チャネル推定値を導出することが望ましいことがある。ワイヤレスチャネル条件が時間とともに変化することがある場合、チャネル推定が難しいことがある。たとえば、ワイヤレスチャネルは、ある瞬間において比較的静的であり、別の瞬間において動的であり得る。一例として、チャネルは、送信機および/または受信機のモビリティにより変化し得る。
[0028]いくつかの例では、受信機と送信機との間のチャネルが、離散確率過程によって推定され得、ここで、各時間ステップが1つの直交周波数分割多重(OFDM)シンボルに対応する。離散確率過程は、チャネル推定値を表すベクトルまたはテンソルを生成し得る。いくつかの場合には、カルマンフィルタ(KF)が、時間とともにチャネル推定を追跡する。
[0029]カルマンフィルタは、隠れマルコフモデル(HMM)を仮定し、ここで、真のチャネルが隠れ過程であり、観測されたパイロットが、観測された過程である。カルマンフィルタは、隠れマルコフモデルに基づいてチャネルを追跡し得る。さらに、カルマンフィルタは、チャネルについて線形遷移ダイナミクスと線形観測ダイナミクスとを仮定する。カルマンフィルタについてのパラメータが、追跡されたチャネルデータに基づいて導出され得る。いくつかの場合には、パラメータは、ドップラースペクトルについてのJakesのモデルなど、追加の仮定に基づいて導出され得る。
[0030]カルマンフィルタの仮定は、チャネルの実際の発展ダイナミクス(evolution dynamics)から逸脱し、それにより、チャネル推定精度を低減し得る。本開示の態様は、ニューラル拡張されたKF(NA-KF)を対象とする。NA-KFは、カルマンフィルタにカプセル化されたチャネル発展の物理学を組み込み得る。さらに、NA-KFは、カルマンフィルタの推定値に残差を加算することによって、実際のチャネルダイナミクスとカルマンフィルタの仮定との間のずれを補正し得る。伝達性(transferability)を向上させるために、チャネルを追跡するのではなく、残差が追跡され得る。
[0031]図1は、本開示の態様が実施され得るネットワーク100を示す図である。ネットワーク100は、5GネットワークまたはNRネットワーク、あるいはLTEネットワークなど、いくつかの他のワイヤレスネットワークであり得る。ワイヤレスネットワーク100は、(BS110a、BS110b、BS110c、およびBS110dとして示されている)いくつかのBS110と、他のネットワークエンティティとを含み得る。BSは、ユーザ機器(UE)と通信するエンティティであり、基地局、NR BS、ノードB、gNB、5GノードB(NB)、アクセスポイント、送信受信ポイント(TRP)などと呼ばれることもある。各BSは、特定の地理的エリアに通信カバレージを提供し得る。3GPPでは、「セル」という用語は、この用語が使用されるコンテキストに応じて、BSのカバレージエリアおよび/またはこのカバレージエリアをサービスするBSサブシステムを指すことができる。
[0032]BSは、マクロセル、ピコセル、フェムトセル、および/または別のタイプのセルに通信カバレージを提供し得る。マクロセルは、比較的大きい地理的エリア(たとえば、半径数キロメートル)をカバーし得、サービスに加入しているUEによる無制限アクセスを可能にし得る。ピコセルは、比較的小さい地理的エリアをカバーし得、サービスに加入しているUEによる無制限アクセスを可能にし得る。フェムトセルは、比較的小さい地理的エリア(たとえば、自宅)をカバーし得、フェムトセルとの関連付けを有するUE(たとえば、限定加入者グループ(CSG)中のUE)による制限付きアクセスを可能にし得る。マクロセルのためのBSはマクロBSと呼ばれることがある。ピコセルのためのBSはピコBSと呼ばれることがある。フェムトセルのためのBSは、フェムトBSまたはホームBSと呼ばれることがある。図1に示されている例では、BS110aがマクロセル102aのためのマクロBSであり得、BS110bがピコセル102bのためのピコBSであり得、BS110cがフェムトセル102cのためのフェムトBSであり得る。BSは、1つまたは複数(たとえば、3つ)のセルをサポートし得る。「eNB」、「基地局」、「NR BS」、「gNB」、「TRP」、「AP」、「ノードB」、「5G NB」、および「セル」という用語は、互換的に使用され得る。
[0033]いくつかの態様では、セルは必ずしも固定であるとは限らないことがあり、セルの地理的エリアは、モバイルBSのロケーションに従って移動することがある。いくつかの態様では、BSは、任意の好適なトランスポートネットワークを使用して、直接物理接続、仮想ネットワークなど、様々なタイプのバックホールインターフェースを通して、互いに、および/あるいはワイヤレスネットワーク100中の1つまたは複数の他のBSまたはネットワークノード(図示せず)に相互接続され得る。
[0034]ワイヤレスネットワーク100はまた、中継局を含み得る。中継局は、上流局(たとえば、BSまたはUE)からデータの送信を受信し、そのデータの送信を下流局(たとえば、UEまたはBS)に送ることができるエンティティである。中継局はまた、他のUEに対する送信を中継することができるUEであり得る。図1に示されている例では、中継局110dは、BS110aとUE120dとの間の通信を容易にするために、マクロBS110aおよびUE120dと通信し得る。中継局は、中継BS、中継基地局、リレーなどと呼ばれることもある。
[0035]ワイヤレスネットワーク100は、異なるタイプのBS、たとえば、マクロBS、ピコBS、フェムトBS、中継BSなどを含む異種ネットワークであり得る。これらの異なるタイプのBSは、異なる送信電力レベル、異なるカバレージエリア、およびワイヤレスネットワーク100における干渉に対する異なる影響を有し得る。たとえば、マクロBSは、高い送信電力レベル(たとえば、5~40ワット)を有し得るが、ピコBS、フェムトBS、および中継BSは、より低い送信電力レベル(たとえば、0.1~2ワット)を有し得る。
[0036]ネットワークコントローラ130は、BSのセットに結合し得、これらのBSの協調および制御を行い得る。ネットワークコントローラ130は、バックホールを介してBSと通信し得る。BSはまた、たとえば、ワイヤレスまたはワイヤラインバックホールを介して直接または間接的に互いに通信し得る。
[0037]UE120(たとえば、120a、120b、120c)は、ワイヤレスネットワーク100全体にわたって分散され得、各UEは固定または移動であり得る。UEは、アクセス端末、端末、移動局、加入者ユニット、局などと呼ばれることもある。UEは、セルラーフォン(たとえば、スマートフォン)、携帯情報端末(PDA)、ワイヤレスモデム、ワイヤレス通信デバイス、ハンドヘルドデバイス、ラップトップコンピュータ、コードレスフォン、ワイヤレスローカルループ(WLL)局、タブレット、カメラ、ゲームデバイス、ネットブック、スマートブック、ウルトラブック、医療デバイスまたは医療機器、生体センサー/生体デバイス、ウェアラブルデバイス(スマートウォッチ、スマート衣類、スマートグラス、スマートリストバンド、スマートジュエリー(たとえば、スマートリング、スマートブレスレット))、エンターテインメントデバイス(たとえば、音楽デバイスまたはビデオデバイス、あるいは衛星ラジオ)、車両構成要素または車両センサー、スマートメーター/スマートセンサー、工業用製造機器、全地球測位システムデバイス、あるいはワイヤレス媒体またはワイヤード媒体を介して通信するように構成された任意の他の好適なデバイスであり得る。
[0038]いくつかのUEは、マシンタイプ通信(MTC)UEあるいは発展型または拡張マシンタイプ通信(eMTC)UEと見なされ得る。MTC UEおよびeMTC UEは、たとえば、基地局、別のデバイス(たとえば、リモートデバイス)、または何らかの他のエンティティと通信し得る、ロボット、ドローン、リモートデバイス、センサー、メーター、モニタ、ロケーションタグなどを含む。ワイヤレスノードは、たとえば、ワイヤード通信リンクまたはワイヤレス通信リンクを介した、ネットワーク(たとえば、インターネットまたはセルラーネットワークなど、ワイドエリアネットワーク)のための、またはネットワークへの接続性を提供し得る。いくつかのUEは、モノのインターネット(IoT)デバイスと見なされ得、および/またはNB-IoT(狭帯域モノのインターネット)デバイスとして実装され得る。いくつかのUEは、顧客構内機器(CPE)と見なされ得る。UE120は、プロセッサ構成要素、メモリ構成要素など、UE120の構成要素を格納するハウジング内に含まれ得る。
[0039]概して、任意の数のワイヤレスネットワークが所与の地理的エリア中に展開され得る。各ワイヤレスネットワークは、特定の無線アクセス技術(RAT)をサポートし得、1つまたは複数の周波数上で動作し得る。RATは、無線技術、エアインターフェースなどと呼ばれることもある。周波数は、キャリア、周波数チャネルなどと呼ばれることもある。各周波数は、異なるRATのワイヤレスネットワーク間の干渉を回避するために、所与の地理的エリア中の単一のRATをサポートし得る。いくつかの場合には、NRまたは5G RATネットワークが展開され得る。
[0040]いくつかの態様では、(たとえば、UE120aおよびUE120eとして示されている)2つまたはそれ以上のUE120が、(たとえば、互いと通信するための媒介として基地局110を使用せずに)1つまたは複数のサイドリンクチャネルを使用して、直接、通信し得る。たとえば、UE120は、ピアツーピア(P2P)通信、デバイスツーデバイス(D2D)通信、(たとえば、ビークルツービークル(V2V)プロトコル、ビークルツーインフラストラクチャ(V2I)プロトコルなどを含み得る)ビークルツーエブリシング(V2X:vehicle-to-everything)プロトコル、メッシュネットワークなどを使用して通信し得る。この場合、UE120は、スケジューリング動作、リソース選択動作、および/または基地局110によって実施されるものとして他の場所で説明される他の動作を実施し得る。たとえば、基地局110は、ダウンリンク制御情報(DCI)、無線リソース制御(RRC)シグナリング、メディアアクセス制御-制御要素(MAC-CE)を介して、またはシステム情報(たとえば、システム情報ブロック(SIB))を介してUE120を構成し得る。
[0041]上記のように、図1は一例として提供されるにすぎない。他の例は、図1に関して説明されるものとは異なり得る。
[0042]図2は、図1中の基地局のうちの1つであり得る基地局110および図1中のUEのうちの1つであり得るUE120の設計200のブロック図を示す。基地局110はT個のアンテナ234a~234tを装備し得、UE120はR個のアンテナ252a~252rを装備し得、ここで、概してT≧1およびR≧1である。
