JP2023502376A - 重み付き知識グラフに基づくビデオ・セグメンテーション - Google Patents
重み付き知識グラフに基づくビデオ・セグメンテーション Download PDFInfo
- Publication number
- JP2023502376A JP2023502376A JP2022527888A JP2022527888A JP2023502376A JP 2023502376 A JP2023502376 A JP 2023502376A JP 2022527888 A JP2022527888 A JP 2022527888A JP 2022527888 A JP2022527888 A JP 2022527888A JP 2023502376 A JP2023502376 A JP 2023502376A
- Authority
- JP
- Japan
- Prior art keywords
- entities
- video
- frames
- knowledge graph
- entity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000011218 segmentation Effects 0.000 title description 19
- 238000000034 method Methods 0.000 claims abstract description 51
- 238000004590 computer program Methods 0.000 claims abstract description 7
- 230000001815 facial effect Effects 0.000 claims description 2
- 238000000605 extraction Methods 0.000 abstract description 17
- 238000012545 processing Methods 0.000 abstract description 13
- 239000000284 extract Substances 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 23
- 230000008569 process Effects 0.000 description 23
- 230000006870 function Effects 0.000 description 15
- 238000004891 communication Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000007726 management method Methods 0.000 description 4
- 230000008520 organization Effects 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 230000006855 networking Effects 0.000 description 3
- 238000013515 script Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012015 optical character recognition Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 238000012384 transportation and delivery Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013075 data extraction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000013439 planning Methods 0.000 description 1
- 229920001690 polydopamine Polymers 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/28—Databases characterised by their database models, e.g. relational or object models
- G06F16/284—Relational databases
- G06F16/288—Entity relationship models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/70—Information retrieval; Database structures therefor; File system structures therefor of video data
- G06F16/75—Clustering; Classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/70—Information retrieval; Database structures therefor; File system structures therefor of video data
- G06F16/78—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
- G06F16/783—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/70—Information retrieval; Database structures therefor; File system structures therefor of video data
- G06F16/78—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
- G06F16/783—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content
- G06F16/7837—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content using objects detected or recognised in the video content
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/02—Knowledge representation; Symbolic representation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/02—Knowledge representation; Symbolic representation
- G06N5/022—Knowledge engineering; Knowledge acquisition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/80—Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level
- G06V10/809—Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level of classification results, e.g. where the classifiers operate on the same input data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/40—Scenes; Scene-specific elements in video content
- G06V20/41—Higher-level, semantic clustering, classification or understanding of video scenes, e.g. detection, labelling or Markovian modelling of sport events or news items
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/40—Scenes; Scene-specific elements in video content
- G06V20/46—Extracting features or characteristics from the video content, e.g. video fingerprints, representative shots or key frames
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/40—Scenes; Scene-specific elements in video content
- G06V20/49—Segmenting video sequences, i.e. computational techniques such as parsing or cutting the sequence, low-level clustering or determining units such as shots or scenes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/172—Classification, e.g. identification
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Databases & Information Systems (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Mathematical Physics (AREA)
