JP2023183633A - Multilayer body, method for producing the same, and packaging bag - Google Patents

Multilayer body, method for producing the same, and packaging bag Download PDF

Info

Publication number
JP2023183633A
JP2023183633A JP2022097245A JP2022097245A JP2023183633A JP 2023183633 A JP2023183633 A JP 2023183633A JP 2022097245 A JP2022097245 A JP 2022097245A JP 2022097245 A JP2022097245 A JP 2022097245A JP 2023183633 A JP2023183633 A JP 2023183633A
Authority
JP
Japan
Prior art keywords
layer
adhesive
laminate
solvent
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022097245A
Other languages
Japanese (ja)
Inventor
亮太 田中
Ryota Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Holdings Inc
Original Assignee
Toppan Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Holdings Inc filed Critical Toppan Holdings Inc
Priority to JP2022097245A priority Critical patent/JP2023183633A/en
Priority to PCT/JP2023/021759 priority patent/WO2023243607A1/en
Publication of JP2023183633A publication Critical patent/JP2023183633A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a multilayer body with improved dimensional stability of printed patterns and lamination strength.SOLUTION: A multilayer body has a structure where a base material layer, a print layer, a first adhesive layer, an intermediate layer, a second adhesive layer, and a sealant layer are stacked in this order; the base material layer, the intermediate layer and the sealant layer are each composed of an unstretched polyethylene film; the first adhesive layer is formed using a solvent-free adhesive; and the ratio of polyethylene in the multilayer body is 90 mass% or more.SELECTED DRAWING: Figure 1

Description

本開示は、積層体及びその製造方法、並びに、包装袋に関する。より詳しくは、本開示は、材料のリサイクル適性に優れる環境負荷の小さな積層体及びその製造方法、並びに、包装袋に関する。 The present disclosure relates to a laminate, a method for manufacturing the same, and a packaging bag. More specifically, the present disclosure relates to a laminate with excellent material recyclability and low environmental impact, a method for manufacturing the same, and a packaging bag.

包装袋は、包装する内容物の性質、内容物の量、内容物の変質を防ぐための後処理、包装袋を運搬する形態、包装袋を開封する方法、廃棄する方法などによって、さまざまな素材が組み合わせて用いられている。 Packaging bags are made of various materials, depending on the nature of the contents to be packaged, the amount of contents, post-treatment to prevent deterioration of the contents, the form in which the packaging bags are transported, the method of opening the packaging bags, the method of disposal, etc. are used in combination.

たとえば、積層したフィルムを用いるフレキシブルパッケージの包装袋においては、包装袋の機械的強度を得るためにポリプロピレンやポリエステルなどの二軸延伸フィルムを用い、包装袋として内容物を封止するためにポリエチレン、ポリプロピレン、エチレン酢酸ビニル共重合体などをヒートシール材料とするなどの組み合わせにより用いられている。また、内容物の劣化を抑制するために、アルミ箔や、エチレンビニルアルコール共重合体を積層するなども行われている。 For example, in packaging bags for flexible packages that use laminated films, biaxially stretched films such as polypropylene and polyester are used to obtain the mechanical strength of the packaging bags, and polyethylene and polyester are used to seal the contents as packaging bags. It is used in combination with polypropylene, ethylene vinyl acetate copolymer, etc. as the heat seal material. Additionally, in order to suppress the deterioration of the contents, aluminum foil or ethylene vinyl alcohol copolymer is laminated.

上記の機能分離した各種素材を用いた積層体は、内容物の包装から、輸送、保管、開封などの各過程での適性に重点をおいて設計されたものである。しかしながら、近年の環境問題への意識の高まりから、各種製品の省資源、リサイクル適性などの機能に重点がおかれるようになり、包装袋に用いられる積層体にも同様の機能が求められてきている。一般に、包装材料に含まれる主要な樹脂の割合が90質量%以上であるとリサイクル性が高いと考えられているが、従来の包装材料の多くは複数の樹脂材料や場合により紙、金属材料を含んで構成されており、かつこの基準を満たしていないため、リサイクルされていないのが現状である。 The above-mentioned laminates using various functionally separated materials are designed with emphasis on suitability in each process, from packaging the contents to transportation, storage, and opening. However, as awareness of environmental issues has increased in recent years, emphasis has been placed on functions such as resource saving and recyclability of various products, and similar functions are now being required for the laminates used in packaging bags. There is. Generally, packaging materials are considered to be highly recyclable if their main resin content is 90% by mass or more, but many conventional packaging materials contain multiple resin materials and, in some cases, paper and metal materials. Currently, it is not recycled because it does not meet this standard.

そこで、特許文献1には、基材と、接着層と、ヒートシール層とを備えた積層体において、基材及びヒートシール層をポリエチレンから構成することが記載されている。基材及びヒートシール層を同一材料で構成することにより、上記リサイクル性の基準をクリアしやすくなる。また、特許文献1では、基材として延伸ポリエチレンフィルムを使用することが提案されており、それによって印刷適性を向上できることが記載されている。 Therefore, Patent Document 1 describes that in a laminate including a base material, an adhesive layer, and a heat seal layer, the base material and the heat seal layer are made of polyethylene. By configuring the base material and the heat-sealing layer from the same material, it becomes easier to meet the above-mentioned recyclability criteria. Moreover, Patent Document 1 proposes using a stretched polyethylene film as a base material, and describes that printability can be improved thereby.

特開2020-55157号公報JP 2020-55157 Publication

積層体の基材層としてポリエチレンフィルムを用いた場合、素材の特徴である柔らかく熱融着しやすい性質に起因して、熱乾燥を伴う積層体製造工程において基材層が熱変形しやすい。基材層が熱変形すると、基材層に印刷した絵柄の寸法に伸び縮みが生じ、外観不良や、アイマークがずれて製袋ができないという不具合が発生することとなる。 When a polyethylene film is used as the base material layer of a laminate, the base material layer is likely to be thermally deformed during the laminate manufacturing process that involves heat drying due to the material's soft and easily heat-sealable properties. When the base material layer is thermally deformed, the dimensions of the pattern printed on the base material layer expand and contract, resulting in problems such as poor appearance and misalignment of the eye marks, making it impossible to make bags.

また、基材層に延伸ポリエチレンフィルムを用いた場合、基材層の伸び縮みを抑制しやすいが、基材層と中間層やシーラント層(ヒートシール層)との密着性が不十分であり、包装袋を形成した場合に破袋しやすいという問題がある。 In addition, when a stretched polyethylene film is used for the base layer, it is easy to suppress the expansion and contraction of the base layer, but the adhesion between the base layer and the intermediate layer or sealant layer (heat seal layer) is insufficient. There is a problem in that when a packaging bag is formed, the bag is easily torn.

本開示は、上記従来技術の有する課題に鑑みてなされたものであり、印刷絵柄の寸法安定性及びラミネート強度が良好である積層体及びその製造方法、並びに、上記積層体を用いた包装袋を提供することを目的とする。 The present disclosure has been made in view of the problems of the prior art described above, and provides a laminate with good dimensional stability of printed patterns and lamination strength, a method for manufacturing the same, and a packaging bag using the laminate. The purpose is to provide.

上記課題を解決するために、本開示は、以下の積層体及びその製造方法、並びに、包装袋を提供する。 In order to solve the above problems, the present disclosure provides the following laminate, method for manufacturing the same, and packaging bag.

[1]基材層と、印刷層と、第1の接着剤層と、中間層と、第2の接着剤層と、シーラント層と、がこの順で積層された構造を有し、上記基材層、上記中間層及び上記シーラント層がいずれも無延伸ポリエチレンフィルムから構成されており、上記第1の接着剤層が無溶剤型接着剤を用いて形成された層であり、積層体に占めるポリエチレンの割合が90質量%以上である、積層体。
[2]上記無溶剤型接着剤が、2液硬化型のウレタン系接着剤である、上記[1]に記載の積層体。
[3]上記基材層及び上記中間層がいずれも高密度ポリエチレン又は中密度ポリエチレンを含む、上記[1]又は[2]に記載の積層体。
[4]上記シーラント層が低密度ポリエチレンを含む、上記[1]~[3]のいずれかに記載の積層体。
[5]上記中間層の少なくとも一方の面上に無機酸化物層を備え、上記無機酸化物層が金属酸化物を含む、上記[1]~[4]のいずれかに記載の積層体。
[6]上記無機酸化物層と上記第1の接着剤層又は上記第2の接着剤層との間にガスバリア性被覆層を備える、上記[5]に記載の積層体。
[7]上記第2の接着剤層が、ガスバリア性接着剤を用いて形成されたガスバリア性接着剤層である、上記[1]~[6]のいずれかに記載の積層体。
[8]上記[1]~[7]のいずれかに記載の積層体を製袋してなる包装袋。
[9]上記[1]~[7]のいずれかに記載の積層体の製造方法であって、上記基材層上にインキを用いた印刷法により上記印刷層を形成して印刷基材を得る印刷工程と、上記印刷基材と、上記中間層、上記第2の接着剤層及び上記シーラント層を含む積層フィルムとを、上記無溶剤型接着剤を用いて貼り合わせる貼合工程と、を有する積層体の製造方法。
[10]上記無溶剤型接着剤が、2液硬化型のウレタン系接着剤であり、2液混合直後の上記ウレタン系接着剤の粘度が、40℃において200~2500mPa・sである、上記[9]に記載の積層体の製造方法。
[11]上記貼合工程において、上記無溶剤型接着剤の加熱温度を、該加熱温度における上記無溶剤型接着剤の粘度が200~2000mPa・sとなるように、50~90℃の範囲内で設定する、上記[9]又は[10]に記載の積層体の製造方法。
[1] It has a structure in which a base material layer, a printing layer, a first adhesive layer, an intermediate layer, a second adhesive layer, and a sealant layer are laminated in this order; The material layer, the intermediate layer, and the sealant layer are all composed of unstretched polyethylene films, and the first adhesive layer is a layer formed using a solvent-free adhesive, and the first adhesive layer is a layer formed using a solvent-free adhesive, and the first adhesive layer is a layer formed using a solvent-free adhesive, and the first adhesive layer is a layer formed using a solvent-free adhesive, and A laminate in which the proportion of polyethylene is 90% by mass or more.
[2] The laminate according to [1] above, wherein the solvent-free adhesive is a two-component curable urethane adhesive.
[3] The laminate according to [1] or [2] above, wherein the base layer and the intermediate layer both contain high-density polyethylene or medium-density polyethylene.
[4] The laminate according to any one of [1] to [3] above, wherein the sealant layer contains low-density polyethylene.
[5] The laminate according to any one of [1] to [4] above, comprising an inorganic oxide layer on at least one surface of the intermediate layer, the inorganic oxide layer containing a metal oxide.
[6] The laminate according to [5] above, comprising a gas barrier coating layer between the inorganic oxide layer and the first adhesive layer or the second adhesive layer.
[7] The laminate according to any one of [1] to [6] above, wherein the second adhesive layer is a gas barrier adhesive layer formed using a gas barrier adhesive.
[8] A packaging bag made from the laminate according to any one of [1] to [7] above.
[9] A method for producing a laminate according to any one of [1] to [7] above, which comprises forming the printing layer on the substrate layer by a printing method using ink to form a printing substrate. and a laminating step of laminating the printing substrate and a laminated film including the intermediate layer, the second adhesive layer, and the sealant layer using the solvent-free adhesive. A method for manufacturing a laminate comprising:
[10] The above solvent-free adhesive is a two-part curing urethane adhesive, and the viscosity of the urethane adhesive immediately after mixing the two parts is 200 to 2500 mPa·s at 40°C. 9]. The method for producing a laminate according to item 9.
[11] In the above bonding step, the heating temperature of the solvent-free adhesive is within the range of 50 to 90°C so that the viscosity of the solvent-free adhesive at the heating temperature is 200 to 2000 mPa・s. The method for manufacturing a laminate according to the above [9] or [10], wherein the method is set as follows.

本開示によれば、印刷絵柄の寸法安定性及びラミネート強度が良好である積層体及びその製造方法、並びに、上記積層体を用いた包装袋を提供することができる。 According to the present disclosure, it is possible to provide a laminate with good dimensional stability of a printed pattern and good lamination strength, a method for manufacturing the same, and a packaging bag using the laminate.

本開示の積層体の一実施形態を示す断面模式図である。FIG. 1 is a schematic cross-sectional view showing an embodiment of a laminate of the present disclosure. 本開示の積層体の一実施形態を示す断面模式図である。FIG. 1 is a schematic cross-sectional view showing an embodiment of a laminate of the present disclosure.

以下、場合により図面を参照しながら、本開示の実施形態について詳細に説明する。ただし、本開示は以下の実施形態に限定されるものではない。 Embodiments of the present disclosure will be described in detail below, with reference to the drawings as the case may be. However, the present disclosure is not limited to the following embodiments.

<積層体>
本実施形態に係る積層体は、基材層と、印刷層と、第1の接着剤層と、中間層と、第2の接着剤層と、シーラント層と、がこの順で積層された構造を有し、基材層、中間層及びシーラント層がいずれも無延伸ポリエチレンフィルムから構成されており、第1の接着剤層が無溶剤型接着剤を用いて形成された層であり、積層体に占めるポリエチレンの割合が90質量%以上である、積層体である。上記積層体によれば、基材層として無延伸ポリエチレンフィルムを用いることで、延伸ポリエチレンフィルムを用いた場合と比較して、基材層と中間層との密着性が向上し、良好なラミネート強度が得られる。また、基材層、中間層及びシーラント層の全てに無延伸ポリエチレンフィルムを用いることで、より良好なラミネート強度が得られる。また、上記積層体によれば、無溶剤型接着剤を用いて第1の接着剤層が形成されていることで、第1の接着剤層形成時に溶剤型接着剤を用いた場合のように溶剤を除去するための熱乾燥(オーブン乾燥等)が施されず、且つ、第1の接着剤層に残存溶剤が存在しない。そのため、基材層として無延伸ポリエチレンフィルムを用いた場合であっても、基材層の伸び縮みを抑制することができ、印刷絵柄の良好な寸法安定性を得ることができる。また、第1の接着剤層に残存溶剤が存在しないことで、印刷絵柄に擦れや滲みが生じることを抑制することができる。また、残存溶剤が存在しないことで、包装体としたときの溶剤臭を抑制することができる。更に、上記構成を有する積層体は柔軟性に優れ、良好な耐圧強度を得ることができる。
<Laminated body>
The laminate according to this embodiment has a structure in which a base layer, a printing layer, a first adhesive layer, an intermediate layer, a second adhesive layer, and a sealant layer are laminated in this order. The base layer, the intermediate layer, and the sealant layer are all made of unstretched polyethylene film, the first adhesive layer is a layer formed using a solvent-free adhesive, and the laminate It is a laminate in which the proportion of polyethylene is 90% by mass or more. According to the above laminate, by using an unstretched polyethylene film as the base layer, the adhesion between the base layer and the intermediate layer is improved compared to when a stretched polyethylene film is used, and good laminate strength is achieved. is obtained. Furthermore, better laminate strength can be obtained by using unstretched polyethylene films for all of the base layer, intermediate layer, and sealant layer. Further, according to the above-mentioned laminate, since the first adhesive layer is formed using a solvent-free adhesive, it is possible to form the first adhesive layer using a solvent-based adhesive. Heat drying (oven drying, etc.) for removing the solvent is not performed, and there is no residual solvent in the first adhesive layer. Therefore, even when an unstretched polyethylene film is used as the base layer, expansion and contraction of the base layer can be suppressed, and good dimensional stability of the printed pattern can be obtained. Further, since no residual solvent is present in the first adhesive layer, it is possible to suppress the occurrence of rubbing or bleeding in the printed pattern. Further, since there is no residual solvent, it is possible to suppress the odor of the solvent when it is packaged. Furthermore, the laminate having the above structure has excellent flexibility and can obtain good compressive strength.

