JP2023504238A - Composite enzyme and method for producing resistant dextrin - Google Patents

Composite enzyme and method for producing resistant dextrin Download PDF

Info

Publication number
JP2023504238A
JP2023504238A JP2022526515A JP2022526515A JP2023504238A JP 2023504238 A JP2023504238 A JP 2023504238A JP 2022526515 A JP2022526515 A JP 2022526515A JP 2022526515 A JP2022526515 A JP 2022526515A JP 2023504238 A JP2023504238 A JP 2023504238A
Authority
JP
Japan
Prior art keywords
starch
amylase
extrusion
enzyme
class
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022526515A
Other languages
Japanese (ja)
Other versions
JP7249712B2 (en
Inventor
エンボー シュイ
ドンホン リウ
ジンソン フォン
ジォンゾン ウー
ジュンユィ タン
シュオハン マー
ジェンウェイ ジョウ
ダンダン リー
ホァン チョン
ジンフゥ ティェン
ジェンチュウ チェン
シンチェン イエ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Publication of JP2023504238A publication Critical patent/JP2023504238A/en
Application granted granted Critical
Publication of JP7249712B2 publication Critical patent/JP7249712B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • C12N9/2414Alpha-amylase (3.2.1.1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • C12N9/2425Beta-amylase (3.2.1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2451Glucanases acting on alpha-1,6-glucosidic bonds
    • C12N9/2457Pullulanase (3.2.1.41)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2451Glucanases acting on alpha-1,6-glucosidic bonds
    • C12N9/246Isoamylase (3.2.1.68)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/16Preparation of compounds containing saccharide radicals produced by the action of an alpha-1, 6-glucosidase, e.g. amylose, debranched amylopectin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/22Preparation of compounds containing saccharide radicals produced by the action of a beta-amylase, e.g. maltose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01001Alpha-amylase (3.2.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01002Beta-amylase (3.2.1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01041Pullulanase (3.2.1.41)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01068Isoamylase (3.2.1.68)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

本発明は、複合酵素、および同時押出を組み合わせて耐性デキストリンを製造する方法を開示し、デンプン精密加工技術分野に属す。本発明は、異なるグリコシド結合作用部位に基づき、配合するアミラーゼの割合を選定し、複合酵素とデンプンを高せん断共押出加工し、押出チャンバー内の熱機械的マルチフィジックスカップリング(μmスケールの非指向性せん断)および共同酵素分解定点脱凝集作用(nmスケールの特異性せん断)によって、デンプン直鎖および分岐の切断順序および程度を精細に制御し、差異性鎖長分布を形成することができる。この方法は、内蔵された二軸チャンバーを、デンプンを効率的に酵素分解する反応器とし、その軸方向の拡散速度、滞留時間および作用面積を増大させる条件の下、酵素液用量を低減し、高結晶度の耐性デキストリン(Mw:0.5~8 kDa)を形成する。本発明は、押出前後の酵素分解ステップを簡素化し、制御が精細で、効率的で連続しており、節水でき経済的なデンプンマイクロドメイン制御方法を実現する。【選択図】図1The present invention discloses a method for producing resistant dextrins by combining complex enzymes and co-extrusion, and belongs to the field of starch precision processing technology. The present invention selects the proportion of amylase to be formulated based on different glycosidic binding sites of action, performs high-shear co-extrusion of conjugated enzymes and starch, and thermomechanically multiphysics coupling in the extrusion chamber (μm-scale non-directed Shearing) and co-enzymatic fixed-point disaggregation (nm-scale specific shearing) allow fine control over the order and degree of cleavage of starch linear and branched chains to form differential chain length distributions. This method uses a built-in biaxial chamber as a reactor that efficiently enzymatically degrades starch, and reduces the dosage of the enzyme solution under conditions that increase its axial diffusion rate, residence time and active area, Forms highly crystalline resistant dextrin (Mw: 0.5-8 kDa). The present invention simplifies the enzymatic degradation steps before and after extrusion and provides a finely controlled, efficient, continuous, water-saving and economical method of controlling starch microdomains. [Selection drawing] Fig. 1

Description

本発明は、高耐性(難消化性)構造を有する多糖類製品の製造に関し、特に、複合酵素、ならびに高せん断・熱エネルギー、機械的エネルギーを入力する押出環境において、マルチフィジックスカップリングおよび共同指向性分解作用によってデンプン鎖の秩序ある分解程度を制御することにより、耐性デキストリンを効率的に形成する加工方法に関する。 The present invention relates to the production of polysaccharide products with highly tolerant (indigestible) structures, particularly in multi-enzyme and high shear, thermal, mechanical energy input extrusion environments, multiphysics coupling and co-directed The present invention relates to a processing method for efficiently forming resistant dextrin by controlling the degree of orderly degradation of starch chains by toxic degradation.

耐性デキストリン(Resistant dextrin、RD)は、デンプン糊化・結合切断またはグリコシル化転移後に構造の再構築が発生した小分子水溶性食物繊維であり、その分子にはα-1,2グリコシド結合、α-1,3グリコシド結合、縮合グルコースおよびβ-1,6グリコシド等の構造が含まれ、大腸がんの予防、コレステロール値の低下、血糖代謝の調節、Ca2+、Fe3+ミネラルの促進吸収などの機能を有する。しかしながら、酵素耐性は、一般に、高度に緻密なラメラ構造に由来するため、その変性生成物は、分子量が大きく、硬度が高く、口当たりが悪いなどの制限があり、その市場での用途は限られていた。そのため、微細構造の制御戦略に基づき食用安全性の高い低分子量RDおよびその派生機能食品を製造する意義は大きい。 Resistant dextrin (RD) is a small-molecule water-soluble dietary fiber that undergoes structural rearrangement after starch gelatinization/bond scission or glycosylation transition. Contains structures such as -1,3 glycosidic bonds, condensed glucose and β-1,6 glycosides, prevents colon cancer, lowers cholesterol levels, regulates blood sugar metabolism, promotes absorption of Ca 2+ , Fe 3+ minerals It has functions such as However, since enzyme resistance is generally derived from a highly dense lamellar structure, its modified products have limitations such as large molecular weight, high hardness, and poor palatability, and their market applications are limited. was Therefore, it is of great significance to produce low-molecular-weight RDs with high food safety and functional foods derived from them based on microstructural control strategies.

