JP2023179112A - 無線送信装置及び無線受信装置 - Google Patents

無線送信装置及び無線受信装置 Download PDF

Info

Publication number
JP2023179112A
JP2023179112A JP2022092200A JP2022092200A JP2023179112A JP 2023179112 A JP2023179112 A JP 2023179112A JP 2022092200 A JP2022092200 A JP 2022092200A JP 2022092200 A JP2022092200 A JP 2022092200A JP 2023179112 A JP2023179112 A JP 2023179112A
Authority
JP
Japan
Prior art keywords
signal
pilot
phase noise
unit
ofdm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022092200A
Other languages
English (en)
Inventor
典史 神谷
Norifumi Kamiya
衛 佐和橋
Mamoru Sawahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2022092200A priority Critical patent/JP2023179112A/ja
Priority to US18/204,686 priority patent/US20230396476A1/en
Publication of JP2023179112A publication Critical patent/JP2023179112A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

【課題】誤り率の劣化を低減できる、無線送信装置及び無線受信装置を提供する。【解決手段】無線送信装置にてOFDM信号形成部は、パイロット配置パタンによってパイロット信号を配置することによってOFDM信号を形成する。パイロット配置パタンでは、NPilot_Freqサブキャリア間隔の複数のパイロット配置サブキャリアのうちでNPilot_SPAサブキャリア間隔の複数の第1パイロット配置サブキャリアでは、全てのリソースエレメントに、位相雑音推定用のパイロット信号が配置される。情報シンボルとパイロットシンボルとは異なるリソースエレメントにマッピングされる。NPilot_Freqサブキャリア間隔の複数のパイロット配置サブキャリアのうちで複数の第1パイロット配置サブキャリアを除く複数の第2パイロット配置サブキャリアでは、時間領域におけるNPilot_Time個のリソースエレメント周期で、位相雑音推定用のパイロット信号が配置される。【選択図】図5

Description

本開示は、無線送信装置及び無線受信装置に関する。
4G Long Term Evolution(LTE)及びLTE-Advancedの急速な普及に伴い、本格的なモバイルブロードバンドサービスの提供が実現可能になっている。セルラネットワークにおける急増するトラヒックに対応するため、第5世代(5G)New Radio(NR)方式では、LTEに比較して一層の超高速・大容量化、及び周波数利用効率の増大が必要である。マクロセルの中の不均一なトラヒックを効率的に収容する小セルをオーバーレイするヘテロジーニアスネットワークに加えて、高効率な無線アクセス技術が必要である。ユーザ端末(UE:User Equipment)にギガビット級のサービスを実現する超高速・大容量の無線アクセスネットワークに加えて、基地局とEvolved Packet Core (EPC)ネットワークのServing-Gateway(S-GW)との間のバックホールの一層の超高速・大容量化が必要である。バックホールリンクは、E1/T1専用線、光ファイバネットワーク、マイクロ波の無線バックホールなどで構成される。無線バックホールは、有線のバックホールに比較してネットワークコストを低くできるメリットがある。遠隔無線機(RRE:Remote Radio Equipment)で構成される基地局と、ベースバンドの物理レイヤ及び上位レイヤの処理を行う集中基地局とを含む構成において、RREと集中基地局との間を接続するフロントホールの場合も同様である。
無線バックホールでは、ミリ波帯の周波数スペクトルが適用されている。5G NR方式では、アクセスリンクにも広帯域な周波数が確保できるミリ波帯の周波数スペクトルの適用が検討されている。そして、日本国内では、28 GHz帯の周波数スペクトルの割り当てが行われている。ミリ波帯の周波数スペクトルでは、基地局、及びユーザ端末のローカル発振器の周波数揺らぎに起因する位相雑音が、誤り率の劣化を生じさせることがある。周波数安定度が非常に高いローカル発振器(周波数シンセサイザ)はコストが高い。このため、送信機のローカル発振器で生じる位相雑音は、送信あるいは受信の信号処理で推定・補償する方法が一般的なアプローチである。また、受信機のローカル発振器で生じる位相雑音は、受信信号処理で推定・補償する方法が一般的なアプローチである。
ローカル発振器で生じる位相雑音は、離散時間のWienerプロセスでモデル化されている。サンプルタイミングkにおける位相雑音はθ=θk-1+Δで表される。Δは、平均0、分散
Figure 2023179112000002
のガウス分布のランダム変数である。
位相雑音を推定するためには、パイロット信号が必要である。このパイロット信号は、変調の位相及び振幅が、受信機によって既知である。位相雑音は、時間領域においてサンプルタイミング毎に変動する。このため、時間領域の全てのシンボルに連続的にパイロット信号を多重する方法が望ましい。一方で、全てのシンボルで連続にパイロット信号を多重するとパイロット信号の挿入損失(つまりオーバヘッド)が増大し、周波数利用効率の劣化を招く。
