JP2023509577A - ナノインプリントされたマイクロレンズアレイおよびその製造方法 - Google Patents

ナノインプリントされたマイクロレンズアレイおよびその製造方法 Download PDF

Info

Publication number
JP2023509577A
JP2023509577A JP2022532102A JP2022532102A JP2023509577A JP 2023509577 A JP2023509577 A JP 2023509577A JP 2022532102 A JP2022532102 A JP 2022532102A JP 2022532102 A JP2022532102 A JP 2022532102A JP 2023509577 A JP2023509577 A JP 2023509577A
Authority
JP
Japan
Prior art keywords
microlens
concentric
mold
array
ridges
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022532102A
Other languages
English (en)
Inventor
ルー ルー,
バリー デーヴィッド シルヴァースタイン,
ハオ ユイ,
モンフェイ ワン,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meta Platforms Technologies LLC
Original Assignee
Meta Platforms Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meta Platforms Technologies LLC filed Critical Meta Platforms Technologies LLC
Publication of JP2023509577A publication Critical patent/JP2023509577A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0031Replication or moulding, e.g. hot embossing, UV-casting, injection moulding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms
    • G02B5/188Plurality of such optical elements formed in or on a supporting substrate
    • G02B5/1885Arranged as a periodic array
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1809Diffraction gratings with pitch less than or comparable to the wavelength

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

マイクロレンズアレイは、ナノインプリントリソグラフィによって形成することができる。このアレイの各マイクロレンズは、基板から延在していて、同心状の溝によって分離された複数の同心状の隆起部を含む。この同心状の隆起部の幅と同心状の隆起部のピッチpとの比Fは、マイクロレンズの中心から同心状の隆起部までの径方向の距離rの関数である。マイクロレンズの実効屈折率nは、このマイクロレンズの中心からの径方向の距離に依存する2値パターンの充填比に依存する。マイクロレンズアレイを製造する方法は、基板上にインプリントレジスト層を形成することと、反転マイクロレンズのナノ構造を有する金型を用いて、このインプリントレジスト層をインプリントすることとを含む。【選択図】図1A、図1B、および図1C

