JP2023183408A - Quantitative evaluation method of human brain axon density based on magnetic resonance diffusion tensor imaging - Google Patents

Quantitative evaluation method of human brain axon density based on magnetic resonance diffusion tensor imaging Download PDF

Info

Publication number
JP2023183408A
JP2023183408A JP2023098600A JP2023098600A JP2023183408A JP 2023183408 A JP2023183408 A JP 2023183408A JP 2023098600 A JP2023098600 A JP 2023098600A JP 2023098600 A JP2023098600 A JP 2023098600A JP 2023183408 A JP2023183408 A JP 2023183408A
Authority
JP
Japan
Prior art keywords
human brain
magnetic resonance
diffusion
density
axon density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023098600A
Other languages
Japanese (ja)
Inventor
宏建 何
Hongjian He
君葉 姚
Junye Yao
子涵 周
Zihan Zhou
健暉 鐘
Jianhui Zhong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Publication of JP2023183408A publication Critical patent/JP2023183408A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/004Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
    • A61B5/0042Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part for the brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • A61B2576/02Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part
    • A61B2576/026Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part for the brain

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Neurology (AREA)
  • Immunology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

To disclose a quantitative evaluation method of a human brain axon density based on magnetic resonance diffusion tensor imaging.SOLUTION: The method includes the steps of: calculating diffusion tensor imaging fittings of a plurality of single diffusion sensitive factors by performing data processing on magnetic resonance diffusion-weighted image data obtained by scanning a human brain through magnetic resonance diffusion tensor imaging, and obtaining a plurality of fractional anisotropic exponential diagrams; and performing quantization processing of a human brain axon density on the basis of the plurality of fractional anisotropic exponential diagrams, and calculating a difference of a fractional anisotropic exponential percentage between different diffusion sensitive factors to obtain a quantitative diagram of the human brain axon density.EFFECT: The invention has high credibility, and an easy arithmetic process to be easily spread, realizes a clinically executable parameter fixed quantity relative to an axon density in a brain white matter, and can be used for detection of axon loss related diseases.SELECTED DRAWING: None

Description

本発明は磁気共鳴イメージング技術分野の磁気共鳴イメージングデータ処理方法に関し、特に磁気共鳴拡散テンソルイメージングに基づくヒト脳軸索密度の定量評価方法に関する。 The present invention relates to a magnetic resonance imaging data processing method in the field of magnetic resonance imaging technology, and particularly to a method for quantitatively evaluating human brain axon density based on magnetic resonance diffusion tensor imaging.

磁気共鳴拡散強調イメージング(Diffusion-weighted imaging,DWI)は、結果データから画像を生成する特定の磁気共鳴画像化シーケンスを使用し、水分子拡散を使用して磁気共鳴画像内にコントラストを生成することであり、各ボクセルの強度は、その位置における水拡散率の最良の推定値を反映する。組織内の水分子の拡散は自由ではなく、むしろ、巨大分子、繊維および膜などの多くの障害との相互作用を反映する。したがって、水分子拡散パターンは、正常または病変状態にかかわらず、組織構造の微細な細部を明らかにすることができる。それは、生体組織内の分子(主に水)の拡散プロセスの非侵襲的な生体内マッピングを可能にする。 Diffusion-weighted imaging (DWI) uses specific magnetic resonance imaging sequences to generate images from the resulting data and uses water molecule diffusion to create contrast within the magnetic resonance image. , and the intensity of each voxel reflects the best estimate of water diffusivity at that location. Diffusion of water molecules within tissues is not free, but rather reflects interactions with many obstacles such as macromolecules, fibers and membranes. Therefore, water molecule diffusion patterns can reveal fine details of tissue structure, whether in normal or pathological conditions. It allows non-invasive in-vivo mapping of diffusion processes of molecules (mainly water) within biological tissues.

拡散テンソルイメージング(diffusion tensor imaging, DTI)は特殊な磁気共鳴拡散強調イメージング技術であり、水分子の微視的な動きを反映し、細胞及び分子レベルから疾患の病態生理状態を研究する技術であり、拡散テンソル場における異方性拡散の方向情報を利用して神経通路の走行を追跡し、それにより脳白質における神経繊維と機能束の走行方向と立体形態を得る。その指標部分異方性指数(fractional anisotropy,FA)は、拡散テンソルの合計値に対する拡散の異方性部分の比であり、分散の異方性を評価するために用いられる。脳白質神経軸索を探索する際に重要である。 Diffusion tensor imaging (DTI) is a special magnetic resonance diffusion-weighted imaging technique that reflects the microscopic movement of water molecules and is used to study the pathophysiological state of diseases from the cellular and molecular level. , we track the running of nerve pathways using the direction information of anisotropic diffusion in the diffusion tensor field, and thereby obtain the running direction and three-dimensional morphology of nerve fibers and functional bundles in the brain white matter. The index fractional anisotropy (FA) is the ratio of the anisotropic part of the diffusion to the total value of the diffusion tensor and is used to evaluate the anisotropy of the dispersion. This is important when exploring brain white matter nerve axons.

