JP2023504306A - Thrust Prediction Method for Rescue from Collapsed Subway Tunnel Using Propulsion Pipe Construction Method - Google Patents

Thrust Prediction Method for Rescue from Collapsed Subway Tunnel Using Propulsion Pipe Construction Method Download PDF

Info

Publication number
JP2023504306A
JP2023504306A JP2022549229A JP2022549229A JP2023504306A JP 2023504306 A JP2023504306 A JP 2023504306A JP 2022549229 A JP2022549229 A JP 2022549229A JP 2022549229 A JP2022549229 A JP 2022549229A JP 2023504306 A JP2023504306 A JP 2023504306A
Authority
JP
Japan
Prior art keywords
determining
propulsion
block
thrust
collapsed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022549229A
Other languages
Japanese (ja)
Other versions
JP7264566B2 (en
Inventor
高岩
何▲長▼江
孟▲慶▼一
王君厚
▲銭▼坤
▲劉▼▲雲▼生
李▲飛▼
尹子涛
▲矯▼永岩
李▲徳▼柱
李旭▲軍▼
葛朝朝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Railway No 9 Group Co Ltd
Original Assignee
China Railway No 9 Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Railway No 9 Group Co Ltd filed Critical China Railway No 9 Group Co Ltd
Publication of JP2023504306A publication Critical patent/JP2023504306A/en
Application granted granted Critical
Publication of JP7264566B2 publication Critical patent/JP7264566B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F11/00Rescue devices or other safety devices, e.g. safety chambers or escape ways
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/003Arrangement of measuring or indicating devices for use during driving of tunnels, e.g. for guiding machines
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/01Methods or apparatus for enlarging or restoring the cross-section of tunnels, e.g. by restoring the floor to its original level
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/02Measuring coefficient of friction between materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/24Investigating strength properties of solid materials by application of mechanical stress by applying steady shearing forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/02Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by measuring weight of a known volume
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/02Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by measuring weight of a known volume
    • G01N2009/022Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by measuring weight of a known volume of solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0025Shearing

Abstract

【課題】 地下鉄トンネル崩落の推進管工法によるレスキューの推力予測方法を提供することを課題とする。【解決手段】 本発明は、地下鉄トンネルの崩落時に推進管工法でレスキューする時の推進管推力の予測方法に関する。前記方法は、崩壊ブロックの高さH、単位体積重量γを決定するステップと、推進管の中心軸からトンネルの底部までの距離H1を決定するステップと、物理探査、ボーリング調査又は推定法により、推進管の中心軸箇所の地すべりブロックの水平方向の長さLを決定するステップと、崩壊ブロックの凝集力c及び内部摩擦角を決定するステップと、崩壊ブロックと推進管の外壁との間の界面摩擦力τを決定するステップと、水平方向の長さLの範囲内の推進管本数m及びまる1本の推進管本数nを決定するステップと、水平方向の長さLの範囲内の部分的な推進管の普通セクションの長さL3及び拡径頭部セクションの長さL4を決定するステップと、普通セクションに必要な推力T1、拡径セクションに必要な推力T2及びテーパーヘッドに必要な推力T3を決定するステップと、推進管に必要な総推力Tを決定するステップとを含む。【選択図】 なしAn object of the present invention is to provide a thrust force prediction method for rescue by a propulsion tube construction method for a collapsed subway tunnel. SOLUTION: The present invention relates to a method for predicting the thrust of a propulsion pipe when a subway tunnel collapses and is rescued by a propulsion pipe construction method. The method includes the steps of determining the height H of the collapsing block and the unit volume weight γ; determining the distance H1 from the central axis of the propulsion tube to the bottom of the tunnel; Determining the horizontal length L of the landslide block at the central axis of the propulsion pipe; determining the cohesive force c and internal friction angle of the collapsed block; and the interface between the collapsed block and the outer wall of the propulsion pipe. Determining the frictional force τ; determining the number m of propulsion tubes within a horizontal length L and the number n of whole propulsion tubes; determining the length L3 of the normal section of the propulsion tube and the length L4 of the enlarged head section; and determining the total thrust T required for the propulsion tubes. [Selection figure] None

Description

本発明は、インフラ整備分野に関し、特に、地下鉄トンネルの崩落時に推進管工法でレスキューする時の推進管推力の予測方法に関する。 TECHNICAL FIELD The present invention relates to the field of infrastructure development, and more particularly to a method for predicting the thrust of a thrust pipe when a subway tunnel collapses and is rescued by the thrust pipe construction method.

