JP2023182007A - Nonwoven fabric and nonwoven fabric manufacturing method - Google Patents

Nonwoven fabric and nonwoven fabric manufacturing method Download PDF

Info

Publication number
JP2023182007A
JP2023182007A JP2023179585A JP2023179585A JP2023182007A JP 2023182007 A JP2023182007 A JP 2023182007A JP 2023179585 A JP2023179585 A JP 2023179585A JP 2023179585 A JP2023179585 A JP 2023179585A JP 2023182007 A JP2023182007 A JP 2023182007A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
fibers
fiber
adhesive
cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023179585A
Other languages
Japanese (ja)
Other versions
JP2023182007A5 (en
Inventor
渉 京塚
Wataru Kyozuka
遼 森田
Ryo Morita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa Boseki KK
Daiwabo Co Ltd
Original Assignee
Daiwa Boseki KK
Daiwabo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa Boseki KK, Daiwabo Co Ltd filed Critical Daiwa Boseki KK
Publication of JP2023182007A publication Critical patent/JP2023182007A/en
Publication of JP2023182007A5 publication Critical patent/JP2023182007A5/ja
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/48Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation
    • D04H1/485Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation in combination with weld-bonding

Abstract

To provide a nonwoven fabric containing cellulosic fibers, which achieves softness of nonwoven fabric feeling and suppresses fluff and can be used for a product to directly come in contact with human skin, such as an absorbent article, and a manufacturing method of the nonwoven fabric.SOLUTION: A nonwoven fabric contains cellulosic fibers and adhesive fibers, includes bonded parts between the adhesive fiber and the cellulosic fiber and/or the adhesive fiber, and includes entangled parts between the cellulosic fiber and the cellulosic fiber and/or the adhesive fiber. Bonding intersection index A of the nonwoven fabric is 1 to 60 points/mm2 or thickness reduction rate of the nonwoven fabric is 30 to 45%.SELECTED DRAWING: None

Description

本発明は、不織布及び不織布の製造方法に関する。 The present invention relates to a nonwoven fabric and a method for manufacturing the nonwoven fabric.

不織布は、例えば、使い捨ておむつ、生理用ナプキン、失禁パッド、及びパンティライナー等の吸収性物品に使用される。セルロース系繊維は、吸湿性に優れ、植物に由来する再生可能な繊維なので、自然環境負荷の低減の観点から、セルロース系繊維を含む不織布は、興味が持たれる。
セルロース系繊維を含む不織布は、毛羽の抑制が不十分であるため、例えば水流交絡を行った不織布、及び熱融着性繊維の熱融着により構成繊維同士を接着させた不織布等が用いられている。
しかし、前者は風合いが硬く、後者は依然として毛羽の抑制が十分でないという問題がある。
従って、セルロース系繊維を含む不織布は、人の肌に直接触れる用途ではなく、毛羽の抑制及び風合いの柔らかさ等が重要でない、人の肌に直接触れない、吸収性物品等の吸収体等に使用されている(特許文献1参照)。
Nonwovens are used, for example, in absorbent articles such as disposable diapers, sanitary napkins, incontinence pads, and panty liners. Since cellulose fibers have excellent hygroscopicity and are renewable fibers derived from plants, nonwoven fabrics containing cellulose fibers are of interest from the perspective of reducing the burden on the natural environment.
Nonwoven fabrics containing cellulose fibers do not sufficiently suppress fluff, so for example, nonwoven fabrics that have undergone hydroentangling, and nonwoven fabrics that have constituent fibers bonded together by heat fusion of heat-fusible fibers are used. There is.
However, the former has a hard texture, and the latter still has a problem in that it does not sufficiently suppress fluff.
Therefore, nonwoven fabrics containing cellulose fibers are not used for applications that come in direct contact with human skin, and are used in absorbent materials such as absorbent articles that do not come into direct contact with human skin, where fuzz control and soft texture are not important. (See Patent Document 1).

特開2002-159533号公報Japanese Patent Application Publication No. 2002-159533

本発明は、不織布の風合いの柔らかさと毛羽の抑制を両立させた、例えば吸収性物品等の人の肌に直接触れる用途に使用できる、セルロース系繊維を含む不織布及びその不織布の製造方法を提供することを目的としてなされたものである。 The present invention provides a nonwoven fabric containing cellulose fibers that can be used for applications that come into direct contact with human skin, such as absorbent articles, which have both a soft texture and suppressed fuzz, and a method for producing the nonwoven fabric. It was done for that purpose.

本発明者等は、セルロース系繊維と接着性繊維の両方を含む不織布について、接着性繊維よって繊維同士が接着した箇所と、繊維同士が交絡した箇所を含み、更に不織布の特定の物性を調整することで、毛羽の抑制と風合いの柔らかさの少なくとも一つを改良することができ、好ましくは両方を改良することができることを見いだして、本発明を完成させるに至った。
更に、本発明者等は、セルロース系繊維と接着性繊維の両方を含む不織布を製造する際に、予め繊維同士を接着させた上で繊維同士を交絡させることにより、風合いの柔らかさと毛羽の抑制を両立させた不織布を得られることを見いだして、本発明を完成させるに至った。
The present inventors have developed a nonwoven fabric containing both cellulose fibers and adhesive fibers, including areas where the fibers are bonded to each other by the adhesive fibers and areas where the fibers are intertwined, and further adjust specific physical properties of the nonwoven fabric. The present inventors have now completed the present invention by discovering that at least one of the suppression of fuzz and the softness of the texture, preferably both, can be improved.
Furthermore, when manufacturing a nonwoven fabric containing both cellulose fibers and adhesive fibers, the present inventors achieved a soft texture and suppressed fuzz by adhering the fibers together in advance and then interlacing the fibers. The present invention was completed by discovering that it is possible to obtain a nonwoven fabric that achieves both of the following.

即ち、本発明は、一の要旨において、
セルロース系繊維と接着性繊維とを含む不織布であって、
前記接着性繊維とセルロース系繊維及び/又は接着性繊維との接着箇所を含み、
前記セルロース系繊維とセルロース系繊維及び/又は接着性繊維との交絡箇所を含み、
前記不織布の接着交点指数Aが1~60個/mmであるか、又は前記不織布の厚さ減少率が30~45%である、不織布を提供する。
本発明の形態の不織布は、例えば、吸収性物品等の人の肌に直接触れる用途に使用することができる。
That is, in one gist of the present invention,
A nonwoven fabric containing cellulose fibers and adhesive fibers,
Including a bonding point between the adhesive fiber and the cellulose fiber and/or the adhesive fiber,
Including an intertwined part of the cellulose fiber with the cellulose fiber and/or the adhesive fiber,
The nonwoven fabric has an adhesive intersection index A of 1 to 60 pieces/mm 2 or a thickness reduction rate of 30 to 45%.
The nonwoven fabric of the present invention can be used, for example, in applications that come into direct contact with human skin, such as absorbent articles.

また、本発明は、別の要旨において、
セルロース系繊維と接着性繊維とを含む不織布の製造方法であって、前記接着性繊維により繊維同士を接着させる接着工程と、前記接着工程の後に繊維同士を交絡させる交絡工程とを含む、不織布の製造方法を提供する。
Moreover, the present invention, in another gist,
A method for producing a nonwoven fabric containing cellulose fibers and adhesive fibers, the method comprising: an adhesion step of adhering fibers to each other using the adhesive fibers; and an entangling step of intertwining the fibers after the adhesion step. A manufacturing method is provided.

本開示の不織布は、上述のような特徴を有するので、毛羽立ちの抑制及び風合いの柔らかさを共に有し、例えば吸収性物品等の人の肌に直接触れる用途に使用することができる。 Since the nonwoven fabric of the present disclosure has the above-mentioned characteristics, it has both suppressed fuzzing and soft texture, and can be used for applications that come into direct contact with human skin, such as absorbent articles, for example.

図1は、実施例31の不織布を縦方向に切断した切断面のSEM画像を示す。倍率は60倍である。FIG. 1 shows a SEM image of a cross section of the nonwoven fabric of Example 31 cut in the longitudinal direction. The magnification is 60x. 図2は、比較例50の不織布を横方向に切断した切断面のSEM画像を示す。倍率は25倍である。FIG. 2 shows a SEM image of a cross section of the nonwoven fabric of Comparative Example 50 cut in the transverse direction. The magnification is 25 times. 図3は、実施例31の不織布を横方向に切断した切断面のSEM画像を示す。倍率は100倍である。FIG. 3 shows a SEM image of a cross section of the nonwoven fabric of Example 31 cut in the transverse direction. The magnification is 100x. 図4は、実施例31の不織布の表面のSEM画像を示す。倍率は100倍である。FIG. 4 shows a SEM image of the surface of the nonwoven fabric of Example 31. The magnification is 100x. 図5は、実施例31の不織布の裏面のSEM画像を示す。倍率は100倍である。FIG. 5 shows a SEM image of the back side of the nonwoven fabric of Example 31. The magnification is 100x.

本発明の形態の不織布は、
セルロース系繊維と接着性繊維とを含む不織布であって、
前記接着性繊維とセルロース系繊維及び/又は接着性繊維との接着箇所を含み、
前記セルロース系繊維とセルロース系繊維及び/又は接着性繊維との交絡箇所を含み、
(i)前記不織布の接着交点指数Aが1~60個/mmであるか、又は
(ii)前記不織布の厚さ減少率が30~45%である、
不織布である。
本発明の形態の不織布は、吸収性物品等の人の肌に直接触れる皮膚接触用製品の用途(例えば、吸収性物品用トップシート及びバックシート、化粧料等の液体を含浸させた液体含浸皮膚被覆材(例えば、フェイスマスク、角質ケアシート、及びデコルテシート等)、温湿布及び冷湿布をはじめとする各種パップ材の基布、対人用拭き取り材(例えば、クレンジングシート、制汗シート、及び除菌シート等)等)に使用することができる。
The nonwoven fabric of the form of the present invention is
A nonwoven fabric containing cellulose fibers and adhesive fibers,
Including a bonding point between the adhesive fiber and the cellulose fiber and/or the adhesive fiber,
Including an intertwined part of the cellulose fiber with the cellulose fiber and/or the adhesive fiber,
(i) the adhesive intersection index A of the nonwoven fabric is 1 to 60 pieces/mm 2 , or (ii) the thickness reduction rate of the nonwoven fabric is 30 to 45%,
It is a non-woven fabric.
The nonwoven fabric of the present invention is suitable for use in skin-contact products such as absorbent articles that come into direct contact with human skin (for example, top sheets and back sheets for absorbent articles, liquid-impregnated skin products impregnated with liquids such as cosmetics, etc.). Covering materials (e.g., face masks, keratin care sheets, decolletage sheets, etc.), base fabrics for various poultices including hot and cold compresses, personal wipes (e.g., cleansing sheets, antiperspirant sheets, and decollete sheets, etc.) It can be used for bacteria sheets, etc.).

(セルロース系繊維)
本発明の形態の不織布において、「セルロース系繊維」とは、繊維素繊維とも呼ばれ、一般的に、セルロースを原料とする繊維をいう。
セルロース系繊維は、例えば、綿(コットン)、麻、亜麻(リネン)、ラミー、ジュート、バナナ、竹、ケナフ、月桃、ヘンプ及びカポック等の植物に由来する天然繊維;ビスコース法で得られるレーヨン及びポリノジックレーヨン、銅アンモニア法で得られるキュプラ、及び溶剤紡糸法で得られるテンセル(登録商標)及びリヨセル(登録商標)等の再生繊維;溶融紡糸法で得られるセルロース繊維;及びアセテート繊維等の半合成繊維を含み、本発明が目的とする不織布を得られる限り、特に制限されることはない。
(cellulose fiber)
In the nonwoven fabric of the present invention, "cellulose fiber" is also called cellulose fiber, and generally refers to fiber made from cellulose.
Cellulosic fibers are natural fibers derived from plants such as cotton, hemp, linen, ramie, jute, banana, bamboo, kenaf, shellfish, hemp, and kapok; obtained by the viscose method. Regenerated fibers such as rayon and polynosic rayon, cupro obtained by the copper ammonia method, and Tencel (registered trademark) and Lyocell (registered trademark) obtained by the solvent spinning method; cellulose fibers obtained by the melt spinning method; and acetate fibers, etc. There is no particular restriction as long as the nonwoven fabric contains semi-synthetic fibers and can obtain the nonwoven fabric targeted by the present invention.

セルロース系繊維の、繊度は、0.6~5.6dtexであることが好ましく、1.0~4.4dtexであることがより好ましく、1.4~3.3dtexであることが更により好ましい。
セルロース系繊維の繊度が、上述の範囲内である場合、繊度が小さすぎないことで不織布の強力がより好適となるため、また繊度が大きすぎないことで不織布の風合いがより好適となるため好ましい。また、セルロース系繊維の繊度が上述の範囲内である場合、繊維の交絡性がより好適となり、不織布の交絡性が低すぎないことで不織布の強力や毛羽がより好適となり、また、不織布の交絡性が高すぎないことで不織布の風合いがより好適となるため好ましい。
The fineness of the cellulose fiber is preferably 0.6 to 5.6 dtex, more preferably 1.0 to 4.4 dtex, and even more preferably 1.4 to 3.3 dtex.
When the fineness of the cellulose fiber is within the above range, it is preferable because the fineness is not too small and the strength of the nonwoven fabric is more suitable, and the fineness is not too large and the texture of the nonwoven fabric is more suitable. . In addition, when the fineness of the cellulose fibers is within the above range, the entangling properties of the fibers are more suitable, and since the entangling properties of the nonwoven fabric are not too low, the strength and fluff of the nonwoven fabric are more suitable, and the entangling properties of the nonwoven fabric are not too low. It is preferable that the texture of the nonwoven fabric is not too high because the texture of the nonwoven fabric is more suitable.

セルロース系繊維の、繊維径は、5~25μmであることが好ましく、8~20μmであることがより好ましく、10~17μmであることが更により好ましい。
セルロース系繊維の繊維径が、上述の範囲内である場合、繊度が小さすぎないことで不織布の強力がより好適となるため、また繊度が大きすぎないことで不織布の風合いがより好適となるため好ましい。また、セルロース系繊維の繊度が上述の範囲内である場合、繊維の交絡性がより好適となり、不織布の交絡性が低すぎないことで不織布の強力や毛羽がより好適となり、また、不織布の交絡性が高すぎないことで不織布の風合いがより好適となるため好ましい。
The fiber diameter of the cellulose fiber is preferably 5 to 25 μm, more preferably 8 to 20 μm, and even more preferably 10 to 17 μm.
When the fiber diameter of the cellulose fiber is within the above-mentioned range, the strength of the nonwoven fabric will be more suitable if the fineness is not too small, and the texture of the nonwoven fabric will be more suitable if the fineness is not too large. preferable. In addition, when the fineness of the cellulose fibers is within the above range, the entangling properties of the fibers are more suitable, and since the entangling properties of the nonwoven fabric are not too low, the strength and fluff of the nonwoven fabric are more suitable, and the entangling properties of the nonwoven fabric are not too low. It is preferable that the texture of the nonwoven fabric is not too high because the texture of the nonwoven fabric is more suitable.

セルロース系繊維の、繊維長は、25~100mmであることが好ましく、30~70mmであることがより好ましく、35~60mmであることが更により好ましい。
セルロース系繊維の繊維長が、上述の範囲内である場合、繊維の交絡性が好適となるので、好ましい。特に本開示の不織布は、一度接着性繊維により構成繊維同士を接着させてから交絡処理を行うことで製造することができるので、繊維長が大きすぎないことで一つの繊維における接着箇所がより適度な数となり、毛羽の抑制を十分に行える程度に繊維がより好適に交絡され得、好ましい。また、繊維長が小さすぎないことで一つの繊維における接着箇所がより適度な数となり、不織布の風合いを十分に柔らかくできる程度に、繊維がより好適に交絡され得、好ましい。
The fiber length of the cellulose fiber is preferably 25 to 100 mm, more preferably 30 to 70 mm, and even more preferably 35 to 60 mm.
It is preferable that the fiber length of the cellulose fibers is within the above-mentioned range because the intertwining properties of the fibers are suitable. In particular, the nonwoven fabric of the present disclosure can be manufactured by once adhering the constituent fibers to each other using adhesive fibers and then performing an interlacing treatment, so that the fiber length is not too large, so that the adhesion location in one fiber is more appropriate. This is preferable because the fibers can be more suitably intertwined to the extent that fuzz can be sufficiently suppressed. In addition, it is preferable that the fiber length is not too small because the number of bonding points in one fiber becomes more appropriate, and the fibers can be intertwined more appropriately to the extent that the texture of the nonwoven fabric can be sufficiently softened.

セルロース系繊維の、繊維の断面(横断面、又は繊維の長さ方向と垂直方向の断面)は、円形であっても非円形であってもよく、非円形の形状として、楕円形、Y形、X形、井形、多葉形、多角形、星形、菊花形等が挙げられる。繊維の断面が円形である場合、接着性繊維と接着する面積が比較的小さいいため、不織布の風合いの柔らかさがより良好になり得る。繊維の断面が非円形である場合、接着性繊維と接着する面積が比較的大きいため、不織布の毛羽立ちの抑制がより良好になり得、又は不織布の強力がより高くなり得る。 The fiber cross section (cross section or cross section perpendicular to the length direction of the fibers) of the cellulose fibers may be circular or non-circular, and examples of non-circular shapes include ellipsoids and Y-shapes. , X-shaped, I-shaped, multilobed, polygonal, star-shaped, chrysanthemum-shaped, etc. When the cross section of the fibers is circular, the area where the fibers adhere to the adhesive fibers is relatively small, so that the softness of the nonwoven fabric can be improved. When the cross-section of the fibers is non-circular, the area of adhesion with the adhesive fibers is relatively large, which may result in better fuzz control of the nonwoven fabric or higher tenacity of the nonwoven fabric.

セルロース系繊維として、再生繊維や半合成繊維などの化学繊維であることが好ましい。化学繊維は、繊度及び/又は繊維径及び繊維長のばらつきをより低減することができ、不織布の交絡度合いをより調整しやすいためより好ましい。またレーヨン及び溶剤紡糸セルロース繊維等は、繊維自体が有する湿潤時の柔らかさや強度のバランスがよく、不織布として好適な風合いの柔らかさ及び強度を得ることがより容易であり好ましい。また溶剤紡糸セルロース繊維は単繊維強力が比較的高いため、不織布の毛羽立ちの抑制や不織布の強力の高さがより良好になる点で好ましい。
セルロース系繊維は、単独で又は組み合わせて使用することができる。
The cellulose-based fibers are preferably chemical fibers such as regenerated fibers and semi-synthetic fibers. Chemical fibers are more preferable because they can further reduce variations in fineness and/or fiber diameter and fiber length, and can more easily adjust the degree of entanglement of the nonwoven fabric. In addition, rayon, solvent-spun cellulose fibers, and the like are preferable because the fibers themselves have a good balance of softness and strength when wet, and it is easier to obtain softness and strength with a suitable texture as a nonwoven fabric. Furthermore, since solvent-spun cellulose fibers have relatively high single fiber tenacity, they are preferable in that they suppress fluffing of the nonwoven fabric and improve the tenacity of the nonwoven fabric.
Cellulosic fibers can be used alone or in combination.

セルロース系繊維は表面処理をして、その表面の親水性又は疎水性の程度を変えてもよい。一般的には、油剤(界面活性剤)を用いて、セルロース系繊維の表面の親水性又は疎水性の程度を変えることができる。その親水性又は疎水性の程度は、例えば、繊維の沈降速度等の値を用いて評価することができる。セルロース系繊維の表面は、親水性でも疎水性でもよい。繊維の沈降速度(又は沈降時間(sec))の値は、例えば、30秒以下であってよく、より好ましくは20秒以下であってよく、さらに好ましくは10秒以下であってよい。セルロース系繊維の沈降速度(又は沈降時間)が小さい場合、セルロース系繊維の交絡性が比較的よくなり、不織布の毛羽立ちの抑制がより良好になり得、又は不織布の強力がより大きくなり得る。 Cellulosic fibers may be surface treated to change the degree of hydrophilicity or hydrophobicity of their surfaces. Generally, the degree of hydrophilicity or hydrophobicity of the surface of cellulose fibers can be changed using an oil agent (surfactant). The degree of hydrophilicity or hydrophobicity can be evaluated using, for example, values such as the sedimentation rate of fibers. The surface of cellulose fibers may be hydrophilic or hydrophobic. The value of the sedimentation velocity (or sedimentation time (sec)) of the fibers may be, for example, 30 seconds or less, more preferably 20 seconds or less, and still more preferably 10 seconds or less. If the settling rate (or settling time) of the cellulosic fibers is small, the entangling properties of the cellulosic fibers will be relatively good, the fluffing control of the nonwoven fabric may be better, or the tenacity of the nonwoven fabric may be greater.