Description

本開示は、光学構成要素および光学モジュールに関し、詳細には、波面センサおよびこれを使用する表示システムに使用可能なマイクロレンズアレイおよび他の構成要素に関する。
マイクロオプティクスは、イメージング、リモートセンシング、表示システム、光通信、光データ処理などの分野において数多くの用途がある。マイクロオプティクスにより、光学システムの大幅な小型軽量化が可能になる。マイクロオプティクスは、スタックの製造およびダイシング、射出成型などのプロセスを使用して、大量に安く製造することができる。
たとえば、マイクロレンズのアレイなどのマイクロオプティクスを表示装置およびアレイ光検出器において使用して、光効率を高め、視野を制御し、空間指向性を改善することができる。仮想現実(VR)コンテンツ、拡張現実(AR)コンテンツ、複合現実(MR)コンテンツなどを表示するために、ヘッドマウントディスプレイ(HMD)、ヘルメットマウントディスプレイ、およびニアアイディスプレイ(NED)がますます使用されている。このようなディスプレイは、ほんのいくつかの例を挙げると、娯楽、教育、訓練、および生命医科学を含め、様々な分野で応用されるようになっている。表示されるVR/AR/MRコンテンツは、3次元(3D)とすることができて、体験を向上させ、またユーザが観察する現実の物体に仮想オブジェクトをマッチさせる。ニアアイディスプレイの外部環境は、リアルタイムで追跡されてもよく、表示されるこの画像は、環境に応じて、ならびにユーザの頭の向きおよび注視方向に応じて動的に調整されてもよい。この環境を検知するために、様々なシステム、たとえば、特別な外向きのカメラシステムを配備してもよい。
コンパクトで効率的な外部環境監視システムは、ユーザが実世界の環境に没入できるようにすることによって、ニアアイディスプレイに大きな利益をもたらすことができる。しかし、最近の数多くの外部監視システムおよび追跡システムは、かさばっていて重い。HMDまたはNEDのディスプレイは、通常、ユーザの頭に装着されるので、大きく、かさばっていて、バランスの悪い、かつ/または重いディスプレイ装置は、扱いにくくなるはずであり、ユーザが装着するには使い心地がよくない場合がある。
本発明は、添付の特許請求の範囲に記載のマイクロレンズアレイ構成要素、マイクロレンズアレイ構成要素を製造するための金型、およびマイクロレンズアレイ構成要素を製造する方法を開示する。
一態様では、本発明は、基板と、ナノインプリントリソグラフィによってこの基板上に形成されたマイクロレンズのアレイとを備えるマイクロレンズアレイ構成要素であって、このマイクロレンズのアレイの各マイクロレンズが、基板から延在していて、同心状の溝によって分離された複数の同心状の隆起部を含み、この同心状の隆起部の幅と同心状の隆起部のピッチpとの比Fが、マイクロレンズの中心から同心状の隆起部までの径方向の距離rの関数である、マイクロレンズアレイ構成要素を対象とする。
本発明によるマイクロレンズアレイ構成要素の一実施形態では、このマイクロレンズアレイ構成要素は、基板によって支持されたインプリントレジスト層をさらに含んでもよく、マイクロレンズのアレイは、このインプリントレジスト層に形成される。
本発明によるマイクロレンズアレイ構成要素の一実施形態では、同心状の溝が空気を含んでもよい。
本発明によるマイクロレンズアレイ構成要素の一実施形態では、複数の同心状の隆起部は、長方形または台形の断面を有する円形の隆起部を含んでもよい。
本発明によるマイクロレンズアレイ構成要素の一実施形態では、複数の同心状の隆起部の各同心状の隆起部の高さはほぼ同じでもよい。
本発明によるマイクロレンズアレイ構成要素の一実施形態では、基板は平坦でもよい。
本発明によるマイクロレンズアレイ構成要素の一実施形態では、マイクロレンズのアレイの各マイクロレンズの実効屈折率nは、径方向の距離rの関数でもよい。
n(r)=nF(r)+n(1-F(r))
ここで、nは同心状の隆起部の屈折率であり、nは同心状の溝の屈折率である。
本発明によるマイクロレンズアレイ構成要素の一実施形態では、各マイクロレンズは、振幅が2πであって、合計して放物線状の位相プロファイルとなる複数の同心状の位相プロファイル区間を含む位相プロファイルを有してもよい。
本発明によるマイクロレンズアレイ構成要素の一実施形態では、各マイクロレンズは次の位相プロファイルを有してもよい。
Figure 2023509577000002
ここで、fはマイクロレンズの焦点距離であり、λは入射光の波長であり、φ(0)はマイクロレンズの中央での位相である。
本発明によるマイクロレンズアレイ構成要素の一実施形態では、同心状の隆起部の高さは1700nm未満でもよい。
本発明によるマイクロレンズアレイ構成要素の一実施形態では、同心状の隆起部のピッチpは600nm未満である。
本発明によるマイクロレンズアレイ構成要素の一実施形態では、マイクロレンズのアレイの各マイクロレンズは0.1mm以下でもよい。
一態様では、本発明は、マイクロレンズアレイ構成要素、たとえば、前述のマイクロレンズアレイ構成要素を製造するための金型であって、反転マイクロレンズのアレイを含み、この反転マイクロレンズのアレイの各反転マイクロレンズが、金型から延在していて、同心状の金型溝によって分離された同心状の金型隆起部を含み、この同心状の金型溝の幅と同心状の金型溝のピッチp’との比F’が、この反転マイクロレンズの中心から同心状の金型溝までの径方向の距離r’の関数である、金型を対象とする。
本発明による金型の一実施形態では、同心状の金型隆起部の高さはほぼ同じでもよい。
一態様では、本発明は、マイクロレンズアレイ構成要素、たとえば、前述のマイクロレンズアレイ構成要素を製造する方法であって、基板上にインプリントレジスト層を形成することと、反転マイクロレンズのアレイを含む金型を得ることであって、この反転マイクロレンズのアレイの各反転マイクロレンズが、金型から延在していて、同心状の金型溝によって分離された同心状の金型隆起部を含み、この同心状の金型溝の幅と同心状の金型溝のピッチp’との比F’が、反転マイクロレンズの中心から同心状の金型溝までの径方向の距離r’の関数である、反転マイクロレンズのアレイを含む金型を得ることと、金型を用いてインプリントレジスト層をインプリントして、インプリントレジスト層内にマイクロレンズのアレイを形成することとを含み、マイクロレンズのアレイの各マイクロレンズが、基板から延在していて、同心状のインプリント溝によって分離された複数の同心状のインプリント隆起部を含み、この同心状のインプリント隆起部の幅と同心状のインプリント隆起部のピッチpとの比Fが、マイクロレンズの中心から同心状のインプリント隆起部までの径方向の距離rの関数であり、r’=rにおいてF’(r’)=F(r)である、方法をさらに対象とする。
本発明による方法の一実施形態では、マイクロレンズのアレイの各マイクロレンズの実効屈折率nは、径方向の距離rの関数である。
n(r)=nF(r)+n(1-F(r))
ここで、nは同心状の隆起部の屈折率であり、nは同心状の溝の屈折率である。
本発明による方法の一実施形態では、各マイクロレンズは、振幅が2πであって、合計して放物線状のプロファイルとなる複数の同心状の位相プロファイル区間を含む位相プロファイルを有してもよい。
本発明による方法の一実施形態では、各マイクロレンズは以下の位相プロファイルを有してもよい。
Figure 2023509577000003
ここで、fはマイクロレンズの焦点距離であり、λは入射光の波長であり、φ(0)はマイクロレンズの中央での位相である。
本発明による方法の一実施形態では、複数の同心状のインプリント隆起部は、円形のインプリント隆起部を含んでもよい。
本発明による方法の一実施形態では、この方法は、金型を用いてインプリントした後、インプリントレジスト層を反応性イオンエッチングすることをさらに含んでもよい。
次に、各図面とともに、例示的な各実施形態を説明する。
本開示のマイクロレンズアレイ構成要素の平面図である。 図1Aのマイクロレンズアレイ構成要素の単一のマイクロレンズの拡大図である。 図1Bのマイクロレンズの側面図である。 図1Cのマイクロレンズの隆起部の拡大横断面図である。 図1B~図1Dのマイクロレンズのプロファイル高さおよびデューティサイクルへの実効屈折率の依存性を示すグラフである。 本開示のマイクロレンズの例示的な位相プロファイルの図である。 ナノインプリンティングによる、本開示のマイクロレンズを製造するための金型の垂直断面図である。 ナノインプリンティングによる、本開示のマイクロレンズを製造するための金型の垂直断面図である。 ナノインプリンティングによる、本開示のマイクロレンズを製造するための金型の垂直断面図である。 図4A~図4Cの金型の、反転マイクロレンズの隆起部および溝の拡大横断面図である。 ナノインプリンティングによる、本開示のマイクロレンズアレイを製造する例示的な方法の流れ図である。 図5の方法を使用して製造されるマイクロレンズアレイ構成要素を含む波面センサの断面図である。 図5の方法を使用して製造されるマイクロレンズアレイ構成要素を含む波面センサの平面図である。 波面再構成の原理を示す、図6Aおよび図6Bの波面センサの垂直断面図である。 マイクロレンズに入射する光ビーム部分の傾斜波面に起因する焦点オフセットを示す、図7Aの波面センサのマイクロレンズアレイのマイクロレンズに結合された4つの画素の平面図である。 深度カメラ構成での波面センサの概略横断面図である。 図8の波面センサを使用するイメージング光学式距離計の概略図である。 図9のイメージング光学式距離計を含む、本開示のニアアイディスプレイの頂部横断面図である。 本開示の仮想現実ディスプレイヘッドセットの等角図である。 図10Aのヘッドセットを含む仮想現実システムのブロック図である。
本教示は、様々な実施形態および例とともに説明されるが、このような実施形態に限定されるものではない。それどころか、本教示は、当業者によって理解されるように、様々な代替形態および均等物を包含する。本開示の原理、態様、および実施形態、ならびにその具体的な例を説明する、本明細書におけるあらゆる説明は、その構造的な均等物と機能的な均等物の両方を含むものである。さらに、このような均等物には、現在知られている均等物ならびに将来開発される均等物の両方、すなわち構造がどうであれ同じ機能を実行する任意の開発される要素が含まれるものである。
本明細書では、「第1」、「第2」などの用語は、順序付けを意味するものではなく、明示的に示されていない限り、ある1つの要素と別の要素を区別するものである。同様に、方法ステップの順序付けは、明示的に示されていない限り、その実行の順番を意味するものではない。
通常のカメラと比較した深度カメラの1つの差異は、深度カメラによって得られる画像が、撮像される物体の明るさ情報および/または色情報だけでなく、深度情報、すなわち、物体またはカメラに見える物体の一部分の3次元形状、および場合によっては撮像される物体までの距離をも含むことである。深度カメラは、入射する光照射野の光パワー密度およびスペクトル分布だけでなく、この光照射野の波面形状を検出することによって、眼に見える物体の距離および形状についての情報を得ることができる。
