JP2023509506A - 制御装置、制御方法及びプログラム - Google Patents

制御装置、制御方法及びプログラム Download PDF

Info

Publication number
JP2023509506A
JP2023509506A JP2022541706A JP2022541706A JP2023509506A JP 2023509506 A JP2023509506 A JP 2023509506A JP 2022541706 A JP2022541706 A JP 2022541706A JP 2022541706 A JP2022541706 A JP 2022541706A JP 2023509506 A JP2023509506 A JP 2023509506A
Authority
JP
Japan
Prior art keywords
control device
intention
subject
gesture
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022541706A
Other languages
English (en)
Other versions
JP7388562B2 (ja
Inventor
アレクサンダー フィーヴァイダー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JP2023509506A publication Critical patent/JP2023509506A/ja
Application granted granted Critical
Publication of JP7388562B2 publication Critical patent/JP7388562B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/163Programme controls characterised by the control loop learning, adaptive, model based, rule based expert control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/08Programme-controlled manipulators characterised by modular constructions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35444Gesture interface, controlled machine observes operator, executes commands
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39001Robot, manipulator control

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • User Interface Of Digital Computer (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

制御装置1Bは、前処理部21Bと、翻訳部22Bと、意図検出部23Bとを有する。前処理部21Bは、支援を受ける対象者10Cをセンシングする第1センサが出力する検出信号Sdを処理することで、対象者10Cの移動信号を生成する。翻訳部21Bは、移動信号に基づき、対象者10Cの動作及び姿勢の少なくとも一方により表される対象者10Cのジェスチャを識別する。意図検出部23Bは、支援に関するイベントの履歴と識別されたジェスチャとに基づき、対象者10Cの意図を検出する。【選択図】図10