繊維の沈降速度は、下記の方法で測定することができる。
沈降速度を測定する繊維を17g採取する。採取した繊維を(パラレルカード機を用いて)開繊し、カードウェブとする。カードウェブを5g秤量し、銅線(太さ0.55mm)製の籠(直径5cm、高さ8cmの円筒形 籠本体の質量3g)に充填する。
次に、恒温水槽を用意し、恒温水槽内に水道水を入れ、25℃になるよう設定する。水温が25℃になったら、恒温水槽の撹拌を止めて沈降速度の測定を開始する。上記の手順で繊維を充填した籠を水面上1cmの位置から静かに落下させ、水面に籠が落ちると同時にストップウォッチをスタートさせる。徐々に繊維が含水し、高さ8cmの籠が完全に水面下に沈むと同時にストップウォッチを停止させる。籠が水面に落下したときから籠が水面下に沈むまでの時間を沈降速度とし、2回測定した平均値をその繊維の沈降速度とする。
The sedimentation rate of fibers can be measured by the following method.
Collect 17 g of fiber whose sedimentation rate is to be measured. The collected fibers are opened (using a parallel carding machine) to form a carded web. Weigh 5 g of the carded web and fill it into a basket (cylindrical shape with a diameter of 5 cm and a height of 8 cm; the weight of the basket body is 3 g) made of copper wire (thickness: 0.55 mm).
Next, prepare a constant temperature water tank, fill it with tap water, and set it to 25°C. When the water temperature reaches 25°C, stop stirring the constant temperature water bath and start measuring the sedimentation rate. Gently drop the fiber-filled basket using the above procedure from a position of 1 cm above the water surface, and start the stopwatch as soon as the basket falls to the water surface. The fibers gradually become hydrated and the stopwatch is stopped at the same time that the 8cm high basket is completely submerged under the water. The time from when the basket falls to the water surface until the basket sinks below the water surface is defined as the sedimentation velocity, and the average value of the two measurements is defined as the sedimentation velocity of the fiber.

上記沈降速度の測定において、5分以上籠が水面下に沈まない場合、繊維が撥水性であるとする。セルロース系繊維が撥水性である場合、不織布を液体と接触させる用途において好ましい場合がある。例えば、吸収性物品用のトップシート及びセカンドシートにおいて、液体をシート中に保持しすぎずに吸収体に液体を移動させやすいため、セルロース系繊維が撥水性であることが好ましい場合がある。また不織布が積層構造を有する場合、撥水性であるセルロース系繊維を含む層と、撥水性ではないセルロース系繊維を含む層を有する積層不織布を用いると、吸収性物品用シートや化粧料等の液体を含浸させた液体含浸皮膚被覆材の用途において、不織布は液体を好適に移動または保持し得る。 In the above sedimentation rate measurement, if the basket does not sink below the water surface for 5 minutes or more, the fiber is considered to be water repellent. If the cellulosic fiber is water repellent, it may be preferred in applications where the nonwoven fabric is brought into contact with liquid. For example, in top sheets and second sheets for absorbent articles, it is sometimes preferable that the cellulose fibers are water repellent because this makes it easier to transfer liquid to the absorbent body without retaining too much liquid in the sheet. In addition, when a nonwoven fabric has a laminated structure, if a laminated nonwoven fabric that has a layer containing water-repellent cellulose fibers and a layer containing cellulose fibers that are not water-repellent is used, it is difficult to absorb liquids such as sheets for absorbent articles or cosmetics. In liquid-impregnated skin dressing applications, the nonwoven fabric may suitably transport or retain liquid.

(接着性繊維)
本発明の形態の不織布において、「接着性繊維」とは、接着処理(例えば、熱接着処理、電子線照射、および超音波溶着(超音波ウェルダー)等)により接着性を示し、繊維同士を接着させて、接着箇所を形成することができる繊維をいい、本開示が目的とする不織布を得られる限り、特に制限されることはない。
(Adhesive fiber)
In the nonwoven fabric of the present invention, "adhesive fibers" exhibit adhesive properties by adhesion treatment (e.g., thermal adhesion treatment, electron beam irradiation, ultrasonic welding, etc.) and bond fibers together. It refers to fibers that can be used to form adhesion points, and is not particularly limited as long as the nonwoven fabric targeted by the present disclosure can be obtained.

接着性繊維は、例えば、熱可塑性樹脂からなる合成繊維を含む。
熱可塑性樹脂は、本発明が目的とする不織布を得られる限り特に限定されず、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート、ポリ乳酸、ポリブチレンサクシネートおよびその共重合体等のポリエステル系樹脂;ポリプロピレン、ポリエチレン(高密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン等を含む)、ポリブテン-1、プロピレンを主たる成分とするプロピレン共重合体(プロピレン-エチレン共重合体、プロピレン-ブテン-1-エチレン共重合体を含む)、エチレン-アクリル酸共重合体、およびエチレン-酢酸ビニル共重合体等のポリオレフィン系樹脂;ナイロン6、ナイロン12およびナイロン66等のポリアミド系樹脂;アクリル系樹脂;ポリカーボネート、ポリアセタール、ポリスチレン、環状ポリオレフィン等のエンジニアリングプラスチック、並びにそれらのエラストマー等を例示でき、これらから任意に選択することができる。
The adhesive fibers include, for example, synthetic fibers made of thermoplastic resin.
The thermoplastic resin is not particularly limited as long as the nonwoven fabric targeted by the present invention can be obtained, and examples thereof include polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, polylactic acid, polybutylene succinate, and copolymers thereof. Polyester resins such as polymers; polypropylene, polyethylene (including high-density polyethylene, low-density polyethylene, linear low-density polyethylene, etc.), polybutene-1, propylene copolymer whose main component is propylene (propylene-ethylene copolymer) Polyolefin resins such as polymers, propylene-butene-1-ethylene copolymers), ethylene-acrylic acid copolymers, and ethylene-vinyl acetate copolymers; polyamides such as nylon 6, nylon 12, and nylon 66 Resin; Acrylic resin; Engineering plastics such as polycarbonate, polyacetal, polystyrene, and cyclic polyolefin, and their elastomers can be exemplified, and any material can be selected from these.

接着性繊維の接着成分は、オレフィンと、不飽和カルボン酸またはその誘導体との共重合体であることが、セルロース系繊維との接着性が良好になるという観点で好ましい。不飽和カルボン酸として、マレイン酸、アクリル酸、メタクリル酸、フマル酸、イタコン酸等が挙げられ、またその誘導体として、不飽和カルボン酸の無水物、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸2-ヒドロキシエチル、メタクリル酸ジメチルアミノエチル等のメタクリル酸エステル類、または同様なアクリル酸エステル等、グリシジルアクリレート、グリシジルメタクリレート、ブテンカルボン酸エステル類、アリルグリシジルエーテル、3,4-エポキシブテン、5,6-エポキシ-1-ヘキセン、ビニルシクロヘキセンモノオキシド等が挙げられる。特にオレフィンがエチレンであり、不飽和カルボン酸またはその誘導体がアクリル酸であるエチレン-アクリル酸共重合体であることが好ましい。 The adhesive component of the adhesive fiber is preferably a copolymer of an olefin and an unsaturated carboxylic acid or a derivative thereof from the viewpoint of good adhesion to the cellulose fiber. Examples of unsaturated carboxylic acids include maleic acid, acrylic acid, methacrylic acid, fumaric acid, and itaconic acid. Examples of derivatives thereof include anhydrides of unsaturated carboxylic acids, methyl methacrylate, ethyl methacrylate, and 2-methacrylic acid. Methacrylic esters such as hydroxyethyl, dimethylaminoethyl methacrylate, or similar acrylic esters, glycidyl acrylate, glycidyl methacrylate, butene carboxylic esters, allyl glycidyl ether, 3,4-epoxybutene, 5,6- Examples include epoxy-1-hexene and vinylcyclohexene monoxide. Particularly preferred is an ethylene-acrylic acid copolymer in which the olefin is ethylene and the unsaturated carboxylic acid or its derivative is acrylic acid.

合成繊維は、上記から選択される一または複数の熱可塑性樹脂から成る単一繊維であってよく、あるいは二以上の成分(「セクション」ともいえる)からなる複合繊維であってよい。複合繊維において、各成分は、一つの熱可塑性樹脂からなっていてよく、あるいは二以上の熱可塑性樹脂が混合されたものであってよい。複合繊維は、例えば、芯鞘型複合繊維、海島型複合繊維、またはサイドバイサイド型複合繊維であってよい。芯鞘型複合繊維は、繊維断面において芯成分の中心と鞘成分の中心が一致しない偏心芯鞘型複合繊維であってよく、繊維断面において芯成分の中心と鞘成分の中心が一致する同心芯鞘型複合繊維であってよい。 The synthetic fiber may be a single fiber made of one or more thermoplastic resins selected from the above, or may be a composite fiber made of two or more components (also referred to as "sections"). In the composite fiber, each component may be made of one thermoplastic resin, or may be a mixture of two or more thermoplastic resins. The composite fiber may be, for example, a core-sheath type composite fiber, an island-in-the-sea type composite fiber, or a side-by-side type composite fiber. The core-sheath type composite fiber may be an eccentric core-sheath type composite fiber in which the center of the core component and the center of the sheath component do not coincide in the fiber cross section, and may be an eccentric core-sheath type composite fiber in which the center of the core component and the center of the sheath component coincide in the fiber cross section. It may be a sheath type composite fiber.

単一繊維であるか複合繊維であるかにかかわらず、合成繊維は異型断面を有していてよい。芯鞘型複合繊維および海島型複合繊維の場合、その繊維断面において、芯成分および/または島成分は異型断面を有していてよい。
合成繊維が異型断面を有する場合、その断面は、楕円形、多角形、星形、または複数の凸部が基部で接合した形状(例えば、クローバー形状)であってよい。
本実施形態においては、合成繊維として、二以上の合成繊維を組み合わせて用いてもよい。
Synthetic fibers, whether monofilament or composite fibers, may have irregular cross-sections. In the case of a core-sheath type conjugate fiber and a sea-island type conjugate fiber, the core component and/or the island component may have an irregular cross section in the fiber cross section.
When the synthetic fiber has an irregular cross section, the cross section may be an ellipse, a polygon, a star, or a shape in which a plurality of convex portions are joined at the base (for example, a clover shape).
In this embodiment, two or more synthetic fibers may be used in combination as the synthetic fibers.

合成繊維が、複合繊維である場合、融点のより低い熱可塑性樹脂が繊維表面の一部を構成するように、二以上の成分を配置してよい。低融点の熱可塑性樹脂(低融点成分)は不織布を生産する工程で熱が加わったときに溶融または軟化して、接着成分となる。低融点成分は、繊維同士の接着または他の部材への接着に寄与し、接着箇所を形成し得る。
合成繊維が、複合繊維である場合、低融点成分が、繊維断面において、繊維の周面の長さに対して50%以上の長さで露出していることが好ましく、60%以上の長さで露出していることがより好ましく、80%以上の長さで露出していることがさらに好ましく、繊維の周面全体にわたって露出していることが特に好ましい。
When the synthetic fiber is a composite fiber, two or more components may be arranged so that a thermoplastic resin with a lower melting point forms part of the fiber surface. A thermoplastic resin with a low melting point (low melting point component) melts or softens when heat is applied in the process of producing a nonwoven fabric, and becomes an adhesive component. The low melting point component can contribute to adhesion of fibers to each other or to other members, and can form bonding points.
When the synthetic fiber is a composite fiber, it is preferable that the low melting point component is exposed in the cross section of the fiber over a length of 50% or more of the length of the peripheral surface of the fiber, and a length of 60% or more of the length of the peripheral surface of the fiber. It is more preferable that the length of the fiber is exposed, more preferably that 80% or more of the length is exposed, and it is particularly preferable that the entire circumferential surface of the fiber is exposed.

本発明の形態の不織布は、予め繊維同士を接着させた後、繊維同士を交絡させることで製造することができる。従って、接着性繊維の低融点成分が繊維断面において繊維周面に露出している部分が少なすぎないことで接着可能となる領域がより適度に存在し、繊維同士の接着箇所の数がより適度となり、繊維同士の接着箇所の接着強力がより適度となり、接着性繊維による接着をより十分にし得る。そのため不織布の毛羽の抑制及び不織布の強力をより好適なものとし得る。さらに、その後の交絡において、繊維同士の接着が解消される程度がより適度となり、より不織布の毛羽の抑制及び不織布の強力をより十分にし得る。特に本実施形態の不織布はセルロース系繊維を含み、セルロース系繊維と接着性繊維との接着性は高くなく、繊維同士の接着箇所の解消がより促進されるため、不織布の毛羽及び強力に対してより影響が大きくなり得る。 The nonwoven fabric according to the present invention can be produced by adhering fibers together in advance and then entangling the fibers with each other. Therefore, the area where the low melting point component of the adhesive fiber is exposed on the fiber peripheral surface in the fiber cross section is not too small, so there is a more appropriate area where bonding is possible, and the number of bonding points between fibers is more appropriate. Therefore, the adhesion strength at the adhesion point between the fibers becomes more appropriate, and the adhesion by the adhesive fibers can be made more sufficient. Therefore, the prevention of fuzz of the nonwoven fabric and the strength of the nonwoven fabric can be made more suitable. Furthermore, in the subsequent entanglement, the degree to which the adhesion between the fibers is resolved becomes more appropriate, and the fluffing of the nonwoven fabric can be suppressed and the strength of the nonwoven fabric can be made more sufficient. In particular, the nonwoven fabric of this embodiment contains cellulose fibers, and the adhesiveness between the cellulose fibers and the adhesive fibers is not high, and the elimination of adhesion points between the fibers is further promoted, so that the nonwoven fabric is less fluffy and strong. The impact could be even greater.

複合繊維を構成する熱可塑性樹脂の組み合わせは、例えば、ポリエチレン/ポリエチレンテレフタレート、ポリプロピレン/ポリエチレンテレフタレート、およびプロピレン共重合体/ポリエチレンテレフタレート等のポリオレフィン系樹脂とポリエステル系樹脂との組み合わせ(ポリオレフィン系樹脂/ポリエステル系樹脂)、ならびにポリエチレン/ポリプロピレン、プロピレン共重合体/ポリプロピレン、エチレン-アクリル酸共重合体/ポリプロピレン等の二種類のポリオレフィン系樹脂の組み合わせ(ポリオレフィン系樹脂/ポリオレフィン系樹脂)、および融点の異なる二種類のポリエステル系樹脂の組み合わせ(ポリエステル系樹脂/ポリエステル系樹脂)を含む。 Combinations of thermoplastic resins constituting composite fibers include, for example, combinations of polyolefin resins and polyester resins such as polyethylene/polyethylene terephthalate, polypropylene/polyethylene terephthalate, and propylene copolymer/polyethylene terephthalate (polyolefin resin/polyester resin). combinations of two types of polyolefin resins (polyolefin resins/polyolefin resins) such as polyethylene/polypropylene, propylene copolymer/polypropylene, ethylene-acrylic acid copolymer/polypropylene, and two types of polyolefin resins with different melting points. Contains combinations of different types of polyester resins (polyester resin/polyester resin).

なお、単一繊維または複合繊維の構成成分として例示した熱可塑性樹脂は、具体的に示された熱可塑性樹脂を50質量%以上含む限りにおいて他の成分を含んでよい。例えば、ポリエチレン/ポリエチレンテレフタレートの組み合わせにおいて、「ポリエチレン」はポリエチレンを50質量%以上含んでいれば、他の熱可塑性樹脂および添加剤等を含んでいてよい。このことは以下の例示においてもあてはまる。 Note that the thermoplastic resin illustrated as a component of the single fiber or composite fiber may contain other components as long as it contains 50% by mass or more of the specifically indicated thermoplastic resin. For example, in the combination of polyethylene/polyethylene terephthalate, "polyethylene" may contain other thermoplastic resins, additives, etc. as long as it contains 50% by mass or more of polyethylene. This also applies to the following examples.

接着性繊維が、融点のより低い熱可塑性樹脂が鞘部を構成する芯鞘型複合繊維である場合、芯/鞘の組み合わせは、例えば、ポリエチレンテレフタレート/ポリエチレン、ポリエチレンテレフタレート/ポリプロピレン、ポリエチレンテレフタレート/プロピレン共重合体、ポリトリメチレンテレフタレート/ポリエチレン、ポリブチレンテレフタレート/ポリエチレン、ポリエチレンテレフタレート/共重合ポリエステル(例えば、イソフタル酸を共重合したポリエチレンテレフタレート)、ポリプロピレン/エチレン-アクリル酸共重合体を含む。鞘がポリエチレン(例えば、高密度ポリエチレン、低密度ポリエチレン、もしくは直鎖状低密度ポリエチレン)または共重合ポリエステルである芯鞘型複合繊維は、前記鞘を構成する熱可塑性樹脂の融点以上の温度で熱処理することで鞘が溶融又は軟化して、繊維同士を接着して、接着箇所を形成する性質を有する。 When the adhesive fiber is a core-sheath composite fiber in which the sheath is made of a thermoplastic resin with a lower melting point, the core/sheath combination may be, for example, polyethylene terephthalate/polyethylene, polyethylene terephthalate/polypropylene, polyethylene terephthalate/propylene. Copolymers, polytrimethylene terephthalate/polyethylene, polybutylene terephthalate/polyethylene, polyethylene terephthalate/copolyester (for example, polyethylene terephthalate copolymerized with isophthalic acid), and polypropylene/ethylene-acrylic acid copolymers. A core-sheath composite fiber whose sheath is made of polyethylene (e.g., high-density polyethylene, low-density polyethylene, or linear low-density polyethylene) or copolymer polyester is heat-treated at a temperature higher than the melting point of the thermoplastic resin constituting the sheath. By doing so, the sheath melts or softens, and has the property of adhering the fibers to each other to form a bonding point.

接着性繊維が芯鞘型複合繊維である場合、芯と鞘の複合比(体積比、芯/鞘)は、例えば80/20~20/80であってよく、特に60/40~40/60であってよい。
鞘の割合が少なすぎないことで、繊維同士の接着がより十分となり、毛羽の抑制がより好適となる、または不織布の強力がより好適となり得る。また、交絡時の接着箇所の剥離がより適度となり、さらに毛羽の抑制がより好適となる、または不織布の強力がより好適となり得る。鞘の割合が多すぎないことで、繊維形状を保つ芯成分の割合がより十分となって、不織布の強力がより好適となり得る。
When the adhesive fiber is a core-sheath composite fiber, the core-sheath composite ratio (volume ratio, core/sheath) may be, for example, 80/20 to 20/80, particularly 60/40 to 40/60. It may be.
If the proportion of the sheath is not too small, the adhesion between the fibers will be more sufficient, and the suppression of fuzz may be more suitable, or the strength of the nonwoven fabric may be more suitable. In addition, the peeling of the bonded area during intertwining becomes more appropriate, and furthermore, the suppression of fluffing becomes more suitable, or the strength of the nonwoven fabric becomes more suitable. When the proportion of the sheath is not too large, the proportion of the core component that maintains the fiber shape becomes more sufficient, and the strength of the nonwoven fabric can be made more suitable.

接着性繊維は、二以上の繊維を含み、それらの繊維の接着成分の融点が相互に異なってよい。例えば接着性繊維が2つの繊維を含み、それら繊維の接着成分の融点の差が10℃以上40℃以下であってよく、、さらには15℃以上30℃以下であってよい。 The adhesive fiber includes two or more fibers, and the adhesive components of the fibers may have different melting points. For example, the adhesive fiber may include two fibers, and the difference in melting point of the adhesive components of these fibers may be 10°C or more and 40°C or less, and further may be 15°C or more and 30°C or less.

接着性繊維の繊度は、1.0~7.8dtexであることが好ましく、1.4~6.7dtexであることがより好ましく、2.2~4.5dtexであることが更により好ましい。
接着性繊維の繊度が、上述の範囲内である場合、不織布の強力がより向上し、かつ不織布の風合いがより柔らかくなり好ましい。
The fineness of the adhesive fiber is preferably 1.0 to 7.8 dtex, more preferably 1.4 to 6.7 dtex, and even more preferably 2.2 to 4.5 dtex.
When the fineness of the adhesive fiber is within the above range, the strength of the nonwoven fabric is further improved and the texture of the nonwoven fabric is softer, which is preferable.

接着性繊維の繊維径は、10~33μmであることが好ましく、12~30μmであることがより好ましく、15~25μmであることが更により好ましい。
接着性繊維の繊維径が、上述の範囲内である場合、不織布の強力がより向上し、かつ不織布の風合いより柔らかくなり好ましい。
The fiber diameter of the adhesive fiber is preferably 10 to 33 μm, more preferably 12 to 30 μm, and even more preferably 15 to 25 μm.
When the fiber diameter of the adhesive fiber is within the above range, the strength of the nonwoven fabric is further improved and the texture is softer than that of a nonwoven fabric, which is preferable.

