JP2023505172A - Hot-rolled H-shaped steel based on beam blank rolling forming and its preparation method - Google Patents

Hot-rolled H-shaped steel based on beam blank rolling forming and its preparation method Download PDF

Info

Publication number
JP2023505172A
JP2023505172A JP2022533226A JP2022533226A JP2023505172A JP 2023505172 A JP2023505172 A JP 2023505172A JP 2022533226 A JP2022533226 A JP 2022533226A JP 2022533226 A JP2022533226 A JP 2022533226A JP 2023505172 A JP2023505172 A JP 2023505172A
Authority
JP
Japan
Prior art keywords
rolling
shaped steel
rolled
temperature
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022533226A
Other languages
Japanese (ja)
Inventor
ヂァオ,ペイリン
ワン,ヂォンシュエ
ワン,ヂェンヂュン
ハン,ウェンシィー
ウェイ,チァンヂィー
マァー,チアン
ルー,ポー
リー,チァオ
ウー,フイリアン
ルー,ファン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Iron and Steel Co Ltd
Original Assignee
Shandong Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Iron and Steel Co Ltd filed Critical Shandong Iron and Steel Co Ltd
Publication of JP2023505172A publication Critical patent/JP2023505172A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/088H- or I-sections
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/221Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by cold-rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)

Abstract

本発明はビームブランク圧延成形に基づく熱間圧延H字型鋼の作製方法を開示し、その化学成分組成は、重量パーセントで、C:0.04~0.08、Si:≦0.25、Mn:1.25~1.45、V:0.04~0.10、Ni:0.2~1.0、P:≦0.02、S:≦0.01、Nb:0.02~0.06、Al:0.02~0.06、N:≦0.015、O:≦0.005であり、残りが鉄Fe及び不可避的な不純物であり、前記H字型鋼の上下フランジの降伏強度が≧420MPaであり、-40℃における横方向の衝撃エネルギーが≧34Jであり、-60℃における縦方向の衝撃エネルギーが≧120Jである。前記H字型鋼の作製方法は、転炉により製錬し、LF精錬を用いて異形連続鋳造ビレットに鋳込む製錬及び連続鋳造工程を行うステップ1)と、加熱工程と、圧延工程と、圧延後冷却工程とを含む圧延工程を行うステップ2)を含む。本発明に係る海洋工学用の耐低温H字型鋼製品は、力学的性質が良く、工業的に作製しやすく、圧延装置に対する要求を低減し、極端な気温条件のある地域での使用に適する。【選択図】図1The present invention discloses a method for making hot-rolled H-shaped steel based on beam blank rolling forming, and its chemical composition, in weight percent, is C: 0.04-0.08, Si: ≤ 0.25, Mn : 1.25 to 1.45, V: 0.04 to 0.10, Ni: 0.2 to 1.0, P: ≤ 0.02, S: ≤ 0.01, Nb: 0.02 to 0 .06, Al: 0.02 to 0.06, N: ≤ 0.015, O: ≤ 0.005, the balance being iron (Fe) and unavoidable impurities, yielding the upper and lower flanges of the H-shaped steel The strength is ≧420 MPa, the transverse impact energy is ≧34 J at −40° C., and the longitudinal impact energy is ≧120 J at −60° C. The method for producing the H-shaped steel includes step 1) of performing smelting and continuous casting steps of smelting in a converter and casting into a deformed continuous casting billet using LF refining, a heating step, a rolling step, and a rolling step 1). a step 2) of performing a rolling process including a post-cooling process; The low-temperature resistant H-shaped steel product for marine engineering according to the present invention has good mechanical properties, is easy to manufacture industrially, reduces the demands on rolling mills, and is suitable for use in areas with extreme temperature conditions. [Selection drawing] Fig. 1

Description

[関連出願の相互参照]
本願は、2019年12月9日に出願した中国特許出願第2019112501386号に基づく優先権を主張し、この中国特許出願の全ての内容が参照により本明細書に組み込まれる。
[発明の分野]
本発明は、冶金技術分野に属し、具体的に、ビームブランク圧延成形に基づく熱間圧延H字型鋼及びその作製方法に関する。本発明は、作製プロセス及び成形方法に基づく。
[Cross reference to related applications]
This application claims priority from Chinese Patent Application No. 2019112501386 filed on Dec. 9, 2019, the entire content of which is incorporated herein by reference.
[Field of Invention]
The present invention belongs to the field of metallurgical technology, and specifically relates to hot-rolled H-shaped steel based on beam blank rolling forming and its preparation method. The present invention is based on fabrication processes and molding methods.