Description

本発明は、支援のための制御装置、制御方法及びコンピュータ読み取り可能な記憶媒体に関する。
技術システムを人間の要望により適合させようとする傾向があり、人の挙動を検知することで人の意図を解釈するシステムが提案されている。例えば、特許文献1には、ユーザの意図をユーザの最後のアクションに基づき決定し、決定したユーザの意図に基づいて処理を行うシステムが開示されている。また、特許文献2には、意図知識ベースに基づきユーザの意図を決定し、当該意図により決定されたアクションのフィードバックに基づいて、意図知識ベースを更新する推論システムが開示されている。
特開2019-079204号公報 特開2005-100390号公報
ロボットや機械へのサポートのための指示労力を最小限に低減しつつ、タスク自体の処理に人間が細心の注意を払う必要があるタスクが存在する。特許文献1及び特許文献2には、いずれも、上記のような問題については開示されていない。本開示は、この問題に対する詳細な解決策及びその主要な処理機能を開示するものである。
本発明は、上述した課題を鑑み、人間の意図を好適に検出することが可能な制御装置、制御方法及びコンピュータ読み取り可能な記憶媒体を提供することを目的の一つとする。
制御装置の一態様は、
支援を受ける対象者をセンシングする第1センサが出力する検出信号を処理することで、前記対象者の移動信号を生成する前処理部と、
前記移動信号に基づき、前記対象者の動作及び姿勢の少なくとも一方により表される前記対象者のジェスチャを識別する翻訳部と、
前記支援に関するイベントの履歴と識別された前記ジェスチャとに基づき、前記対象者の意図を検出する意図検出部と、
を有する制御装置である。
制御方法の一態様は、
支援を受ける対象者をセンシングする第1センサが出力する検出信号を処理することで、前記対象者の移動信号を生成し、
前記移動信号に基づき、前記対象者の動作及び姿勢の少なくとも一方により表される前記対象者のジェスチャを識別し、
前記支援に関するイベントの履歴と識別された前記ジェスチャとに基づき、前記対象者の意図を検出する、
制御方法である。
記憶媒体の一態様は、
支援を受ける対象者をセンシングする第1センサが出力する検出信号を処理することで、前記対象者の移動信号を生成し、
前記移動信号に基づき、前記対象者の動作及び姿勢の少なくとも一方により表される前記対象者のジェスチャを識別し、
前記支援に関するイベントの履歴と識別された前記ジェスチャとに基づき、前記対象者の意図を検出する処理をプロセッサに実行させる命令を記憶した記憶媒体である。
本発明の1つの効果の例として、人の意図を好適に検出し、必要とされる作業上のサポートを提供することができる。
本発明の第1実施形態に係る支援システムの構成を概略的に示したブロック図である。 第1実施形態に係るプロセッサの機能ブロック図である。 図2に示されるプロセッサの機能的な要素により実行される処理間の関係を概略的に示す。 履歴情報のデータフォーマットの一例を概略的に示す。 倉庫の環境での物体移動タスクに関する第1適用例を示す。 プラットフォームロボットがサポートする場所に近づいた後の第1適用例を示す。 火災が発生した時の消防士への支援に関する第2適用例を示す。 制御装置により実行される処理を示すフローチャートの一例である。 第2実施形態に係る支援システムを示す。 第3実施形態に係る制御装置を示す。
(第1実施形態)
(1)システム構成
図1は、本発明の第1実施形態に係る支援システム100の構成を概略的に示したブロック図である。支援システム100は、検出されたジェスチャ、イベント、及び状況に基づいて、要求された操作上のサポートを理解するシステムである。図示のように、支援システム100は、制御装置1と、アクチュエータ5と、センサ6と、データストレージ7と、を有する。
制御装置1は、センサ6から出力される検出信号と、データストレージ7に記憶されているデータとに基づいて、アクチュエータ5を制御する。例えば、時系列の人の行動及び環境から推論された意図に基づいて、制御装置1は、介入タスク(警察、消防隊等)、メンテナンスタスク、物体移動タスクなどのタスクを支援するロボットを制御する。なお、制御装置1により制御される対象となる物体(「被制御物体」とも呼ぶ。)は、ロボットに限られず、被制御物体は部屋の明るさを調整する照明器具などの電化製品であってもよい。
制御装置1は、プロセッサ2と、メモリ3と、インターフェース4と、を含んでいる。
プロセッサ2は、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)などの1又は複数のプロセッサであり、制御装置1にとって必要な種々の処理を実行する。プロセッサ2は、メモリ3又はデータストレージ7に予め記憶されたプログラムを実行することで、上記の種々の処理を実現する。メモリ3は、典型的にはROM(Read Only Memory)、RAM(Random Access Memory)などを含み、プロセッサ2が実行するプログラムを記憶する。メモリ3は、プロセッサ2による種々の処理の実行時には作業メモリとしても機能する。
インターフェース4は、アクチュエータ5、センサ6、及びデータストレージ7などの外部装置とインターフェース動作を行う。例えば、インターフェース4は、センサ6から出力される検出信号とデータストレージ7から取得されるデータとをプロセッサ2に供給する。また、インターフェース4は、プロセッサ2により生成された制御信号をアクチュエータ5に供給し、プロセッサ2により生成された更新データをデータストレージ7に供給する。
アクチュエータ5は被制御物体の駆動機構であり、制御装置1から供給される制御信号に基づき駆動される。
センサ6は、制御装置1が被制御物体を制御するために必要となる複数のセンサである。センサ6は、 被制御物体に設けられた1又は複数のセンサである第1センサ61と、被制御物体が存在し、被制御物体がタスクを処理する全体のフィールド(「対象フィールド」とも呼ぶ。)をセンシング可能な1又は複数のセンサである第2センサ62と、を有する。例えば、第1センサ61及び第2センサ62は、カメラなどの撮像装置、ライダ(Light Detection and Ranging or Laser Imaging Detection and Ranging)などの深度センサである。センサ6は、検出信号を制御装置1へ供給する。
データストレージ7は、制御装置1が種々の処理を実行するために必要なデータを記憶する非揮発性のメモリを含んでいる。データストレージ7は、モデル情報71と、ジェスチャボキャブラリ情報72と、知識ベース73と、履歴情報74とを記憶する。
モデル情報71は、被制御物体の動作を決定するための異なる複数の型を有するモデルに関する情報である。モデル情報71は、制御装置1がユーザの介入の影響を推定し、かつ、被制御物体のオペレーションモードを決定するのに用いられる。モデル情報71は、被制御物体のダイナミクス、環境、及び被制御物体が実行するタスクを考慮して予め用意される。モデル情報71は、被制御物体の各オペレーションモードで使用されるパラメータを含んでもよい。モデル情報71は、被制御物体のアクションに対するユーザのフィードバック及び環境に関する入力に基づき更新されてもよい。
