JP2023182179A - Method for producing 1,5-anhydro-D-mannitol - Google Patents

Method for producing 1,5-anhydro-D-mannitol Download PDF

Info

Publication number
JP2023182179A
JP2023182179A JP2022095646A JP2022095646A JP2023182179A JP 2023182179 A JP2023182179 A JP 2023182179A JP 2022095646 A JP2022095646 A JP 2022095646A JP 2022095646 A JP2022095646 A JP 2022095646A JP 2023182179 A JP2023182179 A JP 2023182179A
Authority
JP
Japan
Prior art keywords
anhydro
strain
mannitol
producing
wickerhamomyces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022095646A
Other languages
Japanese (ja)
Inventor
一浩 吉永
Kazuhiro Yoshinaga
淳一 安部
Junichi Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanas Co Ltd
Original Assignee
Sanas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanas Co Ltd filed Critical Sanas Co Ltd
Priority to JP2022095646A priority Critical patent/JP2023182179A/en
Publication of JP2023182179A publication Critical patent/JP2023182179A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

To provide a method for producing 1,5-anhydro-D-mannitol using a microbe that has a high capacity to convert 1,5-anhydro-D-fructose as the starting substance to 1,5-anhydro-D-mannitol.SOLUTION: A method for producing 1,5-anhydro-D-mannitol includes bringing the strain of Wickerhamomyces anomalus into contact with 1,5-anhydro-D-fructose to produce 1,5-anhydro-D-mannitol, and then taking the produced 1,5-anhydro-D-mannitol.SELECTED DRAWING: Figure 1

Description

本発明は、1,5-アンヒドロ-D-マンニトールの微生物による製造法に関する。 The present invention relates to a method for producing 1,5-anhydro-D-mannitol using microorganisms.

1,5-アンヒドロ-D-マンニトール(以下1,5-AM)は、マンノースの1位の水酸基が還元された構造をもつポリオールである。1,5-AMは、動物細胞の培養基材として用いることで、抗体の産生が増強することが知られている。また、1,5-AMに脂肪酸を結合させることで脂質のゲル化剤となることも報告されている。このように1,5-AMは、産業的に価値の高い糖である。 1,5-Anhydro-D-mannitol (hereinafter referred to as 1,5-AM) is a polyol having a structure in which the hydroxyl group at the 1-position of mannose is reduced. 1,5-AM is known to enhance antibody production when used as a culture substrate for animal cells. It has also been reported that 1,5-AM can be used as a lipid gelling agent by binding a fatty acid to it. Thus, 1,5-AM is an industrially valuable sugar.

1,5-AMの製造法としては、化学的に水素付加する方法が報告されている(非特許文献1参照)。しかし、この方法では、1,5-AMの他に1,5-AMの2位のエピマーである、1,5-アンヒドロ-D-グルシトール(以下1,5-AG)も生成されてしまうため、1,5-AMの収率が低いという問題があった。例えば、水素化ホウ素ナトリウムを用いた化学的な水素付加においては、副生物の1,5-AGの収率が60%と多量に生成する。また、パラジウム触媒存在下での水素付加においては1,5-AMが優勢となるものの、1,5-AMの収率は58%と低収率である。 As a method for producing 1,5-AM, a method of chemical hydrogenation has been reported (see Non-Patent Document 1). However, in this method, in addition to 1,5-AM, 1,5-anhydro-D-glucitol (hereinafter referred to as 1,5-AG), which is an epimer at the 2-position of 1,5-AM, is also produced. , there was a problem that the yield of 1,5-AM was low. For example, in chemical hydrogenation using sodium borohydride, a large amount of the by-product 1,5-AG is produced at a yield of 60%. Furthermore, although 1,5-AM becomes predominant in hydrogenation in the presence of a palladium catalyst, the yield of 1,5-AM is as low as 58%.

1,5-AMを食品素材として使用する場合、摂取しても安全である素材であることが求められる。しかしながら、上記のような化学合成法では、生成物中に化学物質の残留等のおそれがあるため、化学合成法ではなく、より自然な製造法、例えば微生物を用いた1,5-AMの製造法が望ましいといえる。 When using 1,5-AM as a food material, it is required that the material is safe to ingest. However, with the above chemical synthesis method, there is a risk that chemical substances may remain in the product. It can be said that a law is preferable.

微生物を用いた1,5-AMの製造法として、1,5-アンヒドロ-D-フルクトース(以下1,5-AF)に、パン酵母を接触させて1,5-AMを製造する方法が報告されている(非特許文献2参照)。しかし、この方法においても1,5-AGが副生物として生成されるという問題があり、1,5-AMの収率は約50%と低い。 As a method for producing 1,5-AM using microorganisms, a method for producing 1,5-AM by bringing baker's yeast into contact with 1,5-anhydro-D-fructose (hereinafter referred to as 1,5-AF) has been reported. (See Non-Patent Document 2). However, this method also has the problem that 1,5-AG is produced as a by-product, and the yield of 1,5-AM is as low as about 50%.

