JP2023184543A - Dielectric ceramic composition and multilayer ceramic capacitor comprising the same - Google Patents

Dielectric ceramic composition and multilayer ceramic capacitor comprising the same Download PDF

Info

Publication number
JP2023184543A
JP2023184543A JP2023175740A JP2023175740A JP2023184543A JP 2023184543 A JP2023184543 A JP 2023184543A JP 2023175740 A JP2023175740 A JP 2023175740A JP 2023175740 A JP2023175740 A JP 2023175740A JP 2023184543 A JP2023184543 A JP 2023184543A
Authority
JP
Japan
Prior art keywords
mol
subcomponent
ceramic composition
moles
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023175740A
Other languages
Japanese (ja)
Inventor
スーン クォン、ヒュン
Hyung Soon Kwon
スン パク、ジェ
Jae Sung Park
ヨン チョイ、ミン
Min Young Choi
ミョン ユン、キ
Ki Myoung Yun
ウク キム、ヒョン
Hyoung Uk Kim
ヨン ハム、テ
Tae Young Ham
イン ベク、スン
Seung In Baik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electro Mechanics Co Ltd
Original Assignee
Samsung Electro Mechanics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190033361A external-priority patent/KR102222944B1/en
Application filed by Samsung Electro Mechanics Co Ltd filed Critical Samsung Electro Mechanics Co Ltd
Publication of JP2023184543A publication Critical patent/JP2023184543A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/663Oxidative annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Capacitors (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

To provide a dielectric ceramic composition capable of improving reliability, and to provide a multilayer ceramic capacitor comprising the same.SOLUTION: A dielectric ceramic composition according to one embodiment of this invention includes a BaTiO3-based base material main ingredient and an accessory ingredient, wherein: the accessory ingredient includes a trivalent lanthanide rare earth element A and terbium (Tb) as rare earth elements; and a ratio (Tb/A) of a content of terbium (Tb) to the content of the trivalent lanthanide rare earth element A satisfies 0.15≤Tb/A<0.50. A multilayer ceramic capacitor comprising the same is also provided.SELECTED DRAWING: Figure 3

Description

本発明は、信頼性を向上させることができる誘電体磁器組成物及びこれを含む積層セラミックキャパシタに関するものである。 The present invention relates to a dielectric ceramic composition that can improve reliability and a multilayer ceramic capacitor containing the same.

一般に、キャパシタ、インダクタ、圧電体素子、バリスタ又はサーミスタなどのセラミック材料を用いる電子部品は、セラミック材料からなるセラミック本体と、本体内部に形成された内部電極と、上記内部電極と接続されるように、セラミック本体の表面に配置された外部電極と、を備える。 Generally, electronic components using ceramic materials, such as capacitors, inductors, piezoelectric elements, varistors, or thermistors, have a ceramic body made of a ceramic material, an internal electrode formed inside the body, and a ceramic body connected to the internal electrode. , and an external electrode disposed on the surface of the ceramic body.

最近では、電子製品の小型化や多機能化に伴い、チップ部品も小型化及び高機能化しつつあるため、積層セラミックキャパシタに対してもサイズが小さく、容量が大きい高容量製品が求められている。 Recently, as electronic products have become smaller and more multi-functional, chip components have also become smaller and more sophisticated, so there is a demand for multilayer ceramic capacitors that are smaller in size and have higher capacity. .

積層セラミックキャパシタの小型化及び高容量化をともに達成する方法としては、内部の誘電体層及び電極層の厚さを薄くして、多くの数を積層する方法が挙げられる。また、現在の誘電体層の厚さは0.6μm程度のレベルであって、引き続き薄いレベルへの開発が進められている。 One method for achieving both miniaturization and high capacity of a multilayer ceramic capacitor is to reduce the thickness of the internal dielectric layer and electrode layer and laminate a large number of them. Further, the current thickness of the dielectric layer is approximately 0.6 μm, and development to a thinner level is being continued.

このような状況下では、誘電体層の信頼性の確保が誘電材料において重要な課題となっており、併せて誘電体の絶縁抵抗劣化に伴う不良率が増加し、品質及び収率管理が難しいことが問題として浮上している。 Under these circumstances, ensuring the reliability of the dielectric layer has become an important issue for dielectric materials, and at the same time, the defective rate increases due to deterioration of the insulation resistance of the dielectric, making quality and yield control difficult. This is emerging as a problem.

かかる問題を解決するためには、積層セラミックキャパシタの構造的な側面だけでなく、特に誘電体組成の側面でも高信頼性を確保することができる新たな方法が必要な実情である。 In order to solve this problem, a new method is required that can ensure high reliability not only in terms of the structure of multilayer ceramic capacitors, but also in particular in terms of dielectric composition.

現在のレベルで、信頼性レベルを一段高めることができる誘電体組成が確保されれば、さらに薄層化された積層セラミックキャパシタを製作することができる。 If a dielectric composition that can further raise the reliability level at the current level is secured, it will be possible to manufacture a multilayer ceramic capacitor with even thinner layers.

本発明の目的は、信頼性を向上させることができる誘電体磁器組成物及びこれを含む積層セラミックキャパシタを提供することである。 An object of the present invention is to provide a dielectric ceramic composition that can improve reliability and a multilayer ceramic capacitor containing the same.

本発明の一実施形態は、BaTiO系母材主成分と副成分を含み、上記副成分は、希土類元素として3価ランタン族希土類元素A及びテルビウム(Tb)を含み、上記3価ランタン族希土類元素Aの含有量に対する上記テルビウム(Tb)の含有量の比(Tb/A)は0.15≦Tb/A<0.50を満たす誘電体磁器組成物を提供する。 One embodiment of the present invention includes a BaTiO 3 -based base material main component and a subcomponent, the subcomponent including a trivalent lanthanum group rare earth element A and terbium (Tb) as rare earth elements, and the above trivalent lanthanum group rare earth element A and terbium (Tb). A dielectric ceramic composition is provided in which the ratio of the terbium (Tb) content to the element A content (Tb/A) satisfies 0.15≦Tb/A<0.50.

本発明の他の実施形態は、誘電体層、及び上記誘電体層を間に挟んで互いに対向するように配置される第1内部電極及び第2内部電極を含むセラミック本体と、上記セラミック本体の外側に配置され、且つ第1内部電極と電気的に連結される第1外部電極、及び上記第2内部電極と電気的に連結される第2外部電極と、を含み、上記誘電体層は誘電体磁器組成物を含み、上記誘電体磁器組成物はBaTiO系母材主成分と副成分を含み、上記副成分は、希土類元素として3価ランタン族希土類元素A及びテルビウム(Tb)を含み、上記3価ランタン族希土類元素Aの含有量に対する上記テルビウム(Tb)の含有量の比(Tb/A)は0.15≦Tb/A<0.50を満たす積層セラミックキャパシタを提供する。 Another embodiment of the present invention includes a ceramic body including a dielectric layer, and a first internal electrode and a second internal electrode that are arranged to face each other with the dielectric layer interposed therebetween; a first external electrode disposed on the outside and electrically connected to the first internal electrode; and a second external electrode electrically connected to the second internal electrode, and the dielectric layer has a dielectric layer. The dielectric ceramic composition includes a BaTiO 3 base material main component and a subcomponent, and the subcomponent includes a trivalent lanthanum group rare earth element A and terbium (Tb) as rare earth elements, A multilayer ceramic capacitor is provided in which the ratio of the content of terbium (Tb) to the content of the trivalent lanthanum group rare earth element A (Tb/A) satisfies 0.15≦Tb/A<0.50.

本発明の一実施形態によると、セラミック本体内の誘電体層に含まれる誘電体磁器組成物が、副成分として新規の希土類元素であるテルビウム(Tb)を含み、且つその含有量を制御することにより、絶縁抵抗の向上などという信頼性を改善することができる。 According to one embodiment of the present invention, the dielectric ceramic composition contained in the dielectric layer in the ceramic body contains terbium (Tb), which is a new rare earth element, as a subcomponent, and the content thereof is controlled. This makes it possible to improve reliability by improving insulation resistance.

本発明の一実施形態による積層セラミックキャパシタを示す概略的な斜視図である。1 is a schematic perspective view showing a multilayer ceramic capacitor according to an embodiment of the present invention. 図1のI-I'線に沿った断面図である。FIG. 2 is a sectional view taken along line II' in FIG. 1. FIG. 本発明の実施例及び比較例による、過酷な条件下で行われる信頼性試験(HALT)の評価結果を示すグラフである。1 is a graph showing evaluation results of reliability tests (HALT) conducted under severe conditions according to examples and comparative examples of the present invention.

以下では、添付の図面を参照して本発明の好ましい実施形態について説明する。しかし、本発明の実施形態は様々な他の形態に変形されることができ、本発明の範囲は以下で説明する実施形態に限定されない。また、本発明の実施形態は、当該技術分野で平均的な知識を有する者に本発明をより完全に説明するために提供されるものである。したがって、図面における要素の形状及び大きさなどはより明確な説明のために拡大縮小表示(又は強調表示や簡略化表示)がされることがあり、図面上の同一の符号で示される要素は同一の要素である。 In the following, preferred embodiments of the present invention will be described with reference to the accompanying drawings. However, the embodiments of the present invention can be modified into various other forms, and the scope of the present invention is not limited to the embodiments described below. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Therefore, the shapes and sizes of elements in the drawings may be enlarged or reduced (or highlighted or simplified) for clearer explanation, and elements indicated by the same reference numerals on the drawings are the same. is an element of

図1は本発明の一実施形態による積層セラミックキャパシタを示す概略的な斜視図であり、図2は図1のI-I'線に沿った断面図である。 FIG. 1 is a schematic perspective view showing a multilayer ceramic capacitor according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along line II' in FIG.

図1及び図2を参照すると、本発明の一実施形態による積層セラミックキャパシタ100は、誘電体層111、及び上記誘電体層111を間に挟んで互いに対向するように配置される第1内部電極121及び第2内部電極122を含むセラミック本体110と、上記セラミック本体110の外側に配置され、且つ第1内部電極121と電気的に連結される第1外部電極131、及び上記第2内部電極122と電気的に連結される第2外部電極132と、を含む。 Referring to FIGS. 1 and 2, a multilayer ceramic capacitor 100 according to an embodiment of the present invention includes a dielectric layer 111 and first internal electrodes that are arranged to face each other with the dielectric layer 111 interposed therebetween. 121 and a second internal electrode 122; a first external electrode 131 disposed outside the ceramic body 110 and electrically connected to the first internal electrode 121; and a second internal electrode 122. and a second external electrode 132 electrically connected to the second external electrode 132 .

本発明の一実施形態による積層セラミックキャパシタ100において、「長さ方向」とは図1の「L」方向、「幅方向」とは「W」方向、及び「厚さ方向」とは「T」方向と定義する。ここで、「厚さ方向」は、誘電体層を積み上げる方向、すなわち、「積層方向」と同一の概念で用いることができる。 In the multilayer ceramic capacitor 100 according to an embodiment of the present invention, the "length direction" is the "L" direction in FIG. 1, the "width direction" is the "W" direction, and the "thickness direction" is the "T" direction. Define direction. Here, the "thickness direction" can be used in the same concept as the direction in which dielectric layers are stacked, that is, the "stacking direction."

上記セラミック本体110の形状に特に制限はないが、図面に示すように、六面体形状であることができる。 Although the shape of the ceramic body 110 is not particularly limited, it may have a hexahedral shape as shown in the drawings.