ミリ波帯の周波数スペクトルにおける誤り率の主な劣化要因として、位相雑音に加えて、マルチパスフェージングに起因する波形歪みがある。無線アクセスリンクは、主に見通し外(NLOS:None-Line-of-Sight)伝搬路によって特徴づけられる。NLOS伝搬路では、遅延時間の異なる各パスは、独立なレイリーフェージングを受ける伝搬路によってモデル化されている。レイリーフェージングを受けた信号の振幅及び位相は、ランダムに変動する。振幅はレイリー分布によって近似でき、また、位相は一様分布によって近似できる、ことが知られている。遅延時間の異なる複数パスが合成されると、時変の周波数選択性を有する周波数選択性フェージングが生じる。一方、無線バックホールリンクは、一般に直接波が存在する見通し内(LOS:Line-of-Sight)伝搬路になる。アンテナ高が高くサイト間距離が長い無線バックホールリンクでは、直接波に加えて、地面等からの反射により生じる遅延波が受信される。遅延波に起因してマルチパスフェージング(つまり、周波数選択性フェージング)が生じる。サイト間距離が長い場合は、シンボル長に比較して地面からの反射に起因する遅延波の遅延時間は短い。このため、周波数領域では、大きなノッチが生じる。さらに、ヘテロジーニアスネットワーク(HetNet: Heterogeneous Network)におけるマクロセルサイトと小セルサイトとのバックホールリンクでは、小セルサイトのアンテナ高が低い。このため、直接波に加えて、小セルサイト周辺の建物等の反射、散乱により遅延時間の大きな遅延波が受信され、この遅延波に起因するマルチパスフェージングが生じる。以上のように、無線アクセスリンク及び無線バックホールリンクともに、周波数選択性を有するマルチパスフェージングが生じる。このため、シンボル間干渉(ISI:Inter-Symbol Interference)に起因する波形歪みを補償するために、受信機では、等化器(Equalizer)が必要になる。等化器は、時間領域等化器(TDE:Time Domain Equalizer)と周波数領域等化器(FDE:Frequency Domain Equalizer)とに分類される。
無線バックホールでは、一般に、TDEがよく用いられてきた。TDEは、図1に示すトランスバーサル(Transversal)フィルタ、あるいはFinite Impulse Response(FIR)フィルタで実現できる。遅延波の最大遅延時間以上のタップ数を有するトランスバーサルフィルタが、離散時間のサンプル処理に対して、用いられる。トランスバーサルフィルタの重み係数(等化ウエイト)を、時間変動する遅延波に対して適応アルゴリズムを用いて更新する。重み係数の制御には、等化後の信号の平均2乗誤差最小(MMSE:Minimum Mean Square Error)規範等が用いられる。TDEでは、遅延波(マルチパス)の最大遅延時間に比較して十分長い時間範囲のタップ数が必要になる。図1に示すように、TDEは、各サンプル値についてのタップ数分の複素乗算を含む、畳込み処理が必要である。従って、遅延波の最大遅延時間の増大に伴ってタップ数が増大し、畳込み処理の演算量が膨大になる。
時間領域等化器の演算量を低減するため、FDEが提案されている(例えば、非特許文献1)。図2にFDEの構成を示す。時間領域の受信信号を、離散フーリエ変換(DFT: Discrete Fourier Transform)あるいは高速フーリエ変換(FFT:Fast Fourier Transform)により、周波数領域信号に変換する。時間領域のFFTのサンプル数は、周波数領域信号のサブキャリア数に対応する。本明細書では、シングルキャリア信号をFFTにより周波数領域信号に変換したときの周波数成分を、「サブキャリア」と称することがある。そして、周波数領域の各サブキャリア成分に、等化ウエイト(重み係数)を乗算する。そして、サブキャリアkにおける複素のチャネル応答をhで表した場合、平均2乗誤差最小(MMSE)規範の等化ウエイトは、次の式(1)で表される。
Figure 2023179112000003
式(1)において、*は、複素共役を表し、σ は、雑音電力を表し、σ は、希望波信号電力を表す。
等化後の信号は、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)あるいは逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)により、時間領域信号に変換される。FDEは、FFT(DFT)及びIFFT(IDFT)が必要であるものの、各サブキャリア位置の等化処理が乗算処理で実現される。このため、TDEに比較して全体の演算量を低減できる。従って、LTEの上りリンクのシングルキャリアFDMA(Frequency Division Multiple Access)では、FDEの適用を前提とした無線インタフェースが採用されている。
TDE及びFDEともに、伝搬路推定のためのパイロット信号が必要である。OFDMAを用いる3GPP(登録商標)のNR無線インタフェースでは、復調(等化を含む)用の参照信号及び受信品質測定用の参照信号が規定されている。復調(等化を含む)用の参照信号は、復調用参照信号(DM-RS: Demodulation Reference Signal)と呼ばれ、受信品質測定用の参照信号は、チャネル状態推定用参照信号(CSI-RS:Channel State Information Reference Signal)と呼ばれている。
また、NR無線インタフェースでは、OFDMAにおける位相雑音及び周波数オフセットの推定用の位相トラッキング参照信号(PTRS:Phase Tracking Reference Signal)が規定されている。図3にNR無線インタフェースにおけるPTRS多重法を示す。このPTRS多重法は、非特許文献2に開示されている。周波数領域では、最小12サブキャリア間隔でPTRSが多重される。位相雑音は、OFDMのサンプル単位で時間変動する。このため、時間領域では、PTRSは密に多重されている。変調方式及び符号化スキーム(MCS: Modulation and Coding Scheme)に応じてPTRSの時間領域の多重密度を決めるための、4つのしきい値が規定されている。MCSインデックスIMCSがptrs-MCS1よりも低い場合には、PTRSは、多重されない。また、ptrs-MCS1≦IMCS≦ptrs-MCS2の場合には、4OFDMシンボル毎にPTRSが多重される。また、ptrs-MCS2≦IMCS≦ptrs-MCS3の場合には、2OFDMシンボル毎にPTRSが多重される。また、ptrs-MCS3≦IMCS≦ptrs-MCS4の場合には、時間領域で連続して全てのOFDMシンボル位置に、PTRSが多重されることが規定されている。