石油及び天然ガス資源への需要の増加につれて、海洋石油プラットフォームは徐々に複雑な気候地域に広がり、プラットフォームの建設品質及び要求はますます厳しくなっている。したがって、プラットフォームの建造に使用される熱間圧延H字型鋼は需要量が増加するだけでなく、低温環境における靱性に対して一層高い要件を求めている。現在、国内外で使用されている熱間圧延H字型鋼は、衝撃靱性に対する要件が主に圧延方向に沿って検出された縦方向の衝撃に対するものである。H字型鋼は、形状が複雑であり、組織変化も複雑であって、フランジの横方向に沿う箇所の組織の差異が比較的大きいため、横方向の衝撃に対して一般的に具体的な要件を求めない。しかしながら、エンジニアリングの発展につれて、プラットフォームの構造が一層複雑になり、使用地域条件の変化を考慮して、横方向の衝撃靱性の指標に対しても一層高い要件が求められており、一部の規格及びプロジェクトにおいて横方向の衝撃靱性に優れたプロファイルが普及している。 With the increasing demand for oil and natural gas resources, offshore oil platforms are gradually expanding into complex climate regions, and the construction quality and requirements of platforms are becoming more and more stringent. Therefore, hot-rolled H-beam steels used in platform construction are not only in increasing demand, but are also placing higher requirements on their toughness in low-temperature environments. Currently, the hot-rolled H-shaped steels used at home and abroad are for longitudinal impacts, with the requirements for impact toughness mainly found along the rolling direction. The H-shaped steel has a complicated shape, a complicated structure change, and a relatively large difference in structure along the lateral direction of the flange. don't ask for However, with the development of engineering, the structure of the platform has become more complex, and in consideration of the changing local conditions of use, higher requirements are also being demanded for the index of lateral impact toughness. and projects with high lateral impact toughness profiles are prevalent.

中大規格のH字型鋼の場合には、ビームブランク圧延成形を用いる場合が多く、また、H字型鋼の作製分野におけるマイクロアロイの応用の場合には、組織を確保する面でより困難であり、多くの要素の組み合わせは最終的に横方向の衝撃靱性に影響する。特に、工業的に作製する場合には、安定性に一定の問題がある。横方向の衝撃の相違を確保するために、様々な特許には異なる技術的構想が提案されている。 In the case of medium and large standard H-shaped steel, beam blank rolling is often used, and in the case of microalloy application in the field of manufacturing H-shaped steel, it is more difficult to secure the structure. , a combination of many factors ultimately affect the lateral impact toughness. In particular, when produced industrially, there is a certain problem of stability. Various patents propose different technical concepts to ensure lateral impact differentials.

特許文献1において、海洋天然ガス採掘プラットフォーム構造に用いられる熱間圧延H字型鋼及びその生産方法が開示されており、該発明の一態様において、海洋天然ガス採掘プラットフォーム構造に用いられる熱間圧延H字型鋼を提供する。前記熱間圧延H字型鋼は、重量パーセントで以下の化学組成を有する。その化学組成は、C:0.10~0.17、Si:0.10~0.40、Mn:1.00~1.60、P≦0.025、S≦0.015、Nb:0.02~0.05、Ti≦0.025であり、残りは鉄及び不可避的な不純物である。該発明に係る海洋天然ガス採掘プラットフォーム構造の熱間圧延H字型鋼の力学的性質に関して、-20℃における横方向及び縦方向の衝撃エネルギー及び表面品質は、海洋天然ガス採掘プラットフォーム構造に用いられるH字型鋼の技術的要求を完全に満たすことができる。だだし、該発明において、主に中炭素及びNb、Ti複合マイクロアロイ成分の設計を用い、Nb、Ti複合マイクロアロイメカニズムの影響により、実際の圧延過程における圧延力が大きめであり、圧延装置に対する要求が比較的高い。 WO 2005/030300 discloses a hot rolled H-shaped steel for use in offshore natural gas mining platform construction and a method for producing the same, and in one aspect of the invention, a hot rolled H-section steel for use in offshore natural gas mining platform construction. Provide shape steel. Said hot rolled H-beam steel has the following chemical composition in weight percent: Its chemical composition is C: 0.10 to 0.17, Si: 0.10 to 0.40, Mn: 1.00 to 1.60, P ≤ 0.025, S ≤ 0.015, Nb: 0 .02-0.05, Ti≤0.025, the rest being iron and unavoidable impurities. Regarding the mechanical properties of the hot-rolled H-shaped steel of the offshore natural gas mining platform structure according to the invention, the lateral and longitudinal impact energies and surface quality at -20° C. It can fully meet the technical requirements of shape steel. However, in the present invention, the design of medium carbon and Nb, Ti composite microalloy components is mainly used, and due to the influence of the Nb, Ti composite microalloy mechanism, the rolling force in the actual rolling process is large, and the rolling equipment is affected. Relatively high demand.

特許文献2において、ニオブ含有H字型鋼の圧延方法が開示されている。該方法は、金属の物理冶金学の原理を利用して通常のプロセス条件を調整及び最適化し、再結晶領域の制御圧延及び未再結晶領域の制御圧延を用いて単一パスの変形量を制御し、フェライトを変形帯に核生成させて細小なフェライト結晶粒を得て、それにより、金属組織を均一に微細化して高強度、高靱性及び高溶接性のH字型鋼を得る。得られたH字型鋼は、引張強度が490~610MPaであり、-20℃における横方向の衝撃エネルギーが34~98Jであり、米国石油協会プラットフォームの設計規準II系鋼材の要求を満たす。だだし、該発明は変形温度及び変形量の制御条件が厳しく、同様に圧延機の負荷を増加させてしまい、圧下量をリアルタイムに調整することが困難であり、製品の性能への影響が比較的大きく、変動性があり、製品の合格率の低下が著しい。 In Patent Document 2, a method for rolling a niobium-containing H-shaped steel is disclosed. The method utilizes the principles of physical metallurgy of metals to adjust and optimize the normal process conditions, using controlled rolling of the recrystallized region and controlled rolling of the unrecrystallized region to control the amount of deformation in a single pass. Then, ferrite is nucleated in the deformation zone to obtain fine ferrite grains, thereby uniformly refining the metal structure to obtain H-shaped steel with high strength, high toughness and high weldability. The resulting H-shaped steel has a tensile strength of 490-610 MPa and a lateral impact energy of 34-98 J at -20°C, which meets the requirements of American Petroleum Institute platform design standard II steel. However, this invention has strict control conditions for deformation temperature and deformation amount, and similarly increases the load on the rolling mill, making it difficult to adjust the reduction amount in real time. large, volatile, and significantly lower product acceptance rates.