上記セラミック本体110の内部に形成された複数の内部電極121、122は、上記セラミック本体の一面、又は上記一面と向かい合う他面に一端が露出する。 One end of the plurality of internal electrodes 121 and 122 formed inside the ceramic body 110 is exposed on one surface of the ceramic body or the other surface opposite to the one surface.

上記内部電極121、122は、互いに異なる極性を有する第1内部電極121及び第2内部電極122を一対にすることができる。 The internal electrodes 121 and 122 may be a pair of a first internal electrode 121 and a second internal electrode 122 having different polarities.

第1内部電極121の一端はセラミック本体の一面に露出し、第2内部電極122の一端は上記一面と向かい合う他面に露出することができる。 One end of the first internal electrode 121 may be exposed on one surface of the ceramic body, and one end of the second internal electrode 122 may be exposed on the other surface opposite to the one surface.

上記セラミック本体110の一面及び上記一面と向かい合う他面には、第1及び第2外部電極131、132が形成されて上記内部電極と電気的に連結されることができる。 First and second external electrodes 131 and 132 may be formed on one surface of the ceramic body 110 and the other surface opposite to the one surface, and may be electrically connected to the internal electrodes.

上記第1及び第2内部電極121、122を形成する材料は特に制限されず、上記第1及び第2内部電極121、122は、例えば、銀(Ag)、鉛(Pb)、白金(Pt)、ニッケル(Ni)、及び銅(Cu)のうち一つ以上の物質を含む導電性ペーストを用いて形成することができる。 The materials forming the first and second internal electrodes 121 and 122 are not particularly limited, and the first and second internal electrodes 121 and 122 can be made of, for example, silver (Ag), lead (Pb), platinum (Pt). , nickel (Ni), and copper (Cu).

上記第1及び第2外部電極131、132は、静電容量を形成するために、上記第1及び第2内部電極121、122と電気的に連結されることができ、上記第2外部電極132は、上記第1外部電極131とは異なる電位に連結されることができる。 The first and second outer electrodes 131 and 132 may be electrically connected to the first and second inner electrodes 121 and 122 to form capacitance, and the second outer electrode 132 may be connected to a different potential from the first external electrode 131.

上記第1及び第2外部電極131、132に含有される導電性材料は、特に限定されないが、ニッケル(Ni)、銅(Cu)、又はこれらの合金を用いることができる。 The conductive material contained in the first and second external electrodes 131 and 132 is not particularly limited, but nickel (Ni), copper (Cu), or an alloy thereof can be used.

上記第1及び第2外部電極131、132の厚さは、用途などに応じて、適宜決定することができ、特に制限されないが、例えば、10~50μmであってもよい。 The thickness of the first and second external electrodes 131 and 132 can be determined as appropriate depending on the application, and is not particularly limited, but may be, for example, 10 to 50 μm.

本発明の一実施形態によると、上記誘電体層111を形成する原料は、十分な静電容量を得ることができる限り特に制限されず、例えば、チタン酸バリウム(BaTiO)粉末であってもよい。 According to one embodiment of the present invention, the raw material for forming the dielectric layer 111 is not particularly limited as long as sufficient capacitance can be obtained, and for example, barium titanate (BaTiO 3 ) powder may be used. good.

上記誘電体層111を形成する材料は、チタン酸バリウム(BaTiO)などの粉末に、本発明の目的に応じて、様々な添加剤、有機溶剤、可塑剤、結合剤、分散剤などが添加されることができる。 The material forming the dielectric layer 111 is powder such as barium titanate (BaTiO 3 ) to which various additives, organic solvents, plasticizers, binders, dispersants, etc. are added depending on the purpose of the present invention. can be done.

上記誘電体層111は、焼結された状態であって、隣接する誘電体層同士の境界は確認できないほど一体化していることができる。 The dielectric layer 111 may be in a sintered state and may be so integrated that the boundaries between adjacent dielectric layers cannot be seen.

上記誘電体層111上に第1及び第2内部電極121、122が形成されることができ、内部電極121、122は、焼結によって一誘電体層を間に挟んで上記セラミック本体の内部に形成されることができる。 First and second internal electrodes 121 and 122 may be formed on the dielectric layer 111, and the internal electrodes 121 and 122 are formed inside the ceramic body with one dielectric layer interposed therebetween by sintering. can be formed.

誘電体層111の厚さは、キャパシタの容量設計に応じて任意に変更することができる。本発明の一実施例において、焼成後の誘電体層の厚さは、好ましくは1層当たり0.45μm以下であってもよい。 The thickness of the dielectric layer 111 can be arbitrarily changed depending on the capacitance design of the capacitor. In one embodiment of the present invention, the thickness of the dielectric layer after firing may preferably be 0.45 μm or less per layer.

また、焼成後の上記第1及び第2内部電極121、122の厚さは、好ましくは1層当たり0.45μm以下であってもよい。 Further, the thickness of the first and second internal electrodes 121 and 122 after firing may preferably be 0.45 μm or less per layer.

本発明の一実施形態によると、上記誘電体層111はBaTiO系母材主成分と副成分を含み、上記副成分は、希土類元素として3価ランタン族希土類元素A及びテルビウム(Tb)を含み、上記3価ランタン族希土類元素Aの含有量に対する上記テルビウム(Tb)の含有量の比(Tb/A)は0.15≦Tb/A<0.50を満たす誘電体磁器組成物を含む。 According to an embodiment of the present invention, the dielectric layer 111 includes a BaTiO 3 base material main component and a subcomponent, and the subcomponent includes a trivalent lanthanum group rare earth element A and terbium (Tb) as rare earth elements. The dielectric ceramic composition includes a ratio (Tb/A) of the content of terbium (Tb) to the content of the trivalent lanthanum group rare earth element A (Tb/A) satisfying 0.15≦Tb/A<0.50.

特に、上記3価ランタン族希土類元素Aはジスプロシウム(Dy)であることができる。 In particular, the trivalent lanthanum group rare earth element A may be dysprosium (Dy).

本発明の一実施形態によると、上記3価ランタン族希土類元素Aの含有量に対する上記テルビウム(Tb)の含有量の比(Tb/A)が0.15≦Tb/A<0.50を満たす。 According to one embodiment of the present invention, the ratio (Tb/A) of the content of the terbium (Tb) to the content of the trivalent lanthanum group rare earth element A satisfies 0.15≦Tb/A<0.50. .

上記3価ランタン族希土類元素Aの含有量に対する上記テルビウム(Tb)の含有量の比(Tb/A)が0.15≦Tb/A<0.50を満たす場合には、絶縁抵抗の向上などという信頼性の改善効果に優れる。 When the ratio of the terbium (Tb) content to the trivalent lanthanum group rare earth element A content (Tb/A) satisfies 0.15≦Tb/A<0.50, insulation resistance is improved, etc. It has an excellent reliability improvement effect.

特に、上記3価ランタン族希土類元素Aはジスプロシウム(Dy)であることができ、上記ジスプロシウム(Dy)の含有量に対する上記テルビウム(Tb)の含有量の比(Tb/Dy)が0.15≦Tb/Dy<0.50を満たす場合には、絶縁抵抗の向上などという信頼性の改善効果に優れる。 In particular, the trivalent lanthanum group rare earth element A may be dysprosium (Dy), and the ratio of the terbium (Tb) content to the dysprosium (Dy) content (Tb/Dy) is 0.15≦ When Tb/Dy<0.50 is satisfied, there is an excellent effect of improving reliability such as improving insulation resistance.

本発明の一実施形態によると、セラミック本体内の誘電体層に含まれる誘電体磁器組成物が、副成分として3価ランタン族希土類元素A及び希土類元素であるテルビウム(Tb)を含み、且つ上記3価ランタン族希土類元素Aに対する上記希土類元素であるテルビウム(Tb)の含有量の比を制御することにより、絶縁抵抗の向上などという信頼性を改善することができる。 According to one embodiment of the present invention, the dielectric ceramic composition contained in the dielectric layer in the ceramic body contains a trivalent lanthanum group rare earth element A and terbium (Tb), which is a rare earth element, as subcomponents, and By controlling the ratio of the content of terbium (Tb), which is the rare earth element, to the trivalent lanthanum group rare earth element A, reliability such as an increase in insulation resistance can be improved.

上記3価ランタン族希土類元素Aの含有量に対する上記テルビウム(Tb)の含有量の比(Tb/A)が0.15未満の場合には、テルビウム(Tb)の添加による信頼性の改善効果がわずかであり、上記3価ランタン族希土類元素Aの含有量に対する上記テルビウム(Tb)の含有量の比が0の場合、すなわち、従来のようにテルビウム(Tb)を添加しなかった場合には、信頼性の改善効果がなく、不良率が増加することがある。 If the ratio of the terbium (Tb) content to the trivalent lanthanum group rare earth element A content (Tb/A) is less than 0.15, the reliability improvement effect due to the addition of terbium (Tb) will not be effective. If the ratio of the content of terbium (Tb) to the content of the trivalent lanthanum group rare earth element A is 0, that is, if terbium (Tb) is not added as in the conventional case, There may be no improvement in reliability and the defective rate may increase.

また、上記3価ランタン族希土類元素Aの含有量に対する上記テルビウム(Tb)の含有量の比(Tb/A)が0.50以上であると、半導体化による絶縁抵抗の低下が発生することがある。 Further, if the ratio of the content of terbium (Tb) to the content of the trivalent lanthanum group rare earth element A (Tb/A) is 0.50 or more, a decrease in insulation resistance due to semiconductorization may occur. be.

上記3価ランタン族希土類元素Aはジスプロシウム(Dy)であることができ、上記ジスプロシウム(Dy)の含有量に対する上記テルビウム(Tb)の含有量の比(Tb/Dy)が0.15未満の場合には、テルビウム(Tb)の添加による信頼性の改善効果がわずかであり、上記ジスプロシウム(Dy)の含有量に対する上記テルビウム(Tb)の含有量の比が0の場合、すなわち、従来のようにテルビウム(Tb)を添加しなかった場合には、信頼性の改善効果がなく、不良率が増加することがある。 The trivalent lanthanum group rare earth element A may be dysprosium (Dy), and the ratio of the terbium (Tb) content to the dysprosium (Dy) content (Tb/Dy) is less than 0.15. The reliability improvement effect due to the addition of terbium (Tb) is slight, and when the ratio of the terbium (Tb) content to the dysprosium (Dy) content is 0, that is, as in the conventional case, If terbium (Tb) is not added, there is no effect of improving reliability and the defective rate may increase.

また、上記ジスプロシウム(Dy)の含有量に対する上記テルビウム(Tb)の含有量の比(Tb/Dy)が0.50以上であると、半導体化による絶縁抵抗の低下が発生することがある。 Furthermore, if the ratio of the terbium (Tb) content to the dysprosium (Dy) content (Tb/Dy) is 0.50 or more, insulation resistance may decrease due to semiconductor formation.

本発明の一実施形態によると、上記3価ランタン族希土類元素A及びテルビウム(Tb)の合計含有量が母材主成分のうちチタン(Ti)100モルに対して0.2モル以上1.5モル以下であることができる。 According to an embodiment of the present invention, the total content of the trivalent lanthanum group rare earth element A and terbium (Tb) is 0.2 mol or more and 1.5 mol or more per 100 mol of titanium (Ti) among the main components of the base material. It can be less than a molar amount.

特に、上記3価ランタン族希土類元素Aはジスプロシウム(Dy)であることができる。 In particular, the trivalent lanthanum group rare earth element A may be dysprosium (Dy).

