JP2023501256A - Compositions and methods of use of fine minerals as catalysts for chemical recycling - Google Patents

Compositions and methods of use of fine minerals as catalysts for chemical recycling Download PDF

Info

Publication number
JP2023501256A
JP2023501256A JP2022525505A JP2022525505A JP2023501256A JP 2023501256 A JP2023501256 A JP 2023501256A JP 2022525505 A JP2022525505 A JP 2022525505A JP 2022525505 A JP2022525505 A JP 2022525505A JP 2023501256 A JP2023501256 A JP 2023501256A
Authority
JP
Japan
Prior art keywords
mineral matter
ppm
fine mineral
catalytic
cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022525505A
Other languages
Japanese (ja)
Inventor
カン イェレナ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Radical Plastics Inc
Original Assignee
Radical Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Radical Plastics Inc filed Critical Radical Plastics Inc
Publication of JP2023501256A publication Critical patent/JP2023501256A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/34Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts
    • C10G9/36Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts with heated gases or vapours
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • C01B3/326Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8898Manganese, technetium or rhenium containing also molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/94Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/02Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/36Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/42Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts using moving solid particles
    • C01B3/44Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts using moving solid particles using the fluidised bed technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/24Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions with moving solid particles
    • C10G47/30Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions with moving solid particles according to the "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/463Gasification of granular or pulverulent flues in suspension in stationary fluidised beds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/466Entrained flow processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/64Processes with decomposition of the distillation products
    • C10J3/66Processes with decomposition of the distillation products by introducing them into the gasification zone
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/061Methanol production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1252Cyclic or aromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0946Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0986Catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本願で開示される実施態様は、プラスチックの、または固体プラスチック廃棄物のケミカルリサイクルにおける、石炭由来の微細鉱物質の利用に関する。ここに開示される鉱物系触媒は、炭素の利用、およびリサイクル原料または再生可能な原料からの元の品質のプラスチックの製造を最大化する一方で、環境におけるプラスチック汚染を低減するための接触分解、ガス化および水蒸気改質のプロセスに利益をもたらす。前記触媒は、無機の微細鉱物質、石炭堆積物中で見出される天然の古代鉱物混合物に基づくことができ、複数の遷移金属、例えば鉄、銅およびマンガン、並びに助触媒として作用できるカルシウム、バリウム、マグネシウム、カリウム、ナトリウムを含有する。前記触媒の添加は、従来の技術のエネルギーの割合で、プラスチックを合成ガスへと変換できる。Embodiments disclosed herein relate to the use of coal-derived fine mineral matter in the chemical recycling of plastics or solid plastic waste. The mineral-based catalysts disclosed herein maximize carbon utilization and production of original quality plastics from recycled or renewable raw materials, while catalytic cracking to reduce plastic pollution in the environment. Benefits gasification and steam reforming processes. Said catalysts can be based on inorganic fine mineral matter, natural ancient mineral mixtures found in coal deposits, and include multiple transition metals such as iron, copper and manganese, as well as calcium, barium, which can act as cocatalysts. Contains magnesium, potassium and sodium. The addition of said catalyst can convert plastics to syngas at the energy rates of the prior art.

Description

関連出願の相互参照
本開示は2019年10月29日に提出された「Coal-derived fine mineral matter as a catalyst for the chemical recycling of plastics, mixed plastic solid waste and heavy oil feedstocks」と題する米国仮特許出願第62/927,493号についての優先権を主張し、参照をもってその全文が本願内に含まれるものとする。
CROSS REFERENCE TO RELATED APPLICATIONS This disclosure is a U.S. Provisional Patent Application entitled "Coal-derived fine mineral matter as a catalyst for the chemical recycling of plastics, mixed plastic solid waste and heavy oil feedstocks," filed Oct. 29, 2019. No. 62/927,493 is claimed, the entire text of which is incorporated herein by reference.

分野
本開示の様々な実施態様は一般に、プラスチックおよび/または固体混合プラスチック廃棄物のケミカルリサイクルにおける微細鉱物質、例えば石炭由来の微細鉱物質の利用に関し、より具体的には、接触分解、ガス化および水蒸気改質のプロセスの間のリサイクルの効率を増進する鉱物質に基づく触媒の存在下での廃棄物および重油原料のリサイクルに関する。
FIELD Various embodiments of the present disclosure relate generally to the use of fine mineral matter, such as coal-derived fine mineral matter, in chemical recycling of plastics and/or solid mixed plastic waste, and more specifically, catalytic cracking, gasification and the recycling of waste and heavy oil feedstocks in the presence of mineral-based catalysts that enhance the efficiency of recycling during the process of steam reforming.

合成プラスチック産業は過去50年の大きな産業的成功の1つである。例えば、プラスチックの生産高は1964年の1500万メートルトンから2014年の3億1100万トンへと急増し、次の20年にわたって再度倍増し、プラスチックの新たな使用および用途が年々実現されることが予測される。市場におけるプラスチックの普及に伴って、この広範なプラスチックの使用の意図されない結果がプラスチック廃棄物およびゴミの比例し且つ急速な増加である。最終的に埋め立てられるプラスチックの量は世界的に年間の生産高のほぼ半分であると見積もられており、それは年間1億5000万トンを超える。そして、廃棄物の処分は、埋め立てのコストおよび可用性、焼却の毒性、およびメカニカルリサイクルがサポートできるサイクル数が限られていることに起因して問題になる。 The synthetic plastics industry has been one of the great industrial successes of the last 50 years. For example, production of plastics surged from 15 million metric tons in 1964 to 311 million tons in 2014, doubling again over the next two decades, and new uses and applications of plastics being realized year after year. is expected. With the prevalence of plastics in the marketplace, an unintended consequence of this widespread use of plastics is a proportionate and rapid increase in plastic waste and garbage. The amount of plastic that ends up in landfills is estimated to be nearly half of the annual global output, which is over 150 million tons per year. And waste disposal becomes a problem due to the cost and availability of landfills, the toxicity of incineration, and the limited number of cycles that mechanical recycling can support.

従来のリサイクルプロセスは、産業におけるプラスチックの使用の普及の増加に対抗するそれらの拡張性および広範な使用を妨げるいくつかの欠点を有する。現在のリサイクルプロセスは、多様なプラスチック廃棄物を処理する能力に欠け、残りの廃棄物は埋め立てる選択しか残されていない。リサイクルおよび処理され得る廃棄物について、それらから製造される製品は一般に元の化合物よりも品質が低く、あまり望ましくない製品およびより短いライフサイクルがもたらされる。例えば、これによって、より埋め立て地に行きやすくなる。 Conventional recycling processes have several drawbacks that hinder their scalability and widespread use against the increasing prevalence of the use of plastics in industry. Current recycling processes lack the capacity to handle the diversity of plastic waste, leaving the remaining waste to be landfilled. For wastes that can be recycled and treated, the products made from them are generally of lower quality than the original compounds, resulting in less desirable products and shorter life cycles. For example, this makes landfills more accessible.

本発明の1つの実施態様によれば、ケミカルリサイクル法は、石炭由来の、および/または火山玄武岩、氷河岩屑堆積物、ケイ酸鉄カリウムおよび/または海岸堆積物を含む天然資源から採掘され、約50μm未満~約2μmの範囲の粒子サイズを有する、ある量の触媒性微細鉱物質を得ること、および溶融ポリマーまたはその蒸気を前記触媒性微細鉱物質と、クラッキングまたはガス化温度で酸素および/または水蒸気の存在下で接触させて合成ガス生成物を形成することを含む。 According to one embodiment of the present invention, the chemical recycling process is coal-derived and/or mined from natural resources including volcanic basalt, glacial debris deposits, potassium iron silicate and/or coastal sediments, obtaining an amount of catalytic fine mineral matter having a particle size in the range of less than about 50 microns to about 2 microns; or in the presence of water vapor to form a syngas product.

前記合成ガス生成物はH2、CO、CH4、CO2、H2Oおよび不活性ガスの1つ以上を含み得る。前記触媒性微細鉱物質は、Fe、Cu、Mn、Mo、Zn、Coまたはそれらの組み合わせからなる群から選択される少なくとも1つの遷移金属を、以下の濃度: Fe 14,000~45,000ppm、Cu 10~50ppm、Mn 100~700ppm、Mo 1~2ppm、Zn 20~120ppm、およびCo 10~15ppmで含み、ここでppmは、ICP-AES法を用いて、加温消化槽内で硝酸、塩酸および過酸化水素を利用して測定される。いくつかの実施態様において、前記触媒性微細鉱物質は、アルカリ金属およびアルカリ土類金属Ca、K、Na、Mgまたはそれらの組み合わせを、以下の濃度: Ca 1,000~18,000ppm、K 600~4,000ppm、Na 300~1,500ppm、およびMg 20~8,000ppmで含む。前記触媒性微細鉱物質を、担体材料または触媒のいずれかとして利用できる。前記触媒性微細鉱物質の濃度は0.5~8体積%、または触媒/原料比で約1:5~約1:100質量%の範囲であってよい。いくつかの実施態様において、粒子サイズは概ね5マイクロメートル~概ね0.5マイクロメートルの範囲であってよい。 The syngas products may include one or more of H2, CO, CH4 , CO2 , H2O and inert gases. The catalytic fine mineral matter comprises at least one transition metal selected from the group consisting of Fe, Cu, Mn, Mo, Zn, Co, or combinations thereof, at the following concentrations: Fe 14,000-45,000 ppm; Cu 10-50 ppm, Mn 100-700 ppm, Mo 1-2 ppm, Zn 20-120 ppm, and Co 10-15 ppm, where ppm is nitric acid, hydrochloric acid in a heated digester using the ICP-AES method. and hydrogen peroxide. In some embodiments, the catalytic fine mineral matter comprises alkali and alkaline earth metals Ca, K, Na, Mg, or combinations thereof at the following concentrations: Ca 1,000-18,000 ppm, K 600 4,000 ppm Na, 300-1,500 ppm Na, and 20-8,000 ppm Mg. Said catalytic fine mineral matter can be utilized either as a support material or as a catalyst. The concentration of the catalytic fine mineral matter may range from 0.5 to 8% by volume, or from about 1:5 to about 1:100% by weight catalyst/feed. In some embodiments, particle sizes may range from approximately 5 micrometers to approximately 0.5 micrometers.