波面センサを使用することによって、光照射野の波面形状を測定することができる。光検出器アレイの前にマイクロレンズアレイを配置し、光検出器アレイのデータを処理して、この光検出器アレイの画素に対して個々のマイクロレンズによって生成される焦点の位置を測定することによって、波面センサを構成することができる。製造コストが高いこと、具体的には適切なマイクロレンズアレイの製造コストが高いことによって、マイクロレンズベースの波面センサの広範にわたる使用が妨げられてきた。したがって、高品質で小型のマイクロレンズを、安価に高い歩留りで製造することが非常に望ましい。
本開示によれば、たとえば、ナノインプリンティング後に熱硬化またはUV硬化することのできる、インプリントレジストまたはインプリントエラストマーを使用して、ナノインプリントの形状を維持できる適切な基板上に干渉縞パターンをナノインプリントし、これに続いて、ナノインプリントされたレジスト層を任意選択で反応性イオンエッチングすることによって、マイクロレンズのアレイを製造することができる。このようなプロセスにより、非常に小型で精密に製造されるマイクロレンズのアレイを得ることができるようになる。ナノインプリントされたパターンが平坦な2値パターンを含むとき、非常に薄いレンズを得ることができ、このレンズは、等価屈折率のマイクロレンズよりも屈折率がはるかに低い。
本開示によれば、基板と、ナノインプリントリソグラフィによって基板上に形成されたマイクロレンズのアレイとを含むマイクロレンズアレイ構成要素が提供される。このアレイの各マイクロレンズは、基板から延在していて、同心状の溝によって分離された複数の同心状の隆起部を含む。この同心状の隆起部の幅と同心状の隆起部のピッチpとの比Fは、マイクロレンズの中心から同心状の隆起部までの径方向の距離rの関数である。
実施形態によっては、マイクロレンズアレイ構成要素は、基板によって支持されたインプリントレジスト層を含み、このインプリントレジスト層内にマイクロレンズのアレイが形成される。同心状の溝は、空気または何らかの充填材料を含んでもよい。同心状の隆起部は、円形、楕円形、正方形などでもよく、長方形、台形、長円形などの断面を有してもよい。同心状の隆起部の高さはほぼ同じでもよい。マイクロレンズアレイ構成要素の基板は、平坦でもよく、または湾曲していてもよい。
実施形態によっては、マイクロレンズのアレイの各マイクロレンズの実効屈折率nは、径方向の距離rの以下の関数、すなわち、n(r)=nF(r)+n(1-F(r))であり、ここで、nは同心状の隆起部の屈折率であり、nは同心状の溝の屈折率である。各マイクロレンズは、振幅が2πであって、合計して放物線状の位相プロファイルとなる複数の同心状の位相プロファイル区間を含む位相プロファイルを有してもよい。実施形態によっては、各マイクロレンズは、以下の位相プロファイルを有する。
Figure 2023509577000004
ここで、fはマイクロレンズの焦点距離であり、λは入射光の波長であり、φ(0)はマイクロレンズの中央での位相である。実施形態によっては、同心状の隆起部の高さは1700nm未満であり、同心状の隆起部のピッチpは600nm未満であり、かつ/またはマイクロレンズのアレイの各マイクロレンズは0.1mm以下である。
本開示によれば、マイクロレンズアレイ構成要素を製造するための金型が提供される。この金型は、反転マイクロレンズのアレイを含む。反転マイクロレンズのアレイの各反転マイクロレンズは、金型から延在していて、同心状の金型溝によって分離された同心状の金型隆起部を含む。この同心状の金型溝の幅と同心状の金型溝のピッチp’との比F’は、反転マイクロレンズの中心から同心状の金型溝までの径方向の距離r’の関数である。同心状の各金型隆起部の高さはほぼ同じでもよい。
本開示によれば、マイクロレンズアレイ構成要素を製造するための方法がさらに提供される。この方法は、基板上にインプリントレジスト層を形成することと、反転マイクロレンズのアレイを含む金型を得ることと、金型を用いてインプリントレジスト層をインプリントして、インプリントレジスト層内にマイクロレンズのアレイを形成することとを含む。反転マイクロレンズのアレイの各反転マイクロレンズは、金型から延在していて、同心状の金型溝によって分離された同心状の金型隆起部を含み、この同心状の金型溝の幅と同心状の金型溝のピッチp’との比F’が、反転マイクロレンズの中心から同心状の金型溝までの径方向の距離r’の関数である。マイクロレンズのアレイの各マイクロレンズは、基板から延在していて、同心状のインプリント溝によって分離された複数の同心状のインプリント隆起部を含み、この同心状のインプリント隆起部の幅と同心状のインプリント隆起部のピッチpとの比Fが、マイクロレンズの中心から同心状のインプリント隆起部までの径方向の距離rの関数であり、r’=rにおいてF’(r’)=F(r)である。
実施形態によっては、マイクロレンズのアレイの各マイクロレンズの実効屈折率nは、径方向の距離rの以下の関数、すなわち、n(r)=nF(r)+n(1-F(r))であり、ここで、nは同心状の隆起部の屈折率であり、nは同心状の溝の屈折率である。各マイクロレンズは、振幅が2pであって、合計して放物線状のプロファイルとなる複数の同心状の位相プロファイル区間を含む位相プロファイルを有してもよい。たとえば、各マイクロレンズは、以下の位相プロファイルを有してもよい。
Figure 2023509577000005
ここで、fはマイクロレンズの焦点距離であり、lは入射光の波長であり、f(0)はマイクロレンズの中央での位相である。実施形態によっては、複数の同心状のインプリント隆起部は、円形のインプリント隆起部を含む。この方法は、金型を用いてインプリントした後、インプリントレジスト層を反応性イオンエッチングすることをさらに含んでもよい。
ここで、図1A、図1B、および図1Cを参照すると、マイクロレンズアレイ構成要素100は、基板102、および基板102によって支持されるマイクロレンズ104のアレイを備える。マイクロレンズ104のアレイの各マイクロレンズは、基板102から延在していて、すなわち図1Cにおいて上方へ延在していて、同心状の溝108(図1Bの白丸および図1Cのギャップ)によって分離された複数の同心状の隆起部106(図1Bの黒丸)を含む。デューティサイクル、すなわち、この同心状の隆起部106の幅wと同心状の隆起部106のピッチpとの比Fは、マイクロレンズの中心から同心状の隆起部106までの径方向の距離rによって変化する(図1D)。本明細書において「同心状の」という用語は、共通の中心を共有することを意味し、隆起部/溝の特定の形状を意味するものではなく、たとえば、その形状が円形でなければならないことを意味するものではない。楕円形、長方形など、他の形状が、共通の中心を共有してもよい。隆起部は、図1Dに示すような長方形の断面を有してもよく、台形の断面、長円形の断面または丸い断面などを有してもよい。任意の形状の溝を有する場合、マイクロレンズ104は、必ずしも円形状ではない。たとえば、同心状の隆起部106が円形であるときでも、各マイクロレンズ104はまた、正方形または長方形の形状を有してもよい。
たとえば、基板上にインプリントレジスト層を堆積させ、ナノスケールのリング状パターンを有する適切な金型を用いてインプリントレジスト層をインプリントし、インプリントレジストを硬化させることによって、マイクロレンズ104のアレイをナノインプリンティングによって形成してもよい。マイクロレンズのアレイを形成する様々な方法を、以下でさらにより詳細に考察することにする。同心状の溝108は、空気で満たされていてもよく、または平坦化層(図示せず)で満たされていてもよい。
マイクロレンズ104は、任意の適切な形状、たとえば、図に示すような円形、楕円形、長方形、正方形などでもよい。マイクロレンズ104の形状は、同心状の溝106の形状に縛られる必要はなく、たとえば、この同心状の溝106は円形でもよく、マイクロレンズ104の形状はたとえば正方形でもよい。マイクロレンズ104は、図に示すような長方形パターン、ハニカムパターン、菱形パターンなどで基板102上に配置されてもよい。同心状の隆起部106はすべて、実質的に高さhが同じでもよく(図1D)、または高さが異なっていてもよく、すなわち、中心から離れるにつれて段階的に変化してもよい。基板102は、図に示すように平坦でもよく、または、その上面および/もしくは底面が、球面もしくは非球面でもよい。基板102は、たとえば、ガラス、水晶、プラスチック、半導体などを含め、透明または半透明の材料で作製されてもよい。
実施形態によっては、このデューティサイクルFは、以下のように有効局所屈折率n(r)を決定することができる。
n(r)=nF(r)+n(1-F(r))
ここで、nは同心状の隆起部106の屈折率であり、nは同心状の溝108の屈折率である。同心状の溝108が空気を含む場合、n=1.0となる。
マイクロレンズ104のナノインプリントされたパターンのプロファイル高さhおよびデューティサイクルFへの実効屈折率nの依存性が図2に示してある。下側の線201は、第1のプロファイル高さhでの、デューティサイクルFへの実効屈折率の依存性を示し、上側の線202は、相対的に高い第2のプロファイル高さh、すなわちh>hでのデューティサイクルFへの実効屈折率の依存性を示す。下側の線201における下側の挿入図211A、211B、および211C、ならびに上側の線202における上側の挿入図212A、212B、および212Cで、変化するデューティサイクルFが示してある。マイクロレンズ104の所望の集光特性を実現するようにマイクロレンズ104の屈折率プロファイルをもたらすための、実効屈折率n(r)の既定の径方向の変化を有するように、マイクロレンズアレイ構成要素100(図1A)のマイクロレンズ104を構成することが可能であることが分かる。所望の位相プロファイルは、たとえば、放物線状のプロファイル、またはマイクロレンズ104の所望の集束/平行化特性を実現するのに使用可能な他の任意のプロファイルでもよい。実施形態によっては、マイクロレンズの所望の位相プロファイルは、少なくとも単色光または狭帯域光において、完全なベル形状の位相プロファイルを有するマイクロレンズと実質的に同じ動作機能を実現するように、2πの法で「折り返され」てもよい。
この「折り返された」位相プロファイルが図3に示してある。マイクロレンズの所望の放物線状の位相プロファイル300が破線で示してある。放物線状の位相プロファイル300は、10πの位相にわたって延びている。放物線状の位相プロファイル300の位相関数φ(r)は、次の関数によって表すことができる。
Figure 2023509577000006
ここで、fは焦点距離であり、λは光の波長であり、φ(0)はマイクロレンズ中央での位相遅れである。
位相関数φ(r)は、プロファイル区間302A、302B、302C、302D、および302Eに分割することができる。この区間302B、302C、302D、および302Eは、2πの整数分だけ下方にシフトされて、2πの振幅を有していて、合計して放物線状の位相プロファイル304となる複数の同心状の位相プロファイルの区間302B’、302C’、302D’、および302E’を含む、折り返された位相プロファイル300’を形成してもよい。この折り返された位相プロファイル300’は、次の関数によって表すことができる。
Figure 2023509577000007