要するに、ビームブランクを圧延してなるH字型鋼の製錬及び圧延プロセスに対してターゲットを絞った設計を行う必要があり、製錬需要を満たし、圧延負荷を軽減するだけでなく、圧延後の組織状態が一定の低温条件において比較的高い横方向の衝撃靱性も有するようにする。 In short, it is necessary to carry out a targeted design for the smelting and rolling process of H-shaped steel made by rolling beam blanks, not only to meet the smelting demand and reduce the rolling load, but also to reduce the post-rolling The texture should also have relatively high lateral impact toughness at constant low temperature conditions.

中国特許第103556055号明細書China Patent No. 103556055 中国特許出願公開第1421286号明細書Chinese Patent Application Publication No. 1421286

異なる地域及び過酷で複雑な環境における海洋石油プラットフォームの建造需要を満たすために、本発明は、ビームブランク圧延成形に基づく熱間圧延H字型鋼及びその作製方法を提供する。本発明の技術案は以下のとおりである。 In order to meet the construction demands of offshore oil platforms in different regions and harsh and complex environments, the present invention provides a hot-rolled H-section steel and its fabrication method based on beam blank rolling forming. The technical solution of the present invention is as follows.

ビームブランク圧延成形に基づく熱間圧延H字型鋼の作製方法であって、該H字型鋼は、重量パーセントで以下の化学組成を有する。その化学組成は、C:0.04~0.08、Si:≦0.25、Mn:1.25~1.45、V:0.04~0.10、Ni:0.2~1.0、P:≦0.02、S:≦0.01、Nb:0.02~0.06、Al:0.02~0.06、N:≦0.015、O:≦0.005であり、残りが鉄Fe及び不可避的な不純物である。 A method of making a hot rolled H-shaped steel based on beam blank roll forming, said H-shaped steel having the following chemical composition in weight percent: Its chemical composition is C: 0.04-0.08, Si: ≤0.25, Mn: 1.25-1.45, V: 0.04-0.10, Ni: 0.2-1. 0, P: ≤0.02, S: ≤0.01, Nb: 0.02 to 0.06, Al: 0.02 to 0.06, N: ≤0.015, O: ≤0.005 and the balance is iron (Fe) and unavoidable impurities.

好ましくは、溶鋼の化学成分(wt%)は、C:0.05~0.07、Si:≦0.25、Mn:1.25~1.45、V:0.04~0.06、Ni:0.2~0.7、P:≦0.02、S:≦0.01、Nb:0.02~0.04、Al:0.02~0.05、N:≦0.015、O:≦0.005であることが好ましい。
生産作製プロセスは、主に転炉による製錬、LF精錬、連続鋳造及び熱間圧延成形を行う工程を含み、そのステップは以下のとおりである。
Preferably, the chemical components (wt%) of the molten steel are C: 0.05 to 0.07, Si: ≤0.25, Mn: 1.25 to 1.45, V: 0.04 to 0.06, Ni: 0.2 to 0.7, P: ≤0.02, S: ≤0.01, Nb: 0.02 to 0.04, Al: 0.02 to 0.05, N: ≤0.015 , O: ≤ 0.005.
The production making process mainly includes the steps of converter smelting, LF refining, continuous casting and hot rolling forming, the steps of which are as follows:

ステップ1)製錬及び連続鋳造工程:
転炉による製錬、LF精錬を用いて異形連続鋳造ビレットに鋳込み、残りが鉄及び不可避的な不純物であり、連続鋳造工程におけるタンディッシュの液面を900mm~950mmにし、完全保護鋳造プロセスを用い、引抜き速度を0.7~1.3m/minに制御する。
Step 1) Smelting and continuous casting process:
Cast into deformed continuous casting billet using converter smelting and LF refining, the rest is iron and inevitable impurities, the liquid level of the tundish in the continuous casting process is 900mm ~ 950mm, and the full protection casting process is used. , the drawing speed is controlled to 0.7-1.3 m/min.

ステップ2)圧延工程:
加熱の工程において、異形連続鋳造ビレットをデジタル制御加熱炉によって加熱し、炉から取り出した後、高圧水を利用してデスケーリングし、
圧延の工程において、粗圧延は水冷を用いて冷却を制御し、精密圧延が温度待ち圧延及び水冷制御圧延を用い、未再結晶領域の圧延率を30%よりも大きくし、好ましくは30~45%にし、圧延機の前及び圧延機の後の冷却装置を作動してH字型鋼の下腿を強制的に冷却し、最終的な圧延温度を750℃~820℃に制御し、
冷却の工程において、規格の違いに応じて、圧延後に型鋼が規格を分けて空冷又は水冷された後、冷却床に入って集中的に冷却され、炭窒化物を十分に析出させるとともに、圧延後の結晶粒度が8.5レベル以上であるように確保し、型鋼の温度が100℃以下に降下した後に矯正機により矯正を行い、最後に前記型鋼を定尺材に切って、スタックしてバンドリングする。
Step 2) Rolling process:
In the heating process, the deformed continuous casting billet is heated by a digitally controlled heating furnace, removed from the furnace, and then descaled using high-pressure water,
In the rolling process, rough rolling uses water cooling to control cooling, precision rolling uses temperature waiting rolling and water cooling controlled rolling, and the rolling reduction of the non-recrystallized region is greater than 30%, preferably 30 to 45. %, activating the cooling devices before and after the rolling mill to forcefully cool the lower leg of the H-shaped steel, and control the final rolling temperature at 750° C.-820° C.;
In the cooling process, according to the difference in standards, after rolling, the shaped steel is divided into standards and air-cooled or water-cooled. After the temperature of the shaped steel drops below 100°C, it is straightened by a straightening machine. Finally, the shaped steel is cut into standard lengths and stacked into bands to ring