ジェスチャボキャブラリ情報72は、被制御物体による支援を受ける対象者のジェスチャの語彙(ボキャブラリ)を示す。例えば、支援システム100により識別可能なジェスチャが予め定められており、ジェスチャボキャブラリ情報72は、それらの各ジェスチャを識別するための各ジェスチャの特徴量(特徴パラメータ)を示す。ここで、「ジェスチャ」(一般化されたジェスチャ)は、被制御物体にタスクの支援をするように指示するための明示的なジェスチャに加えて、支援が必要であることを暗示的に示すジェスチャも含んでいる。ジェスチャは、支援を受ける対象者の姿勢及び動きにより表される。なお、本開示での便宜上、明示的なジェスチャと暗示的(非明示的)なジェスチャとは区別されるものとし、暗示的なジェスチャは、活動自体の情報を含む人体における変化のダイナミクスである。
知識ベース73は、制御装置1が対象者の意図又は被制御物体のアクションを決定するために使用する情報である。知識ベース73は、時系列での対象者の挙動及び環境の各パターンと、対応する推論すべき各意図と、を対応付けるルックアップテーブル又はマップを含んでもよい。知識ベース73は、推論された意図を用いて被制御物体が制御されている間での被制御物体のアクションに対する対象者によるネガティブな反応であるユーザフィードバックによって更新されてもよい。なお、知識ベース73は、意図検出及び最適化に用いられる。
履歴情報74は、ジェスチャ、イベント、及び状況の3種類の要素の履歴を示す。ここでの「ジェスチャ」は、支援を受ける対象者の検出された1又は複数のジェスチャであり、「イベント」は、支援に関連する、検出された1又は複数のイベントであり、「状況」は、検出された支援の状況である。履歴情報74の詳細なデータフォーマットについては後述する。
(2)ブロック図
図2は、プロセッサ2の機能ブロック図を示す。プロセッサ2は、機能的には、前処理部21と、翻訳部22と、意図検出部23と、環境認識部24と、最適化部25と、制御部26とを有する。
前処理部21は、対象者をセンシングする第1センサ61(例えば、カメラ)が出力する時系列の検出信号を処理することで、支援を受ける対象者の移動信号(動的信号)「S1」を生成する。例えば、前処理部21は、対象者の特定の関節位置を、仮想ポイントとして第1センサ61が出力する画像から検出し、第1センサ61から逐次出力される画像に基づいて、各仮想ポイントをトラッキング(追跡)する。時系列の画像に基づいて人の関節の移動信号を生成する種々の方法は既に提案されているため、その詳細な説明はここでは省略する。前処理部21は、移動信号S1を翻訳部22に供給する。なお、前処理部21は、第1センサ61が出力する画像中の人物を検出する機能に加えて、支援を受ける対象者の周辺に存在する1又は複数の物体8を検出する機能を追加的に有してもよい。この場合、前処理部21は、対象者の移動信号に加えて、対象者の周辺の物体8の移動信号をさらに生成する。
翻訳部22は、ジェスチャボキャブラリ情報72を参照し、移動信号に基づいて、対象者のジェスチャを識別する。ジェスチャボキャブラリ情報72は、支援システム100によって識別可能なジェスチャのボキャブラリを示す。例えば、ジェスチャボキャブラリ情報72は、ジェスチャごとの人の関節の動きの情報を示す。従って、移動信号S1をジェスチャボキャブラリ情報72と照合することで、翻訳部22は、対象者が実行したジェスチャを識別する。そして、翻訳部22は、検出されたジェスチャを示すジェスチャ情報「S2」を、意図検出部23に供給する。なお、ジェスチャボキャブラリ情報72は、移動信号S1に基づいてジェスチャを識別する分類器を構成するためのパラメータであってもよい。この場合、上記パラメータは深層学習やサポートベクターマシーンなどの機械学習によって予め生成される。この場合の分類器が出力するラベルは、例えば、「右の腕/左の腕を上げる、手」などであってもよい。支援を受ける対象者の周辺に存在する物体8を検出する機能を前処理部21が追加的に有する場合、翻訳部22は、対象者の動きと物体8の動きとの相関を計算することで、対象者と物体8との間の関係パラメータを導出してもよい。これにより、翻訳部22は、翻訳部22がさらなる処理を実行するための関係パラメータに関する情報を取得する。例えば、ある物体8が存在する場合、翻訳部22は、「腕を上げる」を示す暗示的なジェスチャクラス「G1」の代わりに、「右腕/左腕を上げる―関係-持つ―物体」を示すジェスチャ記述クラス「G15」を認識する。以上述べたように、対象者の移動信号と物体の移動信号に基づいて、翻訳部22は、物体8に関連する対象者のジェスチャを識別する。
意図検出部23は、ジェスチャ情報S2に基づき、対象者の意図を検出する。まず、意図検出部23は、ジェスチャ情報S2に基づき、履歴情報74を更新する。その後、履歴情報74を参照し、意図検出部23は、対象者の意図を検出する。例えば、ジェスチャ、イベント、状況の組み合わせの各候補と各候補に対応する適切な意図とを対応付けたルックアップテーブル(マップ)を参照し、意図検出部23は、履歴情報74に基づく対象者の意図を決定してもよい。上述のルックアップテーブルは、予め用意され、知識ベース73としてデータストレージ7又はメモリ3に記憶されている。なお、ジェスチャボキャブラリ情報72は、移動信号S1に基づきジェスチャを識別する分類器を構成するためのパラメータであってもよい。この場合、上述のパラメータは、深層学習やサポートベクターマシーンなどの機械学習により予め生成される。
履歴情報74は、過去に展開された1又は複数のイベントと1又は複数のジェスチャとを検出された状況ごとに示している。よって、意図検出部23は、状況の前後関係、イベント(前後関係)の展開、及び支援を受ける対象者の行動を総合的に勘案して意図を決定することができる。意図検出部23は、検出された意図を示す意図情報「S3」を最適化部25へ供給する。
また、意図検出部23は被制御物体のアクションに関するフィードバックを示すジェスチャを検出した場合、意図検出部23は、知識ベース73を更新する。フィードバックを示すジェスチャは、例えば、被制御物体によって行われたアクションの拒否を示すジェスチャであってもよく、被制御物体によって行われたアクションに対するその他の否定的なジェスチャであってもよい。例えば、意図検出部23は、対象者により拒否されたアクションの情報、アクションの決定に用いた一連のイベント、状況、及びジェスチャに基づいて、知識ベース73を更新する。その後、意図検出部23は、フィードバックが反映された知識ベース73に基づき、対象者の意図を決定する。これにより、制御装置1は、同一状況で過去に拒否されたアクションを被制御物体が再び行うことを好適に防ぐことができる。
第2センサ62から出力された検出信号に基づき、環境認識部24は、被制御物体が支援を行う対象フィールドにおける環境を認識する。例えば、支援に関連付けられたイベントが発生した場合、又は、対象フィールドでの状況が変化した場合、環境認識部24は、発生したイベント又は変化した状況を認識する。そして、環境認識部24は、認識したイベント又は状況を履歴情報74に記録する。例えば、環境認識部24が認識すべき候補となるイベント又は状況は予め定められており、当該候補となるイベント又は状況の各々を認識するために必要な情報がデータストレージ7に予め記憶されている。