トンネルの掘削や施工過程で、地質状態、外力を受けた状態、地下水の変化、不適切な設計又は不適切な工法などのさまざまな原因により、トンネルの崩落が引き起こされる可能性がある。トンネルが崩落すると、トンネル内での施工者の安全に大きな脅威をもたらす。したがって、トンネル崩落エリアで迅速な救助を実施することは非常に重要である。さまざまな救助方法の中で、推進管工法は優れた方法の1つである。この工法は、推力を利用して推進管を崩壊ブロックに強制的に押し込み、崩壊ブロックを貫通し、管路を介して空気及び救助物資を崩壊ブロックに送ることで閉じ込められた被災者に供給する。推進管工法の推力は、一般的にジャッキ又はショベルローダー等の機械を用いるが、ジャッキが反力架台を必要とし、反力と推力は作用力と反作用力のペアで、推進管工法を実施する時、推力の大きさを明確するのは、反力を加える構造にとって、重要な参考意味を持つ。しかしながら、これまでのところ、推力や反力の大きさは施工経験に基づいており、トンネルレスキューの推進管工法推力の理論的予測法は、ほぼ見られない。 During the tunnel excavation and construction process, tunnel collapse may be caused by various factors such as geological conditions, external force conditions, groundwater changes, improper design or improper construction methods. Tunnel collapse poses a great threat to the safety of builders inside the tunnel. Therefore, it is very important to carry out quick rescue in the tunnel collapse area. Among various rescue methods, the propelling pipe construction method is one of the superior methods. This method uses thrust to force the propulsion pipe into the collapsing block, penetrate the collapsing block, and supply air and rescue supplies to the trapped victims through the pipe to the collapsing block. . Machines such as jacks or shovel loaders are generally used for the thrust of the propelling pipe construction method, but the jack requires a reaction force mount, and the reaction force and thrust are a pair of action force and reaction force, and the propelling pipe method is implemented. Sometimes, clarifying the magnitude of the thrust has important reference meaning for the structure that applies the reaction force. However, until now, the magnitude of thrust and reaction force is based on construction experience, and there is almost no theoretical prediction method for the thrust force of the tunnel rescue method.

《土質試験法の標準》(GB-T50123-1999)<<Standard of Soil Testing Method>> (GB-T50123-1999)

本発明の目的は、地下鉄トンネル崩落の推進管工法によるレスキューの推力予測方法を提供することである。 SUMMARY OF THE INVENTION An object of the present invention is to provide a thrust force prediction method for rescue by a propulsion tube construction method for a collapsed subway tunnel.

上記目的を達成するため、本発明の技術的手段である地下鉄トンネル崩落の推進管工法によるレスキューの推力予測方法は、以下のステップを有する。 In order to achieve the above object, the technical means of the present invention, a rescue thrust prediction method for a collapsed subway tunnel using a propelling pipe construction method, has the following steps.

(1)崩壊ブロックの高さH、単位体積重量γを決定する。
トンネル不良地質體の高さH0に地山のゆるみ係数1.1~1.3を掛けて崩壊ブロックの高さH、すなわち、H=(1.1~1.3)H0を得る、又は物理探査、ボーリング調査或いは推定法により地上で崩壊ブロックを垂直探査して、崩壊ブロックの高さHを測定し、崩壊ブロックから典型的な土試料を採取し、リングナイフ法で崩壊ブロックの密度を測定し、次に重力加速度を乗じて崩壊ブロックの単位体積重量γを得る。
(1) Determine the height H and unit weight γ of the collapsing block.
Multiply the height H0 of the tunnel faulty geological body by the looseness coefficient of the ground 1.1-1.3 to obtain the height H of the collapse block, that is, H = (1.1-1.3)H0, or geophysical survey, boring survey or estimation The collapsed block was vertically probed on the ground by the method, the height H of the collapsed block was measured, a typical soil sample was taken from the collapsed block, the density of the collapsed block was measured by the ring-knife method, and then the gravitational acceleration to obtain the unit volume weight γ of the collapsed block.