好ましくは、前記ステップ2)における加熱温度を1220℃~1260℃に制御し、加熱時間を90~180minとする。 Preferably, the heating temperature in step 2) is controlled to 1220° C. to 1260° C., and the heating time is 90 to 180 minutes.

好ましくは、前記ステップ2)における粗圧延の圧延開始温度を1030℃~1130℃に制御し、圧延パスを5~7パスとする。 Preferably, the rolling start temperature of the rough rolling in step 2) is controlled to 1030° C. to 1130° C., and the number of rolling passes is 5 to 7.

好ましくは、前記ステップ2)における精密圧延の圧延開始温度を900℃~1000℃に制御し、精密圧延の圧延パスを3~5パスとする。 Preferably, the rolling start temperature of precision rolling in step 2) is controlled to 900° C. to 1000° C., and the number of rolling passes for precision rolling is set to 3 to 5 passes.

好ましくは、前記ステップ2)において給水栓を用いてH字型鋼の下腿を強制的に冷却し、上下腿の温度差を≦10℃の範囲内に制御し、最終的な圧延温度を780℃~810℃に制御する。本発明は、低炭素並びにV及びNb、Alマイクロアロイプロセスの設計により、型鋼の穴型制御圧延と組み合わせて、ビームブランク圧延成形に基づく高い横方向の衝撃靱性を持つ耐低温H字型鋼製品を実現し、且つ工業的に生産、作製されたフランジ厚さ18mm~24mm規格のH字型鋼製品を実現する。本発明の実施例によれば、高い横方向の衝撃靱性を持つ海洋工学用耐低温H字型鋼の作製方法は転炉による製錬と、LF精錬と、完全保護連続鋳造と、粗圧延及び精密圧延などの圧延プロセス及びオンライン水冷制御プロセスを含む。 Preferably, in step 2), the lower leg of the H-shaped steel is forcibly cooled using a water tap, the temperature difference between the upper and lower legs is controlled within the range of ≤ 10 ° C, and the final rolling temperature is 780 ° C ~ Control at 810°C. The present invention provides a low-temperature resistant H-shaped steel product with high lateral impact toughness based on beam blank rolling in combination with hole-type controlled rolling of shaped steel by design of low carbon and V and Nb, Al microalloy process. Realize and industrially produce and manufacture H-shaped steel products with a flange thickness of 18 mm to 24 mm. According to an embodiment of the present invention, the method for producing low-temperature resistant H-shaped steel for marine engineering with high lateral impact toughness includes converter smelting, LF refining, full protection continuous casting, rough rolling and precision rolling. Including rolling processes such as rolling and online water cooling control processes.

本発明は、低炭素及びV、Nbマイクロアロイ制御圧延プロセスを用いてフランジ厚さ18mm~24mm規格のH字型鋼製品を工業的に作製し、Nbにより再結晶圧延を制御して精密圧延過程における温度制御と組み合わせてマトリックス構造を微細化して、細小で均一なフェライト組織を得るとともに、Vに依存して冷却段階においてナノレベルの炭窒化物を析出させて鋼の強度を向上させ、最終的に該規格の熱間圧延H字型鋼が高い横方向の衝撃靱性を有するように確保する。 The present invention uses a low carbon and V, Nb microalloy controlled rolling process to industrially produce H-shaped steel products with a standard flange thickness of 18 mm to 24 mm, and controls recrystallization rolling with Nb to perform precision rolling. In combination with temperature control, the matrix structure is refined to obtain a fine and uniform ferrite structure. Ensure that the hot-rolled H-shaped steel of the standard has high lateral impact toughness.

本発明に言及しない他の工程は、いずれも従来技術を用いることができる。 Any other processes that do not refer to the present invention can use conventional techniques.

従来の横方向の衝撃靱性に求められる耐低温H字型鋼及び生産方法に比べて、本発明の技術案の利点は以下のとおりである。 Compared with the conventional low-temperature resistant H-shaped steel and production method required for lateral impact toughness, the advantages of the technical solution of the present invention are as follows.

1.微細結晶粒強化及び沈殿強化メカニズムを用い、微細結晶粒組織の製造に一層適する複合マイクロアロイ成分の設計を有し、それにより引張強度が510MPaレベル以上の海洋工学用熱間圧延H字型鋼を得る。 1. A hot-rolled H-shaped steel for marine engineering with a tensile strength of 510 MPa or more is obtained by using a fine grain strengthening and precipitation strengthening mechanism and having a composite microalloy component design that is more suitable for producing a fine grain structure. .