とりわけ、本願に開示される方法における溶融ポリマーは、産業で使用済みまたは消費者で使用済みのプラスチック廃棄物の、固体混合プラスチック廃棄物の、または石油化学の重油およびアルカンの、スチームクラッキング、ガス化および改質プロセスによる触媒プロセスに続いて生成され得る。液化がガス化に先行し、液化は熱分解、熱クラッキングまたはスチームクラッキングを介して達成されて、プラスチック廃棄物を合成の重油および凝縮性ガスへと変換し、それがガス化装置および/または水蒸気改質に注入される。前記方法は、ガス化に続いて、合成ガス生成物の組成を改善するための洗浄および/または水素化も含み得る。いくつかの実施態様において、前記方法は合成ガスを、KDVプロセス、テキサコプロセス、または単塔式または二塔式の、流動床、固定床および同伴流反応器を利用するプロセスの1つ以上に供することができる。 Among other things, the molten polymer in the methods disclosed herein is used for steam cracking, gasification of industrial or consumer spent plastic waste, solid mixed plastic waste, or petrochemical heavy oils and alkanes. and can be produced following a catalytic process by a reforming process. Liquefaction precedes gasification, and liquefaction is accomplished through pyrolysis, thermal cracking or steam cracking to convert plastic waste into synthetic heavy oils and condensable gases that can be used in gasifiers and/or steam. Injected into the reformer. The method may also include, following gasification, washing and/or hydrogenation to improve the composition of the syngas product. In some embodiments, the method subjects the synthesis gas to one or more of a KDV process, a Texaco process, or a single or twin column process utilizing fluid bed, fixed bed and entrained flow reactors. be able to.

いくつかの実施態様において、前記スチームクラッキングは超臨界水中での水熱分解を含み得る。前記改質プロセスは、メタンの合成ガス生成物への触媒水蒸気改質を含み得る。前記合成ガス生成物を、スチームクラッキングまたはガス化を促進するための熱源として使用してもよいし、またはハイドロクラッキングを支えるためのガス源として使用してもよい。加熱を摂氏約200度~摂氏約500度の範囲の温度で実施できる。いくつかの実施態様において、前記方法は合成ガス生成物を通電することをさらに含み得る。触媒スチームクラッキングは、バッチ式、または連続フロー式(スラリータイプ)であってよい。 In some embodiments, said steam cracking may comprise hydrothermal cracking in supercritical water. The reforming process may include catalytic steam reforming of methane to a syngas product. The syngas product may be used as a heat source to promote steam cracking or gasification, or may be used as a gas source to support hydrocracking. Heating can be performed at temperatures ranging from about 200 degrees Celsius to about 500 degrees Celsius. In some embodiments, the method may further comprise energizing the syngas product. Catalytic steam cracking can be batch or continuous flow (slurry type).

この開示は、以下の詳細な説明を添付の図面と関連付けて捉えることから、より完全に理解される。 This disclosure is more fully understood from the following detailed description taken in conjunction with the accompanying drawings.

図1は、本願に開示される実施態様による炭化水素プラスチックのリサイクル方法を説明するフローダイヤグラムを示す。FIG. 1 shows a flow diagram illustrating a method for recycling hydrocarbon plastics according to embodiments disclosed herein. 図2は、本願に開示される実施態様の1つの実施態様による、空気中での安定化直鎖状低密度ポリエチレン(LLDPE)の分解のグラフを示す。FIG. 2 shows a graph of degradation of stabilized linear low density polyethylene (LLDPE) in air, according to one embodiment of the presently disclosed embodiments. 図3は、本願に開示される実施態様の1つの実施態様による、空気中での変性LLDPEの分解のグラフを示す。FIG. 3 shows a graph of degradation of modified LLDPE in air, according to one embodiment of the presently disclosed embodiments. 図4は、本願に開示される実施態様の1つの実施態様による、種々の速度でのベースのLLDPEの重量変化のグラフを示す。FIG. 4 shows a graph of weight change of base LLDPE at various rates, according to one embodiment of the presently disclosed embodiments. 図5は、本願に開示される実施態様の1つの実施態様による、種々の速度での変性LLDPEの重量変化のグラフを示す。FIG. 5 shows a graph of weight change of modified LLDPE at various rates, according to one embodiment of the presently disclosed embodiments.

詳細な説明
本願内に開示される系、装置および方法の構造、機能、製造および使用の原理の全体的な理解を提供するため、特定の例示的な実施態様をここで説明する。それらの実施態様の1つ以上の例を添付の図面に示す。当業者は、本願内に具体的に記載され且つ添付の図面において示される系、装置および方法が限定されない例示的な実施態様であり、且つ本開示の範囲は特許請求の範囲によってのみ定義されることを理解するであろう。1つの例示的な実施態様と関連付けて示されるかまたは記載される特徴を、他の実施態様の特徴と組み合わせることができる。そのような修正および変動は、本開示の範囲内に含まれることが意図されている。さらには、当業者は、本願内に開示される範囲が概算的であり且つ単なる例示であることを認識するであろう。遷移金属、助触媒、および触媒を構成する他の化合物の濃度範囲は、許容される値内で変化し得る。
DETAILED DESCRIPTION Certain illustrative embodiments are described herein to provide an overall understanding of the principles of construction, function, manufacture and use of the systems, devices and methods disclosed within this application. One or more examples of these implementations are illustrated in the accompanying drawings. It will be appreciated by those skilled in the art that the systems, apparatus and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments, and the scope of the present disclosure is defined solely by the claims. you will understand. Features shown or described in connection with one exemplary embodiment may be combined with features of other embodiments. Such modifications and variations are intended to be included within the scope of this disclosure. Furthermore, those skilled in the art will recognize that the ranges disclosed within this application are approximate and merely exemplary. The concentration ranges of transition metals, cocatalysts, and other compounds that make up the catalyst may vary within acceptable values.

例示的な実施態様において、石炭由来の微細鉱物質が、プラスチックの、または固体プラスチック廃棄物のケミカルリサイクルにおいて利用される。前記微細鉱物質は、接触分解、ガス化および水蒸気改質のプロセスにおいて、本願で開示される実施態様の範囲内である鉱物の存在下でのポリエチレン(PE)原料の熱分解の活性化エネルギーを低下させるためにはたらくことができる。そのような技術は、炭素の利用、およびリサイクル原料または再生可能な原料からの元の品質のプラスチックの製造を最大化する一方で、環境におけるプラスチック汚染を低減するという使命を支えることができる。例えば、ここで開示される組成物および方法を使用して、任意の種類のプラスチック廃棄物(PW)を、分類されていても分類されていなくても処理し、且つ同じ品質のプラスチックを製造できる。そのような技術は、エネルギーの回収または埋め立てのためにプラスチックを燃焼させるのではなく、廃棄物のプラスチックを新たなプラスチックのための原料へ変換することを可能にし得る。いくつかの実施態様において、ここで開示される実施態様の微細鉱物質は、以下でより詳細に議論されるプロセスのための担体材料として利用され得る。 In an exemplary embodiment, coal-derived fine mineral matter is utilized in the chemical recycling of plastics or solid plastic waste. The fine mineral matter provides activation energy for pyrolysis of polyethylene (PE) feedstock in the presence of minerals within the scope of embodiments disclosed herein in catalytic cracking, gasification and steam reforming processes. You can work to bring it down. Such technologies can support the mission of reducing plastic pollution in the environment while maximizing carbon utilization and production of pristine quality plastics from recycled or renewable raw materials. For example, the compositions and methods disclosed herein can be used to treat any type of plastic waste (PW), sorted or unsorted, and produce the same quality plastic. . Such technology could allow waste plastics to be converted into raw materials for new plastics, rather than burning them for energy recovery or landfilling. In some embodiments, the fine mineral matter of embodiments disclosed herein can be utilized as a support material for processes discussed in more detail below.