(2)推進管の中心軸からトンネルの底部までの距離H1を決定する。
施工の便宜のため、通常H1は、1.0~3.0mの範囲にある。
( 2 ) Determine the distance H1 from the central axis of the propulsion tube to the bottom of the tunnel.
For construction convenience, H1 is usually in the range of 1.0 to 3.0m.

(3)推進管の中心軸箇所の地すべりブロックの水平方向の長さLを決定する。
物理探査、ボーリング調査又は推定法により、推進管の中心軸箇所の地すべりブロックの水平方向の長さLを決定する。
(3) Determine the horizontal length L of the landslide block at the central axis of the propulsion pipe.
Determine the horizontal length L of the landslide block at the central axis of the propulsion pipe by geophysical survey, boring survey or estimation method.

(4)推進管の普通セクションの外径d1、拡径セクションの外径d2及びテーパーヘッド外径D及び単一推進管の普通セクションの長さL1及び拡径セクションの長さL2を決定する。
これらのデータは、施工に選択された推進管を測定して得られる。
( 4 ) Propulsion tube normal section outer diameter d1, enlarged diameter section outer diameter d2 and taper head outer diameter D and single thrust tube normal section length L1 and enlarged diameter section length L2 to decide.
These data are obtained by measuring the propulsion tubes selected for construction.

(5)崩壊ブロックの凝集力c及び内部摩擦角φを決定する。
崩壊ブロックから典型的な土試料を採取し、実験室に運び、非特許文献1に従って、非固結急速せん断試験を実施して、岩体の凝集力c及び内部摩擦角φを得る。
(5) Determine the cohesive force c and the internal friction angle φ of the collapsed block.
A typical soil sample is taken from the collapsed block, transported to the laboratory, and non-consolidated rapid shear tests are performed according to [1] to obtain the rock mass cohesion c and internal friction angle φ.

(6)崩壊ブロックと推進管の外壁との間の界面摩擦力τを次式により決定する。 (6) The interfacial frictional force τ between the collapsing block and the outer wall of the propulsion tube is determined by the following equation.

τ=(H-H1)γtanφ τ=( HH1 )γtanφ

(7)水平方向の長さLの範囲内の推進管本数m及びまる1本の推進管本数nを次式により決定する。 (7) Determine the number of propulsion pipes m within the range of the horizontal length L and the number of propulsion pipes n of one whole by the following equation.

Figure 2023504306000001

但し、式中、intは、整数にする関数である。
Figure 2023504306000001

However, in the formula, int is a function to convert to an integer.

(8)水平方向の長さLの範囲内の部分的な推進管の普通セクションの長さL3及び拡径頭部セクションの長さL4を決定する。
(m-n)(L1+L2)<L1の場合、L3=(m-n)(L1+L2)、L4=0となり、さもなければ、L3=L1、L4=(m-n)(L1+L2)-L1となる。
( 8 ) Determine the length L3 of the normal section of the partial propulsion tube and the length L4 of the enlarged head section within the horizontal length L;
If (mn)(L1 + L2)<L1 , then L3=(mn) ( L1 + L2), L4= 0 , else L3= L1 , L4= ( mn )(L 1 +L 2 )-L 1 .

(9)普通セクションに必要な推力T1、拡径セクションに必要な推力T2及びテーパーヘッドに必要な推力T3を次式により決定する。 ( 9 ) Determine the required thrust force T1 for the normal section, the required thrust force T2 for the expanded diameter section , and the required thrust force T3 for the tapered head by the following equations.

Figure 2023504306000002
Figure 2023504306000002

(10)推進管に必要な総推力Tを次式により決定する。 (10) Determine the total thrust T required for the propulsion tube by the following equation.

T=T1+T2+T3 T= T1 +T2 + T3

本発明の実施後、地下鉄トンネルの崩落が発生した時、推進管工法でレスキューする時の推力を予測することができ、予測方法は簡単で、結果は信頼できるため、推力設備を合理的に選択してトンネルのレスキューに技術的サポートを提供することができる。 After the implementation of the present invention, when the collapse of the subway tunnel occurs, it is possible to predict the thrust during rescue by the propelling pipe construction method. to provide technical support for tunnel rescue.