上記の通り従来の合成方法においては、副生物が多く生成して1,5-AFから1,5-AMへの変換率が低く十分でなかった。従って、副生物を生成せず、1,5-AFから1,5-AMのみを選択的に効率良く製造する方法が望まれている。 As mentioned above, in the conventional synthesis method, many by-products were produced and the conversion rate of 1,5-AF to 1,5-AM was low and insufficient. Therefore, a method for selectively and efficiently producing only 1,5-AM from 1,5-AF without producing by-products is desired.

微生物を用いて1,5-AFから1,5-AMのみを選択的に製造する方法の一つとして、シノリゾビウム・モレレンス種の菌株から、1,5-AFを1,5-AMに変換する還元酵素を分離し、当該還元酵素を用いて1,5-AMを製造する技術が提案されている(非特許文献3参照)。
この製造法においては反応系に1,5-AFから1,5-AMに還元する際に補酵素(ニコチンアミドアデニンジヌクレオチドリン酸;NADPH)が必要であり、反応系内にグルコース-6-リン酸とグルコース-6-リン酸脱水素酵素が添加される。ここで、反応においては1モルの1,5-AFの還元に1モルのNADPHが必要であり、1モルのNADPHの発生に、1モルのグルコース-6-リン酸が必要となる。従って、1,5-AFの還元には、1,5-AFと等モルのグルコース6リン酸が必要となる。しかしながら、グルコース-6-リン酸は非常に高価であることから、この反応による製造法では1,5-AMの製造コストが非常に高くなるという問題があるため、より安価な1,5-AMの製造法が求められている。
One method for selectively producing only 1,5-AM from 1,5-AF using microorganisms is to convert 1,5-AF to 1,5-AM from a strain of Sinorhizobium morelens species. A technique for separating a reductase and producing 1,5-AM using the reductase has been proposed (see Non-Patent Document 3).
In this production method, a coenzyme (nicotinamide adenine dinucleotide phosphate; NADPH) is required in the reaction system to reduce 1,5-AF to 1,5-AM, and glucose-6- Phosphoric acid and glucose-6-phosphate dehydrogenase are added. Here, in the reaction, 1 mol of NADPH is required to reduce 1 mol of 1,5-AF, and 1 mol of glucose-6-phosphate is required to generate 1 mol of NADPH. Therefore, reduction of 1,5-AF requires equimolar amount of glucose 6-phosphate to 1,5-AF. However, since glucose-6-phosphate is very expensive, there is a problem in that the production cost of 1,5-AM becomes very high with this reaction-based production method. A manufacturing method is required.

Carbohydrate Research 337(2002),873-890Carbohydrate Research 337 (2002), 873-890 The Japanese Society of Applied Glycoscience,59,145-151(2012)The Japanese Society of Applied Glycoscience, 59, 145-151 (2012) APPLIED AND ENVIRONMENTAL MICROBIOROGY,Feb.2006,p.1248-1257APPLIED AND ENVIRONMENTAL MICROBIOROGY, Feb. 2006, p. 1248-1257

本発明はこのような従来の問題点を解決して、1,5-AFを出発物質とし1,5-AMへの高い変換能を有する微生物を用いた1,5-AMの製造法を提供することにある。 The present invention solves these conventional problems and provides a method for producing 1,5-AM using a microorganism that uses 1,5-AF as a starting material and has a high conversion ability to 1,5-AM. It's about doing.

本発明においては、ウィッカーハモマイセス・アノマルス種の菌株を1,5-アンヒドロ-D-フルクトースと接触させて1,5-アンヒドロ-D-マンニトールを生成させ、次いで生成した1,5-アンヒドロ-D-マンニトールを採取することを特徴とする1,5-アンヒドロ-D-マンニトールの製造法が提供される。
本発明の1,5-アンヒドロ-D-マンニトールの製造法においては、前記ウィッカーハモマイセス・アノマルス種の菌株がNBRC 0707またはNBRC 10213であることが好ましい。
In the present invention, a strain of Wickerhamomyces anomalus sp. is contacted with 1,5-anhydro-D-fructose to produce 1,5-anhydro-D-mannitol, and then the produced 1,5-anhydro- A method for producing 1,5-anhydro-D-mannitol is provided, which comprises collecting D-mannitol.
In the method for producing 1,5-anhydro-D-mannitol of the present invention, the strain of Wickerhamomyces anomalis species is preferably NBRC 0707 or NBRC 10213.