[0043]基地局110において、送信プロセッサ220が、1つまたは複数のUEについてデータソース212からデータを受信し、UEから受信されたチャネル品質インジケータ(CQI)に少なくとも部分的に基づいて各UEのための1つまたは複数の変調およびコーディング方式(MCS)を選択し、そのUEのために選択された(1つまたは複数の)MCSに少なくとも部分的に基づいて各UEのためのデータを処理(たとえば、符号化および変調)し、すべてのUEについてデータシンボルを提供し得る。MCSを減少させることは、スループットを低下させるが、送信の信頼性を増加させる。送信プロセッサ220はまた、(たとえば、半静的リソース区分情報(SRPI)などのための)システム情報および制御情報(たとえば、CQI要求、許可、上位レイヤシグナリングなど)を処理し、オーバーヘッドシンボルおよび制御シンボルを提供し得る。送信プロセッサ220はまた、基準信号(たとえば、セル固有基準信号(CRS))および同期信号(たとえば、1次同期信号(PSS)および2次同期信号(SSS))のための基準シンボルを生成し得る。送信(TX)多入力多出力(MIMO)プロセッサ230は、適用可能な場合、データシンボル、制御シンボル、オーバーヘッドシンボル、および/または基準シンボルに対して空間処理(たとえば、プリコーディング)を実施し得、T個の出力シンボルストリームをT個の変調器(MOD)232a~232tに提供し得る。各変調器232は、出力サンプルストリームを取得するために、(たとえば、OFDMなどのための)それぞれの出力シンボルストリームを処理し得る。各変調器232は、さらに、ダウンリンク信号を取得するために、出力サンプルストリームを処理(たとえば、アナログに変換、増幅、フィルタ処理、およびアップコンバート)し得る。変調器232a~232tからのT個のダウンリンク信号は、それぞれT個のアンテナ234a~234tを介して送信され得る。以下でより詳細に説明される様々な態様によれば、同期信号は、追加の情報を伝達するためにロケーション符号化を用いて生成され得る。
[0044]UE120において、アンテナ252a~252rが、基地局110および/または他の基地局からダウンリンク信号を受信し得、受信信号をそれぞれ復調器(DEMOD)254a~254rに提供し得る。各復調器254は、入力サンプルを取得するために、受信信号を調整(たとえば、フィルタ処理、増幅、ダウンコンバート、およびデジタル化)し得る。各復調器254は、さらに、受信シンボルを取得するために、(たとえば、OFDMなどのための)入力サンプルを処理し得る。MIMO検出器256は、すべてのR個の復調器254a~254rから受信シンボルを取得し、適用可能な場合、受信シンボルに対してMIMO検出を実施し、検出されたシンボルを提供し得る。受信プロセッサ258は、検出されたシンボルを処理(たとえば、復調および復号)し、UE120のための復号されたデータをデータシンク260に提供し、復号された制御情報およびシステム情報をコントローラ/プロセッサ280に提供し得る。チャネルプロセッサは、基準信号受信電力(RSRP)、受信信号強度インジケータ(RSSI)、基準信号受信品質(RSRQ)、チャネル品質インジケータ(CQI)などを決定し得る。いくつかの態様では、UE120の1つまたは複数の構成要素は、ハウジング中に含まれ得る。
[0045]アップリンク上では、UE120において、送信プロセッサ264が、データソース262からのデータと、コントローラ/プロセッサ280からの(たとえば、RSRP、RSSI、RSRQ、CQIなどを備える報告のための)制御情報とを受信および処理し得る。送信プロセッサ264はまた、1つまたは複数の基準信号のための基準シンボルを生成し得る。送信プロセッサ264からのシンボルは、適用可能な場合、TX MIMOプロセッサ266によってプリコーディングされ、(たとえば、DFT-s-OFDM、CP-OFDMなどのために)変調器254a~254rによってさらに処理され、基地局110に送信され得る。基地局110において、UE120からのアップリンク信号は、アンテナ234によって受信され、復調器254によって処理され、適用可能な場合はMIMO検出器236によって検出され、UE120によって送られた、復号されたデータおよび制御情報を取得するために、受信プロセッサ238によってさらに処理され得る。受信プロセッサ238は、復号されたデータをデータシンク239に提供し、復号された制御情報をコントローラ/プロセッサ240に提供し得る。基地局110は、通信ユニット244を含み、通信ユニット244を介してネットワークコントローラ130に通信し得る。ネットワークコントローラ130は、通信ユニット294と、コントローラ/プロセッサ290と、メモリ292とを含み得る。
[0046]基地局110のコントローラ/プロセッサ240、UE120のコントローラ/プロセッサ280、および/または図2の(1つまたは複数の)任意の他の構成要素は、他の場所でより詳細に説明されるように、非線形性のための機械学習に関連する1つまたは複数の技法を実施し得る。たとえば、図2の基地局110のコントローラ/プロセッサ240、UE120のコントローラ/プロセッサ280、および/または(1つまたは複数の)任意の他の構成要素は、たとえば、図6~図8のプロセスおよび/または説明されるような他のプロセスの動作を実施または指示し得る。メモリ242および282は、それぞれ、基地局110およびUE120のためのデータおよびプログラムコードを記憶し得る。スケジューラ246は、ダウンリンク上および/またはアップリンク上のデータ送信のためにUEをスケジュールし得る。
[0047]いくつかの態様では、UE120は、カルマンフィルタを用いて現在の時間ステップについてのチャネル推定値を生成するための手段と、現在の時間ステップのチャネル推定値に基づいて残差を推論するための手段と、残差に基づいて現在の時間ステップのチャネル推定値を更新するための手段とを含み得る。そのような手段は、図2に関して説明されるUE120または基地局110の1つまたは複数の構成要素を含み得る。
[0048]上記のように、図2は一例として提供されるにすぎない。他の例は、図2に関して説明されるものとは異なり得る。
[0049]いくつかの場合には、異なるタイプのアプリケーションおよび/またはサービスをサポートする異なるタイプのデバイスが、セル中に共存し得る。異なるタイプのデバイスの例は、UEハンドセット、顧客構内機器(CPE)、車両、モノのインターネット(IoT)デバイスなどを含む。異なるタイプのアプリケーションの例は、超高信頼低レイテンシ通信(URLLC)アプリケーション、大規模マシンタイプ通信(mMTC)アプリケーション、拡張モバイルブロードバンド(eMBB)アプリケーション、ビークルツーエニシング(V2X:vehicle-to-anything)アプリケーションなどを含む。さらに、いくつかの場合には、単一のデバイスが、同時に、異なるアプリケーションまたはサービスをサポートし得る。
[0050]図3は、本開示のいくつかの態様による、カルマンフィルタ推定値を拡張するために構成された中央処理ユニット(CPU)302またはマルチコアCPUを含み得る、システムオンチップ(SOC)300の例示的な実装形態を示す。SOC300は、基地局110またはUE120中に含まれ得る。変数(たとえば、ニューラル信号およびシナプス荷重)、算出デバイスに関連するシステムパラメータ(たとえば、重みをもつニューラルネットワーク)、遅延、周波数ビン情報、およびタスク情報が、ニューラル処理ユニット(NPU)308に関連するメモリブロックに記憶されるか、CPU302に関連するメモリブロックに記憶されるか、グラフィックス処理ユニット(GPU)304に関連するメモリブロックに記憶されるか、デジタル信号プロセッサ(DSP)306に関連するメモリブロックに記憶されるか、メモリブロック318に記憶され得るか、または複数のブロックにわたって分散され得る。CPU302において実行される命令が、CPU302に関連するプログラムメモリからロードされ得るか、またはメモリブロック318からロードされ得る。
[0051]SOC300はまた、GPU304、DSP306など、特定の機能に適合された追加の処理ブロックと、第5世代(5G)接続性、第4世代ロングタームエボリューション(4G LTE)接続性、Wi-Fi(登録商標)接続性、USB接続性、Bluetooth(登録商標)接続性などを含み得る接続性ブロック310と、たとえば、ジェスチャーを検出および認識し得るマルチメディアプロセッサ312とを含み得る。一実装形態では、NPUは、CPU、DSP、および/またはGPUにおいて実装される。SOC300はまた、センサープロセッサ314、画像信号プロセッサ(ISP)316、および/または全地球測位システムを含み得るナビゲーションモジュール320を含み得る。
[0052]SOC300はARM命令セットに基づき得る。本開示の一態様では、汎用プロセッサ302にロードされる命令は、カルマンフィルタを用いて現在の時間ステップについてのチャネル推定値を生成することと、現在の時間ステップのチャネル推定値に基づいて残差を推論することと、残差に基づいて現在の時間ステップのチャネル推定値を更新することとを行うためのコードを備え得る。
[0053]深層学習アーキテクチャは、各層において連続的により高い抽象レベルで入力を表現するように学習し、それにより、入力データの有用な特徴表現を蓄積することによって、オブジェクト認識タスクを実施し得る。このようにして、深層学習は、旧来の機械学習の主要なボトルネックに対処する。深層学習の出現より前に、オブジェクト認識問題に対する機械学習手法は、場合によっては浅い分類器(shallow classifier)と組み合わせて、人的に設計された特徴に大きく依拠していることがある。浅い分類器は、たとえば、入力がどのクラスに属するかを予測するために、特徴ベクトル成分の重み付き和がしきい値と比較され得る2クラス線形分類器であり得る。人的に設計された特徴は、領域の専門知識をもつ技術者によって特定の問題領域に適合されたテンプレートまたはカーネルであり得る。対照的に、深層学習アーキテクチャは、人間の技術者が設計し得るものと同様である特徴を表現するように学習するが、トレーニングを通してそれを行い得る。さらに、深層ネットワークは、人間が考慮していないことがある新しいタイプの特徴を表現し、認識するように学習し得る。
[0054]深層学習アーキテクチャは特徴の階層を学習し得る。たとえば、視覚データが提示された場合、第1の層は、エッジなど、入力ストリーム中の比較的単純な特徴を認識するように学習し得る。別の例では、聴覚データが提示された場合、第1の層は、特定の周波数におけるスペクトル電力を認識するように学習し得る。第1の層の出力を入力として取る第2の層は、視覚データの場合の単純な形状、または聴覚データの場合の音の組合せなど、特徴の組合せを認識するように学習し得る。たとえば、上位層は、視覚データ中の複雑な形状、または聴覚データ中の単語を表現するように学習し得る。さらに上位の層は、共通の視覚オブジェクトまたは発話フレーズを認識するように学習し得る。
[0055]深層学習アーキテクチャは、自然階層構造を有する問題に適用されたとき、特にうまく機能し得る。たとえば、原動機付き車両の分類は、ホイール、フロントガラス、および他の特徴を認識するための第1の学習から恩恵を受け得る。これらの特徴は、車、トラック、および飛行機を認識するために、異なる方法で、上位層において組み合わせられ得る。