さらに、環境認識部24は、認識した環境情報「S4」を最適化部25と制御部26に供給する。環境情報S4は、被制御物体の近くの障害物に関する情報であってもよく、被制御物体が搬送すべきパッケージに関する情報であってもよく、被制御物体が修理すべき故障個所に関する情報であってもよく、被制御物体が消すべき火災に関する情報であってもよい。環境認識部24は、モデル情報71を更新する機能をさらに有してもよい。この機能は、急速に変化する環境下において特に重要となる。例えば、火災現象がどのように展開するかを表現するモデルを用いる場合、最適化及びロボット制御/機械制御のための環境理解とその展開を正確に把握するために、モデル又はモデルのパラメータを更新する必要がある。
意図情報S3及び環境情報S4に基づき、最適化部25は、被制御物体が取るべきアクションを決定する。この場合、最適化部25は、モデル情報71を参照し、被制御物体のアクションを決定する。最適化部25は、支援のよりよいパターンを探索するために、被制御物体のオペレーションモードを散発的に変更する。一般に、意図が明確である場合、最適化及び具体的な支援オペレーションが導き出される。最適化部25は、最適化が純粋なトライアル・アンド・エラー最適化法に基づかない場合には、モデル情報71に示される、種々の形式(複数の型)を有するモデルを用いる。最適化部25は、被制御物体のアクションに対するフィードバックを示すユーザの反応が被制御物体の次のアクションの決定に反映されるように、意図検出部23から供給されるフィードバック情報に基づいてモデル情報71を更新する。最適化部25は、被制御物体の決定されたアクションを示すアクション情報「S5」(即ちプラン情報)を、制御部26に供給する。
制御部26は、アクション情報S5に基づいて制御信号「S6」を生成し、制御信号S6をアクチュエータ5に供給する。この場合、制御部26は、アクション情報S5により示されるアクションを被制御物体が実行するための制御信号S6を生成する。制御部26は、環境認識部24から供給される環境情報S4をさらに勘案して制御信号S6を生成してもよい。なお、対象者の意図を認識した後の最適化及び被制御物体のオペレーションについては既に種々の方法が存在するため、ここではその説明を省略する。
なお、前処理部21、翻訳部22、意図検出部23、環境認識部24、最適化部25、及び制御部26は、例えば、プロセッサ2がプログラムを実行することによって実現できる。より具体的には、各構成要素は、メモリ3に格納されたプログラムを、プロセッサ2が実行することによって実現され得る。また、必要なプログラムを任意の不揮発性記憶媒体に記録しておき、必要に応じてインストールすることで、各構成要素を実現するようにしてもよい。なお、これらの各構成要素は、プログラムによるソフトウェアで実現することに限ることなく、ハードウェア、ファームウェア、及びソフトウェアのうちのいずれかの組み合わせ等により実現してもよい。また、これらの各構成要素は、例えばFPGA(Field-Programmable Gate Array)又はマイコン等の、ユーザがプログラミング可能な集積回路を用いて実現してもよい。以上のことは、後述する他の実施の形態においても同様である。
(3)処理間の関係
図3は、図2に示されるプロセッサ2の要素によって実行される処理間の関係を概略的に示す。プロセッサ2は、主に、意図検出31、フィードバック解釈32、環境認識33、探索34、最適化35、及び支援用オペレーション36を実行する。
意図検出31は、第1センサ61による検出結果に基づき実行され、同時に履歴情報74の更新及び参照も行われる。フィードバック解釈32は、意図検出31と並行して実行され、モデル情報71と知識ベース73はフィードバック解釈32の結果に基づいて更新される。なお、センサ6から出力される検出信号からは意図が直接には推論できないことが多いことから、意図検出31とフィードバック解釈32を実行する洗練されたモジュールが必要となる。
環境認識33は、第2センサ62による検出結果に基づき実行される。環境認識33の結果は、意図検出31、フィードバック解釈32、探索34、及びモデル情報71、知識ベース73、履歴情報74の更新の各処理で使用される。環境認識33には、「現場に新たな人物が進入した」などのイベントの検出、及び物体の探索なども含まれる。
探索34は、より適した支援のパターンを見つけるために散発的に制御装置1のオペレーションモードを変更することを指す。最適化35は、モデル情報71と知識ベース73を参照し、意図検出31及び探索34の結果に基づいて実行される。探索34と最適化35の結果に基づき、アクチュエータ5を駆動するための支援用オペレーション36が実行される。上記処理群は繰り返し実行される。
(4)データフォーマット
図4は、履歴情報74のデータフォーマットの一例を概略的に示す。履歴情報74に関しては、処理コストを抑制可能なコンパクトかつ効率的な記述が望ましい。第1実施形態では、履歴情報74のフォーマットとして正規表現が適用される。
履歴情報74は、状況、イベント、ジェスチャの3種類のデータセットのリストを含む。ここで、”S={S1,S,…,S}”は、状況の識別記号を示し、”E={E,E,…,E}”は、イベントの識別記号を示し、”G={G,G,…,G}”は、ジェスチャの識別記号を示す。”h,h,h,…,h”は、人の識別記号を示す。リストの要素は、状況毎に分けられていてもよい。
図4によれば、状況Sになった後、制御装置1は、イベントEとイベントEとを順に検出する。そして、制御装置1は、人物hによるジェスチャGと人物hによるジェスチャGとを実質的に同時に検出し、その後イベントEを再び検出している。この場合、制御装置1は、履歴情報74として記憶されるリストに、以下の情報を加える。
{S [h:G,h:G] E
これにより、制御装置1は、処理コストを抑制可能なコンパクトかつ効率的な記述となる履歴情報74を好適に生成することができる。
(5)適用例
図5は、倉庫の環境での物体移動タスクに関する第1適用例を示す。倉庫では、カメラである第1センサ61と台8とを備えたプラットフォームロボット1Aと、支援の対象者である作業者10と、が存在する。プラットフォームロボット1Aは、制御装置1が内蔵された被制御物体として機能する。プラットフォームロボット1Aは、第2センサ62から出力される検出信号を受信する。プラットフォームロボット1Aは、機械的な実装として自由度が4となっており、プラットフォームロボット1Aは、x-y平面に沿って移動可能、かつ、自己を軸(θ)として回転可能、かつ、台の高さzを変更可能である。
第1適用例の状況では、作業者10は、物体12の移動を望んでいる。プラットフォームロボット1Aは台8を必要としている人物10を、センサが出力する検出信号に基づいて感知する。そして、プラットフォームロボット1Aは、第1センサ61が出力する検出信号に基づき、作業者10の姿勢の検出及びジェスチャの識別を行いつつ、倉庫内でのイベントと状況とを第2センサ62が出力する検出信号に基づき検出する。そして、プラットフォームロボット1Aは、棚11にある物体12を持ち上げて移動する意図を検出し、サポートする現場に近づく。
図6は、プラットフォームロボット1Aがサポートする場所に近づいた後の第1適用例を示す。この場合、プラットフォームロボット1Aは、台8を適切な高さにて提供し、それに応じて作業者10は、容易に物体12を台8に移動させることができる。その後、作業者10が希望する物体12の目的場所に行き、プラットフォームロボット1Aは、ジェスチャ(一般化されたジェスチャ)の一種である作業者10の行動を解釈することで意図を検出し、物体12を保持して作業者10の後をついていく。プラットフォームロボット1Aは、停止又は所定の休憩位置に移動してもい。この適用例では、図3の探索34を実行する「探索モジュール」が時々作業者10に対して通常のサイド(例えば左側)と反対側のサイドから支援することを提案し、システムは、作業者10により通常と異なる上述の支援が歓迎されているかをセンサに基づき評価してもよい。例えば、図2の最適化部25が上述の探索モジュールとして機能する。
