JP2023509992A - Online Evaluation Method for Separator Roasting of Molten Carbonate Fuel Cells - Google Patents

Online Evaluation Method for Separator Roasting of Molten Carbonate Fuel Cells Download PDF

Info

Publication number
JP2023509992A
JP2023509992A JP2022542776A JP2022542776A JP2023509992A JP 2023509992 A JP2023509992 A JP 2023509992A JP 2022542776 A JP2022542776 A JP 2022542776A JP 2022542776 A JP2022542776 A JP 2022542776A JP 2023509992 A JP2023509992 A JP 2023509992A
Authority
JP
Japan
Prior art keywords
fuel cell
molten carbonate
carbonate fuel
separator
roasting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022542776A
Other languages
Japanese (ja)
Other versions
JP7358652B2 (en
Inventor
瑞云 ▲張▼
健 程
成壮 ▲盧▼
昊 李
世森 ▲許▼
保民 王
冠▲軍▼ ▲楊▼
▲華▼ 黄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaneng Clean Energy Research Institute
Original Assignee
Huaneng Clean Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaneng Clean Energy Research Institute filed Critical Huaneng Clean Energy Research Institute
Publication of JP2023509992A publication Critical patent/JP2023509992A/en
Application granted granted Critical
Publication of JP7358652B2 publication Critical patent/JP7358652B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/3865Arrangements for measuring battery or accumulator variables related to manufacture, e.g. testing after manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/0447Concentration; Density of cathode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04552Voltage of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fuel Cell (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Cell Separators (AREA)

Abstract

Figure 2023509992000001

溶融炭酸塩型燃料電池のセパレータ焙焼のオンライン評価方法であって、溶融炭酸塩型燃料電池のセパレータに含まれる溶媒、粘着剤及び可塑剤の質量を算出するステップ1)と、溶融炭酸塩型燃料電池のセパレータ焙焼の昇温プログラムを設定するステップ2)と、溶融炭酸塩型燃料電池のセパレータの焙焼の昇温プログラムに従って、組み立てられた溶融炭酸塩型燃料電池に対して昇温焙焼を行い、溶融炭酸塩型燃料電池の内部で活性化反応が行われた後、溶融炭酸塩型燃料電池について放電テストを行った結果、溶融炭酸塩型燃料電池の陰極及び陽極でガス溢れやガス漏れの危険がなく、単一電池の平均開回路電圧が予め設定された電圧値よりも大きい場合、溶融炭酸塩型燃料電池のセパレータの焙焼が合格し、これにより、溶融炭酸塩型燃料電池のセパレータ焙焼のオンライン評価が完了するステップ3)を含む。該方法は、溶融炭酸塩型燃料電池の発電性能を効果的に確保できる。

Figure 2023509992000001

An online evaluation method for separator roasting of a molten carbonate fuel cell, comprising a step 1) of calculating the mass of a solvent, an adhesive and a plasticizer contained in the separator of the molten carbonate fuel cell; The assembled molten carbonate fuel cell is heated and roasted according to the step 2) of setting the temperature raising program for roasting the separator of the fuel cell and the temperature raising program for roasting the separator of the molten carbonate fuel cell. After firing and an activation reaction inside the molten carbonate fuel cell, a discharge test was conducted on the molten carbonate fuel cell. When there is no risk of gas leakage and the average open circuit voltage of the single cell is greater than the preset voltage value, the roasting of the separator of the molten carbonate fuel cell is passed, thereby making the molten carbonate fuel Including step 3) in which the on-line evaluation of battery separator roasting is completed. This method can effectively ensure the power generation performance of the molten carbonate fuel cell.

Description

本発明は、溶融炭酸塩型燃料電池の技術分野に属し、溶融炭酸塩型燃料電池のセパレータ焙焼のオンライン評価方法に関する。 The present invention belongs to the technical field of molten carbonate fuel cells, and relates to an online evaluation method for separator roasting of molten carbonate fuel cells.

溶融炭酸塩型燃料電池(MCFC)は、650℃で作動する高温燃料電池であり、貴金属を触媒とする必要がなく、燃料が入手しやすく、騒音が少なく、汚染物がほぼゼロ排出であり、発電効率が高く、熱電併給が図られるなどの利点があり、100キロワットレベルからメガワットレベルの分散型発電所や固定型発電所に適しており、将来性が期待できる。 The molten carbonate fuel cell (MCFC) is a high temperature fuel cell that operates at 650°C, does not require precious metal catalysts, has easy fuel availability, low noise, and near-zero pollutant emissions; It has advantages such as high power generation efficiency and co-supply of heat and power, and is suitable for distributed power plants and fixed power plants from the 100 kilowatt level to the megawatt level, and is expected to have future potential.