2.全ての工程において、冷却プロセスをオンラインで制御し、再結晶及び未再結晶領域の圧延と組み合わせて、Nb、V、Al、Niマイクロアロイ成分の設計に適応して、耐低温熱間圧延H字型鋼の作製に適し、高い横方向の衝撃靱性を確保する。 2. In all processes, the cooling process is controlled online, combined with the rolling of recrystallized and non-recrystallized regions, adapted to the design of Nb, V, Al, Ni microalloy components, low temperature resistant hot rolling H-shaped It is suitable for making section steel and ensures high lateral impact toughness.

3、他の特許における化学成分の設計と比べて、平均圧延力が10%~30%減少し、工業的に作製しやすく、圧延装置に対する要求を低減する。 3. Average rolling force is reduced by 10% to 30% compared to chemical composition designs in other patents, making it easier to manufacture industrially and reducing the demands on rolling equipment.

4、本発明に係る海洋工学用の耐低温H字型鋼製品は、力学的性質が良く、引張強度が510MPaよりも大きく、特に、-40℃における横方向の衝撃エネルギーが34Jよりも大きく、-60℃における縦方向の衝撃エネルギーが120Jよりも大きく、極端な気温条件のある地域での使用に適する。 4. The low temperature resistant H-shaped steel product for marine engineering according to the present invention has good mechanical properties, a tensile strength greater than 510 MPa, especially a lateral impact energy greater than 34 J at -40 ° C. Longitudinal impact energy greater than 120 J at 60°C, suitable for use in areas with extreme temperature conditions.

本発明に係るフランジ厚さ24mmの微細組織を示す図である。Fig. 2 shows the microstructure of a flange thickness of 24 mm according to the present invention;

以下、具体的な実施例を挙げて本発明を説明する。なお、実施例は、本発明を更に説明するためのものであって、本発明の保護範囲を制限するものではなく、本発明に基づいて行った非本質的な修正や調整は、いずれも本発明の保護範囲に属する。 The present invention will now be described with reference to specific examples. It should be noted that the examples are for further explanation of the present invention and do not limit the protection scope of the present invention. belongs to the protection scope of the invention.

下記実施例の連続鋳造ビレットは、設定された化学成分範囲(表1)に基づいて、化学成分C、Si、Mn、S、P及びFeを原材料とし、転炉による製錬と、精錬と、連続鋳造と、鋳造ビレットの直接加熱又は均一加熱を行うプロセスフローに応じて作製されたものである。実施例1~4の作製ステップは以下のとおりである。 The continuously cast billets of the following examples use chemical components C, Si, Mn, S, P and Fe as raw materials based on the set chemical component range (Table 1), and are smelted by a converter, refined, It was made according to a process flow of continuous casting and direct or uniform heating of the cast billet. The fabrication steps of Examples 1-4 are as follows.

ステップ1.製錬
炉に入った溶銑As、Snの含有量をいずれも80ppmより小さくし、スラグ材を終了より3分間前に全部加えなければならない。最終スラグのアルカリ度を2.9~3.9の範囲内に制御する。二重スラグ落とし型タッピングプロセスを用い、転炉のスラグキャリーオーバー量を55mmに制御する。精錬が全工程アルゴンガス底吹き撹拌・アルゴンガス吹込システムを実行して不純物を十分に浮き上げるように確保し、精錬アルゴンガスソフトブローを20分間以上にする。スムーズな生産を確保するために、精錬ステーションから取り出す前にカルシウムワイヤを100m供給する。
Step 1. The content of hot metal As and Sn in the smelting furnace should be less than 80 ppm, and the slag material should be added 3 minutes before the end. The alkalinity of the final slag is controlled within the range of 2.9-3.9. A double slag drop type tapping process is used to control the slag carryover of the converter at 55 mm. The whole process of refining implements argon gas bottom blow stirring and argon gas blowing system to ensure that the impurities are sufficiently lifted, and the refining argon gas soft blow is more than 20 minutes. To ensure smooth production, 100m of calcium wire is supplied before it is taken out from the smelting station.

ステップ2.連続鋳造
完全保護鋳造プロセスを用い、引抜き速度を0.7~1.3m/minに制御する。
Step 2. Continuous Casting A full protection casting process is used and the drawing speed is controlled between 0.7 and 1.3 m/min.

ステップ3.熱間圧延過程における圧延及び制御冷却
熱間圧延過程における圧延及び圧延後の制御冷却を主な温度制御手段とし、最終圧延温度についてはフランジの外側を検出し、圧延後に圧延材を冷却床で集中的に徐冷し、Vの炭窒化物を十分に析出させる。図1は本発明に係るフランジ厚さ24mmの微細組織を示す図である。実施例1~4の化学成分及び具体的なプロセスは下記表に示される。
Step 3. Rolling in the hot rolling process and controlled cooling Rolling in the hot rolling process and controlled cooling after rolling are the main means of temperature control, the final rolling temperature is detected outside the flange, and the rolled material is concentrated on the cooling bed after rolling. It is gradually cooled, and the carbonitride of V is sufficiently precipitated. FIG. 1 is a diagram showing the microstructure of a flange thickness of 24 mm according to the present invention. The chemical components and specific processes of Examples 1-4 are shown in the table below.