一般に、積層セラミックキャパシタの内部の誘電体の信頼性を確保するために希土類系元素が多く添加される。 Generally, a large amount of rare earth elements are added to ensure the reliability of the dielectric inside the multilayer ceramic capacitor.

かかる希土類系元素のうち、ジスプロシウム(Dy)は、母材主成分であるチタン酸バリウム(BaTiO)に添加されると、Ba-siteを置換しながら酸素空孔欠陥の濃度を減らすことで信頼性改善に効果があると知られている。 Among these rare earth elements, dysprosium (Dy), when added to barium titanate (BaTiO 3 ), which is the main component of the base material, becomes reliable by reducing the concentration of oxygen vacancy defects while replacing Ba-sites. It is known to be effective in improving sex.

一方、ジスプロシウム(Dy)よりもイオン半径の大きい希土類元素、例えば、ランタン(La)、サマリウム(Sm)などを用いる場合、Ba-siteをさらに効果的に置換することができるため酸素空孔欠陥の濃度を減少させる上ではより効果的であるが、過度な半導体化によって絶縁抵抗が急激に下落するという問題があるため実用レベルには達していないのが実情である。 On the other hand, when using a rare earth element with a larger ionic radius than dysprosium (Dy), such as lanthanum (La) or samarium (Sm), it is possible to more effectively replace Ba-sites, thereby eliminating oxygen vacancy defects. Although it is more effective in reducing the concentration, it has not yet reached a practical level due to the problem of a rapid drop in insulation resistance due to excessive semiconductorization.

そこで、信頼性を改善するために酸素空孔欠陥の濃度を最小限に抑えるとともに、絶縁抵抗を確保するために半導体化も抑制すべく、ジスプロシウム(Dy)よりもイオン半径はさらに大きいが、ジスプロシウム(Dy)とそのサイズ差が大きくない希土類元素を適用することがよいと考えられた。 Therefore, in order to minimize the concentration of oxygen vacancy defects in order to improve reliability and also to suppress semiconductor formation to ensure insulation resistance, dysprosium (Dy) has a larger ionic radius than dysprosium (Dy). It was thought that it would be better to use a rare earth element that does not have a large size difference from (Dy).

また、一般の希土類元素の原子価は、固定原子価(Fixed-valence)が+3価であるため、Ba(+2)を置換する場合、一つの陽電荷(single positive charge、D Ba)を有するが、テルビウム(Tb)のように+4の可変原子価(Multi-valence)を有することができる場合には、二重陽電荷(double positive charge、D・・ Ba)を有することができるため、酸素空孔欠陥の濃度が減少するという効果が2倍となり得る。 In addition, the fixed valence of common rare earth elements is +3, so when replacing Ba (+2), it has a single positive charge (D Ba ). If it can have a multi-valence of +4 like terbium (Tb), it can have a double positive charge (D ... Ba ), so the oxygen vacancy is The effect of reducing the concentration of hole defects can be doubled.

これに対し、イッテルビウム(Yb)のように+2の可変原子価を有する場合には、Ba(+2)を置換する際に、電荷的に中性であるため酸素空孔欠陥の濃度を減少させる上で効果的ではなく、かかる理由によりイッテルビウム(Yb)を添加すると逆に信頼性がさらに劣化すると知られている。 On the other hand, when ytterbium (Yb) has a variable valence of +2, it is neutral in charge when replacing Ba (+2), so it can be used to reduce the concentration of oxygen vacancies. It is known that adding ytterbium (Yb) for this reason further deteriorates reliability.

そのため、ジスプロシウム(Dy)よりもイオン半径は大きいが、絶縁抵抗を減少させるほど半導体化が進行することなく、多重原子化を有するテルビウム(Tb)元素が酸素空孔欠陥の濃度の減少に最も効果的であるため積層セラミックキャパシタ内の誘電体の信頼性を大きく改善することができると予想され、結果としてジスプロシウム(Dy)及びテルビウム(Tb)をともに適用した誘電体磁器組成物を開発するに至った。 Therefore, although the ionic radius is larger than that of dysprosium (Dy), the element terbium (Tb), which has multiple atoms, is most effective in reducing the concentration of oxygen vacancy defects, without progressing to semiconductor formation to the extent that it reduces insulation resistance. As a result, it was expected that the reliability of the dielectric in multilayer ceramic capacitors could be greatly improved, and as a result, a dielectric ceramic composition containing both dysprosium (Dy) and terbium (Tb) was developed. Ta.

従来、誘電体磁器組成物に、希土類元素としてジスプロシウム(Dy)、ガドリニウム(Gd)、及びテルビウム(Tb)のうち一つ以上を添加する試みがあった。 Conventionally, there have been attempts to add one or more of dysprosium (Dy), gadolinium (Gd), and terbium (Tb) as rare earth elements to dielectric ceramic compositions.

しかし、上記の従来の場合、テルビウム(Tb)が奏する上記の効果について認識することなく、単に希土類元素として記載したり、少量添加した程度に過ぎず、信頼性の向上のために添加されるテルビウム(Tb)の含有量についての具体的な研究はなされていないのが実情である。 However, in the above conventional case, the above effects of terbium (Tb) are not recognized, and terbium (Tb) is simply described as a rare earth element or added only in small amounts, and terbium (Tb) is added to improve reliability. The reality is that no specific research has been conducted on the content of (Tb).

一方、本発明の一実施形態では、ジスプロシウム(Dy)及びテルビウム(Tb)の添加量についての、信頼性の改善に優れた効果を奏する最適な比を見つけることができた。 On the other hand, in one embodiment of the present invention, it was possible to find an optimal ratio of the amounts of dysprosium (Dy) and terbium (Tb) that exhibits an excellent effect on improving reliability.

本発明の一実施形態によると、上記3価ランタン族希土類元素A及びテルビウム(Tb)の合計含有量が母材主成分のうちチタン(Ti)100モルに対して0.2モル以上1.5モル以下となるように調節することにより、絶縁抵抗の向上などという信頼性の改善を可能とする。 According to an embodiment of the present invention, the total content of the trivalent lanthanum group rare earth element A and terbium (Tb) is 0.2 mol or more and 1.5 mol or more per 100 mol of titanium (Ti) among the main components of the base material. By adjusting the amount to be less than molar, it is possible to improve reliability by increasing insulation resistance.

上記3価ランタン族希土類元素Aがジスプロシウム(Dy)の場合には、上記ジスプロシウム(Dy)及びテルビウム(Tb)の合計含有量が母材主成分のうちチタン(Ti)100モルに対して0.2モル以上1.5モル以下であることを特徴とする。 In the case where the trivalent lanthanum group rare earth element A is dysprosium (Dy), the total content of the dysprosium (Dy) and terbium (Tb) is 0.00% per 100 moles of titanium (Ti) among the main components of the base material. It is characterized by being 2 mol or more and 1.5 mol or less.

上記ジスプロシウム(Dy)及びテルビウム(Tb)の合計含有量が母材主成分のうちチタン(Ti)100モルに対して0.2モル以上1.5モル以下となるように調節することにより、絶縁抵抗の向上などという信頼性の改善を可能とする。 By adjusting the total content of dysprosium (Dy) and terbium (Tb) to be 0.2 mol or more and 1.5 mol or less per 100 mol of titanium (Ti) among the main components of the base material, insulation can be achieved. This makes it possible to improve reliability by increasing resistance.

希土類元素の総含有量が増加するほど信頼性の面においては有利であるが、Tcが常温に移動するに伴い温度特性が大きく低下するため、上記ジスプロシウム(Dy)及びテルビウム(Tb)の合計含有量が母材主成分のうちチタン(Ti)100モルに対して1.5モル以下となるように調節することが好ましい。 The higher the total content of rare earth elements, the more advantageous it is in terms of reliability, but as Tc moves to room temperature, the temperature characteristics decrease significantly, so the total content of dysprosium (Dy) and terbium (Tb) It is preferable to adjust the amount to 1.5 mol or less per 100 mol of titanium (Ti) among the main components of the base material.

上記ジスプロシウム(Dy)及びテルビウム(Tb)の合計含有量が母材主成分のうちチタン(Ti)100モルに対して1.5モルを超えると、容量温度係数(Temperature Coefficient of Capacitance、TCC)などの温度特性が低下する可能性がある。 If the total content of dysprosium (Dy) and terbium (Tb) exceeds 1.5 mol per 100 mol of titanium (Ti) among the main components of the base material, the temperature coefficient of capacitance (TCC) etc. temperature characteristics may deteriorate.

これに対し、上記ジスプロシウム(Dy)及びテルビウム(Tb)の合計含有量が母材主成分のうちチタン(Ti)100モルに対して0.2モル未満の場合には、信頼性が低下することがある。 On the other hand, if the total content of dysprosium (Dy) and terbium (Tb) is less than 0.2 mol per 100 mol of titanium (Ti) among the main components of the base material, reliability may decrease. There is.

本発明の一実施形態による積層セラミックキャパシタ100は、上述のように、超小型高容量製品であって、上記誘電体層111の厚さは0.45μm以下、上記第1及び第2内部電極121、122の厚さは0.45μm以下であることを特徴とするが、必ずしもこれに制限されるものではない。 As described above, the multilayer ceramic capacitor 100 according to an embodiment of the present invention is an ultra-small high-capacity product, in which the dielectric layer 111 has a thickness of 0.45 μm or less, and the first and second internal electrodes 121 have a thickness of 0.45 μm or less. , 122 is characterized in that it is 0.45 μm or less, but is not necessarily limited to this.

すなわち、本発明の一実施形態による積層セラミックキャパシタ100は、超小型高容量製品であるため、誘電体層111ならびに第1及び第2内部電極121、122の厚さが従来の製品に比べて薄膜で構成されており、このように薄膜の誘電体層及び内部電極が適用された製品の場合、絶縁抵抗などという信頼性を向上させるための研究は非常に重要なイシューとなっている。 That is, since the multilayer ceramic capacitor 100 according to an embodiment of the present invention is an ultra-small high-capacity product, the thickness of the dielectric layer 111 and the first and second internal electrodes 121 and 122 is thinner than that of conventional products. In the case of products that use thin dielectric layers and internal electrodes, research to improve reliability such as insulation resistance has become a very important issue.

つまり、従来の積層セラミックキャパシタの場合には、本発明の一実施形態による積層セラミックキャパシタに含まれる誘電体層及び内部電極よりも比較的厚い厚さを有するため、誘電体磁器組成物の組成が従来と同一の場合であっても、信頼性が大きく問題とされていなかった。 In other words, in the case of a conventional multilayer ceramic capacitor, the composition of the dielectric ceramic composition is Even in the same case as before, reliability was not a major problem.

しかし、本発明の一実施形態のように薄膜の誘電体層及び内部電極が適用される製品においては、積層セラミックキャパシタの信頼性が重要である。そのため、誘電体磁器組成物の組成を調節する必要がある。 However, in products to which thin dielectric layers and internal electrodes are applied, as in one embodiment of the present invention, the reliability of the multilayer ceramic capacitor is important. Therefore, it is necessary to adjust the composition of the dielectric ceramic composition.

すなわち、本発明の一実施形態では、上記3価ランタン族希土類元素A及びテルビウム(Tb)の合計含有量が母材主成分のうちチタン(Ti)100モルに対して0.2モル以上1.5モル以下となるように調節し、特に上記3価ランタン族希土類元素Aの含有量に対する上記テルビウム(Tb)の含有量の比(Tb/A)が0.15≦Tb/A<0.50を満たすように調節することにより、誘電体層111ならびに第1及び第2内部電極121、122の厚さが0.45μm以下の薄膜の場合にも、絶縁抵抗の向上などという信頼性を改善することができる。 That is, in one embodiment of the present invention, the total content of the trivalent lanthanum group rare earth element A and terbium (Tb) is 0.2 mol or more per 100 mol of titanium (Ti) among the main components of the base material. The ratio of the content of terbium (Tb) to the content of the trivalent lanthanum group rare earth element A (Tb/A) is 0.15≦Tb/A<0.50. By adjusting the dielectric layer 111 and the first and second internal electrodes 121 and 122 to be thin films with a thickness of 0.45 μm or less, reliability such as improved insulation resistance can be improved. be able to.