図1及び図2はそれぞれ、本開示の積層体の一実施形態を示す断面模式図である。図1に示す積層体1は、基材層10と、印刷層12と、第1の接着剤層40と、中間層20と、第2の接着剤層50と、シーラント層30とを備える。図2に示す積層体2は、基材層10と、印刷層12と、第1の接着剤層40と、中間層20と、アンカーコート層13と、無機酸化物層14と、ガスバリア性被覆層15と、第2の接着剤層50と、シーラント層30とを備える。ここで、基材層10、中間層20及びシーラント層30は、いずれも無延伸ポリエチレンフィルムから構成されている。また、第1の接着剤層40は、無溶剤型接着剤を用いて形成された層である。また、積層体に占めるポリエチレンの割合は、90質量%以上である。以下、各層について説明する。 FIGS. 1 and 2 are schematic cross-sectional views each showing an embodiment of the laminate of the present disclosure. The laminate 1 shown in FIG. 1 includes a base layer 10, a printed layer 12, a first adhesive layer 40, an intermediate layer 20, a second adhesive layer 50, and a sealant layer 30. The laminate 2 shown in FIG. 2 includes a base layer 10, a printed layer 12, a first adhesive layer 40, an intermediate layer 20, an anchor coat layer 13, an inorganic oxide layer 14, and a gas barrier coating. layer 15, a second adhesive layer 50, and a sealant layer 30. Here, the base layer 10, the intermediate layer 20, and the sealant layer 30 are all made of unstretched polyethylene film. Further, the first adhesive layer 40 is a layer formed using a solvent-free adhesive. Further, the proportion of polyethylene in the laminate is 90% by mass or more. Each layer will be explained below.

(基材層)
基材層10は、無延伸ポリエチレンフィルムから構成された層である。基材層10は、積層体1,2を用いて包装袋を形成する際に外面となる部分である。
(Base material layer)
The base layer 10 is a layer made of an unstretched polyethylene film. The base material layer 10 is a portion that becomes the outer surface when a packaging bag is formed using the laminates 1 and 2.

基材層10としては、強度及び耐熱性の観点から、高密度ポリエチレン(密度0.94g/cm以上)、又は、中密度ポリエチレン(密度0.925~0.945g/cm)からなるフィルムを用いることができる。これらの材料は、石油由来からなるものでも、植物由来からなるものでもよく、これらの混合物であってもよい。また、基材層10の表面には、コロナ処理、大気圧プラズマ処理などの乾式の表面処理により易接着処理を施すことができる。また、密度が異なるポリエチレンを共押出法により押出した多層構造の無延伸ポリエチレンフィルムを基材層10として用いることも可能である。 From the viewpoint of strength and heat resistance, the base layer 10 is a film made of high density polyethylene (density 0.94 g/cm 3 or more) or medium density polyethylene (density 0.925 to 0.945 g/cm 3 ). can be used. These materials may be derived from petroleum or plants, or may be a mixture thereof. Further, the surface of the base material layer 10 can be subjected to adhesion-facilitating treatment by dry surface treatment such as corona treatment or atmospheric pressure plasma treatment. Furthermore, it is also possible to use as the base layer 10 a multilayered unstretched polyethylene film obtained by extruding polyethylenes having different densities by a coextrusion method.

ここで、無延伸ポリエチレンフィルムとは、成膜時に延伸処理が行われず、ランダムに折りたたまれたポリエチレン分子鎖により構成された10~100μm程度の球状の結晶(球晶)が、非結晶性分子で繋ぎあった構造となっているポリエチレンフィルムをいう。無延伸ポリエチレンフィルムは、強い衝撃を受けた場合、球晶が破壊されて、分子鎖が配向して延伸することにより、フィルム自体が破れることを防止できるという性質を有する。そのため、基材層10、中間層20及びシーラント層30として無延伸ポリエチレンフィルムを積層した積層体で作製された包装体(包装袋を作製し、内容物を充填して密封したもの)は、落袋強度に優れるという特徴がある。 Here, unstretched polyethylene film is a film that is not stretched during film formation, and has spherical crystals (spherulites) of about 10 to 100 μm composed of randomly folded polyethylene molecular chains, which are non-crystalline molecules. A polyethylene film that has an interconnected structure. An unstretched polyethylene film has the property that when it receives a strong impact, the spherulites are destroyed and the molecular chains are oriented and stretched, thereby preventing the film itself from tearing. Therefore, a package made of a laminate in which unstretched polyethylene films are laminated as the base layer 10, intermediate layer 20, and sealant layer 30 (a packaging bag is made, filled with contents, and sealed) cannot be dropped. It is characterized by excellent bag strength.

基材層10の厚さは、10μm以上50μm以下であることが好ましく、12μm以上35μm以下であることがより好ましい。基材層10の厚さを10μm以上とすることにより、積層体1,2の強度を向上できる。基材層10の厚さを50μm以下とすることにより、積層体1,2の加工適性を向上できる。 The thickness of the base material layer 10 is preferably 10 μm or more and 50 μm or less, more preferably 12 μm or more and 35 μm or less. By setting the thickness of the base material layer 10 to 10 μm or more, the strength of the laminates 1 and 2 can be improved. By setting the thickness of the base material layer 10 to 50 μm or less, the processability of the laminates 1 and 2 can be improved.

基材層10は、ポリエチレンをTダイ法又はインフレーション法などにより製膜することで作製できる。Tダイ法により基材層10を作製する場合、ポリエチレンのメルトフローレート(MFR)は、3g/10分以上、20g/10分以下であることが好ましい。MFRを3g/10分以上とすることにより、積層体の加工適性を向上することができる。また、MFRを20g/10分以下とすることにより、作製された基材層10が破断してしまうことを防止できる。 The base material layer 10 can be produced by forming polyethylene into a film by a T-die method, an inflation method, or the like. When producing the base material layer 10 by the T-die method, the melt flow rate (MFR) of polyethylene is preferably 3 g/10 minutes or more and 20 g/10 minutes or less. By setting the MFR to 3 g/10 minutes or more, the processability of the laminate can be improved. Further, by setting the MFR to 20 g/10 minutes or less, it is possible to prevent the fabricated base layer 10 from breaking.

インフレーション法により基材層10を作製する場合、ポリエチレンのMFRは、0.5g/10分以上、5g/10分以下であることが好ましい。MFRを0.5g/10分以上とすることにより、積層体の加工適性を向上することができる。また、MFRを5g/10分以下とすることにより、製膜性を向上することができる。 When producing the base material layer 10 by an inflation method, the MFR of polyethylene is preferably 0.5 g/10 minutes or more and 5 g/10 minutes or less. By setting the MFR to 0.5 g/10 minutes or more, the processability of the laminate can be improved. Furthermore, by setting the MFR to 5 g/10 minutes or less, film formability can be improved.

基材層10として用いられる高密度ポリエチレン及び中密度ポリエチレンの融点は、概ね120℃から140℃である。一方、後述するシーラント層30として用いられる低密度ポリエチレンの融点は、概ね90℃から120℃である。これら基材層10及びシーラント層30の積層体をヒートシールするために、ヒートシール機の治具であるヒートシールバーは130℃から140℃程度に加熱され、基材層10や後述する中間層20を通してシーラント層30に熱が伝えられ、熱溶着される。 The melting points of high-density polyethylene and medium-density polyethylene used as the base material layer 10 are approximately 120°C to 140°C. On the other hand, the melting point of low density polyethylene used as the sealant layer 30 described below is approximately 90°C to 120°C. In order to heat seal the laminate of the base material layer 10 and the sealant layer 30, a heat seal bar, which is a jig of a heat sealing machine, is heated to about 130°C to 140°C, and the base material layer 10 and the intermediate layer to be described later are Heat is conducted to the sealant layer 30 through the sealant layer 20, and the sealant layer 30 is thermally welded.

基材層10は、70℃の温度環境下で100N/mの張力をかけて引張った場合に、引張方向に3%以上伸びることが好ましい。基材層10は無延伸ポリエチレンフィルムから構成されることから、上記条件で引張った際に3%以上の伸び率を有することができる。上記伸び率を有する基材層は、伸び率が3%未満である延伸ポリエチレンフィルムから構成された基材層と比較して、中間層20との密着性に優れる。基材層10の伸び率は3%以上であることが好ましいが、4%以上、又は、4.5%以上であってもよい。また、基材層10の伸び率は、10%以下、又は、8%以下であってもよい。基材層10の伸び率の測定は、例えば熱分析装置を用いて行うことができる。 When the base material layer 10 is stretched under a temperature environment of 70° C. with a tension of 100 N/m, it is preferable that the base layer 10 elongates by 3% or more in the tensile direction. Since the base material layer 10 is composed of an unstretched polyethylene film, it can have an elongation rate of 3% or more when stretched under the above conditions. The base material layer having the above elongation rate has excellent adhesion to the intermediate layer 20 compared to a base material layer made of a stretched polyethylene film having an elongation rate of less than 3%. The elongation rate of the base material layer 10 is preferably 3% or more, but may be 4% or more, or 4.5% or more. Moreover, the elongation rate of the base material layer 10 may be 10% or less, or 8% or less. The elongation rate of the base material layer 10 can be measured using, for example, a thermal analyzer.

(印刷層)
印刷層12は、基材層10の第1の接着剤層40側の表面に形成される。絵柄の形成方法は、特に限定されることなく通常のグラビア印刷やフレキソ印刷などの印刷法により、それぞれに応じたインキを用いて形成することができる。インキとしては、溶剤系インキと、水系インキとがあるが、環境面から水系インキを用いることが好ましい。また、基材層10の表面には、印刷層12の密着性を向上させるために、コロナ処理やプラズマ処理などの表面処理を行ってもよい。
(Printing layer)
The printed layer 12 is formed on the surface of the base layer 10 on the first adhesive layer 40 side. The pattern can be formed by any printing method such as ordinary gravure printing or flexographic printing, using ink suitable for each printing method, without any particular limitation. Inks include solvent-based inks and water-based inks, and from an environmental standpoint, it is preferable to use water-based inks. Further, the surface of the base layer 10 may be subjected to surface treatment such as corona treatment or plasma treatment in order to improve the adhesion of the printed layer 12.

(第1の接着剤層)
第1の接着剤層40は無溶剤型接着剤を用いて形成された層であり、基材層10と中間層20との間に設けられて両者を接合する。無溶剤型接着剤としては、1液硬化型又は2液硬化型のいずれの接着剤も使用できる。無溶剤型接着剤としては、ウレタン系接着剤、エポキシ系接着剤、シリコーン系接着剤等が挙げられるが、耐衝撃性の観点から、ウレタン系接着剤が好ましく、2液硬化型のウレタン系接着剤が特に好ましい。
(First adhesive layer)
The first adhesive layer 40 is a layer formed using a solvent-free adhesive, and is provided between the base layer 10 and the intermediate layer 20 to bond them together. As the solvent-free adhesive, either a one-component curing type or a two-component curing type adhesive can be used. Examples of solvent-free adhesives include urethane adhesives, epoxy adhesives, silicone adhesives, etc. From the viewpoint of impact resistance, urethane adhesives are preferred, and two-component curing urethane adhesives are preferred. Particularly preferred are agents.

2液硬化型のウレタン系無溶剤型接着剤は、主剤であるポリオール成分と、硬化剤であるポリイソシアネート成分とを含む。 The two-component curable urethane-based solventless adhesive includes a polyol component as a main ingredient and a polyisocyanate component as a curing agent.

ポリオール成分は、ポリエステルポリオール、ポリエーテルポリオール、ポリエーテルエステルポリオール、ポリウレタンポリオールからなる群から選択される1種又は2種以上の混合物であってよい。 The polyol component may be one or a mixture of two or more selected from the group consisting of polyester polyol, polyether polyol, polyether ester polyol, and polyurethane polyol.

ポリエステルポリオールは、例えば、多価カルボン酸、多価カルボン酸のジアルキルエステル及びこれらの混合物と、グリコール系溶媒とのエステル反応生成物であってよい。多価カルボン酸は、例えば、コハク酸、グルタール酸、イソフタル酸、テレフタル酸、アジピン酸、ピメリン酸、コルク酸、アゼライン酸、セバチン酸、ドデカン二酸、ダイマー酸であってよい。グリコール系溶媒は、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ブチレングリコール、ネオペンチルグリコール、1,6-ヘキサンジオールであってよい。 The polyester polyol may be, for example, an ester reaction product of a polycarboxylic acid, a dialkyl ester of a polycarboxylic acid, or a mixture thereof, and a glycol solvent. The polyhydric carboxylic acid may be, for example, succinic acid, glutaric acid, isophthalic acid, terephthalic acid, adipic acid, pimelic acid, corkic acid, azelaic acid, sebacic acid, dodecanedioic acid, dimer acid. The glycol solvent may be, for example, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, butylene glycol, neopentyl glycol, 1,6-hexanediol.

ポリエーテルポリオールは、例えば、オキシラン化合物と、低分子ポリオールとの重合体であってよい。オキシラン化合物は、例えば、エチレンオキシド、プロピレンオキシド、ブチレンオキシド、テトラヒドロフランであってよい。低分子ポリオールは、水、エチレングリコール、プロピレングリコール、トリメチロールプロパン、グリセリンであってよい。 The polyether polyol may be, for example, a polymer of an oxirane compound and a low-molecular polyol. The oxirane compound may be, for example, ethylene oxide, propylene oxide, butylene oxide, tetrahydrofuran. The low molecular weight polyol may be water, ethylene glycol, propylene glycol, trimethylolpropane, glycerin.

ポリエーテルエステルポリオールは、例えば、多価カルボン酸、多価カルボン酸のジアルキルエステル及びこれらの混合物と、ポリエーテルポリオールとの反応によって得られたものであってよい。 The polyether ester polyol may be obtained, for example, by reacting a polycarboxylic acid, a dialkyl ester of a polycarboxylic acid, or a mixture thereof with a polyether polyol.

ポリウレタンポリオールは、例えば、ポリエステルポリオール、ポリエーテルポリオール、ポリエーテルエステルポリオールと、ポリイソシアネート単量体との反応生成物であってよい。 Polyurethane polyols may be, for example, reaction products of polyester polyols, polyether polyols, polyether ester polyols and polyisocyanate monomers.

ポリイソシアネート成分は、脂肪族系ポリイソシアネート、芳香族系ポリイソシアネート、及び、それらの混合物であってよい。 The polyisocyanate component may be an aliphatic polyisocyanate, an aromatic polyisocyanate, or a mixture thereof.

脂肪族系ポリイソシアネートは、例えば、ポリイソシアネート単量体、ポリイソシアネート誘導体、ポリイソシアネート末端プレポリマーであってよい。ポリイソシアネート単量体は、例えば、テトラメチレンジイソシアネート、イソプロピレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、ドデカメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネートであってよい。ポリイソシアネート誘導体は、1,3-シクロヘキシレンジイソシアネート、1,4-シクロヘキシレンジイソシアネート、リジンジイソシアネート、イソホロンジイソシアネートであってよい。 The aliphatic polyisocyanate may be, for example, a polyisocyanate monomer, a polyisocyanate derivative, or a polyisocyanate-terminated prepolymer. The polyisocyanate monomer may be, for example, tetramethylene diisocyanate, isopropylene diisocyanate, 1,6-hexamethylene diisocyanate, dodecamethylene diisocyanate, trimethylhexamethylene diisocyanate. The polyisocyanate derivative may be 1,3-cyclohexylene diisocyanate, 1,4-cyclohexylene diisocyanate, lysine diisocyanate, isophorone diisocyanate.