シングルキャリアFDMA信号の周波数割り当て(マッピング)を周波数領域処理で行うDFT-spread OFDMがLTEの上りリンクで採用されている。NR無線インタフェースでは、上りリンクにおける1ストリーム送信の場合にDFT-spread OFDMが採用されている。DFT-spread OFDMは、シングルキャリアであるため、OFDMAに比較してピーク電力対平均電力比(PAPR:Peak-to-Average Power Raito)を低くできるメリットを有している。従って、DFT-spread OFDMでは、電力増幅器(PA:Power Amplifier)の送信バックオフを低く設定できるため、平均電力を高くできる。このため、DFT-spread OFDMは、ピーク電力が同じPAを用いた場合、OFDMAに比べて、電波の到達距離が長く、カバレッジエリアが広い。DFT-spread OFDMでは、低いPAPRを実現するために、通常、パイロットシンボルは、情報シンボル間に時間分割多重(TDM:Time Division Multiplexing)される。パイロットシンボルの挿入損失が10%程度であると仮定すると、10シンボルに1パイロットシンボルを多重することになる。シンボル長が短い場合には、マルチパスフェージングに起因する伝搬路変動には十分追従できる。従って、LTE及びNR無線インタフェースのDMRSにはTDMが採用されている。しかしながら、位相雑音の推定には、挿入損失が10%程度のTDM型パイロットシンボルは追従できない。位相雑音の推定に追従できるようにするためには、時間領域でより密にパイロットシンボルを多重する必要がある。しかしながら、TDM型パイロットシンボル多重では、挿入損失が大幅に増大してしまい、周波数利用効率が大幅に劣化してしまう。
そこで、シングルキャリアのDFT-spread OFDMおいて、時間方向に連続して多重する周波数分割多重(FDM: Frequency Division Multiplexing)型のパイロットシンボル多重が提案されている(非特許文献3)。図4Aに、周波数領域重畳パイロット多重(FDSPT:Frequency Domain Superimposed Pilot Technique)法を、図4Bに、周波数拡張パイロット多重(FET:Frequency Expanding Technique)法を示す。FDSPTでは、情報シンボルに、周波数領域において一定のトーン間隔でパイロットシンボルを重畳させる。ここで、トーンは、OFDMAにおけるサブキャリアに相当する。パイロットシンボルは、時間領域では連続するシンボルに多重される。パイロットシンボルが情報シンボルと同じリソースエレメント(RE:Resource Element)に多重されるため、情報シンボルの帯域の効率は低下しない。一方、パイロットシンボルからの干渉により、情報シンボルの若干の誤り率の劣化、及びPAPRの増大を招く。情報シンボルの誤り率の劣化は、誤り訂正符号化の適用で低く抑えられる。このため、むしろ情報シンボルがパイロットシンボルに与える干渉が、位相雑音の推定精度の劣化を生じさせる。そこで、パイロットシンボルが重畳されるトーン位置の情報シンボルの送信電力を低減する方法が提案されている。FETでは、パイロットシンボルと情報シンボルとは直交多重されるため、相互干渉は受けないが、パイロットシンボルの挿入損失の分、情報シンボルの帯域効率は劣化する。FDSPT、FETともに、TDM型パイロットシンボル多重に比較して、PAPRの増大が生じる。
D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, "Frequency domain equalization for single-carrier broadband wireless systems," IEEE Commun. Mag., vol 40, no. 4, pp. 58-66, April 2002. 3GPP TS 38.211, NR; Physical channels and modulation (Release 16), V16.7.0, Sept. 2021. C.-T. Lam, D. D. Falconer, F. Danilo-Lemoine, and R. Dinis, "Channel Estimation for SC-FDE Systems Using Frequency Domain Multiplexed Pilots," Proc. IEEE VTC2006-Fall, Sept. 2006. R. A. Casas, S. L. Biracree, and A. E. Youtz, "Time domain phase noise correction for OFDM signals," IEEE Transactions on Broadcasting, vol. 48, no. 3, pp. 230 - 236, Sept. 2002. U. Sorger, I. De Broeck, and M. Schnell, "Interleaved FDMA - a new spread-spectrum multiple-access scheme," Proc. 1998 IEEE International Conference on Communications. Conference, ICC '98, June 1998. D. C. Chu, "Polyphase codes with good periodic correlation properties," IEEE Trans. Inform. Theory, vol. IT-18, pp. 531 - 532, July 1972. S. Suyama, J. Onodera, H. Suzuki, and K. Fukawa, "Decision-directed phase noise compensation for millimeter-wave single carrier transmission systems with frequency-domain equalization," Proc. 2009 European Wireless Technology Conference. N. Kamiya and E. Sasaki, "Pilot-Symbol Assisted and Code-Aided Phase Error Estimation for High-Order QAM Transmission," IEEE Trans. on Commun., vol. 61, no. 10, pp. 4369-4380, Oct. 2013. S. Wu and Y. Bar-Ness, "A phase noise suppression algorithm for OFDM-based WLANs," IEEE Commun. Lett., vol. 6, no. 12, pp. 535-537, Dec. 2002. D. Petrovic, W. Rave, and G. Fettweis, "Effects of phase noise in OFDM systems with and withput PLL: characterixation and compensation," IEEE Trans. on Commun., vol. 55, no. 8, pp. 1607-1616, Aug. 2007.