但し、上記薄膜とは、誘電体層111ならびに第1及び第2内部電極121、122の厚さが0.45μm以下であることを意味するものではなく、従来の製品よりも薄い厚さの誘電体層及び内部電極を含む概念として理解するとよい。 However, the above-mentioned thin film does not mean that the thickness of the dielectric layer 111 and the first and second internal electrodes 121 and 122 is 0.45 μm or less, but a dielectric film that is thinner than conventional products. It is best understood as a concept that includes body layers and internal electrodes.

以下、本発明の一実施形態による誘電体磁器組成物の各成分をより具体的に説明する。 Each component of the dielectric ceramic composition according to an embodiment of the present invention will be explained in more detail below.

a)母材主成分
本発明の一実施形態による誘電体磁器組成物はBaTiOで示される母材主成分を含むことができる。
a) Base material main component The dielectric ceramic composition according to one embodiment of the present invention may include a base material main component represented by BaTiO 3 .

本発明の一実施形態によると、上記母材主成分は、BaTiO、(Ba1-xCa)(Ti1-yCa)O(ここで、xは0≦x≦0.3、yは0≦y≦0.1)、(Ba1-xCa)(Ti1-yZr)O(ここで、xは0≦x≦0.3、yは0≦y≦0.5)、及びBa(Ti1-yZr)O(ここで、0<y≦0.5)からなる群より選択される一つ以上を含むが、必ずしもこれに制限されるものではない。 According to an embodiment of the present invention, the main components of the base material are BaTiO 3 , (Ba 1-x Ca x )(Ti 1-y Ca y )O 3 (where x is 0≦x≦0.3 , y is 0≦y≦0.1), (Ba 1-x Ca x ) (Ti 1-y Zr y )O 3 (where x is 0≦x≦0.3, y is 0≦y≦ 0.5), and Ba(Ti 1-y Zr y )O 3 (where 0<y≦0.5), but is not necessarily limited thereto. isn't it.

本発明の一実施形態による誘電体磁器組成物は常温誘電率が2000以上であることができる。 The dielectric ceramic composition according to an embodiment of the present invention may have a room temperature dielectric constant of 2000 or more.

上記母材主成分は、特に制限されないが、主成分粉末の平均粒径が40nm以上150nm以下であってもよい。 The main component of the base material is not particularly limited, but the main component powder may have an average particle size of 40 nm or more and 150 nm or less.

b)第1副成分
本発明の一実施形態によると、上記誘電体磁器組成物は、第1副成分元素としてジスプロシウム(Dy)及びテルビウム(Tb)を必ず含むとともに、上記母材主成分100モルに対して、Y、Ho、Er、Ce、Nd、Pm、Eu、Gd、Tm、Yb、Lu、及びSmのうち少なくとも一つを含む酸化物又は炭酸塩である第1副成分を0.0~4.0モルさらに含むことができる。
b) First subcomponent According to one embodiment of the present invention, the dielectric ceramic composition necessarily contains dysprosium (Dy) and terbium (Tb) as the first subcomponent elements, and 100 mol of the main base material component. 0.0 of the first subcomponent, which is an oxide or carbonate containing at least one of Y, Ho, Er, Ce, Nd, Pm, Eu, Gd, Tm, Yb, Lu, and Sm. It can further contain up to 4.0 mol.

上記第1副成分は、本発明の一実施形態において、誘電体磁器組成物が適用された積層セラミックキャパシタの信頼性の低下を防ぐ役割を果たす。 In one embodiment of the present invention, the first subcomponent plays a role in preventing a decrease in reliability of a multilayer ceramic capacitor to which the dielectric ceramic composition is applied.

上記第1副成分の含有量が4.0モルを超えると、信頼性が低下したり、又は誘電体磁器組成物の誘電率が低くなって高温耐電圧特性が悪くなるという問題が発生することがある。 If the content of the first subcomponent exceeds 4.0 moles, problems may occur such as a decrease in reliability or a decrease in the dielectric constant of the dielectric ceramic composition, resulting in poor high-temperature withstand voltage characteristics. There is.

本発明の一実施形態によると、上記ジスプロシウム(Dy)の含有量に対する上記テルビウム(Tb)の含有量の比(Tb/Dy)が0.15≦Tb/Dy<0.50を満たすことを特徴とする。 According to an embodiment of the present invention, the ratio of the terbium (Tb) content to the dysprosium (Dy) content (Tb/Dy) satisfies 0.15≦Tb/Dy<0.50. shall be.

上記ジスプロシウム(Dy)の含有量に対する上記テルビウム(Tb)の含有量の比(Tb/Dy)が0.15≦Tb/Dy<0.50を満たすように調節することにより、絶縁抵抗の向上などという信頼性の改善を可能とする。 By adjusting the ratio of the terbium (Tb) content to the dysprosium (Dy) content (Tb/Dy) to satisfy 0.15≦Tb/Dy<0.50, insulation resistance can be improved, etc. This makes it possible to improve reliability.

上記ジスプロシウム(Dy)の含有量に対する上記テルビウム(Tb)の含有量の比(Tb/Dy)が0.15未満の場合には、テルビウム(Tb)の添加による信頼性の改善効果がわずかであり、上記ジスプロシウム(Dy)の含有量に対する上記テルビウム(Tb)の含有量の比が0の場合、すなわち、従来のようにテルビウム(Tb)を添加しなかった場合には、信頼性の改善効果がなく、不良率が増加することがある。 If the ratio of the terbium (Tb) content to the dysprosium (Dy) content (Tb/Dy) is less than 0.15, the reliability improvement effect due to the addition of terbium (Tb) is small. When the ratio of the terbium (Tb) content to the dysprosium (Dy) content is 0, that is, when terbium (Tb) is not added as in the past, there is no improvement in reliability. This may result in an increase in the defective rate.

これに対し、上記ジスプロシウム(Dy)の含有量に対する上記テルビウム(Tb)の含有量の比(Tb/Dy)が0.50以上であると、半導体化による絶縁抵抗の低下が発生することがある。 On the other hand, if the ratio of the terbium (Tb) content to the dysprosium (Dy) content (Tb/Dy) is 0.50 or more, the insulation resistance may decrease due to semiconducting. .

また、上記ジスプロシウム(Dy)及びテルビウム(Tb)の合計含有量が母材主成分のうちチタン(Ti)100モルに対して0.2モル以上1.5モル以下であることを特徴とする。 Further, the total content of dysprosium (Dy) and terbium (Tb) is 0.2 mol or more and 1.5 mol or less per 100 mol of titanium (Ti) among the main components of the base material.

上記ジスプロシウム(Dy)及びテルビウム(Tb)の合計含有量が母材主成分のうちチタン(Ti)100モルに対して0.2モル以上1.5モル以下となるように調節することにより、絶縁抵抗の向上などという信頼性の改善を可能とする。 By adjusting the total content of dysprosium (Dy) and terbium (Tb) to be 0.2 mol or more and 1.5 mol or less per 100 mol of titanium (Ti) among the main components of the base material, insulation can be achieved. This makes it possible to improve reliability by increasing resistance.

c)第2副成分
本発明の一実施形態によると、上記誘電体磁器組成物は、第2副成分として、Mn、V、Cr、Fe、Ni、Co、Cu、及びZnのうち少なくとも一つ以上を含む酸化物又は炭酸塩を含むことができる。
c) Second subcomponent According to one embodiment of the present invention, the dielectric ceramic composition includes at least one of Mn, V, Cr, Fe, Ni, Co, Cu, and Zn as the second subcomponent. It can contain oxides or carbonates containing the above.

上記第2副成分として、Mn、V、Cr、Fe、Ni、Co、Cu、及びZnのうち少なくとも一つ以上を含む酸化物又は炭酸塩は、上記母材粉末100モルに対して0.1~2.0モルの含有量で含まれることができる。 As the second subcomponent, the oxide or carbonate containing at least one of Mn, V, Cr, Fe, Ni, Co, Cu, and Zn is 0.1 mol per 100 mol of the base material powder. It can be included in a content of ~2.0 mol.

上記第2副成分は、誘電体磁器組成物が適用された積層セラミックキャパシタの焼成温度を低下させ、高温耐電圧特性を向上させる役割を果たす。 The second subcomponent serves to lower the firing temperature of the multilayer ceramic capacitor to which the dielectric ceramic composition is applied, and to improve the high-temperature withstand voltage characteristics.

上記第2副成分の含有量、及び後述する第3から第6副成分の含有量は、母材粉末100モルに対して含まれる量のことであって、特に各副成分が含む金属イオンのモルと定義することができる。 The content of the above-mentioned second subcomponent and the content of the third to sixth subcomponents described later refer to the amount contained in 100 moles of the base material powder, and in particular, the content of the metal ions contained in each subcomponent. It can be defined as moles.

上記第2副成分の含有量が0.1モル未満の場合には、焼成温度が高くなって高温耐電圧特性がやや低下することがある。 If the content of the second subcomponent is less than 0.1 mol, the firing temperature may become high and the high-temperature withstand voltage characteristics may deteriorate somewhat.

また、上記第2副成分の含有量が2.0モル以上の場合には、高温耐電圧特性及び常温比抵抗が低下することがある。 Moreover, when the content of the second subcomponent is 2.0 mol or more, the high temperature withstand voltage characteristics and the room temperature specific resistance may decrease.

特に、本発明の一実施形態による誘電体磁器組成物は、母材主成分100モルに対して0.1~2.0モルの含有量を有する第2副成分を含むことができる。これにより、低温焼成が可能であり、高い高温耐電圧特性を得ることができる。 In particular, the dielectric ceramic composition according to an embodiment of the present invention may include a second subcomponent having a content of 0.1 to 2.0 mol per 100 mol of the base material main component. Thereby, low temperature firing is possible and high high temperature withstand voltage characteristics can be obtained.

d)第3副成分
本発明の一実施形態によると、上記誘電体磁器組成物は、原子価固定アクセプタ(fixed-valence acceptor)元素のMgを含む酸化物又は炭酸塩である第3副成分を含むことができる。
d) Third subcomponent According to one embodiment of the present invention, the dielectric ceramic composition includes a third subcomponent which is an oxide or carbonate containing Mg, which is a fixed-valence acceptor element. can be included.

上記原子価固定アクセプタ(fixed-valence acceptor)元素のMgは、上記母材主成分のうちチタン(Ti)100モルに対して、第3副成分を0.0~0.5モル含むことができる。 The fixed-valence acceptor element Mg may contain 0.0 to 0.5 moles of a third subcomponent based on 100 moles of titanium (Ti) among the main components of the base material. .

上記第3副成分は、原子価固定アクセプタ及びこれを含む化合物であって、アクセプタ(Acceptor)として作用して、電子の濃度を減らす役割を果たすことができる。上記第3副成分である上記原子価固定アクセプタ(fixed-valence acceptor)元素のMgを上記母材主成分のうちチタン(Ti)100モルに対して0.0~0.5モル添加することにより、n-type化による信頼性の改善効果を最大限にすることができる。 The third subcomponent is a valence-fixed acceptor and a compound containing the same, and can act as an acceptor to reduce the electron concentration. By adding 0.0 to 0.5 mol of Mg, which is the fixed-valence acceptor element, which is the third subcomponent, to 100 mol of titanium (Ti) among the main components of the base material. , it is possible to maximize the effect of improving reliability by changing to n-type.