Figure 2023505172000002
Figure 2023505172000002

実施例1~4の熱間圧延プロセスの条件は表2に示される。BS EN ISO 377-1997「力学的性質試験における試料のサンプリング位置及び作製」が標準として用いられ、降伏強度、引張強度、延伸率の試験方法は、ISO6892-1-2009「金属材料についての室温における引張試験方法」を標準として参照し、衝撃エネルギー試験方法は、ISO148-1「金属材料用シャルピー振り子衝撃試験」を標準として参照し、結果は表2に示される。 The hot rolling process conditions for Examples 1-4 are shown in Table 2. BS EN ISO 377-1997 "Sampling position and preparation of samples in mechanical property tests" is used as the standard, and the test methods for yield strength, tensile strength and elongation are ISO 6892-1-2009 "For metallic materials at room temperature Tensile test method” as standard, impact energy test method refers to ISO 148-1 “Charpy pendulum impact test for metallic materials” as standard, and the results are shown in Table 2.

Figure 2023505172000003
Figure 2023505172000003

上記表から分かるように、本発明の実施例1~4における上下フランジの降伏強度がいずれも420MPa以上に維持され、その衝撃靱性が良く、いずれも海洋石油プラットフォームにおける海洋工学用構造部材の極低温環境における使用条件を満たしている。 As can be seen from the above table, the yield strength of the upper and lower flanges in Examples 1 to 4 of the present invention are all maintained at 420 MPa or more, and the impact toughness is good. Satisfies the conditions for use in the environment.

Figure 2023505172000004
Figure 2023505172000004

最後に説明すべきことは、以上の実施例は、本発明の技術案を説明するためのものであって、制限のものではない。実施例を参照して本発明を詳しく説明したが、当業者であれば理解されるように、本発明の技術案を修正や等価置換するものは、いずれも本発明の技術案の主旨や範囲を逸脱することなく、本発明の特許請求の範囲内に含まれるべきである。
Finally, it should be noted that the above examples are for illustration of the technical solution of the present invention, not for limitation. Although the present invention has been described in detail with reference to the embodiments, it should be understood by those skilled in the art that any modification or equivalent substitution of the technical solution of the present invention does not affect the spirit or scope of the technical solution of the present invention. should be included within the scope of the claims of the present invention without departing from

Claims (7)

ビームブランク圧延成形に基づく熱間圧延H字型鋼であって、
該H字型鋼の化学成分組成は、重量パーセントで、C:0.04~0.08、Si:≦0.25、Mn:1.25~1.45、V:0.04~0.10、Ni:0.2~1.0、P:≦0.02、S:≦0.01、Nb:0.02~0.06、Al:0.02~0.06、N:≦0.015、O:≦0.005であり、残りが鉄Fe及び不可避的な不純物であり、
前記H字型鋼フランジの厚さ規格が18~24mmであり、上下フランジの降伏強度がいずれも≧420MPaであり、-40℃における横方向の衝撃エネルギーが≧34Jであり、-60℃における縦方向の衝撃エネルギーが≧120Jである、ことを特徴とするビームブランク圧延成形に基づく熱間圧延H字型鋼。
A hot-rolled H-shaped steel based on beam blank rolling forming, comprising:
The chemical composition of the H-shaped steel is, in weight percent, C: 0.04 to 0.08, Si: ≤ 0.25, Mn: 1.25 to 1.45, V: 0.04 to 0.10. , Ni: 0.2 to 1.0, P: ≤0.02, S: ≤0.01, Nb: 0.02 to 0.06, Al: 0.02 to 0.06, N: ≤0. 015, O: ≤ 0.005, the balance being iron Fe and unavoidable impurities,
The thickness standard of the H-shaped steel flange is 18-24mm, the yield strength of the upper and lower flanges is ≧420MPa, the lateral impact energy at −40° C. is ≧34J, and the vertical direction at −60° C. A hot-rolled H-shaped steel based on beam blank rolling forming, characterized in that the impact energy of is ≧120J.
前記化学成分組成は、重量パーセントで、C:0.05~0.07、Si:≦0.25、Mn:1.25~1.45、V:0.04~0.06、Ni:0.2~0.7、P:≦0.02、S:≦0.01、Nb:0.02~0.04、Al:0.02~0.05、N:≦0.015、O:≦0.005であり、残りが鉄及び不可避的な不純物である、ことを特徴とする請求項1に記載のH字型鋼。 The chemical component composition is, in weight percent, C: 0.05 to 0.07, Si: ≤ 0.25, Mn: 1.25 to 1.45, V: 0.04 to 0.06, Ni: 0 .2 to 0.7, P: ≤0.02, S: ≤0.01, Nb: 0.02 to 0.04, Al: 0.02 to 0.05, N: ≤0.015, O: H-shaped steel according to claim 1, characterized in that ≤ 0.005, the remainder being iron and unavoidable impurities. ビームブランク圧延成形に基づく熱間圧延H字型鋼の作製方法であって、製錬及び連続鋳造工程であるステップ1)と、圧延工程であるステップ2)とを含み、
前記ステップ1)は、
転炉により製錬し、LF精錬を用いて異形連続鋳造ビレットに鋳込み、連続鋳造工程におけるタンディッシュの液面を≧900mmとし、完全保護鋳造プロセスを用い、引抜き速度を0.7~1.3m/minに制御し、
前記ステップ2)は、
異形連続鋳造ビレットを加熱し、炉から取り出した後デスケーリングする加熱工程と、
粗圧延が水冷を用いて冷却し、精密圧延が温度待ち圧延及び水冷圧延を用い、未再結晶領域の圧延率を30%よりも大きくし、圧延機の前及び圧延機の後の冷却装置を作動して、H字型鋼の下腿を強制的に冷却し、最終的な圧延温度を750℃~820℃に制御する圧延工程と、
圧延後に型鋼が空冷又は水冷された後冷却床に入って集中的に冷却され、温度を100℃以下に降下した後に矯正機により矯正を行う圧延後冷却工程と、を含む、ことを特徴とするビームブランク圧延成形に基づく熱間圧延H字型鋼の作製方法。
A method for making hot rolled H-section steel based on beam blank rolling forming, comprising step 1), a smelting and continuous casting process, and step 2), a rolling process,
The step 1) is
Smelted by a converter, cast into a deformed continuous casting billet using LF refining, the liquid level of the tundish in the continuous casting process is ≥ 900mm, a full protection casting process is used, and the withdrawal speed is 0.7-1.3m. /min,
The step 2) is
A heating step of heating the deformed continuous casting billet and descaling it after removing it from the furnace;
Rough rolling uses water cooling to cool, precision rolling uses temperature waiting rolling and water cooling rolling, the rolling reduction of the non-recrystallized region is greater than 30%, and cooling devices before and after the rolling mill are used. a rolling process that operates to force the lower leg of the H-shaped steel to cool and control the final rolling temperature between 750°C and 820°C;
and a post-rolling cooling step in which the shaped steel after rolling is air-cooled or water-cooled, is then intensively cooled in a cooling bed, and after the temperature is lowered to 100° C. or less, it is straightened by a straightening machine. A method for making hot-rolled H-shaped steel based on beam blank rolling forming.
前記ステップ2)における加熱温度を1220℃~1260℃に制御し、加熱時間を90~180minとする、ことを特徴とする請求項3に記載の作製方法。 4. The manufacturing method according to claim 3, wherein the heating temperature in step 2) is controlled to 1220° C. to 1260° C., and the heating time is 90 to 180 minutes. 前記ステップ2)における粗圧延の圧延開始温度を1030℃~1130℃に制御し、圧延パスを5~7パスとする、ことを特徴とする請求項3に記載の作製方法。 4. The manufacturing method according to claim 3, wherein the rolling start temperature of the rough rolling in step 2) is controlled to 1030° C. to 1130° C., and the number of rolling passes is 5 to 7. 前記ステップ2)における精密圧延の圧延開始温度を900℃~1000℃に制御し、精密圧延の圧延パスを3~5パスとする、ことを特徴とする請求項3に記載の作製方法。 4. The manufacturing method according to claim 3, wherein the rolling start temperature of the precision rolling in step 2) is controlled to 900° C. to 1000° C., and the rolling passes of the precision rolling are 3 to 5 passes. 前記ステップ2)において、給水栓を用いてH字型鋼の下腿を強制的に冷却し、上下腿の温度差を≦10℃の範囲内に制御する、ことを特徴とする請求項3に記載の作製方法。
4. The method according to claim 3, wherein in step 2), a water tap is used to forcibly cool the lower leg of the H-shaped steel, and the temperature difference between the upper and lower legs is controlled within ≤10°C. How to make.
JP2022533226A 2019-12-09 2020-12-08 Hot-rolled H-shaped steel based on beam blank rolling forming and its preparation method Pending JP2023505172A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201911250138.6A CN110938778A (en) 2019-12-09 2019-12-09 Hot-rolled H-shaped steel based on profiled blank rolling forming and preparation method thereof
CN201911250138.6 2019-12-09
PCT/CN2020/134563 WO2021115263A1 (en) 2019-12-09 2020-12-08 Hot-rolled h-beam steel based on special-shaped billet rolling and forming, and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2023505172A true JP2023505172A (en) 2023-02-08