[0056]ニューラルネットワークは、様々な結合性パターンを用いて設計され得る。フィードフォワードネットワークでは、情報が下位層から上位層に受け渡され、所与の層における各ニューロンは、上位層におけるニューロンに通信する。上記で説明されたように、フィードフォワードネットワークの連続する層において、階層表現が蓄積され得る。ニューラルネットワークはまた、リカレントまたは(トップダウンとも呼ばれる)フィードバック結合を有し得る。リカレント結合では、所与の層におけるニューロンからの出力は、同じ層における別のニューロンに通信され得る。リカレントアーキテクチャは、ニューラルネットワークに順次配信される入力データチャンクのうちの2つ以上にわたるパターンを認識するのに役立ち得る。所与の層におけるニューロンから下位層におけるニューロンへの結合は、フィードバック(またはトップダウン)結合と呼ばれる。高レベルの概念の認識が、入力の特定の低レベルの特徴を弁別することを助け得るとき、多くのフィードバック結合をもつネットワークが役立ち得る。
[0057]ニューラルネットワークの層間の結合は全結合または局所結合であり得る。図4Aは、全結合ニューラルネットワーク402の一例を示す。全結合ニューラルネットワーク402では、第1の層におけるニューロンは、第2の層における各ニューロンが第1の層におけるあらゆるニューロンから入力を受信するように、それの出力を第2の層におけるあらゆるニューロンに通信し得る。図4Bは、局所結合ニューラルネットワーク404の一例を示す。局所結合ニューラルネットワーク404では、第1の層におけるニューロンは、第2の層における限られた数のニューロンに結合され得る。より一般的には、局所結合ニューラルネットワーク404の局所結合層は、層における各ニューロンが同じまたは同様の結合性パターンを有するように構成されるが、異なる値を有し得る結合強度で構成され得る(たとえば、410、412、414、および416)。局所結合の結合性パターンは、所与の領域中の上位層ニューロンが、ネットワークへの総入力のうちの制限された部分のプロパティにトレーニングを通して調節された入力を受信し得るので、上位層において空間的に別個の受容野を生じ得る。
[0058]局所結合ニューラルネットワークの一例は、畳み込みニューラルネットワークである。図4Cは、畳み込みニューラルネットワーク406の一例を示す。畳み込みニューラルネットワーク406は、第2の層における各ニューロンのための入力に関連する結合強度が共有されるように構成され得る(たとえば、408)。畳み込みニューラルネットワークは、入力の空間ロケーションが有意味である問題に好適であり得る。
[0059]1つのタイプの畳み込みニューラルネットワークは、深層畳み込みネットワーク(DCN)である。図4Dは、車載カメラなどの画像キャプチャデバイス430から入力された画像426から視覚特徴を認識するように設計されたDCN400の詳細な例を示す。本例のDCN400は、交通標識と、交通標識上で与えられた数とを識別するようにトレーニングされ得る。もちろん、DCN400は、車線マーキングを識別すること、または交通信号を識別することなど、他のタスクのためにトレーニングされ得る。
[0060]DCN400は、教師あり学習を用いてトレーニングされ得る。トレーニング中に、DCN400は、速度制限標識の画像426など、画像を提示され得、次いで、出力422を生成するために、フォワードパスが算出され得る。DCN400は、特徴抽出セクションと分類セクションとを含み得る。画像426を受信すると、畳み込み層432が、特徴マップ418の第1のセットを生成するために、畳み込みカーネル(図示せず)を画像426に適用し得る。一例として、畳み込み層432のための畳み込みカーネルは、28×28特徴マップを生成する5×5カーネルであり得る。本例では、4つの異なる特徴マップが、特徴マップ418の第1のセットにおいて生成されるので、4つの異なる畳み込みカーネルが、畳み込み層432において画像426に適用された。畳み込みカーネルは、フィルタまたは畳み込みフィルタと呼ばれることもある。
[0061]特徴マップ418の第1のセットは、特徴マップ420の第2のセットを生成するために、最大プーリング(pooling)層(図示せず)によってサブサンプリングされ得る。最大プーリング層は、特徴マップ418の第1のセットのサイズを低減する。すなわち、14×14などの特徴マップ420の第2のセットのサイズが、28×28などの特徴マップ418の第1のセットのサイズよりも小さい。低減されたサイズは、メモリ消費を低減しながら、後続の層に同様の情報を提供する。特徴マップ420の第2のセットは、特徴マップの1つまたは複数の後続のセット(図示せず)を生成するために、1つまたは複数の後続の畳み込み層(図示せず)を介して、さらに畳み込まれ得る。
[0062]図4Dの例では、特徴マップ420の第2のセットは、第1の特徴ベクトル424を生成するために畳み込まれる。さらに、第1の特徴ベクトル424は、第2の特徴ベクトル428を生成するために、さらに畳み込まれる。第2の特徴ベクトル428の各特徴は、「標識」、「60」、および「100」など、画像426の可能な特徴に対応する数を含み得る。ソフトマックス関数(図示せず)が、第2の特徴ベクトル428中の数を確率にコンバートし得る。したがって、DCN400の出力422は、画像426が1つまたは複数の特徴を含む確率である。
[0063]本例では、「標識」および「60」についての出力422における確率は、「30」、「40」、「50」、「70」、「80」、「90」、および「100」など、出力422の他のものの確率よりも高い。トレーニングの前に、DCN400によって生成される出力422は、不正確である可能性がある。したがって、誤差が、出力422とターゲット出力との間で計算され得る。ターゲット出力は、画像426(たとえば、「標識」および「60」)のグランドトゥルース(ground truth)である。次いで、DCN400の重みは、DCN400の出力422がターゲット出力とより密接に整合されるように調整され得る。
[0064]重みを調整するために、学習アルゴリズムは、重みのための勾配ベクトルを算出し得る。勾配は、重みが調整された場合に、誤差が増加または減少する量を示し得る。最上層において、勾配は、最後から2番目の層におけるアクティブ化されたニューロンと出力層におけるニューロンとを結合する重みの値に直接対応し得る。下位層では、勾配は、重みの値と、上位層の算出された誤差勾配とに依存し得る。次いで、重みは、誤差を低減するために調整され得る。重みを調整するこの様式は、それがニューラルネットワークを通して「バックワードパス」を伴うので、「バックプロパゲーション(back propagation)」と呼ばれることがある。
[0065]実際には、重みの誤差勾配は、計算された勾配が真の誤差勾配を近似するように、少数の例にわたって計算され得る。この近似方法は、確率的勾配降下(stochastic gradient descent)と呼ばれることがある。システム全体の達成可能な誤差レートが減少しなくなるまで、または誤差レートがターゲットレベルに達するまで、確率的勾配降下が繰り返され得る。学習の後に、DCNは新しい画像(たとえば、画像426の速度制限標識)を提示され得、ネットワークを通したフォワードパスは、DCNの推論または予測と見なされ得る出力422をもたらし得る。
[0066]深層信念ネットワーク(DBN:deep belief network)は、隠れノードの複数の層を備える確率モデルである。DBNは、トレーニングデータセットの階層表現を抽出するために使用され得る。DBNは、制限ボルツマンマシン(RBM)の層を積層することによって取得され得る。RBMは、入力のセットにわたる確率分布を学習することができる人工ニューラルネットワークのタイプである。RBMは、各入力がそれにカテゴリー分類されるべきクラスに関する情報の不在下で確率分布を学習することができるので、RBMは、教師なし学習においてしばしば使用される。ハイブリッド教師なしおよび教師ありパラダイムを使用して、DBNの下部RBMは、教師なし様式でトレーニングされ得、特徴抽出器として働き得、上部RBMは、(前の層からの入力とターゲットクラスとの同時分布上で)教師あり様式でトレーニングされ得、分類器として働き得る。
[0067]深層畳み込みネットワーク(DCN)は、追加のプーリング層および正規化層で構成された、畳み込みネットワークのネットワークである。DCNは、多くのタスクに関して最先端の性能を達成している。DCNは、入力と出力ターゲットの両方が、多くの標本について知られており、勾配降下方法の使用によってネットワークの重みを変更するために使用される、教師あり学習を使用してトレーニングされ得る。
[0068]DCNは、フィードフォワードネットワークであり得る。さらに、上記で説明されたように、DCNの第1の層におけるニューロンから次の上位層におけるニューロンのグループへの結合は、第1の層におけるニューロンにわたって共有される。DCNのフィードフォワードおよび共有結合は、高速処理のために活用され得る。DCNの算出負担は、たとえば、リカレントまたはフィードバック結合を備える同様のサイズのニューラルネットワークのそれよりもはるかに少ないことがある。
[0069]畳み込みネットワークの各層の処理は、空間的に不変のテンプレートまたは基底投射と見なされ得る。入力が、カラー画像の赤色、緑色、および青色チャネルなど、複数のチャネルに最初に分解された場合、その入力に関してトレーニングされた畳み込みネットワークは、画像の軸に沿った2つの空間次元と、色情報をキャプチャする第3の次元とをもつ、3次元であると見なされ得る。畳み込み結合の出力は、後続の層において特徴マップを形成すると考えられ、特徴マップ(たとえば、220)の各要素が、前の層(たとえば、特徴マップ218)における様々なニューロンから、および複数のチャネルの各々から入力を受信し得る。特徴マップにおける値は、整流(rectification)、max(0,x)など、非線形性を用いてさらに処理され得る。隣接するニューロンからの値は、さらにプールされ得、これは、ダウンサンプリングに対応し、さらなる局所不変性と次元削減とを与え得る。白色化に対応する正規化はまた、特徴マップにおけるニューロン間のラテラル抑制によって適用され得る。
[0070]深層学習アーキテクチャの性能は、より多くのラベリングされたデータポイントが利用可能となるにつれて、または算出能力が増加するにつれて、向上し得る。現代の深層ニューラルネットワークは、ほんの15年前に一般的な研究者にとって利用可能であったものより数千倍も大きいコンピューティングリソースを用いて、ルーチン的にトレーニングされる。新しいアーキテクチャおよびトレーニングパラダイムが、深層学習の性能をさらに高め得る。整流された線形ユニット(rectified linear unit)は、勾配消失(vanishing gradients)として知られるトレーニング問題を低減し得る。新しいトレーニング技法は、過学習(over-fitting)を低減し、したがって、より大きいモデルがより良い汎化を達成することを可能にし得る。カプセル化技法は、所与の受容野においてデータを抽出し、全体的性能をさらに高め得る。
[0071]図5は、本開示の態様による、深層畳み込みネットワーク550を示すブロック図である。深層畳み込みネットワーク550は、結合性および重み共有に基づく、複数の異なるタイプの層を含み得る。図5に示されているように、深層畳み込みネットワーク550は、畳み込みブロック554A、554Bを含む。畳み込みブロック554A、554Bの各々は、畳み込み層(CONV)356と、正規化層(LNorm)558と、最大プーリング層(MAX POOL)560とで構成され得る。