芳香族系ポリイソシアネートは、例えば、ポリイソシアネート単量体、ポリイソシアネート誘導体、ポリイソシアネート末端プレポリマーであってよい。ポリイソシアネート単量体は、例えば、トリレンジイソシアネート、フェニレンジイソシアネート、ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネートであってよい。ポリイソシアネート誘導体は、例えば、ポリイソシアネート単量体から誘導されたイソシアヌレート体であってよい。ポリイソシアネート末端プレポリマーは、ポリイソシアネート単量体と、ポリプロピレングリコールなどの2官能ポリオール化合物との反応で得られる末端イソシアネート基含有の2官能ポリイシシアネートであってよい。また、ポリイソシアネート末端プレポリマーは、ポリイソシアネート単量体と、トリメチロールプロパンなどの3官能以上のポリオール化合物との反応により得られる末端イソシアネート基含有の多官能ポリイソシアネートであってよい。 The aromatic polyisocyanate may be, for example, a polyisocyanate monomer, a polyisocyanate derivative, or a polyisocyanate-terminated prepolymer. The polyisocyanate monomer may be, for example, tolylene diisocyanate, phenylene diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate. The polyisocyanate derivative may be, for example, an isocyanurate derived from a polyisocyanate monomer. The polyisocyanate-terminated prepolymer may be a difunctional polyisocyanate containing terminal isocyanate groups obtained by reacting a polyisocyanate monomer with a difunctional polyol compound such as polypropylene glycol. Further, the polyisocyanate-terminated prepolymer may be a polyfunctional polyisocyanate containing terminal isocyanate groups obtained by reacting a polyisocyanate monomer with a trifunctional or higher functional polyol compound such as trimethylolpropane.

無溶剤型接着剤は、ラミネート強度をより向上させる観点から、アジピン酸とイソフタル酸とを含むウレタン系接着剤であることが好ましい。また、アジピン酸とイソフタル酸とを含むウレタン系接着剤を用いた場合、ボイル処理及びレトルト処理等の加熱殺菌処理に対する耐性を向上させることができ、加熱殺菌処理によるラミネート強度の低下を抑制することができる。 The solvent-free adhesive is preferably a urethane adhesive containing adipic acid and isophthalic acid from the viewpoint of further improving lamination strength. Furthermore, when a urethane adhesive containing adipic acid and isophthalic acid is used, it is possible to improve resistance to heat sterilization treatments such as boiling treatment and retort treatment, and to suppress a decrease in laminate strength due to heat sterilization treatment. Can be done.

また、無溶剤型接着剤は、グリシドキシアルキルアルコキシシランを含まなくてよい。グリシドキシアルキルアルコキシシランとしては、3-グリシジルオキシプロピルトリメトキシシラン(GPTMS)、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン等が挙げられる。一般的な接着剤の多くは、密着補助剤としてグリシドキシアルキルアルコキシシランを含有しているが、本実施形態の積層体においては、無溶剤型接着剤がグリシドキシアルキルアルコキシシランを含有していなくても、十分なラミネート強度を得ることができる。特に、無溶剤型接着剤がアジピン酸とイソフタル酸とを含むウレタン系接着剤である場合、無溶剤型接着剤がグリシドキシアルキルアルコキシシランを含有していなくても、より十分なラミネート強度を得ることができる。 Further, the solvent-free adhesive does not need to contain glycidoxyalkylalkoxysilane. Examples of glycidoxyalkylalkoxysilane include 3-glycidyloxypropyltrimethoxysilane (GPTMS), 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, 2-(3,4-epoxy Examples include cyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and the like. Many common adhesives contain glycidoxyalkylalkoxysilane as an adhesion aid, but in the laminate of this embodiment, the solvent-free adhesive does not contain glycidoxyalkylalkoxysilane. Even if it is not, sufficient lamination strength can be obtained. In particular, when the solvent-free adhesive is a urethane-based adhesive containing adipic acid and isophthalic acid, even if the solvent-free adhesive does not contain glycidoxyalkylalkoxysilane, more sufficient lamination strength can be achieved. Obtainable.

第1の接着剤層40の塗工量は、0.5g/m以上3.0g/m以下が好ましく、1.0g/m以上2.0g/m以下がより好ましい。第1の接着剤層40の塗工量が0.5g/m以上であれば、基材層10と中間層20との間でのデラミネーションの抑制効果を高められる。第1の接着剤層40の塗工量が3.0g/m以下であれば、積層体の加工時において巻きズレが生じることを抑制できると共に、積層体の外観品質を良好なものとすることが可能であり、加えて、適正なラミネート強度が得られる。 The coating amount of the first adhesive layer 40 is preferably 0.5 g/m 2 or more and 3.0 g/m 2 or less, more preferably 1.0 g/m 2 or more and 2.0 g/m 2 or less. If the coating amount of the first adhesive layer 40 is 0.5 g/m 2 or more, the effect of suppressing delamination between the base layer 10 and the intermediate layer 20 can be enhanced. If the coating amount of the first adhesive layer 40 is 3.0 g/m 2 or less, it is possible to suppress the occurrence of winding misalignment during processing of the laminate, and to improve the appearance quality of the laminate. In addition, appropriate lamination strength can be obtained.

(中間層)
中間層20は、無延伸ポリエチレンフィルムから構成された層である。中間層20に含まれるポリエチレンとしては、強度及び耐熱性の観点からは、高密度ポリエチレン及び中密度ポリエチレンが好ましい。これらの材料は、石油由来からなるものでも、植物由来からなるものでもよく、これらの混合物であってもよい。中間層20としては、基材層10と同様に、密度が異なるポリエチレンを共押出法により押出した多層構造の無延伸ポリエチレンフィルムを用いることも可能である。また、中間層20の表面には、コロナ処理、大気圧プラズマ処理などの乾式の表面処理により易接着処理を施すことができる。
(middle class)
The intermediate layer 20 is a layer made of an unstretched polyethylene film. The polyethylene contained in the intermediate layer 20 is preferably high-density polyethylene or medium-density polyethylene from the viewpoint of strength and heat resistance. These materials may be derived from petroleum or plants, or may be a mixture thereof. As the intermediate layer 20, similarly to the base material layer 10, it is also possible to use an unstretched polyethylene film with a multilayer structure obtained by extruding polyethylenes having different densities by a coextrusion method. Further, the surface of the intermediate layer 20 can be subjected to adhesion-facilitating treatment by dry surface treatment such as corona treatment or atmospheric pressure plasma treatment.

中間層20の厚さは、9μm以上50μm以下であることが好ましく、12μm以上35μm以下であることがより好ましい。中間層20の厚さを9μm以上とすることにより、積層体の強度及び耐熱性を向上できる。中間層20の厚さを50μm以下とすることにより、積層体の加工適性を向上できる。 The thickness of the intermediate layer 20 is preferably 9 μm or more and 50 μm or less, more preferably 12 μm or more and 35 μm or less. By setting the thickness of the intermediate layer 20 to 9 μm or more, the strength and heat resistance of the laminate can be improved. By setting the thickness of the intermediate layer 20 to 50 μm or less, the processability of the laminate can be improved.

中間層20は、ポリエチレンをTダイ法又はインフレーション法などにより製膜することで作製できる。Tダイ法により中間層20を作製する場合、ポリエチレンのメルトフローレート(MFR)は、3g/10分以上、20g/10分以下であることが好ましい。MFRを3g/10分以上とすることにより、積層体の加工適性を向上することができる。また、MFRを20g/10分以下とすることにより、作製されたフィルムが破断してしまうことを防止できる。 The intermediate layer 20 can be produced by forming a polyethylene film by a T-die method, an inflation method, or the like. When producing the intermediate layer 20 by the T-die method, the melt flow rate (MFR) of polyethylene is preferably 3 g/10 minutes or more and 20 g/10 minutes or less. By setting the MFR to 3 g/10 minutes or more, the processability of the laminate can be improved. Further, by setting the MFR to 20 g/10 minutes or less, it is possible to prevent the produced film from breaking.

インフレーション法により中間層20を作製する場合、ポリエチレンのMFRは、0.5g/10分以上、5g/10分以下であることが好ましい。MFRを0.5g/10分以上とすることにより、積層体の加工適性を向上することができる。また、MFRを5g/10分以下とすることにより、製膜性を向上することができる。 When producing the intermediate layer 20 by the inflation method, the MFR of polyethylene is preferably 0.5 g/10 minutes or more and 5 g/10 minutes or less. By setting the MFR to 0.5 g/10 minutes or more, the processability of the laminate can be improved. Furthermore, by setting the MFR to 5 g/10 minutes or less, film formability can be improved.

(アンカーコート層)
積層体2において、中間層20の少なくとも一方の面には、アンカーコート層13、無機酸化物層14及びガスバリア性被覆層15が形成されている。本実施形態において、アンカーコート層13は、公知のアンカーコート剤を用いて形成することができる。アンカーコート層13を介して無機酸化物層14を中間層20上に形成することで、中間層20に対する無機酸化物層14の密着性を向上させることができる。
(Anchor coat layer)
In the laminate 2, an anchor coat layer 13, an inorganic oxide layer 14, and a gas barrier coating layer 15 are formed on at least one surface of the intermediate layer 20. In this embodiment, the anchor coat layer 13 can be formed using a known anchor coat agent. By forming the inorganic oxide layer 14 on the intermediate layer 20 via the anchor coat layer 13, the adhesion of the inorganic oxide layer 14 to the intermediate layer 20 can be improved.

アンカーコート剤としては、ポリエステル系ポリウレタン樹脂、ポリエーテル系ポリウレタン樹脂等を例示できる。耐熱性及び層間接着強度の観点からは、ポリエステル系ポリウレタン樹脂が好ましい。 Examples of the anchor coating agent include polyester polyurethane resins and polyether polyurethane resins. From the viewpoint of heat resistance and interlayer adhesive strength, polyester-based polyurethane resins are preferred.

アンカーコート剤として、ポリビニルアルコール系樹脂を用いてもよい。ポリビニルアルコール系樹脂としては、ビニルエステル単位がケン化されてなるビニルアルコール単位を有するものであればよく、例えば、ポリビニルアルコール(PVA)、エチレン-ビニルアルコール共重合体(EVOH)が挙げられる。 A polyvinyl alcohol resin may be used as the anchor coating agent. The polyvinyl alcohol resin may be any resin having a vinyl alcohol unit formed by saponifying a vinyl ester unit, and examples thereof include polyvinyl alcohol (PVA) and ethylene-vinyl alcohol copolymer (EVOH).

アンカーコート剤としてポリビニルアルコール系樹脂を用いる場合、アンカーコート層の形成方法としては、ポリビニルアルコール系樹脂溶液を用いた塗布や、多層押出等が挙げられる。多層押出の場合は、無水マレイン酸グラフト変性ポリエチレン等の接着性樹脂を介して積層してよい。 When polyvinyl alcohol resin is used as the anchor coating agent, methods for forming the anchor coating layer include coating using a polyvinyl alcohol resin solution, multilayer extrusion, and the like. In the case of multilayer extrusion, the layers may be laminated via an adhesive resin such as maleic anhydride graft-modified polyethylene.

(無機酸化物層)
無機酸化物層14は、積層体2に酸素バリア性及び水蒸気バリア性を付与する。積層体2において、アンカーコート層13、無機酸化物層14及びガスバリア性被覆層15は、中間層20の第2の接着剤層50に対向する面に形成されているが、反対面に形成してもよい。
(Inorganic oxide layer)
The inorganic oxide layer 14 provides the laminate 2 with oxygen barrier properties and water vapor barrier properties. In the laminate 2, the anchor coat layer 13, the inorganic oxide layer 14, and the gas barrier coating layer 15 are formed on the surface of the intermediate layer 20 facing the second adhesive layer 50; You can.

無機酸化物層14の構成としては、例えば、酸化アルミニウム、酸化珪素、酸化マグネシウム、酸化錫等の金属酸化物からなる蒸着層が挙げられる。透明性及びバリア性の観点から、金属酸化物としては、酸化アルミニウム、酸化珪素、及び酸化マグネシウムからなる群より選択されてよい。さらに、コストを考慮すると、酸化アルミニウム、酸化珪素から選択される。さらに、加工時に引っ張り延伸性に優れる観点から、酸化珪素を用いた層とすることがより好ましい。無機酸化物層14を金属酸化物からなるバリア膜とすることにより、積層体2のリサイクル性に影響を与えない範囲のごく薄い層で、高いバリア性を得ることができる。 Examples of the structure of the inorganic oxide layer 14 include a vapor deposited layer made of metal oxide such as aluminum oxide, silicon oxide, magnesium oxide, and tin oxide. From the viewpoint of transparency and barrier properties, the metal oxide may be selected from the group consisting of aluminum oxide, silicon oxide, and magnesium oxide. Furthermore, in consideration of cost, aluminum oxide and silicon oxide are selected. Furthermore, from the viewpoint of excellent tensile stretchability during processing, it is more preferable to use a layer using silicon oxide. By using the inorganic oxide layer 14 as a barrier film made of a metal oxide, high barrier properties can be obtained with a very thin layer that does not affect the recyclability of the laminate 2.

金属酸化物からなる蒸着層は、透明性を有するため、金属からなる蒸着層と比べて、積層体からなる包装材料を手にする使用者に、金属箔が使用されているとの誤認を生じさせにくいという利点がある。 Because the vapor-deposited layer made of metal oxide is transparent, compared to the vapor-deposited layer made of metal, the user holding the packaging material made of the laminate may misunderstand that metal foil is used. It has the advantage of being difficult to do.

酸化アルミニウムからなる無機酸化物層の膜厚は、5nm以上30nm以下であることが好ましい。膜厚が5nm以上であると、十分なガスバリア性を得ることができる。また、膜厚が30nm以下であると、薄膜の内部応力による変形によりクラックが発生することを抑制し、ガスバリア性の低下を抑制することができる。なお、膜厚が30nmを超えると、材料使用量の増加、及び膜形成時間の長時間化等に起因してコストが増加し易いため、経済的観点からも好ましくない。上記と同様の観点から、酸化アルミニウムからなる無機酸化物層の膜厚は、7nm以上15nm以下であることがより好ましい。 The thickness of the inorganic oxide layer made of aluminum oxide is preferably 5 nm or more and 30 nm or less. When the film thickness is 5 nm or more, sufficient gas barrier properties can be obtained. Moreover, when the film thickness is 30 nm or less, it is possible to suppress generation of cracks due to deformation due to internal stress of the thin film, and to suppress deterioration of gas barrier properties. It should be noted that if the film thickness exceeds 30 nm, the cost tends to increase due to an increase in the amount of materials used, a longer film formation time, etc., which is not preferable from an economic point of view. From the same viewpoint as above, the thickness of the inorganic oxide layer made of aluminum oxide is more preferably 7 nm or more and 15 nm or less.

酸化珪素からなる無機酸化物層の膜厚は、10nm以上50nm以下であることが好ましい。膜厚が10nm以上であると、十分なガスバリア性を得ることができる。また、膜厚が50nm以下であると、薄膜の内部応力による変形によりクラックが発生することを抑制し、ガスバリア性の低下を抑制することができる。なお、膜厚が50nmを超えると、材料使用量の増加、及び膜形成時間の長時間化等に起因してコストが増加し易いため、経済的観点からも好ましくない。上記と同様の観点から、酸化珪素からなる無機酸化物層の膜厚は、20nm以上40nm以下であることがより好ましい。 The thickness of the inorganic oxide layer made of silicon oxide is preferably 10 nm or more and 50 nm or less. When the film thickness is 10 nm or more, sufficient gas barrier properties can be obtained. Furthermore, when the film thickness is 50 nm or less, it is possible to suppress the occurrence of cracks due to deformation of the thin film due to internal stress, and to suppress deterioration of gas barrier properties. It should be noted that if the film thickness exceeds 50 nm, the cost tends to increase due to an increase in the amount of materials used, a longer film formation time, etc., which is not preferable from an economic point of view. From the same viewpoint as above, the thickness of the inorganic oxide layer made of silicon oxide is more preferably 20 nm or more and 40 nm or less.