本発明においては、ウィッカーハモマイセス・アノマルス種の菌株を用いることにより、1,5-AFを1,5-AMのみに選択的に変換し副生物を生成しないため、生産性が向上する。
ウィッカーハモマイセス・アノマルス種の菌株は、従来から食品分野で幅広く使用されてきた菌株であり、例えばワインの製造に用いられる酵母の一種である。従って当該菌株を用いた製造法は、化学的に水素付加する方法等に比べ、安全性が高い。
さらに、ウィッカーハモマイセス・アノマルス種の菌株を用いた1,5-AMの製造は、グルコース-6-リン酸等の高価な添加剤を用いる必要がないため、製造コストが低く安価な1,5-AMの製造法である。
In the present invention, by using a strain of Wickerhamomyces anomalus species, 1,5-AF is selectively converted to 1,5-AM only, and by-products are not produced, thereby improving productivity.
The Wickerhamomyces anomalus strain is a strain that has been widely used in the food field, and is a type of yeast used, for example, in wine production. Therefore, the production method using this strain is safer than methods such as chemical hydrogenation.
Furthermore, the production of 1,5-AM using Wickerhamomyces anomalus strain does not require the use of expensive additives such as glucose-6-phosphate, resulting in low production costs and inexpensive 1,5-AM. This is a method for producing 5-AM.

実施例5における発酵時間と1,5-AM変換率との関係を示すグラフである。3 is a graph showing the relationship between fermentation time and 1,5-AM conversion rate in Example 5.

1,5-AFを1,5-AMに変換する高い能力を持つウィッカーハモマイセス・アノマルス種の菌株としては、具体的にはNBRC 0707またはNBRC 10213などが挙げられる。これら菌株は、ブダペスト条約による国際寄託がなされており、独立行政法人製品評価技術基盤機構バイオテクノロジー本部(Incorporated Administrative Agency Department of Biotechnology National Institute of Technology and Evaluation)千葉県木更津市かずさ鎌足2-5-8 から入手可能である。但し、本発明に用いられるウィッカーハモマイセス・アノマルス種の菌株は、1,5-AFを1,5-AMに変換する能力を有するウィッカーハモマイセス・アノマルス種の菌株であれば全てが使用可能であり、上記菌株に限定されるものではない。
本発明のウィッカーハモマイセス・アノマルス種の菌株は、前記の菌株より派生する変異株、例えば紫外線照射、N-メチル-N-ニトロソグアニジン(NTG)処理、エチルメタンスルホネート(EMS)処理、亜硝酸処理、アクリジン処理等による変異株、あるいは細胞融合もしくは遺伝子組み換え法などの遺伝学的手法により誘導される遺伝子組み換え株などいずれの株であっても良い。
Specific examples of strains of Wickerhamomyces anomalus that have a high ability to convert 1,5-AF to 1,5-AM include NBRC 0707 and NBRC 10213. These strains have been internationally deposited under the Budapest Treaty and have been deposited with the Incorporated Administrative Agency Department of Biotechnology National Institute of Technology. ogy and Evaluation) 2-5- Kazusa Kamatari, Kisarazu City, Chiba Prefecture Available from 8. However, the strain of Wickerhamomyces anomalus used in the present invention may be any strain of Wickerhamomyces anomalus that has the ability to convert 1,5-AF to 1,5-AM. possible, and is not limited to the above strains.
The Wickerhamomyces anomalis strain of the present invention is a mutant strain derived from the above-mentioned strain, such as ultraviolet irradiation, N-methyl-N-nitrosoguanidine (NTG) treatment, ethyl methanesulfonate (EMS) treatment, nitrous acid treatment, etc. It may be any strain, such as a mutant strain induced by treatment, acridine treatment, etc., or a genetically modified strain induced by genetic techniques such as cell fusion or genetic recombination.

1,5-AFを原料として1,5-AMを製造するには1,5-AFにウィッカーハモマイセス・アノマルス種の菌株に1,5-AFを接触させればよく、具体的には、微生物用の培地中に1,5-AFとウィッカーハモマイセス・アノマルス種の菌株を共存させる方法が好適に採用される。
微生物培養のための1,5-AFを含む培養液は、炭水化物、窒素源、無機イオン、更に必要に応じて有機栄養源を含む培地を用いることができる。炭水化物としては、例えばグルコース、フルクトース、マルトース、スクロース、グリセロール、マンノースなどが挙げられる。グルコースが特に好ましい。有機栄養源としては、例えばビタミン、アミノ酸等を含有する酵母エキス、麦芽エキス、ペプトン、肉エキス、コーンスティープリカー、カゼイン分解物などが適宜使用される。無機イオンとしては、例えばマグネシウムイオン、リン酸イオン、カルシウムイオンなどが適宜使用される。その培地に、別にフィルター滅菌した1,5-AF水溶液を添加して1,5-AM採取用の培地とすることができる。
To produce 1,5-AM using 1,5-AF as a raw material, it is sufficient to contact 1,5-AF with a strain of Wickerhamomyces anomalus species, and specifically, A method of coexisting 1,5-AF and a strain of Wickerhamomyces anomalus in a microbial culture medium is preferably employed.
As a culture solution containing 1,5-AF for culturing microorganisms, a medium containing carbohydrates, a nitrogen source, inorganic ions, and, if necessary, an organic nutrient source can be used. Examples of carbohydrates include glucose, fructose, maltose, sucrose, glycerol, and mannose. Glucose is particularly preferred. As the organic nutrient source, for example, yeast extract, malt extract, peptone, meat extract, corn steep liquor, casein decomposition product, etc. containing vitamins, amino acids, etc. are used as appropriate. As the inorganic ion, for example, magnesium ion, phosphate ion, calcium ion, etc. are used as appropriate. A separately filter-sterilized 1,5-AF aqueous solution can be added to the medium to prepare a medium for collecting 1,5-AM.