神経突起は、神経細胞(ニューロン)の細胞体から伸びる細長い部分であり、樹状突起と軸索に分けられ、細胞間の情報伝達に用いられる。軸索の密度及び方向分布に基づいて軸索の形態を定量化し、正常群衆及び脳機能障害群衆の脳機能構造基礎を理解するための機会を提供する。 Neurites are long, thin parts that extend from the cell bodies of nerve cells (neurons), and are divided into dendrites and axons, and are used for information transmission between cells. Quantifying axon morphology based on axon density and directional distribution provides an opportunity to understand the structural basis of brain function in normal and brain dysfunction populations.

現在ヒト脳軸索密度の非侵襲定量測定方法はまだ基準がない。神経突起方向の分散度と密度イメージング(neurite orientation dispersion and density imaging,NODDI)は新興の磁気共鳴拡散強調イメージング技術に基づく現像方法であり、神経軸索と樹状突起微細構造の複雑さを評価することにより神経繊維の形態学的情報を反映することができるが、該方法に必要な拡散方向が多く、イメージング時間が長い。モデル計算が複雑で、臨床における普及に不利である。
したがって、現在、非侵襲的で、確実で且つ臨床に普及しやすいヒト脳軸索密度の定量的評価方法が必要とされる。
Currently, there is no standard for a non-invasive quantitative measurement method of human brain axon density. Neurite orientation dispersion and density imaging (NODDI) is a development method based on emerging magnetic resonance diffusion-weighted imaging techniques to assess the complexity of neuronal axon and dendritic microstructure. Although this method can reflect the morphological information of nerve fibers, this method requires many diffusion directions and requires a long imaging time. The model calculation is complicated, which is disadvantageous for its widespread use in clinical practice.
Therefore, there is currently a need for a method for quantitatively evaluating human brain axon density that is non-invasive, reliable, and easily applicable to clinical practice.

本発明の目的は従来技術の不足に対し、磁気共鳴拡散テンソルイメージングに基づくヒト脳軸索密度の定量的評価方法を提供することである。本発明は臨床に許容される時間内(12分間)に軸索密度に対して三次元高解像度のイメージングを行うことができる。 The purpose of the present invention is to address the deficiencies of the prior art and provide a method for quantitatively evaluating human brain axon density based on magnetic resonance diffusion tensor imaging. The present invention can perform three-dimensional high-resolution imaging of axon density within a clinically acceptable time (12 minutes).

軸索は、0.2~20ミクロンの範囲の直径を有するヒト脳組織内の微細構造であり、磁気共鳴シーケンスは、分解能の限界のため、軸索の密度を直接捕捉することが困難である。本発明の方法は直接軸索イメージングを行って定量評価しにくいという問題を解決することができる。 Axons are microstructures within human brain tissue with diameters ranging from 0.2 to 20 microns, and magnetic resonance sequences have difficulty directly capturing axon density due to resolution limitations. . The method of the present invention can solve the problem that it is difficult to perform quantitative evaluation by directly performing axonal imaging.

以上の目的を達成するために、本発明は以下の技術的解決手段を採用する:
S1:磁気共鳴拡散強調イメージングによって人脳を走査して得られた磁気共鳴拡散強調画像データに対して、データ処理を行って複数の単一拡散感受性因子bの拡散テンソルイメージングフィッティングを算出し、複数の部分異方性指数図(Fractional Anisotropy, FA)を得る。
S2:複数の部分異方性指数図に基づいてヒト脳軸索密度の定量化処理を行い、異なる拡散感受性因子bの間の部分異方性指数百分率の差を算出してヒト脳軸索密度の定量図を得る。
In order to achieve the above objectives, the present invention adopts the following technical solutions:
S1: Data processing is performed on magnetic resonance diffusion weighted image data obtained by scanning the human brain by magnetic resonance diffusion weighted imaging to calculate diffusion tensor imaging fitting of multiple single diffusion susceptibility factors b. Obtain the Fractional Anisotropy (FA).
S2: Quantify human brain axon density based on multiple partial anisotropy index diagrams, calculate the difference in partial anisotropy index percentage between different diffusion sensitivity factors b, and calculate human brain axon density. Obtain a quantitative figure.