トンネルは、貫入接触帯を通過し、断層に隣接した岩石の特性が悪く、地下水位が高いため、崩落事故に遭遇し、3人が閉じ込められ、推進管工法によるレスキューを決定し、本発明の予測方法で推進管に必要な推力を予測した。物理探査方法により、トンネルの不良地質体の高さH0は22.0mであると決定され、これに地山のゆるみ係数1.2を掛け、式H=(1.1~1.3)H0に基づいて、崩壊ブロックの高さHは26.4mであることを得た。崩壊ブロックから典型的な土試料を採取し、リングナイフ法で密度が1.65g/cm3であると測定され、次に重力加速度を乗じて単位体積重量γが16.5kN/m3であると得られた。 The tunnel passed through the intrusion contact zone, the rocks adjacent to the fault had poor characteristics, and the groundwater level was high. A prediction method was used to predict the thrust required for the propulsion tube. By geophysical survey method, the height H 0 of the poor geological body of the tunnel was determined to be 22.0 m, multiplied by the loosening factor of the rock mass of 1.2, and based on the formula H = (1.1 to 1.3) H 0 , the collapse The block height H is obtained to be 26.4m. A typical soil sample was taken from a collapsed block and determined by the ring-knife method to have a density of 1.65 g/ cm3 , then multiplied by the acceleration of gravity to obtain a unit volume weight γ of 16.5 kN/m3. was taken.

施工経験により推進管の中心軸からトンネルの底部までの距離H1は、1.5mであると決定され、物理探査方法により推進管の中心軸箇所の地すべりブロックの水平方向の長さLは14.8mであると決定された。施工に選択された推進管を測定し、推進管の普通セクションの外径d1は、0.30m、拡径セクションの外径d2は0.35m、テーパーヘッドの外径Dは0.35m、及び単一推進管の普通セクションの長さL1は1.8m、拡径セクションの長さL2は0.2mであると得られた。崩壊ブロックから典型的な土試料を採取して、実験室に運び、非固結急速せん断試験を実施して、岩体の凝集力cは3.7kPa、内部摩擦角φは12°であると測定された。 Based on construction experience, the distance H1 from the central axis of the propulsion pipe to the bottom of the tunnel was determined to be 1.5m, and the horizontal length L of the landslide block at the central axis of the propulsion pipe was determined by the geophysical survey method to be 14.8m. was determined to be Measure the propulsion pipe selected for construction, the outer diameter d1 of the normal section of the propulsion pipe is 0.30m , the outer diameter d2 of the enlarged diameter section is 0.35m , the outer diameter D of the tapered head is 0.35m, and The length L 1 of the normal section of the single propulsion tube was obtained to be 1.8 m and the length L 2 of the enlarged section to be 0.2 m. A typical soil sample was taken from the collapsing block, transported to the laboratory, and a non-consolidation rapid shear test was performed to determine the cohesive force c of the rock mass to be 3.7 kPa and the internal friction angle φ to be 12°. was done.

τ=(H-H1)γtanφ
上式により崩壊ブロックと推進管の外壁との間の界面摩擦力τは87.3kPaであると計算された。
τ=(HH 1 )γtanφ
The interfacial friction force τ between the collapsing block and the outer wall of the propulsion tube was calculated to be 87.3kPa by the above equation.

Figure 2023504306000003

上式により、水平方向の長さLの範囲内の推進管本数mは、7.8、まる1本の推進管本数nは7.0であると計算された。さらに、(m-n)(L1+L2)=1.6m<L1=1.8mとなり、水平方向の長さLの範囲内の不完全な推進管の普通セクションの長さL3は(m-n)(L1+L2)=1.6mで、拡径頭部セクションL4は0であった。
Figure 2023504306000003

According to the above formula, the number of propelling pipes m within the horizontal length L was calculated to be 7.8, and the number of propelling pipes n for one whole was calculated to be 7.0. Further, (mn)(L 1 +L 2 )=1.6m<L 1 =1.8m, and the length L 3 of the normal section of the imperfect propulsion tube within the horizontal length L is (mn) (L 1 +L 2 )=1.6 m and the enlarged head section L 4 was 0.

T1=πd1τnL1
上式により、普通セクションに必要な推力T1は、1167.8kNであると計算された。
T1 = πd1τnL1
From the above formula, the required thrust T1 for the normal section was calculated to be 1167.8kN .