Family

ID=69910160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022533226A Pending JP2023505172A (en) 2019-12-09 2020-12-08 Hot-rolled H-shaped steel based on beam blank rolling forming and its preparation method

Country Status (5)

Country Link
EP (1) EP4074858A4 (en)
JP (1) JP2023505172A (en)
KR (1) KR20220085820A (en)
CN (1) CN110938778A (en)
WO (1) WO2021115263A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110938778A (en) * 2019-12-09 2020-03-31 山东钢铁股份有限公司 Hot-rolled H-shaped steel based on profiled blank rolling forming and preparation method thereof
CN111945064A (en) * 2020-07-31 2020-11-17 山东钢铁股份有限公司 355 MPa-level low-temperature-resistant hot-rolled H-shaped steel for ocean engineering and preparation method thereof
CN115369328B (en) * 2022-09-22 2024-01-23 马鞍山钢铁股份有限公司 Low-temperature-resistant rolled steel and production method thereof
CN115505705A (en) * 2022-09-26 2022-12-23 包头钢铁(集团)有限责任公司 Rolling method of H-shaped steel pile for high-strength building structure
CN116590600B (en) * 2023-04-20 2024-06-28 包头钢铁(集团)有限责任公司 European standard high-strength steel rail smelting method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103556055A (en) * 2013-10-15 2014-02-05 莱芜钢铁集团有限公司 Hot-rolled H-shaped steel for marine natural gas extraction platform structure and production method of hot-rolled H-shaped steel
JP2017115200A (en) * 2015-12-24 2017-06-29 新日鐵住金株式会社 H-shaped steel for low temperature and production method therefor
WO2017150665A1 (en) * 2016-03-02 2017-09-08 新日鐵住金株式会社 H-shaped steel for low temperatures and method for manufacturing same
CN107227430A (en) * 2017-06-24 2017-10-03 马鞍山钢铁股份有限公司 A kind of hot rolled H-shaped and its production method with 60 DEG C of good low-temperature toughness