LTE無線インタフェースでは最大20 MHzのシステム帯域(基地局における送信帯域,あるいは受信帯域)が規定されている。LTEの高度化方式であるLTE-Advanced(3GPP Releaase 11仕様)では、LTEのシステム帯域をコンポーネントキャリア(CC: Component Carrier)として複数のCCを合成するキャリアアグリゲーション(CA:Carrier Aggregation)により、最大100 MHzまでのシステム帯域が規定されている。
NR無線インタフェースでは、LTEのサブキャリア間隔をスケーラブルに拡張して、最大400 MHzのシステム帯域が規定されている。ユーザ端末当たりの割り当て帯域幅は、システム帯域に比較して狭帯域であるものの、システム帯域の広帯域化に従って、ユーザ端末当たりの割り当て帯域も広帯域化する。5G方式では、広帯域な周波数が確保できるミリ波帯の周波数スペクトルの使用が想定されており、日本国内4キャリアへの28GHz帯の周波数の割り当てが既に行われている。さらに、高い周波数の適用が想定され、Beyond 5G(6G)式では1THzまでの周波数スペクトルの適用が想定されている。無線バックホールリンクは、既にミリ波帯の周波数スペクトルが用いられており、より広帯域な周波数が確保できる高周波数スペクトルの適用が想定されている。
ミリ波帯の周波数スペクトルにおける主な誤り率の劣化要因は、遅延波からのマルチパス干渉に起因する波形歪み、並びに、基地局、及びユーザ端末のローカル発振器で生じる周波数揺らぎ及びジッタ(時間領域の揺らぎ)に起因する位相雑音である。
ローカル発振器で生じる位相雑音の推定には、パイロット信号を用いる。位相雑音は、OFDM信号の場合はサンプル単位で、DFT-spread OFDMの場合はシングルキャリアシンボル単位で変動するため、パイロット信号は時間領域で密に多重する必要がある。位相雑音補償方法は、時間領域あるいは周波数領域処理の位相雑音推定・補償法が多数公開されている(例えば非特許文献4-10)。
各シンボルは先行シンボルからのマルチパス干渉、即ち、シンボル間干渉に起因する波形歪みを受ける。シンボル間干渉に起因する波形歪みの等化には時間領域等化(TDE:Time Domain Equalizer)あるいは周波数領域等化(FDE:Frequency Domain Equalizer)が用いられる。TDEの等化重み係数の更新アルゴリズムには、LMSアルゴリズム、あるいはRLSアルゴリズム等が用いられる。LMS、あるいはRLSアルゴリズムの誤差信号を生成するための基準信号に情報シンボルの判定値を用いる。しかしながら、情報シンボルは復号誤りが生じるため、高精度にLMS、あるいはRLSアルゴリズムを動作させるためには情報シンボル間に周期的にパイロット信号を多重する必要がある。また、FDEでは、MMSE等化ウエイトが用いられるが、MMSE等化ウエイトはパイロット信号で推定した各サブキャリア(トーン)位置のチャネル応答から生成する。
シングルキャリア信号、あるいはOFDMでサブキャリア間隔が大きい場合、位相雑音推定用に広帯域のパイロット信号を用いると、パイロット信号は位相雑音及び周波数選択性のマルチパスフェージングを受ける。位相雑音変動を受けたパイロット信号を用いた場合、高精度に等化ウエイトを生成できない。これとは逆に、マルチパスフェージングを受けたパイロット信号を用いた場合には位相雑音を高精度に推定することはできない。従って、位相雑音推定・補償、及び等化処理を交互に複数回繰り返し行う必要がある。その結果、位相雑音、及び残留等化を充分低いレベルに抑えるためには、位相雑音推定・補償、及び等化の繰り返し処理の演算量が増大してしまう。
本開示の目的は、位相雑音推定用に狭帯域のパイロット信号を用いることによって、位相雑音推定をマルチパスフェージングから分離することを可能にし、誤り率の劣化を低減できる、無線送信装置及び無線受信装置を提供することにある。
本開示の第1の態様にかかる無線送信装置は、パイロット信号を含むOFDM(Orthogonal Frequency Division Multiplexing)信号、あるいはDFT-spread OFDM信号を形成する信号形成部と、
前記形成されたOFDM信号、あるいはDFT-spread OFDM信号から無線信号を形成する送信無線部と、
を具備し、
前記信号形成部は、
前記OFDM信号、あるいはDFT-spread OFDM信号の全サブキャリアのうちでNPilot_Freqサブキャリア間隔の複数のパイロット配置サブキャリアに前記パイロット信号を配置し、
前記複数のパイロット配置サブキャリアのうちでNPilot_SPAサブキャリア間隔の複数の第1パイロット配置サブキャリアでは、各リソースエレメントがサブキャリアとOFDMシンボルとの組み合わせによって定義される全てのリソースエレメントに前記パイロット信号を配置し、
前記複数のパイロット配置サブキャリアのうちで前記複数の第1パイロット配置サブキャリアを除く複数の第2パイロット配置サブキャリアでは、時間領域におけるNPilot_Time個のリソースエレメント周期で前記パイロット信号を配置する、
パイロット配置パタンによって、前記パイロット信号を配置する。
本開示の第2の態様にかかる無線送信装置は、NTxAnt個の送信アンテナと、
パイロット信号を含むOFDM(Orthogonal Frequency Division Multiplexing)信号、あるいはDFT-spread OFDM信号を形成する信号形成部と、
前記形成されたOFDM信号、あるいはDFT-spread OFDM信号から無線信号を形成する送信無線部と、
を具備し、
前記信号形成部は、
前記OFDM信号、あるいはDFT-spread OFDM信号の全サブキャリアのうちで、各セットがNTxAnt個の連続するサブキャリアを含み且つ隣合う各2つのセットの間隔がNPilot_Freqサブキャリアである、複数のパイロット配置サブキャリアセットに、前記パイロット信号を配置し、
前記複数のパイロット配置サブキャリアセットのうちでNPilot_SPAサブキャリア間隔の複数の第1パイロット配置サブキャリアセットでは、各リソースエレメントがサブキャリアとOFDMシンボル、あるいはシングルキャリアシンボルブロックとの組み合わせによって定義される、全てのリソースエレメントに前記パイロット信号を配置し、