この折り返された位相プロファイル300’は、その振幅が2πを超えないので、マイクロレンズ104の全体的な厚さをかなり低減することができる。
ナノインプリンティングの全体的なプロセスが、図4A、図4B、および図4Cに示してある。インプリントされる光学系の反転プロファイル、たとえば、反転マイクロレンズ404のアレイを含むように成形された金型440が、基板400上に配置される(図4A)。基板400は、金型440の反転プロファイルのギャップを完全に埋めることのできる硬化性インプリントレジスト層を含んでもよい。次いで、機械的圧力を加えることによって、金型440と基板400が一体化される(図4B)。次いで、たとえば熱硬化またはUV硬化で、インプリントレジスト層を硬化させて、インプリントされたマイクロレンズまたは他の光学素子の形状を維持してもよい。硬化が完了すると、金型440は基板から持ち上げられる(図4C)。
基板400にインプリントされる所望のマイクロレンズ形状を得るには、金型440の反転マイクロレンズのアレイの各反転マイクロレンズが、金型440から延在していて、同心状の金型溝444によって分離された同心状の金型隆起部446(図4D)を含んでもよい。同心状の金型溝の幅w’と同心状の金型溝444のピッチp’との比F’は、反転マイクロレンズの中心から同心状の金型溝444までの径方向の距離r’の関数である。関数F’(r’)は、マイクロレンズの所望の充填比関数F(r)と同じ関数である。
r’=rにおいて、F’(r’)=F(r) (3)
図に示す実施形態では、同心状の金型隆起部442が、ほぼ同じ高さh’を有する。
ナノインプリンティングプロセスは、1マイクロメートル未満、典型的には数十ナノメートルから数百ナノメートルの特有のサイズを有する特徴部分の印刷を可能にする。これにより、非常にコンパクトなマイクロレンズの製造が可能になる。図1A~図1Dに戻って参照すると、ナノインプリントされたマイクロレンズ104の同心状の隆起部108(図1B、図1C、および図1D)の高さhは、1700nm未満、または900nm未満、または300nm未満でもよい。同心状の隆起部106のピッチpは、400nm未満、150nm未満、または50nm未満でもよい。マイクロレンズアレイ構成要素100の各マイクロレンズ104は、フットプリントがかなり小さくてもよく、たとえば、直径が0.1mm以下、直径が0.01mm以下、または直径が2~3マイクロメートル以下でもよく、同心状の隆起部106のピッチは600nm未満、または400nm未満、たとえば、約200~300nmであり、これらは撮像光の波長に依存する。
次に図5を参照すると、マイクロレンズアレイ構成要素、たとえば図1A~図1Dのマイクロレンズアレイ構成要素100を製造する方法500は、基板上にインプリントレジスト層、たとえばエラストマー層を形成すること(502)を含む。インプリントレジスト層は、制御された量の圧力を金型によってインプリントレジストに加えると、たとえば20nm以下の非常に小さい特徴部のサイズにまでの金型形状に適合する材料である。インプリントレジストは、たとえば、高温において、かつ/またはUV光を用いて照射されると固化することのできる、熱重合性および/または光重合性のポリマーまたはモノマーの混合物を含むことができる。実施形態によっては、インプリントレジスト層は、たとえば、ポリジメチルシロキサン(PDMS)または別の適切なポリマーを含んでもよい。
たとえば、eビームナノリソグラフィまたは別の適切な方法を使用して、堅固な基板に微細加工された金型が得られる(504)。この金型の幾何形状は、たとえば、図4A~図4Dを参照してこれまで説明してきたように、製造される光学構成要素の幾何形状と逆向きに選択することができる。
インプリントレジスト材料のガラス転移温度を超える圧力および/または加熱を加えることによって、金型を用いてインプリントレジスト層がインプリントされる(506)。圧力が加えられている間、インプリントされた形状を保存するように、インプリントレジスト層が硬化される(508)。加熱および/またはUV照射を使用して、インプリントレジスト層を硬化させてもよい。金型とインプリントレジストとの間の接着は、インプリントされたパターンが金型から最終的に外れる(510)ことが可能になるように制御されてもよい。マイクロレンズまたはマイクロレンズのアレイは、インプリントレジスト層内に形成されてもよい。
実施形態によっては、ポリマー層にインプリントされるパターンは、下層基板に転写されてもよい。このパターン転写は、たとえば、反応性イオンエッチングによって実行されてもよい。簡潔に言えば、外されたインプリント済みのパターンは、基板と反応するイオンの衝撃を受ける。基板の露出した区域はエッチング除去されることになるが、レジストで保護された基板の区域はエッチングされないことになる。あるいは、レジスト層はまた、化学組成に応じて、同じまたは異なる速度で反応性イオンによってエッチングされてもよい。インプリントレジスト層によって保護された区域よりも、基板の露出した区域の方がエッチングされる時間が長かったので、インプリントレジスト層のすべてが基板のレベルまでエッチング除去されると、レジスト層にナノインプリントされたパターンが効果的に基板に転写される。したがって、最終製品は、基板自体にインプリントされる所望のパターン、たとえばマイクロレンズアレイのパターンを含む。残りのインプリントレジスト層は、もしあれば、次いで剥離されてもよい。
図6Aおよび図6Bを参照すると、波面センサ600は、マイクロレンズアレイ610を支持する基板602、およびこの基板602の反対側にある光検出器アレイ606を備える。マイクロレンズアレイ610は、マイクロレンズ604のアレイを含む。マイクロレンズアレイ610は、マイクロレンズ、および/または前述のマイクロレンズアレイ、たとえばナノインプリントされたマイクロレンズ104のアレイを含む、図1Aのマイクロレンズアレイ構成要素100のいずれかを含んでもよい。基板602は、検出される光に対して透明である。非限定的な例として、基板602には、ガラス、サファイア、半導体などが含まれ得る。光検出器アレイ606は、光検出器608のアレイを含む。マイクロレンズアレイ610の各マイクロレンズ604ごとに、いくつかの光検出器608を設けてもよい。たとえば、図6Bを見て分かるように、マイクロレンズアレイ610の各マイクロレンズ604ごとに、4つの光検出器608が設けられている。入射光ビームが、光検出器アレイ608の平面に平行である平坦な波面を有するとき、各マイクロレンズ604によって形成される光スポットが、対応する4つの光検出器608の共通の隅部に配置されるように、2つのアレイ606および610が配置されてもよい。
波面センサ600の動作が、図7Aおよび図7Bに示してある。マイクロレンズアレイ610は、波面700を有する入射光ビームを受光する。マイクロレンズアレイ610は、このマイクロレンズアレイ610の焦点面712において複数の光スポット704をもたらす。図7Aに示すように、この光スポット704は、対応するマイクロレンズ604により光ビーム部分702を集束することによって形成される。光検出器アレイ606は、マイクロレンズアレイ610の下流に配置され、焦点面712において複数の光スポット704を受光するように構成される。マイクロレンズアレイ610への光ビームの垂直入射に対応する、マイクロレンズアレイ610の個々のマイクロレンズ604によって集束される光スポット704の、中心705に対する位置は、対応する個々のマイクロレンズ604に入射する光ビーム部分702の局所的な波面傾斜を示すことが図7Aから分かる。
図7Bを参照すると、光スポット704は、4つの光検出器608A、608B、608C、および608Dの共通の隅部からオフセットされている。光検出器608A、608B、608C、および608Dは、光スポット704を受光し、対応する光検出器608A、608B、608C、および608Dが受けた光パワーの各部分に比例するそれぞれの光電流I、I、I、およびIを供給する。光電流の比(I+I)/(I+I)は、図7Bでの光スポット704の水平位置を示し、光電流の比(I+I)/(I+I)は、図7Bでの光スポット704の垂直位置を示す。光電流の合計I+I+I+Iは、光スポット704の光パワーを示す。したがって、4つの光検出器608A、608B、608C、および608Dの光電流は、この4つの光検出器608A、608B、608C、および608Dに結合されたマイクロレンズに入射する光ビームの一部分の局所的な光パワー密度および波面傾斜を示す。波面700の波面部分の傾斜が分かると、この傾斜部分をつなぎ合わせることによって、波面700を再構成することができる。このようにして、光検出器アレイ606のすべての光検出器608の光電流を使用して、入射光ビームにわたる波面700および光パワー密度分布を再構成してもよい。
図8を参照すると、波面センサ800は、図6Aおよび図6Bの波面センサ600と同様である。図8の波面センサ800は、光検出器アレイ606に動作可能なように結合された制御装置810をさらに備える。この制御装置810は、光検出器アレイ606から画像フレーム802を受けるように構成される。この画像フレーム802は、マイクロレンズのアレイ610の対応するマイクロレンズ604によって集束された光スポット704(図7A)の画像を含む。制御装置810(図8)はさらに、画像フレーム802内の対応する光スポット704の位置から、各マイクロレンズ604での局所的な波面傾斜を計算するように構成されてもよい。光スポット704の位置は、前述したように、光検出器の光電流の光パワー比から決定することができる。実施形態によっては、制御装置810は、波面位置および光パワー密度の分布データを処理して、反射光の伝搬方向および位相プロファイルを得るように構成されてもよい。すなわち、制御装置810は、波面700を生成した物体805に対して、この波面700を効果的に伝搬させて戻し、物体805の形状を再構成することができる。
図9を参照すると、イメージング光学式距離計900は、図6Aおよび図6Bの波面センサ600を備え、物体805を照射するために、照射光、たとえばプロービング光パルス904を放射するように構成された光源902(図9)を備えてもよい。光源902は、たとえば、ナノ秒の電気パルスによって駆動されるレーザダイオードを備えてもよい。光学式スキャナ906は、光源902に動作可能なように結合されてもよい。この光学式スキャナ906は、1次元で、たとえば左から右もしくは上下に、または2次元で、たとえば左右および上下に、プロービング光パルス904を走査するように構成されてもよい。実施形態によっては、光学式スキャナ906は、傾斜可能な微小電気機械システム(MEMS)の反射器を備えてもよい。このMEMSの反射器は、1つの軸または2つの直交軸の周りに傾斜可能でもよい。光学式瞳リレーを介して結合された、1次元のMEMSの傾斜可能な2つの反射器も使用してもよい。
高速な光検出器908は、物体805から反射した光パルス904’を受けるように設けられてもよい。光検出器908は、たとえば、光学的な距離測定の目的に十分な時間分解能で反射光パルス904’を検出することのできる高速フォトダイオードを備えてもよい。制御装置910は、波面センサ600、光源902、および光検出器904に動作可能なように結合されてもよい。