T2=πd2τnL2
上式により、拡径セクションに必要な推力T2は、134.3kNであると計算された。
T2 = πd2τnL2
From the above formula , the required thrust T2 for the expanded section was calculated to be 134.3kN.

Figure 2023504306000004

上式により、テーパーヘッドに必要な推T3は、60.9kNであると計算され、最後に推進管に必要な総推力Tは1363.0kNであると計算された。

Figure 2023504306000004

From the above formula, the thrust T3 required for the taper head was calculated to be 60.9kN , and finally the total thrust T required for the propulsion tube was calculated to be 1363.0kN.

Claims (2)

地下鉄トンネル崩落の推進管工法によるレスキューの推力予測方法であって、
(1)崩壊ブロックの高さH、単位体積重量γを決定するステップであって、
トンネル不良地質體の高さH0に地山のゆるみ係数1.1~1.3を掛けて崩壊ブロックの高さH、すなわち、H=(1.1~1.3)H0を得、崩壊ブロックから典型的な土試料を採取し、リングナイフ法で崩壊ブロックの密度を測定し、次に重力加速度を乗じて崩壊ブロックの単位体積重量γを得るステップと、
(2)推進管の中心軸からトンネルの底部までの距離H1を決定するステップであって、
施工の便宜のため、通常H1は、1.0~3.0mの範囲にあるステップと、
(3)推進管の中心軸箇所の地すべりブロックの水平方向の長さLを決定するステップであって、
物理探査、ボーリング調査又は推定法により、推進管の中心軸箇所の地すべりブロックの水平方向の長さLを決定するステップと、
(4)推進管の普通セクションの外径d1、拡径セクションの外径d2及びテーパーヘッド外径D及び単一推進管の普通セクションの長さL1及び拡径セクションの長さL2を決定するステップであって、
これらのデータは、施工に選択された推進管を測定して得られるステップと、
(5)崩壊ブロックの凝集力c及び内部摩擦角φを決定するステップであって、
崩壊ブロックから典型的な土試料を採取し、実験室に運び、非固結急速せん断試験を実施して、岩体の凝集力c及び内部摩擦角φを得るステップと、
(6)崩壊ブロックと推進管の外壁との間の界面摩擦力τを次式により決定するステップと、
τ=(H-H1)γtanφ
(7)水平方向の長さLの範囲内の推進管本数m及びまる1本の推進管本数nを次式により決定するステップと、
Figure 2023504306000005

[但し、式中、intは、整数にする関数であり、]
(8)水平方向の長さLの範囲内の部分的な推進管の普通セクションの長さL3及び拡径頭部セクションの長さL4を次式により決定するステップと、
(m-n)(L1+L2)<L1の場合、L3=(m-n)(L1+L2)、L4=0となり、さもなければ、L3=L1、L4=(m-n)(L1+L2)-L1となり、
(9)普通セクションに必要な推力T1、拡径セクションに必要な推力T2及びテーパーヘッドに必要な推力T3を次式により決定するステップと、
Figure 2023504306000006

(10)推進管に必要な総推力Tを次式により決定するステップと、
T=T1+T2+T3
を有することを特徴とする、地下鉄トンネル崩落の推進管工法によるレスキューの推力予測方法。
A thrust prediction method for rescue by a propulsion tube construction method for a collapse of a subway tunnel,
(1) A step of determining the height H and unit volume weight γ of the collapsing block,
The height H 0 of the tunnel-defective geological body is multiplied by the looseness coefficient of the ground 1.1 to 1.3 to obtain the height H of the collapsed block, that is, H = (1.1 to 1.3)H 0 , and a typical soil sample from the collapsed block is obtained. and measuring the density of the collapsed block by the ring-knife method, then multiplying by the acceleration of gravity to obtain the unit volume weight γ of the collapsed block;
( 2 ) determining the distance H1 from the central axis of the propulsion tube to the bottom of the tunnel, comprising:
For construction convenience, H 1 is usually in the range of 1.0 to 3.0m, and
(3) determining the horizontal length L of the landslide block at the central axis of the propulsion pipe,
determining the horizontal length L of the landslide block at the central axis of the propulsion pipe by geophysical survey, boring survey or estimation;
( 4 ) Propulsion tube normal section outer diameter d1, enlarged diameter section outer diameter d2 and taper head outer diameter D and single thrust tube normal section length L1 and enlarged diameter section length L2 a step of determining
These data are obtained by measuring the propulsion tubes selected for installation, and
(5) determining the cohesive force c and the internal friction angle φ of the collapsed block, comprising:
taking a typical soil sample from the collapsing block, transporting it to the laboratory and performing non-consolidation rapid shear tests to obtain the rock mass cohesion c and internal friction angle φ;
(6) determining the interfacial frictional force τ between the collapsing block and the outer wall of the propulsion tube by:
τ=(HH 1 )γtanφ
(7) a step of determining the number of propulsion pipes m within the range of the horizontal length L and the number of propulsion pipes n of a whole by the following equation;
Figure 2023504306000005