Figure 2023183408000001
Figure 2023183408000001

Figure 2023183408000002
Figure 2023183408000002

Figure 2023183408000003
Figure 2023183408000003

Figure 2023183408000004
Figure 2023183408000004

上記磁気共鳴拡散テンソルイメージング走査は具体的に全脳に対して三次元スキャンイメージングを行う。
磁気共鳴拡散強調画像データは、軸索内空間水、軸索外空間水、自由水という三つの部分に由来し、異なる拡散係数及び部分異方性指数を有する。純粋な白質信号に対し、拡散感受性因子bの増加に伴い、より高い拡散係数を有する軸索内空間水の磁気共鳴信号はより速く減衰し、拡散強調イメージング結果における軸索外空間の重みの上昇を引き起こす。
The above magnetic resonance diffusion tensor imaging scan specifically performs three-dimensional scanning imaging of the whole brain.
Magnetic resonance diffusion weighted image data originates from three parts: intra-axonal space water, extra-axonal space water, and free water, which have different diffusion coefficients and fractional anisotropy indices. Relative to pure white matter signals, with increasing diffusion sensitivity factor b, the magnetic resonance signal of intra-axonal space water with higher diffusion coefficient decays faster, leading to an increase in the weight of extra-axonal space in diffusion-weighted imaging results. cause.

本発明は、異方性指数百分率の差値を計算するように設定することにより、軸索密度の変化を定量的に反映し、軸索の密度を直接捕捉することができ、人脳部軸索密度の結果を正確に取得し、軸索イメージングを直接行って定量的に評価しにくいという問題を解決する。 By setting the difference value of the anisotropy index percentage to be calculated, the present invention can quantitatively reflect changes in axon density and directly capture axon density. Accurately obtain the results of cord density and solve the problem that it is difficult to quantitatively evaluate by directly performing axonal imaging.

Figure 2023183408000005
Figure 2023183408000005

本発明の方法は、従来の臨床磁気共鳴拡散強調シーケンスを採用して三次元軸索密度の定量評価を実現し、画像の収集及び再構成は磁気共鳴拡散テンソルイメージングに基づき、臨床実行可能な時間内に脳白質における軸索密度に対して迅速かつ正確に三次元定量評価を実現する。
本発明は信頼性が高く、演算過程が簡単で普及しやすく、臨床で実行可能な脳白質における軸索密度に対するパラメータ定量を実現し、軸索損失関連疾患の検出に用いることができる。
The method of the present invention adopts a conventional clinical magnetic resonance diffusion weighted sequence to realize quantitative evaluation of three-dimensional axon density, and image acquisition and reconstruction are based on magnetic resonance diffusion tensor imaging in a clinically feasible time. Achieves rapid and accurate three-dimensional quantitative evaluation of axon density in brain white matter.
The present invention is highly reliable, has a simple calculation process, is easily disseminated, realizes clinically practicable parameter quantification of axon density in brain white matter, and can be used to detect axon loss-related diseases.

