JP2023521112A - フローパラメータの光学的測定 - Google Patents

フローパラメータの光学的測定 Download PDF

Info

Publication number
JP2023521112A
JP2023521112A JP2022561382A JP2022561382A JP2023521112A JP 2023521112 A JP2023521112 A JP 2023521112A JP 2022561382 A JP2022561382 A JP 2022561382A JP 2022561382 A JP2022561382 A JP 2022561382A JP 2023521112 A JP2023521112 A JP 2023521112A
Authority
JP
Japan
Prior art keywords
pipe
fluid
instantaneous
photodetector array
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022561382A
Other languages
English (en)
Inventor
シャピラ、ジョセフ
イングランダー、アブラハム
セガール、トュヴィア
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Flowlit Ltd
Original Assignee
Flowlit Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flowlit Ltd filed Critical Flowlit Ltd
Publication of JP2023521112A publication Critical patent/JP2023521112A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • G01F1/708Measuring the time taken to traverse a fixed distance
    • G01F1/7086Measuring the time taken to traverse a fixed distance using optical detecting arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/661Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters using light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • G01F1/708Measuring the time taken to traverse a fixed distance
    • G01F1/712Measuring the time taken to traverse a fixed distance using auto-correlation or cross-correlation detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/02Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material
    • G01N11/04Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material through a restricted passage, e.g. tube, aperture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/001Full-field flow measurement, e.g. determining flow velocity and direction in a whole region at the same time, flow visualisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/18Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the time taken to traverse a fixed distance
    • G01P5/20Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the time taken to traverse a fixed distance using particles entrained by a fluid stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/18Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the time taken to traverse a fixed distance
    • G01P5/22Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the time taken to traverse a fixed distance using auto-correlation or cross-correlation detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/26Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting optical wave

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Multimedia (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Measuring Volume Flow (AREA)

Abstract

流体測定方法は、流体が流れるパイプに光ビームを照射し、光ビームがパイプ内を流れる流体を照らすステップと、光検出器アレイを用いて、ビームと流体中に存在する粒子との散乱によって生じる光を検出し、光ビームが光検出器アレイの視野の外にあるステップと、光検出器アレイの視野を層に分割し、各層における光検出器アレイから送信される信号の関数として、層の各々の瞬時流速を求めるステップとを含む。【選択図】図1