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54160513A (en) * 1978-06-09 1979-12-19 Sumitomo Metal Ind Ltd Manufacture of non-heat treated tough h-shaped steel
CN1206048C (en) 2002-09-30 2005-06-15 马鞍山钢铁股份有限公司 Rolling process of H-shaped niobium-containing steel
CN101736207A (en) * 2009-12-24 2010-06-16 马鞍山钢铁股份有限公司 Niobium and vanadium-containing economical high-strength and high-weather-resistance hot rolled H-shaped steel and rolling method thereof
CN103667910B (en) * 2013-12-13 2015-09-23 莱芜钢铁集团有限公司 There is the hot rolled H-shaped manufacture method of favorable low-temperature impact toughness
US10060002B2 (en) * 2013-12-16 2018-08-28 Nippon Steel & Sumitomo Metal Corporation H-section steel and method of producing the same
CN109715842B (en) * 2016-12-21 2020-03-06 日本制铁株式会社 H-shaped steel and manufacturing method thereof
WO2019122949A1 (en) * 2017-12-18 2019-06-27 Arcelormittal Steel section having a thickness of at least 100mm and method of manufacturing the same
CN108754327B (en) * 2018-06-15 2019-07-30 马鞍山钢铁股份有限公司 A kind of yield strength 460MPa grades of bridge structure high tenacity are weather-resistance hot rolled H-shaped and its production method
CN108893675B (en) * 2018-06-19 2020-02-18 山东钢铁股份有限公司 Thick-specification hot-rolled H-shaped steel with yield strength of 500MPa and preparation method thereof
CN110938778A (en) * 2019-12-09 2020-03-31 山东钢铁股份有限公司 Hot-rolled H-shaped steel based on profiled blank rolling forming and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103556055A (en) * 2013-10-15 2014-02-05 莱芜钢铁集团有限公司 Hot-rolled H-shaped steel for marine natural gas extraction platform structure and production method of hot-rolled H-shaped steel
JP2017115200A (en) * 2015-12-24 2017-06-29 新日鐵住金株式会社 H-shaped steel for low temperature and production method therefor
WO2017150665A1 (en) * 2016-03-02 2017-09-08 新日鐵住金株式会社 H-shaped steel for low temperatures and method for manufacturing same
CN107227430A (en) * 2017-06-24 2017-10-03 马鞍山钢铁股份有限公司 A kind of hot rolled H-shaped and its production method with 60 DEG C of good low-temperature toughness

Also Published As

Publication number Publication date
CN110938778A (en) 2020-03-31
KR20220085820A (en) 2022-06-22
EP4074858A4 (en) 2023-10-18
WO2021115263A1 (en) 2021-06-17
EP4074858A1 (en) 2022-10-19

Similar Documents

Publication Publication Date Title
JP2023505172A (en) Hot-rolled H-shaped steel based on beam blank rolling forming and its preparation method
CN110184525B (en) High-strength Q500GJE quenched and tempered steel plate for building structure and manufacturing method thereof
CN110295320B (en) Large-wall-thickness X52MS acid-resistant pipeline steel plate produced by LF-RH refining process and manufacturing method thereof
CN104694822A (en) High-strength hot rolled steel plate with 700 MPa grade yield strength and manufacturing method thereof
CN112359289B (en) Super-thick Q355-grade hot-rolled H-shaped steel with good low-temperature toughness and production method thereof
CN108929986B (en) High-strength wear-resistant hot rolled steel plate for automobile braking and production process thereof
CN112011737B (en) 390 MPa-grade-20-DEG C-resistant hot-rolled angle steel for bridge structure and production method thereof
CN110735085A (en) Manufacturing method of thin Q345qE and Q370qE steel plates
JP2023519992A (en) 355 MPa grade cold-resistant hot-rolled H-beam steel for marine engineering and its production method
CN105695870A (en) thick hot rolled sheet steel with 450MPa grade yield strength and manufacturing method thereof
CN107988562A (en) X65-grade low-cost submarine pipeline steel and manufacturing method thereof
CN112981232B (en) 12Cr2Mo1VR steel plate with low compression ratio and high flaw detection quality requirement for continuous casting billet finished product and production process thereof
CN102400036A (en) Twin crystal induced plasticity steel with high elongation and high hole expansion rate and manufacturing method thereof
CN107385319A (en) Yield strength 400MPa level Precision Welded Pipe steel plates and its manufacture method
CN104131238A (en) High-formability high-weatherability ultrathin hot-rolled steel plate and CSP (compact strip production) technology thereof
CN107557690A (en) Low-temperature-resistant and lamellar-tearing-resistant super-thick steel plate and manufacturing method thereof
CN113817948B (en) Production method of high-toughness bridge steel with yield strength of 345MPa
CN112779401A (en) High-reaming hot-rolled pickled steel plate with yield strength of 550MPa
CN102418047B (en) Non-quenched and tempered fatigue-resistant steel plate and manufacturing method thereof
CN109047692B (en) Ultrathin high-strength steel plate capable of being used at-60 ℃ and manufacturing method thereof
CN111270151A (en) Q345E steel plate and production method thereof
CN111349870A (en) Q345D steel plate and production method thereof
CN112375997B (en) Manufacturing method of X70M pipeline steel plate used under low-cost and ultralow-temperature conditions
CN115058660B (en) Low Wen Cie steel for large-scale hydroelectric generating set and production method
CN112981258B (en) X70M hot-rolled steel plate for thin-specification gas transmission straight welded pipe and manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240227