図7は、火災13が発生した時の消防士への支援に関する第2適用例を示す。この場合、消防士10Aは火災13の消火の最中であり、消防士10Bは、他の関連するタスクに従事している。消防士ロボット1Bは、制御装置1が組み込まれた被制御物体として機能する。消防士ロボット1Bは、第1センサ61と、消防用ホース9とを備える。消防士ロボット1Bは、第2センサ62から出力される検出信号を受信する。
第1センサ61と第2センサ62とから出力された検出信号に基づいて、消防士ロボット1Bは、状況、各種イベント、及び消防士10A、10Bのジェスチャ(任意の種類の挙動を含む)を検出する。そして、消防士ロボット1Bは、消防士ロボット1Bが消防士10Aの火災13の消火作業を手伝うべきであると判定し、消防士ロボット1Bは、火災13に近づき、消火ホース9により火災13に向けて放水を行う。
例えば、検出結果に基づいて、消防士ロボット1Bは、次のような履歴情報74を生成する。
{S …}
状況の識別記号Sは、消防士ロボット1Bが火災13の場所に到着した状況を示している。イベントの識別記号Eは、一人の消防士(消防士10A)が火災13に向かって進むイベントを示している。イベントの識別記号Eは、一人の消防士(消防士10B)が退却していることを示している。ジェスチャの識別記号Gは、一人の消防士(消防士10A)による、放水すべき特定の場所を指し示すジェスチャを示している。
この場合、履歴情報74に基づいて、消防士ロボット1Bは、消防士10Aの意図を検出し、特定の場所に放水するアクションであるアクション「A」を消防士ロボット1Bが取るべきことを決定する。これに代えて、イベントEの優先度が高い場合には、消防士ロボット1Bは、消防士10Bの退避を手伝うアクションであるアクション「A」を消防士ロボット1Bが取るべきことを決定してもよい。消防士ロボット1Bは、 消防士ロボット1BによるアクションA又はアクションAへの拒絶を示す任意のフィードバックのジェスチャを消防士10A又は消防士10Bから検出した場合、消防士ロボット1Bはモデル情報71と知識ベース73を更新し、その後の消防士ロボット1Bのアクション又は意図を決定する最適化又は/及び意図検出では、そのフィードバックが考慮される。
(6)処理フロー
図8は、制御装置1により実行されるプロセスを示すフローチャートの一例である。
まず、センサ6から出力される検出信号に基づいて、制御装置1は、対象フィールドにおける環境を認識する(ステップS11)。例えば、制御装置1は、現在の状況と、対象フィールドにて発生しているイベントとを認識する。制御装置1は、状況又は/及びイベントを履歴情報74に記録する。
そして、センサ6から出力される検出信号に基づいて、制御装置1は、被制御物体による支援を受ける1又は複数の対象者及び対象者の仮想ポイントを検出する(ステップS12)。これにより、制御装置1は、移動信号S1を生成する。そして、制御装置1は、少なくとも1人の対象者が行ったジェスチャを検出する(ステップS13)。そして、制御装置1は、ジェスチャを示す情報を履歴情報74に記録する。
次に、制御装置1は、任意の意図が検出されたか否か判定する(ステップS14)。この場合、知識ベース73と履歴情報74とを参照し、制御装置1は、意図が検出されたか否か判定を行う。
そして、制御装置1は意図が検出されなかったと判定した場合(ステップS14;No)、制御装置1はステップS11の処理に戻り、環境と各対象者の監視を継続して行う。
意図が検出されたと制御装置1が判定した場合(ステップS14;Yes)、制御装置1は、被制御物体のアクションに関するフィードバックがあったか否かさらに判定する(ステップS15)。そして、被制御物体のアクションに関するフィードバックがあった場合(ステップS15;Yes)、制御装置1は、意図検出や最適化に用いるデータである知識ベース73及びモデル情報71などの更新を行う(ステップS16)。
一方、被制御物体のアクションに関するフィードバックがないと制御装置1が判定した場合(ステップS15;No)、又は、ステップS16の処理が完了した場合、制御装置1は、最適化により被制御物体のアクションを決定する(ステップS17)。そして、制御装置1は、アクチュエータ5を作動させる。その後、制御装置1は、被制御物体による支援が完了したか否か判定する(ステップS19)。もし、制御装置1は、支援が完了したと判定した場合(ステップS19;Yes)、制御装置1は、フローチャートの処理を終了する。そして、例えば、制御装置1は、所定のレディポジションに被制御物体を移動させるように被制御物体を駆動させる。一方、制御装置1は、支援がまだ完了していないと判定した場合(ステップS19;No)、制御装置1はステップS11に処理を戻す。
(7)効果
次に、第1実施形態による効果について説明する。
支援システム100は、特定のタスクに関する支援に対する人のニーズ及び意図を、人の意図の手がかりに基づき理解する。この理解は、以下のように行われる。
・可能な限り煩わしさがない。
・人の一般化されたジェスチャが履歴及び前後関係を考慮して(これにより明示的な指示が必要とされない)解釈される。
・支援システム100のオペレーションを向上するため、オペレーションを変更するための暗示的なフィードバックが評価される。
・環境の観察に基づいて、実行可能なアクションのセットが決定される。
支援システム100はモデル情報71を有するため、支援システム100は、ユーザの介入の影響を推定し、未知のオペレーションモードを決定する長所も持ち得る。さらに、状況、イベント、ジェスチャの時系列を示す履歴情報74に対する好適なデータフォーマットが第1実施形態では開示されている。
(第2実施形態)
図9は、第2実施形態に係る支援システム100Aを示す。支援システム100Aは、サーバ装置1Xと、被制御物体1Yと、を有する。以後では、第1実施形態と同一の構成要素については第1実施形態と同一の参照番号を付し、その説明を省略する。
サーバ装置1Xは、図1における制御装置1として機能し、意図検出、最適化、及び被制御物体1Yの制御を行う。サーバ装置1Xは、被制御物体1Yに設けられている第1センサ61及び第2センサ62から出力される検出信号を受信する。そして、サーバ装置1Xは、制御信号S6を生成し、制御信号S6を被制御物体1Yに送信する。サーバ装置1Xは、プロセッサ2と、メモリ3と、インターフェース4と、データストレージ7と、通信部9とを有する。サーバ装置1Xにおけるプロセッサ2、メモリ3、インターフェース4、及びデータストレージ7は、図1の制御装置1のプロセッサ2、メモリ3、インターフェース4、及びデータストレージ7に夫々相当する。通信部9は、プロセッサ2の制御に基づき、制御信号S6を被制御物体1Yに送信する。プロセッサ2は、機能的には、図2に夫々示される、前処理部21と、翻訳部22と、意図検出部23と、環境認識部24と、最適化部25と、制御部26と、を有する。なお、サーバ装置1Xは、複数の装置により構成されてもよい。この場合、複数の装置の各々は、予め割り当てられたタスクを実行するため、互いにデータの授受を行う。