溶融炭酸塩型燃料電池では、重要な部材には、電極、セパレータ、電解質、双極板などがあり、この中でも、セパレータの性能の良否が電池の性能に大きな影響を与える。一般には、セパレータの性能はその気孔率及び平均孔径につながり、成形後のセパレータの細孔分布が主に成形前の膜に含まれる揮発されにくい粘着剤や溶媒の含有量及びこれらの分布の均一さに依存する。含有量が高い場合、成形後の膜の気孔率及び平均孔径が大きく、膜に含浸させた電解質が多くなり、膜の電気抵抗が小さいが、平均孔径が大きいため、陰極や陽極ではガス溢れが発生しやすく、一方、含有量が低い場合、膜の気孔率及び平均孔径が減少し、ガスバリアに有利であるが、膜に含浸させた電解質が少なくなり、イオン伝導に不利である。このため、セパレータについては適切な気孔率及び孔径分布が求められ、一般には、セパレータについて、気孔率は50~70%、孔径は1μm未満であり、均一に分布していることが期待される。 Important members of a molten carbonate fuel cell include electrodes, separators, electrolytes, bipolar plates, etc. Among them, the performance of the separator has a great influence on the performance of the battery. In general, the performance of a separator is related to its porosity and average pore size. It depends. When the content is high, the porosity and average pore size of the membrane after molding are large, the electrolyte impregnated in the membrane is large, and the electrical resistance of the membrane is small, but the average pore size is large, so gas overflows at the cathode and anode. On the other hand, when the content is low, the porosity and average pore size of the membrane decrease, which is advantageous for gas barrier, but the electrolyte impregnated in the membrane decreases, which is disadvantageous for ion conduction. Therefore, the separator is required to have an appropriate porosity and pore size distribution. In general, the separator is expected to have a porosity of 50 to 70% and a pore size of less than 1 μm, which is uniformly distributed.

溶融炭酸塩型燃料電池のセパレータは、電池の初回起動時に原位置焙焼を行うので、初回の焙焼効果が電池の性能を直接左右する。技術的秘密と技術的封鎖により、中国では、MCFCに関する研究はまだ初期段階である。現在、MCFCに取り込んでいる機関としては、主に中国科学院大連化学物理研究所、中国華能集団クリーンエネルギー技術研究院有限公司及び一部の大学があり、溶融炭酸塩型燃料電池のセパレータ焙焼効果のオンライン評価に関しては、まだ関連する検討や著作がなく、このため、溶融炭酸塩型燃料電池の発電性能が確保されにくい。 Since the separator of the molten carbonate fuel cell undergoes in-situ roasting at the first start-up of the cell, the effect of the initial roasting directly affects the performance of the cell. Due to technical secrecy and technical blockade, research on MCFC is still in its early stages in China. At present, the institutions that are involved in MCFC are mainly the Dalian Institute of Chemistry and Physics of the Chinese Academy of Sciences, the China Huaneng Group Clean Energy Technology Research Institute Co., Ltd., and some universities. Regarding the online evaluation of the effects, there are no related studies or publications yet, and for this reason, it is difficult to ensure the power generation performance of molten carbonate fuel cells.

本発明の目的は、上記の従来技術の欠点を解決し、溶融炭酸塩型燃料電池の発電性能を効果的に確保できる溶融炭酸塩型燃料電池のセパレータ焙焼のオンライン評価方法を提供することである。 An object of the present invention is to solve the above-mentioned drawbacks of the prior art, and to provide an online evaluation method for separator roasting of a molten carbonate fuel cell that can effectively ensure the power generation performance of the molten carbonate fuel cell. be.