制御装置910は、物体805に向けてプロービング光パルス904を放射するように、光源902を動作させるように構成されてもよい。制御装置910は、光検出器から電気パルス912を受けてもよく、この電気パルス912は、物体805から反射した光パルス904’に対応する。制御装置910は、プロービング光パルス904を放射することと、反射光パルス904’を受けると光検出器908によって生成される電気パルスを受けることとの間の時間遅延から、物体805までの距離を決定してもよい。制御装置910はまた、波面センサ600から画像フレーム802を受けるように構成されてもよい。画像フレーム802は、反射光パルス904’を用いて照射されると、または別の光源を用いて照射されると、マイクロレンズのアレイ610の対応するマイクロレンズ604によって集束された光スポットの画像を含む。次いで、制御装置910は、画像フレーム802内の対応する光スポットの位置から、各マイクロレンズ610での局所的な波面傾斜を得てもよい。
次いで、制御装置910は、物体805から反射し、波面センサ600に入射する光ビームの全体の波面および光パワー密度分布を再構成してもよい。再構成されたこのデータから、物体805までの距離および/または物体805の形状に関連する情報を得ることができる。たとえば、制御装置910は、各マイクロレンズ604での得られた局所的な波面傾斜から、反射光パルスの波面半径を得ることができる。物体805までの距離は、波面半径から決定することができる。実施形態によっては、制御装置910は、一連のプロービング光パルス904に対応する反射光パルス904’の波面半径から、物体の3Dプロファイルを得るように構成されてもよい。そのために、制御装置910は、光源902を動作させて、一連のプロービング光パルス904を放射してもよく、光学式スキャナ906を動作させて、物体805全体にわたって一連のプロービング光パルス904を走査してもよい。実施形態によっては、光源902を使用して、波面センサ600による検出のために物体805を単に照射してもよい。したがって、光源902は、パルス光源である必要はなく、物体805を照射するために、連続波照射光、たとえば近赤外光を供給してもよい。
図10に移ると、表示装置1000は、たとえば、眼鏡の形状を有してもよいフレーム1001を備える。このフレーム1001は、それぞれの眼ごとに、角度ドメインでの画像を運ぶ画像光を供給するための画像ソース1002と、この画像ソース1002に光学的に結合され、表示装置1000のアイボックス1005に画像光を供給するように構成された瞳複製導波路1004とを支持する。瞳複製導波路1004は、回折格子結合器1006を備えてもよい。画像ソース1002および瞳複製導波路1004はともに、ユーザに画像を提示するための光学ブロック1012を形成する。他の実施形態では、光学ブロック1012は、別々に構成されてもよく、表示パネル、可変焦点レンズなどを備えてもよい。
表示装置1000は、アイボックス1005に置かれたユーザの左右の眼に表示される画像フレームを提示するために、画像ソース1002に動作可能なように結合された制御装置1008をさらに備えてもよい。アイトラッカ1010は、ユーザの眼の位置および/または向きについてのリアルタイム情報を提示するように、制御装置1008に動作可能なように結合されてもよい。制御装置1008は、その情報からユーザの現在の注視方向を決定し、ユーザに表示される画像フレームを調整して、仮想環境または拡張環境にユーザがさらに現実的に没入するように構成されてもよい。
表示装置1000は、たとえば図9のイメージング光学式距離計900などの、イメージング光学式距離計1014をさらに備えてもよい。制御装置1008は、イメージング光学式距離計1014に動作可能なように結合されてもよく、たとえば、外部物体の3Dプロファイルを得るためにイメージング光学式距離計を動作させるように、適切に構成されてもよく、たとえばそのようにプログラムされてもよい。次いで、制御装置1008は、アイボックス1005においてユーザに表示される画像を提示してもよい。この画像は、外部物体の、得られた3Dプロファイルに依存する場合がある。たとえば、仮想現実(VR)の用途では、イメージング光学式距離計1014は、外部物体の3D形状を得ることができ、制御装置1008によって実行される画像レンダリングソフトウェアが、光学ブロック1012を動作させて、外部物体の3Dプロファイルのレンダリングを観察者に提示することができる。拡張現実(AR)の用途では、制御装置1008によって実行される画像レンダリングソフトウェアは、その用途の要求に応じて、人工的な特徴によって外部の3D形状を拡張することができる。
本開示の各実施形態は、人工現実システムを含んでもよく、またはこれとともに実装されてもよい。人工現実システムは、視覚情報、オーディオ、触覚(体性感覚)情報、加速度、バランスなどの感覚を通して得られる外部世界の感覚情報を、ユーザに提示する前に何らかの方式で調整する。非限定的な例として、人工現実には、仮想現実(VR)、拡張現実(AR)、複合現実(MR)、ハイブリッド現実、またはそのいくつかの組合せおよび/または派生物が含まれ得る。人工現実のコンテンツには、完全に生成されたコンテンツ、または取り込まれた(たとえば、実世界の)コンテンツと組み合わされた生成済みコンテンツを含んでもよい。人工現実のコンテンツには、ビデオ、オーディオ、体性フィードバックもしくは触覚フィードバック、またはその何らかの組合せが含まれ得る。観察者に3次元効果をもたらすステレオビデオなどにおいては、単一のチャネルまたは複数のチャネルでこのコンテンツのいずれをも提示することができる。さらに、実施形態によっては、人工現実はまた、たとえば、人工現実においてコンテンツを作成するために使用され、かつ/または人工現実において(たとえば、そのアクティビティの実行において)別の方法で使用される、アプリケーション、製品、付属品、サービス、またはその何らかの組合せに関連付けられてもよい。人工現実コンテンツを提供する人工現実システムは、ホストコンピュータシステムに接続されたHMDなどのウェアラブルディスプレイ、スタンドアロンのHMD、眼鏡の形状因子を有するニアアイディスプレイ、モバイル装置もしくはコンピューティングシステム、または人工現実コンテンツを1人または複数人の観察者に提示することのできる他の任意のハードウェアプラットフォームを含む、様々なプラットフォーム上に実装することができる。
図11Aを参照すると、HMD1100は、AR/VR環境にさらに深く没入するために、ユーザの顔を囲むAR/VRウェアラブル表示システムの一例である。HMD1100は、たとえば、図10の表示装置1000の一実施形態である。HMD1100の機能は、物理的な実世界の環境のビューをコンピュータ生成画像を用いて拡張すること、および/または完全に仮想の3D画像を生成することである。HMD1100は、フロントボディ1102およびバンド1104を備えてもよい。フロントボディ1102は、信頼性が高く快適なやり方でユーザの眼の前方に配置されるように構成され、バンド1104は、フロントボディ1102をユーザの頭部に固定するように引っ張ってもよい。表示システム1180がフロントボディ1102内に配置されて、AR/VR画像をユーザに提示してもよい。フロントボディ1102の側部1106は、不透明または透明でもよい。
実施形態によっては、フロントボディ1102は、HMD1100の加速度を追跡するためのロケータ1108および慣性測定装置(IMU)1110、ならびにHMD1100の位置を追跡するための位置センサ1112を備える。IMU1110は、HMD1100の動きに応答して1つまたは複数の測定信号を生成する、1つまたは複数の位置センサ1112から受信した測定信号に基づいて、HMD1100の位置を示すデータを生成する電子装置である。位置センサ1112の例には、1つまたは複数の加速度計、1つまたは複数のジャイロスコープ、1つまたは複数の磁力計、動きを検出する別の適切なタイプのセンサ、IMU1110の誤り訂正用に使用されるタイプのセンサ、またはその何らかの組合せが含まれる。位置センサ1112は、IMU1110の外部に、IMU1110の内部に、またはその何らかの組合せにおいて配置されてもよい。
ロケータ1108は、仮想現実システムがHMD1100全体の位置および向きを追跡できるように、この仮想現実システムの外部撮像装置によって追跡される。HMD1100の位置および向きの追跡確度を改善するために、IMU1110および位置センサ1112によって生成される情報は、ロケータ1108を追跡することによって得られる位置および向きと比較されてもよい。正確な位置および向きは、ユーザが3D空間で移動したり方向転換したりするときに、適切な仮想風景をユーザに提示するのに重要である。
HMD1100は、このHMD1100の一部またはすべて取り囲む局所区域の深度情報を記述するデータを取り込む、深度カメラアセンブリ(DCA)1111をさらに備えてもよい。そのために、DCA1111は、レーザレーダ(ライダ)、または同様の装置を備えてもよい。3D空間でのHMD1100の位置および向きを決定する確度をよりよくするために、深度情報は、IMU1110からの情報と比較されてもよい。
HMD1100は、ユーザの眼の向きおよび位置をリアルタイムで決定するための、視標追跡システム1114をさらに備えてもよい。得られた眼の位置および向きにより、HMD1100は、ユーザの注視方向を決定し、それに応じて表示システム1180によって生成される画像を調整できるようにもなる。一実施形態では、両眼転導、すなわちユーザの眼の注視の収束角が決定される。決定された注視方向および両眼転導角はまた、視角および眼の位置に依存する視覚アーティファクトをリアルタイムに補償するために使用されてもよい。さらに、ユーザとの対話、物体の強調表示、前景への物体の移動、追加の物体またはポインタの作成などのために、決定された両眼転導および注視角が使用されてもよい。たとえば、フロントボディ1102に組み込まれた1組の小型スピーカを含む、オーディオシステムを設けてもよい。
図11Bを参照すると、AR/VRシステム1150は、図10の表示装置1000の例示的な一実装形態である。AR/VRシステム1150は、図11AのHMD1100と、様々なAR/VRアプリケーション、セットアップ手順および較正手順、3Dビデオなどを記憶する外部コンソール1190と、このコンソール1190を動作させるため、かつ/またはAR/VR環境と対話するための入力/出力(I/O)インターフェース1115とを含む。HMD1100は、物理的なケーブルを用いてコンソール1190に「つながれて」もよく、またはBluetooth(登録商標)、Wi-Fiなどの無線通信リンクを介してコンソール1190に接続されてもよい。複数のHMD1100が存在していてもよく、それぞれが、関連付けられたI/Oインターフェース1115を有し、各HMD1100および(1つまたは複数の)I/Oインターフェース1115が、コンソール1190と通信する。代替構成では、AR/VRシステム1150に、異なるかつ/または追加の構成要素が含まれてもよい。さらに、図11Aおよび図11Bに示す構成要素のうち1つまたは複数に関連して説明する機能は、実施形態によっては、図11Aおよび図11Bに関連して説明する方式とは異なる方式で各構成要素間に分散してもよい。たとえば、コンソール1115の機能の一部またはすべてが、HMD1100によって提供されてもよく、逆の場合も同じでよい。HMD1100には、このような機能を実現することができる処理モジュールが備えられてもよい。