例示的な実施態様において、ケミカルリサイクルを使用して任意のプラスチック材料(混合または分類された)の無制限のリサイクルをもたらすことができ、ここでその焦点は、プラスチック材料の構成ブロックを回復することにある。ケミカルリサイクルは、分離が経済的にも技術的にも実現可能ではない場合に、不均一であり且つ汚染されたプラスチック廃棄物材料について大きな可能性を有する。ケミカルリサイクルは、ポリマーをより小さな分子へと変換し、次いでそれらが元々回収されたものと同じ製品に転用される閉じたループのリサイクル、またはそれらのより小さな分子が異なる製品に転用される開いたループにおいて使用され得る。ケミカルリサイクルは、環境におけるプラスチック汚染を低減する一方で、元の材料の価値を次世代の製品に移し、化石原料(貯蔵炭素)の消費を低減し、且つ化石原料と関連するGHG放出を低減するという効果を有する。 In an exemplary embodiment, chemical recycling can be used to provide unlimited recycling of any plastic material (mixed or sorted), where the focus is on recovering the building blocks of the plastic material. be. Chemical recycling has great potential for heterogeneous and contaminated plastic waste materials where separation is not economically or technically feasible. Chemical recycling can be either closed-loop recycling, where polymers are converted into smaller molecules and then repurposed into the same product they were originally recovered from, or open loop, where those smaller molecules are repurposed into different products. Can be used in loops. Chemical recycling reduces plastic pollution in the environment while transferring the value of the original material to next-generation products, reducing consumption of fossil raw materials (carbon stocks), and reducing GHG emissions associated with fossil raw materials. has the effect of

ケミカルリサイクルの経路は、熱化学変換と触媒変換とに大別でき、それはとりわけ、スチームクラッキング、熱分解、ガス化、流動接触分解、ハイドロクラッキングを含む。クラッキング、ガス化、水蒸気改質のプロセスは適切に触媒されることができ、空気または酸素または水蒸気の存在下で実施され得る。それらの技術は、酸化性の熱分解に対して非常に敏感であり且つ生成されるプラスチック廃棄物の60%を上回るポリオレフィン、ポリマーにとって特に興味深い。多くの他の種類のポリマーも、特に水蒸気または超臨界水の存在下での、触媒酸化クラッキング、ガス化および改質に対して非常に敏感であることがある。本願で開示される組成物および方法が適用され得るポリマーの限定されないいくつかの例は、アクリル、スチレン、ビニル、ポリエステル、ポリエーテル、ポリカーボネート、ポリウレタン、ポリアミド、ポリイミド、セルロース系プラスチック、上記の組み合わせおよびコポリマーを含み得る。 Chemical recycling pathways can be broadly divided into thermochemical conversions and catalytic conversions, which include steam cracking, pyrolysis, gasification, fluidized catalytic cracking, and hydrocracking, among others. The cracking, gasification and steam reforming processes can be suitably catalyzed and can be carried out in the presence of air or oxygen or steam. Those techniques are of particular interest for polyolefins, polymers which are highly sensitive to oxidative pyrolysis and which account for over 60% of the plastic waste produced. Many other types of polymers can also be very sensitive to catalytic oxidative cracking, gasification and reforming, especially in the presence of steam or supercritical water. Some non-limiting examples of polymers to which the compositions and methods disclosed herein can be applied include acrylics, styrenes, vinyls, polyesters, polyethers, polycarbonates, polyurethanes, polyamides, polyimides, cellulosics, combinations of the above and It may contain copolymers.

モノマー、多くはオレフィンの製造のための従来の技術は、ナフサ/アルカンの直接的な熱クラッキングに基づくことを当業者は認識するであろう。クラッキングの間に、原料の一部が副生成物に変換され、それはプラスチックの直接的な合成において有用ではなく、40~60%がオレフィン以外の炭化水素であり、4~25%がメタンであり、10%までがベンゼンである。水蒸気は、典型的には炭化水素の分圧を下げるために使用される。クラッカー中の酸素含有分子の存在下で、水蒸気改質およびガス化を介して炭素酸化物(CO、CO2)および水素も生成され得る。 Those skilled in the art will recognize that conventional techniques for the production of monomers, mostly olefins, are based on direct thermal cracking of naphthas/alkanes. During cracking, part of the feed is converted to by-products, which are not useful in the direct synthesis of plastics, 40-60% non-olefinic hydrocarbons and 4-25% methane. , up to 10% is benzene. Steam is typically used to reduce the partial pressure of hydrocarbons. Carbon oxides (CO, CO2 ) and hydrogen can also be produced via steam reforming and gasification in the presence of oxygen-containing molecules in crackers.

原料が混合プラスチック廃棄物である場合、より多くのメタンが生成されることが予想される。100%の炭素の回収を達成するために、さらなるプロセス、例えば炭化水素のCOおよびH2への水蒸気改質、および熱需要の一部をカバーし且つCO2の形態で炭素を回収するための原料の燃焼(それは合成ガスのH2/CO比のバランスも取る)を実施できる。燃焼プロセスについては、水の電気分解を介してO2が生成されることがある(酸素燃焼)。燃焼および電気分解および水蒸気改質の経路は、原料のモノマーへの直接的なスチームクラッキングよりも燃料依存性が遙かに低い。 More methane is expected to be produced if the feedstock is mixed plastic waste. To achieve 100% carbon recovery, additional processes, such as steam reforming of hydrocarbons to CO and H2 , and to cover part of the heat demand and recover carbon in the form of CO2 Combustion of the feed, which also balances the H 2 /CO ratio of the syngas, can be performed. For combustion processes, O2 may be produced via electrolysis of water (oxycombustion). Combustion and electrolysis and steam reforming routes are much less fuel dependent than direct steam cracking of feedstock monomers.

いくつかの実施態様において、プラスチック廃棄物の触媒による熱クラッキングを流動床反応器において実施できる。例えば、触媒による熱クラッキングにおいては、触媒および吸収剤を床材料の形態で導入できる。いくつかの実施態様において、二塔式流動床(DFB)を使用して、熱生成区域(燃焼)をクラッキング区域から分離できる。単塔式流動床反応器に比して、DFB構成はクラッキング生成物を蒸気のみを用いて(且つ煙道ガスは用いずに)希釈し、別途の燃焼区域において炭素堆積物から触媒を再生するという追加的な利点をもたらす。触媒床材料の流動床反応器への導入は、熱分解段階の間に、または熱分解生成物の水蒸気改質の二次的な段階において行うことができる。 In some embodiments, catalytic thermal cracking of plastic waste can be performed in a fluidized bed reactor. For example, in catalytic thermal cracking, the catalyst and absorbent can be introduced in the form of bed materials. In some embodiments, a double fluidized bed (DFB) can be used to separate the heat producing zone (combustion) from the cracking zone. Compared to a single column fluidized bed reactor, the DFB configuration dilutes the cracking products with steam only (and no flue gas) and regenerates the catalyst from carbon deposits in a separate combustion zone. brings additional benefits. The introduction of the catalyst bed material into the fluidized bed reactor can be done during the pyrolysis stage or in a secondary stage of steam reforming of the pyrolysis products.

上記に記載されたスチームクラッキングは、液化原料を生成し、次にその一部がガス化反応器に送られて、水素と一酸化炭素との組み合わせである合成ガスを生成できる。ガス化プロセスの最後で硫黄不純物を除去するために水素化が利用されることもある。ガス化によって生成された合成ガスを、以下で詳細に議論されるとおり、FTS(フィッシャー・トロプシュ合成)を介して、またはメタノールおよびDME(ジメチルエーテル)合成、引き続くMTG(メタノールからガソリンへの)またはMTO(メタノールからオレフィンへの)変換を介して、石油状製品の製造において使用できる。メタノールは世界で最も多く生産される化学物質の1つであり、なぜなら、それはいくつかの汎用化学品、例えばホルムアルデヒド、酢酸、メチルアミンを製造するための反応物質として使用されるからである。合成ガスは、スチームクラッキングを促進するための熱源、またはハイドロクラッキングを支えるためのガス源としても使用できる。 Steam cracking, as described above, produces a liquefied feedstock, a portion of which can then be sent to a gasification reactor to produce synthesis gas, which is a combination of hydrogen and carbon monoxide. Hydrogenation may also be used to remove sulfur impurities at the end of the gasification process. Syngas produced by gasification can be converted via FTS (Fischer-Tropsch synthesis) or methanol and DME (dimethyl ether) synthesis followed by MTG (methanol to gasoline) or MTO, as discussed in detail below. It can be used in the production of petroleum-like products via conversion (methanol to olefins). Methanol is one of the most produced chemicals in the world because it is used as a reactant to make several commodity chemicals such as formaldehyde, acetic acid, methylamine. Syngas can also be used as a heat source to promote steam cracking or as a gas source to support hydrocracking.