無機酸化物層14は、例えば真空成膜で形成することができる。真空成膜では、物理気相成長法あるいは化学気相成長法を用いることができる。物理気相成長法としては、真空蒸着法、スパッタリング法、イオンプレーティング法等を挙げることができるが、これらに限定されるものではない。化学気相成長法としては、熱CVD法、プラズマCVD法、光CVD法等を挙げることができるが、これらに限定されるものではない。 The inorganic oxide layer 14 can be formed, for example, by vacuum film formation. In vacuum film formation, a physical vapor deposition method or a chemical vapor deposition method can be used. Examples of the physical vapor deposition method include, but are not limited to, a vacuum evaporation method, a sputtering method, an ion plating method, and the like. Examples of the chemical vapor deposition method include, but are not limited to, a thermal CVD method, a plasma CVD method, a photo CVD method, and the like.

上記真空成膜では、抵抗加熱式真空蒸着法、EB(Electron Beam)加熱式真空蒸着法、誘導加熱式真空蒸着法、スパッタリング法、反応性スパッタリング法、デュアルマグネトロンスパッタリング法、プラズマ化学気相堆積法(PECVD法)等が特に好ましく用いられる。ただし、生産性を考慮すれば、現時点では真空蒸着法が最も優れている。真空蒸着法の加熱手段としては電子線加熱方式や抵抗加熱方式、誘導加熱方式のいずれかの方式を用いることが好ましい。 The above vacuum film formation methods include resistance heating vacuum evaporation, EB (Electron Beam) heating vacuum evaporation, induction heating vacuum evaporation, sputtering, reactive sputtering, dual magnetron sputtering, and plasma chemical vapor deposition. (PECVD method) etc. are particularly preferably used. However, in terms of productivity, vacuum evaporation is currently the best method. As a heating means for the vacuum evaporation method, it is preferable to use one of an electron beam heating method, a resistance heating method, and an induction heating method.

(ガスバリア性被覆層)
積層体2においては、ガスバリア性の向上及び無機酸化物層14の保護を目的として、無機酸化物層14上に、ガスバリア性被覆層15が設けられている。特に限定されるものではないが、ガスバリア性被覆層15は、水酸基含有高分子化合物を含んでよく、具体的には、水酸基含有高分子化合物及びその加水分解物の少なくともいずれかと、金属アルコキシド、シランカップリング剤及びそれらの加水分解物からなる群より選択される少なくとも1種と、を含有する組成物の加熱乾燥物であってよい。
(Gas barrier coating layer)
In the laminate 2, a gas barrier coating layer 15 is provided on the inorganic oxide layer 14 for the purpose of improving gas barrier properties and protecting the inorganic oxide layer 14. Although not particularly limited, the gas barrier coating layer 15 may contain a hydroxyl group-containing polymer compound, specifically, at least one of a hydroxyl group-containing polymer compound and its hydrolyzate, metal alkoxide, silane, etc. It may be a heat-dried product of a composition containing at least one selected from the group consisting of a coupling agent and a hydrolyzate thereof.

ガスバリア性被覆層15は、例えば、水酸基含有高分子化合物と、金属アルコキシド及び/又はシランカップリング剤とを、水或いは水/アルコール混合液に添加して得られる組成物(以下、オーバーコート剤という)を用いて形成することができる。オーバーコート剤は、例えば、水溶性高分子である水酸基含有高分子化合物を水系(水或いは水/アルコール混合)溶媒で溶解させた溶液と、金属アルコキシド及び/又はシランカップリング剤とを直接、或いは予めこれらを加水分解させるなどの処理を行ったものとを混合して調製することができる。 The gas barrier coating layer 15 is made of, for example, a composition obtained by adding a hydroxyl group-containing polymer compound, a metal alkoxide, and/or a silane coupling agent to water or a water/alcohol mixture (hereinafter referred to as an overcoat agent). ). For example, the overcoat agent can be made by directly combining a solution of a hydroxyl group-containing polymer compound, which is a water-soluble polymer, in an aqueous (water or water/alcohol mixed) solvent with a metal alkoxide and/or a silane coupling agent; It can be prepared by mixing these with those that have been subjected to a treatment such as hydrolysis in advance.

水酸基含有高分子化合物としては、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリビニルピロリドン、デンプン、メチルセルロース、カルボキシメチルセルロース、アルギン酸ナトリウム等が挙げられる。これらの中でもポリビニルアルコール(PVA)をガスバリア性被覆層のオーバーコート剤に用いた場合、ガスバリア性が特に優れるので好ましい。 Examples of the hydroxyl group-containing polymer compound include polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinylpyrrolidone, starch, methylcellulose, carboxymethylcellulose, sodium alginate, and the like. Among these, it is preferable to use polyvinyl alcohol (PVA) as an overcoat agent for the gas barrier coating layer since it has particularly excellent gas barrier properties.

金属アルコキシドとしては、下記一般式(I)で表わされる化合物が挙げられる。
M(OR(Rn-m …(I)
上記一般式(I)中、R及びRはそれぞれ独立に炭素数1~8の1価の有機基であり、メチル基、エチル基等のアルキル基であることが好ましい。MはSi、Ti、Al、Zr等のn価の金属原子を示す。mは1~nの整数である。なお、R又はRが複数存在する場合、R同士又はR同士は同一でも異なっていてもよい。
Examples of the metal alkoxide include compounds represented by the following general formula (I).
M(OR 1 ) m (R 2 ) nm ...(I)
In the above general formula (I), R 1 and R 2 are each independently a monovalent organic group having 1 to 8 carbon atoms, and are preferably an alkyl group such as a methyl group or an ethyl group. M represents an n-valent metal atom such as Si, Ti, Al, and Zr. m is an integer from 1 to n. In addition, when a plurality of R 1 or R 2 exist, R 1 or R 2 may be the same or different.

金属アルコキシドとしては、具体的には、テトラエトキシシラン〔Si(OC〕、トリイソプロポキシアルミニウム〔Al(O-2’-C〕などが挙げられる。テトラエトキシシラン及びトリイソプロポキシアルミニウムは、加水分解後、水系の溶媒中において比較的安定であるので好ましい。 Specific examples of the metal alkoxide include tetraethoxysilane [Si(OC 2 H 5 ) 4 ], triisopropoxyaluminum [Al(O-2′-C 3 H 7 ) 3 ], and the like. Tetraethoxysilane and triisopropoxyaluminum are preferred because they are relatively stable in aqueous solvents after hydrolysis.

シランカップリング剤としては、下記一般式(II)で表される化合物が挙げられる。
Si(OR11(R123-p13 …(II)
上記一般式(II)中、R11はメチル基、エチル基等のアルキル基を示し、R12はアルキル基、アラルキル基、アリール基、アルケニル基、アクリロキシ基で置換されたアルキル基、又は、メタクリロキシ基で置換されたアルキル基等の1価の有機基を示し、R13は1価の有機官能基を示し、pは1~3の整数を示す。なお、R11又はR12が複数存在する場合、R11同士又はR12同士は同一でも異なっていてもよい。R13で示される1価の有機官能基としては、グリシジルオキシ基、エポキシ基、メルカプト基、水酸基、アミノ基、ハロゲン原子で置換されたアルキル基、又は、イソシアネート基を含有する1価の有機官能基が挙げられる。
Examples of the silane coupling agent include compounds represented by the following general formula (II).
Si(OR 11 ) p (R 12 ) 3-p R 13 ...(II)
In the above general formula (II), R 11 represents an alkyl group such as a methyl group or an ethyl group, and R 12 represents an alkyl group, an aralkyl group, an aryl group, an alkenyl group, an alkyl group substituted with an acryloxy group, or a methacryloxy group. represents a monovalent organic group such as an alkyl group substituted with a group, R 13 represents a monovalent organic functional group, and p represents an integer of 1 to 3. In addition, when a plurality of R 11 or R 12 exist, R 11 or R 12 may be the same or different. The monovalent organic functional group represented by R13 is a monovalent organic functional group containing a glycidyloxy group, an epoxy group, a mercapto group, a hydroxyl group, an amino group, an alkyl group substituted with a halogen atom, or an isocyanate group. Examples include groups.

シランカップリング剤としては、具体的には、ビニルトリメトキシシラン、γ-クロロプロピルメチルジメトキシシラン、γ-クロロプロピルトリメトキシシラン、グリシドオキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン等のシランカップリング剤などが挙げられる。 Specifically, the silane coupling agent includes vinyltrimethoxysilane, γ-chloropropylmethyldimethoxysilane, γ-chloropropyltrimethoxysilane, glycidoxypropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, Examples include silane coupling agents such as γ-methacryloxypropylmethyldimethoxysilane.

また、シランカップリング剤は、上記一般式(II)で表される化合物が重合した多量体であってもよい。多量体としては三量体が好ましく、より好ましくは1,3,5-トリス(3-トリアルコキシシリルアルキル)イソシアヌレートである。これは、3-イソシアネートアルキルアルコキシシランの縮重合体である。この1,3,5-トリス(3-トリアルコキシシリルアルキル)イソシアヌレートは、イソシア部には化学的反応性はなくなるが、ヌレート部の極性により反応性は確保されることが知られている。一般的には、3-イソシアネートアルキルアルコキシランと同様に接着剤などに添加され、接着性向上剤として知られている。よって1,3,5-トリス(3-トリアルコキシシリルアルキル)イソシアヌレートを、水酸基含有高分子化合物に添加することにより、水素結合によりガスバリア性被覆層15の耐水性を向上させることができる。3-イソシアネートアルキルアルコキシランは反応性が高く、液安定性が低いのに対し、1,3,5-トリス(3-トリアルコキシシリルアルキル)イソシアヌレートは、ヌレート部はその極性により水溶性ではないが、水系溶液中に分散しやすく、液粘度を安定に保つことができる。また、耐水性能は3-イソシアネートアルキルアルコキシランと1,3,5-トリス(3-トリアルコキシシリルアルキル)イソシアヌレートとは同等である。 Moreover, the silane coupling agent may be a polymer obtained by polymerizing the compound represented by the above general formula (II). The multimer is preferably a trimer, more preferably 1,3,5-tris(3-trialkoxysilylalkyl)isocyanurate. This is a condensation polymer of 3-isocyanatealkylalkoxysilane. It is known that in this 1,3,5-tris(3-trialkoxysilylalkyl) isocyanurate, the isocyan moiety has no chemical reactivity, but the reactivity is ensured by the polarity of the nurate moiety. Generally, like 3-isocyanate alkyl alkoxylane, it is added to adhesives, etc., and is known as an adhesion improver. Therefore, by adding 1,3,5-tris(3-trialkoxysilylalkyl)isocyanurate to the hydroxyl group-containing polymer compound, the water resistance of the gas barrier coating layer 15 can be improved due to hydrogen bonding. 3-Isocyanate alkyl alkoxyrane has high reactivity and low liquid stability, whereas 1,3,5-tris(3-trialkoxysilylalkyl) isocyanurate is not water-soluble due to the polarity of the nurate moiety. However, it is easily dispersed in aqueous solutions and can maintain stable liquid viscosity. Furthermore, the water resistance properties of 3-isocyanatealkylalkoxyrane and 1,3,5-tris(3-trialkoxysilylalkyl)isocyanurate are equivalent.

1,3,5-トリス(3-トリアルコキシシリルアルキル)イソシアヌレートは、3-イソシアネートプロピルアルコキシシランの熱縮合により製造されるものもあり、原料の3-イソシアネートプロピルアルコキシシランが含まれる場合もあるが、特に問題はない。より好ましくは、1,3,5-トリス(3-トリアルコキシシリルプロピル)イソシアヌレートであり、さらに好ましくは1,3,5-トリス(3-トリメトキシシリルプロピル)イソシアヌレートである。このメトキシ基は加水分解速度が速く、またプロピル基を含むものは比較的安価に入手し得ることから1,3,5-トリス(3-トリメトキシシリルプロピル)イソシアヌレートは実用上有利である。 1,3,5-Tris(3-trialkoxysilylalkyl)isocyanurate is sometimes produced by thermal condensation of 3-isocyanatepropylalkoxysilane, and may also contain the raw material 3-isocyanatepropylalkoxysilane. However, there is no particular problem. More preferred is 1,3,5-tris(3-trialkoxysilylpropyl)isocyanurate, and even more preferred is 1,3,5-tris(3-trimethoxysilylpropyl)isocyanurate. 1,3,5-tris(3-trimethoxysilylpropyl)isocyanurate is practically advantageous because the methoxy group has a high hydrolysis rate and those containing a propyl group are available at relatively low cost.

オーバーコート剤における金属アルコキシドの量は、無機酸化物層14との密着性及びガスバリア性維持の観点から、水酸基含有高分子化合物1質量部に対して1~4質量部とすることができ、2~3質量部であってよい。同様に、シランカップリング剤の量は、水酸基含有高分子化合物1質量部に対して0.01~1質量部とすることができ、0.1~0.5質量部であってよい。金属アルコキシドとしてシラン化合物(アルコキシシラン)を用いる場合、オーバーコート剤におけるシラン化合物(金属アルコキシドとシランカップリング剤)の量は、水酸基含有高分子化合物1質量部に対して1~4質量部とすることができ、2~3質量部であってよい。 The amount of metal alkoxide in the overcoat agent can be 1 to 4 parts by mass per 1 part by mass of the hydroxyl group-containing polymer compound from the viewpoint of adhesion with the inorganic oxide layer 14 and maintaining gas barrier properties, and 2 It may be up to 3 parts by weight. Similarly, the amount of the silane coupling agent can be 0.01 to 1 part by weight, and may be 0.1 to 0.5 part by weight, per 1 part by weight of the hydroxyl group-containing polymer compound. When using a silane compound (alkoxysilane) as the metal alkoxide, the amount of the silane compound (metal alkoxide and silane coupling agent) in the overcoat agent is 1 to 4 parts by mass per 1 part by mass of the hydroxyl group-containing polymer compound. The amount may be 2 to 3 parts by mass.

オーバーコート剤には、ガスバリア性を損なわない範囲で、イソシアネート化合物、あるいは、分散剤、安定化剤、粘度調整剤、着色剤などの公知の添加剤を必要に応じて加えることも可能である。 If necessary, known additives such as isocyanate compounds, dispersants, stabilizers, viscosity modifiers, and colorants may be added to the overcoat agent within a range that does not impair gas barrier properties.

オーバーコート剤は、例えば、ディッピング法、ロールコート法、グラビアコート法、リバースグラビアコート法、エアナイフコート法、コンマコート法、ダイコート法、スクリーン印刷法、スプレーコート法、グラビアオフセット法等により塗布することができる。オーバーコート剤を塗布してなる塗膜は、例えば、熱風乾燥法、熱ロール乾燥法、高周波照射法、赤外線照射法、UV照射法、又はそれらの組み合わせにより乾燥させることができる。 The overcoat agent may be applied by, for example, a dipping method, a roll coating method, a gravure coating method, a reverse gravure coating method, an air knife coating method, a comma coating method, a die coating method, a screen printing method, a spray coating method, a gravure offset method, etc. Can be done. The coating film formed by applying the overcoat agent can be dried by, for example, a hot air drying method, a hot roll drying method, a high frequency irradiation method, an infrared irradiation method, a UV irradiation method, or a combination thereof.

上記塗膜を乾燥させる際の温度は、例えば、温度50~150℃とすることができ、温度70~100℃とすることが好ましい。乾燥時の温度を上記範囲内とすることで、無機酸化物層14やガスバリア性被覆層15にクラックが発生することをより一層抑制でき、優れたバリア性を発現することができる。 The temperature at which the coating film is dried can be, for example, 50 to 150°C, preferably 70 to 100°C. By setting the temperature during drying within the above range, it is possible to further suppress the occurrence of cracks in the inorganic oxide layer 14 and the gas barrier coating layer 15, and it is possible to exhibit excellent barrier properties.

ガスバリア性被覆層15は、水酸基含有高分子化合物(例えばポリビニルアルコール系樹脂)及びシラン化合物を含むオーバーコート剤を用いて形成されてよい。オーバーコート剤には、必要に応じて酸触媒、アルカリ触媒、光重開始剤等を加えてよい。 The gas barrier coating layer 15 may be formed using an overcoat agent containing a hydroxyl group-containing polymer compound (eg, polyvinyl alcohol resin) and a silane compound. An acid catalyst, an alkali catalyst, a photoheavy initiator, etc. may be added to the overcoat agent as necessary.