前記複数のパイロット配置サブキャリアセットのうちで前記複数の第1パイロット配置サブキャリアセットを除く複数の第2パイロット配置サブキャリアセットでは、時間領域におけるNPilot_Time個のリソースエレメント周期で前記パイロット信号を配置する、
パイロット配置パタンによって、前記パイロット信号を配置し、
前記NTxAnt個の送信アンテナからそれぞれ送信される複数の前記パイロット信号は、互いに異なる送信アンテナに固有の拡散系列によって拡散されている。
本開示の第3の態様にかかる無線送信装置は、パイロット信号を含むOFDM(Orthogonal Frequency Division Multiplexing)信号、あるいはDFT-spread OFDM信号を形成する信号形成部と、
前記形成されたOFDM信号、あるいはDFT-spread OFDM信号から無線信号を形成する送信無線部と、
を具備し、
前記信号形成部は、
前記OFDM信号、あるいはDFT-spread OFDM信号の全サブキャリアのうちでNPilot_Freqサブキャリア間隔の複数のパイロット配置サブキャリアに前記パイロット信号を配置し、
各パイロット配置サブキャリアでは、時間領域におけるNPilot_Time個のリソースエレメント周期で前記パイロット信号を配置し、
隣接する各2つのパイロット配置サブキャリアでは、前記パイロット信号が配置されるリソースエレメントが時間領域で重ならないように、前記パイロット信号を配置する、
パイロット配置パタンによって、前記パイロット信号を配置する。
本開示の第4の態様にかかる無線送信装置は、NTxAnt個の送信アンテナと、
パイロット信号を含むOFDM(Orthogonal Frequency Division Multiplexing)信号、あるいはDFT-spread OFDM信号を形成する信号形成部と、
前記形成されたOFDM信号、あるいはDFT-spread OFDM信号から無線信号を形成する送信無線部と、
を具備し、
前記信号形成部は、
前記OFDM信号、あるいはDFT-spread OFDM信号の全サブキャリアのうちで、各セットがNTxAnt個の連続するサブキャリアを含み且つ隣合う各2つのセットの間隔がNPilot_Freqサブキャリアである、複数のパイロット配置サブキャリアセットに、前記パイロット信号を配置し、
各パイロット配置サブキャリアセットでは、時間領域におけるNPilot_Time個のリソースエレメント周期で前記パイロット信号を配置し、
隣接する各2つのパイロット配置サブキャリアセットでは、前記パイロット信号が配置されるリソースエレメントが時間領域で重ならないように、前記パイロット信号を配置する、
パイロット配置パタンによって、前記パイロット信号を配置し、
前記NTxAnt個の送信アンテナからそれぞれ送信される複数の前記パイロット信号は、互いに異なる送信アンテナに固有の拡散系列によって拡散されている。
本開示の第5の態様にかかる無線受信装置は、OFDM(Orthogonal Frequency Division Multiplexing)信号、あるいはDFT-spread OFDM信号についての信号処理を実行する信号処理部を具備し、
前記信号処理部は、
受信OFDM信号、あるいはDFT-spread OFDM信号に含まれるパイロット信号に基づいて、該受信OFDM信号、あるいはDFT-spread OFDM信号の位相雑音を推定して該受信OFDM信号、あるいはDFT-spread OFDM信号の位相雑音を補償する位相雑音補償部と、
第1の時間領域信号を受け取り、前記受け取った第1の時間領域信号を周波数領域信号に変換する変換部と、
前記変換部で得られた周波数領域信号に対して等化処理を実行する等化部と、
前記等化処理後の周波数領域信号に含まれる情報シンボルをデマッピングして情報ビットを再生するデマッピング部と、
前記変換部で得られた周波数領域信号に含まれるパイロット信号を抽出する抽出部と、
前記抽出されたパイロット信号を用いてチャネル応答を推定するチャネル推定部と、
前記再生された情報ビットをシンボルにマッピングして再生シンボルを得るシンボル推定部と、
前記得られた再生シンボルに、前記推定されたチャネル応答を乗算する第1の乗算部と、
前記チャネル応答が乗算された再生シンボルを第2の時間領域信号に変換する逆変換部と、
前記第1の時間領域信号と前記逆変換部で得られた第2の時間領域信号とを用いて、位相雑音の推定し、前記推定された位相雑音の逆特性を出力する位相雑音補償信号生成部と、
前記変換部の入力段に配設され、前記出力された位相雑音の逆特性を前記位相雑音補償部によって位相雑音を補償された後の受信OFDM信号、あるいはDFT-spread OFDM信号に乗算することによって該受信OFDM信号、あるいはDFT-spread OFDM信号の位相雑音を補償し、該位相雑音補償後の受信OFDM信号、あるいはDFT-spread OFDM信号を前記第1の時間領域信号として前記変換部に出力する第2の乗算部と、
を含む。
本開示の第6の態様にかかる無線受信装置は、OFDM(Orthogonal Frequency Division Multiplexing)信号、あるいはDFT-spread OFDM信号についての信号処理を実行する信号処理部を具備し、
前記信号処理部は、
受信OFDM信号、あるいはDFT-spread OFDM信号に含まれるパイロット信号に基づいて、該受信OFDM信号、あるいはDFT-spread OFDM信号の位相雑音を推定して該OFDM信号、あるいはDFT-spread OFDM信号の位相雑音を補償する位相雑音補償部と、
第1の時間領域信号を受け取り、前記受け取った第1の時間領域信号を周波数領域信号に変換する変換部と、
前記変換部で得られた周波数領域信号に対して等化処理を実行する等化部と、
前記等化処理後の周波数領域信号に含まれる情報シンボルをデマッピングして、各シンボルにおける各ビットの信頼度情報を計算するデマッピング部と、
前記各ビットの信頼度情報を用いて誤り訂正復号処理を実行し、得られた復号ビットを出力する復号部と、
前記変換部で得られた周波数領域信号に含まれるパイロット信号を抽出する抽出部と、
前記抽出されたパイロット信号を用いてチャネル応答を推定するチャネル推定部と、
前記復号部から出力された復号ビットをシンボルにマッピングして再生シンボルを得るシンボル推定部と、
前記得られた再生シンボルに、前記推定されたチャネル応答を乗算する第1の乗算部と、
前記チャネル応答が乗算された再生シンボルを第2の時間領域信号に変換する逆変換部と、