触媒スチームクラッキングの使用は、多環芳香族炭化水素(コークス前駆体)の選択的な低温水蒸気改質(LTSR)に起因して、より軽い組成物を有する液体生成物をみちびき且つコークスの形成を低減することができる。LTSRおよび水性ガス反応の両方の結果としてin situで形成されるさらなる水素は、触媒スチームクラッキングにおいて形成される炭化水素ラジカルの飽和に起因して、アップグレードに関与することもできる。触媒スチームクラッキングの効率および効果を増加させるために、以下でより詳細に記載するとおり、重油原料および水性環境中で安定である活性且つ選択的な触媒を使用できる。触媒スチームクラッキングは、固定触媒床およびスラリーを用いたバッチ式または連続フロー式であってよい。バッチ式においては、分散された触媒は現在Mo化合物、Ni化合物、Fe化合物に基づいている。具体的には、Feを含有する分散触媒の使用はコークス化の低減をみちびき、それはPetr Yeletsky らにより、“Catalytic steam cracking of heavy oil feedstocks”, Catalyst in Industry, 2018, vol 10, No.3,185~201ページにおいて、鉄塩が、水素で飽和した炭化水素分子から新たに形成される炭化水素ラジカルへの水素移動および有機化合物間の電子移動を酸化状態の可能な変化に起因して促進する能力によって説明されている。Fe2+のFe3+への水素移動は、炭化水素ラジカルの飽和をみちびき、Fe3+がFe2+へと還元される能力は炭化水素ラジカルの安定性の改善をみちびくことができ、そのことによって重縮合に関与しにくくなる。不均一担持触媒、例えばZrO2で改質された赤泥を、バッチ式で使用できる。連続フロー式においては、触媒床の流体力学的抵抗および触媒の急速な失活(被毒またはコークス化に起因)によって、触媒スチームクラッキングが複雑になることがある。これを防ぐために、スラリー型の反応器は、本実施態様に開示されるような分散された触媒を使用し、いくつかの実施態様においては、芳香族溶剤の添加を含む。鉄化合物、例えばマグネタイトへと還元されるヘマタイトは、このアプローチにおいて(それらの上記のレドックス化学に基づき)有益であることができる。 The use of catalytic steam cracking leads to liquid products with lighter compositions and reduces coke formation due to selective low temperature steam reforming (LTSR) of polycyclic aromatic hydrocarbons (coke precursors). can be reduced. Additional hydrogen formed in situ as a result of both the LTSR and water gas reaction can also participate in the upgrade due to saturation of hydrocarbon radicals formed in catalytic steam cracking. To increase the efficiency and effectiveness of catalytic steam cracking, active and selective catalysts that are stable in heavy oil feedstocks and aqueous environments can be used, as described in more detail below. Catalytic steam cracking can be batch or continuous flow with fixed catalyst beds and slurries. In batch mode, dispersed catalysts are currently based on Mo-, Ni- and Fe-compounds. Specifically, the use of Fe-containing dispersed catalysts leads to reduced coking, which is described by Petr Yeletsky et al., “Catalytic steam cracking of heavy oil feedstocks”, Catalyst in Industry, 2018, vol 10, No. 3, pp. 185-201, iron salts promote hydrogen transfer from hydrogen-saturated hydrocarbon molecules to newly formed hydrocarbon radicals and electron transfer between organic compounds due to possible changes in oxidation state. explained by its ability to facilitate. hydrogen transfer of Fe 2+ to Fe 3+ can lead to saturation of hydrocarbon radicals and the ability of Fe 3+ to be reduced to Fe 2+ can lead to improved stability of hydrocarbon radicals; This makes it less likely to participate in polycondensation. Heterogeneous supported catalysts, such as ZrO 2 modified red mud, can be used batchwise. In continuous flow regimes, catalytic steam cracking can be complicated by the hydrodynamic drag of the catalyst bed and rapid deactivation of the catalyst (due to poisoning or coking). To prevent this, slurry-type reactors use dispersed catalysts as disclosed in the present embodiments and, in some embodiments, include the addition of aromatic solvents. Iron compounds such as hematite, which is reduced to magnetite, can be beneficial in this approach (based on their redox chemistry above).

いくつかの実施態様において、ここで開示される触媒の組成物は、1つ以上の無機の微細鉱物質、石炭堆積物中で見出される天然の古代鉱物混合物に基づくことができ、複数の遷移金属、例えば鉄、銅およびマンガンを含有する。前記触媒はカルシウム、バリウム、マグネシウム、カリウム、ナトリウムの1つ以上も含有することができ、それは助触媒として作用し得る。前記触媒の組成物の1つの例示的な実施態様は、30,100ppmの鉄、17,600ppmのカルシウム、5,190のマグネシウム、2,980のカリウム、1,920の硫黄、1,190の窒素、253ppmのマンガン、139ppmのリン、93ppmの亜鉛、43ppmの銅、2ppmのモリブデンであってよい。そのような触媒を構成する前記微細鉱物質のバルクの鉱物学的分析(XRD、XRF)を以下の表1に示す:

Figure 2023501256000002
In some embodiments, the compositions of the catalysts disclosed herein can be based on one or more inorganic fine mineral matter, a naturally occurring ancient mineral mixture found in coal deposits, containing multiple transition metals. , such as iron, copper and manganese. Said catalyst may also contain one or more of calcium, barium, magnesium, potassium, sodium, which may act as co-catalysts. One exemplary embodiment of the composition of the catalyst is 30,100 ppm iron, 17,600 ppm calcium, 5,190 magnesium, 2,980 potassium, 1,920 sulfur, 1,190 nitrogen , 253 ppm manganese, 139 ppm phosphorus, 93 ppm zinc, 43 ppm copper, 2 ppm molybdenum. Mineralogical analyzes (XRD, XRF) of the bulk of said fine mineral matter constituting such catalysts are shown in Table 1 below:
Figure 2023501256000002

いくつかの実施態様において、鉱物酸化物、例えばAl23、BaO、CaO、Fe23、MgO、P25、K2O、Na2O、TiO2、MnO2も前記微細鉱物質の組成物中に存在し得る。 In some embodiments, mineral oxides such as Al2O3 , BaO, CaO, Fe2O3 , MgO, P2O5 , K2O , Na2O , TiO2 , MnO2 are also said fine minerals. may be present in the composition of matter.

前記微細鉱物質を構成するいくつかの沈積粘土は、化学触媒として作用できるゼオライト鉱物と同様に多孔質構造および水和水を含み得る。前記微細鉱物質の多孔質構造は、Ca2+、Mg2+、Na+、K+からFe2+、Fe3+、Cu+、Cu2+、Mn2+および/またはMn3+に及ぶ様々なカチオンを収容でき、それらはゆるく保持され、且つすぐに使用できて他のものと交換され且つ電子移動反応に関与する。 Some of the sedimentary clays that make up said fine mineral matter may contain porous structures and water of hydration as well as zeolitic minerals that can act as chemical catalysts. The porous structure of said fine mineral matter ranges from Ca2 + , Mg2 + , Na + , K + to Fe2 + , Fe3 + , Cu + , Cu2 + , Mn2 + and/or Mn3 + It can accommodate a variety of cations, they are loosely held and readily available to exchange with others and participate in electron transfer reactions.

表1に示される鉱物中の結合は、イオン性または共有結合性の特性のいずれかであることができ、種々の配置、対称性、電荷および結合特性をもたらす。配位子場のアプローチが最も適用可能であり、なぜなら、それは中心原子またはイオンを取り囲むイオンまたは分子を含み、配位子場の生じる強度が制御因子となるからである。電荷移動プロセスも配位子場の状況で生じ、且つ光化学的酸化・還元をみちびき得る。 The bonds in the minerals shown in Table 1 can be either ionic or covalent in character, resulting in various arrangements, symmetries, charges and bonding properties. The ligand field approach is the most applicable because it involves ions or molecules surrounding a central atom or ion and the resulting strength of the ligand field is the controlling factor. Charge transfer processes also occur in the ligand field context and can lead to photochemical oxidation/reduction.

前記微細鉱物質は、Fe、Cu、Mn、Mo、Znおよび/またはCoからなる群から選択される少なくとも1つ、より好ましくは少なくとも2つの遷移金属を含む。前記微細鉱物質内の金属および金属塩の濃度は、使用される分析方法に依存し、且つ典型的にはX線技術: 蛍光(XRF)および回折(XRD)および誘導結合プラズマ酸元素分析(ICP-AES)によって測定される。前記微細鉱物質中のそれらの遷移金属は、ICP-AES法を用いて、加温消化槽内で硝酸、塩酸および過酸化水素を利用して測定され且つ表2に示される範囲で定義される濃度を有する:

Figure 2023501256000003
Said fine mineral matter comprises at least one, more preferably at least two transition metals selected from the group consisting of Fe, Cu, Mn, Mo, Zn and/or Co. The concentration of metals and metal salts within said fine mineral matter depends on the analytical method used and is typically X-ray techniques: fluorescence (XRF) and diffraction (XRD) and inductively coupled plasma acid elemental analysis (ICP). - AES). Those transition metals in the fine mineral matter are measured using the ICP-AES method in a thermal digester using nitric acid, hydrochloric acid and hydrogen peroxide and are defined in the ranges shown in Table 2. with concentration:
Figure 2023501256000003

いくつかの実施態様において、前記微細鉱物質は、アルカリ金属/アルカリ土類金属である助触媒をさらに含む。それらの助触媒の限定されない例は、プラスチックの酸化分解を促進するためのCa、K、Mgまたはそれらの組み合わせを含み得る。前記微細鉱物質中の助触媒は表3に示される範囲で定義される濃度を有する。同様の画分の可溶性カチオンを有する他のアルカリ/アルカリ土類含有鉱物も、酸化分解のための助触媒として使用され得る。 In some embodiments, the fine mineral matter further comprises a promoter that is an alkali metal/alkaline earth metal. Non-limiting examples of those co-catalysts can include Ca, K, Mg, or combinations thereof to promote oxidative degradation of plastics. The co-catalyst in said fine mineral matter has a concentration defined in the range shown in Table 3. Other alkali/alkaline earth containing minerals with similar fractions of soluble cations can also be used as co-catalysts for oxidative degradation.