[In the formula, int is a function that converts to an integer]
( 8 ) determining the length L3 of the normal section and the length L4 of the enlarged head section of the partial propulsion tube within the horizontal length L by:
If (mn)(L1 + L2)<L1 , then L3=(mn) ( L1 + L2), L4= 0 , else L3= L1 , L4= ( mn)(L 1 +L 2 )-L 1 and
( 9 ) determining the required thrust T1 for the normal section, the required thrust T2 for the expanded diameter section , and the required thrust T3 for the tapered head according to the following equation;
Figure 2023504306000006

(10) determining the total thrust T required for the propulsion tube by the following equation;
T= T1 +T2 + T3
A thrust prediction method for rescue by a propulsion pipe construction method for a collapse of a subway tunnel, characterized by comprising:
崩壊ブロックの高さHは、物理探査、ボーリング調査又は推定法により地上で崩壊ブロックを垂直探査して測定されることを特徴とする、請求項1に記載の地下鉄トンネル崩落の推進管工法によるレスキューの推力予測方法。
The height H of the collapsed block is measured by vertical exploration of the collapsed block on the ground by geophysical survey, boring survey or estimation method. thrust prediction method.
JP2022549229A 2020-08-06 2021-07-30 Thrust Prediction Method for Rescue from Collapsed Subway Tunnel Using Propulsion Pipe Construction Method Active JP7264566B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202010780775.0 2020-08-06
CN202010780775.0A CN111894675B (en) 2020-08-06 2020-08-06 Subway tunnel collapse pipe pushing method emergency thrust prediction method
PCT/CN2021/109421 WO2021244673A1 (en) 2020-08-06 2021-07-30 Method for predicting emergency-response pipe-pushing thrust for subway tunnel collapse

Publications (2)

Publication Number Publication Date
JP2023504306A true JP2023504306A (en) 2023-02-02
JP7264566B2 JP7264566B2 (en) 2023-04-25

Family

ID=73245791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022549229A Active JP7264566B2 (en) 2020-08-06 2021-07-30 Thrust Prediction Method for Rescue from Collapsed Subway Tunnel Using Propulsion Pipe Construction Method

Country Status (4)