上記の目的を達成させるために、本発明による溶融炭酸塩型燃料電池のセパレータ焙焼のオンライン評価方法は、
溶融炭酸塩型燃料電池を組み立てるに先立って、溶融炭酸塩型燃料電池のセパレータの重量を記録し、溶融炭酸塩型燃料電池のセパレータの組成から、溶融炭酸塩型燃料電池のセパレータに含まれる溶媒、粘着剤及び可塑剤の質量を算出するステップ1)と、
溶融炭酸塩型燃料電池のセパレータの熱重量曲線から、溶融炭酸塩型燃料電池のセパレータの焙焼の昇温プログラムを設定するステップ2)と、
溶融炭酸塩型燃料電池のセパレータの焙焼の昇温プログラムに従って、組み立てられた溶融炭酸塩型燃料電池に対して昇温焙焼を行い、昇温中、溶融炭酸塩型燃料電池の陰極に空気を導入し、溶融炭酸塩型燃料電池の陽極に窒素ガスを導入しながら、陰極の排気口での酸素ガス濃度の変化をオンラインで監視し、酸素ガス濃度が小さくなってから大きくなると、溶融炭酸塩型燃料電池のセパレータ内の溶媒、粘着剤及び可塑剤が完全に燃焼されたことを示し、このとき、溶融炭酸塩型燃料電池のセパレータが多孔質のシート状構造となり、
溶融炭酸塩型燃料電池が490~500℃に安定化すると、陰極への空気導入を停止し、このとき、電解質が徐々に溶融して溶融炭酸塩型燃料電池のセパレータに含浸し、
溶融炭酸塩型燃料電池が600~650℃に安定化すると、溶融炭酸塩型燃料電池が電解質で満たされ、このとき、溶融炭酸塩型燃料電池は発電能力を備えるものとなり、溶融炭酸塩型燃料電池の陽極に水素ガスを導入し、溶融炭酸塩型燃料電池の陰極に空気及び二酸化炭素を導入し、溶融炭酸塩型燃料電池の内部で活性化反応が行われた後、溶融炭酸塩型燃料電池について放電テストを行った結果、溶融炭酸塩型燃料電池の陰極及び陽極でガス溢れやガス漏れの危険がなく、単一電池の平均開回路電圧が予め設定された電圧値よりも大きい場合、溶融炭酸塩型燃料電池のセパレータの焙焼が合格し、それ以外の場合、溶融炭酸塩型燃料電池のセパレータの焙焼が合格しておらず、これにより、溶融炭酸塩型燃料電池のセパレータ焙焼のオンライン評価が完了するステップ3)とを含む。
In order to achieve the above object, an online evaluation method for separator roasting of a molten carbonate fuel cell according to the present invention comprises:
Prior to assembling the molten carbonate fuel cell, the weight of the separator of the molten carbonate fuel cell was recorded, and from the composition of the separator of the molten carbonate fuel cell, the solvent contained in the separator of the molten carbonate fuel cell was determined. , step 1) of calculating the mass of the adhesive and the plasticizer;
Step 2) of setting a temperature rising program for roasting the separator of the molten carbonate fuel cell from the thermogravimetric curve of the separator of the molten carbonate fuel cell;
The assembled molten carbonate fuel cell is subjected to temperature-rising roasting according to the temperature-rising program for roasting the separator of the molten carbonate fuel cell. was introduced, and while nitrogen gas was being introduced into the anode of the molten carbonate fuel cell, changes in the oxygen gas concentration at the exhaust port of the cathode were monitored online. It indicates that the solvent, adhesive and plasticizer in the separator of the salt type fuel cell are completely burned, and at this time, the separator of the molten carbonate type fuel cell becomes a porous sheet-like structure,
When the molten carbonate fuel cell is stabilized at 490 to 500° C., the introduction of air to the cathode is stopped, and the electrolyte gradually melts and impregnates the separator of the molten carbonate fuel cell,
When the molten carbonate fuel cell is stabilized at 600 to 650° C., the molten carbonate fuel cell is filled with electrolyte. Hydrogen gas is introduced into the anode of the cell, air and carbon dioxide are introduced into the cathode of the molten carbonate fuel cell, and after an activation reaction takes place inside the molten carbonate fuel cell, the molten carbonate fuel is After conducting a discharge test on the battery, if there is no risk of gas overflow or gas leakage at the cathode and anode of the molten carbonate fuel cell, and the average open circuit voltage of the single cell is greater than the preset voltage value, The separator roasting of the molten carbonate fuel cell passes, otherwise the separator roasting of the molten carbonate fuel cell does not pass, which leads to the separator roasting of the molten carbonate fuel cell. and step 3) in which the online evaluation of firing is completed.

昇温中、溶融炭酸塩型燃料電池の陰極に1L/分の空気を導入し、溶融炭酸塩型燃料電池の陽極に0.5L/分の窒素ガスを導入する。 During the temperature rise, 1 L/min of air is introduced to the cathode of the molten carbonate fuel cell, and 0.5 L/min of nitrogen gas is introduced to the anode of the molten carbonate fuel cell.

溶融炭酸塩型燃料電池が600~650℃に安定化すると、溶融炭酸塩型燃料電池が電解質で満たされ、このとき、溶融炭酸塩型燃料電池は発電能力を備えるものとなり、
溶融炭酸塩型燃料電池の陽極に1L/分の水素ガスを導入し、溶融炭酸塩型燃料電池の陰極に3L/分の空気及び1L/分の二酸化炭素を導入する。
When the molten carbonate fuel cell is stabilized at 600 to 650° C., the molten carbonate fuel cell is filled with electrolyte, and at this time, the molten carbonate fuel cell becomes capable of generating electricity.
1 L/min of hydrogen gas is introduced to the anode of the molten carbonate fuel cell, and 3 L/min of air and 1 L/min of carbon dioxide are introduced to the cathode of the molten carbonate fuel cell.

予め設定された電圧値が1.1Vである。 A preset voltage value is 1.1V.