Figure 2023501256000004
Figure 2023501256000004

ICP-AESによって同定された他の元素を表4に示す:

Figure 2023501256000005
Other elements identified by ICP-AES are shown in Table 4:
Figure 2023501256000005

いくつかの実施態様において、前記触媒性微細鉱物質の濃度は反応器の種類に依存し得る。例えば、連続流動床反応器において、触媒対原料の比は約1:5~約1:100質量%の範囲であってよいがいくつかの実施態様において、その範囲は約1:10~約1:70質量%であってよい。バッチ式反応器において、触媒の濃度は、約0.5~約30体積%の範囲であってよいが、いくつかの実施態様において、前記範囲は約0.5~8体積%であってよい。 In some embodiments, the concentration of the catalytic fine mineral matter may depend on the type of reactor. For example, in a continuous fluidized bed reactor, the catalyst-to-feed ratio may range from about 1:5 to about 1:100 wt%, although in some embodiments the range is from about 1:10 to about 1 : 70% by mass. In a batch reactor, the catalyst concentration may range from about 0.5 to about 30 vol.%, and in some embodiments, the range may be from about 0.5 to 8 vol.%. .

前記微細鉱物質を泡沫浮遊選鉱技術、または当業者に公知の類似のプロセスによって分離でき、且つ概ね約50μm未満~約2μmの範囲の粒子サイズを有するが、いくつかの実施態様においては、前記粒子サイズは概ね0.5~概ね20マイクロメートルの範囲であってよい。いくつかの実施態様において、より微細な画分、例えば概ね5マイクロメートル~概ね0.5マイクロメートル、または概ね2マイクロメートル~概ね0.5マイクロメートルを使用できる。 Although the fine mineral matter can be separated by foam flotation techniques, or similar processes known to those skilled in the art, and generally have particle sizes ranging from less than about 50 μm to about 2 μm, in some embodiments the particles The size may range from approximately 0.5 to approximately 20 microns. In some embodiments, finer fractions can be used, such as from about 5 microns to about 0.5 microns, or from about 2 microns to about 0.5 microns.

提案された触媒は、ポリマーの鎖の切断及び酸化変換を増進し、上記で議論された石油化学重油原料および/またはアルカン、混合プラスチック固体廃棄物または産業で使用済みまたは消費者で使用済みのプラスチック廃棄物の熱接触分解においてCO、CO2の収率を高める。遷移金属化合物は、炭化水素と水との両方を含有する媒体中での酸化還元プロセスに関与することができ、つまり炭化水素での遷移金属酸化物の還元(酸化クラッキング)に、過熱水蒸気または超臨界流体の形態であり得る水での再酸化が続く。還元された化合物の再酸化の間にin situで形成される水素は、液体生成物を飽和し且つそれらの品質を高めることができる。 The proposed catalysts enhance the chain scission and oxidative transformation of polymers, the petrochemical heavy oil feedstocks and/or alkanes discussed above, mixed plastic solid wastes or industrial or consumer spent plastics. Increase the yield of CO, CO2 in thermal catalytic cracking of waste. Transition metal compounds can participate in redox processes in media containing both hydrocarbons and water, i.e. reduction of transition metal oxides with hydrocarbons (oxidative cracking), superheated steam or superheated Reoxidation with water, which may be in the form of a critical fluid, follows. The hydrogen formed in situ during the reoxidation of the reduced compounds can saturate the liquid products and enhance their quality.

液化生成物の分布は、固有の鉱物質の存在によって影響されることがあり、原炭は脱灰炭より高いベンゼンおよびピリジン可溶分の収率をもたらす。石炭の液化条件下で、水素供与性溶剤(例えばテトラリン)はその水素を石炭由来の遊離基に供与する(ナフタレンが溶剤の脱水素の主な生成物である)。 The distribution of liquefaction products can be affected by the presence of inherent mineral matter, with raw coal yielding higher yields of benzene and pyridine solubles than deashed coal. Under coal liquefaction conditions, a hydrogen-donating solvent (eg, tetralin) donates its hydrogen to coal-derived free radicals (naphthalene is the primary product of solvent dehydrogenation).

ここで開示される実施態様において、重油または混合プラスチック原料から生成される遊離基は水素供与化合物で終端されるのではなく、むしろ水素引き抜きに関与し、酸素が豊富な環境において高分子量の炭化水素のさらなる鎖のアンジッピングを促進する。 In the embodiments disclosed herein, the free radicals generated from heavy oil or mixed plastic feedstocks are not terminated with hydrogen donating compounds, but rather participate in hydrogen abstraction and high molecular weight hydrocarbons in oxygen-rich environments. promotes further strand unzipping of the

当業者は、プロセスの苛酷性の条件が高いほど(高温および/または圧力を要する)、典型的にはより高い割合の芳香族をみちびくことを認識するであろう。触媒の存在下で、例えば、苛酷性は最小化されることができ、且つ生成される分子の組成は、より均質にされることができ、より少ない割合の芳香族を有する。低温での完全な変換は、引き続く通電を簡単にすることができ、それはいくつかの実施態様において燃焼の代わりおよび/または燃焼に追加して利用され得る。 Those skilled in the art will recognize that more severe process conditions (requiring higher temperatures and/or pressures) typically lead to higher proportions of aromatics. In the presence of a catalyst, for example, the severity can be minimized and the composition of the molecules produced can be made more homogeneous, with a lower proportion of aromatics. Complete conversion at low temperatures can simplify subsequent energization, which in some embodiments can be utilized instead of and/or in addition to combustion.

本願で開示される触媒の使用は、部分酸化、低温部分水蒸気改質および接触分解を促進することができ、クラッキングおよび水蒸気改質/ガス化のプロセスの効率を著しく高める。水を蒸気、過熱水蒸気または超臨界流体の状態で使用できる。超臨界水を伴うクラッキングは、触媒の存在下で非常に有効であり、なぜなら超臨界水は通常の水とは異なりほぼ無極性であり且つ炭化水素に対して良好な溶剤であるからである。超臨界水は、エマルションの形成により、容易に可溶できないかまたは不溶性である高分子量炭化水素を分散させることもでき、それはコークスの収率の低減および液体生成物の収率の増加をみちびく。超臨界水は、炭化水素の部分酸化を促進することによって酸化クラッキングの効率を高めることができ、且つさらなる水素の形成をみちびく。 Use of the catalysts disclosed herein can promote partial oxidation, low temperature partial steam reforming and catalytic cracking, significantly increasing the efficiency of cracking and steam reforming/gasification processes. Water can be used in the form of steam, superheated steam or supercritical fluid. Cracking with supercritical water is very efficient in the presence of a catalyst because supercritical water, unlike ordinary water, is nearly non-polar and a good solvent for hydrocarbons. Supercritical water can also disperse high molecular weight hydrocarbons that are not readily soluble or insoluble by forming emulsions, which leads to reduced coke yields and increased liquid product yields. . Supercritical water can increase the efficiency of oxidative cracking by promoting partial oxidation of hydrocarbons and leads to the formation of additional hydrogen.

いくつかの実施態様において、開示される触媒は熱分解を受けないことが理解されるであろう。むしろ、いくつかの実施態様において、本願で開示される触媒は、スチームクラッキング、改質およびガス化のプロセスが、低減されたプロセスの苛酷性の条件、つまり温度、圧力、エネルギー消費で実施されることを可能にする。前記触媒はポリオレフィン系原料の分解の活性化エネルギーを、その分解が酸化性の環境下、例えば空気下で行われる場合に低下させることが示されている。TGAのデータは、以下でさらに記載されるとおり、記載される鉱物の存在下でのPE原料の熱分解の活性化エネルギーの低下を実証している。例えば、いくつかの実施態様において、活性化エネルギーは、約2%の前記微細鉱物質を使用して43から23kJ/molへと低下され得る。 It will be appreciated that in some embodiments, the disclosed catalysts do not undergo thermal decomposition. Rather, in some embodiments, the catalysts disclosed herein allow steam cracking, reforming, and gasification processes to be performed at reduced process severity conditions, i.e., temperature, pressure, and energy consumption. make it possible. Said catalysts have been shown to lower the activation energy for the cracking of polyolefinic feedstocks when the cracking is carried out in an oxidizing environment, eg under air. The TGA data demonstrate a reduction in the activation energy of pyrolysis of the PE feedstock in the presence of the minerals described, as further described below. For example, in some embodiments the activation energy can be lowered from 43 to 23 kJ/mol using about 2% of said fine mineral matter.

前記触媒はin situとガス化後の反応との両方においてはたらき得る。前者はガス化に先立ち原料中に触媒を含浸することを含み得る。それは流動床のように反応器に直接追加できる。ガス化後の反応において、触媒は形成されたタールおよびメタンを変換するための、ガス化装置の下流の第2の反応器内に配置され(ガード床反応器)、それはガス化装置の稼働条件から独立であるという追加的な利点を有する。第2の反応器は改質反応にとって最適な温度で稼働され得る。 The catalyst can work both in situ and in the reaction after gasification. The former may involve impregnating the catalyst into the feed prior to gasification. It can be added directly to the reactor like a fluidized bed. In the post-gasification reaction, the catalyst is placed in a second reactor (guard bed reactor) downstream of the gasifier to convert the tar and methane formed, which is the operating condition of the gasifier. has the added advantage of being independent of The second reactor can be operated at the optimum temperature for the reforming reaction.