現在、RDの製造方法は、主として、物理法、化学法およびバイオ酵素法等がある。しかしながら、化学法は、デンプン構造が化学試薬に誘導され不均一になり、得られる生成物の化学試薬残留および生産排水などが依然として課題となっている。そのため、物理的およびバイオ酵素的な手段が、加工デンプンの製造において突出した優位性をもっている。しかしながら、バイオ酵素は、人体の健康・安全に対して信頼性が高いものの、変性生成物の収率を高めるために、大量の酵素または長い酵素分解時間を必要とすることがよくあり、製造コストが高くなり、効率が低下するため、実際の生産における限界は明らかである。押出は、デンプン系材料でよく用いられる加工方式であり、搬送、混合、加熱、せん断および成形等のユニットを一体化した連続式の物理的な加工技術である。押出チャンバーは、酵素反応器として、効率が高く、時間が短い酵素反応微細混合環境を提供することができる。近年、酵素反応押出は、黄酒、白酒、デンプン糖などの製品の生産工程において適用が試みられている。しかしながら、実際の適用においては、上記複合手段の酵素分解前処理時間が依然として長く、複合酵素の正確な配合が考慮されておらず、そのマルチフィジックスカップリングの効率的な加工環境と合理的に相乗効果をもたせることが難しいため、鎖長分布(Chain length of distribution,CLD)、分枝度または分子量を制御可能なRDが得られるよう、バイオ酵素-押出加工は、従来の基礎の上で新しい構想を考え出す必要がある。 At present, RD production methods mainly include physical methods, chemical methods, and bioenzymatic methods. However, the chemical method still poses problems such as starch structure being induced by chemical reagents and becoming heterogeneous, chemical reagent residues in the resulting product, and production wastewater. Therefore, physical and bioenzymatic means have outstanding advantages in the production of modified starch. However, although bio-enzymes are highly reliable for human health and safety, they often require large amounts of enzymes or long enzymatic degradation times in order to increase the yield of modified products, increasing production costs. The limits in practical production are clear, as the Extrusion is a commonly used processing method for starch-based materials and is a continuous physical processing technology that integrates units such as conveying, mixing, heating, shearing and molding. As an enzymatic reactor, the extrusion chamber can provide a highly efficient, short time enzymatic reaction micromixing environment. In recent years, attempts have been made to apply enzymatic reaction extrusion to production processes for products such as yellow wine, white wine, and starch sugar. However, in practical application, the enzymatic degradation pretreatment time of the above composite means is still long, and the precise formulation of the composite enzyme is not considered, and the efficient processing environment of its multiphysics coupling is reasonably synergistic. Due to the difficulty to effect, bio-enzyme-extrusion process is a new concept on the traditional basis to obtain RD with controllable chain length of distribution (CLD), degree of branching or molecular weight. need to come up with

本発明は、作用部位がα-1,4グリコシド結合またはβ-1,4グリコシド結合、α-1,6グリコシド結合を含み、その配合比を調整することにより、デンプン鎖に対する指向性結合切断の目的を達成し、低重合度(Degree of polymerization,DP)CLDを有する老化基質を形成する、複合酵素を提供する。 In the present invention, the site of action includes an α-1,4 glycosidic bond, a β-1,4 glycosidic bond, or an α-1,6 glycosidic bond, and by adjusting the compounding ratio thereof, the directional bond cleavage of the starch chain can be achieved. A composite enzyme is provided that accomplishes the objective and forms an aging substrate with a low degree of polymerization (DP) CLD.

本発明は、また、上記複合酵素を採用して低分子量RDを効率的に製造する方法であって、段階的に昇温する温度領域分布を用い、「分岐結合切断、直鎖等級分け」の制限的糊化酵素分解順序により、複合酵素の誘導の下、老化したCLDの基礎を形成し、再結晶させ、標的構造を有するRDを得る方法を提供する。 The present invention also provides a method for efficiently producing a low-molecular-weight RD by employing the above-described composite enzyme, which uses a temperature range distribution in which the temperature is increased stepwise to perform "branch bond cleavage and linear chain grading". We provide a method to base and recrystallize aged CLDs under the guidance of multiple enzymes by a restricted gelatinization enzymatic sequence to obtain RDs with target structures.

本発明の一態様として、本発明は、A類アミラーゼと、B類アミラーゼとを含み、調製方法が次のとおりである、複合酵素を提供する。A類アミラーゼおよびB類アミラーゼを酢酸塩緩衝液(pH 5.2)の中で混合して調製し、50℃の水浴条件で30分活性化させる。A類アミラーゼの総酵素活性とB類アミラーゼの総酵素活性の比は、1:1.5~6である。 As one aspect of the present invention, the present invention provides a complex enzyme comprising a class A amylase and a class B amylase and prepared by the following method. Group A amylase and group B amylase are prepared by mixing in acetate buffer (pH 5.2) and activated at 50° C. water bath conditions for 30 minutes. The ratio of the total enzymatic activity of group A amylases to the total enzymatic activity of group B amylases is 1:1.5-6.

さらに、A類アミラーゼは、任意の配合比のα-アミラーゼ、β-アミラーゼから選ばれる一種または複数種からなる。 Furthermore, the class A amylase consists of one or more selected from α-amylase and β-amylase in an arbitrary compounding ratio.

さらに、B類アミラーゼは、プルラナーゼ、イソアミラーゼの一種または複数種である。 Furthermore, the class B amylase is one or more of pullulanase and isoamylase.

本発明のもう一つの態様として、本発明は、RDの製造における複合酵素の用途を提供する。 As another aspect of the present invention, the present invention provides the use of complex enzymes in the production of RD.

本発明のもう一つの態様として、本発明は、RDの製造方法を提供し、この方法は、次のとおりである。複合酵素とデンプンを混合し、押出装置で加える各設定温度領域が安定した後、チャンバーの中に混合材料を投入する。スクリューせん断共押出処理後に冷却老化し、高結晶度の低分子量RDを形成する。前記スクリューせん断共押出処理は、段階的に昇温する温度場を採用し、すなわち、少なくとも前段の低温スクリューせん断共押出処理と、後段の高温スクリューせん断共押出処理とを含み、前段の処理温度は70℃以下であり、後段の処理温度は前段よりも高く、かつ60℃以上である。 As another aspect of the present invention, the present invention provides a method for producing RD, which method is as follows. After the complex enzyme and starch are mixed and each set temperature range added by the extruder is stabilized, the mixed material is put into the chamber. After the screw shear coextrusion process, it is cooled aged to form a highly crystalline, low molecular weight RD. The screw shear co-extrusion process adopts a stepwise temperature field, that is, at least includes a pre-stage low-temperature screw-shear co-extrusion process and a post-stage high-temperature screw shear co-extrusion process, wherein the pre-process temperature is The temperature is 70°C or lower, and the treatment temperature in the latter stage is higher than that in the former stage and is 60°C or higher.

押出時に、低温場は、B類アミラーゼが、まずα-1,6グリコシド結合部位の加水分解作用を奏するようにし、デンプン結晶クラスター外部の分岐二重らせんを切断する。低温領域を経て、A類アミラーゼを再度活性化し、スクリュー混練領域および逆方向遮断領域の軸方向混合搬送を組み合わせ、この酵素は、高温領域においてα-1,4グリコシド結合またはβ-1,4グリコシド結合を効果的に加水分解でき、酵素とデンプン粒子との接触面積が増大した状況で、直鎖をより容易に分解することができる。押出機チャンバー内は、実質的に酵素の「高基質」環境であり、基質が酵素を包み、「中心から周辺に向かって放射する」分解形式で、酵素の中心と基質との反応配位と入れ替え速度が加速することにより、酵素の作用効率が極めて大きく向上する。また、押出の多くは、非分子レベルの構造変性手段であり、分子レベルの酵素に対して、その活性低下の多くは、極端な高温高圧条件の印加による。しかしながら、本発明で採用する段階的な昇温手順は、押出機チャンバー内部の圧力を0.8Mpa以下にし、アミラーゼが短時間で酵素活性力を十分に発揮するようにし、押出材料がダイ領域に入って糊化するようにする。 During extrusion, the cold field causes the class B amylases to first hydrolyze the α-1,6 glycosidic linkage sites, cleaving the branched double helices outside the starch crystal clusters. Through the low temperature region, reactivating the class A amylase, combined with the axial mixed transport of the screw kneading region and the reverse blocking region, the enzyme can form α-1,4 glycosidic bonds or β-1,4 glycosidic bonds in the high temperature region. Bonds can be effectively hydrolyzed and linear chains can be broken down more easily in the presence of increased contact area between the enzyme and starch particles. Within the extruder chamber is essentially a "high substrate" environment for the enzyme, with the substrate enveloping the enzyme and the reaction coordination and coordination between the center of the enzyme and the substrate in a "center-to-periphery" degradation format. By accelerating the exchange rate, the action efficiency of the enzyme is greatly improved. In addition, most of the extrusion is a non-molecular-level structural modification means, and most of the decrease in the activity of molecular-level enzymes is due to the application of extreme high-temperature and high-pressure conditions. However, the stepwise heating procedure adopted in the present invention is to keep the pressure inside the extruder chamber below 0.8Mpa, so that the amylase can fully exert its enzymatic activity in a short time, and the extruded material enters the die area. to gelatinize.