- Library & Information Science (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Human Computer Interaction (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Image Analysis (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
Description
{EntitiesWeighted KG}={EntitiesText KG}∪{EntitiesImage KG}
{RelationsWeighted KG}={RelationsText KG}∪{RelationsImage KG}
によって表すことができ、式中、「KG」は「知識グラフ」を表す。
を使用して算出することができ、式中、Weightrは関係重みであり、iWeightrは画像知識グラフ360でのエンティティ関係の発生数であり、tWeightrはテキスト知識グラフ350でのエンティティ関係の発生数であり、σpは画像知識グラフ360から重み付き知識グラフ350への影響係数である。表380は、重み付き知識グラフ370におけるエンティティ関係(列384)について算出された上位関係重み(列382)、および各エンティティ関係を含むビデオ・フレーム(列386)を含む。閾値を下回るWeightr値(例えば、Weightr=0.05)を有する残りのエンティティ関係は、表380に示されていない。
Claims (9)
- 方法であって、
ビデオを受信するステップと、
前記ビデオから画像データおよびテキスト・データを抽出するステップと、
前記画像データ内の少なくとも2つのエンティティを識別するステップと、
前記画像データ内の前記少なくとも2つのエンティティに少なくとも1つのエンティティ関係を割り当てるステップと、
前記テキスト・データ内の少なくとも2つのエンティティを識別するステップと、
前記テキスト・データ内の前記少なくとも2つのエンティティに少なくとも1つのエンティティ関係を割り当てるステップと、
前記画像データ内の前記少なくとも2つのエンティティに割り当てられた前記少なくとも1つのエンティティ関係についての画像知識グラフを生成するステップと、
前記テキスト・データ内の前記少なくとも2つのエンティティに割り当てられた前記少なくとも1つのエンティティ関係についてのテキスト知識グラフを生成するステップと、
前記画像知識グラフおよび前記テキスト知識グラフに基づいて、重み付き知識グラフを生成するステップと
を含む、方法。 - 前記重み付き知識グラフが、前記画像データ内の前記少なくとも2つのエンティティに割り当てられた前記少なくとも1つのエンティティ関係の関係重みと、前記テキスト・データ内の前記少なくとも2つのエンティティに割り当てられた前記少なくとも1つのエンティティ関係の関係重みとを含む、請求項1に記載の方法。
- 前記画像データ内の前記少なくとも2つのエンティティに割り当てられた前記少なくとも1つのエンティティ関係および前記テキスト・データ内の前記少なくとも2つのエンティティに割り当てられた前記少なくとも1つのエンティティ関係における上位関係を識別するステップであって、前記上位関係が、閾値関係重みよりも大きい関係重みを有するエンティティ関係である、前記識別するステップと、
前記上位関係に対応する前記ビデオのフレームを選択するステップと、
前記フレームをビデオ・セグメントにグループ化するステップと
をさらに含む、請求項2に記載の方法。 - 前記上位関係を含まない、前記ビデオの残りのフレームがあると判定するステップと、
前記ビデオ・セグメント内の前記フレームが前記残りのフレームに最も近いと判定するステップと、
前記残りのフレームを前記ビデオ・セグメントとグループ化するステップと
をさらに含む、請求項3に記載の方法。 - 前記ビデオがピクチャに分割され、各ピクチャがフレームのセットを含む、請求項1に記載の方法。
- 前記テキスト・データがキャプションである、請求項1に記載の方法。
- 前記画像データ内の前記少なくとも2つのエンティティが、顔認識に基づいて識別される、請求項1に記載の方法。
- 方法請求項1ないし7に記載の方法のすべてのステップを実行するように適合された手段を含むシステム。
- コンピュータ・プログラムであって、前記コンピュータ・プログラムがコンピュータ・システム上で実行されると、方法請求項1ないし7に記載の方法のすべてのステップを実行するための命令を含む、コンピュータ・プログラム。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/688,356 | 2019-11-19 | ||
US16/688,356 US11093755B2 (en) | 2019-11-19 | 2019-11-19 | Video segmentation based on weighted knowledge graph |
PCT/IB2020/059860 WO2021099858A1 (en) | 2019-11-19 | 2020-10-20 | Video segmentation based on weighted knowledge graph |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2023502376A true JP2023502376A (ja) | 2023-01-24 |
Family
ID=75909550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022527888A Pending JP2023502376A (ja) | 2019-11-19 | 2020-10-20 | 重み付き知識グラフに基づくビデオ・セグメンテーション |
Country Status (8)
Country | Link |
---|---|
US (1) | US11093755B2 (ja) |
JP (1) | JP2023502376A (ja) |
KR (1) | KR20220073789A (ja) |
CN (1) | CN114746857B (ja) |
AU (1) | AU2020387677B2 (ja) |
DE (1) | DE112020005726B4 (ja) |
GB (1) | GB2605723A (ja) |
WO (1) | WO2021099858A1 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113453065A (zh) * | 2021-07-01 | 2021-09-28 | 深圳市中科网威科技有限公司 | 一种基于深度学习的视频分段方法、系统、终端及介质 |
US20240119742A1 (en) * | 2021-09-09 | 2024-04-11 | L&T Technology Services Limited | Methods and system for extracting text from a video |
JP2023178141A (ja) * | 2022-06-03 | 2023-12-14 | 株式会社日立製作所 | 仮想空間でのシーン記録再構築装置およびシーン記録再構築方法 |
US11928145B1 (en) * | 2022-12-09 | 2024-03-12 | International Business Machines Corporation | Creating a knowledge graph for a video |
CN115878847B (zh) * | 2023-02-21 | 2023-05-12 | 云启智慧科技有限公司 | 基于自然语言的视频引导方法、系统、设备及存储介质 |
CN116796008B (zh) * | 2023-08-15 | 2024-02-13 | 北京安录国际技术有限公司 | 一种基于知识图谱的运维分析管理系统以及方法 |
CN117271803B (zh) * | 2023-11-20 | 2024-01-30 | 北京大学 | 知识图谱补全模型的训练方法、装置、设备及存储介质 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5635982A (en) | 1994-06-27 | 1997-06-03 | Zhang; Hong J. | System for automatic video segmentation and key frame extraction for video sequences having both sharp and gradual transitions |
US6961954B1 (en) | 1997-10-27 | 2005-11-01 | The Mitre Corporation | Automated segmentation, information extraction, summarization, and presentation of broadcast news |
US7296231B2 (en) | 2001-08-09 | 2007-11-13 | Eastman Kodak Company | Video structuring by probabilistic merging of video segments |
GB0406512D0 (en) | 2004-03-23 | 2004-04-28 | British Telecomm | Method and system for semantically segmenting scenes of a video sequence |
WO2007076893A1 (en) | 2005-12-30 | 2007-07-12 | Telecom Italia S.P.A. | Edge-guided morphological closing in segmentation of video sequences |