Description

本発明は、一般に流体流量測定に関し、特に光学式流体流量測定アセンブリおよび方法に関するものである。
PCT特許出願PCT/IB2020/050557(WO2020/178641)には、細い鉛筆状のビーム又はパイプ内の窓を通して流れを照らす光シートの形態のビームを放出する発光ダイオード(LED)のようなパイプの外側に置かれた単一の連続波光源と、放出ビームが検出器配列に衝突しないように、パイプ外の流れの軸に沿って置かれた2次元CCD配列などの複数の光検出器を含む光学器具が記載されている。光ビームとCCDアレイの視野の交点が、装置の測定領域を決定する。測定領域でビームを通過した小粒子による散乱光は、集光レンズによって集光され、集光された光によって作られる信号を連続的に記録する光検出器に集光される。記録された時間変化する信号を相互相関法、飛行時間法などの数学的手法や機械学習アルゴリズムによって解析することにより、流速が決定される。
国際公開WO2020/178641
本発明は、層流、乱流、および中間流のレジームについてパイプ内を流れる液体および気体の局所速度プロファイルのインライン測定を提供するための、簡単で堅牢かつ非侵襲的な光学的方法を提供しようとするものである。
本発明の一態様では、層流、乱流、および中間流体領域について、パイプを流れる液体の体積および質量流量を正確にインライン測定するための光学的方法が提供される。
本発明の一態様では、層流、または乱流、または中間流の領域でパイプを流れる二相または多相の液体および気体の成分の局所速度プロファイルをインラインで測定するための光学的方法が提供される。
本発明の一態様では、層流、乱流、または中間流の領域でパイプを流れる多相液体の各成分の体積と質量流量を別々に測定する光学式インライン方法が提供される。
本発明の1つの側面は、層流、乱流および間欠流体制においてパイプを流れる多相液体の各成分の速度プロファイル、質量流量および体積流量を提供できる、光学的、非侵襲的装置を利用できるようにすることである。
本発明の一態様では、光学システムは、パイプ内を流れる液体又は気体の速度プロファイルの視覚的マップをインラインで提供し、パイプ内を流れる多相液体の成分の速度プロファイルの視覚的マップを提供することも可能である。
したがって、本発明の実施形態によれば、流体が流れるパイプに光ビームを放射し、光ビームがパイプ内を流れる流体を照らし、光検出器アレイを使用して、流体内に見出される粒子とのビームの散乱によって引き起こされる光を検出することを含む流体流れ測定方法が提供され、この方法は、以下の通りである。前記光ビームは、前記光検出器アレイの視野の外側にあり、前記光検出器アレイの視野を層に分割し、前記層の各々において前記光検出器アレイから送信される信号の関数として、前記層の各々の瞬間流速を決定する、ことを特徴とする。
本発明は、添付図面と以下の詳細な説明によって、更に完全に理解される。
図1は、本発明の非限定的な実施形態による、光学式流体流速測定システムの簡略化された図解である。
ここで、本発明の非限定的な実施形態による、光学的流体流速測定システム10を示す図1を参照する。
このシステム及び方法は、短い時間間隔の間にパイプセクションを流れる流体の質量流量及び体積流量と共に、瞬時及び平均速度プロファイルを測定する。これにより、流量の空間的・時間的不均質性にかかわらず、高い測定精度が得られる。
図1において、光源11は単色光シート12を放出し、このシートは、液体が流れるパイプ部14、好ましくはパイプの中心に渡って(パイプの一部であり得る第一の窓を介して)投影される。光の伝搬方向に対して垂直に配置されたデジタルカメラ16(部分的に破線で示す)のような光検出器アレイは、(パイプの一部であり得る第2の窓で)流れる液体中の微粒子からの散乱信号を記録することにより、照明された流れを記録する。カメラの焦点面視野の投影の垂直方向寸法は、パイプ内径のかなりの部分をカバーする。
カメラの視野は、垂直軸に沿って水平方向の層に仮想的に分割され、その幅は、結果として得られる円筒形の層内の液体の体積が等しくなるように選択される(これは本発明にとって不可欠ではなく、それらは不等であってもよい)。図1には、幅r1、r2、r3の3つの層を例として、分割方式を示した。各層の瞬時流速は、飛行時間法、相関法、または機械学習アルゴリズムのいずれかによって、隣接するフレームの解析によって決定される。各層の瞬間流体移動速度ベクトルの測定値は、流れの性質によって異なる場合がある。一般に、壁面付近では低い値(図中V(オーバーライン有り)で示す)となり、管軸では最大の値(図中Vで示す)となり、その間の層では中間の値(図中Vで示す)となる。また、視野内の各層の体積をそれぞれV3、V1、V2で示す。
なお、本発明は水平方向の層に限定されるものではなく、極座標系や球座標系など他の方法で層を定義してもよい。
各層における瞬時流速の値を用いて、流れの局所的な速度分布をマッピングすることができる。さらに、速度分布図の変化を測定することで、流体粘度の時間変化を導き出すことができる。
瞬時流速計測の時間間隔は、カメラのフレームレートと計測に必要な隣接フレーム数によって決まり、数十ミリ秒以下のオーダーになる。次に、測定された各層の瞬時値は、流況の変動や配管の入口における圧力の時間的挙動を反映した時間間隔Tで平均化されるが、一般に数百ミリ秒から数分程度の変動がある。各層の得られた平均速度値(Viavは、その後、選択された時間間隔Tの間の総質量Mの流れを決定するために用いられ、これは、時間Tの間に層iを通って移動した質量mを以下の式によって決定することによって行われる。
mi=ρSiiav*‘1’
ここで、ρは流体密度を表し、Sはi番目の層の面積を表す。
すべての層の質量を合計することで、時間間隔Tの間に移動した総質量が得られる。瞬時速度および平均速度の値は、それぞれ瞬時速度プロファイルおよび平均速度プロファイルを表し、流れの領域を表すことに注意する必要がある。したがって、この方法は特定の流れの領域に限定されるものではなく、層流、乱流、または中間領域の流れに適用することができる。
また、各層の平均速度の精度は、同じ層で測定された瞬時速度の精度とほぼ等しく、非常に高い値に達することがあることに注意する必要がある。仮想層の数が多いほど、伝達される質量の正確な値が得られ、全質量に対応する平均流速Vの精度(V= M/ρST 、Sはパイプ断面積)は、単一層での瞬時流速の測定許容値に近づくことになります。
一般に各相の光学特性は大きく異なるので、この方法は多相流にも拡張可能である。流れ間の屈折率や散乱強度の変化は、適切な画像解析アルゴリズムによって簡便にタグ付けでき、この方法は各相に個別に適用することができる。

Claims (8)