本発明は以下の有益な効果を有する。
本発明による溶融炭酸塩型燃料電池のセパレータ焙焼のオンライン評価方法によれば、具体的に実行される際に、電池の昇温焙焼において、陰極に空気、陽極に窒素ガスが導入されることにより、陽極の酸化が回避され、また、焙焼過程において、陰極の排気口での酸素ガス濃度の変化をオンラインで監視し、酸素ガス濃度が小さくなってから大きくなると、セパレータ内の粘着剤及び可塑剤が完全に燃焼されたことを示し、このとき、セパレータが多孔質のシート状構造となり、また、電池が初期発電能力を備えたものとなったときに、陽極に水素ガス、陰極に空気及び二酸化炭素が導入され、電池内部で短時間の活性化反応が行われた後、電池について放電テストを行うことができ、テストにおいては、電池の陰極及び陽極でガス溢れやガス漏れの危険がなく、単一電池の平均開回路電圧が1.1Vよりも大きい場合、電池のセパレータの焙焼が合格し、これにより、溶融炭酸塩型燃料電池のセパレータ焙焼のオンライン評価が実現され、溶融炭酸塩型燃料電池の発電性能が確保され、MCFCの発電性能の最適化などにおいて指導的な意義がある。
The invention has the following beneficial effects.
According to the online evaluation method for separator roasting of a molten carbonate fuel cell according to the present invention, air is introduced into the cathode and nitrogen gas is introduced into the anode in the temperature-rising roasting of the battery when specifically executed. As a result, oxidation of the anode is avoided, and during the roasting process, changes in the oxygen gas concentration at the cathode exhaust port are monitored online, and when the oxygen gas concentration decreases and then increases, the adhesive in the separator and the plasticizer are completely burned. At this time, when the separator has a porous sheet-like structure and the battery has the initial power generation capacity, hydrogen gas is supplied to the anode and to the cathode. After air and carbon dioxide are introduced and a short time activation reaction takes place inside the battery, the battery can be subjected to a discharge test, during which there is no risk of gas overflow or gas leakage at the cathode and anode of the battery. and the average open circuit voltage of the single cell is greater than 1.1 V, the separator roasting of the battery is passed, which realizes the online evaluation of the molten carbonate fuel cell separator roasting, The power generation performance of molten carbonate fuel cells is ensured, and it has a guiding significance in optimizing the power generation performance of MCFC.

本発明のフローチャートである。4 is a flow chart of the present invention;

以下、図面を参照しながら本発明についてさらに詳細に説明する。 The present invention will be described in more detail below with reference to the drawings.

図1に示すように、本発明による溶融炭酸塩型燃料電池のセパレータ焙焼のオンライン評価方法は、
溶融炭酸塩型燃料電池を組み立てるに先立って、溶融炭酸塩型燃料電池のセパレータの重量を記録し、溶融炭酸塩型燃料電池のセパレータの組成から、溶融炭酸塩型燃料電池のセパレータに含まれる溶媒、粘着剤及び可塑剤の質量を算出するステップ1)と、
溶融炭酸塩型燃料電池のセパレータの熱重量曲線から、溶融炭酸塩型燃料電池のセパレータの焙焼の昇温プログラムを設定するステップ2)と、
溶融炭酸塩型燃料電池のセパレータの焙焼の昇温プログラムに従って、組み立てられた溶融炭酸塩型燃料電池に対して昇温焙焼を行い、昇温中、溶融炭酸塩型燃料電池の陰極に空気を導入し、溶融炭酸塩型燃料電池の陽極に窒素ガスを導入しながら、陰極の排気口での酸素ガス濃度の変化をオンラインで監視し、酸素ガス濃度が小さくなってから大きくなると、溶融炭酸塩型燃料電池のセパレータ内の溶媒、粘着剤及び可塑剤が完全に燃焼されたことを示し、このとき、溶融炭酸塩型燃料電池のセパレータが多孔質のシート状構造となり、
溶融炭酸塩型燃料電池が490~500℃に安定化すると、陰極への空気導入を停止し、このとき、電解質が徐々に溶融して溶融炭酸塩型燃料電池のセパレータに含浸し、
溶融炭酸塩型燃料電池が600~650℃に安定化すると、溶融炭酸塩型燃料電池が電解質で満たされ、このとき、溶融炭酸塩型燃料電池は発電能力を備えるものとなり、溶融炭酸塩型燃料電池の陽極に水素ガスを導入し、溶融炭酸塩型燃料電池の陰極に空気及び二酸化炭素を導入し、溶融炭酸塩型燃料電池の内部で活性化反応が行われた後、溶融炭酸塩型燃料電池について放電テストを行った結果、溶融炭酸塩型燃料電池の陰極及び陽極でガス溢れやガス漏れの危険がなく、単一電池の平均開回路電圧が1.1Vよりも大きい場合、溶融炭酸塩型燃料電池のセパレータの焙焼が合格し、それ以外の場合、溶融炭酸塩型燃料電池のセパレータの焙焼が合格しておらず、これにより、溶融炭酸塩型燃料電池のセパレータ焙焼のオンライン評価が完了するステップ3)とを含む。
As shown in FIG. 1, the online evaluation method for separator roasting of a molten carbonate fuel cell according to the present invention includes:
Prior to assembling the molten carbonate fuel cell, the weight of the separator of the molten carbonate fuel cell was recorded, and from the composition of the separator of the molten carbonate fuel cell, the solvent contained in the separator of the molten carbonate fuel cell was determined. , step 1) of calculating the mass of the adhesive and the plasticizer;
Step 2) of setting a temperature rising program for roasting the separator of the molten carbonate fuel cell from the thermogravimetric curve of the separator of the molten carbonate fuel cell;
The assembled molten carbonate fuel cell is subjected to temperature-rising roasting according to the temperature-rising program for roasting the separator of the molten carbonate fuel cell. was introduced, and while nitrogen gas was being introduced into the anode of the molten carbonate fuel cell, changes in the oxygen gas concentration at the exhaust port of the cathode were monitored online. It indicates that the solvent, adhesive and plasticizer in the separator of the salt type fuel cell are completely burned, and at this time, the separator of the molten carbonate type fuel cell becomes a porous sheet-like structure,
When the molten carbonate fuel cell is stabilized at 490 to 500° C., the introduction of air to the cathode is stopped, and the electrolyte gradually melts and impregnates the separator of the molten carbonate fuel cell,
When the molten carbonate fuel cell is stabilized at 600 to 650° C., the molten carbonate fuel cell is filled with electrolyte. Hydrogen gas is introduced into the anode of the cell, air and carbon dioxide are introduced into the cathode of the molten carbonate fuel cell, and after an activation reaction takes place inside the molten carbonate fuel cell, the molten carbonate fuel is After conducting a discharge test on the battery, if there is no risk of gas overflow or gas leakage at the cathode and anode of the molten carbonate fuel cell, and the average open circuit voltage of a single cell is greater than 1.1 V, the molten carbonate The roasting of the separator of the molten carbonate fuel cell has passed, otherwise the roasting of the separator of the molten carbonate fuel cell has not passed, which makes the separator roasting of the molten carbonate fuel cell online and step 3) in which the evaluation is completed.