被制御物体1Yは、アクチュエータ5と第1センサ61とを備え、第1センサ61から出力される検出信号をサーバ装置1Xへ供給する。被制御物体1Yは、制御信号S6を受信し、制御信号S6に基づいてアクチュエータ5を駆動する。
第2実施形態の構成によっても、サーバ装置1Xは、人の意図を検出し、人を好適に支援するように被制御物体1Yを駆動することができる。
(第3実施形態)
図10は、第3実施形態に係る制御装置1Bを示す。制御装置1Bは、前処理部21Bと、翻訳部22Bと、意図検出部23Bとを有する。
前処理部21Bは、支援を受ける対象者10Cをセンシングする第1センサが出力する検出信号「Sd」を処理することで、対象者10Cの移動信号を生成する。例えば、前処理部21Bは、第1実施形態における前処理部21とすることができる。
翻訳部21Bは、移動信号に基づき、対象者10Cの動作及び姿勢の少なくとも一方により表される対象者10Cのジェスチャを識別する。例えば、翻訳部22Bは、第1実施形態における翻訳部22とすることができる。
意図検出部23Bは、支援に関するイベントの履歴と識別されたジェスチャとに基づき、対象者10Cの意図を検出する。「イベントの履歴と識別されたジェスチャ」は、第1実施形態における履歴情報74によって示される、検出された状況における1又は複数の過去に展開されたイベントと1または複数のジェスチャを含む。例えば、意図検出部23Bは、第1実施形態における意図検出部23とすることができる。
第3実施形態によれば、制御装置1Bは、イベントの履歴及び支援に関連するジェスチャを考慮し、支援を受ける対象者の意図を好適に検出することができる。
なお、上述した各実施形態において、プログラムは、様々なタイプの非一時的なコンピュータ可読媒体を用いて格納され、コンピュータであるプロセッサ2に供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記憶媒体を含む。非一時的なコンピュータ可読媒体の例は、磁気記憶媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記憶媒体(例えば光磁気ディスク)、CD-ROM、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAMを含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
上記の実施形態の一部又は全部は、以下の付記のようにも記載され得るが以下には限られない。
(付記1)
支援を受ける対象者をセンシングする第1センサが出力する検出信号を処理することで、前記対象者の移動信号を生成する前処理部と、
前記移動信号に基づき、前記対象者の動作及び姿勢の少なくとも一方により表される前記対象者のジェスチャを識別する翻訳部と、
前記支援に関するイベントの履歴と識別された前記ジェスチャとに基づき、前記対象者の意図を検出する意図検出部と、
を有する制御装置。
(付記2)
環境をセンシングする第2センサが出力する検出信号に基づき、前記イベントと、前記支援の状況とを認識する環境認識部をさらに有し、
前記意図検出部は、前記状況、前記イベント、及び前記ジェスチャの前記履歴に基づき、前記意図を検出する、
付記1に記載の制御装置。
(付記3)
前記履歴は、前記状況、前記イベント、及び前記ジェスチャの3種類のデータセットを有する正規表現に基づくデータフォーマットを用いて記録される、
付記2に記載の制御装置。
(付記4)
検出された前記意図に基づいて、前記制御装置による制御を受ける被制御物体のアクションを決定する最適化部と、
決定した前記アクションに基づいて、前記被制御物体を制御する制御部と、
をさらに有する、
付記1に記載の制御装置。
(付記5)
前記意図検出部は、前記被制御物体の前記アクションに関するフィードバックを検出し、
前記最適化部は、前記被制御物体を作動させるオペレーションモードを、前記フィードバックに基づいて変化させる、
付記4に記載の制御装置。
(付記6)
前記意図検出部は、知識ベースに基づいて前記意図を検出し、
前記意図検出部は、前記被制御物体のアクションに関するフィードバックを検出した場合に、前記知識ベースを前記フィードバックに基づいて更新する、
付記4に記載の制御装置。
(付記7)
前記前処理部は、前記対象者の周辺に存在する物体の移動信号をさらに生成し、
前記翻訳部は、前記対象者の前記移動信号と前記物体の前記移動信号とに基づいて、前記物体と関連する前記対象者のジェスチャを識別する、
付記1に記載の制御装置。
(付記8)
前記被制御物体は、前記制御装置が生成する制御信号に従い動作するロボットであり、
前記制御装置は、前記ロボットに組み込まれている、
付記1に記載の制御装置。
(付記9)
前記被制御物体は、前記制御装置が生成する制御信号に従い動作するロボットであり、
前記制御装置は、前記ロボットに前記制御信号を送信するサーバ装置である、
付記1に記載の制御装置。
(付記10)
支援を受ける対象者をセンシングする第1センサが出力する検出信号を処理することで、前記対象者の移動信号を生成し、
前記移動信号に基づき、前記対象者の動作及び姿勢の少なくとも一方により表される前記対象者のジェスチャを識別し、
前記支援に関するイベントの履歴と識別された前記ジェスチャとに基づき、前記対象者の意図を検出する、
制御方法。
(付記11)
支援を受ける対象者をセンシングする第1センサが出力する検出信号を処理することで、前記対象者の移動信号を生成し、
前記移動信号に基づき、前記対象者の動作及び姿勢の少なくとも一方により表される前記対象者のジェスチャを識別し、
前記支援に関するイベントの履歴と識別された前記ジェスチャとに基づき、前記対象者の意図を検出する処理をプロセッサに実行させる命令を記憶した記憶媒体。
以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。すなわち、本願発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。また、引用した上記の特許文献等の各開示は、本書に引用をもって繰り込むものとする。
本発明は、例えば、ロボティクス、支援システム、協調ロボット、電化製品、及びこれらを制御するサーバ装置などのコントローラに利用することができる。
1 制御装置
1A プラットフォームロボット
1B 消防士ロボット
1X サーバ装置
1Y 被制御物体
2 プロセッサ
3 メモリ
4 インターフェース
5 アクチュエータ
6 センサ
7 データストレージ
9 通信部
制御装置の一態様は、
支援を受ける対象者をセンシングする第1センサが出力する検出信号を処理することで、前記対象者の移動信号を生成する前処理手段と、
前記移動信号に基づき、前記対象者の動作及び姿勢の少なくとも一方により表される前記対象者のジェスチャを識別する翻訳手段と、
前記支援に関するイベントの履歴と識別された前記ジェスチャとに基づき、前記対象者の意図を検出する意図検出手段と、
を有する制御装置である。
プログラムの一態様は、
支援を受ける対象者をセンシングする第1センサが出力する検出信号を処理することで、前記対象者の移動信号を生成し、
前記移動信号に基づき、前記対象者の動作及び姿勢の少なくとも一方により表される前記対象者のジェスチャを識別し、
前記支援に関するイベントの履歴と識別された前記ジェスチャとに基づき、前記対象者の意図を検出する処理をプロセッサに実行させる命令を記憶したプログラムである。