図11Aを参照して前述したように、HMD1100は、眼の位置および向きを追跡し、注視角および収束角などを決定するための視標追跡システム1114(図11B)と、3D空間においてHMD1100の位置および向きを決定するためのIMU1110と、外部環境を取り込むためのDCA1111と、HMD1100の位置を独立して決定するための位置センサ1112と、AR/VRコンテンツをユーザに表示するための表示システム1180とを備えてもよい。表示システム1180は、電子表示装置1125、たとえば、それだけには限らないが、液晶表示装置(LCD)、有機発光表示装置(OLED)、無機発光表示装置(ILED)、アクティブマトリクス有機発光ダイオード(AMOLED)表示装置、透明有機発光ダイオード(TOLED)表示装置、プロジェクタ、またはこれらの組合せを含む(図11B)。表示システム1180は、光学系ブロック1130をさらに備え、その機能は、電子表示装置1125によって生成される画像をユーザの眼に伝達することである。光学系ブロックは、たとえば、屈折レンズ、フレネルレンズ、回折レンズ、能動的または受動的なパンチャラトナムベリー位相(PBP)レンズ、液体レンズ、液晶レンズなどの様々なレンズ、瞳複製導波路、格子構造体、コーティングなどを備えてもよい。表示システム1180は、可変焦点モジュール1135をさらに備えてもよく、これは光学系ブロック1130の一部分でもよい。可変焦点モジュール1135の機能は、光学系ブロック1130の焦点を調整して、たとえば、両眼転導調節矛盾を補償し、特定のユーザの視覚欠陥を補正し、光学系ブロック1130の収差をオフセットすることなどである。
I/Oインターフェース1115は、ユーザがアクション要求を送信でき、コンソール1190から応答を受信できるようにする装置である。アクション要求は、特定のアクションを実行する要求である。たとえば、アクション要求は、画像またはビデオデータの取込みを開始または終了するための命令、またはアプリケーション内で特定のアクションを実行するための命令でもよい。I/Oインターフェース1115には、キーボード、マウス、ゲームコントローラ、または、アクション要求を受信し、このアクション要求をコンソール1190に伝達するための他の任意の適切な装置など、1つまたは複数の入力装置が含まれ得る。I/Oインターフェース1115によって受信されるアクション要求は、コンソール1190に伝達され、このコンソールは、このアクション要求に対応するアクションを実行する。実施形態によっては、I/Oインターフェース1115は、このI/Oインターフェース1115の初期位置に対するI/Oインターフェース1115の推定位置を示す較正データを取り込むIMUを備える。実施形態によっては、I/Oインターフェース1115は、コンソール1190から受信した命令によって、触覚フィードバックをユーザに与えてもよい。たとえば、アクション要求が受信されると、触覚フィードバックを与えることができ、または、コンソール1190がアクションを実行するとき、このコンソール1190がI/Oインターフェース1115に命令を伝達して、I/Oインターフェース1115が触覚フィードバックを生成できるようにする。
コンソール1190は、コンテンツをHMD1100に提示して、IMU1110、DCA1111、視標追跡システム1114、およびI/Oインターフェース1115のうちの1つまたは複数から受信した情報によって処理してもよい。図11Bに示す例では、コンソール1190は、アプリケーションストア1155、追跡モジュール1160、および処理モジュール1165を備える。コンソール1190のいくつかの実施形態は、図11Bとともに説明したものとは異なるモジュールまたは構成要素を有してもよい。同様に、以下でさらに説明する各機能は、図11Aおよび図11Bとともに説明する方式とは異なる方式で、コンソール1190の各構成要素間に分散されてもよい。
アプリケーションストア1155は、コンソール1190が実行するための1つまたは複数のアプリケーションを記憶することができる。アプリケーションは、プロセッサによって実行されると、ユーザに表示するためのコンテンツを生成する一群の命令である。アプリケーションによって生成されるコンテンツは、HMD1100またはI/Oインターフェース1115の動きを介して、ユーザから受信した入力に応答してもよい。アプリケーションの例には、ゲームアプリケーション、プレゼンテーションおよび会議のアプリケーション、ビデオ再生アプリケーション、または他の適切なアプリケーションが含まれる。
追跡モジュール1160は、1つまたは複数の較正パラメータを使用して、AR/VRシステム1150を較正してもよく、1つまたは複数の較正パラメータを調整して、HMD1100またはI/Oインターフェース1115の位置を決定する際の誤差を低減してもよい。追跡モジュール1160によって実行される較正はまた、もしあれば、HMD1100内のIMU1110および/またはI/Oインターフェース1115に含まれるIMUから受信した情報を考慮する。さらに、HMD1100の追跡が失われた場合、追跡モジュール1160は、AR/VRシステム1150の一部またはすべてを再較正してもよい。
追跡モジュール1160は、HMD1100、もしくはI/Oインターフェース1115、IMU1110、またはその何らかの組合せの動きを追跡してもよい。たとえば、追跡モジュール1160は、HMD1100からの情報に基づいて、局所区域のマッピングでのHMD1100の基準点の位置を決定してもよい。追跡モジュール1160はまた、HMD1100の位置を示す、IMU1110からのデータを使用して、またはI/Oインターフェース1115の位置を示す、I/Oインターフェース1115に含まれるIMUからのデータを使用して、HMD1100の基準点またはI/Oインターフェース1115の基準点の位置をそれぞれ決定してもよい。さらに、実施形態によっては、追跡モジュール1160は、HMD1100の位置を示す、IMU1110からのデータの一部分、ならびにDCA1111からの局所区域の表示を使用して、HMD1100のこれから先の位置を予測してもよい。追跡モジュール1160は、HMD1100またはI/Oインターフェース1115の、推定または予測されるこの先の位置を、処理モジュール1165に提示する。
処理モジュール1165は、HMD1100から受信した情報に基づいて、このHMD1100の一部またはすべてを囲む区域(「局所区域」)の3Dマッピングを生成してもよい。実施形態によっては、処理モジュール1165は、深度を計算する際に使用される技法に関連するDCA1111から受信した情報に基づいて、局所区域の3Dマッピング用の深度情報を決定する。様々な実施形態において、処理モジュール1165は、この深度情報を使用して、局所区域のモデルを更新し、更新されたこのモデルに部分的に基づいてコンテンツを生成してもよい。
処理モジュール1165は、AR/VRシステム1150内のアプリケーションを実行し、追跡モジュール1160からHMD1100の位置情報、加速度情報、速度情報、予測されるこの先の位置、またはその何らかの組合せを受信する。処理モジュール1165は、受信されたこの情報に基づいて、ユーザに提示するようにHMD1100に提供するためのコンテンツを決定する。たとえば、ユーザが左を見たことを、受信されたこの情報が示す場合、処理モジュール1165は、仮想環境において、または追加のコンテンツで局所区域を拡張する環境において、ユーザの動きをミラーリングするHMD1100用のコンテンツを生成する。さらに、処理モジュール1165は、I/Oインターフェース1115から受信したアクション要求に応答して、コンソール1190上で実行されるアプリケーション内のアクションを実行し、このアクションが実行されたことをユーザにフィードバックする。提供されたフィードバックは、HMD1100を介した視覚フィードバックもしくは聴覚フィードバック、またはI/Oインターフェース1115を介した触覚フィードバックでもよい。
実施形態によっては、視標追跡システム1114から受信した視標追跡情報(たとえば、ユーザの眼の向き)に基づいて、処理モジュール1165は、電子表示装置1125上でユーザに提示するためにHMD1100に提供されるコンテンツの解像度を決定する。処理モジュール1165は、ユーザが注視する中心領域において、電子表示装置1125上で最高画素解像度を有するHMD1100にコンテンツを提供してもよい。処理モジュール1165は、電子表示装置1125の他の領域において相対的に低い画素解像度を実現してもよく、したがって、AR/VRシステム1150の消費電力を低減し、ユーザの視覚体験を損なうことなく、コンソール1190のコンピューティングリソースを節減する。実施形態によっては、処理モジュール1165はさらに、視標追跡情報を使用して、物体が電子表示装置1125上のどこに表示されるかを調整して、両眼転導調節矛盾を防止し、かつ/または光学的ひずみおよび収差をオフセットすることができる。
本明細書において開示された各態様に関連して説明した、様々な例示的な論理回路、論理ブロック、モジュール、および回路を実装するのに使用されるハードウェアは、汎用プロセッサ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)もしくは他のプログラマブル論理デバイス、ディスクリートゲートもしくはトランジスタ論理回路、ディスクリートハードウェア構成部品、または本明細書に記載の各機能を実行するように設計されたこれらの任意の組合せを用いて実装または実行してもよい。汎用プロセッサはマイクロプロセッサでもよいが、別の選択肢では、このプロセッサは、従来の任意のプロセッサ、制御装置、マイクロコントローラ、または状態機械でもよい。プロセッサはまた、コンピューティング装置の組合せ、たとえば、DSPとマイクロプロセッサの組合せ、複数のマイクロプロセッサ、DSPコアと組み合わせた1つもしくは複数のマイクロプロセッサ、または他の任意のこうした構成として実装してもよい。あるいは、ステップまたは方法によっては、所与の機能に特有の回路によって実行してもよい。
本開示は、本明細書に記載の特定の実施形態によって範囲が限定されることはない。実際には、本明細書に記載のものに加えて、他の様々な実施形態および修正形態が、前述の説明および添付図面から当業者に明らかになろう。したがって、このような他の実施形態および修正形態は、本開示の範囲に含まれるものである。さらに、本開示は、特定の目的のために特定の環境での特定の実装形態との関連で、本明細書に記載されてきたが、その有用性は、そうした実装形態に限定されず、本開示が任意の数の目的のために任意の数の環境において有利に実装されてもよいことが当業者には認識されよう。したがって、別に記載される特許請求の範囲は、本明細書に記載の本開示の完全な範囲および精神に鑑みて解釈されるべきである。