図1は、本発明の軸索密度の定量的評価指標であり、一部の異方性指数の百分率の差値pdFAが健常被験者の脳白質の6つの関心領域(Region of Interest,ROI)における応用例である。縦軸はスキーム3を用いて得られたヒト脳軸索密度定量図pdFAであり、横軸は神経突起方向の分散度と密度イメージング(NODDI)を用いて得られた軸索密度指数(Neurite Density Index, NDI)NDI-NODDIである。図中の薄い線及び散点は平均回数が1回のデータ結果であり、黒い線及び散点は平均回数が2回のデータ結果であり、それぞれ低い及び高い信号対雑音比(Signal-to-Noise Ratio, SNR)条件を表す。6つのROIはそれぞれ脳梁膝部(genu of the corpus callosum, GCC)、脳梁中部(body of the corpus callosum, BCC)、脳梁押圧部(splenium of the corpus callosum, SCC)、内包前肢(anterior limb of the internal capsule, ALIC)、内包後肢(posterior limb of the internal capsule, PLIC)、上縦束(superior longitudinal fasciculus, SLF)である。Figure 1 shows the quantitative evaluation index of axon density according to the present invention, in which the percentage difference value pdFA of some anisotropy indices is measured in six regions of interest (ROI) of brain white matter of healthy subjects. This is an application example. The vertical axis is the human brain axon density quantitative map PDFA obtained using Scheme 3, and the horizontal axis is the axon density index (Neurite Density Index) obtained using neurite direction dispersion and density imaging (NODDI). Index, NDI) NDI-NODDI. The thin lines and dots in the figure are the data results with one averaging, and the black lines and dots are the data results with two averaging, with low and high signal-to-noise ratios (signal-to-noise ratios), respectively. Noise Ratio, SNR) condition. The six ROIs are the genu of the corpus callosum (GCC), the body of the corpus callosum (BCC), the splenium of the corpus callosum (SCC), and the anterior limb of the internal capsule. limb of the internal capsule (ALIC), posterior limb of the internal capsule (PLIC), and superior longitudinal fasciculus (SLF). 図2は、本発明の軸索密度の定量評価指標であり、ヒト脳軸索密度の定量図pdFAはエクスビボヒト脳梁組織における応用例である。図2(a)の縦軸は、本発明を用いて得られたエクスビボヒト脳組織の脳梁の異なる切片のpdFAであり、横軸はパラフィン切片神経線維ビールショウスキー銀染色技術(Bielschowsky)を用いて分析して得られた軸索密度指標である。図2(b)は、切片の磁気共鳴映像における対応する位置である。図2(c)は、切片染色結果の顕微鏡イメージング結果であり、着色部分は軸索であり、着色部分の面積が総面積に占める割合をNDI-Histologyと定義し、エクスビボヒト脳の軸索密度の定量評価の基準とする。FIG. 2 is a quantitative evaluation index of axon density according to the present invention, and the quantitative diagram pdFA of human brain axon density is an example of application in ex vivo human corpus callosum tissue. The vertical axis in Figure 2(a) is the pdFA of different sections of the corpus callosum of ex vivo human brain tissue obtained using the present invention, and the horizontal axis is the paraffin section nerve fibers using the Bielschowsky silver staining technique (Bielschowsky). This is an axon density index obtained by analysis using FIG. 2(b) is the corresponding position in the magnetic resonance image of the section. Figure 2(c) shows the microscopic imaging results of the section staining results.The colored parts are axons, and the ratio of the area of the colored parts to the total area is defined as NDI-Histology, which is the density of axons in ex vivo human brain. be used as the standard for quantitative evaluation. 図3は、数値シミュレーションのシミュレーション実験において、異なる信号対雑音比条件でヒト脳軸索密度定量図pdFAと軸索内の体積分率INVFのピアソン相関分析である。縦軸はシミュレーション信号公式に基づいて得られた磁気共鳴信号を用いて算出されたヒト脳軸索密度定量図pdFAであり、横軸はシミュレーション実験に設定された軸索内の体積分率である。 表1は生体脳データ収集配列パラメータテーブルである。 表2は異なる拡散感受性因子bの組み合わせ解決手段のパラメータ表である。 表3は異なる拡散感受性因子bの組み合わせ解決手段の実施結果の統計パラメータテーブルである。 表4はエクスビボヒト脳データ収集シーケンスパラメータテーブルである。 表5はシミュレーション実験パラメータ設定表である。FIG. 3 is a Pearson correlation analysis of the human brain axon density quantitative diagram pdFA and the intra-axonal volume fraction INVF under different signal-to-noise ratio conditions in a numerical simulation experiment. The vertical axis is the human brain axon density quantitative map PDFA calculated using the magnetic resonance signal obtained based on the simulation signal formula, and the horizontal axis is the volume fraction within the axon set in the simulation experiment. . Table 1 is a biological brain data collection sequence parameter table. Table 2 is a parameter table of a combination solution for different diffusion sensitivity factors b. Table 3 is a statistical parameter table of the implementation results of the combination solution method for different diffusion sensitivity factors b. Table 4 is an ex-vivo human brain data acquisition sequence parameter table. Table 5 is a simulation experiment parameter setting table.