Claims (11)

  1. 支援を受ける対象者をセンシングする第1センサが出力する検出信号を処理することで、前記対象者の移動信号を生成する前処理部と、
    前記移動信号に基づき、前記対象者の動作及び姿勢の少なくとも一方により表される前記対象者のジェスチャを識別する翻訳部と、
    前記支援に関するイベントの履歴と識別された前記ジェスチャとに基づき、前記対象者の意図を検出する意図検出部と、
    を有する制御装置。
  2. 環境をセンシングする第2センサが出力する検出信号に基づき、前記イベントと、前記支援の状況とを認識する環境認識部をさらに有し、
    前記意図検出部は、前記状況、前記イベント、及び前記ジェスチャの前記履歴に基づき、前記意図を検出する、
    請求項1に記載の制御装置。
  3. 前記履歴は、前記状況、前記イベント、及び前記ジェスチャの3種類のデータセットを有する正規表現に基づくデータフォーマットを用いて記録される、
    請求項2に記載の制御装置。
  4. 検出された前記意図に基づいて、前記制御装置による制御を受ける被制御物体のアクションを決定する最適化部と、
    決定した前記アクションに基づいて、前記被制御物体を制御する制御部と、
    をさらに有する、
    請求項1に記載の制御装置。
  5. 前記意図検出部は、前記被制御物体の前記アクションに関するフィードバックを検出し、
    前記最適化部は、前記被制御物体を作動させるオペレーションモードを、前記フィードバックに基づいて変化させる、
    請求項4に記載の制御装置。
  6. 前記意図検出部は、知識ベースに基づいて前記意図を検出し、
    前記意図検出部は、前記被制御物体のアクションに関するフィードバックを検出した場合に、前記知識ベースを前記フィードバックに基づいて更新する、
    請求項4に記載の制御装置。
  7. 前記前処理部は、前記対象者の周辺に存在する物体の移動信号をさらに生成し、
    前記翻訳部は、前記対象者の前記移動信号と前記物体の前記移動信号とに基づいて、前記物体と関連する前記対象者のジェスチャを識別する、
    請求項1に記載の制御装置。
  8. 前記被制御物体は、前記制御装置が生成する制御信号に従い動作するロボットであり、
    前記制御装置は、前記ロボットに組み込まれている、
    請求項1に記載の制御装置。
  9. 前記被制御物体は、前記制御装置が生成する制御信号に従い動作するロボットであり、
    前記制御装置は、前記ロボットに前記制御信号を送信するサーバ装置である、
    請求項1に記載の制御装置。
  10. 支援を受ける対象者をセンシングする第1センサが出力する検出信号を処理することで、前記対象者の移動信号を生成し、
    前記移動信号に基づき、前記対象者の動作及び姿勢の少なくとも一方により表される前記対象者のジェスチャを識別し、
    前記支援に関するイベントの履歴と識別された前記ジェスチャとに基づき、前記対象者の意図を検出する、
    制御方法。
  11. 支援を受ける対象者をセンシングする第1センサが出力する検出信号を処理することで、前記対象者の移動信号を生成し、
    前記移動信号に基づき、前記対象者の動作及び姿勢の少なくとも一方により表される前記対象者のジェスチャを識別し、
    前記支援に関するイベントの履歴と識別された前記ジェスチャとに基づき、前記対象者の意図を検出する処理をプロセッサに実行させる命令を記憶した記憶媒体。
JP2022541706A 2020-01-14 2020-01-14 制御装置、制御方法及びプログラム Active JP7388562B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/000816 WO2021144831A1 (en) 2020-01-14 2020-01-14 Control device, control method and computer-readable storage medium