実施例1
本実施例の具体的な操作は以下のとおりである。
1)電極有効面積が0.2m2の溶融炭酸塩型燃料電池のセルを一対用意し、厚さ0.7mm、重量420gのセパレータを選択し、セパレータを製造するための組成から推定した結果、メタアルミン酸リチウム粉末の含有量は約70~80%であった。
2)セパレータの熱重量曲線から、セパレータ焙焼の昇温プログラムを作成した。
3)昇温プログラムに従って、組み立てられたセルに昇温焙焼を行い、昇温中、陰極に1L/分の空気を導入し、陽極に0.5L/分の窒素ガスを導入した。
4)酸素ガス濃度検出装置を用いて、陰極の排気ガスを監視し、酸素ガス濃度が最初の0.2L/分から0.2L/分程度になると、セパレータ内の粘着剤及び可塑剤などがほぼ完全に焙焼され、
電池が490~500℃に安定化すると、陰極への空気導入を停止し、
電池が600~650℃に安定化すると、セパレータはほぼ電解質で満たされ、さらに、陽極に1L/分の水素ガスを導入し、陰極に3L/分の空気及び1L/分の二酸化炭素を導入し、電池の内部で短時間の活性化反応が行われた後、電池について放電テストを行うことができ、
ここでは、セパレータ焙焼の品質は、電池の陰極及び陽極でガス溢れやガス漏れの危険の有無に基づいて判定され、セルの開回路電圧が1.12Vに達する場合、今回のセパレータ焙焼が高品質であることを示している。
Example 1
Specific operations of this embodiment are as follows.
1) Prepare a pair of molten carbonate fuel cell cells with an electrode effective area of 0.2 m 2 , select a separator with a thickness of 0.7 mm and a weight of 420 g, and estimate from the composition for manufacturing the separator. The content of lithium metaaluminate powder was about 70-80%.
2) From the thermogravimetric curve of the separator, a temperature rising program for roasting the separator was created.
3) The assembled cell was subjected to temperature-rising roasting according to the temperature-rising program, and during the temperature-rising, 1 L/min of air was introduced into the cathode and 0.5 L/min of nitrogen gas was introduced into the anode.
4) Monitor the cathode exhaust gas using an oxygen gas concentration detector, and when the oxygen gas concentration drops from the initial 0.2 L/min to about 0.2 L/min, the adhesive and plasticizer in the separator will almost perfectly roasted,
When the battery stabilizes at 490-500° C., stop introducing air to the cathode,
When the cell stabilized at 600-650° C., the separator was nearly filled with electrolyte, and 1 L/min of hydrogen gas was introduced to the anode and 3 L/min of air and 1 L/min of carbon dioxide to the cathode. , after a short activation reaction has taken place inside the battery, the battery can be subjected to a discharge test,
Here, the quality of separator roasting is judged based on the presence or absence of risk of gas overflow or gas leakage at the cathode and anode of the battery. It indicates high quality.