[0072]畳み込み層556は、1つまたは複数の畳み込みフィルタを含み得、これは、特徴マップを生成するために入力データに適用され得る。畳み込みブロック554A、554Bのうちの2つのみが示されているが、本開示はそのように限定しておらず、代わりに、設計選好に従って、任意の数の畳み込みブロック554A、554Bが深層畳み込みネットワーク550中に含まれ得る。正規化層558は、畳み込みフィルタの出力を正規化し得る。たとえば、正規化層558は、白色化またはラテラル抑制を行い得る。最大プーリング層560は、局所不変性および次元削減のために、空間にわたってダウンサンプリングアグリゲーションを行い得る。
[0073]たとえば、深層畳み込みネットワークの並列フィルタバンクは、高性能および低電力消費を達成するために、SOC300のCPU302またはGPU304にロードされ得る。代替実施形態では、並列フィルタバンクは、SOC300のDSP306またはISP316にロードされ得る。さらに、深層畳み込みネットワーク550は、それぞれ、センサーおよびナビゲーションに専用の、センサープロセッサ314およびナビゲーションモジュール320など、SOC300上に存在し得る他の処理ブロックにアクセスし得る。
[0074]深層畳み込みネットワーク550はまた、1つまたは複数の全結合層562(FC1およびFC2)を含み得る。深層畳み込みネットワーク550は、ロジスティック回帰(LR)層564をさらに含み得る。深層畳み込みネットワーク550の各層556、558、560、562、564の間には、更新されるべき重み(図示せず)がある。層(たとえば、556、558、560、562、564)の各々の出力は、畳み込みブロック554Aのうちの第1のものにおいて供給された入力データ552(たとえば、画像、オーディオ、ビデオ、センサーデータおよび/または他の入力データ)から階層特徴表現を学習するために、深層畳み込みネットワーク550中の層(たとえば、556、558、560、562、564)のうちの後続の層の入力として働き得る。深層畳み込みネットワーク550の出力は、入力データ552についての分類スコア566である。分類スコア566は、確率のセットであり得、ここで、各確率は、入力データが特徴のセットからの特徴を含む確率である。
[0075]図6は、本開示の態様による、リカレントニューラルネットワーク(RNN)600を示す概略図である。リカレントニューラルネットワーク600は、入力層602と、リカレント結合をもつ隠れ層604と、出力層606とを含む。複数の入力ベクトルxT(たとえば、X={x0,x1,x2...xt})をもつ入力シーケンスXを仮定すれば、リカレントニューラルネットワーク600は、出力シーケンスZ(たとえば、Z={z0...zT})の各出力ベクトルztのための分類ラベルytを予測することになる。図6に示されているように、M個のユニット(たとえば、ho...ht)をもつ隠れ層604が、入力層602と出力層606との間で指定される。隠れ層604のM個のユニットは、入力シーケンスXの前の値(t’<t)に関する情報を記憶する。M個のユニットは算出ノード(たとえば、ニューロン)であり得る。一構成では、リカレントニューラルネットワーク600は、入力xTを受信し、以下の式を反復することによって、出力zTの分類ラベルytを生成する。
ここで、Whx、Whh、およびWyhは重み行列であり、bhおよびbyはバイアスであり、stおよびotは、それぞれ、隠れ層604および出力層606への入力であり、fおよびgは非線形関数である。関数fは、整流線形ユニット(RELU:rectifier linear unit)を備え得、いくつかの態様では、関数gは、線形関数またはソフトマックス関数を備え得る。さらに、隠れ層ノードは、t=0においてho=biであるような固定バイアスbiに初期化される。いくつかの態様では、biはゼロに設定され得る(たとえば、bi=0)。単一のトレーニングペア(x,y)をもつリカレントニューラルネットワークのための、目的関数C(θ)は、C(θ)=Σtt(z,y(θ))として定義され、ここで、θは、リカレントニューラルネットワークにおけるパラメータのセット(重みおよびバイアス)を表す。
[0076]上記のように、図3~図6は例として与えられている。他の例は、図3~図6に関して説明されるものとは異なり得る。
[0077]説明されたように、受信機と送信機との間のチャネルが、離散確率過程によって推定され得、ここで、各時間ステップが1つの直交周波数分割多重(OFDM)シンボルに対応する。離散確率過程は、チャネル推定値を表すベクトルまたはテンソルを生成し得る。いくつかの実装形態では、チャネルは、ワイヤレス通信チャネルであり得る。いくつかの例では、ワイヤレス通信チャネルは、カルマンフィルタ(KF)によって追跡され得る。いくつかのそのような例では、カルマンフィルタは、時間とともにワイヤレス通信チャネルの推定を追跡し得る。
[0078]さらに、説明されたように、カルマンフィルタは、隠れマルコフモデル(HMM)を仮定し、ここで、真のチャネルが隠れ過程に対応し、観測されたパイロットが、観測された過程に対応する。カルマンフィルタは、隠れマルコフモデルに基づいてチャネルを追跡し得る。カルマンフィルタについてのパラメータが、導出されるか、または、観測されたパイロットなど、観測されたデータに基づき得る。いくつかの場合には、パラメータは、ドップラースペクトルについてのJakesのモデルなど、追加の仮定に基づいて分析的に導出され得る。
[0079]いくつかの例では、カルマンフィルタは、チャネルについて線形遷移ダイナミクスならびに線形観測過程を仮定し得る。いくつかのそのような例では、カルマンフィルタの仮定は、チャネルの実際の発展ダイナミクスから逸脱し、それにより、チャネル推定値の精度を低減し得る。たとえば、チャネル推定値の精度は、高ドップラーシフト、または異なるドップラーシフトの組合せなど、いくつかのチャネル条件の下で低減され得る。別の例として、チャネル推定値の精度は、単一の追跡機能が様々な通信シナリオのために使用されるとき、低減され得る。したがって、カルマンフィルタから導出されたチャネル推定値の精度を向上させることが望ましいことがある。
[0080]本開示の態様は、チャネル推定値を向上させるために、リカレントニューラルネットワークなど、人工ニューラルネットワークを用いてカルマンフィルタを拡張することを対象とする。説明を簡単にするために、拡張されたカルマンフィルタは、ニューラル拡張されたカルマンフィルタ(NA-KF)と呼ばれることがある。さらに、ニューラルネットワークは、ニューラル拡張ユニットと呼ばれることがある。いくつかの例では、NA-KFは、カルマンフィルタの出力にカプセル化された粗いチャネルダイナミクスを組み込み得る。ドップラー値が、粗いチャネルダイナミクスの一例である。いくつかの例では、NA-KFは、追加の出力としてドップラー値を提供し得る。さらに、NA-KFは、カルマンフィルタの推定値に残差を加算することによって、実際のチャネルダイナミクスとカルマンフィルタ仮定との間のずれを補正し得る。いくつかの例では、伝達性を向上させるために、チャネルを追跡するのではなく、残差誤差が追跡され得る。いくつかの実装形態では、ニューラル拡張ユニットのパターン学習機能が、チャネル推定値を向上させるために、カルマンフィルタによって生成されたチャネル分析と組み合わせられ得る。
[0081]説明されたように、カルマンフィルタは、ニューラル拡張ユニット(たとえば、リカレントニューラルネットワーク)を用いて拡張され得る。いくつかの実装形態では、各時間ステップにおいて、ニューラル拡張ユニットは、カルマンフィルタの出力に基づいて残差を生成し得る。いくつかの例では、各時間ステップにおいて、カルマンフィルタは、前の時間ステップの平均推定値と共分散推定値とに基づいて、平均推定値と共分散推定値とを出力し得る。残差は、残差補正された平均および残差補正された共分散など、残差補正された推定値を生成するためにカルマンフィルタと組み合わせられ得る。いくつかの例では、カルマンフィルタの出力は、チャネル観測値にも基づき得る。いくつかのそのような例では、チャネル観測値は、受信されたパイロットシンボル(たとえば、基準信号)から取得され得る。いくつかの例では、パイロットシンボルの不在下で、ニューラル拡張ユニットは、受信されたパイロットシンボルから導出された実際のパイロット観測値の不在下で合成パイロット観測値を生成し得る。
[0082]本開示の態様によれば、ニューラル拡張ユニットは、カルマンフィルタの直接入力または直接出力を変更しない。いくつかの例では、ニューラル拡張ユニットは、独立したカルマンフィルタを提供するために無効にされ得る。そのような例では、独立したカルマンフィルタは、従来のワイヤレス通信システムなど、従来の通信システムとの後方互換性があり得る。
[0083]いくつかの例では、カルマンフィルタは、以下の隠れマルコフモデル(HMM)を仮定し得る。
ここで、パラメータhtは、離散時間ステップtにおける真のチャネルの状態のベクトル(たとえば、平坦化されたベクトル)を表し、パラメータwtはプロセス雑音を表し、パラメータvtは観測雑音を表し、パラメータAおよびBは係数を表す。多入力多出力チャネルなど、いくつかの場合には、パラメータhtは、離散時間ステップtにおけるチャネルの状態のテンソル(tensor)を表し得る。さらに、パラメータotは、パイロットシンボルから決定されたチャネルhtの一部分の雑音の多い観測値を表す。パラメータotは、パイロット観測値と呼ばれることがある。
[0084]説明されたように、受信機は、チャネル上で受信されたパイロットシンボルに基づいてチャネルを推定し得る。チャネル推定値は、たとえば、最大比合成、等化、マッチドフィルタ処理、データ検出、または復調のために使用され得る。いくつかの例では、図1を参照しながら説明されたような基地局110など、送信機は、周期的間隔などの間隔においてパイロットシンボルを送信し得る。いくつかの他の例では、パイロットシンボルは、非同期的にも送信され得る。いくつかの場合には、送信波形は、復号されたデータまたは制御ペイロードに基づいて再構築され得る。送信波形は、チャネル推定のためのパイロットとして使用され得る。カルマンフィルタは、現在の状態におけるチャネル状態htが、チャネル状態ht-1~ht-Nなど、1つまたは複数の前のチャネル状態におけるチャネル状態に依存すると仮定する。式5において、現在のチャネル状態htは、前のチャネル状態ht-1とプロセス雑音wtとの線形変換に基づき得る。さらに、パイロット観測値otの合成推定値が、現在のチャネル状態htと観測された雑音vtとの線形変換に基づいて取得され得る。
[0085]カルマンフィルタのパラメータは、行列AおよびBと、プロセス雑音wtと、観測雑音vtとを含み得る。パラメータは、Jakesのモデルなどのモデルから学習または導出され得る。カルマンフィルタは、チャネル状態htの平均
推定値と、共分散
推定値とを、前のチャネル状態ht-1についての観測値ot(利用可能なとき)と、平均
推定値と共分散
推定値とに基づいて、生成し得る。推定プロセスは2ステッププロセスであり得、ここで、各ステップは線形であり得る。
[0086]いくつかの例では、現在のチャネル状態htの平均
推定値および共分散
推定値など、現在のチャネル推定値は、前のチャネル状態からの平均
推定値と共分散
および