接着性繊維の、繊維長は、25~100mmであることが好ましく、30~70mmであることがより好ましく、35~60mmであることが更により好ましい。
接着性繊維の繊維長が、上述の範囲内である場合、繊維の交絡性がより好適となるので、好ましい。特に本開示の不織布は、一度接着性繊維により構成繊維同士を接着させた後、交絡処理を行うことで製造することができる。従って、繊維長が大きすぎないことで一つの繊維における接着箇所がより適度な数となり、毛羽のより十分に抑制できる程度に繊維の交絡性をより好適にし得る。また繊維長が小さすぎないことで一つの繊維における接着箇所がより適度な数となり、不織布の風合いをより十分に柔らかくできる程度に繊維の交絡性をより好適なものとし得る。
The fiber length of the adhesive fiber is preferably 25 to 100 mm, more preferably 30 to 70 mm, and even more preferably 35 to 60 mm.
It is preferable that the fiber length of the adhesive fiber is within the above-mentioned range because the intertwining properties of the fibers become more suitable. In particular, the nonwoven fabric of the present disclosure can be manufactured by once adhering constituent fibers to each other using adhesive fibers and then performing an interlacing treatment. Therefore, since the fiber length is not too large, the number of adhesion points in one fiber becomes more appropriate, and the intertwining properties of the fibers can be made more suitable to the extent that fuzz can be more fully suppressed. Furthermore, since the fiber length is not too short, the number of adhesion points in one fiber becomes more appropriate, and the intertwining properties of the fibers can be made more suitable to the extent that the texture of the nonwoven fabric can be made more sufficiently soft.

接着性繊維は立体捲縮を有することが好ましい。本明細書で、「立体捲縮」という用語は、捲縮の山(または山頂部)が鋭角である機械捲縮と区別されるために用いられる。立体捲縮は、例えば、山部が湾曲した捲縮(波形状捲縮)、山部が螺旋状に湾曲した捲縮(螺旋状捲縮)、波形状捲縮と螺旋状捲縮とが混在した捲縮、機械捲縮の鋭角の捲縮と波形状捲縮および螺旋状捲縮の少なくとも一つとが混在した捲縮をいう。接着性繊維は機械捲縮を有してもよい。
接着性繊維が複合繊維である場合、顕在捲縮性複合繊維でもよい。「顕在捲縮性複合繊維」とは、繊維の段階で立体捲縮を発現している繊維を指す。顕在捲縮性複合繊維は、繊維の収縮を伴う熱処理により立体捲縮を発現する潜在捲縮性複合繊維とは異なる。
Preferably, the adhesive fiber has three-dimensional crimp. The term "three-dimensional crimp" is used herein to distinguish from mechanical crimp, where the crests (or crests) of the crimp are at acute angles. Three-dimensional crimp includes, for example, crimp with curved peaks (wave-shaped crimp), crimp with spirally curved peaks (spiral crimp), and a mixture of wave-shaped crimp and spiral crimp. This refers to crimps that are a mixture of sharp crimps, mechanical crimps, and at least one of wave-shaped crimps and spiral crimps. The adhesive fibers may have mechanical crimps.
When the adhesive fiber is a conjugate fiber, it may be an overtly crimpable conjugate fiber. "Expected crimp composite fiber" refers to a fiber that exhibits three-dimensional crimp at the fiber stage. The actual crimpable composite fiber is different from the latent crimpable composite fiber, which develops three-dimensional crimp through heat treatment accompanied by fiber contraction.

接着性繊維が偏心芯鞘型複合繊維である場合、偏心率は5~50%であることが好ましく、7~30%であることがより好ましい。ここでいう偏心率とは、次式で定義される。
(式)偏心率(%)=(単繊維の中心と芯成分の中心との間の距離)×100/(単繊維半径)
接着性繊維が、立体捲縮を有する場合、後述する不織布の接着交点指数A、不織布の厚さ減少率、不織布の単位厚さ当たりの剛軟度、不織布の厚さ比、不織布の厚さ方向において3等分したときの真ん中における繊維接着点の角度などについて、特定の範囲内の値を示す不織布を、より容易に得ることができ、より好ましい。
接着性繊維は、単独で又は組み合わせて使用することができる。
When the adhesive fiber is an eccentric core-sheath type composite fiber, the eccentricity is preferably 5 to 50%, more preferably 7 to 30%. The eccentricity here is defined by the following equation.
(Formula) Eccentricity (%) = (distance between the center of the single fiber and the center of the core component) x 100/(radius of the single fiber)
When the adhesive fiber has three-dimensional crimp, the adhesive intersection index A of the nonwoven fabric, the thickness reduction rate of the nonwoven fabric, the bending resistance per unit thickness of the nonwoven fabric, the thickness ratio of the nonwoven fabric, the thickness direction of the nonwoven fabric, which will be described later. A nonwoven fabric exhibiting a value within a specific range with respect to the angle of the fiber bonding point in the middle when divided into three equal parts can be more easily obtained, which is more preferable.
Adhesive fibers can be used alone or in combination.

本発明の形態の不織布は、セルロース系繊維と接着性繊維との混率(セルロース系繊維:接着性繊維)(質量比)は、10:90~90:10であることが好ましく、25:75~75:25であることがより好ましく、35:65~65:35であることが更により好ましい。
セルロース系繊維と接着性繊維との混率(セルロース系繊維:接着性繊維)(質量比)が、上記の範囲内である場合、不織布の風合いの柔らかさと毛羽の抑制の両方ともより向上し得、好ましい。
また、セルロース系繊維が適度に含まれると、セルロース系繊維による効果をより容易に得ることができる。
また、セルロース系繊維が適度に含まれると、繊維同士の交絡をより容易に行うことができ、後述する不織布の接着交点指数A、不織布の厚さ減少率、不織布の単位厚さ当たりの剛軟度、不織布の厚さ比、不織布の厚さ方向において3等分したときの真ん中における繊維接着点の角度などについて、特定の範囲の値を示す不織布を、より容易に得ることができ、好ましい。
また、接着性繊維が適度に含まれると、不織布の毛羽の抑制及び不織布の風合いの柔らかさが共により向上し好ましい。
本発明の形態の不織布は、接着性繊維が35質量%以上であると、不織布製造における搬送等において、不織布または中間体の繊維ウェブが破断されること、必要以上に伸長されること、等を防止しやすくなるため好ましい。
In the nonwoven fabric of the present invention, the blend ratio of cellulose fibers and adhesive fibers (cellulose fibers: adhesive fibers) (mass ratio) is preferably 10:90 to 90:10, and preferably 25:75 to 25:75. The ratio is more preferably 75:25, and even more preferably 35:65 to 65:35.
When the blend ratio of cellulose fibers and adhesive fibers (cellulose fibers: adhesive fibers) (mass ratio) is within the above range, both the softness of the texture and the suppression of fuzz of the nonwoven fabric can be further improved, preferable.
Furthermore, when cellulose fibers are included in an appropriate amount, the effects of cellulose fibers can be more easily obtained.
In addition, when a suitable amount of cellulose fibers are included, the fibers can be entangled with each other more easily. It is preferable because it is possible to more easily obtain a nonwoven fabric exhibiting values in a specific range with respect to the thickness ratio of the nonwoven fabric, the angle of the fiber adhesion point in the middle when the nonwoven fabric is divided into three equal parts in the thickness direction.
In addition, it is preferable that adhesive fibers are contained in an appropriate amount, since both the suppression of fuzz of the nonwoven fabric and the softness of the texture of the nonwoven fabric are further improved.
In the nonwoven fabric of the present invention, if the adhesive fiber content is 35% by mass or more, the nonwoven fabric or the intermediate fiber web may be broken or stretched more than necessary during transportation during nonwoven fabric production. This is preferable because it can be easily prevented.

本実施形態の不織布には、セルロース系繊維および接着性繊維以外の繊維(以下、「他の繊維」)が含まれていてよい。他の繊維は、例えば、セルロース系繊維でない天然繊維(例えば羊毛、シルク等)、接着性繊維ではない合成繊維(例えば、接着性繊維の接着成分を溶融させるときに溶融または軟化せず、接着性を示さない合成繊維等)であり、本発明が目的とする不織布を得られる限り、特に制限されることはない。
他の繊維は、35質量%以下の割合で含まれてよく、特に25質量%以下、より特には10質量%以下の割合で含まれてよく、本発明が目的とする不織布を得られる限り、特に制限されることはない。本実施形態の不織布は、他の繊維は含まれない不織布、即ち、セルロース系繊維と接着性繊維とからなる不織布であってよい。
The nonwoven fabric of this embodiment may contain fibers other than cellulose fibers and adhesive fibers (hereinafter referred to as "other fibers"). Other fibers include, for example, natural fibers that are not cellulose fibers (e.g., wool, silk, etc.), synthetic fibers that are not adhesive fibers (e.g., do not melt or soften when the adhesive component of adhesive fibers is melted, and have adhesive properties. (synthetic fibers, etc. that do not exhibit the above), and there are no particular restrictions as long as the nonwoven fabric aimed at by the present invention can be obtained.
Other fibers may be contained in a proportion of 35% by mass or less, particularly 25% by mass or less, more particularly 10% by mass or less, as long as the nonwoven fabric targeted by the present invention can be obtained. There are no particular restrictions. The nonwoven fabric of this embodiment may be a nonwoven fabric that does not contain other fibers, that is, a nonwoven fabric that is made of cellulose fibers and adhesive fibers.

本実施形態の不織布において、繊維同士は接着性繊維により接着されている。即ち、本発明の形態の不織布は、接着箇所を含む。これにより、不織布の強度および毛羽の抑制が両方とも確保されて、取扱い性が向上する。接着性繊維による接着は、接着性繊維の一部が、溶融もしくは軟化して、または変質して接着性を示し、それと交差または接触する繊維を固定することにより達成され得る。繊維同士の接着は、具体的には、接着性繊維と接着性繊維との接着、接着性繊維とセルロース系繊維との接着のことをいい、他の繊維がさらに含まれる場合には、加えて接着性繊維と他の繊維との接着のことをいう。接着は、熱を加えて接着性繊維の一部を溶融または軟化させる熱接着によるものであってよく、あるいは、電子線等の照射または超音波溶着によるものであってよい。 In the nonwoven fabric of this embodiment, the fibers are bonded to each other by adhesive fibers. That is, the nonwoven fabric according to the embodiment of the present invention includes an adhesive portion. This ensures both the strength of the nonwoven fabric and the suppression of fluff, and improves the ease of handling. Adhesion by adhesive fibers can be achieved by a portion of the adhesive fibers melting, softening, or changing to exhibit adhesive properties and fixing fibers that intersect with or contact with the adhesive fibers. Specifically, adhesion between fibers refers to adhesion between adhesive fibers and adhesion between adhesive fibers and cellulose fibers, and when other fibers are further included. Adhesive refers to the adhesion between fibers and other fibers. The adhesion may be by thermal adhesion in which heat is applied to melt or soften some of the adhesive fibers, or by irradiation with electron beams or the like or ultrasonic welding.

本実施形態の不織布において、繊維同士は交絡されている。即ち、本発明の形態の不織布は、交絡箇所を含む。これにより、不織布の強度および毛羽の抑制が両方とも確保されて、取扱い性が向上する。繊維同士の交絡は、不織布を物質の流れに付すなどして、繊維同士を絡ませることにより達成され得る。繊維同士の交絡とは、具体的には、接着性繊維と接着性繊維との交絡、接着性繊維とセルロース系繊維との交絡、セルロース系繊維とセルロース系繊維との交絡をいい、他の繊維がさらに含まれる場合には、加えて接着性繊維と他の繊維との交絡、セルロース系繊維と他の繊維との交絡、他の繊維と他の繊維との交絡をいう。交絡は、ニードルパンチ法によるものでも流体流によるものでもよく、流体流としては、水流、気流、水蒸気流などによるものでもよい。本実施形態の不織布においては、セルロース系繊維を交絡させるために水流又は水蒸気流によるものが好ましい。 In the nonwoven fabric of this embodiment, the fibers are entangled with each other. That is, the nonwoven fabric according to the embodiment of the present invention includes intertwined portions. This ensures both the strength of the nonwoven fabric and the suppression of fluff, and improves the ease of handling. Entanglement of fibers can be achieved by subjecting the nonwoven fabric to a flow of material to cause the fibers to become entangled with each other. Specifically, the entanglement of fibers refers to the entanglement of adhesive fibers with adhesive fibers, the entanglement of adhesive fibers with cellulose fibers, the entanglement of cellulose fibers with cellulose fibers, and the entanglement of other fibers. If it further includes, it also refers to the entanglement of adhesive fibers and other fibers, the entanglement of cellulose fibers and other fibers, and the entanglement of other fibers and other fibers. The entanglement may be performed by a needle punch method or by a fluid stream, and the fluid stream may be a water stream, an air stream, a water vapor stream, or the like. In the nonwoven fabric of this embodiment, it is preferable to use water or steam flow to entangle the cellulose fibers.

本実施形態の不織布は、10~150g/mの目付を有することが好ましく、15~80g/mの目付を有することがより好ましく、20~60g/mの目付を有することが更により好ましく、25~50g/mの目付を有することが特に好ましい。目付が小さすぎないことで、不織布の風合いの柔らかさ及び毛羽の抑制の両方ともより向上し好ましい。また目付が小さすぎないことで、不織布全体で交絡がより適度に進行し、後述する不織布の接着交点指数A、不織布の厚さ減少率、不織布の単位厚さ当たりの剛軟度、不織布の厚さ比、不織布の厚さ方向において3等分したときの真ん中における繊維接着点の角度などについて、特定の範囲の値を示す不織布をより容易に得ることができる。目付が大きすぎないことで、不織布の強力及び毛羽の抑制がより向上し得る。 The nonwoven fabric of this embodiment preferably has a basis weight of 10 to 150 g/m 2 , more preferably 15 to 80 g/m 2 , even more preferably 20 to 60 g/m 2 Preferably, it is particularly preferable to have a basis weight of 25 to 50 g/m 2 . It is preferable that the basis weight is not too small because both the softness of the texture of the nonwoven fabric and the suppression of fuzz are further improved. In addition, since the basis weight is not too small, entanglement progresses more moderately throughout the nonwoven fabric, and the adhesive intersection index A of the nonwoven fabric, the thickness reduction rate of the nonwoven fabric, the bending resistance per unit thickness of the nonwoven fabric, and the thickness of the nonwoven fabric will be described later. It is possible to more easily obtain a nonwoven fabric that exhibits values within a specific range with respect to the fiber bonding point angle in the middle when the nonwoven fabric is divided into three equal parts in the thickness direction. If the basis weight is not too large, the strength of the nonwoven fabric and the suppression of fuzz can be further improved.

本実施形態の不織布は全体として、乾燥時において、例えば、0.0100~0.100g/cmの繊維密度を有してよく、0.0125~0.0600g/cmの繊維密度を有することが好ましく、0.0180~0.0400g/cmの繊維密度を有することがより好ましい。不織布全体の繊維密度は、目付と厚さ(40Paの荷重を加えて測定される厚さ)から求めることができる。 The nonwoven fabric of this embodiment as a whole may have a fiber density of, for example, 0.0100 to 0.100 g/cm 3 and may have a fiber density of 0.0125 to 0.0600 g/cm 3 when dry. is preferred, and more preferably has a fiber density of 0.0180 to 0.0400 g/cm 3 . The fiber density of the entire nonwoven fabric can be determined from the basis weight and thickness (thickness measured by applying a load of 40 Pa).

本実施形態の不織布は、その厚さ方向に沿って切断した断面を観察したときに、少なくとも一方の面(即ち、表面又は裏面)の繊維密度が内部の繊維密度より、高いことが好ましい。本実施形態において、表面と裏面の両方共において繊維密度が、内部の繊維密度より高いことがより好ましい。少なくとも一方の表面の繊維密度が、内部の繊維密度より高い場合、不織布の風合いの柔らかさと毛羽の抑制の両方ともより向上し得るので、より好ましい。不織布の内部の繊維密度と表面の繊維密度に差があるか否かは、不織布を厚さ方向に沿って切断した断面を、電子顕微鏡(倍率50倍程度)で観察することにより調べることができる。より具体的には、電子顕微鏡で観察したときに、繊維がより密に集合している部分は繊維密度がより高い領域であり、繊維がより疎らに集合している部分は繊維密度がより低い領域であるといえる。 In the nonwoven fabric of this embodiment, when a cross section cut along the thickness direction is observed, it is preferable that the fiber density on at least one surface (i.e., the front surface or the back surface) is higher than the fiber density inside. In this embodiment, it is more preferable that the fiber density on both the front and back surfaces is higher than the fiber density inside. It is more preferable that the fiber density on at least one surface is higher than the fiber density on the inside because both the softness of the texture of the nonwoven fabric and the suppression of fuzz can be further improved. Whether there is a difference between the fiber density inside the nonwoven fabric and the fiber density on the surface can be determined by observing a cross section of the nonwoven fabric cut along its thickness using an electron microscope (at a magnification of about 50x). . More specifically, when observed with an electron microscope, areas where fibers are more densely assembled are areas with higher fiber density, and areas where fibers are more sparsely aggregated are areas where fiber density is lower. It can be said that it is a field.

繊維密度の高低は、例えば、不織布の厚さ方向に沿って切断した断面において、電子顕微鏡(倍率50倍程度)で一定面積あたりの切断されている繊維の断面数を数えることにより確認できる。より具体的には、不織布の断面を厚さ方向に沿って五等分したときの上側および下側の五分の一の部分を「不織布の表面」(それぞれ「上側表面」(上面)および「下側表面」(下面))とし、不織布の断面を厚さ方向に沿って五等分したときの上側の五分の一の部分および下側の五分の一を除いた五分の三の部分を「不織布の内部」としたときに、不織布の内部における繊維の断面数に対する不織布の表面における繊維の断面数の比が1.05以上であると、不織布表面において繊維密度が内部よりも高いとみなすことができる。 The level of fiber density can be confirmed, for example, by counting the number of cross sections of cut fibers per certain area using an electron microscope (magnification of about 50 times) in a cross section cut along the thickness direction of the nonwoven fabric. More specifically, when the cross section of the nonwoven fabric is divided into five equal parts along the thickness direction, the upper and lower fifths are referred to as the "surface of the nonwoven fabric" (the "upper surface" (upper surface) and the "upper surface", respectively). "Lower surface" (lower surface)), and when the cross section of the nonwoven fabric is divided into five equal parts along the thickness direction, the upper one-fifth part and the lower one-fifth part are excluded. If the ratio of the number of cross sections of fibers on the surface of the nonwoven fabric to the number of cross sections of the fibers inside the nonwoven fabric is 1.05 or more, when the part is defined as "inside the nonwoven fabric", the fiber density is higher on the surface of the nonwoven fabric than inside the nonwoven fabric. It can be considered as

本実施形態の不織布は、接着性繊維による接着箇所が解消された接着剥離痕が接着性繊維に形成されていることが好ましい。接着剥離痕は主に接着処理の後の交絡処理によって形成され得る。接着剥離痕では、通常の接着性繊維の繊維表面と比較して、接着成分(例えば、芯鞘型複合繊維であれば鞘成分)が薄く存在することとなる。この接着剥離痕によって繊維が屈曲しやすくなり、不織布の風合いの柔らかさが向上し得るので、接着剥離痕が適宜含まれることが好ましい。接着剥離痕は電子顕微鏡を用いて不織布の表面や断面を観察することにより確認できる。 In the nonwoven fabric of this embodiment, it is preferable that the adhesive fibers have adhesive peeling marks where the adhesive fibers have been removed. Adhesion peeling marks can be mainly formed by entangling treatment after adhesion treatment. In the adhesive peeling trace, the adhesive component (for example, the sheath component in the case of a core-sheath type composite fiber) is present thinly compared to the fiber surface of a normal adhesive fiber. It is preferable that adhesive peeling marks are included as appropriate, since these adhesive peeling marks can make the fibers easier to bend and improve the softness of the texture of the nonwoven fabric. Adhesive peeling marks can be confirmed by observing the surface or cross section of the nonwoven fabric using an electron microscope.