さらに、A類アミラーゼの酵素活性は5~20U/gであり、B類アミラーゼの酵素活性は7.5~120U/gであり、上記酵素活性は材料無水ベース(g)である。 In addition, the enzymatic activity of group A amylase is 5-20 U/g, the enzymatic activity of group B amylase is 7.5-120 U/g, and the above enzymatic activities are based on anhydrous material (g).

さらに、スクリューせん断共押出処理は、五段階温度領域押出を含み、温度は順に、20~50℃(I領域)、40~70℃(II領域)、60~90℃(III領域)、80~110℃(IV領域)、100~130℃(ダイ領域)であり、五段階温度領域の温度は順に高くなり、スクリュー回転速度は150~400r/分である。 In addition, the screw shear co-extrusion process includes five-step temperature zone extrusion, the temperature is 20 ~ 50 ℃ (I zone), 40 ~ 70 ℃ (II zone), 60 ~ 90 ℃ (III zone), 80 ~ 110 ℃ (IV area), 100-130 ℃ (die area), the temperature in the five-step temperature area increases in order, and the screw rotation speed is 150-400 r/min.

さらに、押出材料は、コーンスターチ、ハイアミロースコーンスターチ、ワキシーコーンスターチ、馬鈴薯デンプン、小麦デンプン、タピオカデンプン、甘藷デンプン、米デンプンの一種または複数種である。 Further, the extrusion material is one or more of corn starch, high amylose corn starch, waxy corn starch, potato starch, wheat starch, tapioca starch, sweet potato starch, rice starch.

好ましい形態として、前記押出前に、複合酵素とデンプンの混合材料の水分含有量を20~40wt%に調節する。 As a preferred form, the moisture content of the mixed material of complex enzyme and starch is adjusted to 20-40 wt% before the extrusion.

好ましい形態として、前記冷却老化は、スクリューせん断共押出処理後に得られた構造再構築デンプン糊を0~10℃の条件下に置き、2~8日間冷却再結晶する。 In a preferred form, said cooling aging involves subjecting the structurally restructured starch paste obtained after screw shear co-extrusion treatment to conditions of 0-10° C. and cooling and recrystallizing for 2-8 days.

発明の有益な技術的効果は次のとおりである。
1.本発明は、従来の酵素法押出加工工程に比べ、合理的にスクリュー押出(μmスケールの非指向性せん断)と酵素(nmスケールの特異性せん断)の同期作用を用いて、デンプンの秩序(一重/二重らせん)、無秩序(非晶質領域)ならびに分子構造の分解順序および程度を制御して差異性CLDを形成し、この基礎の上で、分岐二重らせん、直鎖一重らせんおよび直鎖-分岐混合らせんなどを含む異なるDP鎖を主とする耐性らせん構造を結晶で形成する。
The beneficial technical effects of the invention are as follows.
1. Compared with the conventional enzymatic extrusion process, the present invention rationally uses the synchronous action of screw extrusion (μm-scale non-directional shearing) and enzymes (nm-scale specific shearing) to achieve starch ordering. (single/double helix), disorder (amorphous regions) and molecular structure decomposition order and degree are controlled to form differential CLDs, on this basis branched double helices, linear single helices and Forms resistant helical structures in crystals, mainly composed of different DP chains, including linear-branched mixed helices.

2.本発明で採用するCLD制御戦略は、複合酵素法押出を効率的なデンプンマイクロドメインの分解・再構築手段とし、酵素液前処理時間を短縮し、酵素法補助押出の多くの工程を合わせて簡素化する一方で、デンプンCLDとその耐性精細構造との関係を確立し、生産実践の指導に用いることができる。 2. The CLD control strategy adopted in the present invention uses combined enzymatic extrusion as an efficient means of degrading and reconstructing starch microdomains, shortens the pretreatment time of the enzymatic solution, and combines many steps of enzymatic-assisted extrusion. , while establishing a relationship between starch CLD and its resistant fine structure, which can be used to guide production practices.

本発明で製造するRDの工程流れ図である。It is a process flow chart of RD manufactured by the present invention. 本発明の実施例および比較例で製造するRDのX線回折(XRD)チャートであり、本発明で製造するRDの結晶形の変化を説明するために用いる。1 is an X-ray diffraction (XRD) chart of RD produced in Examples and Comparative Examples of the present invention, used to explain changes in crystal form of RD produced in the present invention.

以下、実施例によって本発明についてさらに説明する。以下の実施例は、説明を目的としており、本発明の範囲を制限するためのものではない。 The present invention will be further described by the following examples. The following examples are for illustrative purposes and are not intended to limit the scope of the invention.

実施例1
RDの同時押出および制限的酵素分解の製造方法のステップは次のとおりである。
Example 1
The steps of the RD co-extrusion and limited enzymatic digestion manufacturing method are as follows.