反応温度は10℃から40℃が良く、好ましくは20℃~35℃、より好ましくは25℃から35℃が良い。pHは7.0以下、好ましくは6.5以下、より好ましくは5.0以下が良い。これらの反応条件下においては、ウィッカーハモマイセス・アノマルス種の菌株の1,5-AFから1,5-AMへの変換能力が適切に作用する。また、微生物の活性化のために反応中にグルコースなどの炭素源を供給しても良い。 The reaction temperature is preferably 10°C to 40°C, preferably 20°C to 35°C, more preferably 25°C to 35°C. The pH is preferably 7.0 or less, preferably 6.5 or less, more preferably 5.0 or less. Under these reaction conditions, the ability of the strain of Wickerhamomyces anomalus species to convert 1,5-AF to 1,5-AM works properly. Furthermore, a carbon source such as glucose may be supplied during the reaction to activate microorganisms.

生成された物質が1,5-AMであることは、HPLCにより1,5-AM標準試料とのピークを比較することで確認できる。培養液中の1,5-AM生成量も、同様にHPLCで速やかに測定することができ、1,5-AM生成量が最高に達した時点で培養を終了する。なお、1,5-AM生成量は、HPLC測定により検出された1,5-AMのピーク面積によりあらかじめ作成した標準試料の検量線から求めることができる。
HPLC測定の詳細条件を以下に示す。
分離カラム:MITSUBISHI MCIGELCK08Sの2連結(三菱化学(株)製)、
移動相:水、流速:1.0mL/分、
カラム温度:60℃、
検出器:示差屈折率検出器、
サンプル供与量:20μL
It can be confirmed that the produced substance is 1,5-AM by comparing the peak with a 1,5-AM standard sample by HPLC. The amount of 1,5-AM produced in the culture solution can also be rapidly measured by HPLC, and the culture is terminated when the amount of 1,5-AM produced reaches the maximum. Note that the amount of 1,5-AM produced can be determined from a calibration curve of a standard sample prepared in advance based on the peak area of 1,5-AM detected by HPLC measurement.
Detailed conditions for HPLC measurement are shown below.
Separation column: 2 connections of MITSUBISHI MCIGELCK08S (manufactured by Mitsubishi Chemical Corporation),
Mobile phase: water, flow rate: 1.0 mL/min,
Column temperature: 60℃,
Detector: differential refractive index detector,
Sample amount: 20μL

このようにして培養液中に生成した1,5-AMを通常実施される周知の手段で培養物より精製して採取する。具体的には、遠心分離、珪藻土ろ過で菌体および固形物を除去した後、活性炭で脱色、イオン交換樹脂で脱塩し、濃縮後、結晶化させる。結晶化の方法としては、例えば、1,5-AMの水溶液から結晶1,5-AMを析出させる方法等が挙げられるが、特に限定されるものではない。 The 1,5-AM thus produced in the culture solution is purified and collected from the culture using commonly practiced and well-known means. Specifically, after microbial cells and solid matter are removed by centrifugation and diatomaceous earth filtration, the product is decolorized with activated carbon, desalted with an ion exchange resin, concentrated, and then crystallized. Examples of the crystallization method include, but are not particularly limited to, a method of precipitating crystals of 1,5-AM from an aqueous solution of 1,5-AM.