Claims (4)

溶融炭酸塩型燃料電池を組み立てるに先立って、溶融炭酸塩型燃料電池のセパレータの重量を記録し、溶融炭酸塩型燃料電池のセパレータの組成から、溶融炭酸塩型燃料電池のセパレータに含まれる溶媒、粘着剤及び可塑剤の質量を算出するステップ1)と、
溶融炭酸塩型燃料電池のセパレータの熱重量曲線から、溶融炭酸塩型燃料電池のセパレータの焙焼の昇温プログラムを設定するステップ2)と、
溶融炭酸塩型燃料電池のセパレータの焙焼の昇温プログラムに従って、組み立てられた溶融炭酸塩型燃料電池に対して昇温焙焼を行い、昇温中、溶融炭酸塩型燃料電池の陰極に空気を導入し、溶融炭酸塩型燃料電池の陽極に窒素ガスを導入しながら、陰極の排気口での酸素ガス濃度の変化をオンラインで監視し、酸素ガス濃度が小さくなってから大きくなると、溶融炭酸塩型燃料電池のセパレータ内の溶媒、粘着剤及び可塑剤が完全に燃焼されたことを示し、このとき、溶融炭酸塩型燃料電池のセパレータが多孔質のシート状構造となり、
溶融炭酸塩型燃料電池が490~500℃に安定化すると、陰極への空気導入を停止し、このとき、電解質が徐々に溶融して溶融炭酸塩型燃料電池のセパレータに含浸し、
溶融炭酸塩型燃料電池が600~650℃に安定化すると、溶融炭酸塩型燃料電池が電解質で満たされ、このとき、溶融炭酸塩型燃料電池は発電能力を備えるものとなり、溶融炭酸塩型燃料電池の陽極に水素ガスを導入し、溶融炭酸塩型燃料電池の陰極に空気及び二酸化炭素を導入し、溶融炭酸塩型燃料電池の内部で活性化反応が行われた後、溶融炭酸塩型燃料電池について放電テストを行った結果、溶融炭酸塩型燃料電池の陰極及び陽極でガス溢れやガス漏れの危険がなく、単一電池の平均開回路電圧が予め設定された電圧値よりも大きい場合、溶融炭酸塩型燃料電池のセパレータの焙焼が合格し、それ以外の場合、溶融炭酸塩型燃料電池のセパレータの焙焼が合格しておらず、これにより、溶融炭酸塩型燃料電池のセパレータ焙焼のオンライン評価が完了するステップ3)とを含む、ことを特徴とする溶融炭酸塩型燃料電池のセパレータ焙焼のオンライン評価方法。
Prior to assembling the molten carbonate fuel cell, the weight of the separator of the molten carbonate fuel cell was recorded, and from the composition of the separator of the molten carbonate fuel cell, the solvent contained in the separator of the molten carbonate fuel cell was determined. , step 1) of calculating the mass of the adhesive and the plasticizer;
Step 2) of setting a temperature rising program for roasting the separator of the molten carbonate fuel cell from the thermogravimetric curve of the separator of the molten carbonate fuel cell;
The assembled molten carbonate fuel cell is subjected to temperature-rising roasting according to the temperature-rising program for roasting the separator of the molten carbonate fuel cell. was introduced, and while nitrogen gas was being introduced into the anode of the molten carbonate fuel cell, changes in the oxygen gas concentration at the exhaust port of the cathode were monitored online. It indicates that the solvent, adhesive and plasticizer in the separator of the salt type fuel cell are completely burned, and at this time, the separator of the molten carbonate type fuel cell becomes a porous sheet-like structure,
When the molten carbonate fuel cell is stabilized at 490 to 500° C., the introduction of air to the cathode is stopped, and the electrolyte gradually melts and impregnates the separator of the molten carbonate fuel cell,
When the molten carbonate fuel cell is stabilized at 600 to 650° C., the molten carbonate fuel cell is filled with electrolyte. Hydrogen gas is introduced into the anode of the cell, air and carbon dioxide are introduced into the cathode of the molten carbonate fuel cell, and after an activation reaction takes place inside the molten carbonate fuel cell, the molten carbonate fuel is After conducting a discharge test on the battery, if there is no risk of gas overflow or gas leakage at the cathode and anode of the molten carbonate fuel cell, and the average open circuit voltage of the single cell is greater than the preset voltage value, The separator roasting of the molten carbonate fuel cell passes, otherwise the separator roasting of the molten carbonate fuel cell does not pass, which leads to the separator roasting of the molten carbonate fuel cell. and step 3) in which the online evaluation of baking is completed.
昇温中、溶融炭酸塩型燃料電池の陰極に1L/分の空気を導入し、溶融炭酸塩型燃料電池の陽極に0.5L/分の窒素ガスを導入する、ことを特徴とする請求項1に記載の溶融炭酸塩型燃料電池のセパレータ焙焼のオンライン評価方法。 1 L/min of air is introduced to the cathode of the molten carbonate fuel cell and 0.5 L/min of nitrogen gas is introduced to the anode of the molten carbonate fuel cell during temperature rise. 2. Online evaluation method for separator roasting of molten carbonate fuel cell according to 1. 溶融炭酸塩型燃料電池が600~650℃に安定化すると、溶融炭酸塩型燃料電池が電解質で満たされ、このとき、溶融炭酸塩型燃料電池は発電能力を備えるものとなり、
溶融炭酸塩型燃料電池の陽極に1L/分の水素ガスを導入し、溶融炭酸塩型燃料電池の陰極に3L/分の空気及び1L/分の二酸化炭素を導入する、ことを特徴とする請求項1に記載の溶融炭酸塩型燃料電池のセパレータ焙焼のオンライン評価方法。
When the molten carbonate fuel cell is stabilized at 600 to 650° C., the molten carbonate fuel cell is filled with electrolyte, and at this time, the molten carbonate fuel cell becomes capable of generating electricity.
1 L/min of hydrogen gas is introduced into the anode of the molten carbonate fuel cell, and 3 L/min of air and 1 L/min of carbon dioxide are introduced into the cathode of the molten carbonate fuel cell. Item 1. An online evaluation method for separator roasting of a molten carbonate fuel cell according to Item 1.
予め設定された電圧値が1.1Vである、ことを特徴とする請求項1に記載の溶融炭酸塩型燃料電池のセパレータ焙焼のオンライン評価方法。 2. The online evaluation method of separator roasting of a molten carbonate fuel cell according to claim 1, wherein the preset voltage value is 1.1V.
JP2022542776A 2020-05-18 2020-10-15 Online evaluation method for separator roasting of molten carbonate fuel cells Active JP7358652B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202010421592.XA CN111564646B (en) 2020-05-18 2020-05-18 Online evaluation method for roasting of molten carbonate fuel cell diaphragm
CN202010421592.X 2020-05-18
PCT/CN2020/121189 WO2021232664A1 (en) 2020-05-18 2020-10-15 Online evaluation method for molten carbonate fuel cell separator roasting