KR101031357B1 (ko) | 2009-07-15 | 2011-04-29 | 인하대학교 산학협력단 | 주요 배역을 추출하는 방법 및 장치 |
CN101719144B (zh) | 2009-11-04 | 2013-04-24 | 中国科学院声学研究所 | 一种联合字幕和视频图像信息进行场景分割和索引的方法 |
US8298648B2 (en) * | 2010-02-22 | 2012-10-30 | Nike, Inc. | Pad elements for apparel and other products |
US8849041B2 (en) | 2012-06-04 | 2014-09-30 | Comcast Cable Communications, Llc | Data recognition in content |
WO2015038749A1 (en) * | 2013-09-13 | 2015-03-19 | Arris Enterprises, Inc. | Content based video content segmentation |
KR102533972B1 (ko) * | 2016-09-08 | 2023-05-17 | 고 수 시아 | 시각적 검색 플랫폼용 영상 인제스트 프레임워크 |
US10834439B2 (en) * | 2016-09-30 | 2020-11-10 | Rovi Guides, Inc. | Systems and methods for correcting errors in caption text |
CN109325148A (zh) | 2018-08-03 | 2019-02-12 | 百度在线网络技术(北京)有限公司 | 生成信息的方法和装置 |
CN109168024B (zh) | 2018-09-26 | 2022-05-27 | 平安科技(深圳)有限公司 | 一种目标信息的识别方法及设备 |
-
2019
- 2019-11-19 US US16/688,356 patent/US11093755B2/en active Active
-
2020
- 2020-10-20 CN CN202080080201.0A patent/CN114746857B/zh active Active
- 2020-10-20 GB GB2208933.8A patent/GB2605723A/en active Pending
- 2020-10-20 AU AU2020387677A patent/AU2020387677B2/en active Active
- 2020-10-20 DE DE112020005726.7T patent/DE112020005726B4/de active Active
- 2020-10-20 WO PCT/IB2020/059860 patent/WO2021099858A1/en active Application Filing
- 2020-10-20 JP JP2022527888A patent/JP2023502376A/ja active Pending
- 2020-10-20 KR KR1020227014132A patent/KR20220073789A/ko active Search and Examination
Also Published As
Publication number | Publication date |
---|---|
CN114746857A (zh) | 2022-07-12 |
CN114746857B (zh) | 2023-05-09 |
AU2020387677A1 (en) | 2022-04-28 |
US11093755B2 (en) | 2021-08-17 |
WO2021099858A1 (en) | 2021-05-27 |
US20210150224A1 (en) | 2021-05-20 |
GB2605723A (en) | 2022-10-12 |
AU2020387677B2 (en) | 2023-02-23 |
KR20220073789A (ko) | 2022-06-03 |
GB202208933D0 (en) | 2022-08-10 |
DE112020005726T5 (de) | 2022-09-29 |
DE112020005726B4 (de) | 2024-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2023502376A (ja) | 重み付き知識グラフに基づくビデオ・セグメンテーション | |
US11232641B2 (en) | Mixing virtual image data and physical image data | |
US11682415B2 (en) | Automatic video tagging | |
US11158210B2 (en) | Cognitive real-time feedback speaking coach on a mobile device | |
US20180315094A1 (en) | Method and system for targeted advertising based on natural language analytics | |
US11011161B2 (en) | RNNLM-based generation of templates for class-based text generation | |
US20210133623A1 (en) | Self-supervised object detector training using raw and unlabeled videos | |
US11562747B2 (en) | Speech-to-text transcription with multiple languages | |
US11586858B2 (en) | Image object recognition through multimodal conversation templates | |
US11893346B2 (en) | Transformer-based encoding incorporating metadata | |
JP2023521660A (ja) | 階層型ニューラル・ネットワークとセル境界から構造へのクラスタリングとを用いる視覚ベースのセル構造認識 | |
US20220067546A1 (en) | Visual question answering using model trained on unlabeled videos | |
US20200082210A1 (en) | Generating and augmenting transfer learning datasets with pseudo-labeled images | |
US11055330B2 (en) | Utilizing external knowledge and memory networks in a question-answering system | |
US10839224B2 (en) | Multivariate probability distribution based sports highlight detection | |
US12010405B2 (en) | Generating video summary | |
US20170118079A1 (en) | Provisioning computer resources to a geographical location based on facial recognition | |
US10762895B2 (en) | Linguistic profiling for digital customization and personalization | |
US20210124931A1 (en) | Attention generation | |
JP2022552812A (ja) | ドメイン固有モデル圧縮 | |
US20200372114A1 (en) | Automatic translating and synchronization of audio data | |
US12026189B2 (en) | Ranking explanatory variables in multivariate analysis | |
US12045717B2 (en) | Automatic creation of difficult annotated data leveraging cues | |
US20210349931A1 (en) | System for object identification | |
US11176924B2 (en) | Reduced miss rate in sound to text conversion using banach spaces |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221209 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230324 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240604 |
|
RD12 | Notification of acceptance of power of sub attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7432 Effective date: 20240726 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20240726 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240903 |