本実施形態の不織布は、不織布の一方の面に他の不織布を積層してもよいが、少なくとも一方の面が露出している形態であることが好ましい。不織布の両方の面が露出している形態であることがより好ましい。なお、本実施形態の不織布は単層構造でも良いが、積層構造として、例えば、各層においてセルロース系繊維と接着性繊維の混率を変えたもの等としても良い。本実施形態の不織布は、単層構造であると、不織布の両方の面において、毛羽立ちの抑制及び風合いの柔らかさを共に有することができるため好ましい。また、不織布が単層構造であると、交絡度合いが弱いことによる層間剥離や不織布強力の低下を抑制でき、また、交絡度合いが強いことによる風合いの柔らかさの低減を抑制できるため好ましい。本実施形態の不織布は、不織布の風合いの柔らかさと毛羽の抑制の両方とも良好であるため、本実施形態の不織布を露出させて使用される用途、例えば、吸収性物品用トップシート及びバックシート、化粧料等の液体を含浸させた液体含浸皮膚被覆材(例えば、フェイスマスク、角質ケアシート、及びデコルテシート等)、温湿布及び冷湿布をはじめとする各種パップ材の基布、対人用拭き取り材(例えば、クレンジングシート、制汗シート、及び除菌シート等)、使い捨ての衣料等に好適に使用することができる。 Although the nonwoven fabric of this embodiment may have another nonwoven fabric laminated on one side of the nonwoven fabric, it is preferable that at least one side is exposed. More preferably, both sides of the nonwoven fabric are exposed. The nonwoven fabric of this embodiment may have a single layer structure, but it may also have a laminated structure, for example, in which the blend ratio of cellulose fibers and adhesive fibers is varied in each layer. It is preferable that the nonwoven fabric of this embodiment has a single-layer structure because it can suppress fuzzing and have a soft texture on both sides of the nonwoven fabric. In addition, it is preferable that the nonwoven fabric has a single-layer structure because it is possible to suppress delamination between layers and a decrease in the strength of the nonwoven fabric due to a low degree of entanglement, and it is possible to suppress a decrease in the softness of the texture due to a high degree of entanglement. The nonwoven fabric of this embodiment is good in both the softness of the texture and the suppression of fluff, so it can be used in applications where the nonwoven fabric of this embodiment is exposed, such as top sheets and back sheets for absorbent articles, Liquid-impregnated skin dressings impregnated with liquids such as cosmetics (e.g., face masks, exfoliating sheets, decolletage sheets, etc.), base fabrics for various poultices including hot and cold compresses, and wipes for personal use. (For example, cleansing sheets, antiperspirant sheets, antibacterial sheets, etc.), disposable clothing, etc.

本実施形態の不織布は、積層構造を有する場合、各層が相互に異なる性能を持ち得るので好ましい、例えば一方の層で不織布の風合いを良好にし、もう一方の層で毛羽立ちの抑制を良好にし得る。層ごとに、親水性の度合いを変えることができる。少なくとも2つの層において接着性繊維を含み、層ごとに接着成分の融点が異なる接着性繊維を含むことができる。 When the nonwoven fabric of this embodiment has a laminated structure, it is preferable because each layer can have different performance. For example, one layer can improve the texture of the nonwoven fabric, and the other layer can suppress fuzzing. Different layers can have varying degrees of hydrophilicity. Adhesive fibers may be included in at least two layers, and each layer may include adhesive fibers in which the melting point of the adhesive component is different.

本発明の形態の不織布は、以下の実施例で説明する不織布の接着交点指数Aが1~60個/mmであることが好ましい。接着交点指数Aの上限は、55個/mmであることがより好ましく、50個/mmであることが更により好ましく、45個/mmであることが特に好ましい。接着交点指数Aの下限は、3個/mmであることがより好ましく、5個/mmであることが更により好ましい。
本発明の形態の不織布は、不織布の接着交点指数Aが上述の範囲内である場合、不織布の風合いがより好適となり、好ましい。
The nonwoven fabric of the present invention preferably has an adhesive intersection index A of 1 to 60 pieces/mm 2 as described in the following examples. The upper limit of the adhesive intersection index A is more preferably 55 pieces/mm 2 , even more preferably 50 pieces/mm 2 , and particularly preferably 45 pieces/mm 2 . The lower limit of the adhesive intersection index A is more preferably 3 pieces/mm 2 , and even more preferably 5 pieces/mm 2 .
In the nonwoven fabric of the present invention, it is preferable that the adhesive intersection index A of the nonwoven fabric is within the above-mentioned range because the texture of the nonwoven fabric becomes more suitable.

本発明の形態の不織布は、以下の実施例で説明する不織布の厚さ減少率が30~45%であることが好ましく、32~43%であることがより好ましく、34~41%であることが更により好ましい。
本発明の形態の不織布は、不織布の厚さ減少率が上述の範囲内である場合、不織布の風合いがより好適となり、好ましい。
The nonwoven fabric of the present invention preferably has a thickness reduction rate of 30 to 45%, more preferably 32 to 43%, and more preferably 34 to 41%, as explained in the following examples. is even more preferred.
It is preferable for the nonwoven fabric of the present invention to have a thickness reduction rate within the above-mentioned range because the texture of the nonwoven fabric becomes more suitable.

本発明の形態の不織布は、以下の実施例で説明する不織布の単位厚さ当たりの剛軟度が、10~85g/mmであることが好ましく、20~70g/mmであることがより好ましく、30~60g/mmであることが更により好ましく、35~55g/mmであることが特に好ましい。
本発明の形態の不織布は、不織布の単位厚さ当たりの剛軟度が上述の範囲内である場合、不織布の風合いがより好適となり、好ましい。
The nonwoven fabric of the present invention preferably has a bending resistance per unit thickness of the nonwoven fabric of 10 to 85 g/mm, more preferably 20 to 70 g/mm, as explained in the following examples. It is even more preferably from 30 to 60 g/mm, particularly preferably from 35 to 55 g/mm.
It is preferable for the nonwoven fabric of the present invention to have a bending resistance per unit thickness of the nonwoven fabric within the above-mentioned range because the texture of the nonwoven fabric becomes more suitable.

本発明の形態の不織布は、以下の実施例で説明する不織布の厚さ比が、例えば0.25~0.69であり、0.25~0.67であることが好ましく、0.35~0.65であることがより好ましく、0.40~0.60であることが更により好ましい。
本発明の形態の不織布は、不織布の厚さ比が上述の範囲内である場合、不織布の風合いの柔らかさがより好適となり、好ましい。また不織布の厚さ比は、不織布を構成する繊維について、不織布の厚さ方向に対して平行な方向(不織布の面に対してより垂直な方向)に配向している繊維の割合を示唆する指標である。厚さ比が小さいほど、不織布の厚さ方向に対してより平行な方向に配向している繊維の割合が高いことを示している。
The nonwoven fabric of the present invention has a thickness ratio of, for example, 0.25 to 0.69, preferably 0.25 to 0.67, and preferably 0.35 to 0.67, as explained in the following examples. It is more preferably 0.65, and even more preferably 0.40 to 0.60.
In the nonwoven fabric of the present invention, when the thickness ratio of the nonwoven fabric is within the above-mentioned range, the softness of the texture of the nonwoven fabric becomes more suitable, and it is preferable. In addition, the thickness ratio of a nonwoven fabric is an index that indicates the proportion of fibers that are oriented in a direction parallel to the thickness direction of the nonwoven fabric (a direction more perpendicular to the surface of the nonwoven fabric). It is. The smaller the thickness ratio, the higher the proportion of fibers oriented in a direction parallel to the thickness direction of the nonwoven fabric.

本発明の形態の不織布は、以下の実施例で説明する不織布を厚さ方向に3等分したときの、不織布の真ん中における繊維接着点の角度が30~90度であることが好ましく、35~60度であることがより好ましく、40~50度であることが更により好ましい。
本発明の形態の不織布は、不織布の真ん中における繊維接着点の角度が上述の範囲内である場合、不織布の風合いの柔らかさがより好適となり、好ましい。
In the nonwoven fabric of the present invention, when the nonwoven fabric described in the following examples is divided into three equal parts in the thickness direction, the angle of the fiber adhesion point in the middle of the nonwoven fabric is preferably 30 to 90 degrees, and 35 to 90 degrees. The temperature is more preferably 60 degrees, and even more preferably 40 to 50 degrees.
In the nonwoven fabric of the present invention, it is preferable that the angle of the fiber adhesion point in the middle of the nonwoven fabric is within the above-mentioned range because the softness of the texture of the nonwoven fabric becomes more suitable.

本発明の形態の不織布は、以下の実施例で説明する破断強力について、MD方向の破断強力が10~100Nであることが好ましく、15~70Nであることがより好ましく、CD方向の破断強力が1~25Nであることが好ましく、2~12Nであることがより好ましい。本発明の形態の不織布は、不織布の強力が上述の範囲内である場合、取扱い性がより向上し、好ましい。 Regarding the breaking strength of the nonwoven fabric according to the embodiment of the present invention, the breaking strength in the MD direction is preferably 10 to 100 N, more preferably 15 to 70 N, and the breaking strength in the CD direction is preferably 10 to 100 N. It is preferably 1 to 25N, more preferably 2 to 12N. It is preferable that the nonwoven fabric according to the present invention has a strength within the above-mentioned range, since the handleability thereof is further improved.

本発明の形態の不織布は、以下の実施例で説明する保水率が、800~2500%であることが好ましく、1000~2000%であることがより好ましく、1100~1800%であることが更により好ましく、1250~1650%であることが特に好ましい。本発明の形態の不織布は、不織布の保水率が上述の範囲内である場合、好適な液体含浸性または液体保持性となり、好ましい。
また、本発明の形態の不織布は、不織布の単位厚さ当たりの保水率(保水率/厚さ)が1500~3000%であることが好ましく、1700~2800%であることがより好ましく、1900~2600%であることが更により好ましい。このときの不織布の厚さは
後述する1.96kPaの荷重を加えて得た厚さである。本発明の形態の不織布は、不織布の保水率が上述の範囲内である場合、好適な液体含浸性または液体保持性となり、好ましい。
The nonwoven fabric of the present invention preferably has a water retention rate of 800 to 2500%, more preferably 1000 to 2000%, and even more preferably 1100 to 1800%, as explained in the following examples. It is preferably 1250% to 1650%, particularly preferably 1250% to 1650%. It is preferable for the nonwoven fabric of the present invention to have a water retention rate within the above-mentioned range, since this provides suitable liquid impregnating or liquid retaining properties.
Furthermore, the nonwoven fabric of the present invention preferably has a water retention rate per unit thickness (water retention rate/thickness) of 1500 to 3000%, more preferably 1700 to 2800%, and more preferably 1900 to 3000%. Even more preferably it is 2600%. The thickness of the nonwoven fabric at this time is the thickness obtained by applying a load of 1.96 kPa, which will be described later. It is preferable for the nonwoven fabric of the present invention to have a water retention rate within the above-mentioned range, since this provides suitable liquid impregnating or liquid retaining properties.

本発明の形態の不織布は、以下の実施例で説明する動摩擦力の変動係数CVが、例えば0.081以下であり、0.070以下であることが好ましく、0.060以下であることがより好ましく、0.055以下であることが更により好ましい。動摩擦力の変動係数CVの好ましい下限は0.00である。本発明の形態の不織布は、動摩擦力の変動係数CVが上述の範囲内である場合、不織布の表面がより滑らかとなり、好ましい。 The coefficient of variation CV of the dynamic frictional force of the nonwoven fabric according to the embodiment of the present invention, which will be explained in the following examples, is, for example, 0.081 or less, preferably 0.070 or less, and more preferably 0.060 or less. It is preferably 0.055 or less, and even more preferably 0.055 or less. A preferable lower limit of the coefficient of variation CV of the dynamic frictional force is 0.00. In the nonwoven fabric of the present invention, it is preferable that the coefficient of variation CV of the dynamic frictional force is within the above-mentioned range, since the surface of the nonwoven fabric becomes smoother.

本発明の不織布の製造方法は、セルロース系繊維と接着性繊維とを含む不織布の製造方法であって、前記接着性繊維により繊維同士を接着させる接着工程と、前記接着工程の後に繊維同士を交絡させる交絡工程とを含む。 The method for producing a nonwoven fabric of the present invention is a method for producing a nonwoven fabric containing cellulose fibers and adhesive fibers, which includes an adhesion step of adhering fibers to each other using the adhesive fibers, and interlacing the fibers after the adhesion step. and a confounding step.

(不織布の製造方法)
本実施形態の不織布は、セルロース系繊維と、接着性繊維と、含まれる場合には他の繊維とを混合して、繊維ウェブを作製し、繊維同士を接着性繊維で接着させて接着箇所が設けられ、繊維同士を交絡させて交絡箇所が設けられることによって製造できる。
繊維ウェブは、公知の方法で作製することができる。繊維ウェブの形態は、パラレルウェブ、クロスウェブ、セミランダムウェブおよびランダムウェブ等のカードウェブ、エアレイウェブ、湿式抄紙ウェブのようないずれの形態であってもよい。繊維ウェブの形態は、パラレルウェブであると不織布の表面がより滑らかとなるため好ましい。
(Method for manufacturing nonwoven fabric)
The nonwoven fabric of this embodiment is produced by mixing cellulose fibers, adhesive fibers, and other fibers if included to prepare a fibrous web, and bonding the fibers together with adhesive fibers to form bonded areas. It can be manufactured by intertwining the fibers with each other to provide intertwined points.
A fibrous web can be produced by a known method. The form of the fibrous web may be any form such as carded webs such as parallel webs, cross webs, semi-random webs, and random webs, air-lay webs, and wet papermaking webs. The form of the fibrous web is preferably a parallel web because the surface of the nonwoven fabric becomes smoother.

積層不織布の場合、例えば、二つの繊維ウェブを作製し、この二つの繊維ウェブを積層して一つのウェブを得た後、繊維同士を接着性繊維で接着させて接着箇所が設けられ、繊維同士を交絡させて交絡箇所が設けられることによって製造できる。尚、繊維ウェブ全体として、セルロース系繊維と接着性繊維とを含めばよい。 In the case of a laminated nonwoven fabric, for example, two fibrous webs are produced, and after the two fibrous webs are laminated to obtain one web, the fibers are bonded together with adhesive fibers to provide a bonding point, and the fibers are bonded together. It can be manufactured by intertwining and providing intertwined points. Note that the entire fibrous web may include cellulose fibers and adhesive fibers.

繊維ウェブは、接着処理(又は接着工程)に付される。接着処理は、例えば熱処理(熱接着処理)であってよい。熱処理によれば、接着性繊維を構成する樹脂成分のうち最も融点の低い成分(熱接着成分)が熱処理の際、加熱によって溶融または軟化し、繊維ウェブを構成する繊維同士を接着させることができる。熱処理は、例えば、熱風を吹き付ける熱風加工処理、熱ロール加工(例えば、熱エンボスロール加工)、または赤外線を使用した熱処理であってよいが、不織布の風合いを良好とするため熱風加工処理が好ましい。熱風加工処理は、所定の温度の熱風を繊維ウェブに吹き付ける装置、例えば、熱風貫通式熱処理機、および熱風吹き付け式熱処理機を用いて実施してよい。 The fibrous web is subjected to a gluing treatment (or gluing step). The adhesive treatment may be, for example, heat treatment (thermal adhesive treatment). According to heat treatment, the component with the lowest melting point (thermal adhesive component) among the resin components that make up the adhesive fibers is melted or softened by heating during heat treatment, making it possible to bond the fibers that make up the fiber web to each other. . The heat treatment may be, for example, hot air processing in which hot air is blown, hot roll processing (e.g., hot embossing roll processing), or heat treatment using infrared rays, but hot air processing is preferred in order to improve the texture of the nonwoven fabric. The hot air processing treatment may be performed using a device that blows hot air at a predetermined temperature onto the fiber web, such as a hot air through-type heat treatment machine and a hot air blowing type heat treatment machine.

接着処理が熱風加工処理である場合、熱風を複数回吹き付けることが好ましい。また熱風を複数回吹き付ける場合、最初の熱風の温度よりも2回目の熱風の温度が高いことが好ましい。セルロース系繊維と接着性繊維との接着性は、接着性繊維同士の接着性よりも高くないため、セルロース系繊維と接着性繊維との接着性をより高めるために、熱風を複数回吹き付けることが有効である。 When the bonding treatment is hot air processing, it is preferable to spray hot air multiple times. Moreover, when blowing hot air multiple times, it is preferable that the temperature of the second hot air is higher than the temperature of the first hot air. The adhesiveness between cellulose fibers and adhesive fibers is not higher than the adhesiveness between adhesive fibers, so hot air may be sprayed multiple times to further increase the adhesiveness between cellulose fibers and adhesive fibers. It is valid.

接着処理が熱風加工処理である場合、熱風の風速は、毛羽立ちの抑制および風合いの柔らかさを良好にする観点で、0.1~3.0m/minであることが好ましく、0.2~2.5m/minであることがより好ましく、0.3~2.0m/minであることがさらに好ましい。 When the adhesive treatment is hot air processing, the hot air speed is preferably 0.1 to 3.0 m/min, and 0.2 to 2 m/min, from the viewpoint of suppressing fluffing and improving the softness of the texture. The speed is more preferably .5 m/min, and even more preferably 0.3 to 2.0 m/min.

熱処理の温度は、接着性繊維を構成する樹脂成分のうち最も融点の低い成分(熱接着成分)が軟化または溶融する温度としてよく、例えば、当該成分の融点以上の温度としてよい。例えば、接着性繊維を構成する樹脂成分のうち最も融点の低い成分が高密度ポリエチレンである場合に、熱風加工を実施するときには、130℃~150℃の温度の熱風を吹き付けてよい。例えば、接着性繊維を構成する樹脂成分のうち最も融点の低い成分がエチレン-アクリル酸共重合体である場合、熱風加工を実施するときに、90℃~140℃の温度の熱風を吹き付けてよく、特には95~130℃の温度の熱風を吹き付けてよく、より特には100~120℃の熱風を吹き付けてよい。また、熱処理の温度は、毛羽立ちの抑制および風合いの柔らかさを良好にする観点で、熱接着成分の融点または軟化点よりも0℃以上5℃以下高い温度とすることが好ましく、1℃以上4℃以下高い温度とすることがより好ましく、2℃以上3℃以下高い温度とすることがさらに好ましい。 The temperature of the heat treatment may be a temperature at which the component with the lowest melting point (thermal adhesive component) among the resin components constituting the adhesive fiber softens or melts, and may be, for example, a temperature equal to or higher than the melting point of the component. For example, when the component with the lowest melting point among the resin components constituting the adhesive fiber is high-density polyethylene, hot air at a temperature of 130° C. to 150° C. may be blown when performing hot air processing. For example, if the component with the lowest melting point among the resin components constituting the adhesive fiber is an ethylene-acrylic acid copolymer, hot air at a temperature of 90°C to 140°C may be blown during hot air processing. In particular, hot air at a temperature of 95 to 130° C. may be blown, more particularly hot air at a temperature of 100 to 120° C. may be blown. In addition, the temperature of the heat treatment is preferably 0°C or more and 5°C or less higher than the melting point or softening point of the thermal adhesive component, and 1°C or more and 4°C or more, from the viewpoint of suppressing fuzzing and improving the softness of the texture. It is more preferable to set the temperature higher than 0.degree. C., and even more preferably to set the temperature higher than 2.degree. C. or higher and 3.degree. C. or lower.

接着処理は、電子線等の照射、または超音波溶着によるものであってよい。これらの接着処理によっても、接着性繊維を構成する樹脂成分で繊維同士を接着させることができる。 The adhesion treatment may be performed by irradiation with an electron beam or the like, or by ultrasonic welding. These adhesive treatments also allow the fibers to be adhered to each other using the resin component that constitutes the adhesive fibers.

接着処理に付された後で、かつ、交絡処理に付される前である繊維ウェブは、例えば破断強力がMD方向において1.0N/5cm以上であると、接着が十分であり、毛羽の抑制が良好である本開示の不織布を得やすくなるため好ましい。破断強力がMD方向において2.0N/5cm以上であるとより好ましく、3.0N/5cm以上であるとさらに好ましい。また、接着処理に付された後で、かつ、交絡処理に付される前である繊維ウェブは、例えば実施例に記載された方法により得られる剛軟度が100g以下であると、風合いの柔らかさが良好である本開示の不織布を得やすくなるため好ましい。剛軟度が80g以下であるとより好ましく、60g以下であるとさらに好ましい。 For example, when the fibrous web that has been subjected to the adhesion treatment and before the entanglement treatment has a breaking strength of 1.0 N/5 cm or more in the MD direction, the adhesion is sufficient and fuzz is suppressed. This is preferable because it makes it easier to obtain the nonwoven fabric of the present disclosure that has good properties. The breaking strength is more preferably 2.0 N/5 cm or more in the MD direction, and even more preferably 3.0 N/5 cm or more. In addition, if the fibrous web that has been subjected to the adhesive treatment and before the entangling treatment has a bending resistance of 100 g or less obtained by the method described in the examples, the texture will be soft. This is preferable because it becomes easier to obtain the nonwoven fabric of the present disclosure that has good properties. The bending resistance is more preferably 80 g or less, and even more preferably 60 g or less.

繊維ウェブは、更に交絡処理(又は交絡工程)に付される。交絡処理として、例えば、水流交絡処理及び水蒸気流交絡処理等を例示することができ、これらのいずれかを含むことが好ましい。前記交絡工程が、水流交絡処理を含むことが好ましい。これらの交絡処理によれば、セルロース系繊維による交絡が行いやすく、所望の物性を有する不織布を得ることができる。 The fibrous web is further subjected to an entangling treatment (or entangling step). Examples of the entanglement treatment include water flow entanglement treatment and water vapor flow entanglement treatment, and it is preferable to include either one of these. It is preferable that the entangling step includes hydroentangling treatment. According to these intertwining treatments, intertwining with cellulose fibers can be easily performed and a nonwoven fabric having desired physical properties can be obtained.