Publications (2)

Publication Number Publication Date
JP2023509992A true JP2023509992A (en) 2023-03-10
JP7358652B2 JP7358652B2 (en) 2023-10-10

Family

ID=72074759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022542776A Active JP7358652B2 (en) 2020-05-18 2020-10-15 Online evaluation method for separator roasting of molten carbonate fuel cells

Country Status (3)

Country Link
JP (1) JP7358652B2 (en)
CN (1) CN111564646B (en)
WO (1) WO2021232664A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111564646B (en) * 2020-05-18 2021-09-21 中国华能集团清洁能源技术研究院有限公司 Online evaluation method for roasting of molten carbonate fuel cell diaphragm
CN113782787B (en) * 2021-09-13 2023-09-08 华能国际电力股份有限公司 Control method of air inlet system of molten carbonate fuel cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643964A (en) * 1987-06-26 1989-01-09 Hitachi Ltd Manufacture of molten carbonate fuel cell
JPH03238764A (en) * 1989-12-18 1991-10-24 Inst Of Gas Technol Method of starting molten carbonate fuel cell
US5399443A (en) * 1992-02-12 1995-03-21 Electric Power Research Institute, Inc. Fuel cells
JPH07335235A (en) * 1994-06-09 1995-12-22 Kawasaki Heavy Ind Ltd Fused carbonate fuel cell and manufacture thereof
JP2000156235A (en) * 1998-11-19 2000-06-06 Yoyu Tansanengata Nenryo Denchi Hatsuden System Gijutsu Kenkyu Kumiai Corrosion restraining method for molten carbonate type fuel cell current collecting member