前記第1の時間領域信号と前記逆変換部で得られた第2の時間領域信号とを用いて、位相雑音の推定し、前記推定された位相雑音の逆特性を出力する位相雑音補償信号生成部と、
前記変換部の入力段に配設され、前記出力された位相雑音の逆特性を前記位相雑音補償部によって位相雑音を補償された後の受信OFDM信号、あるいはDFT-spread OFDM信号に乗算することによって該受信OFDM信号、あるいはDFT-spread OFDM信号の位相雑音を補償し、該位相雑音補償後の受信OFDM信号、あるいはDFT-spread OFDM信号を前記第1の時間領域信号として前記変換部に出力する第2の乗算部と、
を含む。
本開示の第7の態様にかかる無線受信装置は、OFDM(Orthogonal Frequency Division Multiplexing)信号、あるいはDFT-spread OFDM信号についての信号処理を実行する信号処理部を具備し、
前記信号処理部は、
受信OFDM信号、あるいはDFT-spread OFDM信号に含まれるパイロット信号に基づいて、該受信OFDM信号、あるいはDFT-spread OFDM信号の位相雑音を推定して該受信OFDM信号、あるいはDFT-spread OFDM信号の位相雑音を補償する位相雑音補償部と、
第1の時間領域信号を受け取り、前記受け取った第1の時間領域信号を第1の周波数領域信号に変換する第1の変換部と、
前記第1の変換部で得られた第1の周波数領域信号に対して等化処理を実行する等化部と、
前記等化処理後の周波数領域信号を第2の時間領域信号である情報シンボルに変換する第1の逆変換部と、
前記情報シンボルをデマッピングして情報ビットを再生するデマッピング部と、
前記第1の変換部で得られた第1の周波数領域信号に含まれるパイロット信号を抽出する抽出部と、
前記抽出されたパイロット信号を用いてチャネル応答を推定するチャネル推定部と、
前記再生された情報ビットをシンボルにマッピングして再生シンボルを得るシンボル推定部と、
前記再生シンボルを第2の周波数領域信号であるシンボルに変換する第2の変換部と、
前記第2の周波数領域信号であるシンボルをサブキャリアにマッピングするマッピング部と、
前記サブキャリアにマッピングされたシンボルに、前記推定されたチャネル応答を乗算する第1の乗算部と、
前記チャネル応答が乗算されたシンボルを第3の時間領域信号に変換する第2の逆変換部と、
前記第1の時間領域信号と前記第2の逆変換部で得られた第3の時間領域信号とを用いて、位相雑音の推定し、前記推定された位相雑音の逆特性を出力する位相雑音補償信号生成部と、
前記第1の変換部の入力段に配設され、前記出力された位相雑音の逆特性を前記位相雑音補償部によって位相雑音を補償された後の受信OFDM信号、あるいはDFT-spread OFDM信号に乗算することによって該受信OFDM信号、あるいはDFT-spread OFDM信号の位相雑音を補償し、該位相雑音補償後の受信OFDM信号、あるいはDFT-spread OFDM信号を前記第1の時間領域信号として前記第1の変換部に出力する第2の乗算部と、
を含む。
本開示の第8の態様にかかる無線受信装置は、OFDM(Orthogonal Frequency Division Multiplexing)信号、あるいはDFT-spread OFDM信号についての信号処理を実行する信号処理部を具備し、
前記信号処理部は、
受信OFDM信号、あるいはDFT-spread OFDM信号に含まれるパイロット信号に基づいて、該受信OFDM信号、あるいはDFT-spread OFDM信号の位相雑音を推定して該受信OFDM信号、あるいはDFT-spread OFDM信号の位相雑音を補償する位相雑音補償部と、
第1の時間領域信号を受け取り、前記受け取った第1の時間領域信号を第1の周波数領域信号に変換する第1の変換部と、
前記第1の変換部で得られた第1の周波数領域信号に対して等化処理を実行する等化部と、
前記等化処理後の周波数領域信号を第2の時間領域信号である情報シンボルに変換する第1の逆変換部と、
前記情報シンボルをデマッピングして、各シンボルにおける各ビットの信頼度情報を計算するデマッピング部と、
前記各ビットの信頼度情報を用いて誤り訂正復号処理を実行し、得られた復号ビットを出力する復号部と、
前記第1の変換部で得られた第1の周波数領域信号に含まれるパイロット信号を抽出する抽出部と、
前記抽出されたパイロット信号を用いてチャネル応答を推定するチャネル推定部と、
前記復号部から出力された復号ビットをシンボルにマッピングして再生シンボルを得るシンボル推定部と、
前記再生シンボルを第2の周波数領域信号であるシンボルに変換する第2の変換部と、
前記第2の周波数領域信号であるシンボルをサブキャリアにマッピングするマッピング部と、
前記サブキャリアにマッピングされたシンボルに、前記推定されたチャネル応答を乗算する第1の乗算部と、
前記チャネル応答が乗算されたシンボルを第3の時間領域信号に変換する第2の逆変換部と、
前記第1の時間領域信号と前記第2の逆変換部で得られた第3の時間領域信号とを用いて、位相雑音の推定し、前記推定された位相雑音の逆特性を出力する位相雑音補償信号生成部と、
前記第1の変換部の入力段に配設され、前記出力された位相雑音の逆特性を前記位相雑音補償部によって位相雑音を補償された後の受信OFDM信号、あるいはDFT-spread OFDM信号に乗算することによって該受信OFDM信号、あるいはDFT-spread OFDM信号の位相雑音を補償し、該位相雑音補償後の受信OFDM信号、あるいはDFT-spread OFDM信号を前記第1の時間領域信号として前記第1の変換部に出力する第2の乗算部と、
を含む。
本開示の第9の態様にかかる無線受信装置は、OFDM(Orthogonal Frequency Division Multiplexing)信号、あるいはDFT-spread OFDM信号についての信号処理を実行する信号処理部を具備し、
前記信号処理部は、
受信OFDM信号、あるいはDFT-spread OFDM信号に含まれるパイロット信号に基づいて、該受信OFDM信号、あるいはDFT-spread OFDM信号の位相雑音を推定して該受信OFDM信号、あるいはDFT-spread OFDM信号の位相雑音を補償する位相雑音補償部と、
前記位相雑音補償部によって位相雑音を補償された後の受信OFDM信号、あるいはDFT-spread OFDM信号を受け取り、該受け取った受信OFDM信号、あるいはDFT-spread OFDM信号を周波数領域信号に変換する変換部と、