本発明の実施形態の製造方法は、接着処理(又は接着工程)と交絡処理(又は交絡工程)との間に冷却処理(又は冷却工程)を含むことが好ましい。つまり、接着処理に付された後で、かつ、交絡処理に付される前までに、繊維ウェブは冷却処理(又は冷却工程)に付されることが好ましい。冷却工程は、空冷または水冷等が挙げられる。接着処理に付された後の繊維ウェブが、十分に冷却されていない場合、接着性繊維の接着成分が軟化した状態であり得る。その状態で繊維ウェブが交絡処理に付されると、接着箇所が剥離しやすくなり得、不織布の毛羽立ちの抑制が不十分となり得る。 The manufacturing method of the embodiment of the present invention preferably includes a cooling treatment (or cooling step) between the adhesion treatment (or bonding step) and the entangling treatment (or entangling step). That is, the fibrous web is preferably subjected to a cooling treatment (or a cooling step) after being subjected to the adhesion treatment and before being subjected to the entangling treatment. Examples of the cooling step include air cooling or water cooling. If the fibrous web is not sufficiently cooled after being subjected to the adhesive treatment, the adhesive component of the adhesive fibers may be in a softened state. If the fibrous web is subjected to the entanglement treatment in this state, the bonded portions may easily peel off, and the fluffing of the nonwoven fabric may be insufficiently suppressed.

水流交絡処理は、支持体に繊維ウェブを載せて、柱状水流を噴射することにより実施することができる。支持体は、不織布表面を平坦し、かつ凹凸を有しないものとするならば、1つあたりの開孔面積が0.2mmを超える開孔を有さず、また、突起またはパターンが形成されていない支持体を用いるとよい。例えば、支持体は、80メッシュ以上、100メッシュ以下の平織の支持体を用いるとよい。 The hydroentangling treatment can be carried out by placing the fibrous web on a support and spraying a columnar water stream onto it. If the surface of the nonwoven fabric is flat and has no irregularities, the support should not have pores each having an area of 0.2 mm2 or more, and should not have protrusions or patterns formed thereon. It is best to use a support that is not For example, the support may be a plain weave support of 80 mesh or more and 100 mesh or less.

水流交絡処理は、例えば、孔径0.05mm以上、0.5mm以下のオリフィスが0.3mm以上、1.5mm以下の間隔で設けられたノズルから、水圧1MPa以上、15MPa以下の水流を、繊維ウェブの表面及び裏面の各々に、1~5回ずつ噴射することにより実施することができる。水圧は、好ましくは、1MPa以上、10MPa以下であり、より好ましくは、1MPa以上、7MPa以下である。 In the hydroentangling process, for example, a water stream with a water pressure of 1 MPa or more and 15 MPa or less is applied to the fiber web from a nozzle in which orifices with a hole diameter of 0.05 mm or more and 0.5 mm or less are provided at intervals of 0.3 mm or more and 1.5 mm or less. This can be carried out by spraying 1 to 5 times on each of the front and back surfaces of. The water pressure is preferably 1 MPa or more and 10 MPa or less, more preferably 1 MPa or more and 7 MPa or less.

水流交絡処理の際に使用される支持体は、板状またはロール状の支持体であってよく、ロール状の支持体であることが好ましい。支持体がロール状であると、繊維ウェブが湾曲し、繊維ウェブの厚さ方向(又は通常湾曲したウェブの外側方向)において繊維密度がより小さくなる。柱状水流を外側から噴射すると、柱状水流による交絡が比較的進みやすくなる。本実施形態の不織布は、繊維ウェブが接着処理、交絡処理の順に付されることが好ましく、繊維ウェブが接着処理の後で、交絡処理に付される場合、繊維ウェブが接着箇所を含むことで比較的交絡が進みにくいため、より交絡が進みやすい状態で水流交絡処理を行うことが好ましい。 The support used during the hydroentangling treatment may be a plate-shaped or roll-shaped support, and is preferably a roll-shaped support. When the support is in the form of a roll, the fibrous web is curved, resulting in a lower fiber density in the thickness direction of the fibrous web (or generally in the outward direction of a curved web). When the columnar water stream is injected from the outside, the entanglement due to the columnar water stream progresses relatively easily. In the nonwoven fabric of this embodiment, it is preferable that the fibrous web is subjected to adhesion treatment and then entangling treatment, and when the fibrous web is subjected to interlacing treatment after adhesion treatment, the fibrous web includes bonded portions. Since entanglement is relatively difficult to proceed, it is preferable to perform the hydroentanglement treatment in a state where entanglement is more likely to proceed.

接着処理が熱風加工処理である場合、水流交絡処理は、熱風加工処理において熱風を吹き付けた側から先に柱状水流を噴射することを含むことが好ましく、更に、反対側から柱状水流を噴射することを含むことが好ましい。熱風加工処理において熱風を吹き付けた側は反対側(一般的に支持体に接触している側)よりも繊維密度が小さくなる傾向があり、柱状水流による交絡が比較的進みやすい。水流交絡処理による不織布の強力や毛羽立ちの抑制の程度は、最初の交絡処理における交絡度合いに左右される割合が大きいため、比較的交絡が進みやすい、繊維ウェブの繊維密度が比較的小さい側から柱状水流を噴射して行うことが好ましい。 When the adhesion treatment is hot air processing, the hydroentangling treatment preferably includes spraying a columnar water stream first from the side to which the hot air was blown in the hot air processing, and further includes spraying the columnar water stream from the opposite side. It is preferable to include. In hot air processing, the fiber density tends to be lower on the side to which hot air is blown than on the opposite side (generally the side in contact with the support), and entanglement by columnar water flows is relatively easy to proceed. The strength of the nonwoven fabric and the extent to which fluffing is suppressed by hydroentangling treatment largely depends on the degree of entanglement in the initial entanglement treatment. Preferably, this is carried out by spraying a water stream.

交絡処理が水流交絡処理である場合、繊維ウェブは交絡処理の後に乾燥処理(乾燥工程)に付されることが好ましい。乾燥処理は熱風を吹き付ける熱風加工処理等により行うことができる。乾燥処理の温度は、接着性繊維の接着成分(熱接着成分)の軟化または溶融する温度よりも低い温度であることが好ましい。乾燥処理の温度は、熱接着成分の融点または軟化点よりも10℃以上低い温度とすることが好ましく、15℃以上低い温度とすることがより好ましく、20℃以下低い温度とすることがさらに好ましい。交絡処理の後に再度接着性成分を軟化または溶融させないと、不織布の嵩がへたりにくくなり、不織布の風合いが硬くなり難い。 When the entangling treatment is a hydroentangling treatment, the fibrous web is preferably subjected to a drying treatment (drying step) after the entangling treatment. The drying process can be performed by hot air processing, etc., in which hot air is blown. The temperature of the drying treatment is preferably lower than the temperature at which the adhesive component (thermal adhesive component) of the adhesive fiber softens or melts. The temperature of the drying treatment is preferably 10°C or more lower than the melting point or softening point of the thermal adhesive component, more preferably 15°C or more lower, and even more preferably 20°C or lower. . If the adhesive component is not softened or melted again after the entanglement treatment, the bulk of the nonwoven fabric will be difficult to lose, and the texture of the nonwoven fabric will be difficult to harden.

接着性繊維を二以上含み、それぞれの接着性繊維の熱接着成分の融点または軟化点が異なる場合、融点または軟化点がより高い熱接着成分の融点または軟化点をT(℃)、融点または軟化点がより低い熱接着成分の融点または軟化点をT(℃)、乾燥処理の温度をT(℃)として、T、T、TはT≦T<Tの関係を満たすことが好ましい。特にT≦T+10としてよく、より特にはT≦T+15としてよく、さらにより特にはT≦T+20としてよい。不織布が接着性繊維を二以上含み、積層構造を有し、少なくとも2層において層ごとに接着性繊維の熱接着成分の融点または軟化点が異なる場合、乾燥処理の温度をT≦T<Tとすることにより、融点または軟化点がTである接着性繊維を含む層において不織布の風合いを良好にし、融点または軟化点がTである接着性繊維を含む層において不織布の強力や毛羽立ちの抑制を良好にすることができる。 When two or more adhesive fibers are included and the melting point or softening point of the thermal adhesive component of each adhesive fiber is different, the melting point or softening point of the thermal adhesive component with a higher melting point or softening point is T 1 (°C), melting point or The melting point or softening point of the thermal adhesive component with a lower softening point is T 2 (°C), and the temperature of the drying treatment is T (°C), and T 1 , T 2 , and T satisfy the relationship T 2 ≦T < T 1 It is preferable. In particular, T≦T 1 +10, more particularly T≦T 1 +15, and still more particularly T≦T 1 +20. When the nonwoven fabric contains two or more adhesive fibers and has a laminated structure, and the melting point or softening point of the thermal adhesive component of the adhesive fibers differs for each layer in at least two layers, the temperature of the drying treatment is set to T 2 ≦T<T. 1 , the texture of the nonwoven fabric is improved in the layer containing adhesive fibers with a melting point or softening point of T 1 , and the feel of the nonwoven fabric is improved in the layer containing adhesive fibers with a melting point or softening point of T 2 . can be effectively suppressed.

繊維ウェブは、接着処理、交絡処理の順に付されることが好ましい。熱接着処理、交絡処理の順に付される場合、繊維の交絡が適度に進み、より好適な風合いの柔らかさを得られるため好ましい。交絡処理は、接着処理の後に連続して付されることが好ましい。接着処理に付された繊維ウェブを例えば一旦ロール状に巻き取った後に交絡処理に付す場合、巻き圧により風合いの柔らかさが低減されやすくなることや、巻き出しの際の繊維ウェブ同士の摩擦により毛羽立ちが起こりやすくなることがある。 It is preferable that the fibrous web is subjected to an adhesive treatment and an interlacing treatment in this order. It is preferable that the thermal adhesion treatment and the entangling treatment are performed in this order because the intertwining of the fibers proceeds appropriately and a more suitable soft texture can be obtained. It is preferable that the entangling treatment is applied continuously after the adhesion treatment. For example, when a fibrous web that has been subjected to an adhesive treatment is once wound into a roll and then subjected to an entangling treatment, the softness of the texture tends to be reduced due to the winding pressure, and the friction between the fibrous webs during unwinding may cause Fuzzing may occur more easily.

熱接着処理において、接着性繊維の低融点成分が溶融するように加熱することが好ましく、低融点成分のみが溶融するように加熱することがより好ましい。低融点成分の適切な溶融によって、より適切な大きさで、より適切な数の接着箇所が形成されて、不織布の風合いの柔らかさがより向上し得る。
熱処理温度を調節することによって、低融点成分による熱接着の程度(例えば、接着箇所の大きさ及び数等)を変化させることもできる。熱接着の程度を調節することで、不織布の強度、毛羽の抑制、及び風合いの柔らかさ等を更に向上することができ、また、交絡の程度を調節することもできる。
In the thermal bonding treatment, it is preferable to heat so that the low melting point component of the adhesive fiber melts, and it is more preferable to heat so that only the low melting point component melts. By appropriately melting the low melting point component, a more appropriate size and a more appropriate number of bonding points can be formed, and the softness of the texture of the nonwoven fabric can be further improved.
By adjusting the heat treatment temperature, it is also possible to change the degree of thermal adhesion (for example, the size and number of bonded parts) due to the low melting point component. By adjusting the degree of thermal adhesion, the strength of the nonwoven fabric, the suppression of fuzz, the softness of the texture, etc. can be further improved, and the degree of entanglement can also be adjusted.

本発明の形態の不織布は、例えば、使い捨ておむつ、生理用ナプキン、失禁パッド、及びパンティライナー等の吸収性物品、対人または対物用の拭き取り材、化粧料を含浸させたフェイスマスク等の皮膚被覆材、ガーゼ、使い捨ての衣料等に使用することができる。更に、全体的な性質のバランスに優れ、人の肌等に直接触れる用途、例えば、吸収性物品用トップシート及びバックシート、化粧料等の液体を含浸させた液体含浸皮膚被覆材(例えば、フェイスマスク、角質ケアシート、及びデコルテシート等)、温湿布及び冷湿布をはじめとする各種パップ材の基布、対人用拭き取り材(例えば、クレンジングシート、制汗シート、及び除菌シート等)等に使用することができる。 The nonwoven fabric of the embodiment of the present invention can be used, for example, in absorbent articles such as disposable diapers, sanitary napkins, incontinence pads, and panty liners, wipes for people or objects, and skin coverings such as face masks impregnated with cosmetics. , gauze, disposable clothing, etc. Furthermore, it has an excellent overall balance of properties and is suitable for applications that come in direct contact with human skin, such as top sheets and back sheets for absorbent articles, and liquid-impregnated skin dressings impregnated with liquids such as cosmetics (for example, face Masks, keratin care sheets, decollete sheets, etc.), base fabrics for various poultices including hot and cold compresses, and wipes for personal use (e.g. cleansing sheets, antiperspirant sheets, antibacterial sheets, etc.), etc. can be used.

以下に本発明を実施例及び比較例を用いて説明するが、これらの例は本発明を説明するためのものであり、本発明を何ら限定するものではない。 The present invention will be explained below using Examples and Comparative Examples, but these examples are for illustrating the present invention and are not intended to limit the present invention in any way.

実施例及び比較例の不織布を製造するために使用した繊維を以下に示す。
繊維1(セルロース系繊維):繊度1.7dtex、繊維長40mmの溶剤紡糸セルロース繊維(レンツィング社製のリヨセル(商品名))。沈降速度は4秒である。
繊維2(接着性繊維):ポリエチレンテレフタレートが芯であり、高密度ポリエチレン(融点:約133℃)が鞘である、繊度2.6dtex、繊維長51mm、偏心率25%の立体捲縮を有する偏心芯鞘型複合繊維(ダイワボウポリテック(株)製のNBF(SH)V(商品名))。
繊維3(接着性繊維):ポリプロピレン(融点160℃)が芯であり、エチレン-アクリル酸共重合体(アクリル酸8.5~10質量%)(融点95℃)が鞘である、繊度3.3dtex、繊維長51mmの機械捲縮を有する同心芯鞘型複合繊維(ダイワボウポリテック(株)製のNBF(A)(商品名))。
繊維4(セルロース系繊維):繊度1.0~5.0dtex(平均2.5dtex)、繊維長10~60mmのコットン(丸三産業(株)製のMSD(商品名))。沈降速度は10秒である。
繊維5(セルロース系繊維):繊度1.7dtex、繊維長40mmの撥水性レーヨン。沈降速度は5分以上沈まない。
The fibers used to produce the nonwoven fabrics of Examples and Comparative Examples are shown below.
Fiber 1 (cellulose fiber): Solvent spun cellulose fiber (Lyocell (trade name) manufactured by Lenzing) with a fineness of 1.7 dtex and a fiber length of 40 mm. The settling speed is 4 seconds.
Fiber 2 (adhesive fiber): The core is polyethylene terephthalate and the sheath is high-density polyethylene (melting point: about 133°C), the fineness is 2.6 dtex, the fiber length is 51 mm, and the eccentricity has three-dimensional crimp with an eccentricity rate of 25%. Core-sheath type composite fiber (NBF(SH)V (trade name) manufactured by Daiwabo Polytec Co., Ltd.).
Fiber 3 (adhesive fiber): core is polypropylene (melting point 160°C), sheath is ethylene-acrylic acid copolymer (acrylic acid 8.5-10% by mass) (melting point 95°C), fineness 3. A concentric core-sheath type composite fiber (NBF(A) (trade name) manufactured by Daiwabo Polytech Co., Ltd.) having a mechanical crimp of 3 dtex and a fiber length of 51 mm.
Fiber 4 (cellulose fiber): Cotton (MSD (trade name) manufactured by Marusan Sangyo Co., Ltd.) with a fineness of 1.0 to 5.0 dtex (average 2.5 dtex) and a fiber length of 10 to 60 mm. The settling speed is 10 seconds.
Fiber 5 (cellulose fiber): Water-repellent rayon with a fineness of 1.7 dtex and a fiber length of 40 mm. The settling speed does not sink for more than 5 minutes.

<実施例11~13の不織布の製造>
繊維1と繊維2を2:8(質量比)の混率で用い、パラレルカード機を使用して、繊維ウェブを製造した。この繊維ウェブの目付は、約35g/mであった。
この繊維ウェブを、熱風貫通式熱処理機を用いて135℃で約5秒間加熱した。繊維2の鞘成分により繊維同士を、熱接着(接着処理)したエアスルー不織布を得た。熱接着(接着処理)の後、エアスルー不織布を室温20℃の空冷による冷却処理を行った。
経糸の線径が0.132mm、緯糸の線径が0.132mm、メッシュ数が90メッシュの平織りPETネット上に、上述のエアスルー不織布を載置した。エアスルー不織布を速度4m/minで進行させながら、エアスルー不織布の表面に対して、水供給器を用いて、水圧2.0MPaの柱状水流を噴射した。水供給器のノズルは、孔径0.12mmのオリフィスが0.6mm間隔で設けられていた。エアスルー不織布の表面とオリフィスとの距離は15mmであった。その後、エアスルー不織布の裏面に対して、同様に水供給器を用いて、柱状水流を噴射した。以上のようにして繊維同士を水流交絡(交絡処理)した。交絡処理の後に80℃に設定した熱風貫通式熱処理機を用いて乾燥処理を行って、実施例11の不織布(単層)を得た。
表面及び裏面(両面)に、各々3.0MPaの水圧の柱状水流を噴射した以外は、実施例11と同様の方法を用いて、実施例12の不織布を得た。
表面及び裏面に、各々3.5MPaの水圧の柱状水流を噴射した以外は、実施例11と同様の方法を用いて、実施例13の不織布を得た。
<Production of nonwoven fabrics of Examples 11 to 13>
A fibrous web was produced using a parallel card machine using Fiber 1 and Fiber 2 at a mixing ratio of 2:8 (mass ratio). The basis weight of this fibrous web was approximately 35 g/m 2 .
This fibrous web was heated at 135° C. for about 5 seconds using a hot air through-type heat treatment machine. An air-through nonwoven fabric was obtained in which the fibers were thermally bonded (adhered) to each other using the sheath component of Fiber 2. After thermal bonding (adhesion treatment), the air-through nonwoven fabric was subjected to a cooling treatment by air cooling at a room temperature of 20°C.
The air-through nonwoven fabric described above was placed on a plain-woven PET net having a warp diameter of 0.132 mm, a weft diameter of 0.132 mm, and a mesh count of 90 meshes. While the air-through nonwoven fabric was traveling at a speed of 4 m/min, a columnar water stream with a water pressure of 2.0 MPa was injected onto the surface of the air-through nonwoven fabric using a water supply device. The nozzle of the water supply device was provided with orifices having a hole diameter of 0.12 mm at intervals of 0.6 mm. The distance between the surface of the air-through nonwoven fabric and the orifice was 15 mm. Thereafter, a columnar water stream was similarly sprayed onto the back surface of the air-through nonwoven fabric using a water supply device. The fibers were hydroentangled (entangled treatment) as described above. After the entanglement treatment, a drying treatment was performed using a hot air through-type heat treatment machine set at 80° C. to obtain a nonwoven fabric (single layer) of Example 11.
A nonwoven fabric of Example 12 was obtained using the same method as Example 11, except that a columnar water stream with a water pressure of 3.0 MPa was sprayed on the front and back surfaces (both sides).
A nonwoven fabric of Example 13 was obtained in the same manner as in Example 11, except that a columnar water stream with a water pressure of 3.5 MPa was sprayed onto the front and back surfaces, respectively.

<実施例21~23の不織布の製造>
繊維1と繊維2を4:6の混率で用いた以外は、実施例11と同様の方法を用いて、実施例21の不織布を得た。
表面及び裏面に、各々3.0MPaの水圧の柱状水流を噴射した以外は、実施例21と同様の方法を用いて、実施例22の不織布を得た。
表面及び裏面に、各々3.5MPaの水圧の柱状水流を噴射した以外は、実施例21と同様の方法を用いて、実施例23の不織布を得た。
<Production of nonwoven fabrics of Examples 21 to 23>
A nonwoven fabric of Example 21 was obtained in the same manner as in Example 11 except that Fiber 1 and Fiber 2 were used at a mixing ratio of 4:6.
A nonwoven fabric of Example 22 was obtained in the same manner as in Example 21, except that a columnar water stream with a water pressure of 3.0 MPa was sprayed onto the front and back surfaces, respectively.
A nonwoven fabric of Example 23 was obtained in the same manner as in Example 21, except that a columnar water stream with a water pressure of 3.5 MPa was sprayed onto the front and back surfaces, respectively.

<実施例31~33の不織布の製造>
繊維1と繊維2を6:4の混率で用いた以外は、実施例21~23と同様の方法を用いて、各々実施例31~33の不織布を得た。
<実施例41~43の不織布の製造>
繊維1と繊維2を8:2の混率で用いた以外は、実施例21~23と同様の方法を用いて、各々実施例41~43の不織布を得た。
<Production of nonwoven fabrics of Examples 31 to 33>
Nonwoven fabrics of Examples 31 to 33 were obtained using the same method as in Examples 21 to 23, except that Fiber 1 and Fiber 2 were used at a blend ratio of 6:4.
<Production of nonwoven fabrics of Examples 41 to 43>
Nonwoven fabrics of Examples 41 to 43 were obtained in the same manner as in Examples 21 to 23, except that Fiber 1 and Fiber 2 were used at a mixing ratio of 8:2.