推定値とに基づき得る。たとえば、前のチャネル状態ht-1のベクトルが、複数の前のチャネル状態ht-1~ht-Nの連結されたベクトルと交換され得る。一構成では、より高次の自己回帰チャネルモデルが、式5中のパラメータhtを複数の前の時間ステップについてのチャネルベクトルの連結を表すパラメータstと交換することによって追跡され得る。いくつかの例では、チャネル推定は、時間領域において実施され得、したがって、さらなる制限が、独立したチャネルタップなど、さらなる事前情報を含めるために導入され得る。一例では、行列Aは対角行列に制限され得る。
[0087]図7は、本開示の態様による、複数の時間ステップにおいてニューラル拡張ユニット704を用いてカルマンフィルタ(KF)702の出力を拡張することの例700を示すブロック図である。図7の例では、カルマンフィルタ702とニューラル拡張ユニット704とは、図1および図2を参照しながら説明されたUE120など、UEの構成要素であり得る。いくつかのそのような例では、チャネル推定値は、図2を参照しながら説明されたようなコントローラ/プロセッサ280、送信プロセッサ264、および/または復調器254a~254rのうちの1つまたは複数によって使用され得る。いくつかの他の例では、カルマンフィルタ702とニューラル拡張ユニット704とは、図1および図2を参照しながら説明された基地局110など、基地局の構成要素であり得る。いくつかのそのような例では、チャネル推定値は、図2を参照しながら説明されたようなコントローラ/プロセッサ240、送信プロセッサ220、および/または復調器232a~232tのうちの1つまたは複数によって使用され得る。図7のカルマンフィルタ702とニューラル拡張ユニット704とは、ニューラル拡張されたカルマンフィルタ(NA-KF)の一例であり得る。
[0088]図7に示されているように、現在の時間ステップtにおいて、カルマンフィルタ702は、前のチャネル推定値の平均
および共分散
と、現在の時間ステップtの観測値otとを受信する。説明されたように、時間ステップtにおける観測値otは、時間ステップtにおいて受信されたパイロットシンボルに基づいて生成され得る。いくつかの例では、観測値otは、瞬時チャネル推定値と呼ばれることがある。図7の例では、入力に基づいて、カルマンフィルタ702は、現在の時間ステップtについての平均
と共分散
とを生成する。平均
と共分散
とは、現在の時間ステップtについての初期チャネル推定値を表し得る。
[0089]各時間ステップにおいて、カルマンフィルタ702からの平均
と共分散
とは、ニューラル拡張ユニット704に入力され得る。図7に示されているように、ニューラル拡張ユニット704は、現在の時間ステップtからの観測値otをも受信し得る。ニューラル拡張ユニット704は、長短期記憶(LSTM)ネットワーク、ゲート付きリカレントユニット(GRU)、または別のタイプのリカレントニューラルネットワークなど、リカレントネットワークであり得る。ニューラル拡張ユニット704は、現在の時間ステップtについての平均の残差
と共分散の残差
とを生成し得る。図7に示されているように、平均の残差
と共分散の残差
とは、現在の時間ステップにおけるチャネル状態の平均
と共分散
との実際の推定値を取得するためにカルマンフィルタ702の平均
と共分散
とを更新し得る。いくつかの例では、平均の残差
は、平均
の実際の推定値を取得するためにカルマンフィルタの平均
に加算され得る。さらに、共分散の残差
は、共分散
の実際の推定値を取得するためにカルマンフィルタ702の共分散
に加算され得る。
[0090]従来のシステムでは、ある時間ステップについてカルマンフィルタ702によって生成された平均
と共分散
とは、後続の時間ステップについてのチャネル推定値を決定するためにカルマンフィルタ702に入力され得る。対照的に、本開示の態様は、カルマンフィルタ702の推定値を補正するために、平均の残差
と共分散の残差
とを用いて現在の時間ステップの平均
と共分散
とを拡張する(augment)。すなわち、カルマンフィルタ702の出力は、ニューラル拡張ユニット704の出力とインターリーブされる。補正された推定値は、後続の推定値のためにカルマンフィルタ702によって使用され得る。図7の例700は、複数の時間ステップt-1、t、およびt+1についてのプロセスを示す。複数のカルマンフィルタ702とニューラル拡張ユニット704とが、複数の時間ステップにわたるタイムラインを示すために説明の目的で示される。本開示の態様は、各時間ステップについて単一のカルマンフィルタ702と単一のニューラル拡張ユニット704とを使用し得る。代替的に、複数のカルマンフィルタ702とニューラル拡張ユニット704とが、受信デバイスのために指定され得る。
[0091]図7に示されているように、現在の時間ステップtに関して説明されるプロセスは、次の時間ステップt+1など、後続の時間ステップについて繰り返され得る。一構成では、パイロットシンボルが受信されない(たとえば、観測値が欠落している)とき、ニューラル拡張ユニット704は、前の時間ステップt-1においてニューラル拡張ユニット704によって生成された、現在の時間ステップtについての合成観測値
を使用し得る。たとえば、図7に示されているように、現在の時間ステップtにおいて、ニューラル拡張ユニット704は、次の時間ステップt+1についての合成観測値
を生成する。いくつかの実装形態では、あらゆる時間ステップにおいて、ニューラル拡張ユニット704は、カルマンフィルタ702のために残差をモデル化し、また、次のステップについての合成観測値
をモデル化し得る。観測値が欠落している場合には、ニューラル拡張ユニット704は、最近の時間ステップ中にそれ自体によってモデル化された、現在の時間ステップについての合成観測値
を入力として取る。代替的に、実パイロットが観測された場合には、ニューラル拡張ユニット704は、実観測値oを入力として使用し得る。図7の例700では、随意のステップが破線で示される。合成観測値
は、カルマンフィルタ702またはニューラル拡張ユニット704のうちの一方または両方によって使用され得る。いくつかの実装形態では、ニューラル拡張ユニット704は、チャネル状態htのグランドトゥルースまたは実際の観測値otのグランドトゥルースに基づいて合成観測値
を生成するようにトレーニングされ得る。
[0092]いくつかの実装形態では、ニューラル拡張ユニット704は、(たとえば、LSTMネットワークにおいて実施されるように)1つまたは複数の内部状態を維持し得る。いくつかの例では、独立したチャネルタップなど、追加の情報が、ニューラル拡張ユニット704によって学習されたパラメータに追加の制限を課し得る。
[0093]いくつかの実装形態では、カルマンフィルタ702とニューラル拡張ユニット704とは、同時にトレーニングされ得る。すなわち、カルマンフィルタ702とニューラル拡張ユニット704とは、1つのシステム(たとえば、機能)と見なされ得、カルマンフィルタ702とニューラル拡張ユニット704とのパラメータは、一緒にトレーニングされ得る。パラメータは、カルマンパラメータならびにニューラルネットワークパラメータを含む。
[0094]別の実装形態では、カルマンフィルタ702は、個々にトレーニングされ得る。カルマンフィルタをトレーニングした後に、カルマンフィルタ702とニューラル拡張ユニット704との組合せ(たとえば、NA-KF)が、全体としてトレーニングされ得る。この実装形態では、カルマンフィルタ702のパラメータは、カルマンフィルタ702とニューラル拡張ユニット704との組合せが全体としてトレーニングされるとき、固定され得る。カルマンフィルタ702を別個にトレーニングした後にカルマンフィルタ702とニューラル拡張ユニット704との組合せがトレーニングされるとき、トレーニングデータは、ニューラルネットワークパラメータをトレーニングし得る。一構成では、ニューラルネットワークパラメータは、チャネル推定値と実際のグランドトゥルースチャネルとの間の損失に基づいてトレーニングされ得る。そのような例では、チャネル推定値は、カルマンフィルタ702の推定値とニューラル拡張ユニット704から出力された残差との和であり得る。残差誤差は、次いで、ニューラル拡張ユニット704のためのグランドトゥルースとして使用され得る。代替的に、説明されたように、カルマンフィルタ702とニューラル拡張ユニット704との組合せを全体としてトレーニングするとき、カルマンフィルタ702のパラメータは固定され得、ニューラル拡張ユニット704のパラメータはトレーニングされ得る。すなわち、トレーニングは、カルマンフィルタ702が個々にトレーニングされ、次いで、ニューラルネットワークパラメータ(たとえば、重み)を学習するためにカルマンフィルタ702とニューラル拡張ユニット704との組合せに差し込まれる、2ステッププロセスであり得る。
[0095]合成観測値
は、トレーニング中に随意であり得る。微調整ステップが、オンラインまたはオフラインで実施され得る。微調整プロセスは、説明されたトレーニングプロセスに基づいて適用され得る。
[0096]図8は、本開示の態様による、ニューラル拡張されたカルマンフィルタを用いてチャネルを推定し、チャネルを追跡するように構成された、ワイヤレス通信デバイス800の一例を示すブロック図である。ワイヤレス通信デバイス800は、図1および図2を参照しながら説明された基地局110、または図1および図2を参照しながら説明されたUE120の態様の一例であり得る。ワイヤレス通信デバイス800は、(たとえば、1つまたは複数のバスを介して)互いに通信中であり得る、受信機810と、通信マネージャ815と、送信機820とを含み得る。いくつかの実装形態では、受信機810と送信機820。いくつかの例では、ワイヤレス通信デバイス800は、図9を参照しながら以下で説明されるプロセス900の動作を含む動作を実施するように構成される。
[0097]いくつかの例では、ワイヤレス通信デバイス800は、少なくとも1つのプロセッサと少なくとも1つのモデム(たとえば、5Gモデムまたは他のセルラーモデム)とを含む、チップ、システムオンチップ(SoC)、チップセット、パッケージ、またはデバイスを含むことができる。いくつかの例では、通信マネージャ815、またはそれの副構成要素は、別個で個別の構成要素であり得る。いくつかの例では、通信マネージャ815の少なくともいくつかの構成要素は、メモリに記憶されたソフトウェアとして少なくとも部分的に実装される。たとえば、通信マネージャ815の構成要素の1つまたは複数の部分は、それぞれの構成要素の機能または動作を実施するために、プロセッサによって実行可能な非一時的コードとして実装され得る。
[0098]受信機810は、制御チャネル(たとえば、物理ダウンリンク制御チャネル(PDCCH))およびデータチャネル(たとえば、物理ダウンリンク共有チャネル(PDSCH))を含む様々なチャネルを介して、1つまたは複数の他のワイヤレス通信デバイスから、パケットの形態においてなど、1つまたは複数の基準信号(たとえば、周期的に構成されたCSI-RS、非周期的に構成されたCSI-RS、またはマルチビーム固有基準信号)、同期信号(たとえば、同期信号ブロック(SSB))、制御情報、および/またはデータ情報を受信し得る。他のワイヤレス通信デバイスは、限定はしないが、図1および図2を参照しながら説明された別の基地局110または別のUE120を含み得る。