前記変換部で得られた周波数領域信号に対して等化処理を実行する等化部と、
前記等化処理後の周波数領域信号に含まれる情報シンボルをデマッピングして、各シンボルにおける各ビットの信頼度情報を計算するデマッピング部と、
前記各ビットの信頼度情報を用いて誤り訂正復号処理を実行し、得られた復号ビットを出力する復号部と、
前記等化処理後の周波数領域信号と基準信号との位相差を検出する検出部と、
前記検出された位相差の雑音成分を低減して得られた位相差を出力するループフィルタと、
前記デマッピング部の入力段に配設され、前記出力された位相差を用いて前記等化処理後の周波数領域信号の位相雑音を補償する位相雑音補償処理部と、
前記復号ビットをシンボルにマッピングして再生シンボルを得て、前記再生シンボルを前記基準信号として出力するシンボル推定部と、
を含む。
本開示の第10の態様にかかる無線受信装置は、OFDM(Orthogonal Frequency Division Multiplexing)信号、あるいはDFT-spread OFDM信号についての信号処理を実行する信号処理部を具備し、
受信OFDM信号、あるいはDFT-spread OFDM信号に含まれるパイロット信号に基づいて、該受信OFDM信号、あるいはDFT-spread OFDM信号の位相雑音を推定して該受信OFDM信号、あるいはDFT-spread OFDM信号の位相雑音を補償する位相雑音補償部と、
前記位相雑音補償部によって位相雑音を補償された後の受信OFDM信号、あるいはDFT-spread OFDM信号を受け取り、該受け取った受信OFDM信号、あるいはDFT-spread OFDM信号を周波数領域信号に変換する変換部と、
前記変換部で得られた周波数領域信号に対して等化処理を実行する等化部と、
前記変換部で得られた周波数領域信号に含まれるパイロット信号を抽出する抽出部と、
前記抽出されたパイロット信号を用いてチャネル応答を推定するチャネル推定部と、
前記変換部で得られた周波数領域信号に含まれる情報シンボルをデマッピングして情報ビットを再生するデマッピング部と、
前記再生された情報ビットをシンボルにマッピングして再生シンボルを得るシンボル推定部と、
前記変換部で得られた周波数領域信号に含まれる情報シンボルと、前記推定されたチャネル応答と、前記再生シンボルとに基づいて、平均2乗誤差最小規範により位相雑音の離散フーリエ変換係数を算出する算出部と、
前記等化部の入力段に配設され、前記変換部で得られた周波数領域信号と前記算出された離散フーリエ変換係数とを用いて畳み込み処理を行うことによって、前記位相雑音補償部によって位相雑音を補償された後の受信OFDM信号、あるいはDFT-spread OFDM信号の位相雑音を補償するキャリア間干渉補償部と、
を含む。
本開示により、誤り率の劣化を低減できる、無線送信装置及び無線受信装置を提供することができる。
トランスバーサルフィルタの構成を示す図である。 周波数領域等化器の構成を示す図である。 NR無線インタフェースにおける位相トラッキング参照信号の多重法を示す図である。 周波数領域重畳パイロット多重法を示す図である。 周波数拡張パイロット多重法を示す図である。 第1実施形態における無線送信装置の一例を示すブロック図である。 OFDM信号形成部の一例を示すブロック図である。 OFDM信号形成部の他の一例を示すブロック図である。 パイロット配置パタンの例1の説明に供する図である。 パイロット配置パタンの例2の説明に供する図である。 パイロット配置パタンの例3の説明に供する図である。 パイロット配置パタンの例4の説明に供する図である。 パイロット配置パタンの例5の説明に供する図である。 シングルキャリアDFT-spread OFDMにおけるCDMパイロット信号多重法の一例の説明に供する図である。 パイロット配置パタンの例6の説明に供する図である。 パイロット配置パタンの例7の説明に供する図である。 パイロット配置パタンの例7の説明に供する図である。 パイロット配置パタンの例8の説明に供する図である。 第2実施形態における無線受信装置の基本構成の一例を示す図である。 パイロットシンボルを用いる位相雑音推定・補償部の一例を示すブロック図である。 第2実施形態における無線受信装置の一例を示すブロック図である。 第3実施形態における無線受信装置の一例を示すブロック図である。 第4実施形態における無線受信装置の一例を示すブロック図である。 パイロット信号抽出部の一例を示すブロック図である。 パイロット信号抽出部の処理動作の一例の説明に供する図である。 第5実施形態における無線受信装置の一例を示すブロック図である。 位相雑音補償信号生成部における平均化処理の一例の説明に供する図である。 第8実施形態における無線受信装置の一例を示すブロック図である。 第9実施形態におけるOFDMを用いた場合の無線受信装置の一例を示すブロック図である。 第10実施形態における無線受信装置の一例を示すブロック図である。 第11実施形態における無線受信装置の一例を示すブロック図である。 第12実施形態における無線受信装置の一例を示すブロック図である。 無線送信装置のハードウェア構成例を示す図である。 無線受信装置のハードウェア構成例を示す図である。
以下、図面を参照しつつ、実施形態について説明する。なお、本開示にかかる図面において、ブロック間の接続を矢印で記載しているが、説明を行うために便宜的に記載したものであり、ブロック間の接続が必ずしも矢印の順序の通りになるとは限られない。また、以下の記載及び図面は、説明の明確化のため、適宜、省略及び簡略化がなされている。また、以下の各図面において、同一の要素には同一の符号が付されており、必要に応じて重複説明は省略されている。また、本開示では、明記のない限り、「AとBの少なくともいずれか」(at least one of A or B (A/B))は、AかBの任意の1つを意味しても良いし、AとBの両方を意味しても良い。同様に、3つ以上の要素について「少なくともいずれか」が用いられた場合には、これらの要素の任意の1つを意味しても良いし、任意の複数の要素(全ての要素を含む)を意味しても良い。
<第1実施形態>
<無線送信装置の構成例>