Country Link
JP (1) JP7264566B2 (en)
CN (1) CN111894675B (en)
LU (1) LU501206B1 (en)
WO (1) WO2021244673A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111894675B (en) * 2020-08-06 2022-05-10 中铁九局集团有限公司 Subway tunnel collapse pipe pushing method emergency thrust prediction method
CN114251107B (en) * 2021-12-16 2023-04-28 中国电建集团成都勘测设计研究院有限公司 Tunnel collapse processing method
CN114876471B (en) * 2022-07-05 2022-09-09 中铁四局集团有限公司北京分公司 Pipe jacking construction method for waterless sand layer
CN115859444B (en) * 2022-12-21 2023-06-16 交通运输部公路科学研究所 Highway tunnel collapse prediction method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492087A (en) * 1990-08-03 1992-03-25 Komatsu Ltd Directional control device of tunnel excavator
JPH10246091A (en) * 1997-03-05 1998-09-14 Hitachi Constr Mach Co Ltd Shield tunneling method and shield excavator
JP2000160985A (en) * 1998-12-02 2000-06-13 Dai Nippon Construction Thrust monitor
CN108446418A (en) * 2018-01-16 2018-08-24 天津大学 A kind of shield driving gross thrust computational methods based on dimensional analysis
CN108763673A (en) * 2018-05-16 2018-11-06 广东省生态环境技术研究所 The Driving forces of land use change screening technique and device returned based on LASSO
CN109736819A (en) * 2019-01-03 2019-05-10 天津大学 A kind of shield driving gross thrust determines method and system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102140928A (en) * 2010-02-03 2011-08-03 沈忠毅 Tunnel-type underground escape system
KR101335559B1 (en) * 2013-04-18 2013-12-06 주식회사 승지토건 Inner ejection type head pipe for underground propulsion pipe
CN103938703B (en) * 2014-05-07 2015-11-25 中国五冶集团有限公司 A kind of pipe jacking construction method
CN104481582B (en) * 2014-11-19 2016-06-22 北京首尔工程技术有限公司 Tunnel close the door landslide Quick rescue method
CN111894675B (en) * 2020-08-06 2022-05-10 中铁九局集团有限公司 Subway tunnel collapse pipe pushing method emergency thrust prediction method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492087A (en) * 1990-08-03 1992-03-25 Komatsu Ltd Directional control device of tunnel excavator
JPH10246091A (en) * 1997-03-05 1998-09-14 Hitachi Constr Mach Co Ltd Shield tunneling method and shield excavator
JP2000160985A (en) * 1998-12-02 2000-06-13 Dai Nippon Construction Thrust monitor
CN108446418A (en) * 2018-01-16 2018-08-24 天津大学 A kind of shield driving gross thrust computational methods based on dimensional analysis
CN108763673A (en) * 2018-05-16 2018-11-06 广东省生态环境技术研究所 The Driving forces of land use change screening technique and device returned based on LASSO
CN109736819A (en) * 2019-01-03 2019-05-10 天津大学 A kind of shield driving gross thrust determines method and system

Also Published As

Publication number Publication date
CN111894675B (en) 2022-05-10
CN111894675A (en) 2020-11-06
JP7264566B2 (en) 2023-04-25
LU501206B1 (en) 2022-05-05
LU501206A1 (en) 2022-02-07
WO2021244673A1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
JP7264566B2 (en) Thrust Prediction Method for Rescue from Collapsed Subway Tunnel Using Propulsion Pipe Construction Method
CN104181581B (en) Earthquake wave underground construction space observation system and method based on random arrangement
CN101892830A (en) Deep ground stress measurement while drilling (MWD) system
JP2013127180A (en) Bedrock property predicting method and system
CN111551427A (en) Advanced quantitative prediction method for large deformation of soft rock of deep-buried long tunnel
Castiglia et al. Pipeline performances under earthquake-induced soil liquefaction: state of the art on real observations, model tests, and numerical simulations
Dong et al. Similar simulation device for unloading effect of deep roadway excavation and its application
Ebelhar et al. Cone penetrometer and conductor pullout tests in carbonate soils offshore Africa
CN107975076B (en) Parallel seismic wave method determines the detection device and its detection method of foundation pile length
Wang et al. Experimental study of blast-induced vibration characteristics based on the delay-time errors of detonator
CN108547332B (en) Building pile foundation detection technology
JP7439181B2 (en) Wave measurement device
CN108918824B (en) Tunnel water-inrush mud-inrush surrounding rock impact pressure prediction method
Li et al. Rockburst prediction on the superimposed effect of excavation accumulation energy and blasting vibration energy in deep roadway
CN113806838A (en) Method for prejudging mud-water fracture damage of shield in soft soil stratum
Stephan A rugged marine impact penetrometer for sea floor assessment
JP6434375B2 (en) Rock exploration method and rock exploration device
Wang et al. Ground movement in the hanging wall of underground iron mines with steeply dipping discontinuities: a case study
Kevan Full-scale testing of blast-induced liquefaction downdrag on driven piles in sand
Vaskou et al. Design Methodology for the Prediction and Stabilization of Mega Wedgesin Large Unlined Storage Caverns
Amoroso et al. Site characterization by Seismic Dilatometer (SDMT) in the area of L’Aquila following the April 6, 2009 earthquake
Fan et al. Method Evaluating Axial Response of Vertically-Loaded Piles During Spudcan Penetration
Yu A Deep Rock Cavern Captures Stormwater
Jeanjean et al. Lessons learned from pile driving and monitoring in gravels on the Northstar Artificial Island
Chuan-ying et al. Detection method for bottom sediment thickness of bored piles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220815

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230406

R150 Certificate of patent or registration of utility model

Ref document number: 7264566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150