シラン化合物としては、シランカップリング剤、ポリシラザン、シロキサン等が挙げられ、具体的には、テトラメトキシシラン、テトラエトキシシラン、グリシドキシプロピルトリメトキシシラン、アクリロキシプロピルトリメトキシシラン、ヘキサメチルジシラザン等が挙げられる。 Examples of the silane compound include silane coupling agents, polysilazane, siloxane, etc. Specifically, tetramethoxysilane, tetraethoxysilane, glycidoxypropyltrimethoxysilane, acryloxypropyltrimethoxysilane, hexamethyldisilazane, etc. etc.

ガスバリア性被覆層15の厚さは、50~1000nmであることが好ましく、100~500nmであることがより好ましい。ガスバリア性被覆層15の厚さが50nm以上であると、より十分なガスバリア性を得ることができる傾向があり、1000nm以下であると、十分な柔軟性を保持できる傾向がある。 The thickness of the gas barrier coating layer 15 is preferably 50 to 1000 nm, more preferably 100 to 500 nm. When the thickness of the gas barrier coating layer 15 is 50 nm or more, it tends to be able to obtain more sufficient gas barrier properties, and when it is 1000 nm or less, it tends to be able to maintain sufficient flexibility.

(第2の接着剤層)
第2の接着剤層50は、少なくとも1種類の接着剤を含有した層であり、中間層20とシーラント層30との間に設けられて両者を接合する。1液硬化型又は2液硬化型のいずれの接着剤も、第2の接着剤層50に使用できる。接着剤としては、ウレタン系接着剤、エポキシ系接着剤、シリコーン系接着剤等が挙げられる。これらの接着剤は、バリア性をさらに高める目的で、層状無機化合物を含んでもよい。
(Second adhesive layer)
The second adhesive layer 50 is a layer containing at least one type of adhesive, and is provided between the intermediate layer 20 and the sealant layer 30 to bond them together. Either a one-component curing type or a two-component curing type adhesive can be used for the second adhesive layer 50. Examples of the adhesive include urethane adhesive, epoxy adhesive, silicone adhesive, and the like. These adhesives may contain a layered inorganic compound for the purpose of further enhancing barrier properties.

硬化後にガスバリア性を発現し得る接着剤を用いて、ガスバリア性を有する第2の接着剤層50(ガスバリア性接着剤層)を形成することもできる。これにより、積層体2のガスバリア性能をさらに向上できる。また、第2の接着剤層50がガスバリア性接着剤層である場合、積層体2はガスバリア性被覆層15を備えなくてもよい。ガスバリア性を発現する接着剤で無機酸化物層14に接触する接着剤層を形成すると、ガスバリア性被覆層15が無くても、無機酸化物層14のクラック発生によるガスバリア性の低下を抑制することが可能である。このようなガスバリア性接着剤としては、エポキシ系接着剤、ポリエステル・ポリウレタン系接着剤等が挙げられる。具体例としては、三菱ガス化学社製の「マクシーブ」、DIC社製の「Paslim」等が挙げられる。 The second adhesive layer 50 (gas barrier adhesive layer) having gas barrier properties can also be formed using an adhesive that can exhibit gas barrier properties after curing. Thereby, the gas barrier performance of the laminate 2 can be further improved. Further, when the second adhesive layer 50 is a gas barrier adhesive layer, the laminate 2 does not need to include the gas barrier coating layer 15. By forming an adhesive layer in contact with the inorganic oxide layer 14 with an adhesive that exhibits gas barrier properties, deterioration of gas barrier properties due to cracking in the inorganic oxide layer 14 can be suppressed even without the gas barrier coating layer 15. is possible. Examples of such gas barrier adhesives include epoxy adhesives and polyester/polyurethane adhesives. Specific examples include "Maxive" manufactured by Mitsubishi Gas Chemical Co., Ltd. and "Paslim" manufactured by DIC Corporation.

第2の接着剤層50は、無溶剤型接着剤を用いて形成してもよい。無溶剤型接着剤としては、第1の接着剤層40の形成に用いたものと同様のものが使用可能である。 The second adhesive layer 50 may be formed using a solvent-free adhesive. As the solvent-free adhesive, the same adhesive as used for forming the first adhesive layer 40 can be used.

第2の接着剤層50の厚さは、0.5μm以上6μm以下であることが好ましく、0.8μm以上5μm以下であることがより好ましく、1.0μm以上4.5μm以下であることがさらに好ましい。第2の接着剤層50の厚さを0.5μm以上とすることにより、第2の接着剤層50の接着性を向上することができる。第2の接着剤層50の厚さを6μm以下とすることにより、積層体2の加工適性を向上することができる。 The thickness of the second adhesive layer 50 is preferably 0.5 μm or more and 6 μm or less, more preferably 0.8 μm or more and 5 μm or less, and even more preferably 1.0 μm or more and 4.5 μm or less. preferable. By setting the thickness of the second adhesive layer 50 to 0.5 μm or more, the adhesiveness of the second adhesive layer 50 can be improved. By setting the thickness of the second adhesive layer 50 to 6 μm or less, the processability of the laminate 2 can be improved.

(シーラント層)
シーラント層30は、無延伸ポリエチレンフィルムから構成された層であり、積層体1,2を用いて包装袋等の包装材料を形成する際に熱融着(ヒートシール)により接合される。シーラント層30を構成するポリエチレンは、ヒートシール性という観点からは、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)及び超低密度ポリエチレン(VLDPE)が好ましい。また、環境負荷の観点から、バイオマス由来のポリエチレン又はリサイクルされたポリエチレンがシーラント層30に使用されていてもよい。シーラント層30は、無延伸ポリエチレンフィルムで構成されていてよい。
(Sealant layer)
The sealant layer 30 is a layer made of an unstretched polyethylene film, and is joined by heat sealing when forming a packaging material such as a packaging bag using the laminates 1 and 2. From the viewpoint of heat-sealability, the polyethylene constituting the sealant layer 30 is preferably low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), or very low-density polyethylene (VLDPE). Furthermore, from the viewpoint of environmental impact, biomass-derived polyethylene or recycled polyethylene may be used for the sealant layer 30. The sealant layer 30 may be composed of an unstretched polyethylene film.

低密度ポリエチレンとしては、密度が0.900g/cm以上0.925g/cm未満のポリエチレンを使用することができる。直鎖状低密度ポリエチレンとしては、密度が0.900g/cm以上0.925g/cm未満のポリエチレンを使用することができる。超低密度ポリエチレンとしては、密度が0.900g/cm未満のポリエチレンを使用することができる。シーラント層30には、積層体1,2の特性を損なわない範囲において、エチレンとその他のモノマーとの共重合体を使用することができる。 As the low density polyethylene, polyethylene having a density of 0.900 g/cm 3 or more and less than 0.925 g/cm 3 can be used. As the linear low density polyethylene, polyethylene having a density of 0.900 g/cm 3 or more and less than 0.925 g/cm 3 can be used. As the ultra-low density polyethylene, polyethylene having a density of less than 0.900 g/cm 3 can be used. For the sealant layer 30, a copolymer of ethylene and other monomers can be used as long as the properties of the laminates 1 and 2 are not impaired.

シーラント層30の厚さは、作製される包装袋に充填する内容物の重量等に応じて適宜変更できる。例えば、1g以上、200g以下の内容物を充填する包装袋を作製する場合、シーラント層30の厚さは、20μm以上、60μm以下であることが好ましい。厚さを20μm以上とすることにより、充填された内容物が、シーラント層30の破損により漏れてしまうことを防止できる。厚さを60μm以下とすることにより、積層体1,2の加工適性を向上できる。 The thickness of the sealant layer 30 can be changed as appropriate depending on the weight of the contents to be filled into the packaging bag to be produced. For example, when producing a packaging bag filled with contents of 1 g or more and 200 g or less, the thickness of the sealant layer 30 is preferably 20 μm or more and 60 μm or less. By setting the thickness to 20 μm or more, it is possible to prevent the filled contents from leaking due to damage to the sealant layer 30. By setting the thickness to 60 μm or less, the processability of the laminates 1 and 2 can be improved.

他の例として、50g以上、2000g以下の内容物を充填するスタンディングパウチを作製する場合、シーラント層30の厚さは、50μm以上、200μm以下であることが好ましい。厚さを50μm以上とすることにより、充填された内容物が、シーラント層30の破損により漏れてしまうことを防止することができる。また、厚さを200μm以下とすることにより、積層体1,2の加工適性を向上でき、さらに180μm以下とすることが好ましい。 As another example, when producing a standing pouch filled with contents of 50 g or more and 2000 g or less, the thickness of the sealant layer 30 is preferably 50 μm or more and 200 μm or less. By setting the thickness to 50 μm or more, it is possible to prevent the filled contents from leaking due to damage to the sealant layer 30. Moreover, by setting the thickness to 200 μm or less, the processability of the laminates 1 and 2 can be improved, and it is further preferable to set the thickness to 180 μm or less.

上記基材層10、上記中間層20、上記シーラント層30に用いるポリエチレンには、酸化防止剤、帯電防止剤、造核剤、紫外線吸収剤などの添加剤を添加してもよい。 Additives such as an antioxidant, an antistatic agent, a nucleating agent, and an ultraviolet absorber may be added to the polyethylene used for the base layer 10, the intermediate layer 20, and the sealant layer 30.

上記の様に構成された本実施形態の積層体1,2は、基材層10、中間層20、及びシーラント層30がポリエチレンで構成されていることにより、積層体1,2に占めるポリエチレンの割合が90質量%以上となっている。これにより、積層体1,2は、高いリサイクル性を有する。基材層10、中間層20、及びシーラント層30がいずれもポリエチレンのみからなる場合、積層体1,2に占めるポリエチレンの割合(質量%)は、下記式(1)により算出できる。
積層体に占めるポリエチレンの割合(質量%)=(基材層の質量+中間層の質量+シーラント層の質量)/積層体全体の質量×100 …(1)
In the laminates 1 and 2 of this embodiment configured as described above, the base layer 10, the intermediate layer 20, and the sealant layer 30 are made of polyethylene, so that the polyethylene content in the laminates 1 and 2 is The proportion is 90% by mass or more. Thereby, the laminates 1 and 2 have high recyclability. When the base layer 10, the intermediate layer 20, and the sealant layer 30 are all made of polyethylene, the proportion (mass %) of polyethylene in the laminates 1 and 2 can be calculated by the following formula (1).
Proportion of polyethylene in the laminate (mass%) = (mass of base layer + mass of intermediate layer + mass of sealant layer) / mass of entire laminate x 100...(1)

上記の様に構成された本実施形態の積層体1,2は、溶剤含有量が5mg/m以下であることが好ましい。これにより、印刷絵柄の寸法安定性をより良好なものとすることができる。本実施形態の積層体1,2は、第1の接着剤層40が無溶剤型接着剤により形成されているため、溶剤含有量を5mg/m以下に低減することが可能である。なお、第2の接着剤層50が溶剤型接着剤により形成された場合であっても、本実施形態の積層体1,2は、上記溶剤含有量の条件を満たすことが可能である。積層体1,2の溶剤含有量は、4.5mg/m以下であってもよく、4mg/m以下であってもよい。積層体1,2の溶剤含有量は、例えばガスクロマトグラフを用いて以下の条件で測定することができる。 It is preferable that the laminates 1 and 2 of this embodiment configured as described above have a solvent content of 5 mg/m 2 or less. Thereby, the dimensional stability of the printed pattern can be improved. In the laminates 1 and 2 of this embodiment, since the first adhesive layer 40 is formed of a solvent-free adhesive, the solvent content can be reduced to 5 mg/m 2 or less. Note that even if the second adhesive layer 50 is formed of a solvent-based adhesive, the laminates 1 and 2 of this embodiment can satisfy the above-described solvent content conditions. The solvent content of the laminates 1 and 2 may be 4.5 mg/m 2 or less, or 4 mg/m 2 or less. The solvent content of the laminates 1 and 2 can be measured using, for example, a gas chromatograph under the following conditions.

(ガスクロマトグラフ測定条件)
装置:ヘッドスペースオートサンプラー付きガスクロマトグラフ(GC)
型番:ヘッドスペースオートサンプラー7697A(Agilent Technologies社製)
GC7890B(Agilent Technologies社製)
測定方法:積層体を10cm角の正方形に切り取り、細かく裁断したものを20mLバイアルに封入し、それらを80℃で20分間加熱する。加熱により発生したヘッドスペースガス1.0mLをGC分析に供し、予め作成した各標準物質(トルエン、酢酸エチル、2-プロパノール(IPA)、メタノール、及びMEK等)による検量線を用いて、残存溶剤含有量を定量する。
(Gas chromatograph measurement conditions)
Equipment: Gas chromatograph (GC) with headspace autosampler
Model number: Headspace autosampler 7697A (manufactured by Agilent Technologies)
GC7890B (manufactured by Agilent Technologies)
Measurement method: Cut the laminate into 10 cm squares, seal the finely cut pieces in a 20 mL vial, and heat them at 80° C. for 20 minutes. 1.0 mL of the headspace gas generated by heating was subjected to GC analysis, and the remaining solvent was determined using a calibration curve of each standard substance (toluene, ethyl acetate, 2-propanol (IPA), methanol, MEK, etc.) prepared in advance. Quantify the content.

<積層体の製造方法>
次に、積層体の製造方法について説明する。本実施形態に係る積層体の製造方法は、基材層上にインキを用いた印刷法により印刷層を形成して印刷基材を得る印刷工程と、印刷基材と、中間層、第2の接着剤層及びシーラント層を含む積層フィルムとを、無溶剤型接着剤を用いて貼り合わせる貼合工程と、を有する。
<Method for manufacturing laminate>
Next, a method for manufacturing the laminate will be described. The method for manufacturing a laminate according to the present embodiment includes a printing step of forming a printing layer on a substrate layer by a printing method using ink to obtain a printing substrate, a printing substrate, an intermediate layer, and a second layer. The method includes a bonding step of bonding together a laminated film including an adhesive layer and a sealant layer using a solvent-free adhesive.

積層体1,2を製造する場合、貼合工程の前に、中間層、第2の接着剤層及びシーラント層を含む積層フィルムを作製する積層フィルム作製工程を行う。また、積層体2を製造する場合には、積層フィルム作製工程の前に、中間層20上にアンカーコート層13、無機酸化物層14及びガスバリア性被覆層15を形成して中間フィルムを得る中間フィルム作製工程を行う。中間フィルム作製工程では、公知の方法により、中間層20上にアンカーコート層13、無機酸化物層14及びガスバリア性被覆層15を形成することができる。 When producing the laminates 1 and 2, a laminate film production process is performed to produce a laminate film including an intermediate layer, a second adhesive layer, and a sealant layer before the bonding process. In addition, when manufacturing the laminate 2, an anchor coat layer 13, an inorganic oxide layer 14, and a gas barrier coating layer 15 are formed on the intermediate layer 20 before the laminate film manufacturing process to obtain an intermediate film. Perform the film production process. In the intermediate film production step, the anchor coat layer 13, the inorganic oxide layer 14, and the gas barrier coating layer 15 can be formed on the intermediate layer 20 by a known method.

積層フィルム作製工程では、使用する接着剤に対応した方法で、中間層20又は中間フィルムと、シーラント層30とを貼り合わせる。 In the laminated film production process, the intermediate layer 20 or the intermediate film and the sealant layer 30 are bonded together by a method corresponding to the adhesive used.