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3238764B2 (en) 1992-11-10 2001-12-17 花王株式会社 Novel urea derivative and method for producing the same
JP4840718B2 (en) * 2001-08-14 2011-12-21 日産自動車株式会社 Solid oxide fuel cell
JP2005174649A (en) * 2003-12-09 2005-06-30 Nissan Motor Co Ltd Humidifier for fuel cell
CN201965211U (en) * 2010-12-28 2011-09-07 天津出入境检验检疫局工业产品安全技术中心 Device for testing safety performance of proton exchange membrane fuel cell
CN102306822B (en) * 2011-09-01 2013-08-21 中国华能集团清洁能源技术研究院有限公司 Pneumatic powder feeding type molten carbonate direct carbon fuel cell stack
CN103647093B (en) * 2013-11-26 2016-02-10 中国华能集团清洁能源技术研究院有限公司 A kind of performance diagnogtics method of molten carbonate fuel cell
CN105702992B (en) * 2016-03-29 2018-03-06 中国华能集团清洁能源技术研究院有限公司 A kind of method based on molten carbonate fuel cell synthesis ammonia
CN106935887B (en) * 2017-03-08 2019-06-14 中国华能集团清洁能源技术研究院有限公司 A kind of starting method of molten carbonate fuel cell heap
EP3694646A4 (en) 2017-10-10 2021-06-30 Metabolon, Inc. A streamlined method for analytical validation of biochemicals detected using an untargeted mass-spectrometry platform
CN109696638A (en) * 2018-12-18 2019-04-30 中国华能集团清洁能源技术研究院有限公司 A kind of molten carbonate fuel cell life-span prediction method
CN111564646B (en) * 2020-05-18 2021-09-21 中国华能集团清洁能源技术研究院有限公司 Online evaluation method for roasting of molten carbonate fuel cell diaphragm

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643964A (en) * 1987-06-26 1989-01-09 Hitachi Ltd Manufacture of molten carbonate fuel cell
JPH03238764A (en) * 1989-12-18 1991-10-24 Inst Of Gas Technol Method of starting molten carbonate fuel cell
US5399443A (en) * 1992-02-12 1995-03-21 Electric Power Research Institute, Inc. Fuel cells
JPH07335235A (en) * 1994-06-09 1995-12-22 Kawasaki Heavy Ind Ltd Fused carbonate fuel cell and manufacture thereof
JP2000156235A (en) * 1998-11-19 2000-06-06 Yoyu Tansanengata Nenryo Denchi Hatsuden System Gijutsu Kenkyu Kumiai Corrosion restraining method for molten carbonate type fuel cell current collecting member

Also Published As

Publication number Publication date
WO2021232664A1 (en) 2021-11-25
CN111564646B (en) 2021-09-21
JP7358652B2 (en) 2023-10-10
CN111564646A (en) 2020-08-21

Similar Documents

Publication Publication Date Title
JP7358652B2 (en) Online evaluation method for separator roasting of molten carbonate fuel cells
CN109950581B (en) Rapid activation method for phosphoric acid doped polybenzimidazole high-temperature membrane electrode of fuel cell
CN108539203B (en) Super-hydrophilic material modified electrode material for energy storage flow battery
JP6543658B2 (en) Fuel cell activation method and activation apparatus
CN109755504B (en) Preparation method of ferriporphyrin/carbon nanotube composite positive electrode material and application of ferriporphyrin/carbon nanotube composite positive electrode material in positive electrode of lithium-sulfur battery
JP7170909B2 (en) Electrolyte replenishment method for molten carbonate fuel cell stack
CN103487348A (en) Method used for testing corrosion rate of battery grids
CN112615033A (en) Direct methanol fuel cell catalyst layer gradient membrane electrode and preparation method thereof
CN104716338B (en) Processing method of electrode used for liquid flow cell
CN108461758B (en) Cathode electrode for all-vanadium redox flow battery, preparation method of cathode electrode and all-vanadium redox flow battery
CN101414688A (en) Activation method for fuel battery
CN104078698B (en) A kind of storage of molten carbonate fuel cell electrolyte and compensation method
CN103456501A (en) Preparation method for graphene-carbon nanofiber composite current collectors
CN100411231C (en) Lithium ion battery with pyridyl quinone derivative as negative pole material
CN108461760A (en) A kind of membrane electrode diffusion layer and preparation method thereof
Wenhong et al. Study of the electrochemical properties of a transition metallic ions modified electrode in acidic VOSO4 solution
Kumada et al. Investigation of mechanical damage of SOFC caused by electrochemical oxidation using in-situ acoustic emission and electrochemical technique
Zhang et al. Development and Performance Test of Molten Carbonate Fuel Cell Stack
CN112390284A (en) Preparation method of tin oxide modified cobalt-zinc bimetallic organic framework derived carbon composite material
CN101409348A (en) Method for preparing air seal effect resistance anode for direct methanol fuel cell
CN112909268B (en) Porous carbon air electrode of metal-air battery and preparation method thereof
CN114221018B (en) Preparation method of graphite felt lithium ion battery
CN117438565A (en) Modified silicon negative electrode material, preparation method thereof, negative electrode plate and battery
CN117374305A (en) Preparation method of modified alkaline all-iron flow battery electrode material
Zhao et al. Investigations on the reaction characteristics of direct carbon fuel cell with molten antimony anode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230929

R150 Certificate of patent or registration of utility model

Ref document number: 7358652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150