(1)混合酵素液予備活性化:予め調整しておいた混合材料の水分含有量およびデンプン無水ベース質量に基づき、調製したA類アミラーゼ(耐高温α-アミラーゼ)の酵素液濃度は5U/g、調製したB類アミラーゼ(プルラナーゼ)の酵素液濃度は30U/gとした。酵素液を混合した後、耐高温α-アミラーゼ:プルラナーゼ=1:6の混合酵素液を配合した。押出前に、50℃水浴条件下で30分予備活性化した。
(2)温度制御高せん断押出:普通のコーンスターチの水分含有量を40wt%に調節し、押出時に、ステップ(1)で配合した混合酵素液を同時に添加した。二軸押出機バレルのシステムパラメータは、温度領域分布が順に40℃、60℃、80℃、100℃、120℃(ダイ領域)であり、スクリュー回転速度が250r/分であり、1回でデンプン糊を押出した。
(3)老化制御:押出したデンプン糊を0℃の条件下で2日間冷却老化した。真空凍結乾燥後に、200メッシュで研磨し、前記RDを得た。
(4)分子量測定:高速液体分子排斥クロマトグラフィーと多角度光散乱検出器および示差屈折率検出器マルチシステム(HPSEC-MALLS-RI)を採用し、Mark-Houwinkパラメータを用いて計算し較正して、サンプルの重量平均分子量(Mw)を得た。
(5)in vitroシミュレーション消化:その場で配合した混合酵素液を用い、37℃でサンプルを計時消化した。混合酵素液の酵素活性配合比は、パンクレアチン(500 U/ml):グリコシダーゼ(700 U/ml):インベルターゼ(400 U/ml)とした。グルコースオキシダーゼ測定キット(GOPOD-FORMAT)を用いて遊離グルコース(Free-sugar glucose, FSG)、消化20 分後グルコース(Glucose of 20, G20)、消化120 分後グルコース(Glucose of 120, G120)および総グルコース(Total glucose, TG)における吸光度を測定し、耐性デンプン(Resistant starch, RS)の収率(%)を計算した。公式は次のとおりである。
RS(%)=(TG-G120)× 0.9/ TS ×100
式中、換算係数0.9を用いて多糖グルコースを異なる消化成分のデンプン値に変換した。TSは総デンプン質量(g)である。
(6)CLDの測定:ゲル補助糖電気泳動技術を採用し、すなわちPA-800Plus Faceシステムで、N-CHOでコーティングしたキャピラリーにおいて分岐デンプン鎖の数量分布を測定し、すなわち検出器信号を用いてNde(X)を得た。
(1) Mixed enzyme solution preactivation: Based on the pre-adjusted water content and starch anhydrous base mass of the mixed material, the enzyme solution concentration of prepared class A amylase (high-temperature α-amylase) is 5 U/g. The concentration of the prepared class B amylase (pullulanase) in the enzyme solution was 30 U/g. After mixing the enzyme solution, a mixed enzyme solution of high-temperature resistant α-amylase:pullulanase=1:6 was blended. Prior to extrusion, it was preactivated for 30 minutes under 50°C water bath conditions.
(2) Temperature-controlled high-shear extrusion: The water content of ordinary cornstarch was adjusted to 40 wt%, and the mixed enzyme solution blended in step (1) was added at the same time during extrusion. The system parameters of the twin-screw extruder barrel are: the temperature range distribution is 40℃, 60℃, 80℃, 100℃, 120℃ (die area) in order; the screw rotation speed is 250r/min; Extruded glue.
(3) Aging control: The extruded starch paste was cooled and aged for 2 days at 0°C. After freeze-drying in vacuum, it was polished with 200 mesh to obtain the above RD.
(4) Molecular weight measurement: adopting high-performance liquid molecular exclusion chromatography and multi-angle light scattering detector and differential refractive index detector multi-system (HPSEC-MALLS-RI), calculated and calibrated using Mark-Houwink parameters , to obtain the weight average molecular weight (Mw) of the sample.
(5) In vitro simulation digestion: Samples were timed digested at 37°C using a mixed enzyme solution prepared on site. The enzyme activity mixing ratio of the mixed enzyme solution was pancreatin (500 U/ml): glycosidase (700 U/ml): invertase (400 U/ml). Using a glucose oxidase assay kit (GOPOD-FORMAT), free-sugar glucose (FSG), 20-minute post-digestion glucose (Glucose of 20, G20), 120-minute post-digestion glucose (Glucose of 120, G120) and total The absorbance in total glucose (TG) was measured and the yield (%) of resistant starch (RS) was calculated. The formula is:
RS (%) = (TG-G120) x 0.9/TS x 100
In the formula, a conversion factor of 0.9 was used to convert the polysaccharide glucose into starch values of different digestive components. TS is the total starch mass (g).
(6) Determination of CLD: Adopt gel-assisted glycoelectrophoresis technique, i.e., PA-800Plus Face system, to measure the number distribution of branched starch chains in N-CHO-coated capillaries, i.e., using the detector signal N de (X) was obtained.

本実施例で得られたRDは、Mwが6.128 kDaであり、デンプン中のRD含有量は46.60%であり、低DP分岐(DP<6)の含有量は58.24%であった。 The RD obtained in this example has a Mw of 6.128 kDa, the RD content in the starch was 46.60% and the content of low DP branches (DP<6) was 58.24%.

実施例2
RDの同時押出および制限的酵素分解の製造方法のステップは次のとおりである。
Example 2
The steps of the RD co-extrusion and limited enzymatic digestion manufacturing method are as follows.

(1)混合酵素液予備活性化:予め調整しておいた混合材料の水分含有量およびデンプン無水ベース質量に基づき、調製したA類アミラーゼ(中温α-アミラーゼ)の酵素液濃度は10U/g、調製したB類アミラーゼ(プルラナーゼ)の酵素液濃度は30U/gとした。酵素液を混合した後、中温α-アミラーゼ:プルラナーゼ=1:3の混合酵素液を配合した。押出前に、50℃水浴条件下で30分予備活性化した。
(2)温度制御高せん断押出:普通のコーンスターチの水分含有量を30wt%に調節し、押出時に、ステップ(1)で配合した混合酵素液を同時に添加した。二軸押出機バレルのシステムパラメータは、温度領域分布が順に30℃、50℃、70℃、90℃、110℃(ダイ領域)であり、スクリュー回転速度が200r/分であり、1回でデンプン糊を押出した。
(3)老化制御:押出したデンプン糊を5℃の条件下で2日間冷却老化した。真空凍結乾燥後に、200メッシュで研磨し、前記RDを得た。
(4)分子量測定:高速液体分子排斥クロマトグラフィーと多角度光散乱検出器および示差屈折率検出器マルチシステム(HPSEC-MALLS-RI)を採用し、Mark-Houwinkパラメータを用いて計算し較正して、サンプルの重量平均分子量(Mw)を得た。
(5)in vitroシミュレーション消化:その場で配合した混合酵素液を用い、37℃でサンプルを計時消化した。混合酵素液の酵素活性配合比は、パンクレアチン(500 U/ml):グリコシダーゼ(700 U/ml):インベルターゼ(400 U/ml)とした。グルコースオキシダーゼ測定キット(GOPOD-FORMAT)を用いてFSG、G20、G120およびTGにおける吸光度を測定し、RSの収率(%)を計算した。公式は次のとおりである。
RS(%)=(TG-G120)× 0.9/ TS ×100
式中、換算係数0.9を用いてグルコースを異なる消化成分のデンプン値に変換した。TSは総デンプン質量(g)である。
(6)CLDの測定:ゲル補助糖電気泳動技術を採用し、すなわちPA-800Plus Faceシステムで、N-CHOでコーティングしたキャピラリーにおいて分岐デンプン鎖の数量分布を測定し、すなわち検出器信号を用いてNde(X)を得た。
(1) Mixed enzyme solution preactivation: Based on the pre-adjusted water content and starch anhydrous base mass of the mixed material, the prepared class A amylase (medium temperature α-amylase) enzyme solution concentration is 10 U/g, The concentration of the prepared class B amylase (pullulanase) in the enzyme solution was 30 U/g. After mixing the enzyme solution, a mixed enzyme solution of medium-temperature α-amylase:pullulanase=1:3 was blended. Prior to extrusion, it was preactivated for 30 minutes under 50°C water bath conditions.
(2) Temperature-controlled high-shear extrusion: The water content of ordinary cornstarch was adjusted to 30 wt%, and the mixed enzyme solution blended in step (1) was added at the same time during extrusion. The system parameters of the twin-screw extruder barrel are: the temperature range distribution is 30℃, 50℃, 70℃, 90℃, 110℃ (die area) in order; the screw rotation speed is 200r/min; Extruded glue.
(3) Aging control: The extruded starch paste was cooled and aged for 2 days at 5°C. After freeze-drying in vacuum, it was polished with 200 mesh to obtain the above RD.
(4) Molecular weight measurement: adopting high-performance liquid molecular exclusion chromatography and multi-angle light scattering detector and differential refractive index detector multi-system (HPSEC-MALLS-RI), calculated and calibrated using Mark-Houwink parameters , to obtain the weight average molecular weight (Mw) of the sample.
(5) In vitro simulation digestion: Samples were timed digested at 37°C using a mixed enzyme solution prepared on site. The enzyme activity mixing ratio of the mixed enzyme solution was pancreatin (500 U/ml): glycosidase (700 U/ml): invertase (400 U/ml). Absorbance at FSG, G20, G120 and TG was measured using a glucose oxidase assay kit (GOPOD-FORMAT), and the RS yield (%) was calculated. The formula is:
RS (%) = (TG-G120) x 0.9/TS x 100
In the formula, a conversion factor of 0.9 was used to convert glucose to starch values of different digestive components. TS is the total starch mass (g).
(6) Determination of CLD: Adopt gel-assisted sugar electrophoresis technology, i.e., PA-800Plus Face system, to measure the number distribution of branched starch chains in N-CHO-coated capillaries, i.e., using the detector signal N de (X) was obtained.