図面を参照して本発明の具体的な解決手段の実施をさらに説明する。
本発明の実施例及びその具体的な実施状況は以下のとおりである:
本発明の第一実施例では、3.0T磁気共鳴装置を用いて61名の健常被験者に対して磁気共鳴拡散強調イメージングを行って磁気共鳴拡散強調画像データを得た。該シーケンスの走査時間は19分間であり、シーケンスの他のパラメータは表1に示すとおりである。
[表1]

Figure 2023183408000006
The implementation of the specific solution of the present invention will be further explained with reference to the drawings.
Examples of the present invention and their specific implementation situations are as follows:
In the first embodiment of the present invention, magnetic resonance diffusion weighted imaging was performed on 61 healthy subjects using a 3.0T magnetic resonance apparatus to obtain magnetic resonance diffusion weighted image data. The scan time of the sequence was 19 minutes, and the other parameters of the sequence are as shown in Table 1.
[Table 1]
Figure 2023183408000006

FSLにおける「拡散テンソルフィッティング」ツールを使用し、重み付き最小二乗法を選択し、平均回数がそれぞれ1回(比較的低い信号対雑音比)及び2回(比較的高い信号対雑音比)の単一拡散感受性因子bの磁気共鳴拡散強調画像データに対して拡散テンソルイメージングフィッティングを行い、3つの拡散感受性因子bに対応する部分異方性指数図を得る。
拡散テンソルイメージングに基づくヒト脳軸索密度の定量的評価指標として、以下の式に従って得られた部分異方性指数図を用いて対応するヒト脳軸索密度の定量図を算出する:
[数1]

Figure 2023183408000007
表2に示すように、3種類の組み合わせ方式が存在する(スキーム1-3)。
[表2]
Figure 2023183408000008
Using the "Diffusion Tensor Fitting" tool in FSL, we selected the weighted least squares method and determined the number of averages of 1 (relatively low signal-to-noise ratio) and 2 times (relatively high signal-to-noise ratio), respectively. Diffusion tensor imaging fitting is performed on the magnetic resonance diffusion weighted image data of one diffusion sensitivity factor b to obtain partial anisotropy index diagrams corresponding to three diffusion sensitivity factors b.
As a quantitative evaluation index of human brain axon density based on diffusion tensor imaging, the corresponding quantitative map of human brain axon density is calculated using the partial anisotropy index map obtained according to the following formula:
[Number 1]
Figure 2023183408000007
As shown in Table 2, there are three types of combination schemes (Scheme 1-3).
[Table 2]
Figure 2023183408000008

表1のシーケンスで収集された完全なデータセットを用いて神経突起方向の分散度と密度イメージング(NODDI)とのモデルフィッティングを行い、得られた軸索密度指数(Neurite Density Index, NDI-NODDI)を算出し、生体ヒト脳軸索密度評価の標準とする。選択された白質関心領域内において、上記取得されたヒト脳軸索密度定量図pdFAと軸索密度指数NDI-NODDIに対してピアソン相関分析を行い、ピアソン相関係数(Pearson correlation coefficient, CC)を取得し、結果を図1に示す。多重検定により補正された統計的パラメータ値を補正後P値として算出し、結果を表3に示し、灰色のセルは平均回数が2回のデータセットを表す。図1及び表3はいずれも、平均回数が2回(比較的高い信号対雑音比)であるデータセットを用いて得られたヒト脳軸索密度定量図pdFAと軸索密度指数NDI-NODDIとの相関性がより高く、ヒト脳軸索密度をより正確に反映できることを示す。 Model fitting between neurite orientation dispersion and density imaging (NODDI) was performed using the complete dataset collected with the sequences in Table 1, and the resulting axonal density index (NDI-NODDI) is calculated and used as the standard for evaluating living human brain axon density. Within the selected white matter region of interest, Pearson correlation analysis was performed on the human brain axon density quantitative map PDFA and the axon density index NDI-NODDI obtained above, and the Pearson correlation coefficient (CC) was calculated. The results are shown in Figure 1. The statistical parameter values corrected by multiple testing were calculated as corrected P values, and the results are shown in Table 3, where gray cells represent data sets with two averages. Figure 1 and Table 3 both show the human brain axon density quantitative map pdFA and the axon density index NDI-NODDI obtained using a data set with an average number of times of 2 (relatively high signal-to-noise ratio). This shows that the correlation is higher and can more accurately reflect human brain axon density.