Claims (15)

  1. 基板と、
    ナノインプリントリソグラフィによって前記基板上に形成されたマイクロレンズのアレイと
    を備えるマイクロレンズアレイ構成要素であって、
    前記マイクロレンズのアレイの各マイクロレンズが、前記基板から延在していて、同心状の溝によって分離された複数の同心状の隆起部を含み、前記同心状の隆起部の幅と前記同心状の隆起部のピッチpとの比Fが、マイクロレンズの中心から前記同心状の隆起部までの径方向の距離rの関数である、マイクロレンズアレイ構成要素。
  2. 前記基板によって支持されたインプリントレジスト層をさらに含み、前記インプリントレジスト層内に前記マイクロレンズのアレイが形成されている、請求項1に記載のマイクロレンズアレイ構成要素。
  3. 前記同心状の溝が空気を含む、請求項1に記載のマイクロレンズアレイ構成要素。
  4. 前記複数の同心状の隆起部が、長方形または台形の断面を有する円形の隆起部を含む、請求項1に記載のマイクロレンズアレイ構成要素。
  5. 前記複数の同心状の隆起部の前記同心状の隆起部の高さがほぼ同じであり、任意選択的に、前記基板が平坦である、請求項1に記載のマイクロレンズアレイ構成要素。
  6. 前記マイクロレンズのアレイの各マイクロレンズの実効屈折率nが、前記径方向の距離rの関数、
    n(r)=nF(r)+n(1-F(r))であり、
    は前記同心状の隆起部の屈折率であり、nは前記同心状の溝の屈折率であり、任意選択的に、各マイクロレンズは、振幅が2πであって、合計して放物線状の位相プロファイルとなる複数の同心状の位相プロファイル区間を含む位相プロファイルを有し、または各マイクロレンズが以下の位相プロファイルを有し、
    Figure 2023509577000008
    fは前記マイクロレンズの焦点距離であり、λは入射光の波長であり、φ(0)は前記マイクロレンズの中央での位相である、請求項1に記載のマイクロレンズアレイ構成要素。
  7. 前記同心状の隆起部の高さが1700nm未満であり、または前記同心状の隆起部の前記ピッチpが600nm未満であり、または前記マイクロレンズのアレイの各マイクロレンズが0.1mm以下である、請求項1に記載のマイクロレンズアレイ構成要素。
  8. マイクロレンズアレイ構成要素を製造するための金型であって、前記金型が、反転マイクロレンズのアレイを含み、前記反転マイクロレンズのアレイの各反転マイクロレンズが、前記金型から延在していて、同心状の金型溝によって分離された同心状の金型隆起部を含み、前記同心状の金型溝の幅と前記同心状の金型溝のピッチp’との比F’が、前記反転マイクロレンズの中心から前記同心状の金型溝までの径方向の距離r’の関数である、金型。
  9. 前記同心状の金型隆起部の高さがほぼ同じである、請求項8に記載の金型。
  10. マイクロレンズアレイ構成要素を製造する方法であって、
    基板上にインプリントレジスト層を形成することと、
    反転マイクロレンズのアレイを含む金型を得ることであって、前記反転マイクロレンズのアレイの各反転マイクロレンズが、前記金型から延在していて、同心状の金型溝によって分離された同心状の金型隆起部を含み、前記同心状の金型溝の幅と前記同心状の金型溝のピッチp’との比F’が、反転マイクロレンズの中心から前記同心状の金型溝までの径方向の距離r’の関数である、反転マイクロレンズのアレイを含む金型を得ることと、
    前記インプリントレジスト層内にマイクロレンズのアレイを形成するように、前記金型を用いて前記インプリントレジスト層をインプリントすることと
    を含み、
    前記マイクロレンズのアレイの各マイクロレンズが、前記基板から延在していて、同心状のインプリント溝によって分離された複数の同心状のインプリント隆起部を含み、前記同心状のインプリント隆起部の幅と前記同心状のインプリント隆起部のピッチpとの比Fが、前記マイクロレンズの中心から前記同心状のインプリント隆起部までの径方向の距離rの関数であり、
    r’=rにおいてF’(r’)=F(r)である、方法。
  11. 前記マイクロレンズのアレイの各マイクロレンズの実効屈折率nが、前記径方向の距離rの関数、
    n(r)=nF(r)+n(1-F(r))であり、
    は前記同心状の隆起部の屈折率であり、nは前記同心状の溝の屈折率である、請求項10に記載の方法。
  12. 各マイクロレンズは、振幅が2πであって、合計して放物線状のプロファイルとなる複数の同心状の位相プロファイル区間を含む位相プロファイルを有する、請求項11に記載の方法。
  13. 各マイクロレンズが以下の位相プロファイルを有し、
    Figure 2023509577000009
    fは前記マイクロレンズの焦点距離であり、λは入射光の波長であり、φ(0)は前記マイクロレンズの中央での位相である、請求項11に記載の方法。
  14. 前記複数の同心状のインプリント隆起部が、円形のインプリント隆起部を含む、請求項10に記載の方法。
  15. 前記金型を用いてインプリントした後、前記インプリントレジスト層を反応性イオンエッチングすることをさらに含む、請求項10に記載の方法。
JP2022532102A 2020-01-13 2020-11-30 ナノインプリントされたマイクロレンズアレイおよびその製造方法 Pending JP2023509577A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/741,338 2020-01-13
US16/741,338 US20210215855A1 (en) 2020-01-13 2020-01-13 Nanoimprinted microlens array and method of manufacture thereof
PCT/US2020/062551 WO2021145966A1 (en) 2020-01-13 2020-11-30 Nanoimprinted microlens array and method of manufacture thereof