上記第3副成分の含有量が上記母材粉末100モルに対して0.5モルを超えると、誘電率が低くなるという問題があるため好ましくない。 If the content of the third subcomponent exceeds 0.5 mol per 100 mol of the base material powder, there is a problem that the dielectric constant becomes low, which is not preferable.

但し、本発明の一実施形態によると、上記第3副成分を、n-type化による信頼性の改善効果を最大限にするためにチタン(Ti)100モルに対して0.5モルを添加することが好ましいが、必ずしもこれに限定されるものではなく、0.5モル以下又は0.5モルを少量超えて添加してもよい。 However, according to one embodiment of the present invention, the third subcomponent is added in an amount of 0.5 mol per 100 mol of titanium (Ti) in order to maximize the effect of improving reliability due to n-type conversion. Although it is preferable to do so, it is not necessarily limited to this, and it may be added in an amount of 0.5 mol or less or a small amount exceeding 0.5 mol.

e)第4副成分
本発明の一実施形態によると、上記誘電体磁器組成物は、Baを含む酸化物又は炭酸塩である第4副成分を含むことができる。
e) Fourth subcomponent According to one embodiment of the present invention, the dielectric ceramic composition may include a fourth subcomponent that is an oxide or carbonate containing Ba.

上記誘電体磁器組成物は、上記母材主成分100モルに対して、Baを含む酸化物又は炭酸塩である第4副成分を0.0~4.15モル含むことができる。 The dielectric ceramic composition may contain 0.0 to 4.15 moles of a fourth subcomponent, which is an oxide or carbonate containing Ba, per 100 moles of the base material main component.

上記第4副成分の含有量は、酸化物又は炭酸塩のような添加形態を区別せず、第4副成分に含まれるBa元素の含有量を基準とすることができる。 The content of the fourth subcomponent can be based on the content of Ba element contained in the fourth subcomponent, without distinguishing between the addition forms such as oxides and carbonates.

上記第4副成分は、誘電体磁器組成物内で焼結を促進したり、誘電率を調節したりするなどの役割を果たすことができ、その含有量が、上記母材主成分100モルに対して4.15モルを超えると、誘電率が低くなったり、焼成温度が高くなるという問題を有することがある。 The fourth subcomponent can play roles such as promoting sintering and adjusting the dielectric constant within the dielectric ceramic composition, and its content is 100 moles of the main component of the base material. On the other hand, if it exceeds 4.15 moles, there may be problems such as a low dielectric constant or a high firing temperature.

f)第5副成分
本発明の一実施形態によると、上記誘電体磁器組成物は、Ca及びZrのいずれか一つ以上の元素の、酸化物及び炭酸塩からなる群より選択される一つ以上を含む第5副成分を含むことができる。
f) Fifth subcomponent According to one embodiment of the present invention, the dielectric ceramic composition includes one selected from the group consisting of oxides and carbonates of one or more elements of Ca and Zr. A fifth subcomponent including the above may be included.

上記誘電体磁器組成物は、上記母材主成分100モルに対して、Ca及びZrのうち少なくとも一つを含む酸化物又は炭酸塩である第5副成分を0.0~20.0モル含むことができる。 The dielectric ceramic composition contains 0.0 to 20.0 moles of a fifth subcomponent, which is an oxide or carbonate containing at least one of Ca and Zr, per 100 moles of the base material main component. be able to.

上記第5副成分の含有量は、酸化物又は炭酸塩のような添加形態を区別せず、第5副成分に含まれたCa及びZrのうち少なくとも一つ以上の元素の含有量を基準にすることができる。 The content of the fifth subcomponent is based on the content of at least one element among Ca and Zr contained in the fifth subcomponent, without distinguishing between the addition form such as oxide or carbonate. can do.

上記第5副成分は、誘電体磁器組成物内においてコア-シェル(core-shell)の構造を形成して誘電率及び信頼性を向上させる役割を果たすことにより、上記母材主成分100モルに対して20.0モル以下含まれる場合、高誘電率が実現され、高温耐電圧特性が良好な誘電体磁器組成物を提供することができる。 The fifth subcomponent plays a role of forming a core-shell structure in the dielectric ceramic composition to improve the dielectric constant and reliability, thereby adding more than 100 moles of the main component of the base material. On the other hand, when the content is 20.0 mol or less, a high dielectric constant is achieved and a dielectric ceramic composition with good high-temperature withstand voltage characteristics can be provided.

上記第5副成分の含有量が、上記母材主成分100モルに対して20.0モルを超えると、常温誘電率が低くなり、高温耐電圧特性も低下する。 When the content of the fifth subcomponent exceeds 20.0 mol per 100 mol of the main component of the base material, the room temperature dielectric constant becomes low and the high temperature withstand voltage characteristics also deteriorate.

g)第6副成分
本発明の一実施形態によると、上記誘電体磁器組成物は、第6副成分として、Si及びAlのうち少なくとも一つを含む酸化物又はSiを含むガラス(Glass)化合物を含むことができる。
g) Sixth subcomponent According to one embodiment of the present invention, the dielectric ceramic composition includes, as the sixth subcomponent, an oxide containing at least one of Si and Al or a glass compound containing Si. can include.

上記誘電体磁器組成物は、上記母材主成分100モルに対して、Si及びAlのうち少なくとも一つを含む酸化物又はSiを含むガラス(Glass)化合物である第6副成分を0.0~4.0モルさらに含むことができる。 The dielectric ceramic composition contains 0.0 mol of the sixth subcomponent, which is an oxide containing at least one of Si and Al, or a glass compound containing Si, per 100 moles of the main component of the base material. It can further contain up to 4.0 mol.

上記第6副成分の含有量は、ガラス、酸化物又は炭酸塩のような添加形態を区別せず、第6副成分に含まれたSi及びAlのうち少なくとも一つ以上の元素の含有量を基準にすることができる。 The content of the sixth subcomponent does not distinguish between the addition form such as glass, oxide, or carbonate, and the content of at least one element among Si and Al contained in the sixth subcomponent is determined. It can be used as a standard.

上記第6副成分は、誘電体磁器組成物が適用された積層セラミックキャパシタの焼成温度を低下させ、高温耐電圧特性を向上させる役割を果たす。 The sixth subcomponent serves to lower the firing temperature of the multilayer ceramic capacitor to which the dielectric ceramic composition is applied, and to improve the high-temperature withstand voltage characteristics.

上記第6副成分の含有量が、上記母材主成分100モルに対して4.0モルを超えると、焼結性及び緻密度を低下させ、2次相生成などの問題があるため好ましくない。 If the content of the sixth subcomponent exceeds 4.0 mol per 100 mol of the main component of the base material, it is not preferable because it reduces sinterability and compactness and causes problems such as secondary phase formation. .

特に、本発明の一実施形態によると、上記誘電体磁器組成物が4.0モル以下の含有量でAlを含むことにより、粒成長を均一に制御することができ、耐電圧特性及び信頼性の向上に効果があり、DC-bias特性も改善することができる。 In particular, according to one embodiment of the present invention, the dielectric ceramic composition contains Al in a content of 4.0 mol or less, so that grain growth can be uniformly controlled, and the withstand voltage characteristics and reliability can be improved. This is effective in improving the DC-bias characteristics.

以下、実施例及び比較例を挙げて本発明をさらに詳細に説明するが、これは発明の具体的な理解を助けるためのものであり、本発明の範囲が実施例により限定されるものではない。 Hereinafter, the present invention will be explained in more detail by giving Examples and Comparative Examples, but these are intended to help concrete understanding of the invention, and the scope of the present invention is not limited by the Examples. .

(実施例)
本発明の実施例は、チタン酸バリウム(BaTiO)粉末を含む誘電体原料粉末に、Dy、Tb、Al、Mg、Mnなどの添加剤、バインダー及びエタノールなどの有機溶媒を添加し、湿式混合して誘電体スラリーを設けた後、上記誘電体スラリーをキャリアフィルム上に塗布及び乾燥してセラミックグリーンシートを設けることで誘電体層を形成することができる。
(Example)
In an embodiment of the present invention, additives such as Dy, Tb, Al, Mg, and Mn, a binder, and an organic solvent such as ethanol are added to a dielectric raw material powder containing barium titanate (BaTiO 3 ) powder, and wet mixing is performed. After providing a dielectric slurry, a dielectric layer can be formed by applying the dielectric slurry onto a carrier film and drying it to provide a ceramic green sheet.

この際、チタン酸バリウムに対して、すべての元素の添加剤のサイズが40%以下となるように単分散して投入した。 At this time, the additives of all elements were monodispersed and added so that the size of the additives was 40% or less with respect to barium titanate.

特に、添加される希土類元素のうちジスプロシウム(Dy)及びテルビウム(Tb)の含有量が母材主成分のうちチタン(Ti)100モルに対して1.5モルとなるように含ませた。 In particular, the content of dysprosium (Dy) and terbium (Tb) among the rare earth elements added was 1.5 mol per 100 mol of titanium (Ti) among the main components of the base material.

上記実施例のうち、実施例1は、ジスプロシウム(Dy)及びテルビウム(Tb)の含有量が母材主成分のうちチタン(Ti)100モルに対して1.5モル添加し、実施例2は、上記ジスプロシウム(Dy)の含有量に対する上記テルビウム(Tb)の含有量の比(Tb/Dy)が0.15以上0.5未満となるように調節して製作したものである。 Among the above examples, in Example 1, the content of dysprosium (Dy) and terbium (Tb) was 1.5 mol per 100 mol of titanium (Ti) among the main components of the base material, and in Example 2, , the ratio of the terbium (Tb) content to the dysprosium (Dy) content (Tb/Dy) was adjusted to be 0.15 or more and less than 0.5.

上記セラミックグリーンシートは、セラミック粉末、バインダー、溶剤を混合してスラリーを製造し、上記スラリーをドクターブレード法で数μmの厚さを有するシート(sheet)状に製作することができる。 The ceramic green sheet can be produced by mixing ceramic powder, a binder, and a solvent to prepare a slurry, and then using the slurry by a doctor blade method to form a sheet having a thickness of several μm.

次に、粒子平均サイズが0.1~0.2μmのニッケル粉末を40~50重量部含む内部電極用の導電性ペーストを設けることができる。 Next, a conductive paste for internal electrodes containing 40 to 50 parts by weight of nickel powder with an average particle size of 0.1 to 0.2 μm can be provided.

上記グリーンシート上に上記内部電極用の導電性ペーストをスクリーン印刷工法で塗布して内部電極を形成し、内部電極パターンが配置されたグリーンシートを積層して積層体を形成した後、上記積層体を圧着及び切断した。 A conductive paste for the internal electrodes is applied onto the green sheets using a screen printing method to form internal electrodes, and the green sheets on which the internal electrode patterns are arranged are stacked to form a laminate. was crimped and cut.

次に、切断された積層体を加熱してバインダーを除去した後、高温の還元雰囲気で焼成してセラミック本体を形成した。 Next, the cut laminate was heated to remove the binder, and then fired in a high temperature reducing atmosphere to form a ceramic body.