[0099]受信された情報は、ワイヤレス通信デバイス800の他の構成要素に受け渡され得る。受信機810は、図2を参照しながら説明された受信プロセッサ258または238の態様の一例であり得る。受信機810は、アンテナのセットと結合されるか、または場合によってはアンテナのセットを利用し得る、無線周波数(RF)チェーンのセットを含み得る(たとえば、アンテナのセットは、図2を参照しながら説明された、アンテナ252a~252rまたはアンテナ234a~234tの態様の一例であり得る)。
[00100]送信機820は、通信マネージャ815またはワイヤレス通信デバイス800の他の構成要素によって生成された信号を送信し得る。いくつかの例では、送信機820は、トランシーバにおいて受信機810とコロケートされ得る。送信機820は、図2を参照しながら説明された送信プロセッサ264の態様の一例であり得る。送信機820は、受信機810と共有されるアンテナ要素であり得る、アンテナのセットと結合されるか、または場合によってはアンテナのセットを利用し得る(たとえば、アンテナのセットは、図2を参照しながら説明された、アンテナ252a~252rまたはアンテナ234a~234tの態様の一例であり得る)。いくつかの例では、送信機820は、物理アップリンク制御チャネル(PUCCH)において制御情報を送信し、物理アップリンク共有チャネル(PUSCH)においてデータを送信するように構成される。
[00101]通信マネージャ815は、図2を参照しながら説明されたコントローラ/プロセッサ240または280の態様の一例であり得る。通信マネージャ815は、カルマンフィルタ825とニューラル拡張ユニット830とを含む。いくつかの例では、受信機810と連携して動作して、カルマンフィルタ825は、通信デバイスにおいて受信された第1の信号に基づいて、現在の時間ステップについてのチャネルの初期チャネル推定値を生成し得る。いくつかの例では、チャネルは、ワイヤレス通信チャネルであり得る。さらに、カルマンフィルタ825および受信機810と連携して動作して、ニューラル拡張ユニット830は、現在の時間ステップの初期チャネル推定値の残差を推論する。ニューラル拡張ユニット830は、図7を参照しながら説明されたニューラル拡張ユニット704など、リカレントニューラルネットワークであり得る。カルマンフィルタ825およびニューラル拡張ユニット830と連携して動作して、通信マネージャ815は、残差に基づいて現在の時間ステップの初期チャネル推定値を更新し得る。
[00102]図9は、本開示の態様による、ニューラル拡張されたカルマンフィルタを用いてチャネルを推定し、チャネルを追跡することをサポートする、ワイヤレス通信のための例示的なプロセス900を示すフローチャートである。いくつかの実装形態では、プロセス900は、図1および図2に関して上記で説明されたUE120のうちの1つなどのUEとしてまたはUE内で、あるいは図1および図2に関して上記で説明された基地局110のうちの1つなどの基地局としてまたは基地局内で動作するワイヤレス通信デバイスによって実施され得る。
[00103]図9に示されているように、プロセス900は、通信デバイスにおいて受信された第1の信号に基づいて、カルマンフィルタを用いて現在の時間ステップについてのチャネルの初期チャネル推定値を生成することによってブロック902において開始する。いくつかの例では、チャネルは、ワイヤレス通信チャネルであり得る。ブロック904において、プロセス900は、ニューラルネットワークを用いて、現在の時間ステップの初期チャネル推定値の残差を推論する。ニューラルネットワークは、図7を参照しながら説明されたニューラル拡張ユニット704など、リカレントニューラルネットワークであり得る。いくつかの例では、現在の時間ステップの初期チャネル推定値は、平均と共分散とを含み得る。そのような例では、残差は、初期チャネル推定値の平均に基づく残差平均と、初期チャネル推定値の共分散に基づく残差共分散とを含み得る。ブロック906において、プロセスは、残差に基づいて現在の時間ステップの初期チャネル推定値を更新する。いくつかの例では、プロセス900は、初期チャネル推定値を更新することに基づいて実際のチャネル推定値を生成し、また、実際のチャネル推定値に基づいてチャネル上で受信された第2の信号を復号し得る。さらに、現在の時間ステップについての初期チャネル推定値は、前の時間ステップからの実際のチャネル推定値に基づき得る。
[00104]実装例が、以下の番号付けされた条項に記載される。
1. 通信デバイスによって実施される方法であって、
通信デバイスにおいて受信された第1の信号に基づいて、カルマンフィルタを用いて現在の時間ステップについてのチャネルの初期チャネル推定値を生成することと、
ニューラルネットワークを用いて、現在の時間ステップの初期チャネル推定値の残差を推論することと、
残差に基づいて現在の時間ステップの初期チャネル推定値を更新することと、
を備える、方法。
2. 現在の時間ステップの初期チャネル推定値が、平均と共分散とを備え、
残差が、初期チャネル推定値の平均に基づく残差平均と、初期チャネル推定値の共分散に基づく残差共分散とを備える、
条項1に記載の方法。
3. 現在の時間ステップの初期チャネル推定値を生成することと、現在の時間ステップのチャネル観測値に基づいて残差を推論することと、をさらに備える、条項1から2のいずれか1つに記載の方法。
4. パイロットシンボルまたはデータシンボルからチャネル観測値を生成することをさらに備え、ここにおいて、パイロットシンボルまたはデータシンボルの波形が、前のパイロットシンボルまたは前のデータシンボルを復号することから知られている、条項3に記載の方法。
5. 受信されたパイロットシンボルの不在下で、合成パイロット推定値に基づいてチャネル観測値を生成することをさらに備える、条項3に記載の方法。
6. 初期チャネル推定値を更新することに基づいて実際のチャネル推定値を生成することと、
実際のチャネル推定値に基づいてチャネル上で受信された第2の信号を復号することと
をさらに備える、条項1から5のいずれか1つに記載の方法。
7. 前の時間ステップからの実際のチャネル推定値に基づいて現在の時間ステップについての初期チャネル推定値を生成することをさらに備える、条項1から6のいずれか1つに記載の方法。
8. ニューラルネットワークがリカレントニューラルネットワークである、条項1から7のいずれか1つに記載の方法。
9. プロセッサと、
プロセッサに結合されたメモリと、
メモリに記憶された命令と
を備える、通信デバイスにおける装置であって、命令が、プロセッサによって実行されたとき、装置に、
通信デバイスにおいて受信された第1の信号に基づいて、カルマンフィルタを用いて現在の時間ステップについてのチャネルの初期チャネル推定値を生成することと、
ニューラルネットワークを用いて、現在の時間ステップの初期チャネル推定値の残差を推論することと、
残差に基づいて現在の時間ステップの初期チャネル推定値を更新することと、
を行わせるように動作可能である、装置。
10. 現在の時間ステップの初期チャネル推定値が、平均と共分散とを備え、
残差が、初期チャネル推定値の平均に基づく残差平均と、初期チャネル推定値の共分散に基づく残差共分散とを備える、
条項9に記載の装置。
11. 命令の実行が、装置に、現在の時間ステップの初期チャネル推定値を生成することと、現在の時間ステップのチャネル観測値に基づいて残差を推論することと、をさらに行わせる、条項9または10に記載の装置。
12. 命令の実行が、装置に、パイロットシンボルまたはデータシンボルからチャネル観測値を生成することをさらに行わせ、ここにおいて、パイロットシンボルまたはデータシンボルの波形が、前のパイロットシンボルまたは前のデータシンボルの復号から知られている、条項11に記載の装置。
13. 命令の実行が、装置に、受信されたパイロットシンボルの不在下で、合成パイロット推定値に基づいてチャネル観測値を生成することをさらに行わせる、条項11に記載の装置。
14. 命令の実行が、装置に、
初期チャネル推定値を更新することに基づいて実際のチャネル推定値を生成することと、
実際のチャネル推定値に基づいてチャネル上で受信された第2の信号を復号することと、
をさらに行わせる、条項9から13のいずれかに記載の装置。
15. 命令の実行が、装置に、前の時間ステップからの実際のチャネル推定値に基づいて現在の時間ステップについての初期チャネル推定値を生成することをさらに行わせる、条項9から14のいずれかに記載の装置。
16. ニューラルネットワークがリカレントニューラルネットワークである、条項9から15のいずれかに記載の装置。
17. 通信デバイスにおける、プログラムコードを記録した非一時的コンピュータ可読媒体であって、プログラムコードは、プロセッサによって実行され、
通信デバイスにおいて受信された第1の信号に基づいて、カルマンフィルタを用いて現在の時間ステップについてのチャネルの初期チャネル推定値を生成するためのプログラムコードと、
ニューラルネットワークを用いて、現在の時間ステップの初期チャネル推定値の残差を推論するためのプログラムコードと、
残差に基づいて現在の時間ステップの初期チャネル推定値を更新するためのプログラムコードと、
を備える、非一時的コンピュータ可読媒体。
18. 現在の時間ステップの初期チャネル推定値が、平均と共分散とを備え、
残差が、初期チャネル推定値の平均に基づく残差平均と、初期チャネル推定値の共分散に基づく残差共分散とを備える、
条項17に記載の非一時的コンピュータ可読媒体。
19. プログラムコードが、現在の時間ステップの初期チャネル推定値を生成し、現在の時間ステップのチャネル観測値に基づいて残差を推論するためのプログラムコードをさらに備える、条項17または18に記載の非一時的コンピュータ可読媒体。
20. プログラムコードが、パイロットシンボルまたはデータシンボルからチャネル観測値を生成するためのプログラムコードをさらに備え、ここにおいて、パイロットシンボルまたはデータシンボルの波形が、前のパイロットシンボルまたは前のデータシンボルの復号から知られている、条項19に記載の非一時的コンピュータ可読媒体。
21. プログラムコードが、受信されたパイロットシンボルの不在下で、合成パイロット推定値に基づいてチャネル観測値を生成するためのプログラムコードをさらに備える、条項19に記載の非一時的コンピュータ可読媒体。
22. プログラムコードが、
初期チャネル推定値を更新することに基づいて実際のチャネル推定値を生成するためのプログラムコードと、
実際のチャネル推定値に基づいてチャネル上で受信された第2の信号を復号するためのプログラムコードと、
をさらに備える、条項17から21のいずれかに記載の非一時的コンピュータ可読媒体。
23. プログラムコードが、前の時間ステップからの実際のチャネル推定値に基づいて現在の時間ステップについての初期チャネル推定値を生成するためのプログラムコードをさらに備える、条項17から22のいずれかに記載の非一時的コンピュータ可読媒体。
24. ニューラルネットワークがリカレントニューラルネットワークである、条項17から23のいずれかに記載の非一時的コンピュータ可読媒体。
25. 通信デバイスにおける装置であって、
通信デバイスにおいて受信された第1の信号に基づいて、カルマンフィルタを用いて現在の時間ステップについてのチャネルの初期チャネル推定値を生成するための手段と、
ニューラルネットワークを用いて、現在の時間ステップの初期チャネル推定値の残差を推論するための手段と、