本実施例で得られたRDは、Mwが2.835 kDaであり、デンプン中のRD含有量は58.27%であり、低DP分岐(DP<6)の含有量は64.73%であった。 The RD obtained in this example has a Mw of 2.835 kDa, the RD content in starch was 58.27% and the content of low DP branches (DP<6) was 64.73%.

実施例3
RDの同時押出および制限的酵素分解の製造方法のステップは次のとおりである。
Example 3
The steps of the RD co-extrusion and limited enzymatic digestion manufacturing method are as follows.

(1)混合酵素液予備活性化:予め調整しておいた混合材料の水分含有量およびデンプン無水ベース質量に基づき、調製したA類アミラーゼ(β-アミラーゼ)の酵素液濃度は20U/g、調製したB類アミラーゼ(イソアミラーゼ)の酵素液濃度は30U/gとした。酵素液を混合した後、β-アミラーゼ:イソアミラーゼ=1:1.5の混合酵素液を配合した。押出前に、50℃水浴条件下で30分予備活性化した。
(2)温度制御高せん断押出:普通のコーンスターチの水分含有量を20wt%に調節し、押出時に、ステップ(1)で配合した混合酵素液を同時に添加した。二軸押出機バレルのシステムパラメータは、温度領域分布が順に20℃、40℃、60℃、80℃、100℃(ダイ領域)であり、スクリュー回転速度が150r/分であり、1回でデンプン糊を押出した。
(3)老化制御:押出したデンプン糊を10℃の条件下で8日間冷却老化した。真空凍結乾燥後に、200メッシュで研磨し、前記RDを得た。
(4)分子量測定:高速液体分子排斥クロマトグラフィーと多角度光散乱検出器および示差屈折率検出器マルチシステム(HPSEC-MALLS-RI)を採用し、Mark-Houwinkパラメータを用いて計算し較正して、サンプルの重量平均分子量(Mw)を得た。
(5)in vitroシミュレーション消化:その場で配合した混合酵素液を用い、37℃でサンプルを計時消化した。混合酵素液の酵素活性配合比は、パンクレアチン(500 U/ml):グリコシダーゼ(700 U/ml):インベルターゼ(400 U/ml)とした。グルコースオキシダーゼ測定キット(GOPOD-FORMAT)を用いてFSG、G20、G120およびTGにおける吸光度を測定し、RSの収率(%)を計算した。公式は次のとおりである。
RS(%)=(TG-G120)× 0.9/ TS ×100
式中、換算係数0.9を用いてグルコースを異なる消化成分のデンプン値に変換した。TSは総デンプン質量(g)である。
(6)CLDの測定:ゲル補助糖電気泳動技術を採用し、すなわちPA-800Plus Faceシステムで、N-CHOでコーティングしたキャピラリーにおいて分岐デンプン鎖の数量分布を測定し、すなわち検出器信号を用いてNde(X)を得た。
(1) Mixed enzyme solution preactivation: Based on the pre-adjusted water content and starch anhydrous base mass of the mixed material, the concentration of the prepared class A amylase (β-amylase) enzyme solution is 20 U/g. The enzyme solution concentration of the B-class amylase (isoamylase) was 30 U/g. After mixing the enzyme solution, a mixed enzyme solution of β-amylase:isoamylase=1:1.5 was blended. Prior to extrusion, it was preactivated for 30 minutes under 50°C water bath conditions.
(2) Temperature-controlled high-shear extrusion: The water content of ordinary cornstarch was adjusted to 20 wt%, and the mixed enzyme solution blended in step (1) was added at the same time during extrusion. The system parameters of the twin-screw extruder barrel are: the temperature range distribution is 20℃, 40℃, 60℃, 80℃, 100℃ (die area) in order; the screw rotation speed is 150r/min; Extruded glue.
(3) Aging control: The extruded starch paste was cooled and aged at 10°C for 8 days. After freeze-drying in vacuum, it was polished with 200 mesh to obtain the above RD.
(4) Molecular weight measurement: adopting high-performance liquid molecular exclusion chromatography and multi-angle light scattering detector and differential refractive index detector multi-system (HPSEC-MALLS-RI), calculated and calibrated using Mark-Houwink parameters , to obtain the weight average molecular weight (Mw) of the sample.
(5) In vitro simulation digestion: Samples were timed digested at 37°C using a mixed enzyme solution prepared on site. The enzyme activity mixing ratio of the mixed enzyme solution was pancreatin (500 U/ml): glycosidase (700 U/ml): invertase (400 U/ml). Absorbance at FSG, G20, G120 and TG was measured using a glucose oxidase assay kit (GOPOD-FORMAT), and the RS yield (%) was calculated. The formula is:
RS (%) = (TG-G120) x 0.9/TS x 100
In the formula, a conversion factor of 0.9 was used to convert glucose to starch values of different digestive components. TS is the total starch mass (g).
(6) Determination of CLD: Adopt gel-assisted glycoelectrophoresis technique, i.e., PA-800Plus Face system, to measure the number distribution of branched starch chains in N-CHO-coated capillaries, i.e., using the detector signal N de (X) was obtained.

本実施例で得られたRDは、Mwが0.908 kDaであり、デンプン中のRD含有量は65.43%であり、低DP分岐(DP<6)の含有量は69.22%であった。 The RD obtained in this example has an Mw of 0.908 kDa, the RD content in starch was 65.43% and the content of low DP branches (DP<6) was 69.22%.

比較実施例1
RDの同時押出の製造方法のステップは次のとおりである。
Comparative Example 1
The steps of the RD coextrusion manufacturing method are as follows.