上記焼成過程では、還元雰囲気(0.1% H/99.9% N、HO/H/N雰囲気)で1100~1200℃の温度で2時間焼成した後、1000℃の窒素(N)雰囲気下で3時間酸化して熱処理した。 In the above firing process, after firing at a temperature of 1100 to 1200°C for 2 hours in a reducing atmosphere (0.1% H 2 /99.9% N 2 , H 2 O / H 2 /N 2 atmosphere), It was oxidized and heat treated in a nitrogen (N 2 ) atmosphere for 3 hours.

次に、焼成されたセラミック本体に対して、銅(Cu)ペーストでターミネーション工程及び電極焼成を経て外部電極を完成した。 Next, the fired ceramic body was subjected to a termination process using copper (Cu) paste and an electrode firing process to complete an external electrode.

また、セラミック本体110の内部の誘電体層111ならびに第1及び第2内部電極121、122は、焼成後の厚さが0.45μm以下となるように製作した。 Further, the dielectric layer 111 inside the ceramic body 110 and the first and second internal electrodes 121 and 122 were manufactured so that the thickness after firing was 0.45 μm or less.

(比較例1)
比較例1は、ジスプロシウム(Dy)及びテルビウム(Tb)の合計含有量が母材主成分のうちチタン(Ti)100モルに対して1.8モルとなるように添加したものであって、その他の制作過程は上述した実施例の場合と同様である。
(Comparative example 1)
In Comparative Example 1, dysprosium (Dy) and terbium (Tb) were added so that the total content was 1.8 mol per 100 mol of titanium (Ti) among the main components of the base material, and other The manufacturing process is the same as in the embodiment described above.

(比較例2)
比較例2は、ジスプロシウム(Dy)及びテルビウム(Tb)の合計含有量が母材主成分のうちチタン(Ti)100モルに対して2.1モルとなるように添加したものであって、その他の制作過程は上述した実施例の場合と同様である。
(Comparative example 2)
In Comparative Example 2, dysprosium (Dy) and terbium (Tb) were added so that the total content was 2.1 mol per 100 mol of titanium (Ti) among the main components of the base material, and other The manufacturing process is the same as in the embodiment described above.

(比較例3)
比較例3は、従来の誘電体磁器組成物であって、テルビウム(Tb)は添加せず、ジスプロシウム(Dy)を単独で添加したものである。その他の制作過程は上述した実施例の場合と同様である。
(Comparative example 3)
Comparative Example 3 is a conventional dielectric ceramic composition in which terbium (Tb) is not added and dysprosium (Dy) is added alone. The rest of the production process is the same as in the embodiment described above.

(比較例4)
比較例4は、上記ジスプロシウム(Dy)の含有量に対する上記テルビウム(Tb)の含有量の比(Tb/Dy)が0.15未満となるように添加したものであって、その他の制作過程は上述した実施例の場合と同様である。
(Comparative example 4)
In Comparative Example 4, the ratio of the terbium (Tb) content to the dysprosium (Dy) content (Tb/Dy) was less than 0.15, and the other production steps were as follows. This is the same as in the embodiment described above.

(比較例5)
比較例5の場合には、上記ジスプロシウム(Dy)の含有量に対する上記テルビウム(Tb)の含有量の比(Tb/Dy)が0.5以上となるように添加したものであって、その他の制作過程は上述した実施例の場合と同様である。
(Comparative example 5)
In the case of Comparative Example 5, the ratio of the terbium (Tb) content to the dysprosium (Dy) content (Tb/Dy) was 0.5 or more, and the other The production process is the same as in the embodiment described above.

上記のように完成された試作型積層セラミックキャパシタ(Proto-type MLCC)試料の実施例1及び2、比較例1から5に対して、温度特性試験及びHALT試験を行って不良率を評価した。 A temperature characteristic test and a HALT test were conducted on the prototype multilayer ceramic capacitor (Prototype MLCC) samples of Examples 1 and 2 and Comparative Examples 1 to 5 completed as described above to evaluate the defective rate.

上記温度特性試験は、容量温度係数(Temperature Coefficient of Capacitance、TCC)を測定したものであって、X5R温度特性は25℃容量基準-55℃~85℃の範囲で静電容量±15%、X6S温度特性は25℃容量基準-55℃~105℃の範囲で静電容量±22%を満たす必要がある。 The above temperature characteristic test measures the temperature coefficient of capacitance (TCC), and the X5R temperature characteristic is the capacitance ±15% in the range of -55°C to 85°C based on the 25°C capacity, and the X6S The temperature characteristics must satisfy the capacitance of ±22% in the range of -55°C to 105°C based on the 25°C capacity standard.

上記HALT試験では、各サンプルごとに積層セラミックキャパシタ(MLCC)チップ40個を基板上に実装し、125℃、20V(DC)の印加条件で12時間測定した。 In the above HALT test, 40 multilayer ceramic capacitor (MLCC) chips were mounted on a substrate for each sample, and measurements were performed at 125° C. and 20 V (DC) for 12 hours.

下記表1は、実験例(実施例1、2及び比較例1、2)による試作型積層セラミックキャパシタ(Proto-type MLCC)チップの上記電気的特性を示すものである。 Table 1 below shows the electrical characteristics of prototype multilayer ceramic capacitor (Proto-type MLCC) chips according to experimental examples (Examples 1 and 2 and Comparative Examples 1 and 2).

Figure 2023184543000002
Figure 2023184543000002

上記表1を参照すると、ジスプロシウム(Dy)及びテルビウム(Tb)の合計含有量が母材主成分のうちチタン(Ti)100モルに対して1.5モルを超える比較例1及び比較例2の場合には、X6S温度特性だけでなくX5R温度特性も満たさないことが分かる。 Referring to Table 1 above, in Comparative Examples 1 and 2, the total content of dysprosium (Dy) and terbium (Tb) exceeds 1.5 mol per 100 mol of titanium (Ti) among the main components of the base material. It can be seen that in some cases, not only the X6S temperature characteristics but also the X5R temperature characteristics are not satisfied.

これに対し、本発明の実施例1は、ジスプロシウム(Dy)及びテルビウム(Tb)の合計含有量が母材主成分のうちチタン(Ti)100モルに対して1.5モル以下の場合であって、X6S温度特性だけでなく、X5R温度特性も満たすとともに、信頼性の改善にも優れることが確認できる。 In contrast, in Example 1 of the present invention, the total content of dysprosium (Dy) and terbium (Tb) was 1.5 mol or less per 100 mol of titanium (Ti) among the main components of the base material. Therefore, it can be confirmed that not only the X6S temperature characteristics but also the X5R temperature characteristics are satisfied, and the reliability is also improved.

図3は本発明の実施例及び比較例によるHALT試験の評価結果を示すグラフである。 FIG. 3 is a graph showing the evaluation results of HALT tests according to Examples and Comparative Examples of the present invention.

図3を参照すると、本発明の比較例3による場合(a)には、従来の誘電体磁器組成物の組成と同一であって、テルビウム(Tb)は添加せず、ジスプロシウム(Dy)だけを単独で添加したものである。ここで、HALT試験後の不良個数が5個と不良率が高いことが分かる。 Referring to FIG. 3, in case (a) according to Comparative Example 3 of the present invention, the composition is the same as that of the conventional dielectric ceramic composition, and terbium (Tb) is not added, and only dysprosium (Dy) is added. It was added alone. Here, it can be seen that the number of defective products after the HALT test was 5, indicating a high defective rate.

また、本発明の比較例4による場合(b)には、上記ジスプロシウム(Dy)の含有量に対する上記テルビウム(Tb)の含有量の比(Tb/Dy)が0.15未満となるように添加したものであって、HALT試験後の不良個数が9個と不良率が高いことが分かる。 In addition, in case (b) according to Comparative Example 4 of the present invention, the ratio of the terbium (Tb) content to the dysprosium (Dy) content (Tb/Dy) is less than 0.15. It can be seen that the number of defective products after the HALT test was 9, indicating a high defective rate.

これは、上記ジスプロシウム(Dy)の含有量に対して添加される上記テルビウム(Tb)の含有量が少ないことが原因でテルビウム(Tb)の添加による信頼性の改善効果がわずかであると考えられる。 This is thought to be due to the fact that the content of the terbium (Tb) added is small relative to the content of the dysprosium (Dy), and the reliability improvement effect of adding terbium (Tb) is small. .

これに対し、本発明の実施例2の場合には(c)、上記ジスプロシウム(Dy)の含有量に対する上記テルビウム(Tb)の含有量の比(Tb/Dy)が0.15以上0.5未満を満たす場合であって、HALT試験後の不良個数が0個と信頼性の改善に優れることが確認できる。 On the other hand, in the case of Example 2 of the present invention (c), the ratio of the terbium (Tb) content to the dysprosium (Dy) content (Tb/Dy) is 0.15 or more and 0.5 It can be confirmed that the number of defective items after the HALT test is 0, and the reliability is excellently improved.

一方、本発明の比較例5の場合には(d)、上記ジスプロシウム(Dy)の含有量に対する上記テルビウム(Tb)の含有量の比(Tb/Dy)が0.5以上であるものであって、ほぼすべてのサンプルで信頼性不良と判明した。 On the other hand, in the case of Comparative Example 5 of the present invention (d), the ratio of the terbium (Tb) content to the dysprosium (Dy) content (Tb/Dy) was 0.5 or more. It was found that almost all samples had poor reliability.

上記ジスプロシウム(Dy)の含有量に対する上記テルビウム(Tb)の含有量の比(Tb/Dy)が0.50以上の場合には、半導体化による絶縁抵抗の低下が発生すると考えられる。 When the ratio of the terbium (Tb) content to the dysprosium (Dy) content (Tb/Dy) is 0.50 or more, it is considered that insulation resistance decreases due to semiconductor formation.

以上、本発明の実施形態について詳細に説明したが、本発明の範囲はこれに限定されず、特許請求の範囲に記載された本発明の技術的思想から外れない範囲内で多様な修正及び変形が可能であるということは、当技術分野の通常の知識を有する者には明らかである。 Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and variations can be made without departing from the technical idea of the present invention as described in the claims. It is clear to a person of ordinary skill in the art that this is possible.