接着剤として溶剤型接着剤を用いる場合、一般的なドライラミネート法により、中間層20又は中間フィルム上に溶剤型接着剤を塗工してシーラント層30と貼り合わせ、熱乾燥して溶剤を除去することで、積層フィルムを得ることができる。熱乾燥は、オーブン等を用いて、例えば、温度50~80℃、オーブン炉長5~20m、加工速度50~200m/分の条件で行うことができる。 When using a solvent-based adhesive as the adhesive, the solvent-based adhesive is applied onto the intermediate layer 20 or the intermediate film and bonded to the sealant layer 30 using a general dry lamination method, and the solvent is removed by heat drying. By doing so, a laminated film can be obtained. Thermal drying can be carried out using an oven or the like, for example, at a temperature of 50 to 80° C., an oven length of 5 to 20 m, and a processing speed of 50 to 200 m/min.

接着剤として無溶剤型接着剤を用いる場合、上述した貼合工程と同様の方法で、中間層20又は中間フィルム上に無溶剤型接着剤を塗工してシーラント層30と貼り合わせることで、積層フィルムを得ることができる。 When using a solvent-free adhesive as the adhesive, by applying the solvent-free adhesive onto the intermediate layer 20 or the intermediate film and bonding it with the sealant layer 30 in the same manner as the above-mentioned bonding process, A laminated film can be obtained.

次に、貼合工程において、印刷基材と積層フィルムとを無溶剤型接着剤を用いて貼り合わせる。印刷基材と積層フィルムとの貼り合わせは、例えば、加熱溶融させた無溶剤型接着剤をロールコートで被塗工基材に塗工する装置を具備した無溶剤型接着剤用ラミネーターにより行うことができる。 Next, in the bonding step, the printing base material and the laminated film are bonded together using a solvent-free adhesive. The printing substrate and the laminated film may be bonded together, for example, using a laminator for solvent-free adhesives equipped with a device for applying a heat-melted solvent-free adhesive to the substrate to be coated by roll coating. Can be done.

無溶剤型接着剤が例えば2液硬化型のウレタン系接着剤である場合、通常は、ポリオール成分を含む主剤とポリイソシアネート成分を含む硬化剤とが別々に供給され、ラミネート装置の塗工部に至る前に混合される。混合された接着剤は、例えば、ラミネート装置の互いに反対方向に回転するドクターロールとメタリングロールとの間に供給される。供給された接着剤は、メタリングロールからコーティングロールに転移され、コーティングロールと圧胴ロールとの間に供給された印刷基材の印刷層12側の表面に塗工される。 When the solvent-free adhesive is, for example, a two-component curing urethane adhesive, the main agent containing a polyol component and the curing agent containing a polyisocyanate component are normally supplied separately, and then supplied to the coating section of the laminating machine. mixed before serving. The mixed adhesive is supplied, for example, between a doctor roll and a metering roll that rotate in opposite directions of the laminating device. The supplied adhesive is transferred from the metering roll to the coating roll, and is applied to the surface of the printing layer 12 side of the printing base material supplied between the coating roll and the impression roll.

接着剤が塗工された印刷基材は積層フィルムと貼り合わされ、巻き取り機により巻き取られて、積層体が得られる。得られた積層体は、20~50℃で24~96時間のエージングを行うことが好ましい。なお、上述したドクターロール、メタリングロール及びコーティングロールは、ラミネート装置の構成の一例であり、使用するラミネート装置によって構成が異なっていてよい。 The printing substrate coated with the adhesive is bonded to the laminated film and wound up by a winder to obtain a laminated body. The obtained laminate is preferably aged at 20 to 50°C for 24 to 96 hours. In addition, the doctor roll, metaling roll, and coating roll mentioned above are examples of the structure of a lamination apparatus, and may differ depending on the lamination apparatus used.

ここで、無溶剤型接着剤を、溶剤が無くても塗工できる程度に低粘度にするために、ドクターロール及びコーティングロール等の金属ロールを加温し、無溶剤型接着剤を温度によって溶融させ、粘度を下げて塗工及び貼り合わせを行うことが好ましい。 Here, in order to make the solvent-free adhesive so low in viscosity that it can be applied without a solvent, metal rolls such as doctor rolls and coating rolls are heated, and the solvent-free adhesive is melted by the temperature. It is preferable to lower the viscosity and perform coating and bonding.

そのため、貼合工程における無溶剤型接着剤の加熱温度を、該加熱温度における無溶剤型接着剤の粘度が200~2000mPa・sとなるように、50~90℃の範囲内で設定することが好ましい。上記加熱温度は、より均一な塗工外観を有する積層体を得る観点から、無溶剤型接着剤の粘度が300~1500mPa・sとなる温度であることがより好ましく、500~1000mPa・sとなる温度であることが更に好ましい。また、上記加熱温度は、積層体のラミネート強度をより向上させると共に、印刷基材の伸び縮みをより抑制する観点から、50~80℃であることがより好ましく、50~70℃であることが更に好ましい。 Therefore, the heating temperature of the solvent-free adhesive in the bonding process should be set within the range of 50 to 90°C so that the viscosity of the solvent-free adhesive at the heating temperature is 200 to 2000 mPa・s. preferable. The heating temperature is more preferably a temperature at which the viscosity of the solvent-free adhesive is 300 to 1,500 mPa·s, and more preferably 500 to 1,000 mPa·s, from the viewpoint of obtaining a laminate with a more uniform coated appearance. More preferably, it is temperature. Further, the heating temperature is more preferably 50 to 80°C, more preferably 50 to 70°C, from the viewpoint of further improving the lamination strength of the laminate and further suppressing expansion and contraction of the printing base material. More preferred.

また、無溶剤型接着剤が2液硬化型のウレタン系接着剤である場合、2液混合直後のウレタン系接着剤の粘度が、40℃において200~2500mPa・sであることが好ましく、500~2000mPa・sであることがより好ましく、800~1500mPa・sであることが更に好ましい。これにより、貼合工程における無溶剤型接着剤の塗工時の上記加熱温度を低くすることができ、印刷基材の伸び縮みをより一層抑制することができる。無溶剤型接着剤の粘度は、例えば、ビスコテスター(高粘度用)VT-04FS(リオン株式会社製)を用いて、所定温度における接着剤に測定用ローターを差し込むことによって測定することができる。 Furthermore, when the solvent-free adhesive is a two-component curing urethane adhesive, the viscosity of the urethane adhesive immediately after mixing the two components is preferably 200 to 2,500 mPa·s at 40°C, and preferably 500 to 2,500 mPa·s. It is more preferably 2000 mPa·s, and even more preferably 800 to 1500 mPa·s. Thereby, the above-mentioned heating temperature during application of the solvent-free adhesive in the bonding process can be lowered, and expansion and contraction of the printing base material can be further suppressed. The viscosity of a solvent-free adhesive can be measured, for example, by using a Visco Tester (for high viscosity) VT-04FS (manufactured by Rion Co., Ltd.) by inserting a measuring rotor into the adhesive at a predetermined temperature.

上記貼合工程では、無溶剤型接着剤を用いているため、溶剤を除去するための高温で長時間の熱乾燥(オーブン乾燥等)が行われない。そのため、印刷基材の伸び縮みを抑制でき、印刷絵柄の寸法安定性が良好な積層体を得ることができる。 In the above bonding step, since a solvent-free adhesive is used, long-term heat drying (oven drying, etc.) at high temperature to remove the solvent is not performed. Therefore, expansion and contraction of the printing base material can be suppressed, and a laminate with good dimensional stability of the printed pattern can be obtained.

以上の工程を経て、本実施形態に係る積層体1,2を製造することができる。 Through the above steps, the laminates 1 and 2 according to this embodiment can be manufactured.

<包装袋>
本実施形態に係る包装袋は、本実施形態に係る積層体を製袋してなるものである。包装袋は、シーラント層30を対向させつつ1枚の積層体1,2を折り曲げたり、シーラント層30を対向させつつ2枚の積層体1,2を重ねたりした状態で、内容物の充填部を残して周縁部のシーラント層30をヒートシールにより接合することで形成することができる。また、折り曲げた底フィルムを挟みつつ上記の様な接合を行うことにより、包装袋としてスタンディングパウチを形成することができる。その他、積層体1,2は、ピロー包装、四方シール、三方シール、ガゼット袋など、各種包装袋の形成に用いることができる。このように、積層体1,2は、各種包装袋に適用できる。
<Packaging bag>
The packaging bag according to this embodiment is made by bag-making the laminate according to this embodiment. The packaging bag is prepared by folding one laminate 1 and 2 with the sealant layer 30 facing each other, or by stacking two laminates 1 and 2 with the sealant layer 30 facing each other, so that the packaging bag is not filled with the contents. It can be formed by joining the sealant layer 30 at the peripheral edge portion by heat sealing, leaving the remaining portions. Further, by performing the above-described joining while sandwiching the folded bottom film, a standing pouch can be formed as a packaging bag. In addition, the laminates 1 and 2 can be used to form various packaging bags such as pillow packaging, four-sided seals, three-sided seals, and gusset bags. In this way, the laminates 1 and 2 can be applied to various packaging bags.

以上、本開示の好適な実施形態について説明したが、本開示は上記実施形態に限定されるものではない。例えば、積層体は、図2に示す積層体2において中間層20の第2の接着剤層50側に配置されたアンカーコート層13、無機酸化物層14及びガスバリア性被覆層15が、中間層20の第1の接着剤層40側に配置された構造を有していてもよい。また、積層体は、図2に示す積層体2からアンカーコート層13、無機酸化物層14、ガスバリア性被覆層15のうちの一層以上を除いた構造を有していてもよい。 Although the preferred embodiments of the present disclosure have been described above, the present disclosure is not limited to the above embodiments. For example, in the laminate 2 shown in FIG. 2, the anchor coat layer 13, the inorganic oxide layer 14, and the gas barrier coating layer 15 disposed on the second adhesive layer 50 side of the intermediate layer 20 may have a structure disposed on the first adhesive layer 40 side. Further, the laminate may have a structure in which one or more of the anchor coat layer 13, the inorganic oxide layer 14, and the gas barrier coating layer 15 are removed from the laminate 2 shown in FIG. 2.

積層体は、図2に示す積層体2からガスバリア性被覆層15を除いた構造を有していてもよい。この場合、第2の接着剤層50は、上述した硬化後にガスバリア性を発現し得る接着剤(ガスバリア性接着剤)を用いて形成された層(ガスバリア性接着剤層)であることが好ましい。これにより、無機酸化物層14のクラック発生によるガスバリア性の低下を抑制することができる。 The laminate may have a structure in which the gas barrier coating layer 15 is removed from the laminate 2 shown in FIG. In this case, the second adhesive layer 50 is preferably a layer (gas barrier adhesive layer) formed using the above-described adhesive (gas barrier adhesive) that can exhibit gas barrier properties after curing. Thereby, deterioration in gas barrier properties due to cracking in the inorganic oxide layer 14 can be suppressed.

以下、実施例により本開示をさらに詳細に説明するが、本開示はこれらの例に限定されるものではない。 EXAMPLES Hereinafter, the present disclosure will be explained in more detail with reference to examples, but the present disclosure is not limited to these examples.

実施例及び比較例で用いた各材料を以下に示す。 Each material used in Examples and Comparative Examples is shown below.

(無溶剤型接着剤A)
無溶剤型接着剤Aとして、ヘンケルジャパン株式会社製の商品名「LA7735」(ポリイソシアネート成分)とヘンケルジャパン株式会社製の商品名「LA6159」(ポリオール成分)とを質量比100:45で配合した、2液硬化型のウレタン系接着剤を用いた。無溶剤型接着剤Aの粘度は、2液混合直後の40℃において1500mPa・sであり、ラミネート時の60℃において800mPa・sであった。粘度は、ビスコテスターによって測定した。
(Solvent-free adhesive A)
As the solvent-free adhesive A, the product name "LA7735" (polyisocyanate component) manufactured by Henkel Japan Ltd. and the product name "LA6159" (polyol component) manufactured by Henkel Japan Ltd. were blended at a mass ratio of 100:45. A two-component curing urethane adhesive was used. The viscosity of the solvent-free adhesive A was 1500 mPa·s at 40°C immediately after mixing the two liquids, and 800 mPa·s at 60°C during lamination. Viscosity was measured using a Viscotester.

(無溶剤型接着剤B)
無溶剤型接着剤Bとして、ヘンケルジャパン株式会社製の商品名「LA7735」(ポリイソシアネート成分)とヘンケルジャパン株式会社製の商品名「LA6088」(ポリオール成分)とを質量比100:40で配合した、2液硬化型のウレタン系接着剤を用いた。無溶剤型接着剤Bの粘度は、2液混合直後の40℃において4500mPa・sであり、ラミネート時の60℃において2000mPa・sであった。
(Solvent-free adhesive B)
As a solvent-free adhesive B, the product name "LA7735" (polyisocyanate component) manufactured by Henkel Japan Ltd. and the product name "LA6088" (polyol component) manufactured by Henkel Japan Ltd. were blended at a mass ratio of 100:40. A two-component curing urethane adhesive was used. The viscosity of the solvent-free adhesive B was 4500 mPa·s at 40°C immediately after mixing the two liquids, and 2000 mPa·s at 60°C during lamination.

(溶剤型接着剤)
溶剤型接着剤として、三井化学社製のタケラックA525を100質量部に対し、三井化学社製のタケネートA52を11質量部と、酢酸エチル84質量部とを混合した、ウレタン系接着剤を用いた。
(solvent adhesive)
As a solvent-based adhesive, a urethane adhesive was used in which 100 parts by mass of Takelac A525 manufactured by Mitsui Chemicals, 11 parts by mass of Takenate A52 manufactured by Mitsui Chemicals, and 84 parts by mass of ethyl acetate were mixed. .

(ガスバリア性接着剤)
溶剤型のガスバリア性接着剤として、三菱ガス化学社製のマクシーブC93Tを16質量部と、三菱ガス化学社製のマクシーブM-100を5質量部とを混合した、エポキシ系のガスバリア性接着剤を用いた。
(Gas barrier adhesive)
As a solvent-type gas barrier adhesive, an epoxy gas barrier adhesive was used, which was a mixture of 16 parts by mass of Maxive C93T manufactured by Mitsubishi Gas Chemical Co., Ltd. and 5 parts by mass of Maxive M-100 manufactured by Mitsubishi Gas Chemical Company. Using.

(アンカーコート剤)
アクリルポリオールとトリレンジイソシアネートとを、アクリルポリオールのOH基の数に対してトリレンジイソシアネートのNCO基の数が等量となるように混合し、全固形分(アクリルポリオール及びトリレンジイソシアネートの合計量)が5質量%になるよう酢酸エチルで希釈した。希釈後の混合液に、さらにβ-(3,4エポキシシクロヘキシル)トリメトキシシランを、アクリルポリオール及びトリレンジイソシアネートの合計量100質量部に対して5質量部となるように添加し、これらを混合することでアンカーコート剤を調製した。
(Anchor coating agent)
Acrylic polyol and tolylene diisocyanate are mixed so that the number of NCO groups in tolylene diisocyanate is equal to the number of OH groups in acrylic polyol, and the total solid content (total amount of acrylic polyol and tolylene diisocyanate) is ) was diluted with ethyl acetate to 5% by mass. Further, β-(3,4 epoxycyclohexyl)trimethoxysilane was added to the diluted mixed solution in an amount of 5 parts by mass based on 100 parts by mass of the total amount of acrylic polyol and tolylene diisocyanate, and these were mixed. An anchor coating agent was prepared by doing this.

(オーバーコート剤)
下記のA液、B液及びC液を、それぞれ70/20/10の質量比で混合することで、オーバーコート剤を調製した。
A液:テトラエトキシシラン(Si(OC)17.9gとメタノール10gに0.1N塩酸72.1gを加えて30分間攪拌して加水分解させた固形分5質量%(SiO2換算)の加水分解溶液。
B液:ポリビニルアルコールの5質量%水/メタノール溶液(水:メタノールの質量比は95:5)。
C液:1,3,5-トリス(3-トリアルコキシシリルプロピル)イソシアヌレートを水/イソプロピルアルコールの混合液(水:イソプロピルアルコールの質量比は1:1)で固形分5質量%に希釈した加水分解溶液。
(overcoat agent)
An overcoat agent was prepared by mixing the following liquids A, B, and C at a mass ratio of 70/20/10, respectively.
Solution A: 72.1 g of 0.1N hydrochloric acid was added to 17.9 g of tetraethoxysilane (Si(OC 2 H 5 ) 4 ) and 10 g of methanol, and the mixture was stirred for 30 minutes to be hydrolyzed, resulting in a solid content of 5% by mass (SiO2 equivalent). ) hydrolysis solution.
Solution B: 5% by mass water/methanol solution of polyvinyl alcohol (mass ratio of water:methanol is 95:5).
Solution C: 1,3,5-tris(3-trialkoxysilylpropyl)isocyanurate was diluted to a solid content of 5% by mass with a mixed solution of water/isopropyl alcohol (mass ratio of water:isopropyl alcohol was 1:1). Hydrolysis solution.