(1)デンプンマイクロドメインに対する本発明における複合酵素の制御効果を証明するため、本比較実施例は、無酵素押出として設け、すなわち、前記複合酵素を添加しない。
(2)温度制御高せん断押出:普通のコーンスターチの水分含有量を30wt%に調節した。二軸押出機バレルのシステムパラメータは、温度領域分布が順に30℃、50℃、70℃、90℃、110℃(ダイ領域)であり、スクリュー回転速度が150r/分であり、1回でデンプン糊を押出した。
(3)老化制御:押出したデンプン糊を4℃の条件下で4日間冷却老化した。真空凍結乾燥後に、200メッシュで研磨し、前記RDを得た。
(4)分子量測定:高速液体分子排斥クロマトグラフィーと多角度光散乱検出器および示差屈折率検出器マルチシステム(HPSEC-MALLS-RI)を採用し、Mark-Houwinkパラメータを用いて計算し較正して、サンプルの重量平均分子量(Mw)を得た。
(5)in vitroシミュレーション消化:その場で配合した混合酵素液を用い、37℃でサンプルを計時消化した。混合酵素液の酵素活性配合比は、パンクレアチン(500 U/ml):グリコシダーゼ(700 U/ml):インベルターゼ(400 U/ml)とした。グルコースオキシダーゼ測定キット(GOPOD-FORMAT)を用いてFSG、G20、G120およびTGにおける吸光度を測定し、RSの収率(%)を計算した。公式は次のとおりである。
RS(%)=(TG-G120)× 0.9/ TS ×100
式中、換算係数0.9を用いてグルコースを異なる消化成分のデンプン値に変換した。TSは総デンプン質量(g)である。
(6)CLDの測定:ゲル補助糖電気泳動技術を採用し、すなわちPA-800Plus Faceシステムで、N-CHOでコーティングしたキャピラリーにおいて分岐デンプン鎖の数量分布を測定し、すなわち検出器信号を用いてNde(X)を得た。
(1) To demonstrate the control effect of the conjugated enzymes in the present invention on starch microdomains, this comparative example was set up as an enzyme-free extrusion, ie without the addition of said conjugated enzymes.
(2) Temperature-controlled high-shear extrusion: the moisture content of ordinary cornstarch was adjusted to 30wt%. The system parameters of the twin-screw extruder barrel are: the temperature range distribution is 30℃, 50℃, 70℃, 90℃, 110℃ (die area) in order; the screw rotation speed is 150r/min; Extruded glue.
(3) Aging control: The extruded starch paste was cooled and aged for 4 days at 4°C. After freeze-drying in vacuum, it was polished with 200 mesh to obtain the above RD.
(4) Molecular weight measurement: adopting high-performance liquid molecular exclusion chromatography and multi-angle light scattering detector and differential refractive index detector multi-system (HPSEC-MALLS-RI), calculated and calibrated using Mark-Houwink parameters , to obtain the weight average molecular weight (Mw) of the sample.
(5) In vitro simulation digestion: Samples were timed digested at 37°C using a mixed enzyme solution prepared on site. The enzyme activity mixing ratio of the mixed enzyme solution was pancreatin (500 U/ml): glycosidase (700 U/ml): invertase (400 U/ml). Absorbance at FSG, G20, G120 and TG was measured using a glucose oxidase assay kit (GOPOD-FORMAT), and the RS yield (%) was calculated. The formula is:
RS (%) = (TG-G120) x 0.9/TS x 100
In the formula, a conversion factor of 0.9 was used to convert glucose to starch values of different digestive components. TS is the total starch mass (g).
(6) Determination of CLD: Adopt gel-assisted sugar electrophoresis technology, i.e., PA-800Plus Face system, to measure the number distribution of branched starch chains in N-CHO-coated capillaries, i.e., using the detector signal N de (X) was obtained.

本実施例で得られたサンプルは、Mwが37.23kDaであり、RS含有量は42.50%であり、低DP分岐(DP<6)の含有量は19.52%であり、すなわち、小分子量のRDを製造できなかった。 The sample obtained in this example has a Mw of 37.23 kDa, an RS content of 42.50% and a content of low DP branches (DP<6) of 19.52%, i.e., a small molecular weight RD. could not be manufactured.

比較実施例2
RDの同期押出および単一酵素分解の製造方法のステップは次のとおりである。
Comparative Example 2
The steps of the synchronous extrusion and single enzymolysis manufacturing method of RD are as follows.

(1)デンプンマイクロドメインに対する本発明における複合酵素の制御効果を証明するため、本実施例は、単一アミラーゼと押出加工を組み合わせ、すなわち、調製したA類アミラーゼ(β-アミラーゼ)の酵素液濃度は20U/gとした。押出前に、50℃水浴条件下で30分予備活性化した。
(2)温度制御高せん断押出:普通のコーンスターチの水分含有量を30wt%に調節した。二軸押出機バレルのシステムパラメータは、温度領域分布が順に20℃、40℃、60℃、80℃、100℃(ダイ領域)であり、スクリュー回転速度が150r/分であり、1回でデンプン糊を押出した。
(3)老化制御:押出したデンプン糊を4℃の条件下で4日間冷却老化した。真空凍結乾燥後に、200メッシュで研磨し、前記RDを得た。
(4)分子量測定:高速液体分子排斥クロマトグラフィーと多角度光散乱検出器および示差屈折率検出器マルチシステム(HPSEC-MALLS-RI)を採用し、Mark-Houwinkパラメータを用いて計算し較正して、サンプルの重量平均分子量(Mw)を得た。
(5)in vitroシミュレーション消化:その場で配合した混合酵素液を用い、37℃でサンプルを計時消化した。混合酵素液の酵素活性配合比は、パンクレアチン(500 U/ml):グリコシダーゼ(700 U/ml):インベルターゼ(400 U/ml)とした。グルコースオキシダーゼ測定キット(GOPOD-FORMAT)を用いてFSG、G20、G120およびTGにおける吸光度を測定し、RSの収率(%)を計算した。公式は次のとおりである。
RS(%)=(TG-G120)× 0.9/ TS ×100
式中、換算係数0.9を用いてグルコースを異なる消化成分のデンプン値に変換した。TSは総デンプン質量(g)である。
(6)CLDの測定:ゲル補助糖電気泳動技術を採用し、すなわちPA-800Plus Faceシステムで、N-CHOでコーティングしたキャピラリーにおいて分岐デンプン鎖の数量分布を測定し、すなわち検出器信号を用いてNde(X)を得た。
(1) In order to demonstrate the control effect of the composite enzyme in the present invention on starch microdomains, this example combined a single amylase and extrusion processing, that is, the prepared class A amylase (β-amylase) enzyme solution concentration was 20 U/g. Prior to extrusion, it was preactivated for 30 minutes under 50°C water bath conditions.
(2) Temperature-controlled high-shear extrusion: the moisture content of ordinary cornstarch was adjusted to 30wt%. The system parameters of the twin-screw extruder barrel are: the temperature range distribution is 20℃, 40℃, 60℃, 80℃, 100℃ (die area) in order; the screw rotation speed is 150r/min; Extruded glue.
(3) Aging control: The extruded starch paste was cooled and aged for 4 days at 4°C. After freeze-drying in vacuum, it was polished with 200 mesh to obtain the above RD.
(4) Molecular weight measurement: adopting high-performance liquid molecular exclusion chromatography and multi-angle light scattering detector and differential refractive index detector multi-system (HPSEC-MALLS-RI), calculated and calibrated using Mark-Houwink parameters , to obtain the weight average molecular weight (Mw) of the sample.
(5) In vitro simulation digestion: Samples were timed digested at 37°C using a mixed enzyme solution prepared on site. The enzyme activity mixing ratio of the mixed enzyme solution was pancreatin (500 U/ml): glycosidase (700 U/ml): invertase (400 U/ml). Absorbance at FSG, G20, G120 and TG was measured using a glucose oxidase assay kit (GOPOD-FORMAT), and the RS yield (%) was calculated. The formula is:
RS (%) = (TG-G120) x 0.9/TS x 100
In the formula, a conversion factor of 0.9 was used to convert glucose to starch values of different digestive components. TS is the total starch mass (g).
(6) Determination of CLD: Adopt gel-assisted sugar electrophoresis technology, i.e., PA-800Plus Face system, to measure the number distribution of branched starch chains in N-CHO-coated capillaries, i.e., using the detector signal N de (X) was obtained.