残差に基づいて現在の時間ステップの初期チャネル推定値を更新するための手段と、
を備える、装置。
26. 現在の時間ステップの初期チャネル推定値が、平均と共分散とを備え、
残差が、初期チャネル推定値の平均に基づく残差平均と、初期チャネル推定値の共分散に基づく残差共分散とを備える、
条項25に記載の装置。
27. 現在の時間ステップの初期チャネル推定値を生成し、現在の時間ステップのチャネル観測値に基づいて残差を推論するための手段をさらに備える、条項25または26に記載の装置。
28. パイロットシンボルまたはデータシンボルからチャネル観測値を生成するための手段をさらに備え、ここにおいて、パイロットシンボルまたはデータシンボルの波形が、前のパイロットシンボルまたは前のデータシンボルの復号から知られている、条項27に記載の装置。
29. 受信されたパイロットシンボルの不在下で、合成パイロット推定値に基づいてチャネル観測値を生成するための手段をさらに備える、条項27に記載の装置。
30. 初期チャネル推定値を更新することに基づいて実際のチャネル推定値を生成するための手段と、
実際のチャネル推定値に基づいてチャネル上で受信された第2の信号を復号するための手段と、
をさらに備える、条項25から29のいずれかに記載の装置。
[00105]上記の開示は、例示および説明を与えるが、網羅的なものでも、開示された厳密な形態に態様を限定するものでもない。修正および変形が、上記の開示に照らして行われ得るか、または態様の実践から取得され得る。
[00106]使用される「構成要素」という用語は、ハードウェア、ファームウェア、および/またはハードウェアとソフトウェアとの組合せとして広く解釈されるものとする。使用されるプロセッサは、ハードウェア、ファームウェア、および/またはハードウェアとソフトウェアとの組合せで実装される。
[00107]しきい値に関していくつかの態様が説明される。使用されるしきい値を満たすことは、コンテキストに応じて、値が、しきい値よりも大きいこと、しきい値よりも大きいかまたはそれに等しいこと、しきい値よりも小さいこと、しきい値よりも小さいかまたはそれに等しいこと、しきい値に等しいこと、しきい値に等しくないことなどを指し得る。
[00108]説明されるシステムおよび/または方法は、ハードウェア、ファームウェア、および/またはハードウェアとソフトウェアとの組合せの異なる形態で実装され得ることが明らかであろう。これらのシステムおよび/または方法を実装するために使用される実際の特殊な制御ハードウェアまたはソフトウェアコードは、態様を限定するものではない。したがって、システムおよび/または方法の動作および挙動は、特定のソフトウェアコードと無関係に説明され、ソフトウェアおよびハードウェアは、説明に少なくとも部分的に基づいて、システムおよび/または方法を実装するように設計され得ることが理解される。
[00109]特徴の特定の組合せが特許請求の範囲において具陳されおよび/または本明細書で開示されたが、これらの組合せは、様々な態様の開示を限定するものではない。実際は、これらの特徴の多くは、詳細には、特許請求の範囲において具陳されずおよび/または本明細書で開示されない方法で、組み合わせられ得る。以下に記載される各従属請求項は、1つの請求項のみに直接従属し得るが、様々な態様の開示は、特許請求の範囲中のあらゆる他の請求項と組み合わせた各従属請求項を含む。項目のリスト「のうちの少なくとも1つ」を指す句は、単一のメンバーを含む、それらの項目の任意の組合せを指す。一例として、「a、b、またはcのうちの少なくとも1つ」は、a、b、c、a-b、a-c、b-c、およびa-b-c、ならびに複数の同じ要素をもつ任意の組合せ(たとえば、a-a、a-a-a、a-a-b、a-a-c、a-b-b、a-c-c、b-b、b-b-b、b-b-c、c-c、およびc-c-c、またはa、b、およびcの任意の他の順序)を包含するものとする。
[00110]使用されるいかなる要素、行為、または命令も、明示的にそのように説明されない限り、重要または必須と解釈されるべきではない。また、使用される冠詞「a」および「an」は、1つまたは複数の項目を含むものであり、「1つまたは複数」と互換的に使用され得る。さらに、使用される「セット」および「グループ」という用語は、1つまたは複数の項目(たとえば、関係する項目、無関係の項目、関係する項目と無関係の項目の組合せなど)を含むものであり、「1つまたは複数」と互換的に使用され得る。1つの項目のみが意図される場合、「1つの~のみ(only one)」という句または同様の言い回しが使用される。また、使用される「有する(has)」、「有する(have)」、「有する(having)」などの用語は、オープンエンド用語であるものとする。さらに、「に基づく」という句は、別段に明記されていない限り、「に少なくとも部分的に基づく」を意味するものである。

Claims (30)

  1. 通信デバイスによって実施される方法であって、
    前記通信デバイスにおいて受信された第1の信号に基づいて、カルマンフィルタを用いて現在の時間ステップについてのチャネルの初期チャネル推定値を生成することと、
    ニューラルネットワークを用いて、前記現在の時間ステップの前記初期チャネル推定値の残差を推論することと、
    前記残差に基づいて前記現在の時間ステップの前記初期チャネル推定値を更新することと、
    を備える、方法。
  2. 前記現在の時間ステップの前記初期チャネル推定値は、平均と共分散とを備え、
    前記残差は、前記初期チャネル推定値の前記平均に基づく残差平均と、前記初期チャネル推定値の前記共分散に基づく残差共分散とを備える、
    請求項1に記載の方法。
  3. 前記現在の時間ステップの前記初期チャネル推定値を生成することと、前記現在の時間ステップのチャネル観測値に基づいて前記残差を推論することと、をさらに備える、請求項1に記載の方法。
  4. パイロットシンボルまたはデータシンボルから前記チャネル観測値を生成することをさらに備え、ここにおいて、前記パイロットシンボルまたは前記データシンボルの波形は、前のパイロットシンボルまたは前のデータシンボルの復号から知られている、請求項3に記載の方法。
  5. 受信されたパイロットシンボルの不在下で、合成パイロット推定値に基づいて前記チャネル観測値を生成することをさらに備える、請求項3に記載の方法。
  6. 前記初期チャネル推定値を更新することに基づいて実際のチャネル推定値を生成することと、
    前記実際のチャネル推定値に基づいて前記チャネル上で受信された第2の信号を復号することと、
    をさらに備える、請求項1に記載の方法。
  7. 前の時間ステップからの実際のチャネル推定値に基づいて前記現在の時間ステップについての前記初期チャネル推定値を生成することをさらに備える、請求項1に記載の方法。
  8. 前記ニューラルネットワークはリカレントニューラルネットワークである、請求項1に記載の方法。
  9. プロセッサと、
    前記プロセッサに結合されたメモリと、
    前記メモリに記憶された命令と、
    を備える、通信デバイスにおける装置であって、前記命令は、前記プロセッサによって実行されたとき、前記装置に、
    前記通信デバイスにおいて受信された第1の信号に基づいて、カルマンフィルタを用いて現在の時間ステップについてのチャネルの初期チャネル推定値を生成することと、
    ニューラルネットワークを用いて、前記現在の時間ステップの前記初期チャネル推定値の残差を推論することと、
    前記残差に基づいて前記現在の時間ステップの前記初期チャネル推定値を更新することと、
    を行わせるように動作可能である、装置。
  10. 前記現在の時間ステップの前記初期チャネル推定値は、平均と共分散とを備え、
    前記残差は、前記初期チャネル推定値の前記平均に基づく残差平均と、前記初期チャネル推定値の前記共分散に基づく残差共分散とを備える、
    請求項9に記載の装置。
  11. 前記命令の実行は、前記装置に、前記現在の時間ステップの前記初期チャネル推定値を生成し、前記現在の時間ステップのチャネル観測値に基づいて前記残差を推論することをさらに行わせる、請求項9に記載の装置。
  12. 前記命令の実行は、前記装置に、パイロットシンボルまたはデータシンボルから前記チャネル観測値を生成することをさらに行わせ、ここにおいて、前記パイロットシンボルまたは前記データシンボルの波形が、前のパイロットシンボルまたは前のデータシンボルの復号から知られている、請求項11に記載の装置。
  13. 前記命令の実行は、前記装置に、受信されたパイロットシンボルの不在下で、合成パイロット推定値に基づいて前記チャネル観測値を生成することをさらに行わせる、請求項11に記載の装置。
  14. 前記命令の実行は、前記装置に、
    前記初期チャネル推定値を更新することに基づいて実際のチャネル推定値を生成することと、
    前記実際のチャネル推定値に基づいて前記チャネル上で受信された第2の信号を復号することと、
    をさらに行わせる、請求項9に記載の装置。
  15. 前記命令の実行は、前記装置に、前の時間ステップからの実際のチャネル推定値に基づいて前記現在の時間ステップについての前記初期チャネル推定値を生成することをさらに行わせる、請求項9に記載の装置。
  16. 前記ニューラルネットワークはリカレントニューラルネットワークである、請求項9に記載の装置。
  17. 通信デバイスにおける、プログラムコードを記録した非一時的コンピュータ可読媒体であって、前記プログラムコードは、プロセッサによって実行され、
    前記通信デバイスにおいて受信された第1の信号に基づいて、カルマンフィルタを用いて現在の時間ステップについてのチャネルの初期チャネル推定値を生成するためのプログラムコードと、
    ニューラルネットワークを用いて、前記現在の時間ステップの前記初期チャネル推定値の残差を推論するためのプログラムコードと、
    前記残差に基づいて前記現在の時間ステップの前記初期チャネル推定値を更新するためのプログラムコードと、
    を備える、非一時的コンピュータ可読媒体。
  18. 前記現在の時間ステップの前記初期チャネル推定値は、平均と共分散とを備え、
    前記残差は、前記初期チャネル推定値の前記平均に基づく残差平均と、前記初期チャネル推定値の前記共分散に基づく残差共分散とを備える、
    請求項17に記載の非一時的コンピュータ可読媒体。
  19. 前記プログラムコードは、前記現在の時間ステップの前記初期チャネル推定値を生成し、前記現在の時間ステップのチャネル観測値に基づいて前記残差を推論するためのプログラムコードをさらに備える、請求項17に記載の非一時的コンピュータ可読媒体。
  20. 前記プログラムコードは、パイロットシンボルまたはデータシンボルから前記チャネル観測値を生成するためのプログラムコードをさらに備え、ここにおいて、前記パイロットシンボルまたは前記データシンボルの波形は、前のパイロットシンボルまたは前のデータシンボルの復号から知られている、請求項19に記載の非一時的コンピュータ可読媒体。
  21. 前記プログラムコードは、受信されたパイロットシンボルの不在下で、合成パイロット推定値に基づいて前記チャネル観測値を生成するためのプログラムコードをさらに備える、請求項19に記載の非一時的コンピュータ可読媒体。