ここで開示される触媒を使用でき、且つ/または使用して改善できるプロセスのいくつかの限定されない例は、(1)KDVプロセス(触媒無圧解重合プロセス)、(2)テキサコプロセス、このプロセスは流動床、固定床および同伴流反応器を利用、および(3)他の触媒化合物の添加を用いるかまたは用いない石炭硫黄化合物の脱硫を含み得る。ここで開示される触媒から利益を得られるさらなるプロセスを以下に要約する: Some non-limiting examples of processes that can be used and/or improved using the catalysts disclosed herein are: (1) KDV process (catalytic pressureless depolymerization process); (2) Texaco process; utilizes fluid bed, fixed bed and entrained flow reactors, and (3) desulfurization of coal sulfur compounds with or without the addition of other catalyst compounds. Additional processes that can benefit from the catalysts disclosed herein are summarized below:

オレフィンアルコールのエポキシ化: アルキルヒドロペルオキシドによる単純なオレフィンのエポキシ化のためのバナジウムおよびモリブデンの使用が知られているが、複雑な分子合成のためには利用されていない。微細鉱物質に基づく触媒の使用は、より有効且つ手頃なアプローチをもたらす可能性がある。 Epoxidation of Olefin Alcohols: The use of vanadium and molybdenum for the epoxidation of simple olefins with alkyl hydroperoxides is known, but has not been utilized for complex molecular syntheses. The use of catalysts based on fine mineral matter may provide a more effective and affordable approach.

合成ガスのメタノールへの変換: 提案された触媒は、現在、メタノールの工業生産の最も一般的な方法である合成ガスからのメタノールの触媒合成のさらなる最適化も提供し得る。合成ガスのメタノールへの触媒変換のための現在の触媒は、ZnO/Al23(BASFプロセス)またはCu/ZnO/Al23(ICIプロセス)に基づく。 Conversion of Syngas to Methanol: The proposed catalyst may also provide further optimization of the catalytic synthesis of methanol from syngas, currently the most common method of industrial production of methanol. Current catalysts for the catalytic conversion of syngas to methanol are based on ZnO/ Al2O3 (BASF process) or Cu/ZnO/ Al2O3 ( ICI process).

メタノールからガソリンへの(MTG)変換: Mobil Oil Corporationによって開発されたメタノールからガソリンへの合成は、ゼオライト触媒(NaAlSi26・H2O)上で、350℃且つ圧力約30atmでメタノールを触媒により炭化水素へと変換する。同様の「石炭からガソリンへの」プロセスは、中国においてJincheng Anthracite Mining Groupによって開発された。 Methanol-to-gasoline (MTG) conversion: A methanol-to - gasoline synthesis developed by Mobil Oil Corporation catalyzes methanol over a zeolite catalyst ( NaAlSi2O6.H2O ) at 350°C and a pressure of about 30 atm. to hydrocarbons. A similar "coal-to-gasoline" process was developed in China by the Jincheng Anthracite Mining Group.

メタノールからオレフィンへの(MTO)変換: MTOプロセスは、メタノールを軽質オレフィンに変換する。スチームクラッキングとは異なり、エチレンに対するプロピレンの収率はよりフレキシブルであり、それはスチームクラッキングに対する強い長所である。このプロセスは現在、MTGよりも高い温度を必要とするが、大気圧付近である。 Methanol to Olefins (MTO) Conversion: The MTO process converts methanol to light olefins. Unlike steam cracking, the yield of propylene to ethylene is more flexible, which is a strong advantage over steam cracking. This process currently requires higher temperatures than MTG, but near atmospheric pressure.

いくつかの実施態様において、技術の組み合わせ、例えば液化段階および同伴または固定または流動床ガス化装置を使用することもできる。液化段階において、プラスチック廃棄物は合成重油およびいくつかの凝縮性および非凝縮性のガス画分へと、熱的に穏やかにクラッキング(解重合)されることができる。非凝縮性のガスは、液化において燃料として(天然ガスと共に)再利用され得る。油および凝縮性ガスは、ガス化装置に注入されることができ、そこで酸素および水蒸気を用いてガス化が行われる。とりわけ、HClおよびHFの除去を含み得る多数の洗浄プロセスの後、主にCOおよびH2からなる清浄且つ乾燥した合成ガスが、少量のCH4、CO2、H2Oおよびいくつかの不活性ガスと共に生成される。典型的なガス化は概ね1200℃~1500℃の温度範囲で実施されるが、当業者は、ガス化を促進するためにより高いかまたはより低い温度を適用できることを認識し、それは本質的に上述のテキサコプロセスである。テキサコプロセスは変換を促進するために高温を必要とすることが理解されるであろう。 In some embodiments, a combination of techniques may also be used, such as a liquefaction stage and an entrained or fixed or fluidized bed gasifier. In the liquefaction stage, plastic waste can be thermally mildly cracked (depolymerized) into heavy synthetic oil and several condensable and non-condensable gas fractions. Non-condensable gases can be reused (along with natural gas) as fuel in liquefaction. The oil and condensable gas can be injected into a gasifier where gasification takes place using oxygen and water vapor. After numerous scrubbing processes, which may include, among other things, the removal of HCl and HF, the clean and dry syngas, consisting primarily of CO and H2, contains minor amounts of CH4 , CO2 , H2O and some inerts . Produced with gas. Although typical gasification is generally carried out at a temperature range of 1200° C.-1500° C., those skilled in the art will recognize that higher or lower temperatures can be applied to facilitate gasification, which is essentially the same as described above. is the Texaco process. It will be appreciated that the Texaco process requires high temperatures to facilitate conversion.

前記化学リサイクル法はS1で開始し、そこで、触媒として使用され得る、ある量の微細鉱物質が得られる。前記微細鉱物質は、上述の泡沫浮遊選鉱プロセスを用いて石炭廃物および/または微細サイズの石炭から分離される。前記微細鉱物質は、天然資源、例えば火山玄武岩、氷河岩屑堆積物、ケイ酸鉄カリウムおよび/または他の海岸採掘堆積物から採掘されることもできる。前記微細鉱物質の粒子サイズは約50μm未満~約2μmの範囲である。前記微細鉱物質は、Fe、Cu、Mn、Mo、Zn、Co、またはそれらの組み合わせなる群から選択される遷移金属の少なくとも1つ、より好ましくは少なくとも2つを含んで、非生分解性プラスチックの酸化分解を引き起こす。前記微細鉱物質中のそれらの遷移金属は、ICP-AES法を用いて、加温消化槽内で硝酸、塩酸および過酸化水素を利用して測定され、且つ上記表2に示される範囲で定義される濃度を有する。 Said chemical recycling process starts at S1, where a quantity of fine mineral matter is obtained which can be used as a catalyst. The fine mineral matter is separated from coal waste and/or fine size coal using the foam flotation process described above. Said fine mineral matter can also be mined from natural sources such as volcanic basalt, glacial debris deposits, potassium iron silicate and/or other coastal mining deposits. The particle size of the fine mineral matter ranges from less than about 50 μm to about 2 μm. The fine mineral matter contains at least one, more preferably at least two transition metals selected from the group consisting of Fe, Cu, Mn, Mo, Zn, Co, or combinations thereof, and is a non-biodegradable plastic. causes oxidative decomposition of Those transition metals in the fine mineral matter are measured using nitric acid, hydrochloric acid and hydrogen peroxide in a warm digestion tank using the ICP-AES method and are defined in the ranges shown in Table 2 above. has a concentration that

いくつかの実施態様において、加熱を摂氏約200度~摂氏約500度の範囲の温度で実施できる。 In some embodiments, heating can be performed at temperatures ranging from about 200 degrees Celsius to about 500 degrees Celsius.

前記微細鉱物質は、プラスチックの酸化分解を促進するためにCa、K、Mgまたはそれらの組み合わせをさらに含む。 The fine mineral matter further contains Ca, K, Mg or a combination thereof to promote oxidative degradation of plastics.

段階S2において、前記微細鉱物質が、クラッキングの間に形成される溶融ポリマーまたはポリマーの蒸気と接触する。前記微細鉱物質との接触を、クラッキングまたはガス化温度で、酸素および/または水蒸気の存在下で行うことができ、H2およびCOが豊富な合成ガスが、より少量のCH4、CO2、H2Oおよびいくつかの不活性ガスと共に生成する。 In step S2, the fine mineral matter is contacted with molten polymer or polymer vapor formed during cracking. The contacting with said fine mineral matter can be carried out in the presence of oxygen and/or water vapor at cracking or gasification temperatures, the synthesis gas being rich in H2 and CO with lesser amounts of CH4 , CO2 , Produces with H 2 O and some inert gases.

段階S3において、前記微細鉱物質中の遷移金属が酸化分解を触媒する。ラジカル連鎖プロセスに敏感な炭化水素系ポリマーについて、分解プロセスの律速部分は、酸化セグメントであり、一般には過酸化と称される。炭化水素ポリマーは、過酸化に耐える(または受ける)能力において異なる。従って、酸化安定性は、天然ゴム(シス-ポリ(イソプレン))からポリ(ブチレン)、ポリプロピレン、ポリエチレン、ポリ塩化ビニルへと上昇する。ポリエチレンのうち、それらの化学的特性および形態学的特性に起因して、LDPEおよびLLDPEはHDPEよりも酸化分解されやすい。 In step S3, transition metals in the fine mineral matter catalyze oxidative decomposition. For hydrocarbon-based polymers that are sensitive to radical chain processes, the rate-limiting part of the degradation process is the oxidized segment, commonly referred to as peroxidation. Hydrocarbon polymers differ in their ability to withstand (or undergo) peroxide. Thus, oxidative stability increases from natural rubber (cis-poly(isoprene)) to poly(butylene), polypropylene, polyethylene, and polyvinyl chloride. Among polyethylenes, LDPE and LLDPE are more prone to oxidative degradation than HDPE due to their chemical and morphological properties.