以下、実施例にて本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。以後の説明中に用いる%は、特に断りがない限り容量(w/v)%である。
<1,5-AM変換率>
1,5-AMへ変換された割合(1,5-AM変換率)は、培地中に添加した1,5-AFが1,5-AMに変換された割合を示し、HPLCで検出される1,5-AMと1,5-AGのピーク面積を用いて下記の式に従って求めた。
1,5-AM変換率(%)=S/(S+S)×100
:1,5-AMのピーク面積の実測値(%)
:1,5-AGのピーク面積の実測値(%)
なお、1,5-AMのピーク面積の実測値が5%以下または95%以上については、少ない成分のピーク面積が正確に検出できないため、それぞれ0%または100%と表記した。
また、実施例で用いたNBRC 0707およびNBRC 10213の菌株は、独立行政法人製品評価技術基盤機構バイオテクノロジー本部(Incorporated Administrative Agency Department of Biotechnology National Institute of Technology and Evaluation)千葉県木更津市かずさ鎌足2-5-8 から入手したものである。
EXAMPLES Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited to these Examples. % used in the following description is capacity (w/v) % unless otherwise specified.
<1,5-AM conversion rate>
The rate of conversion to 1,5-AM (1,5-AM conversion rate) indicates the rate at which 1,5-AF added to the medium was converted to 1,5-AM, and is detected by HPLC. It was calculated according to the following formula using the peak areas of 1,5-AM and 1,5-AG.
1,5-AM conversion rate (%) = S 1 / (S 1 + S 2 ) x 100
S 1 : Actual value of peak area of 1,5-AM (%)
S 2 : Actual value of peak area of 1,5-AG (%)
Note that when the actual value of the peak area of 1,5-AM is 5% or less or 95% or more, it is expressed as 0% or 100%, respectively, because the peak area of a small component cannot be accurately detected.
In addition, the strains NBRC 0707 and NBRC 10213 used in the examples were obtained from the Incorporated Administrative Agency Department of Biotechnology National Institute. e of Technology and Evaluation) 2- Kazusa Kamatari, Kisarazu City, Chiba Prefecture It was obtained from 5-8.

<実施例1>(カビおよび酵母の1,5-AM変換率の比較)
1,5-AFは微生物の増殖を抑制する作用を有するが、その作用は細菌に対しては強いものの、カビや酵母には殆ど作用しない。従って、1,5-AFから1,5-AMを微生物により製造するには、1,5-AFの増殖抑制の影響が少ない酵母やカビが良いと考えられるため、表1に示すカビおよび酵母を準備し、1,5-AM変換率を調べた。
グルコース1.0%、ペプトン0.5%、酵母エキス0.3%および麦芽エキス0.3%、からなるYM液体培地(pH6.2)5mLを15mL容の遠心チューブに分注し、この遠心チューブ中に寒天培地(グルコース1.0%、ペプトン0.5%、酵母エキス0.3%、麦芽エキス0.3%、寒天粉末1.5%、pH6.2)で培養した表1に示す菌株をそれぞれ1白金耳接種し、30℃、130rpmで一晩振盪培養した。この培養液を遠心分離(3000g、15分)して菌体を回収した。回収した菌体に、孔径0.45μmフィルターで除菌処理した0.1%/22mMリン酸緩衝液(pH6.86)の1,5-AF溶液を2mL添加し、30℃、130rpmで一晩菌体と1,5-AFを接触させた。
この液をHPLC分析し、1,5-AMおよび1,5-AGのピーク面積を測定して1,5-AM変換率を求めた。その結果を表1に示す。カビに比べて、酵母の方が1,5-AM変換率が高い傾向にあった。
<Example 1> (Comparison of 1,5-AM conversion rates of mold and yeast)
1,5-AF has the effect of inhibiting the growth of microorganisms, and although its effect is strong against bacteria, it has little effect on molds and yeast. Therefore, in order to produce 1,5-AM from 1,5-AF using microorganisms, yeasts and molds that are less affected by the growth inhibition of 1,5-AF are considered to be suitable. was prepared and the 1,5-AM conversion rate was investigated.
Dispense 5 mL of YM liquid medium (pH 6.2) consisting of 1.0% glucose, 0.5% peptone, 0.3% yeast extract, and 0.3% malt extract into a 15 mL centrifuge tube, and centrifuge it. The cells shown in Table 1 were cultured on agar medium (glucose 1.0%, peptone 0.5%, yeast extract 0.3%, malt extract 0.3%, agar powder 1.5%, pH 6.2) in tubes. One platinum loop of each strain was inoculated and cultured overnight at 30° C. and shaking at 130 rpm. This culture solution was centrifuged (3000 g, 15 minutes) to collect bacterial cells. 2 mL of 1,5-AF solution of 0.1%/22 mM phosphate buffer (pH 6.86) that had been sterilized using a 0.45 μm pore size filter was added to the collected cells, and the mixture was incubated at 30°C and 130 rpm overnight. The bacterial cells were brought into contact with 1,5-AF.
This liquid was analyzed by HPLC, and the peak areas of 1,5-AM and 1,5-AG were measured to determine the 1,5-AM conversion rate. The results are shown in Table 1. Compared to mold, yeast tended to have a higher 1,5-AM conversion rate.