<比較例50の不織布の製造>
繊維1と繊維2を6:4の混率で用い、水流を用いる処理及び乾燥処理を行わなかった以外は、実施例11と同様の方法を用いて、比較例50の不織布を得た。
<比較例61~62の不織布の製造>
繊維1と繊維2を6:4の混率で用い、熱処理(接着処理)及び冷却処理を行わなかった以外は、実施例11と同様の方法を用いて、比較例61の不織布を得た。
表面及び裏面に、各々3.0MPaの水圧の水流を用いた以外は、比較例61と同様の方法を用いて、比較例62の不織布を得た。
<Manufacture of nonwoven fabric of Comparative Example 50>
A nonwoven fabric of Comparative Example 50 was obtained using the same method as Example 11, except that Fiber 1 and Fiber 2 were used at a mixing ratio of 6:4, and the treatment using a water stream and the drying treatment were not performed.
<Manufacture of nonwoven fabrics of Comparative Examples 61 and 62>
A nonwoven fabric of Comparative Example 61 was obtained in the same manner as in Example 11, except that Fiber 1 and Fiber 2 were used at a blend ratio of 6:4 and heat treatment (adhesion treatment) and cooling treatment were not performed.
A nonwoven fabric of Comparative Example 62 was obtained using the same method as Comparative Example 61, except that a water stream with a water pressure of 3.0 MPa was used on each of the front and back surfaces.

<比較例71~72の不織布の製造>
繊維1と繊維2を6:4の混率で用いて繊維ウェブを製造した。
繊維ウェブの表面及び裏面に、各々2.0MPaの水圧の柱状水流を噴射した後、熱風貫通式熱処理機を用いて135℃で約5秒間熱処理した以外は、実施例11と同様の方法を用いて、比較例71の不織布を得た。
表面及び裏面に、各々3.0MPaの水圧の柱状水流を噴射した以外は、比較例71と同様の方法を用いて、比較例72の不織布を得た。
<Manufacture of nonwoven fabrics of Comparative Examples 71 and 72>
A fibrous web was produced using Fiber 1 and Fiber 2 at a blend ratio of 6:4.
The same method as in Example 11 was used, except that a columnar water stream with a water pressure of 2.0 MPa was sprayed on the front and back surfaces of the fibrous web, and then heat treated at 135 ° C. for about 5 seconds using a hot air through-type heat treatment machine. Thus, a nonwoven fabric of Comparative Example 71 was obtained.
A nonwoven fabric of Comparative Example 72 was obtained using the same method as Comparative Example 71, except that a columnar water stream with a water pressure of 3.0 MPa was sprayed onto the front and back surfaces, respectively.

<実施例81の不織布の製造>
繊維1と繊維2を6:4(質量比)で準備して、その各々の繊維のみを用いて、パラレルカード機を使用して、各々の繊維ウェブを製造した。この2つの繊維ウェブの目付の合計は、約35g/mであった。
この2つの繊維ウェブを重ねて積層した繊維ウェブを、熱風貫通式熱処理機を用いて135℃で約5秒間加熱した。繊維2の鞘成分により繊維同士を、熱接着(接着処理)したエアスルー不織布を得た。なお熱風は繊維1を含む繊維ウェブの側から当てた。熱接着(接着処理)の後、室温20℃の空冷によるエアスルー不織布の冷却処理を行った。
経糸の線径が0.132mm、緯糸の線径が0.132mm、メッシュ数が90メッシュの平織りPETネット上に、上述のエアスルー不織布を載置した。エアスルー不織布を速度4m/minで進行させながら、エアスルー不織布の表面(繊維1を含む層の側)に対して、水供給器を用いて、水圧3.0MPaの柱状水流を噴射した。水供給器のノズルは、孔径0.12mmのオリフィスが0.6mm間隔で設けられていた。エアスルー不織布の表面とオリフィスとの距離は15mmであった。その後、エアスルー不織布の裏面に対して、同様に水供給器を用いて、柱状水流を噴射した。以上のようにして繊維同士を水流交絡(交絡処理)した。交絡処理の後に80℃に設定した熱風貫通式熱処理機を用いて乾燥処理を行って、実施例81の不織布(積層)を得た。
<Manufacture of nonwoven fabric of Example 81>
Fiber 1 and Fiber 2 were prepared at a ratio of 6:4 (mass ratio), and only the respective fibers were used to produce respective fibrous webs using a parallel card machine. The total basis weight of these two fibrous webs was approximately 35 g/m 2 .
The fibrous web obtained by stacking these two fibrous webs was heated at 135° C. for about 5 seconds using a hot air penetration type heat treatment machine. An air-through nonwoven fabric was obtained in which the fibers were thermally bonded (adhered) to each other using the sheath component of Fiber 2. Note that the hot air was applied from the side of the fiber web containing fiber 1. After thermal bonding (adhesion treatment), the air-through nonwoven fabric was cooled by air cooling at a room temperature of 20°C.
The air-through nonwoven fabric described above was placed on a plain-woven PET net having a warp diameter of 0.132 mm, a weft diameter of 0.132 mm, and a mesh count of 90 meshes. While the air-through nonwoven fabric was traveling at a speed of 4 m/min, a columnar water stream with a water pressure of 3.0 MPa was injected onto the surface of the air-through nonwoven fabric (the side of the layer containing fibers 1) using a water supply device. The nozzle of the water supply device was provided with orifices having a hole diameter of 0.12 mm at intervals of 0.6 mm. The distance between the surface of the air-through nonwoven fabric and the orifice was 15 mm. Thereafter, a columnar water stream was similarly sprayed onto the back surface of the air-through nonwoven fabric using a water supply device. The fibers were hydroentangled (entangled treatment) as described above. After the entanglement treatment, a drying treatment was performed using a hot air through-type heat treatment machine set at 80° C. to obtain a nonwoven fabric (laminated) of Example 81.

<実施例82の不織布の製造>
繊維1と繊維2を7:3(質量比)の混率で用い、パラレルカード機を使用して、繊維ウェブAを製造した。この繊維ウェブAの目付は、約17.5g/mであった。次に繊維1と繊維2を5:5(質量比)の混率で用い、パラレルカード機を使用して、繊維ウェブBを製造した。この繊維ウェブBの目付は、約17.5g/mであった。
この2つの繊維ウェブを重ねて積層した繊維ウェブを、熱風貫通式熱処理機を用いて135℃で約5秒間加熱した。繊維2の鞘成分により繊維同士を、熱接着(接着処理)したエアスルー不織布を得た。なお熱風は繊維ウェブAの側から当てた。熱接着(接着処理)の後、室温20℃の空冷によるエアスルー不織布の冷却処理を行った。
経糸の線径が0.132mm、緯糸の線径が0.132mm、メッシュ数が90メッシュの平織りPETネット上に、上述のエアスルー不織布を載置した。エアスルー不織布を速度4m/minで進行させながら、エアスルー不織布の表面(繊維ウェブAの側)に対して、水供給器を用いて、水圧2.0MPaの柱状水流を噴射した。水供給器のノズルは、孔径0.12mmのオリフィスが0.6mm間隔で設けられていた。エアスルー不織布の表面とオリフィスとの距離は15mmであった。その後、エアスルー不織布の裏面に対して、同様に水供給器を用いて、柱状水流を噴射した。以上のようにして繊維同士を水流交絡(交絡処理)した。交絡処理の後に80℃に設定した熱風貫通式熱処理機を用いて乾燥処理を行って、実施例82の不織布(積層)を得た。実施例82の不織布全体において、繊維1と繊維2の混率は6:4(質量比)であった。
<Manufacture of nonwoven fabric of Example 82>
A fibrous web A was produced using a parallel card machine using Fiber 1 and Fiber 2 at a mixing ratio of 7:3 (mass ratio). The basis weight of this fibrous web A was approximately 17.5 g/m 2 . Next, a fibrous web B was produced using a parallel card machine using Fiber 1 and Fiber 2 at a mixing ratio of 5:5 (mass ratio). The basis weight of this fibrous web B was approximately 17.5 g/m 2 .
The fibrous web obtained by stacking these two fibrous webs was heated at 135° C. for about 5 seconds using a hot air penetration type heat treatment machine. An air-through nonwoven fabric was obtained in which the fibers were thermally bonded (adhered) to each other using the sheath component of Fiber 2. Note that the hot air was applied from the fiber web A side. After thermal bonding (adhesion treatment), the air-through nonwoven fabric was cooled by air cooling at a room temperature of 20°C.
The air-through nonwoven fabric described above was placed on a plain-woven PET net having a warp diameter of 0.132 mm, a weft diameter of 0.132 mm, and a mesh count of 90 meshes. While the air-through nonwoven fabric was traveling at a speed of 4 m/min, a columnar water stream with a water pressure of 2.0 MPa was injected onto the surface of the air-through nonwoven fabric (fiber web A side) using a water supply device. The nozzle of the water supply device was provided with orifices having a hole diameter of 0.12 mm at intervals of 0.6 mm. The distance between the surface of the air-through nonwoven fabric and the orifice was 15 mm. Thereafter, a columnar water stream was similarly sprayed onto the back surface of the air-through nonwoven fabric using a water supply device. The fibers were hydroentangled (entangled treatment) as described above. After the entanglement treatment, a drying treatment was performed using a hot air through-type heat treatment machine set at 80° C. to obtain a nonwoven fabric (laminate) of Example 82. In the entire nonwoven fabric of Example 82, the blend ratio of fiber 1 and fiber 2 was 6:4 (mass ratio).

<実施例83の不織布の製造>
熱風を繊維ウェブBの側から当てたこと、柱状水流を繊維ウェブBの側から先に噴射したこと以外は、実施例82と同様の方法を用いて、実施例83の不織布を得た。
<Manufacture of nonwoven fabric of Example 83>
A nonwoven fabric of Example 83 was obtained using the same method as Example 82, except that the hot air was applied from the fibrous web B side and the columnar water stream was sprayed from the fibrous web B side first.

<実施例84~86の不織布の製造>
繊維1と繊維2の代わりに、繊維1と繊維3、繊維4と繊維2、繊維5と繊維2を、各々6:4の混率で用いた以外は、実施例31と同様の方法を用いて、各々実施例84~86の不織布(単層)を得た。
<Production of nonwoven fabrics of Examples 84 to 86>
The same method as in Example 31 was used, except that instead of Fiber 1 and Fiber 2, Fiber 1 and Fiber 3, Fiber 4 and Fiber 2, and Fiber 5 and Fiber 2 were used at a mixing ratio of 6:4. , nonwoven fabrics (single layer) of Examples 84 to 86 were obtained.

不織布の評価は、下記のように行った。
<不織布の構造>
不織布の構造は、不織布を縦方向(より具体的には、不織布を処理した熱処理機及び水流処理機のベルトコンベアの進行方向と平行方向)に切断して、その切断面を走査電子顕微鏡(SEM、倍率:60倍)で観察して求めた。結果を表1~2に示した。
実施例31の不織布のSEM画像を、図1に示した。実施例31の不織布は、不織布の内部の繊維の数が、表面及び裏面の繊維の数より少ない、即ち、密/疎/密の構造を有することがわかる。
比較例50の不織布のSEM画像(倍率:25倍)を、図2に示す。比較例50の不織布は、不織布の内部の繊維の数と、表面及び裏面の繊維の数が、実質的に差がなく、密/疎/密の構造を有さないことがわかる。
Evaluation of the nonwoven fabric was performed as follows.
<Structure of nonwoven fabric>
The structure of the nonwoven fabric can be determined by cutting the nonwoven fabric in the longitudinal direction (more specifically, in the direction parallel to the traveling direction of the belt conveyor of the heat treatment machine and water treatment machine that treated the nonwoven fabric), and examining the cut surface with a scanning electron microscope (SEM). , magnification: 60 times). The results are shown in Tables 1 and 2.
A SEM image of the nonwoven fabric of Example 31 is shown in FIG. It can be seen that the nonwoven fabric of Example 31 has a dense/loose/dense structure in which the number of fibers inside the nonwoven fabric is smaller than the number of fibers on the front and back surfaces.
A SEM image (magnification: 25 times) of the nonwoven fabric of Comparative Example 50 is shown in FIG. It can be seen that the nonwoven fabric of Comparative Example 50 has substantially no difference in the number of fibers inside the nonwoven fabric and the number of fibers on the front and back surfaces, and does not have a dense/loose/dense structure.

<接着点角度測定>
撮影されたSEM画像について、不織布を厚さ方向に3等分したときの不織布の表面及び裏面近傍と真ん中付近(内部)について、接着点を形成する二つの繊維のみかけのなす角を調べた。少なくとも4箇所のみかけのなす角を調べてその平均値を求めた。結果は、表1~2に記載した。なお熱風貫通式熱処理機により加工を行った実施例及び比較例については、熱風を当てた側を表面とし、その反対側の面を裏面とした。
<Glue point angle measurement>
Regarding the taken SEM images, when the nonwoven fabric was divided into three equal parts in the thickness direction, the apparent angles formed by the two fibers forming the bonding points were examined near the front and back surfaces and near the middle (inside) of the nonwoven fabric. The apparent angles formed at at least four locations were examined and the average value was determined. The results are listed in Tables 1 and 2. In addition, for the Examples and Comparative Examples in which processing was performed using a hot air penetration type heat treatment machine, the side to which hot air was applied was defined as the front surface, and the opposite surface was defined as the back surface.

<接着交点指数A>
不織布の表面および裏面を走査電子顕微鏡(SEM、加速電圧:10.0kV、倍率:100倍)で観察した。撮影されたSEM画像について、面積当たりの繊維の接着交点の数を数えた。不織布の表面および裏面についてそれぞれ3枚ずつ、合計で6枚のSEM画像について繊維の接着交点の数を数え、その平均値を繊維の接着交点数I(単位:個/mm)とした。
実施例および比較例の不織布を構成する非接着性繊維(繊維1)と接着性繊維(繊維2)の繊度(dtex)と不織布中の混率(質量%)から、接着交点割合P(0≦P≦1)を下記の式に従って求めた。

Figure 2023182007000001
式中、
αは、i番目の非接着性繊維の混率(質量%)を表し、
は、i番目の非接着性繊維の繊度(dtex)を表し、
βは、j番目の接着性繊維の混率(質量%)を表し、
は、j番目の接着性繊維の繊度(dtex)を表す。
接着交点数Iと接着交点割合Pとから、接着交点指数A(単位:個/mm)を下記の式に従って求めた。
接着交点指数A=I/(P) <Adhesive intersection index A>
The front and back surfaces of the nonwoven fabric were observed using a scanning electron microscope (SEM, acceleration voltage: 10.0 kV, magnification: 100 times). The number of bonded intersections of fibers per area was counted for the SEM images taken. The number of fiber adhesive intersections was counted for a total of six SEM images, three each for the front and back sides of the nonwoven fabric, and the average value was taken as the number I (unit: pieces/mm 2 ) of fiber adhesive intersections.
From the fineness (dtex) of non-adhesive fibers (fiber 1) and adhesive fibers (fiber 2) constituting the non-woven fabrics of Examples and Comparative Examples and the blending ratio (mass%) in the non-woven fabric, the adhesive intersection ratio P (0≦P ≦1) was determined according to the following formula.
Figure 2023182007000001
During the ceremony,
α i represents the mixing ratio (mass%) of the i-th non-adhesive fiber,
x i represents the fineness (dtex) of the i-th non-adhesive fiber,
β j represents the mixing ratio (mass%) of the j-th adhesive fiber,
y j represents the fineness (dtex) of the j-th adhesive fiber.
From the number I of adhesive intersections and the ratio P of adhesive intersections, the adhesive intersection index A (unit: pieces/mm 2 ) was determined according to the following formula.
Adhesive intersection index A=I/(P 2 )

尚、2層構造の場合、表面又は裏面の接着交点割合Pは、表面又は裏面の混綿状態に則して、各々計算する。接着交点指数Aの計算は、表面3つ、裏面3つの平均値であることに変わりはない。実施例81の場合、繊維1の面の接着交点指数Aは0である(I=0)。繊維2の面の接着交点指数Aは28である(P=1)。平均すると実施例81の接着交点指数Aは14となる。 In the case of a two-layer structure, the adhesion intersection ratio P on the front or back side is calculated depending on the cotton blend state on the front or back side. The calculation of the adhesive intersection index A is still the average value of the three front and three back surfaces. In the case of Example 81, the adhesive intersection index A of the plane of fiber 1 is 0 (I=0). The adhesive intersection index A of the plane of fiber 2 is 28 (P=1). On average, the adhesive intersection index A of Example 81 is 14.

<不織布の厚さと密度>
厚み測定機((株)大栄科学精器製作所製のTHICKNESS GAUGE モデル CR-60A(商品名))を用い、不織布に1.96kPaの荷重を加えた状態で、不織布の厚さを測定した。
又は、CCDレーザー変位計(アンプユニット型式:LK-2100、センサヘッド型式:LK-080、株式会社キーエンス製)を用い、不織布に40Paの荷重を加えた状態で、不織布の厚さを測定した。結果を表1~2に示した。
不織布の密度は、不織布の目付と、40Paの荷重を加えて得た不織布の厚さに基づいて算出した。
また、1.96kPaの荷重を加えて得た厚さと、40Paの荷重を加えて得た厚さとの比(1.96kPaの荷重を加えて得た厚さ/40Paの荷重を加えて得た厚さ)を、「厚さ比」と定義する。
<Thickness and density of nonwoven fabric>
Using a thickness measuring machine (THICKNESS GAUGE model CR-60A (trade name) manufactured by Daiei Kagaku Seiki Seisakusho Co., Ltd.), the thickness of the nonwoven fabric was measured with a load of 1.96 kPa applied to the nonwoven fabric.
Alternatively, using a CCD laser displacement meter (amplifier unit model: LK-2100, sensor head model: LK-080, manufactured by Keyence Corporation), the thickness of the nonwoven fabric was measured with a load of 40 Pa applied to the nonwoven fabric. The results are shown in Tables 1 and 2.
The density of the nonwoven fabric was calculated based on the basis weight of the nonwoven fabric and the thickness of the nonwoven fabric obtained by applying a load of 40 Pa.
Also, the ratio of the thickness obtained by applying a load of 1.96 kPa to the thickness obtained by applying a load of 40 Pa (thickness obtained by applying a load of 1.96 kPa/thickness obtained by applying a load of 40 Pa) ) is defined as the "thickness ratio".

<不織布の厚さ減少率>
不織布の試料片について、上述した方法と同様にして40Paの荷重を加えた状態の不織布の厚さ(初期厚さ)を測定した。次に、同じ試料片に1.63kPaの荷重を加えた状態で3日間放置した後、1.63kPaの荷重を除いて再度上述した方法と同様にして40Paの荷重を加えた状態の不織布の厚さ(最終厚さ)を測定した。厚さ減少率(%)を下記の式に従って求めた。
厚さ減少率(%)=[(初期厚さ-最終厚さ)/初期厚さ]×100
<Thickness reduction rate of nonwoven fabric>
Regarding the nonwoven fabric sample piece, the thickness (initial thickness) of the nonwoven fabric under a load of 40 Pa was measured in the same manner as described above. Next, after leaving the same sample piece under a load of 1.63 kPa for 3 days, the same method was repeated except for the load of 1.63 kPa, and the thickness of the nonwoven fabric was then applied with a load of 40 Pa. The thickness (final thickness) was measured. The thickness reduction rate (%) was determined according to the following formula.
Thickness reduction rate (%) = [(Initial thickness - Final thickness) / Initial thickness] x 100

<剛軟度>
不織布の剛軟度は、JIS L 1096:2010 8.21.5 E法(ハンドルオメータ法)に準じて測定した。具体的には、次の手順で測定した。
縦:20cm、横:20cmの試験片を試料台の上に、試験片の測定方向がスロット(隙間幅10mm)と直角になるように置いた。
次に、試料台の表面から8mmまで下がるように調整されたペネトレータのブレードを下降させ、試験片を押圧した。押圧したとき、いずれか一方の辺から6.7cm(試験片の幅の1/3)の位置で、縦方向及び横方向それぞれ表裏異なる個所について、押圧に対する抵抗値を読み取った。抵抗値として、マイクロアンメータの示す最高値を読み取った。4辺の最高値の合計値を求めて、合計値の3回の平均値を算出して、当該試料の剛軟度(g)とした。
また、上記剛軟度を、厚さ(1.96kPaの荷重を加えて得た値)で除した値を、単位厚さ当たりの剛軟度(剛軟度/厚さ(g/mm))と定義した。
<Bending resistance>
The bending resistance of the nonwoven fabric was measured according to JIS L 1096:2010 8.21.5 E method (handle-o-meter method). Specifically, the measurement was performed using the following procedure.
A test piece measuring 20 cm in length and 20 cm in width was placed on a sample stand so that the measurement direction of the test piece was perpendicular to the slot (gap width 10 mm).
Next, the blade of the penetrator, which was adjusted to fall down to 8 mm from the surface of the sample stage, was lowered to press the test piece. When pressed, the resistance value against pressing was read at a position 6.7 cm (1/3 of the width of the test piece) from either side and at different locations on the front and back in both the vertical and horizontal directions. As the resistance value, the highest value indicated by the microammeter was read. The total value of the highest values on the four sides was determined, and the average value of the total values three times was calculated to determine the bending resistance (g) of the sample.
In addition, the value obtained by dividing the above bending resistance by the thickness (value obtained by applying a load of 1.96 kPa) is calculated as the bending resistance per unit thickness (bending resistance/thickness (g/mm)). It was defined as

<強伸度>
強伸度は、JIS L 1096:2010 8.14.1 A法(ストリップ法)に準じて測定した。定速緊張形引張試験機を用いて、試料片(不織布)の幅5cm、つかみ間隔10cm、引張速度30±2cm/分の条件で、引張試験を行った。切断時の荷重値(破断強力)、破断伸度、10%伸長時応力、20%伸長時応力ならびに30%伸長時応力を測定した。引張試験は、不織布の縦方向(MD方向)および横方向(CD方向)を引張方向として実施した。評価結果は、いずれも3点の試料について測定した値の平均で示した。
<Strong elongation>
The strength and elongation was measured according to JIS L 1096:2010 8.14.1 Method A (strip method). A tensile test was conducted using a constant speed tension type tensile testing machine under the conditions that the sample piece (nonwoven fabric) had a width of 5 cm, a grip interval of 10 cm, and a tensile speed of 30±2 cm/min. The load value at cutting (breaking strength), elongation at break, stress at 10% elongation, stress at 20% elongation, and stress at 30% elongation were measured. The tensile test was conducted with the longitudinal direction (MD direction) and the lateral direction (CD direction) of the nonwoven fabric as the tensile directions. The evaluation results were all shown as the average of the values measured for three samples.