表3に示すように、本発明において、スキーム3の拡散感受性因子bの組み合わせは最適な選択肢であり、そのヒト脳軸索密度の定量図pdFAは軸索密度指数NDI-NODDIとの相関性が最も高い。このスキームに要した時間は12分であった。
[表3]
As shown in Table 3, in the present invention, the combination of diffusion sensitivity factor b in Scheme 3 is the optimal option, and its quantitative diagram pdFA of human brain axon density has a correlation with the axon density index NDI-NODDI. highest. The time required for this scheme was 12 minutes.
[Table 3]

本発明の第二の実施例では、3.0T磁気共鳴装置を用いてホルマリン溶液で4週間固定した1つのエクスビボ半脳に対して磁気共鳴拡散強調イメージング走査を行い、磁気共鳴拡散強調画像データを得た。当該シーケンスの他のパラメータを表4に示す。
[表4]

Figure 2023183408000010
In a second embodiment of the present invention, magnetic resonance diffusion weighted imaging scans were performed on one ex vivo hemibrain fixed in formalin solution for 4 weeks using a 3.0T magnetic resonance apparatus, and the magnetic resonance diffusion weighted image data were collected. Obtained. Other parameters of the sequence are shown in Table 4.
[Table 4]
Figure 2023183408000010

Figure 2023183408000011
Figure 2023183408000011

磁気共鳴走査の完了後、エクスビボの半脳標本を厚さ5mmの冠状ブロックに切断した。このプロセスは、図2(b)に示されるように、サジタル磁気共鳴画像におけるそれらの位置に対応する6つのスライスを生成する。脳梁組織ブロックを取り出し、パラフィン包埋処理を行った後に対応する6つの切片を取得し、切片の厚さは6μmである。組織切片の神経突起組織化学染色を、図2(c)に示すように、パラフィン切片神経線維ビールショウスキー銀染色技術により行った。Image-Jソフトウェアを用いて染色切片上で脳梁の軸索密度指標(NDI-Histology)を定量的に測定する。 After completion of magnetic resonance scanning, ex vivo hemibrain preparations were cut into 5 mm thick coronal blocks. This process produces six slices corresponding to their positions in the sagittal magnetic resonance image, as shown in Figure 2(b). The corpus callosum tissue block was taken out and six corresponding sections were obtained after paraffin embedding, and the thickness of the sections was 6 μm. Neurite histochemical staining of tissue sections was performed by the paraffin section nerve fiber Bielschowski silver staining technique, as shown in Figure 2(c). The axonal density index (NDI-Histology) of the corpus callosum is quantitatively measured on the stained sections using Image-J software.

エクスビボヒト脳切片のヒト脳軸索密度定量図pdFAと組織化学染色により得られた軸索密度定量評価指標NDI-Histologyに対してピアソン相関分析を行い、結果は図2(a)に示すように、両者は高い線形相関を有する。本発明はエクスビボヒト脳標本の軸索密度の定量評価にも優れている。 Pearson correlation analysis was performed on the axonal density quantitative evaluation index NDI-Histology obtained by human brain axon density quantitative map PDFA and histochemical staining of ex vivo human brain sections, and the results are shown in Figure 2 (a). , both have a high linear correlation. The present invention is also excellent for quantitative evaluation of axonal density in ex vivo human brain specimens.

ヒト脳軸索密度の定量評価指標(ヒト脳軸索密度定量図pdFA)が軸索密度を定量評価する原理を検討するために、本発明は白質「標準モデル」に基づいてシミュレーション実験を行う。 In order to examine the principle by which a quantitative evaluation index for human brain axon density (human brain axon density quantitative map PDFA) quantitatively evaluates axon density, the present invention conducts a simulation experiment based on a white matter "standard model."

Figure 2023183408000012
[表5]
Figure 2023183408000013
Figure 2023183408000012
[Table 5]
Figure 2023183408000013

シミュレーションの結果は図3に示すように、生体実験データが位置する信号対雑音比の範囲内で(20-40)、軸索密度の定量的評価指標を代表する軸索内の体積分率INVFの増加に伴い、軸索密度の定量的評価指標であるヒト脳軸索密度の定量図pdFAの値も線形に増加し、両者は高い線形相関を有する。シミュレーション実験により、臨床条件が達成できるデータ品質で、本発明の軸索密度の定量的評価指標pdFAはヒト脳軸索密度の変化を敏感に検出できることが示される。 As shown in Figure 3, the simulation results show that within the signal-to-noise ratio range (20-40) where the biological experimental data lies, the volume fraction within the axon, INVF, represents a quantitative evaluation index of axon density. With the increase in , the value of the human brain axon density quantitative map pdFA, which is a quantitative evaluation index of axon density, also increases linearly, and the two have a high linear correlation. Simulation experiments show that the quantitative evaluation index of axon density, pdFA, of the present invention can sensitively detect changes in human brain axon density with data quality that can be achieved under clinical conditions.