実験データ
本願で開示される触媒で変性される直鎖状低密度ポリエチレン(LLDPE)およびLLDPEの試料を、TA Instruments Discoveryの熱重量分析(TGA)分析器を用いて、空気中、50℃から550℃まで5、10、15および20℃/分の速度で試験した。分解の活性化エネルギーをキッシンジャー法によって計算した:

Figure 2023501256000006
Experimental Data Samples of linear low density polyethylene (LLDPE) and LLDPE modified with the catalysts disclosed herein were analyzed in air from 50°C to 550°C using a TA Instruments Discovery Thermogravimetric Analysis (TGA) analyzer. was tested at rates of 5, 10, 15 and 20°C/min up to °C. The activation energy for decomposition was calculated by the Kissinger method:
Figure 2023501256000006

前記式中、αは変換率であり、Eaは見かけの活性化エネルギー、kJ/molであり、Aは頻度因子であり、βは加熱速度、℃/分であり、Rは一般の気体定数、J/mol°Kであり、Tmは最高分解速度での温度、°Kであり、且つnは反応次数である。前記キッシンジャー法は、積n(1-α)m n-1が1に等しく、且つ加熱速度から独立であることを示す。ln(β×Ea/RTm 2)=-Ea/RTmとして書き直して、ln(β/Tm2)の(1/RTm)に対する依存性が直線を示すことがわかる。見かけの活性化エネルギーは、傾きから、且つ頻度因子はy軸上での直線の切片から計算される。 where α is the conversion rate, E is the apparent activation energy, kJ/mol, A is the frequency factor, β is the heating rate, °C/min, and R is the general gas constant. , J/mol °K, T m is the temperature at the highest decomposition rate, °K, and n is the reaction order. The Kissinger method shows that the product n(1-α) m n-1 is equal to 1 and independent of the heating rate. Rewriting as ln(β×E a /RT m 2 )=−E a /RT m , it can be seen that the dependence of ln(β/Tm 2 ) on (1/RT m ) exhibits a straight line. The apparent activation energy is calculated from the slope and the frequency factor from the intercept of the line on the y-axis.

図2~5は、触媒の添加がLLDPEに及ぼし得る影響を説明する。図2に示すとおり、空気中でのベースのLLDPE化合物の分解のEaは43.4kJ/molである。ベースのLLDPE化合物は、0.2%のフェノール系一次酸化防止剤および0.13%のベンゾトリアゾール系紫外線吸収剤も含有する。ベースのLLDPE化合物への触媒の添加は、図3に示されるとおり、Eaを20.85kJ/molに低下させる。従って、触媒の包含は、触媒の不在下で必要とされる分解において、活性化エネルギーEaの概ね50%以上の低下をもたらす。当業者は図面内の「fmm」が「微細鉱物質」を示すことを認識するであろう。上記のEaの計算において使用されるベースのLLDPEおよび変性LLDPEの試料についてのTGAデータを図4および5に示す。ベースのLLDPEについて図4に示されるとおり、分解は5C/分(A)、10C/分(B)、15C/分(C)および20C/分(D)で示される。 Figures 2-5 illustrate the effect that catalyst addition can have on LLDPE. As shown in Figure 2, the Ea for decomposition of the base LLDPE compound in air is 43.4 kJ/mol. The base LLDPE compound also contains 0.2% phenolic primary antioxidant and 0.13% benzotriazole UV absorber. Addition of catalyst to the base LLDPE compound reduces E a to 20.85 kJ/mol, as shown in FIG. Inclusion of the catalyst thus leads to a reduction of the activation energy E a of approximately 50% or more in the cracking required in the absence of the catalyst. Those skilled in the art will recognize that "fmm" in the drawings indicates "fine mineral matter." The TGA data for the base LLDPE and modified LLDPE samples used in the Ea calculations above are shown in FIGS. Degradation is shown at 5 C/min (A), 10 C/min (B), 15 C/min (C) and 20 C/min (D) as shown in Figure 4 for base LLDPE.

窒素中で実施される分解については、ベースのLLDPEおよび変性LLDPEの活性化エネルギーはそれぞれ107.83および156.44kJ/molである。それらの値は、前記微細鉱物質が酸化プロセスを触媒し、且つ酸化を含むケミカルリサイクル技術を検討すべきであることを示唆する。そのような技術のいくつかの限定されない例は、酸素の存在下または他の酸化性環境下で実施されるガス化、熱クラッキングまたは接触分解であることができる。 For decompositions carried out in nitrogen, the activation energies of base LLDPE and modified LLDPE are 107.83 and 156.44 kJ/mol, respectively. Their values suggest that the fine mineral matter catalyzes oxidation processes and that chemical recycling techniques involving oxidation should be considered. Some non-limiting examples of such techniques can be gasification, thermal cracking or catalytic cracking conducted in the presence of oxygen or other oxidizing environments.

いくつかの実施態様において、異なる安定化の化学的性質を有するLDPE化合物をTGAによって試験する場合、微細鉱物質によって変性された化合物中での活性エネルギーの低下も実証されており、ほんの0.5%の前記鉱物質の使用で51.6から45.7kJ/molへ低下する。 In some embodiments, when testing LDPE compounds with different stabilizing chemistries by TGA, a decrease in activation energy in compounds modified with fine mineral matter has also been demonstrated, with only 0.5 % of said minerals drops from 51.6 to 45.7 kJ/mol.

様々な材料についてのLDPEおよびLLDPEの熱分解のTGAデータの要約表を以下の表5に示す。 A summary table of LDPE and LLDPE thermal decomposition TGA data for various materials is shown in Table 5 below.

Figure 2023501256000007
Figure 2023501256000007

当業者は、上述の実施態様に基づき、本開示のさらなる特徴および利点を理解するであろう。従って、本開示は、添付の特許請求の範囲によって示される以外、具体的に示され且つ記載されるものに限定されない。引用された全ての刊行物および参考文献は、参照をもってその全文が本願内に明示的に組み込まれるものとする。 Those skilled in the art will appreciate further features and advantages of the present disclosure based on the above-described embodiments. Accordingly, the present disclosure is not to be limited to what has been particularly shown and described, except as indicated by the appended claims. All publications and references cited are expressly incorporated herein by reference in their entirety.

Claims (18)