Publications (1)

Publication Number Publication Date
JP2023509577A true JP2023509577A (ja) 2023-03-09

Family

ID=73943359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022532102A Pending JP2023509577A (ja) 2020-01-13 2020-11-30 ナノインプリントされたマイクロレンズアレイおよびその製造方法

Country Status (6)

Country Link
US (1) US20210215855A1 (ja)
EP (1) EP4091001A1 (ja)
JP (1) JP2023509577A (ja)
KR (1) KR20220124260A (ja)
CN (1) CN115053151A (ja)
WO (1) WO2021145966A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11506823B2 (en) * 2020-01-13 2022-11-22 Meta Platforms Technologies LLC Nanoimprinted microlens array and wavefront sensor based thereon
KR20210124807A (ko) * 2020-04-07 2021-10-15 에스케이하이닉스 주식회사 이미지 센싱 장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6301051B1 (en) * 2000-04-05 2001-10-09 Rockwell Technologies, Llc High fill-factor microlens array and fabrication method
US8018508B2 (en) * 2004-04-13 2011-09-13 Panasonic Corporation Light-collecting device and solid-state imaging apparatus
JP2009092860A (ja) * 2007-10-05 2009-04-30 Panasonic Corp カメラモジュールおよびカメラモジュールの製造方法
US10108014B2 (en) * 2017-01-10 2018-10-23 Microsoft Technology Licensing, Llc Waveguide display with multiple focal depths

Also Published As

Publication number Publication date
KR20220124260A (ko) 2022-09-13
WO2021145966A1 (en) 2021-07-22
CN115053151A (zh) 2022-09-13
EP4091001A1 (en) 2022-11-23
US20210215855A1 (en) 2021-07-15

Similar Documents

Publication Publication Date Title
US11914160B2 (en) Augmented reality head-mounted display with a focus-supporting projector for pupil steering
AU2021250895B2 (en) Virtual and augmented reality systems and methods having improved diffractive grating structures
CN107430217B (zh) 虚拟和增强现实系统和组件的改进制造
WO2016141372A1 (en) Improved manufacturing for virtual and augmented reality systems and components
JP2023509577A (ja) ナノインプリントされたマイクロレンズアレイおよびその製造方法
US11506823B2 (en) Nanoimprinted microlens array and wavefront sensor based thereon
TW202314306A (zh) 用於層狀波導製造的選擇沉積或圖案化
TW202338456A (zh) 用於在顯示系統中分色雷射背光的相位板和製造方法
NZ735537B2 (en) Improved manufacturing for virtual and augmented reality systems and components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240227