本実施例で得られたサンプルは、Mwが24.86 kDaであり、RS含有量は46.54%であり、低DP分岐(DP<6)の含有量は27.13%であり、すなわち、小分子量のRDを製造できなかった。 The sample obtained in this example has a Mw of 24.86 kDa, the RS content was 46.54% and the content of low DP branches (DP<6) was 27.13%, ie no small molecular weight RD could be produced.

Claims (9)

作用部位がα-1,4グリコシド結合またはβ-1,4グリコシド結合であるA類アミラーゼと、作用部位がα-1,6グリコシド結合であるB類アミラーゼとを含み、A類アミラーゼの総酵素活性とB類アミラーゼの総酵素活性との比が1:1.5~6であることを特徴とする複合酵素。 A group A amylase with an action site of α-1,4 glycosidic bond or β-1,4 glycosidic bond and a group B amylase with an action site of α-1,6 glycosidic bond, total enzyme of class A amylase A complex enzyme characterized in that the ratio of the activity to the total enzymatic activity of class B amylase is 1:1.5-6. 前記A類アミラーゼは、任意の配合比のα-アミラーゼ、β-アミラーゼから選ばれる一種または複数種からなることを特徴とする請求項1に記載の複合酵素。 2. The composite enzyme according to claim 1, wherein said group A amylase is composed of one or more selected from α-amylase and β-amylase in an arbitrary compounding ratio. 前記B類アミラーゼは、プルラナーゼ、イソアミラーゼの一種または複数種であることを特徴とする請求項1に記載の複合酵素。 2. The complex enzyme according to claim 1, wherein the class B amylase is one or more of pullulanase and isoamylase. 耐性デキストリンの製造における請求項1に記載の複合酵素の用途。 Use of the conjugated enzyme according to claim 1 in the production of resistant dextrin. 請求項1に記載の複合酵素とデンプンとの混合材料を、スクリューせん断共押出処理し、冷却老化した後、高結晶度の低分子量耐性デキストリンを形成し、前記混合材料において、A類アミラーゼの酵素活性は5~20U/gであり、B類アミラーゼの酵素活性は7.5~120U/gであり、上記酵素活性は材料無水ベース(g)で計算されることを特徴とする耐性デキストリンの製造方法。 The mixed material of the conjugated enzyme and starch according to claim 1 is subjected to screw shear co-extrusion treatment, and after cooling aging, a highly crystalline low molecular weight resistant dextrin is formed, and the mixed material contains a group A amylase enzyme A method for producing a resistant dextrin, characterized in that the activity is 5-20 U/g, the enzymatic activity of class B amylase is 7.5-120 U/g, and the enzymatic activity is calculated on the anhydrous basis (g) of the material. 前記スクリューせん断共押出処理は、五段階温度領域押出を含み、温度は順に、20~50℃、40~70℃、60~90℃、80~110℃、100~130℃であり、五段階温度領域の温度は順に高くなり、スクリュー回転速度は150~400r/分であることを特徴とする請求項5に記載の製造方法。 The screw shear co-extrusion process includes five-step temperature range extrusion, the temperature is 20-50°C, 40-70°C, 60-90°C, 80-110°C, 100-130°C in order, and the five-step temperature The manufacturing method according to claim 5, characterized in that the temperature of the zones increases in order and the screw rotation speed is 150-400 r/min. 前記デンプンは、コーンスターチ、ハイアミロースコーンスターチ、ワキシーコーンスターチ、馬鈴薯デンプン、小麦デンプン、タピオカデンプン、甘藷デンプン、米デンプンの一種または複数種であることを特徴とする請求項5に記載の製造方法。 6. The production method according to claim 5, wherein the starch is one or more of corn starch, high amylose corn starch, waxy corn starch, potato starch, wheat starch, tapioca starch, sweet potato starch, and rice starch. 複合酵素とデンプンの混合材料の含水量が20~40wt%であることを特徴とする請求項5に記載の製造方法。 6. The production method according to claim 5, wherein the mixed material of the complex enzyme and starch has a water content of 20 to 40 wt%. 前記冷却老化は、スクリューせん断共押出処理後に得られた構造再構築デンプン糊を0~10℃の条件下に置き、2~8日間冷却再結晶することを特徴とする請求項5に記載の製造方法。 The production according to claim 5, wherein the cooling aging is performed by placing the structurally restructured starch paste obtained after screw shear co-extrusion treatment under conditions of 0-10 ° C and cooling and recrystallization for 2-8 days. Method.
JP2022526515A 2021-01-25 2021-08-24 Composite enzyme and method for producing resistant dextrin Active JP7249712B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202110097960.4A CN112725312B (en) 2021-01-25 2021-01-25 Preparation method of complex enzyme and resistant dextrin
CN202110097960.4 2021-01-25
PCT/CN2021/114247 WO2022156211A1 (en) 2021-01-25 2021-08-24 Compound enzyme and preparation method for resistant dextrin

Publications (2)

Publication Number Publication Date
JP2023504238A true JP2023504238A (en) 2023-02-02
JP7249712B2 JP7249712B2 (en) 2023-03-31

Family

ID=75595306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022526515A Active JP7249712B2 (en) 2021-01-25 2021-08-24 Composite enzyme and method for producing resistant dextrin

Country Status (3)

Country Link
JP (1) JP7249712B2 (en)
CN (1) CN112725312B (en)
WO (1) WO2022156211A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112725312B (en) * 2021-01-25 2023-06-30 浙江大学 Preparation method of complex enzyme and resistant dextrin
CN116158509A (en) * 2023-03-20 2023-05-26 浙江大学 Preparation method of instant brown rice flour

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10191931A (en) * 1996-12-03 1998-07-28 Cerestar Holding Bv Resistant starch to be fermented at high level
CN104561191A (en) * 2014-12-30 2015-04-29 山东百龙创园生物科技有限公司 Preparation method of resistant dextrin
CN105671105A (en) * 2016-04-11 2016-06-15 江南大学 Method for producing malt syrup and isomaltooligosaccharide in enzyme-adding, extruding and liquefying mode
CN107739743A (en) * 2017-10-19 2018-02-27 齐鲁工业大学 A kind of recrystallization starch preparation method with slowly digestible matter
CN107997178A (en) * 2017-12-28 2018-05-08 山东百龙创园生物科技股份有限公司 A kind of method that fashion of extrusion prepares high dietary fiber content resistant starch
CN108624635A (en) * 2018-05-04 2018-10-09 江南大学 A kind of preparation method of puffing maltodextrin
CN109182417A (en) * 2018-09-18 2019-01-11 山东百龙创园生物科技股份有限公司 A kind of preparation method of reproducibility resistant dextrin
US20190169663A1 (en) * 2016-04-11 2019-06-06 Zibohuichuang Biological Scientific Technology Limited Company Material pretreatement method using low-temperature extrusion and multienzyme synergistic degradation
CN110042134A (en) * 2019-03-22 2019-07-23 广州华汇生物实业有限公司 The preparation method of resistant dextrin
CN110150636A (en) * 2019-06-29 2019-08-23 黑龙江八一农垦大学 The resistance coarse cereals starch of the compound preparation of biofermentation and its method for preparing rice flour
CN110257455A (en) * 2019-06-27 2019-09-20 山东省食品发酵工业研究设计院 A kind of preparation process of resistant dextrin
CN110295208A (en) * 2019-06-28 2019-10-01 山东省食品发酵工业研究设计院 A method of promoting resistant dextrin resistance and yield
CN110724718A (en) * 2019-12-02 2020-01-24 保龄宝生物股份有限公司 Method for preparing resistant dextrin by using microwaves
CN111154818A (en) * 2020-01-17 2020-05-15 江南大学 Preparation method of straight-chain dextrin
CN112111542A (en) * 2020-09-01 2020-12-22 山东百龙创园生物科技股份有限公司 Preparation method of high-purity isomaltooligosaccharide co-produced resistant dextrin