<最大摩擦力及び動摩擦力>
最大摩擦力及び動摩擦力は、静・動摩擦測定機(トライボマスターTL201Ts、株式会社トリニティラボ製)を用いて測定した。試料片として5cm×10cmの不織布を用意した。なお、試料片は、不織布のMD方向が長辺となるものとCD方向が長辺となるものをそれぞれ用意した。測定器の接触端子には触覚接触子(株式会社トリニティラボ製)を使用した。試料片を測定機に固定し、試料片の表面に対して接触端子を荷重30g、速度10mm/sec、距離30mmで往復2回移動させ評価した。なお、熱風貫通式熱処理機により加工を行った実施例及び比較例については、熱風を当てた面と反対の面に対して接触端子を接触させて測定した。2往復目の数値を読み取り、往の数値と復の数値との平均値を、1つの試料片の最大摩擦力(gf)及び動摩擦力(gf)とした。MD方向を長辺とした試験片について3回、CD方向を長辺とした試験片について3回測定を行い、合計6回の測定値の平均値を、各実施例及び比較例の最大摩擦力Fs(gf)及び動摩擦力Fk(gf)とした。
また、測定の際に得られた動摩擦力の標準偏差σ(gf)と、上述した動摩擦力の平均値Fkとから、下記の式に従って、動摩擦力の変動係数CVを求めた。
動摩擦力の変動係数CV=σ/Fk
<Maximum friction force and kinetic friction force>
The maximum frictional force and the dynamic frictional force were measured using a static/dynamic friction measuring device (Tribomaster TL201Ts, manufactured by Trinity Lab Co., Ltd.). A 5 cm x 10 cm nonwoven fabric was prepared as a sample piece. In addition, sample pieces were prepared in which the long side of the nonwoven fabric was in the MD direction and the other in which the long side was in the CD direction. A tactile contact (manufactured by Trinity Lab Co., Ltd.) was used as the contact terminal of the measuring device. The sample piece was fixed to a measuring machine, and the contact terminal was moved twice against the surface of the sample piece at a load of 30 g, a speed of 10 mm/sec, and a distance of 30 mm for evaluation. In addition, for Examples and Comparative Examples in which processing was performed using a hot air penetration type heat treatment machine, measurements were made by bringing the contact terminal into contact with the surface opposite to the surface to which the hot air was applied. The values of the second round trip were read, and the average value of the previous value and the return value was taken as the maximum frictional force (gf) and dynamic frictional force (gf) of one sample piece. Measurement was performed three times on a test piece with the long side in the MD direction and three times on a test piece with the long side in the CD direction, and the average value of the total six measurements was calculated as the maximum friction force of each example and comparative example. Fs (gf) and dynamic friction force Fk (gf).
Further, the coefficient of variation CV of the dynamic friction force was determined from the standard deviation σ (gf) of the dynamic friction force obtained during the measurement and the average value Fk of the dynamic friction force described above, according to the following formula.
Coefficient of variation of dynamic friction force CV=σ/Fk

<保水率>
不織布をMD方向×CD方向=100mm×100mmに切断して、不織布の質量を測定した。その後、不織布を試験用蒸留水(蒸留水1リットルに対して食器用洗剤(ジョイすっきりオレンジの香り(界面活性剤33%入)、プロクター・アンド・ギャンブル社製)を2滴添加したもの)に2分間浸した。試験用蒸留水を含浸させた不織布の三隅を洗濯ばさみで挟んで吊した。10分経過後に、(水を含む)不織布の質量を測定した。下記の式に従って、不織布の保水率を算出した。
保水率(%)=[(M2-M1)/M1]×100
M1:試験用蒸留水に浸す前の不織布の質量(g)
M2:試験用蒸留水に浸した不織布を、10分間吊した後の不織布の質量(g)
<Water retention rate>
The nonwoven fabric was cut into MD direction x CD direction = 100 mm x 100 mm, and the mass of the nonwoven fabric was measured. After that, the nonwoven fabric was placed in distilled water for testing (two drops of dish detergent (Joy Refreshing Orange Scent (contains 33% surfactant), manufactured by Procter & Gamble) added to 1 liter of distilled water). Soaked for 2 minutes. The three corners of the nonwoven fabric impregnated with distilled water for testing were held between clothespins and hung. After 10 minutes, the mass of the nonwoven fabric (containing water) was measured. The water retention rate of the nonwoven fabric was calculated according to the following formula.
Water retention rate (%) = [(M2-M1)/M1] x 100
M1: Mass (g) of nonwoven fabric before soaking in distilled water for testing
M2: Mass (g) of the nonwoven fabric after hanging the nonwoven fabric soaked in distilled water for testing for 10 minutes

<毛羽評価>
円盤(直径70mm、350g)の表面を、厚さ0.5mmのウレタンフォームで覆った。その円盤を回転軸から円盤中心が20mmずれた位置で回転軸に取り付けた。下にウレタンフォームを敷いた不織布を台上に固定した。上記の円盤を不織布上に載せ、回転軸を回転させて円盤を不織布上で周動させた。周動は時計回りに2回、反時計回りに2回行った。この時の周動速度は1周動あたり約3秒であった。周動後の不織布について、毛羽状態を以下の判断基準で評価した。3~5は、毛羽が抑制されていると考えられる。
5:非常に良い(毛羽無し)
4:良い(毛羽は極めて少ない)
3:普通(毛羽は気にならない程度ある)
2:悪い(毛羽は気になる程度ある)
1:非常に悪い(毛羽が多い)
<Fuzz evaluation>
The surface of the disk (diameter 70 mm, 350 g) was covered with 0.5 mm thick urethane foam. The disk was attached to the rotating shaft at a position where the center of the disk was shifted by 20 mm from the rotating shaft. A nonwoven fabric with urethane foam underneath was fixed on a table. The above disc was placed on a nonwoven fabric, and the rotating shaft was rotated to move the disc around the nonwoven fabric. The rotation was performed twice clockwise and twice counterclockwise. The circumferential speed at this time was approximately 3 seconds per circumferential movement. After the rotation, the fluff condition of the nonwoven fabric was evaluated using the following criteria. 3 to 5 are considered to have suppressed fuzz.
5: Very good (no fuzz)
4: Good (very little fuzz)
3: Normal (fuzz is not noticeable)
2: Bad (fuzz is noticeable)
1: Very bad (a lot of fluff)

<毛羽評価2>
マーチンデール毛羽試験機(James Heal社製、商品名「Martindale Abrasion and Pilling Tester No.1309」)を用いて摩擦テスト(Abrasion Test)により評価した。
実施例、比較例の不織布について2枚のサンプル(直径140mm及び直径38mmを1枚ずつ)を用意した。摩擦テーブル(Abrading Table)に直径140mmのフェルトを設置し、SM25摩擦布(SM25 Abrasice Cloth)上に直径140mmのサンプルを積層してクランピングリング(Clamp Ring)でサンプルを固定した。次にサンプルホルダー(Sample Holder)に直径38mmのサンプルと直径38mmのポリウレタンを設置した。測定条件は、サンプルホルダーにローディングウェイト(Loading Weight)を設置せずに、サンプルホルダーをテーブル(Abrading Tables)に設置した。摩擦回数を8回転とし、モーションを60.5mmリサージュに設定して摩擦テストを行った。なお熱風貫通式熱処理機により加工を行った実施例及び比較例については、熱風を当てた側と反対側の面同士が接触するように摩擦テストを行った。測定終了後、サンプルホルダー側の不織布を観察し、毛羽状態を以下の二つの判断基準(測定後の不織布を真上から見た時の状態(表面状態)と測定後の不織布を真横から見た時の状態(毛羽立ち具合))の合計(10点満点)で評価した。合計6点以上が、毛羽が抑制されていると考えられる。各実施例または比較例につき、3回ずつ評価試験を行い、3回の点数の平均値を各実施例または比較例の毛羽評価とした。
表面状態
5:非常に良い(表面の乱れが無い)
4:良い(表面の乱れは極めて少ない)
3:普通(表面の乱れは少なく、気にならない)
2:悪い(表面の乱れが気になる程度ある)
1:非常に悪い(表面に穴が開いている)
毛羽立ち具合
5:非常に良い(毛羽立ちは無い)
4:良い(毛羽立ちは極めて少ない)
3:普通(毛羽立ちは気にならない程度ある)
2:悪い(毛羽立ちが気になる程度ある)
1:非常に悪い(毛羽立ちが多い)
尚、毛羽については、<毛羽評価>と<毛羽評価2>の2つの評価方法があるが、<毛羽評価>について3以上であれば合格であり、<毛羽評価2>について合計で6以上であれば合格である。更に、<毛羽評価>と<毛羽評価2>のいずれかが合格であれば、毛羽については、合格と考えられる。<毛羽評価>と<毛羽評価2>の両方が合格であれば、毛羽について、より好ましい。






<Fuzz evaluation 2>
Evaluation was performed by an abrasion test using a Martindale Abrasion and Pilling Tester No. 1309, manufactured by James Heal.
Two samples (one each with a diameter of 140 mm and one with a diameter of 38 mm) were prepared for the nonwoven fabrics of Examples and Comparative Examples. Felt with a diameter of 140 mm was placed on an abrading table, a sample with a diameter of 140 mm was stacked on SM25 abrasive cloth, and the sample was fixed with a clamp ring. Next, a sample with a diameter of 38 mm and a polyurethane with a diameter of 38 mm were placed in a sample holder. The measurement conditions were that the sample holder was placed on a table (Abrading Tables) without installing a loading weight on the sample holder. A friction test was conducted by setting the number of frictions to 8 rotations and the motion to 60.5 mm Lissajous. For Examples and Comparative Examples processed using a hot air penetration type heat treatment machine, a friction test was conducted so that the surfaces opposite to the side to which the hot air was applied were in contact with each other. After the measurement, observe the nonwoven fabric on the sample holder side and judge the fluff condition using the following two criteria: the condition when the nonwoven fabric after measurement is viewed from directly above (surface condition), and the condition when the nonwoven fabric is viewed from the side after measurement. Evaluation was made based on the total condition (fuzziness) (out of 10 points). A total of 6 points or more is considered to indicate that fluff is suppressed. The evaluation test was conducted three times for each Example or Comparative Example, and the average value of the three evaluations was used as the fuzz evaluation for each Example or Comparative Example.
Surface condition 5: Very good (no surface disturbance)
4: Good (very little surface disturbance)
3: Normal (there is little disturbance on the surface and it is not noticeable)
2: Bad (there is a noticeable amount of surface disturbance)
1: Very bad (holes on the surface)
Fluffiness 5: Very good (no fluffing)
4: Good (very little fluff)
3: Normal (fuzz is not noticeable)
2: Bad (fuzziness is noticeable)
1: Very bad (a lot of fluff)
Regarding fluff, there are two evaluation methods: <Fuzz Evaluation> and <Fuzz Evaluation 2>, but a score of 3 or higher for <Fuzz Evaluation> is considered a pass, and a total of 6 or higher for <Fuzz Evaluation 2>. If so, you will pass. Further, if either <Fuzz Evaluation> or <Fuzz Evaluation 2> is passed, the fluff is considered to be passed. It is more preferable for fluff to pass both <Fuzz Evaluation> and <Fuzz Evaluation 2>.






Figure 2023182007000002
Figure 2023182007000002








Figure 2023182007000003
Figure 2023182007000003








Figure 2023182007000004
Figure 2023182007000004

実施例11~43及び81~86の不織布は、いずれも、セルロース系繊維と接着性繊維とを含み、前記接着性繊維とセルロース系繊維及び/又は接着性繊維との接着箇所を含み、前記セルロース系繊維とセルロース系繊維及び/又は接着性繊維との交絡箇所を含む。更に、実施例11~43及び81~86の不織布は、いずれも、(i)前記不織布の接着交点指数Aが1~60個/mmである、および/または(ii)前記不織布の厚さ減少率が30~45%である、という、特徴を有する。 The nonwoven fabrics of Examples 11 to 43 and 81 to 86 all contain cellulose fibers and adhesive fibers, include bonding locations between the adhesive fibers and the cellulose fibers and/or the adhesive fibers, and include the adhesive fibers and the cellulose fibers and/or the adhesive fibers. Includes intertwining locations of cellulosic fibers and cellulosic fibers and/or adhesive fibers. Furthermore, the nonwoven fabrics of Examples 11 to 43 and 81 to 86 all have (i) an adhesive intersection index A of the nonwoven fabric of 1 to 60 pieces/mm 2 , and/or (ii) a thickness of the nonwoven fabric. It is characterized by a reduction rate of 30 to 45%.

実施例11~43及び81~86の不織布は、接着箇所と交絡箇所の両方を含むので、毛羽の抑制が良好である。
更に、実施例11~43及び81~86の不織布は、上述の(i)及び(ii)のいずれかが、上述の特定の値を示すので、風合いが柔らかく、良好である。
従って、実施例11~43及び81~86の不織布は、毛羽の抑制及び風合いが良好であるという優れた性質を示す。
The nonwoven fabrics of Examples 11 to 43 and 81 to 86 contain both bonded areas and intertwined areas, and therefore suppress fluffing well.
Further, the nonwoven fabrics of Examples 11 to 43 and 81 to 86 have a soft and good texture because either (i) or (ii) above exhibits the above specific value.
Therefore, the nonwoven fabrics of Examples 11 to 43 and 81 to 86 exhibit excellent properties of suppressing fuzz and having good texture.

これに対し、比較例50~72の不織布は、毛羽の抑制及び風合いが決して良好ではない。例えば、比較例50~62は、接着箇所又は交絡箇所のいずれか片方しか有さない。そのため、毛羽の抑制が不十分である。比較例71~72は、接着箇所及び交絡箇所の両方を有するので、毛羽の抑制が良好であるが、(i)及び(ii)のいずれかが、上述の特定の値を示さないので、風合いが硬く、不十分である。 On the other hand, the nonwoven fabrics of Comparative Examples 50 to 72 do not have good fluff control or feel. For example, Comparative Examples 50 to 62 have only one of the bonded portion and the entangled portion. Therefore, the suppression of fuzz is insufficient. Comparative Examples 71 and 72 have both bonded areas and intertwined areas, so they suppress fluff well, but either (i) or (ii) does not exhibit the above-mentioned specific value, so the texture is poor. is hard and insufficient.

不織布の単位厚さ当たりの剛軟度について確認すると、実施例11~43及び81~86の不織布と比べて、比較例71および比較例72の不織布の値が大きく、実施例の不織布の方が風合いについて柔らかく、良好である。 When confirming the bending resistance per unit thickness of the nonwoven fabric, the values of the nonwoven fabrics of Comparative Example 71 and Comparative Example 72 are larger than those of the nonwoven fabrics of Examples 11 to 43 and 81 to 86, and the nonwoven fabric of Examples is higher. The texture is soft and good.

不織布の厚さ比について、混率が同じ実施例31~33と、比較例71~72とを確認すると、実施例の不織布に比べて比較例の不織布の値が大きく、実施例の不織布の方が風合いについて柔らかく、良好である。また、混率が同じ実施例31~33と、比較例50とを比べると、実施例の不織布に比べて比較例の不織布の値が小さく、実施例の不織布の方がへたりにくいものである。 Concerning the thickness ratio of the nonwoven fabric, when checking Examples 31 to 33 and Comparative Examples 71 to 72, which have the same blending ratio, the value of the nonwoven fabric of the comparative example is larger than that of the nonwoven fabric of the example, and the nonwoven fabric of the example is better. The texture is soft and good. Furthermore, when comparing Examples 31 to 33 and Comparative Example 50, which have the same blending ratio, the value of the nonwoven fabric of Comparative Example is smaller than that of the nonwoven fabric of Example, and the nonwoven fabric of Example is more resistant to sagging.

不織布の厚さ方向において3等分したときの真ん中における繊維接着点の角度について、混率が同じ実施例31と、比較例50および比較例71とを確認すると、実施例31の不織布に比べて比較例71の不織布の値が小さく、実施例の不織布の方が風合いについて柔らかく、良好である。また実施例31の不織布に比べて比較例50の不織布の値が大きく、実施例の不織布の方がへたりにくいものである。また接着性繊維として機械捲縮の繊維を使用した実施例84は角度の値が小さかったため、接着性繊維は立体捲縮を有する方が風合いをより柔らかくすることができると考えられる。 Regarding the angle of the fiber adhesion point in the middle when the nonwoven fabric is divided into three equal parts in the thickness direction, when comparing Example 31 with the same blend ratio, Comparative Example 50, and Comparative Example 71, it is found that the nonwoven fabric of Example 31 has a lower angle than the nonwoven fabric of Example 31. The nonwoven fabric of Example 71 has a smaller value, and the nonwoven fabric of Examples has a softer and better texture. Moreover, the value of the nonwoven fabric of Comparative Example 50 is larger than that of the nonwoven fabric of Example 31, and the nonwoven fabric of Example is more resistant to fading. Further, in Example 84 in which mechanically crimped fibers were used as the adhesive fibers, the angle value was small, so it is considered that the adhesive fibers having three-dimensional crimps can have a softer texture.

不織布の動摩擦力の変動係数について、水圧が同じ実施例11、21、31及び41と、比較例71とを確認すると、実施例の不織布が比較例の不織布に比べて値が小さく、実施例の不織布の方が不織布の表面が滑らかである。また水圧が同じ実施例12、22、32及び42と、比較例72とについても同様に実施例の不織布の方が不織布の表面が滑らかである。交絡工程の前に接着工程を行うことで繊維の交絡が適度となり不織布の表面を滑らかにすることができると推察される。特に実施例および比較例は繊維ウェブをパラレルカード機により製造したため、繊維がMD方向に比較的配向しており、交絡工程の前に接着工程を行うことで、繊維配向が比較的維持され、不織布の表面がより滑らかになったと推察される。 Concerning the coefficient of variation of the dynamic friction force of the nonwoven fabric, when comparing Examples 11, 21, 31, and 41 with the same water pressure and Comparative Example 71, it was found that the nonwoven fabric of the Example had a smaller value than the nonwoven fabric of the Comparative Example. Non-woven fabric has a smoother surface. Similarly, in Examples 12, 22, 32, and 42, and Comparative Example 72, which had the same water pressure, the surface of the nonwoven fabric of the Example was smoother. It is surmised that by performing the adhesion process before the entanglement process, the fibers can be entangled to an appropriate degree, and the surface of the nonwoven fabric can be made smooth. In particular, in the Examples and Comparative Examples, the fiber webs were manufactured using a parallel card machine, so the fibers were relatively oriented in the MD direction. By performing the adhesion process before the interlacing process, the fiber orientation was relatively maintained, and the nonwoven fabric It is assumed that the surface has become smoother.