Figure 2023182179000002
Figure 2023182179000002

<実施例2>(各酵母の1,5-AM変換率の比較)
実施例1より、酵母の方が1,5-AM変換率が高いことが分かったため、表2に示す酵母を準備し、その中で1,5-AM変換率の高い酵母を調べた。
グルコース1.0%、ペプトン0.5%、酵母エキス0.3%および麦芽エキス0.3%、からなるYM液体培地(pH6.2)5mLを15mL容の遠心チューブに分注し、この遠心チューブ中に寒天培地(グルコース1.0%、ペプトン0.5%、酵母エキス0.3%、麦芽エキス0.3%、寒天粉末1.5%、pH6.2)で培養した表2に示す菌株をそれぞれ1白金耳接種し、30℃、130rpmで一晩振盪培養した。この培養液を遠心分離(3000g、15分)して菌体を回収した。回収した菌体に、リン酸緩衝生理食塩水(PBS)を1mL添加して混合し、遠心分離(3000g、15分)後に上澄みを廃棄し菌体を回収した。これに孔径0.45μmフィルターで除菌処理した0.1%の1,5-AF/22mMリン酸緩衝液(pH6.86)を1mL添加して、25℃、130rpmで一晩菌体と1,5-AFを接触させた。
この液をHPLC分析し、生成した1,5-AGと1,5-AMのピーク面積を測定し、1,5-AM変換率を求めた。その結果、評価した殆どの微生物が1,5-AGと1,5-AMの両方を生成したが、ウィッカーハモマイセス・アノマルス種の菌株だけが1,5-AMのみを選択的に生成し、1,5-AM変換率は100%であった。
<Example 2> (Comparison of 1,5-AM conversion rates of each yeast)
From Example 1, it was found that yeast had a higher 1,5-AM conversion rate, so yeasts shown in Table 2 were prepared, and yeasts with a high 1,5-AM conversion rate among them were investigated.
Dispense 5 mL of YM liquid medium (pH 6.2) consisting of 1.0% glucose, 0.5% peptone, 0.3% yeast extract, and 0.3% malt extract into a 15 mL centrifuge tube, and centrifuge it. The cells shown in Table 2 were cultured on agar medium (glucose 1.0%, peptone 0.5%, yeast extract 0.3%, malt extract 0.3%, agar powder 1.5%, pH 6.2) in tubes. One platinum loopful of each strain was inoculated and cultured overnight at 30° C. and 130 rpm with shaking. This culture solution was centrifuged (3000 g, 15 minutes) to collect bacterial cells. 1 mL of phosphate buffered saline (PBS) was added to and mixed with the collected bacterial cells, and after centrifugation (3000 g, 15 minutes), the supernatant was discarded and the bacterial cells were collected. To this, 1 mL of 0.1% 1,5-AF/22 mM phosphate buffer (pH 6.86) that had been sterilized using a 0.45 μm pore size filter was added, and the bacterial cells were incubated overnight at 25°C and 130 rpm. , 5-AF was contacted.
This liquid was analyzed by HPLC, the peak areas of the produced 1,5-AG and 1,5-AM were measured, and the 1,5-AM conversion rate was determined. The results showed that most of the microorganisms evaluated produced both 1,5-AG and 1,5-AM, but only one strain of Wickerhamomyces anomalus selectively produced only 1,5-AM. , 1,5-AM conversion rate was 100%.

Figure 2023182179000003
Figure 2023182179000003

<実施例3>(各ウィッカーハモマイセス属の1,5-AM変換率の比較)
実施例2から、ウィッカーハモマイセス・アノマルス種の菌株を用いると1,5-AM変換率が高いことが分かったため、表3に示すウィッカーハモマイセス属の菌株を準備し、その中で1,5-AM変換率の高い菌株を調べた。
用いる菌体を、表3に示すウィッカーハモマイセス属の菌体にした以外は実施例2と同様にして1,5-AM変換率を求めた。その結果、ウィッカーハモマイセス属の中でもウィッカーハモマイセス・アノマルス種の菌株のみが1,5-AM変換率が100%であった。
<Example 3> (Comparison of 1,5-AM conversion rates of each Wickerhamomyces genus)
From Example 2, it was found that the 1,5-AM conversion rate was high when using a strain of Wickerhamomyces anomalis species. Therefore, the strains of Wickerhamomyces species shown in Table 3 were prepared, and among them, 1,5-AM conversion rate was high. , strains with high 5-AM conversion rates were investigated.
The 1,5-AM conversion rate was determined in the same manner as in Example 2, except that the bacterial cells of the genus Wickerhamomyces shown in Table 3 were used as the bacterial cells. As a result, among the Wickerhamomyces genus, only the Wickerhamomyces anomalus strain had a 1,5-AM conversion rate of 100%.