[項目1]
BaTiO系母材主成分と副成分を含み、
前記副成分は、希土類元素として3価ランタン族希土類元素A及びテルビウム(Tb)を含み、
前記3価ランタン族希土類元素Aの含有量に対する前記テルビウム(Tb)の含有量の比(Tb/A)は0.15≦Tb/A<0.50を満たす、誘電体磁器組成物。
[項目2]
前記3価ランタン族希土類元素Aはジスプロシウム(Dy)である、項目1に記載の誘電体磁器組成物。
[項目3]
前記3価ランタン族希土類元素A及びテルビウム(Tb)の合計含有量が母材主成分のうちチタン(Ti)100モルに対して0.2モル以上1.5モル以下である、項目1または2に記載の誘電体磁器組成物。
[項目4]
前記誘電体磁器組成物は、前記母材主成分100モルに対して、Y、Ho、Er、Ce、Nd、Pm、Eu、Gd、Tm、Yb、Lu、及びSmのうち少なくとも一つを含む酸化物又は炭酸塩である第1副成分を0.0~4.0モルさらに含む、項目1から3のいずれか一項に記載の誘電体磁器組成物。
[項目5]
前記誘電体磁器組成物は、前記母材主成分100モルに対して、Mn、V、Cr、Fe、Ni、Co、Cu、及びZnのうちの少なくとも一つを含む酸化物又は炭酸塩である第2副成分を0.1~2.0モルさらに含む、項目1から4のいずれか一項に記載の誘電体磁器組成物。
[項目6]
前記誘電体磁器組成物は、前記母材主成分のうちチタン(Ti)100モルに対して、原子価固定アクセプタ元素のMgを含む酸化物又は炭酸塩である第3副成分を0.0~0.5モルさらに含む、項目1から5のいずれか一項に記載の誘電体磁器組成物。
[項目7]
前記誘電体磁器組成物は、前記母材主成分100モルに対して、Baを含む酸化物又は炭酸塩である第4副成分を0.0~4.15モルさらに含む、項目1から6のいずれか一項に記載の誘電体磁器組成物。
[項目8]
前記誘電体磁器組成物は、前記母材主成分100モルに対して、Ca及びZrのうち少なくとも一つを含む酸化物又は炭酸塩である第5副成分を0.0~20.0モル含む、項目1から7のいずれか一項に記載の誘電体磁器組成物。
[項目9]
前記誘電体磁器組成物は、前記母材主成分100モルに対して、Si及びAlのうち少なくとも一つを含む酸化物又はSiを含むガラス(Glass)化合物である第6副成分を0.0~4.0モルさらに含む、項目1から8のいずれか一項に記載の誘電体磁器組成物。
[項目10]
誘電体層、及び前記誘電体層を間に挟んで互いに対向するように配置される第1内部電極及び第2内部電極を含むセラミック本体と、
前記セラミック本体の外側に配置され、且つ前記第1内部電極と電気的に連結される第1外部電極、及び前記第2内部電極と電気的に連結される第2外部電極と、を含み、
前記誘電体層は誘電体磁器組成物を含み、
前記誘電体磁器組成物はBaTiO系母材主成分と副成分を含み、
前記副成分は、希土類元素として3価ランタン族希土類元素A及びテルビウム(Tb)を含み、
前記3価ランタン族希土類元素Aの含有量に対する前記テルビウム(Tb)の含有量の比(Tb/A)は0.15≦Tb/A<0.50を満たす、積層セラミックキャパシタ。
[項目11]
前記3価ランタン族希土類元素Aはジスプロシウム(Dy)である、項目10に記載の積層セラミックキャパシタ。
[項目12]
前記3価ランタン族希土類元素A及びテルビウム(Tb)の合計含有量が母材主成分のうちチタン(Ti)100モルに対して0.2モル以上1.5モル以下である、項目10または11に記載の積層セラミックキャパシタ。
[項目13]
前記誘電体磁器組成物は、前記母材主成分100モルに対して、Y、Ho、Er、Ce、Nd、Pm、Eu、Gd、Tm、Yb、Lu、及びSmのうち少なくとも一つを含む酸化物又は炭酸塩である第1副成分を0.0~4.0モルさらに含む、項目10から12のいずれか一項に記載の積層セラミックキャパシタ。
[項目14]
前記誘電体磁器組成物は、前記母材主成分100モルに対して、Mn、V、Cr、Fe、Ni、Co、Cu、及びZnのうちの少なくとも一つを含む酸化物又は炭酸塩である第2副成分を0.1~2.0モルさらに含む、項目10から13のいずれか一項に記載の積層セラミックキャパシタ。
[項目15]
前記誘電体磁器組成物は、前記母材主成分のうちチタン(Ti)100モルに対して、原子価固定アクセプタ元素のMgを含む酸化物又は炭酸塩である第3副成分を0.0~0.5モルさらに含む、項目10から14のいずれか一項に記載の積層セラミックキャパシタ。
[項目16]
前記誘電体磁器組成物は、前記母材主成分100モルに対して、Baを含む酸化物又は炭酸塩である第4副成分を0.0~4.15モルさらに含み、Ca及びZrのうち少なくとも一つを含む酸化物又は炭酸塩である第5副成分を0.0~20.0モルさらに含む、項目10から15のいずれか一項に記載の積層セラミックキャパシタ。
[項目17]
前記誘電体磁器組成物は、前記母材主成分100モルに対して、Si及びAlのうち少なくとも一つを含む酸化物又はSiを含むガラス(Glass)化合物である第6副成分を0.0~4.0モルさらに含む、項目10から16のいずれか一項に記載の積層セラミックキャパシタ。
[項目18]
前記誘電体層の厚さは0.45μm以下であり、前記第1及び第2内部電極の厚さは0.45μm以下である、項目10から17のいずれか一項に記載の積層セラミックキャパシタ。
[Item 1]
Contains a BaTiO 3 -based matrix main component and subcomponents,
The subcomponents include a trivalent lanthanum group rare earth element A and terbium (Tb) as rare earth elements,
A dielectric ceramic composition, wherein the ratio of the terbium (Tb) content to the trivalent lanthanum group rare earth element A content (Tb/A) satisfies 0.15≦Tb/A<0.50.
[Item 2]
The dielectric ceramic composition according to item 1, wherein the trivalent lanthanum group rare earth element A is dysprosium (Dy).
[Item 3]
Item 1 or 2, wherein the total content of the trivalent lanthanum group rare earth element A and terbium (Tb) is 0.2 mol or more and 1.5 mol or less per 100 mol of titanium (Ti) among the main components of the base material. The dielectric ceramic composition described in .
[Item 4]
The dielectric ceramic composition contains at least one of Y, Ho, Er, Ce, Nd, Pm, Eu, Gd, Tm, Yb, Lu, and Sm based on 100 moles of the base material main component. The dielectric ceramic composition according to any one of items 1 to 3, further comprising 0.0 to 4.0 moles of a first subcomponent that is an oxide or carbonate.
[Item 5]
The dielectric ceramic composition is an oxide or carbonate containing at least one of Mn, V, Cr, Fe, Ni, Co, Cu, and Zn based on 100 moles of the base material main component. The dielectric ceramic composition according to any one of items 1 to 4, further comprising 0.1 to 2.0 moles of a second subcomponent.
[Item 6]
The dielectric ceramic composition contains 0.0 to 0.0 to 0.0 to 0.0 to 100 moles of titanium (Ti) as the main component of the base material, and a third subcomponent that is an oxide or carbonate containing Mg, which is a fixed valence acceptor element. The dielectric ceramic composition according to any one of items 1 to 5, further comprising 0.5 mol.
[Item 7]
The dielectric ceramic composition according to items 1 to 6 further contains 0.0 to 4.15 moles of a fourth subcomponent which is an oxide or carbonate containing Ba with respect to 100 moles of the base material main component. The dielectric ceramic composition according to any one of the items.
[Item 8]
The dielectric ceramic composition contains 0.0 to 20.0 moles of a fifth subcomponent, which is an oxide or carbonate containing at least one of Ca and Zr, per 100 moles of the base material main component. , the dielectric ceramic composition according to any one of items 1 to 7.
[Item 9]
The dielectric ceramic composition contains 0.0 mol of the sixth subcomponent, which is an oxide containing at least one of Si and Al, or a glass compound containing Si, with respect to 100 mol of the base material main component. The dielectric ceramic composition according to any one of items 1 to 8, further comprising ˜4.0 mol.
[Item 10]
a ceramic body including a dielectric layer, and a first internal electrode and a second internal electrode arranged to face each other with the dielectric layer interposed therebetween;
a first external electrode disposed outside the ceramic body and electrically connected to the first internal electrode; and a second external electrode electrically connected to the second internal electrode;
The dielectric layer includes a dielectric ceramic composition,
The dielectric ceramic composition includes a BaTiO 3 base material main component and subcomponents,
The subcomponents include a trivalent lanthanum group rare earth element A and terbium (Tb) as rare earth elements,
A multilayer ceramic capacitor in which a ratio (Tb/A) of the content of terbium (Tb) to the content of the trivalent lanthanum group rare earth element A satisfies 0.15≦Tb/A<0.50.
[Item 11]
11. The multilayer ceramic capacitor according to item 10, wherein the trivalent lanthanum group rare earth element A is dysprosium (Dy).
[Item 12]
Item 10 or 11, wherein the total content of the trivalent lanthanum group rare earth element A and terbium (Tb) is 0.2 mol or more and 1.5 mol or less per 100 mol of titanium (Ti) among the main components of the base material. The multilayer ceramic capacitor described in .
[Item 13]
The dielectric ceramic composition contains at least one of Y, Ho, Er, Ce, Nd, Pm, Eu, Gd, Tm, Yb, Lu, and Sm based on 100 moles of the base material main component. The multilayer ceramic capacitor according to any one of items 10 to 12, further comprising 0.0 to 4.0 mol of a first subcomponent that is an oxide or carbonate.
[Item 14]
The dielectric ceramic composition is an oxide or carbonate containing at least one of Mn, V, Cr, Fe, Ni, Co, Cu, and Zn based on 100 moles of the base material main component. The multilayer ceramic capacitor according to any one of items 10 to 13, further comprising 0.1 to 2.0 moles of a second subcomponent.
[Item 15]
The dielectric ceramic composition contains 0.0 to 0.0 to 0.0 to 0.0 to 100 moles of titanium (Ti) as the main component of the base material, and a third subcomponent that is an oxide or carbonate containing Mg, which is a fixed valence acceptor element. 15. The multilayer ceramic capacitor according to any one of items 10 to 14, further comprising 0.5 mol.
[Item 16]
The dielectric ceramic composition further contains 0.0 to 4.15 moles of a fourth subcomponent, which is an oxide or carbonate containing Ba, with respect to 100 moles of the main component of the base material, and contains 0.0 to 4.15 moles of a fourth subcomponent, which is an oxide or carbonate containing Ba, and The multilayer ceramic capacitor according to any one of items 10 to 15, further comprising 0.0 to 20.0 mol of a fifth subcomponent that is an oxide or carbonate containing at least one.
[Item 17]
The dielectric ceramic composition contains 0.0 mol of the sixth subcomponent, which is an oxide containing at least one of Si and Al, or a glass compound containing Si, with respect to 100 mol of the base material main component. The multilayer ceramic capacitor according to any one of items 10 to 16, further comprising ~4.0 mol.
[Item 18]
18. The multilayer ceramic capacitor according to any one of items 10 to 17, wherein the dielectric layer has a thickness of 0.45 μm or less, and the first and second internal electrodes have thicknesses of 0.45 μm or less.