実施例31の不織布について、不織布を横方向(より具体的には、不織布を処理した熱処理機及び水流処理機のベルトコンベアの進行方向と直交方向)に切断して、その切断面を走査電子顕微鏡(SEM、倍率:100倍)で観察した。図3は、不織布を厚さ方向に3等分したときの不織布の真ん中付近(内部)を拡大した切断部であり、実施例31の不織布は、不織布の内部において、接着性繊維による接着箇所が解消された接着剥離痕が接着性繊維に形成されていることがわかる。
実施例31の不織布について、不織布の表面および裏面を走査電子顕微鏡(SEM、倍率:100倍)で観察した。図4は、不織布の表面を観察したものであり、実施例31の不織布は、不織布の表面において、接着性繊維による接着箇所が解消された接着剥離痕が接着性繊維に形成されていることがわかる。また、図5は、不織布の裏面を観察したものであり、実施例31の不織布は、不織布の裏面において、接着性繊維による接着箇所が解消された接着剥離痕が接着性繊維に形成されていることがわかる。
The nonwoven fabric of Example 31 was cut in the transverse direction (more specifically, perpendicular to the traveling direction of the belt conveyor of the heat treatment machine and water treatment machine that treated the nonwoven fabric), and the cut surface was examined using a scanning electron microscope. (SEM, magnification: 100 times). Figure 3 is an enlarged cut portion of the nonwoven fabric near the middle (inside) when the nonwoven fabric is divided into three equal parts in the thickness direction. It can be seen that removed adhesive peeling marks are formed on the adhesive fiber.
Regarding the nonwoven fabric of Example 31, the front and back sides of the nonwoven fabric were observed using a scanning electron microscope (SEM, magnification: 100x). FIG. 4 shows an observation of the surface of the nonwoven fabric, and it can be seen that in the nonwoven fabric of Example 31, on the surface of the nonwoven fabric, adhesive peeling traces were formed on the adhesive fibers where the adhesive fibers had been removed. Recognize. In addition, FIG. 5 is an observation of the back side of the nonwoven fabric, and the nonwoven fabric of Example 31 has adhesive peeling marks formed in the adhesive fibers on the back side of the nonwoven fabric, where the bonded areas by the adhesive fibers have been removed. I understand that.

セルロース系繊維が異なる実施例31と実施例85とを比較すると、リヨセルを使用した実施例31がコットンを使用した実施例85よりも破断強力が高く、MD方向の10%、20%、30%伸長時応力が高かった。また毛羽評価も実施例31が高かった。リヨセルは繊度及び繊維長のばらつきが極めて小さく、不織布強力や毛羽が比較的良好になったと推測される。 Comparing Example 31 and Example 85, which use different cellulose fibers, Example 31 using Lyocell has higher breaking strength than Example 85 using cotton, with a strength of 10%, 20%, and 30% in the MD direction. The stress during elongation was high. In addition, Example 31 also had a high fuzz evaluation. Lyocell has extremely small variations in fineness and fiber length, and it is presumed that the nonwoven fabric has relatively good strength and fluff.

またセルロース系繊維が異なる実施例31と実施例86とを比較すると、リヨセルを使用した実施例31が撥水性を有するレーヨンを使用した実施例86よりも破断強力が高く、10%、20%、30%伸長時応力が高かった。また毛羽評価も実施例31が高かった。沈降速度が4秒程度であるリヨセルは撥水性を有するレーヨンと比べ柱状水流による交絡が比較的強くなるため、不織布強力や毛羽が比較的良好になったと推測される。一方、実施例86は実施例31よりも最大摩擦力及び動摩擦力が低く、不織布表面の滑り性が比較的良好であった。 Furthermore, when comparing Example 31 and Example 86, which use different cellulose fibers, Example 31 using Lyocell has higher breaking strength than Example 86 using water-repellent rayon, by 10%, 20%, The stress was high at 30% elongation. In addition, Example 31 also had a high fuzz evaluation. Lyocell, which has a sedimentation speed of about 4 seconds, is more entangled by columnar water currents than water-repellent rayon, so it is presumed that this is why the nonwoven fabric has relatively good strength and fluff. On the other hand, Example 86 had lower maximum frictional force and kinetic frictional force than Example 31, and had relatively good slipperiness on the surface of the nonwoven fabric.

接着性繊維の鞘成分が異なる実施例31と実施例84とを比較すると、実施例84はMD方向の10%、20%、30%伸長時応力がいずれも高かった。エチレン-アクリル酸共重合体のようなセルロース系繊維との接着性が高い樹脂を鞘成分に用いることで不織布の強力が向上すると推測される。 Comparing Example 31 and Example 84 in which the sheath components of the adhesive fibers were different, Example 84 had high stress at 10%, 20%, and 30% elongation in the MD direction. It is presumed that the strength of the nonwoven fabric is improved by using a resin with high adhesiveness to cellulose fibers, such as ethylene-acrylic acid copolymer, as the sheath component.

積層構造の中で、不織布の製造方法が少し異なる実施例82と実施例83とを比較すると、実施例83の方が毛羽の評価が良かった。熱風を当てた方の層は反対側の層(支持体に接触している層)よりも繊維密度が小さくなる傾向であり、柱状水流による交絡が比較的進む。一方で反対側の層は比較的交絡が進みにくいため、反対側の層においてセルロース系繊維の含有量が多い方が交絡が比較的強く行われ、毛羽立ちにくくなると推測される。 When comparing Example 82 and Example 83, which have a laminated structure and have a slightly different method of manufacturing the nonwoven fabric, Example 83 had a better fluff evaluation. The layer to which the hot air was applied tends to have a lower fiber density than the layer on the opposite side (the layer in contact with the support), and entanglement by the columnar water flow is relatively advanced. On the other hand, since the layer on the opposite side is relatively difficult to entangle, it is presumed that the higher the content of cellulose fibers in the layer on the opposite side, the more strongly the entanglement will occur and the less likely it will become fluffy.

本開示は、以下の態様を含む。
(態様1)
セルロース系繊維と接着性繊維とを含む不織布であって、
前記接着性繊維とセルロース系繊維及び/又は接着性繊維との接着箇所を含み、
前記セルロース系繊維とセルロース系繊維及び/又は接着性繊維との交絡箇所を含み、
前記不織布の接着交点指数Aが1~60個/mmである、
不織布。
(態様2)
セルロース系繊維と接着性繊維とを含む不織布であって、
前記接着性繊維とセルロース系繊維及び/又は接着性繊維との接着箇所を含み、
前記セルロース系繊維とセルロース系繊維及び/又は接着性繊維との交絡箇所を含み、
前記不織布の厚さ減少率が30~45%である、
不織布。
(態様3)
前記セルロース系繊維が25~75質量%含まれる、態様1または2のいずれかに記載の不織布。
(態様4)
セルロース系繊維と接着性繊維とを含む不織布の製造方法であって、前記接着性繊維により繊維同士を接着させる接着工程と、前記接着工程の後に繊維同士を交絡させる交絡工程とを含む、不織布の製造方法。
(態様5)
前記接着工程と前記交絡工程との間に冷却工程を含む、態様4に記載の不織布の製造方法。
(態様6)
前記交絡工程が、水流交絡処理を含む、態様4または5に記載の不織布の製造方法。
(態様7)
前記接着工程が熱風加工処理を含み、前記水流交絡工程において、熱風を吹き付けた側から先に柱状水流を噴射することを含む、態様6に記載の不織布の製造方法。
(態様8)
前記水流交絡処理の後に乾燥工程を含み、前記乾燥工程の温度が、接着性繊維の接着成分の軟化または溶融する温度よりも10℃以上低い温度であることを含む、態様6または7に記載の不織布の製造方法。
(態様9)
前記水流交絡処理の後に乾燥工程を含み、
前記接着性繊維は、接着成分の融点または軟化点が異なる二以上の接着性繊維を含み、
融点または軟化点がより高い熱接着成分の融点または軟化点T(℃)と、融点または軟化点がより低い熱接着成分の融点または軟化点T(℃)と、乾燥処理の温度T(℃)とが、T≦T<Tの関係を満たす、態様6または7に記載の不織布の製造方法。
The present disclosure includes the following aspects.
(Aspect 1)
A nonwoven fabric containing cellulose fibers and adhesive fibers,
Including a bonding point between the adhesive fiber and the cellulose fiber and/or the adhesive fiber,
Including an intertwined part of the cellulose fiber with the cellulose fiber and/or the adhesive fiber,
The adhesive intersection index A of the nonwoven fabric is 1 to 60 pieces/mm 2 .
Non-woven fabric.
(Aspect 2)
A nonwoven fabric containing cellulose fibers and adhesive fibers,
Including a bonding point between the adhesive fiber and the cellulose fiber and/or the adhesive fiber,
Including an intertwined part of the cellulose fiber with the cellulose fiber and/or the adhesive fiber,
The thickness reduction rate of the nonwoven fabric is 30 to 45%,
Non-woven fabric.
(Aspect 3)
The nonwoven fabric according to any one of aspects 1 or 2, containing 25 to 75% by mass of the cellulose fibers.
(Aspect 4)
A method for producing a nonwoven fabric containing cellulose fibers and adhesive fibers, the method comprising: an adhesion step of adhering fibers to each other using the adhesive fibers; and an entangling step of intertwining the fibers after the adhesion step. Production method.
(Aspect 5)
The method for producing a nonwoven fabric according to aspect 4, including a cooling step between the bonding step and the entangling step.
(Aspect 6)
The method for producing a nonwoven fabric according to aspect 4 or 5, wherein the entangling step includes hydroentangling treatment.
(Aspect 7)
The method for producing a nonwoven fabric according to aspect 6, wherein the bonding step includes hot air processing, and the hydroentangling step includes spraying a columnar water stream first from the side to which the hot air is blown.
(Aspect 8)
According to aspect 6 or 7, the method includes a drying step after the hydroentangling treatment, and the temperature of the drying step is 10° C. or more lower than the softening or melting temperature of the adhesive component of the adhesive fiber. Method of manufacturing nonwoven fabric.
(Aspect 9)
comprising a drying step after the hydroentangling treatment,
The adhesive fibers include two or more adhesive fibers whose adhesive components have different melting points or softening points,
The melting point or softening point T 1 (°C) of the thermal adhesive component with a higher melting point or softening point, the melting point or softening point T 2 (°C) of the thermal adhesive component with a lower melting point or softening point, and the drying temperature T ( C) satisfies the relationship of T2 ≦T< T1 .

本開示の不織布は、毛羽の抑制が不十分である及び風合いが硬い等の問題の少なくとも一つを緩和し、好ましくは解決し、例えば吸収性物品等の人の肌に直接触れる用途に使用することができる。

関連出願
尚、本出願は、2018年2月5日に日本国でされた出願番号2018-018501に基づいて、パリ条約第4条に基づく優先権を主張する。この基礎出願の内容は、参照することによって、本明細書に組み込まれる。
The nonwoven fabric of the present disclosure alleviates and preferably solves at least one of the problems such as insufficient fuzz control and hard texture, and can be used in applications that come into direct contact with human skin, such as absorbent articles. be able to.

Related Applications This application claims priority based on Article 4 of the Paris Convention, based on application number 2018-018501 filed in Japan on February 5, 2018. The contents of this basic application are incorporated herein by reference.

Claims (9)

セルロース系繊維と接着性繊維とを含む不織布であって、
前記接着性繊維とセルロース系繊維及び/又は接着性繊維との接着箇所を含み、
前記セルロース系繊維とセルロース系繊維及び/又は接着性繊維との交絡箇所を含み、
前記不織布の接着交点指数Aが1~60個/mmである、
不織布。
A nonwoven fabric containing cellulose fibers and adhesive fibers,
Including a bonding point between the adhesive fiber and the cellulose fiber and/or the adhesive fiber,
Including an intertwined portion of the cellulose fiber with the cellulose fiber and/or the adhesive fiber,
The adhesive intersection index A of the nonwoven fabric is 1 to 60 pieces/mm 2 .
Non-woven fabric.
セルロース系繊維と接着性繊維とを含む不織布であって、
前記接着性繊維とセルロース系繊維及び/又は接着性繊維との接着箇所を含み、
前記セルロース系繊維とセルロース系繊維及び/又は接着性繊維との交絡箇所を含み、
前記不織布の厚さ減少率が30~45%である、
不織布。
A nonwoven fabric containing cellulose fibers and adhesive fibers,
Including a bonding point between the adhesive fiber and the cellulose fiber and/or the adhesive fiber,
Including an intertwined part of the cellulose fiber with the cellulose fiber and/or the adhesive fiber,
The thickness reduction rate of the nonwoven fabric is 30 to 45%,
Non-woven fabric.
前記セルロース系繊維が25~75質量%含まれる、請求項1または2のいずれかに記載の不織布。 The nonwoven fabric according to claim 1 or 2, wherein the cellulose fiber is contained in an amount of 25 to 75% by mass. セルロース系繊維と接着性繊維とを含む不織布の製造方法であって、前記接着性繊維により繊維同士を接着させる接着工程と、前記接着工程の後に繊維同士を交絡させる交絡工程とを含む、不織布の製造方法。 A method for producing a nonwoven fabric containing cellulose fibers and adhesive fibers, the method comprising: an adhesion step of adhering fibers to each other using the adhesive fibers; and an entangling step of intertwining the fibers after the adhesion step. Production method. 前記接着工程と前記交絡工程との間に冷却工程を含む、請求項4に記載の不織布の製造方法。 The method for manufacturing a nonwoven fabric according to claim 4, comprising a cooling step between the bonding step and the entangling step. 前記交絡工程が、水流交絡処理を含む、請求項4または5に記載の不織布の製造方法。 The method for manufacturing a nonwoven fabric according to claim 4 or 5, wherein the entangling step includes hydroentangling treatment. 前記接着工程が熱風加工処理を含み、前記水流交絡工程において、熱風を吹き付けた側から先に柱状水流を噴射することを含む、請求項6に記載の不織布の製造方法。 7. The method for producing a nonwoven fabric according to claim 6, wherein the bonding step includes hot air processing, and the hydroentangling step includes spraying a columnar water stream first from the side to which the hot air is blown. 前記水流交絡処理の後に乾燥工程を含み、前記乾燥工程の温度が、接着性繊維の接着成分の軟化または溶融する温度よりも10℃以上低い温度であることを含む、請求項6または7に記載の不織布の製造方法。 8. A drying step is included after the hydroentangling treatment, and the temperature of the drying step is 10° C. or more lower than the softening or melting temperature of the adhesive component of the adhesive fiber. method for producing nonwoven fabric. 前記水流交絡処理の後に乾燥工程を含み、
前記接着性繊維は、接着成分の融点または軟化点が異なる二以上の接着性繊維を含み、
融点または軟化点がより高い接着成分の融点または軟化点T(℃)と、融点または軟化点がより低い接着成分の融点または軟化点T(℃)と、乾燥処理の温度T(℃)とが、T≦T<Tの関係を満たす、請求項6または7に記載の不織布の製造方法。
comprising a drying step after the hydroentangling treatment,
The adhesive fibers include two or more adhesive fibers whose adhesive components have different melting points or softening points,
The melting point or softening point T 1 (°C) of the adhesive component with a higher melting point or softening point, the melting point or softening point T 2 (°C) of the adhesive component with a lower melting point or softening point, and the temperature T (°C) of the drying process. The method for manufacturing a nonwoven fabric according to claim 6 or 7, wherein: T 2 ≦T < T 1 .
JP2023179585A 2018-02-05 2023-10-18 Nonwoven fabric and nonwoven fabric manufacturing method Pending JP2023182007A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018018501 2018-02-05
JP2018018501 2018-02-05
JP2019569638A JP7395102B2 (en) 2018-02-05 2019-02-05 Nonwoven fabric and nonwoven fabric manufacturing method
PCT/JP2019/003975 WO2019151527A1 (en) 2018-02-05 2019-02-05 Non-woven fabric and method for manufacturing non-woven fabric

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019569638A Division JP7395102B2 (en) 2018-02-05 2019-02-05 Nonwoven fabric and nonwoven fabric manufacturing method

Publications (2)

Publication Number Publication Date
JP2023182007A true JP2023182007A (en) 2023-12-25
JP2023182007A5 JP2023182007A5 (en) 2024-03-06

Family

ID=67479412

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019569638A Active JP7395102B2 (en) 2018-02-05 2019-02-05 Nonwoven fabric and nonwoven fabric manufacturing method
JP2023179585A Pending JP2023182007A (en) 2018-02-05 2023-10-18 Nonwoven fabric and nonwoven fabric manufacturing method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019569638A Active JP7395102B2 (en) 2018-02-05 2019-02-05 Nonwoven fabric and nonwoven fabric manufacturing method

Country Status (3)

Country Link
JP (2) JP7395102B2 (en)
TW (1) TW201940773A (en)
WO (1) WO2019151527A1 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI110326B (en) * 1995-06-06 2002-12-31 Bki Holding Corp A process for making a nonwoven fabric
JP4103269B2 (en) 1999-10-19 2008-06-18 チッソ株式会社 Stretched nonwoven fabric and molded product using the same
FR2824083B1 (en) * 2001-04-26 2003-10-31 Interplume FEATHER-BASED TRIMMING PRODUCT, PROCESS FOR PREPARING THE SAME, AND INSTALLATION FOR CARRYING OUT THE METHOD
JP4804118B2 (en) 2004-12-17 2011-11-02 ダイワボウホールディングス株式会社 Laminated sheet and method for producing the same
JP4799363B2 (en) * 2006-10-24 2011-10-26 花王株式会社 Nonwoven manufacturing method
JP6423578B2 (en) 2012-01-25 2018-11-14 ダイワボウホールディングス株式会社 Laminated nonwoven fabric, method for producing the same, and nonwoven fabric product using the same
JP6024915B2 (en) * 2013-03-28 2016-11-16 Jnc株式会社 Nonwoven fabric and products obtained using the same
JP6190260B2 (en) * 2013-12-09 2017-08-30 花王株式会社 Nonwoven manufacturing method
JP6285737B2 (en) * 2014-02-06 2018-02-28 ダイワボウホールディングス株式会社 Non-woven fabric for wet sheet, wet wiping sheet, and liquid-impregnated skin coating sheet
JP6654866B2 (en) 2014-11-13 2020-02-26 ダイワボウホールディングス株式会社 Nonwoven fabric, method for producing the same, and sheet for absorbent article
EP3216433B1 (en) 2016-03-08 2018-11-21 The Procter and Gamble Company Carded nonwoven fibrous web and use in absorbent articles

Also Published As

Publication number Publication date
WO2019151527A1 (en) 2019-08-08
CN111971430A (en) 2020-11-20
JPWO2019151527A1 (en) 2021-01-14
TW201940773A (en) 2019-10-16
JP7395102B2 (en) 2023-12-11

Similar Documents

Publication Publication Date Title
JP5599544B2 (en) Cosmetic and / or dermatological personal care and / or cleansing absorbent product comprising at least one absorbent sheet
US20170203542A1 (en) Nonwoven composite including natural fiber web layer and method of forming the same
JP4592516B2 (en) Liquid-impregnated skin-covering sheet, method for producing the same, and face mask using the same
JP4722222B2 (en) Cosmetic sheet and method for producing the same
KR20070028433A (en) Looped nonwoven web
JP4721788B2 (en) Laminated nonwoven fabric and method for producing the same
JP2019170756A (en) Nonwoven fabric for liquid-impregnated skin coat sheets and liquid-impregnated skin coat sheet
JP2024028291A (en) Nonwoven fabric for absorbent articles and its manufacturing method
JP2021023669A (en) Non-woven fabric for liquid impregnated skin covering sheet, manufacturing method therefor, liquid impregnated skin covering sheet, and face mask
JP7395102B2 (en) Nonwoven fabric and nonwoven fabric manufacturing method
JP2003336160A (en) Napped nonwoven fabric, method for producing the same and fiber product using the same
JP2022058301A (en) Laminated non-woven fabric for liquid impregnated skin cover sheet and its manufacturing method, liquid impregnated skin cover sheet, as well as face mask
CN111971430B (en) Nonwoven fabric and method for producing nonwoven fabric
JP2002263043A (en) Nonwoven fabric for wiping
WO2019200371A1 (en) Nonwoven composite including cotton fiber web layer and method of forming the same
JP7374405B2 (en) Non-woven fabric for liquid-impregnated skin covering sheets and liquid-impregnated skin covering sheets
JP2000054251A (en) Nonwoven fabric and absorbing article using the same
JP2021025193A (en) Nonwoven fabric and method for producing the same, and wiper
JP2023051889A (en) Laminated nonwoven fabric and manufacturing method thereof, liquid-impregnated skin-covering sheet, and face mask
JP2023051885A (en) Laminated nonwoven fabric and manufacturing method thereof, liquid-impregnated sheet, liquid-impregnated skin-covering sheet, and face mask
JP2022122854A (en) Nonwoven fabric for absorbent articles and method of producing the same, and top-sheet for absorbent articles and absorbent article containing the same
JP2023010384A (en) Nonwoven fabric for liquid impregnated skin covering sheet and manufacturing method thereof, liquid impregnated skin covering sheet, and face mask
JP2021177019A (en) Nonwoven fabric and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240221