(中間フィルムA)
中間層としての無延伸高密度ポリエチレン(HDPE)フィルム(タマポリ株式会社製、商品名:HS31、厚さ:30μm、片面コロナ処理あり)のコロナ処理面に、上述したアンカーコート剤をグラビアコート法により塗布、乾燥し、厚さ0.05μmのアンカーコート層を設けた。次に、電子線加熱方式による真空蒸着装置により、酸化珪素からなる厚さ30nmの透明な蒸着層(無機酸化物層)をアンカーコート層上に形成した。無機酸化物層のO/Si比は、蒸着材料種を調整することにより1.8とした。次に、無機酸化物層の上に上述したオーバーコート剤をグラビアコート法により塗布して乾燥し、ガスバリア機能を有する厚さ0.3μmのガスバリア性被覆層(オーバーコート層)を形成した。以上により、中間層/アンカーコート層/無機酸化物層(SiO)/ガスバリア性被覆層が積層された中間フィルムAを得た。
(Intermediate film A)
The above-mentioned anchor coating agent was applied by gravure coating to the corona-treated surface of an unstretched high-density polyethylene (HDPE) film (manufactured by Tamapoly Co., Ltd., product name: HS31, thickness: 30 μm, one side corona-treated) as an intermediate layer. It was coated and dried to provide an anchor coat layer with a thickness of 0.05 μm. Next, a transparent vapor deposition layer (inorganic oxide layer) made of silicon oxide and having a thickness of 30 nm was formed on the anchor coat layer using a vacuum vapor deposition apparatus using an electron beam heating method. The O/Si ratio of the inorganic oxide layer was set to 1.8 by adjusting the type of vapor deposition material. Next, the above-mentioned overcoat agent was applied onto the inorganic oxide layer by gravure coating and dried to form a gas barrier coating layer (overcoat layer) having a gas barrier function and having a thickness of 0.3 μm. As a result of the above, an intermediate film A in which the intermediate layer/anchor coat layer/inorganic oxide layer (SiO x )/gas barrier coating layer was laminated was obtained.

(中間フィルムB)
電子線加熱方式による真空蒸着装置により、酸化アルミニウムからなる厚さ10nmの透明な蒸着層(無機酸化物層)をアンカーコート層上に形成したこと以外は上記中間フィルムAと同様にして、中間層/アンカーコート層/無機酸化物層(AlO)/ガスバリア性被覆層が積層された中間フィルムBを得た。
(Intermediate film B)
The intermediate layer was prepared in the same manner as the above intermediate film A except that a 10 nm thick transparent vapor deposited layer (inorganic oxide layer) made of aluminum oxide was formed on the anchor coat layer using a vacuum evaporation apparatus using an electron beam heating method. An intermediate film B was obtained in which the following layers were laminated: /anchor coat layer/inorganic oxide layer (AlO x )/gas barrier coating layer.

(中間フィルムC)
ガスバリア性被覆層を形成しなかったこと以外は上記中間フィルムAと同様にして、中間層/アンカーコート層/無機酸化物層(SiO)が積層された中間フィルムBを得た。
(Intermediate film C)
Intermediate film B, in which intermediate layer/anchor coat layer/inorganic oxide layer (SiO x ) were laminated, was obtained in the same manner as intermediate film A except that no gas barrier coating layer was formed.

(中間フィルムD)
ガスバリア性被覆層を形成しなかったこと以外は上記中間フィルムBと同様にして、中間層/アンカーコート層/無機酸化物層(AlO)が積層された中間フィルムBを得た。
(Intermediate film D)
An intermediate film B in which an intermediate layer/anchor coat layer/inorganic oxide layer (AlO x ) was laminated was obtained in the same manner as the above intermediate film B except that a gas barrier coating layer was not formed.

[実施例1]
基材層として、無延伸高密度ポリエチレン(HDPE)フィルム(タマポリ株式会社製、商品名:HS31、厚さ:30μm、片面コロナ処理あり)を準備した。基材層のコロナ処理面に、フレキソ印刷法によって絵柄印刷を施して厚さ1μmの印刷層を形成し、印刷基材を得た。一方、シーラント層として、厚さ60μmの片面コロナ処理済無延伸ポリエチレンフィルム(タマポリ株式会社製、商品名:SE620、LLDPEの単層構成)を準備した。
[Example 1]
As a base material layer, an unstretched high-density polyethylene (HDPE) film (manufactured by Tamapoly Co., Ltd., trade name: HS31, thickness: 30 μm, one side corona treated) was prepared. A pattern was printed on the corona-treated surface of the base material layer by a flexographic printing method to form a 1 μm thick printed layer to obtain a printed base material. On the other hand, as a sealant layer, a single-sided corona-treated unstretched polyethylene film (manufactured by Tamapori Co., Ltd., trade name: SE620, single-layer structure of LLDPE) having a thickness of 60 μm was prepared.

次に、上述した無溶剤型接着剤Aのポリイソシアネート成分及びポリオール成分を、2液混合供給装置で混合し、液温40℃とした。無溶剤型接着剤用ラミネーターを用い、加工速度100m/min、ドクターロール及びコーティングロール温度60℃の条件で、中間層としての無延伸高密度ポリエチレン(HDPE)フィルム(タマポリ株式会社製、商品名:HS31、厚さ:30μm、片面コロナ処理あり)のコロナ処理面に、無溶剤型接着剤A(第2の接着剤層を形成する接着剤)を塗布量が2.1g/mとなるように塗工し、中間層とシーラント層とを貼り合わせた。その後、40℃で1日間エージングすることで、中間層とシーラント層とが第2の接着剤層を介して積層された積層フィルムを得た。 Next, the polyisocyanate component and polyol component of the above-mentioned solvent-free adhesive A were mixed using a two-component mixing supply device, and the solution temperature was set to 40°C. An unstretched high-density polyethylene (HDPE) film (manufactured by Tamapoly Co., Ltd., product name: Solvent-free adhesive A (adhesive that forms the second adhesive layer) was applied to the corona-treated surface of HS31 (thickness: 30 μm, one side corona treated) at a coating amount of 2.1 g/ m2 . The intermediate layer and sealant layer were bonded together. Thereafter, by aging at 40° C. for one day, a laminated film in which the intermediate layer and the sealant layer were laminated via the second adhesive layer was obtained.

次に、上述した無溶剤型接着剤Aのポリイソシアネート成分及びポリオール成分を、2液混合供給装置で混合し、液温40℃とした。無溶剤型接着剤用ラミネーターを用い、加工速度100m/min、ドクターロール及びコーティングロール温度60℃の条件で、印刷基材の印刷層上に無溶剤型接着剤A(第1の接着剤層を形成する接着剤)を塗布量が2.1g/mとなるように塗工し、印刷基材と積層フィルムとを貼り合わせた。その後、40℃で2日間エージングすることで、基材層/印刷層/第1の接着剤層/中間層/第2の接着剤層/シーラント層の積層構造を有する積層体を得た。 Next, the polyisocyanate component and polyol component of the above-mentioned solvent-free adhesive A were mixed using a two-component mixing supply device, and the solution temperature was set to 40°C. Using a laminator for solvent-free adhesives, under the conditions of a processing speed of 100 m/min and a doctor roll and coating roll temperature of 60°C, solvent-free adhesive A (first adhesive layer) was applied onto the printing layer of the printing base material. The printing base material and the laminated film were bonded together by applying a coating amount of 2.1 g/m 2 (forming adhesive) to the printed base material and the laminated film. Thereafter, by aging at 40° C. for 2 days, a laminate having a laminate structure of base material layer/printed layer/first adhesive layer/intermediate layer/second adhesive layer/sealant layer was obtained.

[実施例2]
実施例1と同様にして、印刷基材及びシーラント層を準備した。次に、上述した無溶剤型接着剤Aのポリイソシアネート成分及びポリオール成分を、2液混合供給装置で混合し、液温40℃とした。無溶剤型接着剤用ラミネーターを用い、加工速度100m/min、ドクターロール及びコーティングロール温度60℃の条件で、上述した中間フィルムAのガスバリア性被覆層上に無溶剤型接着剤A(第2の接着剤層を形成する接着剤)を塗布量が2.1g/mとなるように塗工し、中間フィルムAとシーラント層とを貼り合わせた。その後、40℃で1日間エージングすることで、中間フィルムAとシーラント層とが第2の接着剤層を介して積層された積層フィルムを得た。
[Example 2]
A printing base material and a sealant layer were prepared in the same manner as in Example 1. Next, the polyisocyanate component and polyol component of the above-mentioned solvent-free adhesive A were mixed using a two-component mixing supply device, and the solution temperature was set to 40°C. Using a laminator for solvent-free adhesives, under the conditions of processing speed 100 m/min, doctor roll and coating roll temperature 60°C, solvent-free adhesive A (second An adhesive (forming an adhesive layer) was applied in an amount of 2.1 g/m 2 , and the intermediate film A and the sealant layer were bonded together. Thereafter, by aging at 40° C. for one day, a laminated film in which the intermediate film A and the sealant layer were laminated via the second adhesive layer was obtained.

次に、上述した無溶剤型接着剤Aのポリイソシアネート成分及びポリオール成分を、2液混合供給装置で混合し、液温40℃とした。無溶剤型接着剤用ラミネーターを用い、加工速度100m/min、ドクターロール及びコーティングロール温度60℃の条件で、印刷基材の印刷層上に無溶剤型接着剤A(第1の接着剤層を形成する接着剤)を塗布量が2.1g/mとなるように塗工し、印刷基材と積層フィルムとを貼り合わせた。その後、40℃で2日間エージングすることで、基材層/印刷層/第1の接着剤層/中間層/アンカーコート層/無機酸化物層/ガスバリア性被覆層/第2の接着剤層/シーラント層の積層構造を有する積層体を得た。 Next, the polyisocyanate component and polyol component of the above-mentioned solvent-free adhesive A were mixed using a two-component mixing supply device, and the solution temperature was set to 40°C. Using a laminator for solvent-free adhesives, under the conditions of a processing speed of 100 m/min and a doctor roll and coating roll temperature of 60°C, solvent-free adhesive A (first adhesive layer) was applied onto the printing layer of the printing base material. The printing base material and the laminated film were bonded together by applying a coating amount of 2.1 g/m 2 (forming adhesive) to the printed base material and the laminated film. Thereafter, by aging at 40°C for 2 days, the substrate layer/printed layer/first adhesive layer/intermediate layer/anchor coat layer/inorganic oxide layer/gas barrier coating layer/second adhesive layer/ A laminate having a laminate structure of sealant layers was obtained.

[実施例3]
中間フィルムAに代えて中間フィルムBを用いたこと以外は実施例2と同様にして、基材層/印刷層/第1の接着剤層/中間層/アンカーコート層/無機酸化物層/ガスバリア性被覆層/第2の接着剤層/シーラント層の積層構造を有する積層体を得た。
[Example 3]
Substrate layer/print layer/first adhesive layer/intermediate layer/anchor coat layer/inorganic oxide layer/gas barrier was prepared in the same manner as in Example 2 except that intermediate film B was used instead of intermediate film A. A laminate having a laminate structure of adhesive coating layer/second adhesive layer/sealant layer was obtained.

[実施例4]
実施例1と同様にして、印刷基材及びシーラント層を準備した。次に、上述したガスバリア性接着剤(第2の接着剤層を形成する接着剤)を用いたドライネート法により、上述した中間フィルムCの無機酸化物層側の面とシーラント層とを接着した。接着は、ドライラミネーターを用いて乾燥温度50℃で加工速度100m/minの条件で行った。また、第2の接着剤層の厚さは2.1μmであった。これにより、中間フィルムCとシーラント層とが第2の接着剤層を介して積層された積層フィルムを得た。
[Example 4]
A printing base material and a sealant layer were prepared in the same manner as in Example 1. Next, the surface of the inorganic oxide layer side of the intermediate film C described above and the sealant layer were adhered by the dry nate method using the gas barrier adhesive described above (the adhesive forming the second adhesive layer). . Adhesion was performed using a dry laminator at a drying temperature of 50° C. and a processing speed of 100 m/min. Moreover, the thickness of the second adhesive layer was 2.1 μm. Thereby, a laminated film in which the intermediate film C and the sealant layer were laminated via the second adhesive layer was obtained.

次に、上述した無溶剤型接着剤Aのポリイソシアネート成分及びポリオール成分を、2液混合供給装置で混合し、液温40℃とした。無溶剤型接着剤用ラミネーターを用い、加工速度100m/min、ドクターロール及びコーティングロール温度60℃の条件で、印刷基材の印刷層上に無溶剤型接着剤A(第1の接着剤層を形成する接着剤)を塗布量が2.1g/mとなるように塗工し、印刷基材と積層フィルムとを貼り合わせた。その後、40℃で2日間エージングすることで、基材層/印刷層/第1の接着剤層/中間層/アンカーコート層/無機酸化物層/第2の接着剤層/シーラント層の積層構造を有する積層体を得た。 Next, the polyisocyanate component and polyol component of the above-mentioned solvent-free adhesive A were mixed using a two-component mixing supply device, and the solution temperature was set to 40°C. Using a laminator for solvent-free adhesives, under the conditions of a processing speed of 100 m/min and a doctor roll and coating roll temperature of 60°C, solvent-free adhesive A (first adhesive layer) was applied onto the printing layer of the printing base material. The printing base material and the laminated film were bonded together by applying a coating amount of 2.1 g/m 2 (forming adhesive) to the printed base material and the laminated film. Thereafter, by aging at 40°C for 2 days, a laminated structure of base material layer/print layer/first adhesive layer/intermediate layer/anchor coat layer/inorganic oxide layer/second adhesive layer/sealant layer is formed. A laminate having the following properties was obtained.

[実施例5]
中間フィルムCに代えて中間フィルムDを用いたこと以外は実施例4と同様にして、基材層/印刷層/第1の接着剤層/中間層/アンカーコート層/無機酸化物層/第2の接着剤層/シーラント層の積層構造を有する積層体を得た。
[Example 5]
In the same manner as in Example 4 except that intermediate film D was used instead of intermediate film C, base layer/print layer/first adhesive layer/intermediate layer/anchor coat layer/inorganic oxide layer/first A laminate having a laminate structure of two adhesive layers/sealant layers was obtained.

[実施例6]
第1の接着剤層及び第2の接着剤層を形成する際に、無溶剤型接着剤Aに代えて無溶剤型接着剤Bを用いたこと以外は実施例2と同様にして、基材層/印刷層/第1の接着剤層/中間層/アンカーコート層/無機酸化物層/ガスバリア性被覆層/第2の接着剤層/シーラント層の積層構造を有する積層体を得た。
[Example 6]
A substrate was prepared in the same manner as in Example 2, except that solvent-free adhesive B was used instead of solvent-free adhesive A when forming the first adhesive layer and the second adhesive layer. A laminate having a laminate structure of layer/printed layer/first adhesive layer/intermediate layer/anchor coat layer/inorganic oxide layer/gas barrier coating layer/second adhesive layer/sealant layer was obtained.