Figure 2023182179000004
Figure 2023182179000004

<実施例4>(ウィッカーハモマイセス・アノマルス種の菌株の1,5-AM資化性)
合成培地(YEM培地:Yeast Nitrogen Base)5mLを15mL容の遠心チューブに分注し、この遠心チューブ中に寒天培地(グルコース1.0%、ペプトン0.5%、酵母エキス0.3%、麦芽エキス0.3%、寒天粉末1.5%、pH6.2)で培養したウィッカーハモマイセス・アノマルス種の菌株(NBRC0707)を1白金耳接種し、30℃、130rpmで一晩振盪培養した。これを種培養液とした。別に合成培地(YEM培地)5mLを試験管に分注し、孔径0.45μmフィルターで除菌処理した表4に示す糖類をそれぞれの試験管に1%になるように添加し、種培養液を20μL添加して、25℃、130rpmで一晩振盪培養した。
この培養液を適量サンプリングし、濁度計(バイオクロム社製、ジーンクオント100)を用いて660nmの波長における培養液の濁度を測定した。この結果を、添加した糖類ごとに表4に示す。
添加した糖類がグルコースの場合は、660nmの波長の透過率が減少し濁度が増加したことから、ウィッカーハモマイセス・アノマルス種の菌株(NBRC0707)が増殖していることが分かった。これに対して、添加した糖類が1,5-AMの場合は、濁度の増加は認められず、ウィッカーハモマイセス・アノマルス種の菌株(NBRC0707)が増殖しないことが分かった。
上記より、ウィッカーハモマイセス・アノマルス種の菌株(NBRC0707)は1,5-AMを資化することができず、生成した1,5-AMは培地に蓄積されていくことが分かった。よって、ウィッカーハモマイセス・アノマルス種の菌株(NBRC0707)は、1,5-AMの生成に適した菌であることが分かった。
<Example 4> (1,5-AM assimilation ability of Wickerhamomyces anomalus strain)
Dispense 5 mL of synthetic medium (YEM medium: Yeast Nitrogen Base) into a 15 mL centrifuge tube, and add agar medium (glucose 1.0%, peptone 0.5%, yeast extract 0.3%, malt) into the centrifuge tube. One platinum loop of Wickerhamomyces anomalus strain (NBRC0707) cultured in 0.3% extract, 1.5% agar powder, pH 6.2) was inoculated and cultured overnight at 30° C. and 130 rpm with shaking. This was used as a seed culture solution. Separately, 5 mL of synthetic medium (YEM medium) was dispensed into test tubes, and the saccharides shown in Table 4, which had been sterilized using a 0.45 μm pore size filter, were added to each test tube at a concentration of 1%. 20 μL was added and cultured with shaking at 25° C. and 130 rpm overnight.
An appropriate amount of this culture solution was sampled, and the turbidity of the culture solution at a wavelength of 660 nm was measured using a turbidimeter (Gene Quant 100, manufactured by Biochrome Co., Ltd.). The results are shown in Table 4 for each added saccharide.
When the added saccharide was glucose, the transmittance at a wavelength of 660 nm decreased and the turbidity increased, indicating that the strain of Wickerhamomyces anomalus (NBRC0707) was growing. On the other hand, when the added sugar was 1,5-AM, no increase in turbidity was observed, and it was found that the Wickerhamomyces anomalis strain (NBRC0707) did not grow.
From the above, it was found that the strain of Wickerhamomyces anomalus species (NBRC0707) was unable to assimilate 1,5-AM, and the produced 1,5-AM was accumulated in the medium. Therefore, the strain of Wickerhamomyces anomalus species (NBRC0707) was found to be suitable for producing 1,5-AM.

Figure 2023182179000005
Figure 2023182179000005

<実施例5>(発酵時間と1,5-AM変換率の関係)
YM液体培地を15mL容の遠心チューブに5mL調製し、この遠心チューブ中に寒天培地(グルコース12.0%、ペプトン0.51.0%、酵母エキス0.3%、麦芽エキス0.3%、寒天粉末1.5%、pH6.2)で培養したウィッカーハモマイセス・アノマルス種の菌株(NBRC0707)を1白金耳接種し、30℃、130rpmで一晩振盪培養した。これを種培養液とした。別途、ペプトンを1.0g、酵母エキスを0.6g、麦芽エキスを0.6g、および1,5-AF12gを100mLの精製水に溶解した。該水溶液をポアサイズ0.2μMのメンブレンフィルターでろ過し、次いでろ過後の水溶液に種培養液を5mL加え、25℃、130rpmで振盪培養した。培養中に、5%グルコース水溶液を当該培地に連続して添加した。また、ペプトン、酵母エキス、麦芽エキスも当該培地に適時添加した。
この培養中の培地から、200μLを随時サンプリングした。サンプリングした培地を精製水で10倍希釈し、HPLC分析により1,5-AMと1,5-AGのピーク面積を測定して、1,5-AM変換率を求めた。発酵時間と1,5-AM変換率(%)の関係を図1に示す。この結果、発酵時間が264時間での1,5-AM変換率は76.2%に達した。
<Example 5> (Relationship between fermentation time and 1,5-AM conversion rate)
Prepare 5 mL of YM liquid medium in a 15 mL centrifuge tube, and add agar medium (glucose 12.0%, peptone 0.51.0%, yeast extract 0.3%, malt extract 0.3%, One platinum loop of Wickerhamomyces anomalis strain (NBRC0707) cultured in agar powder (1.5%, pH 6.2) was inoculated and cultured overnight at 30° C. and 130 rpm with shaking. This was used as a seed culture solution. Separately, 1.0 g of peptone, 0.6 g of yeast extract, 0.6 g of malt extract, and 12 g of 1,5-AF were dissolved in 100 mL of purified water. The aqueous solution was filtered through a membrane filter with a pore size of 0.2 μM, and then 5 mL of the seed culture solution was added to the filtered aqueous solution, and cultured with shaking at 25° C. and 130 rpm. During the culture, 5% glucose aqueous solution was continuously added to the medium. Furthermore, peptone, yeast extract, and malt extract were also added to the medium at appropriate times.
From the medium during this culture, 200 μL was sampled at any time. The sampled medium was diluted 10 times with purified water, and the peak areas of 1,5-AM and 1,5-AG were measured by HPLC analysis to determine the 1,5-AM conversion rate. The relationship between fermentation time and 1,5-AM conversion rate (%) is shown in Figure 1. As a result, the 1,5-AM conversion rate reached 76.2% after a fermentation time of 264 hours.