従来の神経突起方向の分散度と密度イメージング(NODDI)とのモデルフィッティングに基づいて得られた軸索密度指数(NDI-NODDI)に比べ、本発明の拡散テンソルイメージングに基づく部分異方性指数百分率差値pdFAは、算出過程に必要な時間がより少ない。Linuxワークステーション(2×2.80GHz Intel(登録商標)Xeon(登録商標)20core processor ,252GBメモリ)でのデータ処理を例にとると、同じデータが入力された場合、神経突起方向の分散度と密度イメージングとのモデルフィッティングによってヒト脳全脳軸索密度の定量的評価には約10時間の演算時間が必要であった。本発明の磁気共鳴拡散テンソルイメージングに基づく部分的異方性指数百分率差値pdFAを用いた軸索密度の定量的評価は、約3分の計算時間のみを必要とする。 Compared to the axonal density index (NDI-NODDI) obtained based on the conventional neurite direction dispersion and density imaging (NODDI) model fitting, the partial anisotropy index percentage based on the diffusion tensor imaging of the present invention The difference value pdFA requires less time for the calculation process. Taking data processing on a Linux workstation (2 x 2.80 GHz Intel (registered trademark) Xeon (registered trademark) 20 core processor, 252 GB memory) as an example, if the same data is input, Approximately 10 hours of computational time was required for quantitative evaluation of whole-brain axon density in the human brain by model fitting with density imaging. Quantitative assessment of axonal density using the magnetic resonance diffusion tensor imaging-based fractional anisotropy index percentage difference pdFA of the present invention requires only about 3 minutes of computational time.

なお、上記は本発明の実施例及び運用する技術原理のみである。当業者であれば理解されるように、本発明は上記特定の実施例に限定されず、当業者にとって種々の明らかな変更が可能であり、パラメータを再調整しても本発明の範囲から逸脱しない。したがって、以上の実施例により、本発明の概念から逸脱することなく、さらに多くの他の同等な実施例を含むことができるが、本発明の範囲は添付の特許請求の範囲により決定される。 Note that the above describes only the embodiments of the present invention and the technical principles for its operation. As will be understood by those skilled in the art, the present invention is not limited to the specific embodiments described above, and various obvious modifications and adjustments to the parameters may be made to those skilled in the art without departing from the scope of the invention. do not. Accordingly, although the embodiments described above may include many other equivalent embodiments without departing from the inventive concept, the scope of the invention is determined by the appended claims.

Claims (5)

S1:磁気共鳴拡散強調イメージングによってヒト脳を走査して得られた磁気共鳴拡散強調画像データに対して、データ処理を行って複数の単一拡散感受性因子bの拡散テンソルイメージングフィッティングを算出し、二つの部分異方性指数図を得るステップと、
S2:二つの部分異方性指数図に基づいてヒト脳軸索密度の定量化処理を行い、二つの異なる拡散感受性因子bの間の部分異方性指数百分率の差を算出してヒト脳軸索密度の定量図を得るステップと、を含む、
ことを特徴とする磁気共鳴拡散テンソルイメージングに基づくヒト脳軸索密度の定量的評価方法。
S1: Data processing is performed on the magnetic resonance diffusion weighted image data obtained by scanning the human brain by magnetic resonance diffusion weighted imaging to calculate the diffusion tensor imaging fitting of multiple single diffusion susceptibility factors b. obtaining two partial anisotropy index diagrams;
S2: Quantify the human brain axon density based on the two partial anisotropy index diagrams, calculate the difference in the partial anisotropy index percentage between two different diffusion sensitivity factors b, and calculate the human brain axis density. obtaining a quantitative diagram of cord density;
A method for quantitatively evaluating human brain axon density based on magnetic resonance diffusion tensor imaging.
Figure 2023183408000014
Figure 2023183408000014
Figure 2023183408000015
Figure 2023183408000015
Figure 2023183408000016
Figure 2023183408000016
Figure 2023183408000017
Figure 2023183408000017
JP2023098600A 2022-06-15 2023-06-15 Quantitative evaluation method of human brain axon density based on magnetic resonance diffusion tensor imaging Pending JP2023183408A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210677684.3A CN114983389B (en) 2022-06-15 2022-06-15 Quantitative evaluation method for human brain axon density based on magnetic resonance diffusion tensor imaging
CN202210677684.3 2022-06-15

Publications (1)