Publications (2)

Publication Number Publication Date
JP2023509506A true JP2023509506A (ja) 2023-03-08
JP7388562B2 JP7388562B2 (ja) 2023-11-29

Family

ID=76863868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022541706A Active JP7388562B2 (ja) 2020-01-14 2020-01-14 制御装置、制御方法及びプログラム

Country Status (3)

Country Link
US (1) US20230043637A1 (ja)
JP (1) JP7388562B2 (ja)
WO (1) WO2021144831A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246665A (ja) * 2007-03-07 2008-10-16 Matsushita Electric Ind Co Ltd 行動制御装置、方法、プログラム
WO2015198716A1 (ja) * 2014-06-24 2015-12-30 ソニー株式会社 情報処理装置及び情報処理方法並びにプログラム
JP2017052490A (ja) * 2015-09-11 2017-03-16 トヨタ自動車株式会社 車載機器制御装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7002415B2 (ja) * 2018-06-28 2022-01-20 株式会社日立製作所 情報処理装置および情報処理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246665A (ja) * 2007-03-07 2008-10-16 Matsushita Electric Ind Co Ltd 行動制御装置、方法、プログラム
WO2015198716A1 (ja) * 2014-06-24 2015-12-30 ソニー株式会社 情報処理装置及び情報処理方法並びにプログラム
JP2017052490A (ja) * 2015-09-11 2017-03-16 トヨタ自動車株式会社 車載機器制御装置

Also Published As

Publication number Publication date
WO2021144831A1 (en) 2021-07-22
JP7388562B2 (ja) 2023-11-29
US20230043637A1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
El Zaatari et al. Cobot programming for collaborative industrial tasks: An overview
US8965580B2 (en) Training and operating industrial robots
US20200070343A1 (en) Systems, apparatus, and methods for robotic learning and execution of skills
US11833684B2 (en) Systems, apparatus, and methods for robotic learning and execution of skills
US11345032B2 (en) Autonomous moving body and control program for autonomous moving body
CN110858098A (zh) 使用人-机器人交互的自驱动移动机器人
US11241790B2 (en) Autonomous moving body and control program for autonomous moving body
CN112947403B (zh) 用于障碍物规避的确定性机器人路径规划
JP2021534988A (ja) スキルのロボット学習及び実行のためのシステム、装置、及び方法
CN114800535B (zh) 机器人的控制方法、机械臂控制方法、机器人及控制终端
CN112230649A (zh) 机器学习方法及移动机器人
JP7179971B2 (ja) ロボット装置のための制御装置、ロボット装置、方法、コンピュータプログラム及び機械可読記憶媒体
US20230356389A1 (en) Control device, control method and storage medium
US20230241770A1 (en) Control device, control method and storage medium
JP2023509506A (ja) 制御装置、制御方法及びプログラム
KR102520214B1 (ko) 선제적 대응이 가능한 협동 로봇 구동 방법 및 이를 위한 시스템
WO2022259600A1 (ja) 情報処理装置、情報処理システム、および情報処理方法、並びにプログラム
US20240051132A1 (en) Distributed coordination system and task execution method
JP7485058B2 (ja) 判定装置、判定方法及びプログラム
US20240123614A1 (en) Learning device, learning method, and recording medium
Louro et al. Motion control for autonomous Tugger vehicles in dynamic factory floors shared with human operators
Sylari et al. Hand gesture-based on-line programming of industrial robot manipulators
WO2021250901A1 (en) Intention detection device, intention detection method computer-readable storage medium
US20240066694A1 (en) Robot control system, robot control method, and robot control program
US20240165817A1 (en) Robot management device, control method, and recording medium

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231030

R151 Written notification of patent or utility model registration

Ref document number: 7388562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151