Claims (2)

ウィッカーハモマイセス・アノマルス種の菌株を1,5-アンヒドロ-D-フルクトースと接触させて1,5-アンヒドロ-D-マンニトールを生成させ、次いで生成した1,5-アンヒドロ-D-マンニトールを採取することを特徴とする1,5-アンヒドロ-D-マンニトールの製造法。 A strain of Wickerhamomyces anomalus species is contacted with 1,5-anhydro-D-fructose to produce 1,5-anhydro-D-mannitol, and the produced 1,5-anhydro-D-mannitol is then collected. A method for producing 1,5-anhydro-D-mannitol, characterized in that: 前記ウィッカーハモマイセス・アノマルス種の菌株がNBRC 0707またはNBRC 10213である請求項1に記載の1,5-アンヒドロ-D-マンニトールの製造法。
The method for producing 1,5-anhydro-D-mannitol according to claim 1, wherein the strain of Wickerhamomyces anomalus species is NBRC 0707 or NBRC 10213.
JP2022095646A 2022-06-14 2022-06-14 Method for producing 1,5-anhydro-D-mannitol Pending JP2023182179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022095646A JP2023182179A (en) 2022-06-14 2022-06-14 Method for producing 1,5-anhydro-D-mannitol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022095646A JP2023182179A (en) 2022-06-14 2022-06-14 Method for producing 1,5-anhydro-D-mannitol

Publications (1)

Publication Number Publication Date
JP2023182179A true JP2023182179A (en) 2023-12-26

Family

ID=89310218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022095646A Pending JP2023182179A (en) 2022-06-14 2022-06-14 Method for producing 1,5-anhydro-D-mannitol

Country Status (1)

Country Link
JP (1) JP2023182179A (en)

Similar Documents

Publication Publication Date Title
JP4471841B2 (en) Production of vitamin C by microorganisms
US10351817B2 (en) Amycolatopsis sp. strain and methods of using the same for vanillin production
KR101111027B1 (en) Microbial production of vitamin c
Nagai-Miyata et al. Isolation and characterization of a trehalulose-producing strain of Agrobacterium
AU2008249370B2 (en) Method for producing glucuronic acid by glucuronic acid fermentation
JP2023182179A (en) Method for producing 1,5-anhydro-D-mannitol
JP4365862B2 (en) Candida tropicalis CJ-FID strain (KCTC10457BP) and xylitol production method using the same
JP2008054531A (en) Method for producing 1,5-d-anhydroglucitol
JP4071037B2 (en) Method for producing β-galactosidase high production mutant microorganism, mutant microorganism produced by the method and use thereof
JP6073585B2 (en) Process for producing 1,5-D-anhydroglucitol
KR100271137B1 (en) Trichosporonoides media ds911 and method for producing erythritol using the same
JP3423842B2 (en) Mutant strain and method for producing erythritol using the mutant strain or parent strain
US6455301B1 (en) Erythritol—producing Moniliella strains
JPH1096A (en) Production of erythritol using microorganism
JP2004344084A (en) Alcohol fermentative yeast
AU597264B2 (en) Fermentation process for the production of fructose from aqueous mixtures of fructose and glucose and zymomonas mobilis mutants which can be used for such fermentation
JPH0580A (en) Phb free gelan rubber fermentation solution
JP2845385B2 (en) Novel mutant strain and method for producing glycerin using the same
KR100355846B1 (en) A process for preparing erythritol using mother liquor produced from purification process of palatinose
JP4393028B2 (en) Novel yeast and its use
JP3600803B2 (en) Mannitol producing strain Candida magnolia and method for producing mannitol by fermentation using the same
JPH1042860A (en) Production of inositol and acquirement of hexachlorocyclohexane-resistant strain
JP4356992B2 (en) Method for producing L-talitol using reduction reaction of yeast
KR100434518B1 (en) Erythritol fermentation method by a novel strain, Pseudozyma tsukubaensis
JPH09154590A (en) Production of erythritol

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220705