Publication Number Publication Date
JP2023183408A true JP2023183408A (en) 2023-12-27

Family

ID=83035136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023098600A Pending JP2023183408A (en) 2022-06-15 2023-06-15 Quantitative evaluation method of human brain axon density based on magnetic resonance diffusion tensor imaging

Country Status (2)

Country Link
JP (1) JP2023183408A (en)
CN (1) CN114983389B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115359305B (en) * 2022-10-19 2023-01-10 之江实验室 Accurate positioning system for abnormal area of cerebral fiber bundle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0906149D0 (en) * 2009-04-08 2009-05-20 Cancer Res Inst Royal Nuclear magnetic resonance imaging
US9404986B2 (en) * 2011-05-06 2016-08-02 The Regents Of The University Of California Measuring biological tissue parameters using diffusion magnetic resonance imaging
WO2014052782A1 (en) * 2012-09-28 2014-04-03 Children's Medical Center Corporation Diffusion-weighted mri using multiple b-values and constant echo time
US9891302B2 (en) * 2014-02-10 2018-02-13 Cr Development Ab Method for quantifying isotropic diffusion and/or anisotropic diffusion in a sample
US20180055408A1 (en) * 2016-08-30 2018-03-01 Washington University Quantitative differentiation of inflammation from solid tumors, heart and nerve injury
WO2020120941A1 (en) * 2018-12-10 2020-06-18 Oxford University Innovation Limited Brain imaging
CN109920550A (en) * 2018-12-25 2019-06-21 天津大学 A method of teenager's lafora's disease is studied based on dMRI

Also Published As

Publication number Publication date
CN114983389B (en) 2023-01-10
CN114983389A (en) 2022-09-02

Similar Documents

Publication Publication Date Title
Dyrby et al. Validation strategies for the interpretation of microstructure imaging using diffusion MRI
Chang et al. The role of myelination in measures of white matter integrity: combination of diffusion tensor imaging and two-photon microscopy of CLARITY intact brains
Schilling et al. Comparison of 3D orientation distribution functions measured with confocal microscopy and diffusion MRI
Miller et al. Diffusion imaging of whole, post-mortem human brains on a clinical MRI scanner
Beaujoin et al. Post-mortem inference of the human hippocampal connectivity and microstructure using ultra-high field diffusion MRI at 11.7 T
Benjamini et al. White matter microstructure from nonparametric axon diameter distribution mapping
Grisot et al. Diffusion MRI and anatomic tracing in the same brain reveal common failure modes of tractography
McNab et al. Surface based analysis of diffusion orientation for identifying architectonic domains in the in vivo human cortex
Zhang et al. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain
Budde et al. Examining brain microstructure using structure tensor analysis of histological sections
US20080108894A1 (en) Methods and Systems of Analyzing Clinical Parameters and Methods of Producing Visual Images
Flint et al. Cellular-level diffusion tensor microscopy and fiber tracking in mammalian nervous tissue with direct histological correlation
Jones et al. Insight into the fundamental trade-offs of diffusion MRI from polarization-sensitive optical coherence tomography in ex vivo human brain
Kaushal et al. Diffusion tensor imaging in acute spinal cord injury: a review of animal and human studies
JP2023183408A (en) Quantitative evaluation method of human brain axon density based on magnetic resonance diffusion tensor imaging
US20240177302A1 (en) Cellular diagnostic and analysis methods
Coelho et al. Local volume fraction distributions of axons, astrocytes, and myelin in deep subcortical white matter
Irie et al. The relationship between neurite density measured with confocal microscopy in a cleared mouse brain and metrics obtained from diffusion tensor and diffusion kurtosis imaging
Lundell et al. Distribution of collateral fibers in the monkey cervical spinal cord detected with diffusion-weighted magnetic resonance imaging
Haykal et al. Investigating changes in axonal density and morphology of glaucomatous optic nerves using fixel-based analysis
JP2011516237A (en) Breast imaging method and apparatus and apparatus for breast cancer detection and diagnosis
Zanin et al. Using diffusion-weighted magnetic resonance imaging techniques to explore the microstructure and connectivity of subcortical white matter tracts in the human auditory system
WO2023104000A1 (en) Method for quantitatively measuring exchange rate of water molecules inside and outside white matter myelin sheath
Nieman et al. Ultrasound and magnetic resonance microimaging of mouse development
CN111445553A (en) Depth learning-based intra-voxel incoherent motion imaging acceleration method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240617