石炭由来の、および/または火山玄武岩、氷河岩屑堆積物、ケイ酸鉄カリウムおよび/または海岸堆積物を含む天然資源から採掘された、ある量の触媒性微細鉱物質であって、約2μm~約50μmの範囲の粒子サイズを有する前記触媒性微細鉱物質を得ること、および
溶融ポリマーまたはその蒸気を前記触媒性微細鉱物質と、クラッキングまたはガス化温度で酸素および/または水蒸気の存在下で接触させて合成ガス生成物を形成すること
を含む、ケミカルリサイクル方法。
A quantity of catalytic fine mineral matter derived from coal and/or mined from natural sources including volcanic basalt, glacial debris deposits, potassium iron silicate and/or coastal sediments, the amount being from about 2 μm obtaining said catalytic fine mineral matter having a particle size in the range of about 50 μm; and contacting molten polymer or vapor thereof with said catalytic fine mineral matter in the presence of oxygen and/or water vapor at cracking or gasification temperatures. to form a syngas product.
前記合成ガス生成物が、H2、CO、CH4、CO2、H2Oおよび不活性ガスの1つ以上を含む、請求項1に記載の方法。 2. The method of claim 1 , wherein the syngas products comprise one or more of H2, CO, CH4, CO2 , H2O and inert gases. 前記触媒性微細鉱物質が、Fe、Cu、Mn、Mo、Zn、Coまたはそれらの組み合わせからなる群から選択される少なくとも1つの遷移金属を、以下の濃度:
Fe 14,000~45,000ppm、
Cu 10~50ppm、
Mn 100~700ppm、
Mo 1~2ppm、
Zn 20~120ppm、および
Co 10~15ppm
で含み、ここでppmは、ICP-AES法を用いて、加温消化槽内で硝酸、塩酸および過酸化水素を利用して測定される、請求項1に記載の方法。
The catalytic fine mineral matter contains at least one transition metal selected from the group consisting of Fe, Cu, Mn, Mo, Zn, Co, or combinations thereof, at the following concentrations:
Fe 14,000 to 45,000 ppm,
Cu 10-50ppm,
Mn 100-700ppm,
Mo 1-2 ppm,
20-120 ppm Zn and 10-15 ppm Co
wherein ppm is measured using nitric acid, hydrochloric acid and hydrogen peroxide in a heated digester using the ICP-AES method.
前記触媒性微細鉱物質が、アルカリ金属およびアルカリ土類金属Ca、K、Na、Mgまたはそれらの組み合わせを以下の濃度:
Ca 1,000~18,000ppm、
K 600~4,000ppm、
Na 300~1,500ppm、および
Mg 20~8,000ppm
で含む、請求項1に記載の方法。
The catalytic fine mineral matter contains alkali metals and alkaline earth metals Ca, K, Na, Mg or combinations thereof at the following concentrations:
Ca 1,000 to 18,000 ppm,
K 600 to 4,000 ppm,
Na 300-1,500 ppm, and Mg 20-8,000 ppm
2. The method of claim 1, comprising:
前記触媒性微細鉱物質の濃度が、0.5~8体積%、または触媒/原料比で約1:5~約1:100質量%の範囲である、請求項1に記載の方法。 2. The method of claim 1, wherein the concentration of said catalytic fine mineral matter ranges from 0.5 to 8% by volume, or from about 1:5 to about 1:100% by weight catalyst/feed. 前記触媒性微細鉱物質が、担体材料または触媒のいずれかとして利用される、請求項1に記載の方法。 2. The method of claim 1, wherein said catalytic fine mineral matter is utilized either as a support material or as a catalyst. 前記溶融ポリマーが、産業で使用済みまたは消費者で使用済みのプラスチック廃棄物の、固体混合プラスチック廃棄物の、または石油化学重油およびアルカンの、スチームクラッキング、ガス化および改質プロセスによる触媒プロセスに続いて生成される、請求項1に記載の方法。 The molten polymer is subjected to catalytic processes by steam cracking, gasification and reforming processes of industrial or consumer spent plastic waste, solid mixed plastic waste, or petrochemical heavy oils and alkanes. 2. The method of claim 1, wherein the method is generated by 液化がガス化に先行し、液化は熱分解、熱クラッキングまたはスチームクラッキングを介して達成されて、プラスチック廃棄物を合成の重油および凝縮性ガスへと変換し、それがガス化装置および/または水蒸気改質に注入される、請求項7に記載の方法。 Liquefaction precedes gasification, and liquefaction is accomplished through pyrolysis, thermal cracking or steam cracking to convert plastic waste into synthetic heavy oils and condensable gases that can be used in gasifiers and/or steam. 8. The method of claim 7, injected into the reformer. ガス化に続いて、合成ガス生成物の組成を改善するための洗浄および/または水素化をさらに含む、請求項7に記載の方法。 8. The method of claim 7, further comprising washing and/or hydrogenation to improve the composition of the syngas product following gasification. 前記合成ガスを、KDVプロセス、テキサコプロセス、または単塔式または二塔式の、流動床、固定床および同伴流反応器を利用するプロセスの1つ以上に供することをさらに含む、請求項7に記載の方法。 8. The method of claim 7, further comprising subjecting the synthesis gas to one or more of a KDV process, a Texaco process, or a process utilizing a single or twin column fluid bed, fixed bed and entrained flow reactor. described method. 前記スチームクラッキングが、超臨界水中での水熱分解を含む、請求項7に記載の方法。 8. The method of claim 7, wherein said steam cracking comprises hydrothermal cracking in supercritical water. 改質プロセスが、メタンの合成ガス生成物への触媒水蒸気改質を含む、請求項1に記載の方法。 2. The method of claim 1, wherein the reforming process comprises catalytic steam reforming of methane to a syngas product. 前記合成ガス生成物に通電することをさらに含む、請求項1に記載の方法。 2. The method of claim 1, further comprising energizing the syngas product. 前記合成ガス生成物を、スチームクラッキングまたはガス化を促進するための熱源として使用することをさらに含む、請求項1に記載の方法。 2. The method of claim 1, further comprising using the syngas product as a heat source to promote steam cracking or gasification. 前記合成ガス生成物を、ハイドロクラッキングを支えるためのガス源として使用することをさらに含む、請求項1に記載の方法。 2. The method of claim 1, further comprising using the syngas product as a gas source to support hydrocracking. 触媒スチームクラッキングが、バッチ式、または連続フロー式(スラリータイプ)である、請求項1に記載の方法。 2. The method of claim 1, wherein the catalytic steam cracking is batch or continuous flow (slurry type). 前記粒子サイズは、概ね5マイクロメートル~概ね0.5マイクロメートルの範囲である、請求項1に記載の方法。 2. The method of claim 1, wherein the particle size ranges from approximately 5 micrometers to approximately 0.5 micrometers. 加熱を、摂氏約200度~摂氏約500度の範囲の温度で実施する、請求項14に記載の方法。 15. The method of claim 14, wherein heating is performed at a temperature in the range of about 200 degrees Celsius to about 500 degrees Celsius.
JP2022525505A 2019-10-29 2020-10-29 Compositions and methods of use of fine minerals as catalysts for chemical recycling Pending JP2023501256A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962927493P 2019-10-29 2019-10-29
US62/927,493 2019-10-29
PCT/US2020/058036 WO2021087160A1 (en) 2019-10-29 2020-10-29 Compositions and methods of using fine mineral matter as a catalyst for chemical recycling

Publications (1)

Publication Number Publication Date
JP2023501256A true JP2023501256A (en) 2023-01-18

Family

ID=75585622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022525505A Pending JP2023501256A (en) 2019-10-29 2020-10-29 Compositions and methods of use of fine minerals as catalysts for chemical recycling

Country Status (4)

Country Link
US (2) US11691873B2 (en)
EP (1) EP4051660A4 (en)
JP (1) JP2023501256A (en)
WO (1) WO2021087160A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11667058B2 (en) 2018-03-25 2023-06-06 Radical Plastics, Inc. Utilization of fine mineral matter in the conversion of non-biodegradable plastic and in remediation of soils polluted with non-biodegradable plastic
WO2022060849A1 (en) * 2020-09-17 2022-03-24 Radical Plastics, Inc. Soil remediation by conversion of non-biodegradable plastic to biodegradable plastic using fine mineral matter
US11926798B2 (en) 2020-11-18 2024-03-12 Radical Plastics Inc. Fine mineral matter for upgrading the quality of the products of thermal or catalytic cracking or in-situ heavy oil catalytic cracking
CN113401866B (en) * 2021-05-29 2023-05-30 浙江大学 Method for preparing hydrogen-rich synthetic gas by degrading polyolefin waste plastics at low temperature

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7722690B2 (en) * 2006-09-29 2010-05-25 Kellogg Brown & Root Llc Methods for producing synthesis gas
US20090014689A1 (en) * 2007-07-09 2009-01-15 Range Fuels, Inc. Methods and apparatus for producing syngas and alcohols
US8449650B2 (en) * 2009-06-17 2013-05-28 Los Alamos National Security, Llc Gas storage and separation by electric field swing adsorption
US8344195B2 (en) * 2009-10-16 2013-01-01 Jumluck Srinakruang Process for producing fuel from plastic waste material by using dolomite catalyst
WO2013017700A1 (en) * 2011-08-04 2013-02-07 Shell Internationale Research Maatschappij B.V. Process for producing hydrocarbons from syngas
US9428695B2 (en) * 2013-02-12 2016-08-30 Saudi Basic Industries Corporation Conversion of plastics to olefin and aromatic products with product recycle
US9453171B2 (en) * 2013-03-07 2016-09-27 General Electric Company Integrated steam gasification and entrained flow gasification systems and methods for low rank fuels
US9896388B2 (en) 2015-04-23 2018-02-20 Earth Technologies Usa Limited Coal-derived mineral matter as a soil amendment
US10549455B2 (en) 2018-03-25 2020-02-04 Radical Plastics Inc. Utilization of fine mineral matter in the conversion of non-biodegradable plastic and in remediation of soils polluted with non-biodegradable plastic

Also Published As

Publication number Publication date
WO2021087160A1 (en) 2021-05-06
US20210122630A1 (en) 2021-04-29
US20230416084A1 (en) 2023-12-28
EP4051660A1 (en) 2022-09-07
US11691873B2 (en) 2023-07-04
EP4051660A4 (en) 2024-01-03

Similar Documents

Publication Publication Date Title
Huang et al. Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes
JP2023501256A (en) Compositions and methods of use of fine minerals as catalysts for chemical recycling
Dry Fischer-Tropsch synthesis over iron catalysts
US8674153B2 (en) Method of hydrogasification of biomass to methane with low depositable tars
CA2103508C (en) Upgrading oil emulsions with carbon monoxide or synthesis gas
EP2403926B1 (en) Process for thermochemical conversion of biomass
US7425315B2 (en) Method to recapture energy from organic waste
CA2795553C (en) Process for the production of light olefins from synthesis gas
Devasahayam Opportunities for simultaneous energy/materials conversion of carbon dioxide and plastics in metallurgical processes
WO2004096456A9 (en) Method to recapture energy from organic waste
EP2961720A1 (en) Method of hydrogasification of biomass to methane with low depositable tars
Zou et al. Chemical recycling of polyolefins: a closed-loop cycle of waste to olefins
Miskolczi et al. Pyrolysis-gasification of biomass and Municipal Plastic Waste using transition metal modified catalyst to investigate the effect of contaminants
RU2333238C2 (en) Method of organic waste processing (versions)
Jacobs et al. Conversion of Biomass to Liquid Fuels and Chemicals via the Fischer–Tropsch Synthesis Route
KR101890950B1 (en) Method for Gasification Using Spent Catalyst Discharged from Refinery Process
KR20230124902A (en) Fine minerals to upgrade product quality of thermal or catalytic cracking or in-situ heavy oil catalytic cracking
Valizadeh et al. Production of light olefins and monocyclic aromatic hydrocarbons from the pyrolysis of waste plastic straws over high-silica zeolite-based catalysts
Sınağ Catalysts in thermochemical biomass conversion
Ranizang et al. Catalytic Pyrolysis of Fuel Oil Blended Stock for Bio-Oil Production: A Review
Bozkurt et al. Catalytic conversion of SPW and products upgrading
Mandal et al. Recent Advances in Biomass Gasification: A Review
Tucker Waste to fuel: designing a cobalt based catalyst and process for once-through Fischer-Tropsch synthesis operated at high conversion
Lotfi et al. Experimental study of catalyst performance on hydrothermal gasification of automotive fluff as a complex plastic containing waste
Li et al. Waste derived ash as catalysts for the pyrolysis-catalytic steam reforming of waste plastics for hydrogen-rich syngas production

Legal Events

Date Code Title Description
A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A525

Effective date: 20220627

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230927