[比較例1]
基材層及び中間層として、延伸高密度ポリエチレン(HDPE)フィルム(東京インキ株式会社製、商品名:SMUQ、厚さ:25μm、片面コロナ処理あり)を用いたこと以外は実施例1と同様にして、基材層/印刷層/第1の接着剤層/中間層/第2の接着剤層/シーラント層の積層構造を有する積層体を得た。
[Comparative example 1]
The same procedure as in Example 1 was used except that a stretched high-density polyethylene (HDPE) film (manufactured by Tokyo Ink Co., Ltd., product name: SMUQ, thickness: 25 μm, one side corona treated) was used as the base layer and the intermediate layer. As a result, a laminate having a laminate structure of base material layer/printed layer/first adhesive layer/intermediate layer/second adhesive layer/sealant layer was obtained.

[比較例2]
実施例1と同様にして、印刷基材及びシーラント層を準備した。次に、上述した溶剤型接着剤(第2の接着剤層を形成する接着剤)を用いたドライネート法により、上述した中間フィルムAのガスバリア性被覆層側の面とシーラント層とを接着した。接着は、ドライラミネーターを用いて乾燥温度50℃で加工速度100m/minの条件で行った。また、第2の接着剤層の厚さは3.5μmであった。これにより、中間フィルムAとシーラント層とが第2の接着剤層を介して積層された積層フィルムを得た。
[Comparative example 2]
A printing base material and a sealant layer were prepared in the same manner as in Example 1. Next, the surface of the gas barrier coating layer side of the intermediate film A described above and the sealant layer were adhered by the dry nate method using the above-mentioned solvent-based adhesive (the adhesive forming the second adhesive layer). . Adhesion was performed using a dry laminator at a drying temperature of 50° C. and a processing speed of 100 m/min. Moreover, the thickness of the second adhesive layer was 3.5 μm. Thereby, a laminated film in which the intermediate film A and the sealant layer were laminated via the second adhesive layer was obtained.

次に、上述した溶剤型接着剤(第1の接着剤層を形成する接着剤)を用いたドライネート法により、上述した印刷基材の印刷層側の面と上述した積層フィルムの中間層側の面とを接着した。接着は、ドライラミネーターを用いて乾燥温度50℃で加工速度100m/minの条件で行った。また、第1の接着剤層の厚さは3.5μmであった。これにより、基材層/印刷層/第1の接着剤層/中間層/アンカーコート層/無機酸化物層/ガスバリア性被覆層/第2の接着剤層/シーラント層の積層構造を有する積層体を得た。 Next, by the drynate method using the above-mentioned solvent-based adhesive (the adhesive forming the first adhesive layer), the surface of the printing layer side of the above-mentioned printing base material and the intermediate layer side of the above-mentioned laminated film are bonded. I glued the sides together. Adhesion was performed using a dry laminator at a drying temperature of 50° C. and a processing speed of 100 m/min. Moreover, the thickness of the first adhesive layer was 3.5 μm. As a result, a laminate having a laminated structure of base material layer/printed layer/first adhesive layer/intermediate layer/anchor coat layer/inorganic oxide layer/gas barrier coating layer/second adhesive layer/sealant layer is obtained. I got it.

[評価]
得られた積層体について、以下の評価を行った。結果を表1に示す。
[evaluation]
The obtained laminate was evaluated as follows. The results are shown in Table 1.

<リサイクル性>
下記式(1)に基づき、各実施例及び比較例で得られた積層体に占めるポリエチレンの割合(質量%)を算出した。評価は、以下の2段階とした。
積層体に占めるポリエチレンの割合(質量%)=(基材層の質量+中間層の質量+シーラント層の質量)/積層体全体の質量×100 …(1)
A:ポリエチレンの含有割合が90質量%以上。
C:ポリエチレンの含有割合が90質量%未満。
<Recyclability>
Based on the following formula (1), the proportion of polyethylene (% by mass) in the laminate obtained in each Example and Comparative Example was calculated. The evaluation was made in the following two stages.
Proportion of polyethylene in the laminate (mass%) = (mass of base layer + mass of intermediate layer + mass of sealant layer) / mass of entire laminate x 100...(1)
A: The content of polyethylene is 90% by mass or more.
C: The content of polyethylene is less than 90% by mass.

<印刷絵柄寸法安定性>
各実施例及び比較例で得られた積層体の絵柄を目視にて観察し、寸法安定性を以下の評価基準に基づいて評価した。
A:絵柄の伸び縮みが非常に小さく、フレキソ印刷における版胴の周長とそれに対応する積層体の絵柄の寸法との差が±3mm以下であり、非常に良好な絵柄であった。
B:絵柄の伸び縮みが小さく、フレキソ印刷における版胴の周長とそれに対応する積層体の絵柄の寸法との差が±3mm超±6mm以下であり、良好な絵柄であった。
C:絵柄の伸び縮みが大きく、フレキソ印刷における版胴の周長とそれに対応する積層体の絵柄の寸法との差が±6mmを超えており、絵柄に歪みが生じていた。
<Printed pattern dimensional stability>
The patterns of the laminates obtained in each Example and Comparative Example were visually observed, and the dimensional stability was evaluated based on the following evaluation criteria.
A: The expansion and contraction of the pattern was very small, and the difference between the circumferential length of the plate cylinder in flexographic printing and the corresponding pattern dimension of the laminate was ±3 mm or less, and the pattern was very good.
B: The pattern showed little expansion and contraction, and the difference between the circumferential length of the plate cylinder in flexographic printing and the corresponding pattern dimension of the laminate was more than ±3 mm and less than ±6 mm, and the pattern was good.
C: The pattern showed significant expansion and contraction, and the difference between the circumferential length of the plate cylinder in flexographic printing and the corresponding pattern dimension of the laminate exceeded ±6 mm, and the pattern was distorted.

<ラミネート強度>
JIS K6854に準拠して、各実施例及び比較例で得られた積層体から15mm幅の短冊状の試験片を切り出し、オリエンテック社製のテンシロン万能試験機RTC-1250を用いて、試験片の層間の剥離強度(ラミネート強度)を密着性の指標として測定した。測定は、T型剥離で、常態(23℃、50%RH)にて剥離速度300mm/minの条件で行った。
<Lamination strength>
In accordance with JIS K6854, a strip-shaped test piece with a width of 15 mm was cut out from the laminate obtained in each example and comparative example, and the test piece was tested using a Tensilon universal testing machine RTC-1250 manufactured by Orientec. The interlayer peel strength (laminate strength) was measured as an index of adhesion. The measurement was performed using T-type peeling under normal conditions (23° C., 50% RH) at a peeling rate of 300 mm/min.

<耐圧試験>
実施例及び比較例で得られた積層体を90mm角で2枚切り出し、シーラント層同士を対面させて外周3辺をシールした後、水道水100gを充填し、残り1辺をシールして密封した。シール条件は130℃、0.2MPa、1秒とし、シールの幅は外周から5mmとした。これにより、試験用パウチを得た。
<Pressure test>
The laminates obtained in the Examples and Comparative Examples were cut into two 90 mm square pieces, the sealant layers were made to face each other, and three outer sides were sealed, then 100 g of tap water was filled, and the remaining one side was sealed. . The sealing conditions were 130° C., 0.2 MPa, and 1 second, and the width of the seal was 5 mm from the outer periphery. Thereby, a test pouch was obtained.

得られたパウチについて、JIS Z0238に準拠して80kgf×3分間の静荷重試験を行い、破袋の有無に基づいて以下の基準で耐圧強度を評価した。
A:静荷重試験80kgf×3分間で破袋なし。
C:静荷重試験80kgf×3分間で破袋あり。
The obtained pouch was subjected to a static load test of 80 kgf for 3 minutes in accordance with JIS Z0238, and the compressive strength was evaluated based on the presence or absence of bag breakage according to the following criteria.
A: No bag breakage after static load test of 80 kgf for 3 minutes.
C: Bag broke during static load test at 80 kgf for 3 minutes.

<酸素透過度:OTR>
実施例及び比較例で得られた積層体について、モコン法により、30℃、70%RH(相対湿度)の条件下で、酸素透過度を測定した。但し、無機酸化物層を有さない積層体については、酸素透過度を測定しなかった。
<Oxygen permeability: OTR>
The oxygen permeability of the laminates obtained in Examples and Comparative Examples was measured by the Mocon method under conditions of 30° C. and 70% RH (relative humidity). However, the oxygen permeability was not measured for the laminate that did not have an inorganic oxide layer.

<水蒸気透過度:WVTR>
実施例及び比較例で得られた積層体について、モコン法により、40℃、90%RH(相対湿度)の条件下で、水蒸気透過度を測定した。但し、無機酸化物層を有さない積層体については、水蒸気透過度を測定しなかった。
<Water vapor transmission rate: WVTR>
The water vapor permeability of the laminates obtained in Examples and Comparative Examples was measured by the Mocon method under conditions of 40° C. and 90% RH (relative humidity). However, the water vapor permeability was not measured for the laminate that did not have an inorganic oxide layer.

Figure 2023183633000002
Figure 2023183633000002

1,2…積層体、10…基材層、12…印刷層、13…アンカーコート層、14…無機酸化物層、15…ガスバリア性被覆層、20…中間層、30…シーラント層、40…第1の接着剤層、50…第2の接着剤層。 DESCRIPTION OF SYMBOLS 1, 2... Laminate, 10... Base material layer, 12... Print layer, 13... Anchor coat layer, 14... Inorganic oxide layer, 15... Gas barrier coating layer, 20... Intermediate layer, 30... Sealant layer, 40... 1st adhesive layer, 50... 2nd adhesive layer.

Claims (11)

基材層と、印刷層と、第1の接着剤層と、中間層と、第2の接着剤層と、シーラント層と、がこの順で積層された構造を有し、
前記基材層、前記中間層及び前記シーラント層がいずれも無延伸ポリエチレンフィルムから構成されており、
前記第1の接着剤層が無溶剤型接着剤を用いて形成された層であり、
積層体に占めるポリエチレンの割合が90質量%以上である、積層体。
It has a structure in which a base material layer, a printing layer, a first adhesive layer, an intermediate layer, a second adhesive layer, and a sealant layer are laminated in this order,
The base layer, the intermediate layer, and the sealant layer are all made of an unstretched polyethylene film,
The first adhesive layer is a layer formed using a solvent-free adhesive,
A laminate in which the proportion of polyethylene in the laminate is 90% by mass or more.
前記無溶剤型接着剤が、2液硬化型のウレタン系接着剤である、請求項1に記載の積層体。 The laminate according to claim 1, wherein the solvent-free adhesive is a two-part curable urethane adhesive. 前記基材層及び前記中間層がいずれも高密度ポリエチレン又は中密度ポリエチレンを含む、請求項1に記載の積層体。 The laminate according to claim 1, wherein the base layer and the intermediate layer both contain high-density polyethylene or medium-density polyethylene. 前記シーラント層が低密度ポリエチレンを含む、請求項1に記載の積層体。 The laminate of claim 1, wherein the sealant layer comprises low density polyethylene. 前記中間層の少なくとも一方の面上に無機酸化物層を備え、前記無機酸化物層が金属酸化物を含む、請求項1に記載の積層体。 The laminate according to claim 1, further comprising an inorganic oxide layer on at least one surface of the intermediate layer, the inorganic oxide layer containing a metal oxide. 前記無機酸化物層と前記第1の接着剤層又は前記第2の接着剤層との間にガスバリア性被覆層を備える、請求項5に記載の積層体。 The laminate according to claim 5, further comprising a gas barrier coating layer between the inorganic oxide layer and the first adhesive layer or the second adhesive layer. 前記第2の接着剤層が、ガスバリア性接着剤を用いて形成されたガスバリア性接着剤層である、請求項1に記載の積層体。 The laminate according to claim 1, wherein the second adhesive layer is a gas barrier adhesive layer formed using a gas barrier adhesive. 請求項1~7のいずれか一項に記載の積層体を製袋してなる包装袋。 A packaging bag made from the laminate according to any one of claims 1 to 7. 請求項1~7のいずれか一項に記載の積層体の製造方法であって、
前記基材層上にインキを用いた印刷法により前記印刷層を形成して印刷基材を得る印刷工程と、
前記印刷基材と、前記中間層、前記第2の接着剤層及び前記シーラント層を含む積層フィルムとを、前記無溶剤型接着剤を用いて貼り合わせる貼合工程と、
を有する積層体の製造方法。
A method for producing a laminate according to any one of claims 1 to 7, comprising:
a printing step of forming the printing layer on the substrate layer by a printing method using ink to obtain a printing substrate;
a laminating step of laminating the printing base material and a laminated film including the intermediate layer, the second adhesive layer, and the sealant layer using the solvent-free adhesive;
A method for manufacturing a laminate having:
前記無溶剤型接着剤が、2液硬化型のウレタン系接着剤であり、2液混合直後の前記ウレタン系接着剤の粘度が、40℃において200~2500mPa・sである、請求項9に記載の積層体の製造方法。 According to claim 9, the solvent-free adhesive is a two-component curing urethane adhesive, and the urethane adhesive has a viscosity of 200 to 2500 mPa·s at 40° C. immediately after mixing the two components. A method for manufacturing a laminate. 前記貼合工程において、前記無溶剤型接着剤の加熱温度を、該加熱温度における前記無溶剤型接着剤の粘度が200~2000mPa・sとなるように、50~90℃の範囲内で設定する、請求項9に記載の積層体の製造方法。
In the bonding step, the heating temperature of the solvent-free adhesive is set within a range of 50 to 90 ° C. so that the viscosity of the solvent-free adhesive at the heating temperature is 200 to 2000 mPa s. A method for manufacturing a laminate according to claim 9.
JP2022097245A 2022-06-16 2022-06-16 Multilayer body, method for producing the same, and packaging bag Pending JP2023183633A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022097245A JP2023183633A (en) 2022-06-16 2022-06-16 Multilayer body, method for producing the same, and packaging bag
PCT/JP2023/021759 WO2023243607A1 (en) 2022-06-16 2023-06-12 Multilayer body, method for producing same, and packaging bag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022097245A JP2023183633A (en) 2022-06-16 2022-06-16 Multilayer body, method for producing the same, and packaging bag

Publications (1)

Publication Number Publication Date
JP2023183633A true JP2023183633A (en) 2023-12-28

Family

ID=89333565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022097245A Pending JP2023183633A (en) 2022-06-16 2022-06-16 Multilayer body, method for producing the same, and packaging bag

Country Status (1)

Country Link
JP (1) JP2023183633A (en)

Similar Documents

Publication Publication Date Title
US8507059B2 (en) Multilayer film using solvent-free adhesive, method for producing same and packaging container
WO2021020400A1 (en) Laminated body and wrapping bag
JP5020255B2 (en) Gas barrier film laminate
JP6075623B2 (en) Gas barrier polyester resin composition and gas barrier film
WO2020129291A1 (en) Gas barrier film and production method therefor, packaging film, and packaging bag
WO2016190431A1 (en) Layered film and packing bag
JP4549880B2 (en) Transparent gas barrier laminate
JP2006192858A (en) Barrier film
WO2022230812A1 (en) Layered product, packaging material, and packaging bag
JP2008143098A (en) Gas barrier laminated film
JP2013018905A (en) Resin composition for oxygen barrier adhesive and adhesive
JP7231095B2 (en) Laminates and packaging bags
JP2006224408A (en) Barrier film
WO2023243607A1 (en) Multilayer body, method for producing same, and packaging bag
JP2023183633A (en) Multilayer body, method for producing the same, and packaging bag
JP2023183632A (en) Multilayer body, method for producing the same, and packaging bag
WO2022071248A1 (en) Packaging material, packaging bag, and package
JP2023183634A (en) Multilayer body, method for producing the same, and packaging bag
JP2009062060A (en) Gas barrier packaging material
JP2008179104A (en) Barrier film
WO2024096024A1 (en) Coextruded multilayer film, laminate, and packaging bag
JP2008179102A (en) Barrier film
JP2023179896A (en) Laminate, packaging material, and packaging bag
JP2023105431A (en) Laminate and packaging material
JP4549872B2 (en) Transparent gas barrier laminate