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054302A (en) * 1996-05-06 2000-04-25 National Starch And Chemical Investment Holding Corporation High solids, single phase process for preparing enzyme-converted starches
CN1079434C (en) * 1999-12-31 2002-02-20 卢少安 Solidification process for preparing malt amylin
CN100445301C (en) * 2006-08-18 2008-12-24 广东省食品工业研究所 Preparation technique of resistant maltodextrin
CN105237647A (en) * 2015-11-20 2016-01-13 保龄宝生物股份有限公司 Method for preparing high-purity resistant dextrin by improving acidity
JP2019001735A (en) * 2017-06-14 2019-01-10 ちふれホールディングス株式会社 Solid powder cosmetic
CN108300750B (en) * 2018-02-06 2021-11-30 江南大学 Preparation method of high-branch dextrin product
CN108410919A (en) * 2018-03-09 2018-08-17 江西农业大学 A kind of optimization method measuring rice amylopectin fine structure
CN109988798A (en) * 2019-04-16 2019-07-09 齐鲁工业大学 A kind of environment-friendly preparation method thereof of rice resistant starch
CN110521933B (en) * 2019-09-09 2023-03-21 浙江大学 Method for preparing extruded rice product with slow digestion function
CN112725312B (en) * 2021-01-25 2023-06-30 浙江大学 Preparation method of complex enzyme and resistant dextrin

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10191931A (en) * 1996-12-03 1998-07-28 Cerestar Holding Bv Resistant starch to be fermented at high level
CN104561191A (en) * 2014-12-30 2015-04-29 山东百龙创园生物科技有限公司 Preparation method of resistant dextrin
US20190169663A1 (en) * 2016-04-11 2019-06-06 Zibohuichuang Biological Scientific Technology Limited Company Material pretreatement method using low-temperature extrusion and multienzyme synergistic degradation
CN105671105A (en) * 2016-04-11 2016-06-15 江南大学 Method for producing malt syrup and isomaltooligosaccharide in enzyme-adding, extruding and liquefying mode
CN107739743A (en) * 2017-10-19 2018-02-27 齐鲁工业大学 A kind of recrystallization starch preparation method with slowly digestible matter
CN107997178A (en) * 2017-12-28 2018-05-08 山东百龙创园生物科技股份有限公司 A kind of method that fashion of extrusion prepares high dietary fiber content resistant starch
CN108624635A (en) * 2018-05-04 2018-10-09 江南大学 A kind of preparation method of puffing maltodextrin
CN109182417A (en) * 2018-09-18 2019-01-11 山东百龙创园生物科技股份有限公司 A kind of preparation method of reproducibility resistant dextrin
CN110042134A (en) * 2019-03-22 2019-07-23 广州华汇生物实业有限公司 The preparation method of resistant dextrin
CN110257455A (en) * 2019-06-27 2019-09-20 山东省食品发酵工业研究设计院 A kind of preparation process of resistant dextrin
CN110295208A (en) * 2019-06-28 2019-10-01 山东省食品发酵工业研究设计院 A method of promoting resistant dextrin resistance and yield
CN110150636A (en) * 2019-06-29 2019-08-23 黑龙江八一农垦大学 The resistance coarse cereals starch of the compound preparation of biofermentation and its method for preparing rice flour
CN110724718A (en) * 2019-12-02 2020-01-24 保龄宝生物股份有限公司 Method for preparing resistant dextrin by using microwaves
CN111154818A (en) * 2020-01-17 2020-05-15 江南大学 Preparation method of straight-chain dextrin
CN112111542A (en) * 2020-09-01 2020-12-22 山东百龙创园生物科技股份有限公司 Preparation method of high-purity isomaltooligosaccharide co-produced resistant dextrin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"CHARACTERISTICS OF OLIGOSACCHARIDES PRODUCED BY ENZYMATIC HYDROLYSIS OF POTATO STARCH USING MIXTURE", ELECTRONIC JOURNAL OF POLISH AGRICULTURAL UNIVERSITIES SERIES FOOD SCIENCE AND TECHNOLOGY, vol. Vol.6,Issue2, JPN7023000325, 2003, ISSN: 0004978655 *

Also Published As

Publication number Publication date
JP7249712B2 (en) 2023-03-31
CN112725312B (en) 2023-06-30
CN112725312A (en) 2021-04-30
WO2022156211A1 (en) 2022-07-28

Similar Documents

Publication Publication Date Title
JP7249712B2 (en) Composite enzyme and method for producing resistant dextrin
Pratiwi et al. Structural changes to starch after acid hydrolysis, debranching, autoclaving‐cooling cycles, and heat moisture treatment (HMT): A review
CN100485042C (en) Method for promoting resistant starch content of starch
Zhang et al. Densely packed matrices as rate determining features in starch hydrolysis
Tang et al. Characterization of storage starches from quinoa, barley and adzuki seeds
Fredriksson et al. Studies on α-amylase degradation of retrograded starch gels from waxy maize and high-amylopectin potato
JP4893980B2 (en) Branched starch, production method and use thereof
CN108410925B (en) Method for preparing resistant dextrin by using compound enzyme
US11312983B2 (en) Green preparation methods of rice resistant starch
Sun et al. Effects of treatment methods on the formation of resistant starch in purple sweet potato
WO2019153611A1 (en) Method for preparing highly branched dextrin product
EP0889908A1 (en) Granular resistant starch and method of making
Guo et al. The effects of wheat amylose ratios on the structural and physicochemical properties of waxy rice starch using branching enzyme and glucoamylase
Korompokis et al. Structural factors governing starch digestion and glycemic responses and how they can be modified by enzymatic approaches: A review and a guide
CA3025953C (en) Method of producing alpha glucans containing alpha 1-3 linked d-glucose units, and alpha glucans
Liu et al. The combined effects of extrusion and recrystallization treatments on the structural and physicochemical properties and digestibility of corn and potato starch
Zhang et al. Digestion kinetics of low, intermediate and highly branched maltodextrins produced from gelatinized starches with various microbial glycogen branching enzymes
Trithavisup et al. Molecular structure and properties of cassava-based resistant maltodextrins
CN112852903A (en) Preparation method of slowly digestible starch with loose structure
Govindasamy et al. Influence of extrusion variables on subsequent saccharification behaviour of sago starch
JP7082066B2 (en) High molecular weight glucan with slow digestion rate
CA2475817C (en) A method to control the distribution of the starch sugar`s molecular weight in oligosaccharides production
KR100910081B1 (en) Method for production of starch with a slow digestibility
US10392640B2 (en) Method for modifying starch to slow down the digestion rate
Evans Digestion resistant carbohydrates

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220509

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220511

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220509

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230313

R150 Certificate of patent or registration of utility model

Ref document number: 7249712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150