  1. 流体が流れるパイプに光ビームを照射し、前記光ビームが前記パイプ内を流れる流体を照らすステップと;
    光検出器アレイを使用して、前記ビームと前記流体内に見られる粒子との散乱によって生じる光を検出し、前記光ビームは前記光検出器アレイの視野の外にあるステップと;
    前記光検出器アレイの視野を層に分け、前記層のそれぞれで前記光検出器アレイから送信される信号の関数として前記層のそれぞれの瞬時流速を求めるステップと:を含む流体流量測定方法。
  2. 前記層の前記瞬時流速を使用して、前記パイプ内を流れる流体の局所的な流速の分布マップを作成することを含む、請求項1に記載の方法。
  3. 前記マップの経時変化を測定し、流体の粘度の経時変化を導出することを含む、請求項2記載の方法。
  4. 前記瞬時速度測定の各々の時間間隔は、前記光検出器アレイのフレームレートと、瞬時速度測定に必要な隣接フレーム数とによって決定される、請求項1記載の方法。
  5. 前記パイプの入口における流況の変動及び圧力の時間的挙動を決定するために、時間間隔にわたって前記層の各々についての前記瞬時速度測定を平均化する、請求項4記載の方法。。
  6. 前記各層における前記流体の密度及び前記瞬時流速を考慮して、前記各層における質量流量を計算することを含む、請求項1に記載の方法。
  7. 前記質量流量を合計して総質量流量を決定することを含む、請求項6に記載の方法。
  8. 前記質量流量を用いて平均質量流量を決定することを含む、請求項6に記載の方法。
JP2022561382A 2020-04-06 2021-04-04 フローパラメータの光学的測定 Pending JP2023521112A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202063005552P 2020-04-06 2020-04-06
US63/005,552 2020-04-06
PCT/IB2021/052800 WO2021205317A1 (en) 2020-04-06 2021-04-04 Optical measurement of flow parameters

Publications (1)

Publication Number Publication Date
JP2023521112A true JP2023521112A (ja) 2023-05-23

Family

ID=76250385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022561382A Pending JP2023521112A (ja) 2020-04-06 2021-04-04 フローパラメータの光学的測定

Country Status (5)

Country Link
US (1) US20230160730A1 (ja)
EP (1) EP4118400A1 (ja)
JP (1) JP2023521112A (ja)
KR (1) KR20230017168A (ja)
WO (1) WO2021205317A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11830666B2 (en) 2018-03-07 2023-11-28 Hitachi Energy Ltd Tank for liquid-filled shell transformers or shell reactors

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19702849C2 (de) * 1997-01-27 2000-05-18 Deutsch Zentr Luft & Raumfahrt Verfahren zum Erfassen der Massenstromverteilung einer Strömung über eine Ebene
GB2571477B (en) * 2016-12-06 2022-05-11 Aist Flow velocity distribution measuring method and particle size measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11830666B2 (en) 2018-03-07 2023-11-28 Hitachi Energy Ltd Tank for liquid-filled shell transformers or shell reactors

Also Published As

Publication number Publication date
EP4118400A1 (en) 2023-01-18
WO2021205317A1 (en) 2021-10-14
US20230160730A1 (en) 2023-05-25
KR20230017168A (ko) 2023-02-03

Similar Documents

Publication Publication Date Title
US7880133B2 (en) Optical multiphase flowmeter
US20060260416A1 (en) Flow metering system
KR20110133609A (ko) 유체의 유동 특성을 결정하기 위한 장치
Takamasa et al. Measuring interfacial waves on film flowing down tube inner wall using laser focus displacement meter
Garg et al. Measurements of a supersonic turbulent boundary layer by focusing schlieren deflectometry
JP2023521112A (ja) フローパラメータの光学的測定
BR112021001974A2 (pt) sistema de geração de imagem para analisar um fluxo multifásico
JPH10311748A (ja) 一平面における流れの質量流量分布を検出する方法
Park et al. Monitoring of void fraction and bubble size in narrow-channel bubbly-flows using ultrasonic pulses with a super bubble-resonant frequency
Xue et al. A method to suppress the effect of total reflection on PLIF imaging in annular flow
Panidis et al. The structure of two-phase grid turbulence in a rectangular channel: an experimental study
Guet et al. Bubble shape and orientation determination with a four-point optical fibre probe
Akutina et al. Error analysis of 3D-PTV through unsteady interfaces
JP6909273B2 (ja) 光学的に流量を測定するための流量測定法および流量測定機器
Svizher et al. Holographic particle image velocimetry measurements of hairpin vortices in a subcritical air channel flow
US20220155116A1 (en) Optical fluid flow velocity measurement
Yoshida et al. A calibration methodology of ultrasonic transducers: Evaluation of spatial propagation characteristics of pulse-echo
Rząsa Selection of optical to mography parameters for gas bubble shape analysis
Wang et al. Flow parameter measurement of intermittent flow by PIV interface imaging characteristics
Lowe Design and application of a novel Laser-Doppler Velocimeter for turbulence structural measurements in turbulent boundary layers
Kyoden et al. Assessing the infinitely expanding intersection region for the development of large-scale multipoint laser Doppler velocimetry
JPH08285648A (ja) 流量計
Jhang et al. 3-D velocity field measurement using multiple ultrasonic plane detections and high-order correlation analysis
Muniyandi Flow regime identification in air-water two phase flows based on acoustic impedance
Sowndarya et al. Online reconstruction of a Taylor bubble using a LASER-photo resistor

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20231120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20231120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240216