110 セラミック本体
111 誘電体層
121 第1内部電極
122 第2内部電極
131 第1外部電極
132 第2外部電極
110 Ceramic body 111 Dielectric layer 121 First internal electrode 122 Second internal electrode 131 First external electrode 132 Second external electrode

Claims (13)

BaTiO系母材主成分と副成分を含み、
前記副成分は、希土類元素として3価ランタン族希土類元素A及びテルビウム(Tb)を含み、
前記3価ランタン族希土類元素Aの含有量に対する前記テルビウム(Tb)の含有量の比(Tb/A)は0.15≦Tb/A<0.50を満たし、
前記3価ランタン族希土類元素Aはジスプロシウム(Dy)であり、
前記3価ランタン族希土類元素A及びテルビウム(Tb)の合計含有量が母材主成分のうちチタン(Ti)100モルに対して0.2モル以上1.5モル以下であり、
前記副成分はMgを含まない、
誘電体磁器組成物。
Contains a BaTiO 3 -based matrix main component and subcomponents,
The subcomponents include a trivalent lanthanum group rare earth element A and terbium (Tb) as rare earth elements,
The ratio of the content of terbium (Tb) to the content of the trivalent lanthanum group rare earth element A (Tb/A) satisfies 0.15≦Tb/A<0.50,
The trivalent lanthanum group rare earth element A is dysprosium (Dy),
The total content of the trivalent lanthanum group rare earth element A and terbium (Tb) is 0.2 mol or more and 1.5 mol or less per 100 mol of titanium (Ti) among the main components of the base material,
the subcomponent does not contain Mg;
Dielectric porcelain composition.
前記誘電体磁器組成物は、前記母材主成分100モルに対して、Y、Ho、Er、Ce、Nd、Pm、Eu、Gd、Tm、Yb、Lu、及びSmのうち少なくとも一つを含む酸化物又は炭酸塩である第1副成分を0.0~4.0モルさらに含む、請求項1に記載の誘電体磁器組成物。 The dielectric ceramic composition contains at least one of Y, Ho, Er, Ce, Nd, Pm, Eu, Gd, Tm, Yb, Lu, and Sm based on 100 moles of the base material main component. The dielectric ceramic composition according to claim 1, further comprising 0.0 to 4.0 moles of the first subcomponent which is an oxide or carbonate. 前記誘電体磁器組成物は、前記母材主成分100モルに対して、Mn、V、Cr、Fe、Ni、Co、Cu、及びZnのうちの少なくとも一つを含む酸化物又は炭酸塩である第2副成分を0.1~2.0モルさらに含む、請求項1または2に記載の誘電体磁器組成物。 The dielectric ceramic composition is an oxide or carbonate containing at least one of Mn, V, Cr, Fe, Ni, Co, Cu, and Zn based on 100 moles of the base material main component. The dielectric ceramic composition according to claim 1 or 2, further comprising 0.1 to 2.0 moles of a second subcomponent. 前記誘電体磁器組成物は、前記母材主成分100モルに対して、Baを含む酸化物又は炭酸塩である第4副成分を0.0~4.15モルさらに含む、請求項1から3のいずれか一項に記載の誘電体磁器組成物。 Claims 1 to 3, wherein the dielectric ceramic composition further contains 0.0 to 4.15 moles of a fourth subcomponent which is an oxide or carbonate containing Ba with respect to 100 moles of the base material main component. The dielectric ceramic composition according to any one of . 前記誘電体磁器組成物は、前記母材主成分100モルに対して、Ca及びZrのうち少なくとも一つを含む酸化物又は炭酸塩である第5副成分を0.0~20.0モル含む、請求項1から4のいずれか一項に記載の誘電体磁器組成物。 The dielectric ceramic composition contains 0.0 to 20.0 moles of a fifth subcomponent, which is an oxide or carbonate containing at least one of Ca and Zr, per 100 moles of the base material main component. , The dielectric ceramic composition according to any one of claims 1 to 4. 前記誘電体磁器組成物は、前記母材主成分100モルに対して、Si及びAlのうち少なくとも一つを含む酸化物又はSiを含むガラス(Glass)化合物である第6副成分を0.0~4.0モルさらに含む、請求項1から5のいずれか一項に記載の誘電体磁器組成物。 The dielectric ceramic composition contains 0.0 mol of the sixth subcomponent, which is an oxide containing at least one of Si and Al, or a glass compound containing Si, with respect to 100 mol of the base material main component. The dielectric ceramic composition according to any one of claims 1 to 5, further comprising ˜4.0 mol. 誘電体層、及び前記誘電体層を間に挟んで互いに対向するように配置される第1内部電極及び第2内部電極を含むセラミック本体と、
前記セラミック本体の外側に配置され、且つ前記第1内部電極と電気的に連結される第1外部電極、及び前記第2内部電極と電気的に連結される第2外部電極と、を含み、
前記誘電体層は誘電体磁器組成物を含み、
前記誘電体磁器組成物はBaTiO系母材主成分と副成分を含み、
前記副成分は、希土類元素として3価ランタン族希土類元素A及びテルビウム(Tb)を含み、
前記3価ランタン族希土類元素Aの含有量に対する前記テルビウム(Tb)の含有量の比(Tb/A)は0.15≦Tb/A<0.50を満たし、
前記3価ランタン族希土類元素Aはジスプロシウム(Dy)であり、
前記3価ランタン族希土類元素A及びテルビウム(Tb)の合計含有量が母材主成分のうちチタン(Ti)100モルに対して0.2モル以上1.5モル以下であり、
前記副成分はMgを含まない、
積層セラミックキャパシタ。
a ceramic body including a dielectric layer, and a first internal electrode and a second internal electrode arranged to face each other with the dielectric layer interposed therebetween;
a first external electrode disposed outside the ceramic body and electrically connected to the first internal electrode; and a second external electrode electrically connected to the second internal electrode;
The dielectric layer includes a dielectric ceramic composition,
The dielectric ceramic composition includes a BaTiO 3 base material main component and subcomponents,
The subcomponents include a trivalent lanthanum group rare earth element A and terbium (Tb) as rare earth elements,
The ratio of the content of terbium (Tb) to the content of the trivalent lanthanum group rare earth element A (Tb/A) satisfies 0.15≦Tb/A<0.50,
The trivalent lanthanum group rare earth element A is dysprosium (Dy),
The total content of the trivalent lanthanum group rare earth element A and terbium (Tb) is 0.2 mol or more and 1.5 mol or less per 100 mol of titanium (Ti) among the main components of the base material,
the subcomponent does not contain Mg;
Multilayer ceramic capacitor.
前記誘電体磁器組成物は、前記母材主成分100モルに対して、Y、Ho、Er、Ce、Nd、Pm、Eu、Gd、Tm、Yb、Lu、及びSmのうち少なくとも一つを含む酸化物又は炭酸塩である第1副成分を0.0~4.0モルさらに含む、請求項7に記載の積層セラミックキャパシタ。 The dielectric ceramic composition contains at least one of Y, Ho, Er, Ce, Nd, Pm, Eu, Gd, Tm, Yb, Lu, and Sm based on 100 moles of the base material main component. The multilayer ceramic capacitor according to claim 7, further comprising 0.0 to 4.0 moles of the first subcomponent which is an oxide or carbonate. 前記誘電体磁器組成物は、前記母材主成分100モルに対して、Mn、V、Cr、Fe、Ni、Co、Cu、及びZnのうちの少なくとも一つを含む酸化物又は炭酸塩である第2副成分を0.1~2.0モルさらに含む、請求項7または8に記載の積層セラミックキャパシタ。 The dielectric ceramic composition is an oxide or carbonate containing at least one of Mn, V, Cr, Fe, Ni, Co, Cu, and Zn based on 100 moles of the base material main component. The multilayer ceramic capacitor according to claim 7 or 8, further comprising 0.1 to 2.0 moles of a second subcomponent. 前記誘電体磁器組成物は、前記母材主成分100モルに対して、Baを含む酸化物又は炭酸塩である第4副成分を0.0~4.15モルさらに含む、請求項7から9のいずれか一項に記載の積層セラミックキャパシタ。 Claims 7 to 9, wherein the dielectric ceramic composition further contains 0.0 to 4.15 moles of a fourth subcomponent which is an oxide or carbonate containing Ba, based on 100 moles of the base material main component. The multilayer ceramic capacitor according to any one of the above. 前記誘電体磁器組成物は、Ca及びZrのうち少なくとも一つを含む酸化物又は炭酸塩である第5副成分を0.0~20.0モルさらに含む、請求項7から10のいずれか一項に記載の積層セラミックキャパシタ。 The dielectric ceramic composition further contains 0.0 to 20.0 moles of a fifth subcomponent which is an oxide or carbonate containing at least one of Ca and Zr. The multilayer ceramic capacitor described in . 前記誘電体磁器組成物は、前記母材主成分100モルに対して、Si及びAlのうち少なくとも一つを含む酸化物又はSiを含むガラス(Glass)化合物である第6副成分を0.0~4.0モルさらに含む、請求項7から11のいずれか一項に記載の積層セラミックキャパシタ。 The dielectric ceramic composition contains 0.0 mol of the sixth subcomponent, which is an oxide containing at least one of Si and Al, or a glass compound containing Si, with respect to 100 mol of the base material main component. The multilayer ceramic capacitor according to any one of claims 7 to 11, further comprising ~4.0 mol. 前記誘電体層の厚さは0.45μm以下であり、前記第1内部電極及び前記第2内部電極の厚さは0.45μm以下である、請求項7から12のいずれか一項に記載の積層セラミックキャパシタ。 13. The dielectric layer according to claim 7, wherein the dielectric layer has a thickness of 0.45 μm or less, and the first internal electrode and the second internal electrode have a thickness of 0.45 μm or less. Multilayer ceramic capacitor.
JP2023175740A 2019-02-01 2023-10-11 Dielectric ceramic composition and multilayer ceramic capacitor comprising the same Pending JP2023184543A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR10-2019-0013948 2019-02-01
KR20190013948 2019-02-01
KR1020190033361A KR102222944B1 (en) 2019-02-01 2019-03-25 Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
KR10-2019-0033361 2019-03-25
JP2019118392A JP7366604B2 (en) 2019-02-01 2019-06-26 Dielectric ceramic composition and multilayer ceramic capacitor containing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019118392A Division JP7366604B2 (en) 2019-02-01 2019-06-26 Dielectric ceramic composition and multilayer ceramic capacitor containing the same

Publications (1)

Publication Number Publication Date
JP2023184543A true JP2023184543A (en) 2023-12-28

Family

ID=71836710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023175740A Pending JP2023184543A (en) 2019-02-01 2023-10-11 Dielectric ceramic composition and multilayer ceramic capacitor comprising the same

Country Status (2)

Country Link
JP (1) JP2023184543A (en)
CN (1) CN111517780B (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2998639B2 (en) * 1996-06-20 2000-01-11 株式会社村田製作所 Multilayer ceramic capacitors
JP3567759B2 (en) * 1998-09-28 2004-09-22 株式会社村田製作所 Dielectric ceramic composition and multilayer ceramic capacitor
JP3918372B2 (en) * 1999-07-26 2007-05-23 株式会社村田製作所 Dielectric ceramic composition and multilayer ceramic capacitor
CN1250483C (en) * 2002-01-15 2006-04-12 Tdk株式会社 Dielectric ceramic composite and electronic device
JP3882054B2 (en) * 2003-07-07 2007-02-14 株式会社村田製作所 Multilayer ceramic capacitor
TW200706513A (en) * 2005-04-27 2007-02-16 Murata Manufacturing Co Dielectric ceramic, process for producing the same, and laminated ceramic capacitor
JP5483825B2 (en) * 2007-07-27 2014-05-07 京セラ株式会社 Dielectric porcelain and multilayer ceramic capacitor
US20120113562A1 (en) * 2010-11-08 2012-05-10 Samsung Electro-Mechanics Co., Ltd. Dielectric composition having high dielectric constant, multi layered ceramic condensers comprising the same, and method of preparing for multi layered ceramic condensers
JP5566434B2 (en) * 2012-09-25 2014-08-06 太陽誘電株式会社 Multilayer ceramic capacitor

Also Published As

Publication number Publication date
CN111517780B (en) 2023-07-25
CN111517780A (en) 2020-08-11

Similar Documents

Publication Publication Date Title
JP7366604B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor containing the same
JP7435993B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor containing the same
CN112420383B (en) Dielectric ceramic composition and multilayer ceramic capacitor including the same
JP7484449B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor including the same
CN110828170B (en) Multilayer ceramic capacitor
CN112079634B (en) Dielectric ceramic composition and multilayer ceramic capacitor including the same
JP5420603B2 (en) Reduction-resistant dielectric composition and ceramic electronic component including the same
CN112299840B (en) Dielectric ceramic composition and multilayer ceramic capacitor including the same
JP2020203824A (en) Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
CN112079636B (en) Dielectric ceramic composition and multilayer ceramic capacitor including the same
JP2023184543A (en) Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
JP2023097355A (en) Multilayer ceramic electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231024