  22. 前記プログラムコードは、
    前記初期チャネル推定値を更新することに基づいて実際のチャネル推定値を生成するためのプログラムコードと、
    前記実際のチャネル推定値に基づいて前記チャネル上で受信された第2の信号を復号するためのプログラムコードと、
    をさらに備える、請求項17に記載の非一時的コンピュータ可読媒体。
  23. 前記プログラムコードは、前の時間ステップからの実際のチャネル推定値に基づいて前記現在の時間ステップについての前記初期チャネル推定値を生成するためのプログラムコードをさらに備える、請求項17に記載の非一時的コンピュータ可読媒体。
  24. 前記ニューラルネットワークはリカレントニューラルネットワークである、請求項17に記載の非一時的コンピュータ可読媒体。
  25. 通信デバイスにおける装置であって、
    前記通信デバイスにおいて受信された第1の信号に基づいて、カルマンフィルタを用いて現在の時間ステップについてのチャネルの初期チャネル推定値を生成するための手段と、
    ニューラルネットワークを用いて、前記現在の時間ステップの前記初期チャネル推定値の残差を推論するための手段と、
    前記残差に基づいて前記現在の時間ステップの前記初期チャネル推定値を更新するための手段と、
    を備える、装置。
  26. 前記現在の時間ステップの前記初期チャネル推定値は、平均と共分散とを備え、
    前記残差は、前記初期チャネル推定値の前記平均に基づく残差平均と、前記初期チャネル推定値の前記共分散に基づく残差共分散とを備える、
    請求項25に記載の装置。
  27. 前記現在の時間ステップの前記初期チャネル推定値を生成し、前記現在の時間ステップのチャネル観測値に基づいて前記残差を推論するための手段をさらに備える、請求項25に記載の装置。
  28. パイロットシンボルまたはデータシンボルから前記チャネル観測値を生成するための手段をさらに備え、ここにおいて、前記パイロットシンボルまたは前記データシンボルの波形は、前のパイロットシンボルまたは前のデータシンボルの復号から知られている、請求項27に記載の装置。
  29. 受信されたパイロットシンボルの不在下で、合成パイロット推定値に基づいて前記チャネル観測値を生成するための手段をさらに備える、請求項27に記載の装置。
  30. 前記初期チャネル推定値を更新することに基づいて実際のチャネル推定値を生成するための手段と、
    前記実際のチャネル推定値に基づいて前記チャネル上で受信された第2の信号を復号するための手段と、
    をさらに備える、請求項25に記載の装置。
JP2022576141A 2020-06-19 2021-06-17 ワイヤレスチャネル推定および追跡のためのニューラルネットワーク拡張 Pending JP2023531397A (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US202063041637P 2020-06-19 2020-06-19
US63/041,637 2020-06-19
US17/349,744 US11616666B2 (en) 2020-06-19 2021-06-16 Neural network augmentation for wireless channel estimation and tracking
US17/349,744 2021-06-16
PCT/US2021/037938 WO2021257907A1 (en) 2020-06-19 2021-06-17 Neural network augmentation for wireless channel estimation and tracking

Publications (2)

Publication Number Publication Date
JP2023531397A true JP2023531397A (ja) 2023-07-24
JPWO2021257907A5 JPWO2021257907A5 (ja) 2024-05-28

Family

ID=79022149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022576141A Pending JP2023531397A (ja) 2020-06-19 2021-06-17 ワイヤレスチャネル推定および追跡のためのニューラルネットワーク拡張

Country Status (8)

Country Link
US (1) US11616666B2 (ja)
EP (1) EP4169217A1 (ja)
JP (1) JP2023531397A (ja)
KR (1) KR20230026319A (ja)
CN (1) CN115702561A (ja)
BR (1) BR112022024903A2 (ja)
TW (1) TW202201935A (ja)
WO (1) WO2021257907A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230021835A1 (en) * 2021-07-26 2023-01-26 Qualcomm Incorporated Signaling for additional training of neural networks for multiple channel conditions

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180302213A1 (en) 2017-04-17 2018-10-18 Collision Communications, Inc. Methods, systems, and computer program products for communication channel prediction from received multipath communications in a wireless communications system
US20220166650A1 (en) * 2019-05-08 2022-05-26 Lg Electronics Inc. Method for tracking channel in wireless av system and wireless device using same
WO2021175444A1 (en) * 2020-03-06 2021-09-10 Nokia Technologies Oy Classes of nn parameters for channel estimation

Also Published As

Publication number Publication date
TW202201935A (zh) 2022-01-01
KR20230026319A (ko) 2023-02-24
WO2021257907A1 (en) 2021-12-23
CN115702561A (zh) 2023-02-14
BR112022024903A2 (pt) 2022-12-27
US11616666B2 (en) 2023-03-28
EP4169217A1 (en) 2023-04-26
US20210399924A1 (en) 2021-12-23

Similar Documents

Publication Publication Date Title
US20210326701A1 (en) Architecture for machine learning (ml) assisted communications networks
WO2022000365A1 (en) Machine learning based downlink channel estimation and prediction
WO2021208061A1 (en) Configurable neural network for channel state feedback (csf) learning
US20210264255A1 (en) Gradient feedback framework for joint transceiver neural network training
US20220070822A1 (en) Unsupervised learning for simultaneous localization and mapping in deep neural networks using channel state information
US11616582B2 (en) Neural network-based spatial inter-cell interference learning
US20240129844A1 (en) Cross-node deep learning methods of selecting machine learning modules in wireless communication systems
US20220124634A1 (en) Machine learning-based power control
EP4229557A1 (en) Data-driven probabilistic modeling of wireless channels using conditional variational auto-encoders
US11456834B2 (en) Adaptive demodulation reference signal (DMRS)
JP2023531397A (ja) ワイヤレスチャネル推定および追跡のためのニューラルネットワーク拡張
WO2023146862A1 (en) Equivariant generative prior for inverse problems with unknown rotation
US20220405602A1 (en) Channel feature extraction via model-based neural networks
WO2023070486A1 (en) Channel state feedback for reduced resource consumption reference signals
US11722921B2 (en) Secondary cell group selection based on primary frequency band measurements
US20230297825A1 (en) Weighted average federated learning based on neural network training loss
US20220335294A1 (en) Reporting for machine learning model updates
KR20230173664A (ko) 머신 러닝 모델 업데이트들을 위한 보고
KR20240099148A (ko) 감소된 리소스 소비 기준 신호들에 대한 채널 상태 피드백
CN117157647A (zh) 机器学习模型更新的报告

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240517