図5は、第1実施形態における無線送信装置の一例を示すブロック図である。図5において無線送信装置10は、情報シンボル出力部11と、パイロット信号出力部12と、OFDM信号形成部13と、送信無線部14とを有している。なお、無線送信装置10は、無線送信装置10のアンテナ数に応じて、情報シンボル出力部11とパイロット信号出力部12とOFDM信号形成部13と送信無線部14とのセットを、アンテナ数と同じ数だけ有していてもよい。そして、各セットにおいて、対応するアンテナから送信されるOFDM信号の無線信号が形成されてもよい。
情報シンボル出力部11は、情報シンボルを形成してOFDM信号形成部13に出力する。例えば、情報シンボル出力部11は、情報ビット系列を、例えば低密度パリティチェック符号(LDPC:Low-Density Parity-Check)符号によりチャネル符号化する。そして、情報シンボル出力部11は、チャネル符号化ビットをビットインタリーブして得られた符号化ビットを、受信品質に応じて割り当てられた変調方式の信号空間配置(コンスタレーション)にビットマッピングすることにより、情報シンボルを形成する。
パイロット信号出力部12は、パイロット信号を形成してOFDM信号形成部13に出力する。
OFDM信号形成部13は、情報シンボル及びパイロット信号を含むOFDM信号を形成する。例えば、OFDM信号形成部13は、「パイロット配置パタン」によってパイロット信号を配置することによってOFDM信号を形成する。「パイロット配置パタン」は、OFDM信号においてパイロット信号が配置されるリソースエレメントの配置パタンである。リソースエレメントは、サブキャリアとOFDMシンボルとの組み合わせによって定義(規定)される。なお、本開示では、マルチキャリアのOFDMとシングルキャリアのDFT-spread OFDMとを纏めて単に「OFDM」と呼ぶことがある。また、シングルキャリアのDFT-spread OFDMの説明においては、便宜上、OFDMのサブキャリアを、「トーン(周波数成分)」と呼ぶことがある。また、シングルキャリアのDFT-spread OFDMの説明においては、便宜上、OFDMシンボルを、「シングルキャリアシンボルブロック」と呼ぶことがある。
(マルチキャリアのOFDMのケース)
図6は、OFDM信号形成部の一例を示すブロック図である。図6においてOFDM信号形成部13は、直列並列変換部13A1,13A2と、サブキャリアマッピング部13Bと、IFFT部13Cと、CP挿入部13Dとを有している。
直列並列変換部13A1は、直列の複数の情報シンボルを並列の情報シンボルに、直列/並列変換(S/P変換)する。
直列並列変換部13A2は、直列の複数のパイロットシンボルを並列のパイロットシンボルにS/P変換する。
サブキャリアマッピング部13Bは、直列並列変換部13A1から受け取る並列の情報シンボルと、直列並列変換部13A2から受け取る並列のパイロットシンボルとを、リソース割り当てに従って、サブキャリアにマッピングする。これにより、NFFTサイズの周波数領域のOFDM信号(つまり、OFDMシンボル)が形成される。上記のとおり、サブキャリアマッピング部13Bは、「パイロット配置パタン」によって、パイロットシンボルをサブキャリア(リソースエレメント)にマッピングする。
IFFT部13Cは、サブキャリアマッピング部13Bにて形成された周波数領域のOFDM信号をNFFTサイズの逆高速フーリエ変換(IFFT)により時間領域のOFDM信号に変換する。
CP挿入部13Dは、OFDMシンボルの末尾の信号をCyclic Prefix(CP)としてOFDMシンボルの先頭に付加する。これにより、OFDM信号が形成される。
(シングルキャリアのDFT-spread OFDMのケース)
図7は、OFDM信号形成部の他の一例を示すブロック図である。図7においてOFDM信号形成部13は、DFT部13E1,13E2と、サブキャリアマッピング部13Fと、IDFT部13Gと、CP挿入部13Hとを有している。
DFT部13E1は、直列の複数の情報シンボルをNDFT個のシンボル毎にブロック化する。DFT部13E1は、このシングルキャリアシンボルブロックをNDFTサイズのDFTにより周波数領域信号に変換する。
DFT部13E2は、直列の複数のパイロットシンボルをNDFT個のシンボル毎にブロック化する。DFT部13E1は、このシングルキャリアシンボルブロックをNDFTサイズのDFTにより周波数領域信号に変換する。
サブキャリアマッピング部13Fは、DFT部13E1から受け取る周波数領域信号(情報シンボル)と、DFT部13E2から受け取る周波数領域信号(パイロットシンボル)とを、リソース割り当てに従って、トーンにマッピングする。これにより、NFFTサイズの周波数領域のOFDM信号(つまり、シングルキャリアシンボルブロック)が形成される。上記のとおり、サブキャリアマッピング部13Bは、「パイロット配置パタン」によって、パイロットシンボルをトーン(リソースエレメント)にマッピングする。
IDFT部13Gは、サブキャリアマッピング部13Fにて形成された周波数領域のOFDM信号をNFFTサイズの逆高速フーリエ変換(IFFT)により時間領域のOFDM信号に変換する。
CP挿入部13Hは、OFDMシンボルの末尾の信号をCyclic Prefix(CP)としてOFDMシンボルの先頭に付加する。これにより、OFDM信号が形成される。
図5の説明に戻り、送信無線部14は、OFDM信号形成部13にて形成されたOFDM信号に対して送信無線処理(アナログディジタル変化、アップコンバート等)を施して無線信号を形成する。この無線信号は、送信無線部14に接続されたアンテナ(不図示)から送信される。
<パイロット配置パタンの例1>
図8は、パイロット配置パタンの例1の説明に供する図である。OFDM信号形成部13は、図8に示すパイロット配置パタンによってパイロット信号を配置してもよい。図8に示すパイロット配置パタン1では、OFDM信号の全サブキャリア(トーン)のうちでNPilot_Freqサブキャリア(トーン)間隔の複数のパイロット配置サブキャリアに、位相雑音推定用のパイロット信号を配置されている。NPilot_Freqは、図8では
Figure 2023179112000004
と記載されているが、同じものを意味している。
また、図8に示すパイロット配置パタン1において、NPilot_Freqサブキャリア間隔の複数のパイロット配置サブキャリア(トーン)のうちでNPilot_SPAサブキャリア(トーン)間隔の複数の第1パイロット配置サブキャリア(トーン)では、(先頭のOFDMシンボル(先頭のシングルキャリアシンボルブロック)を除く)全てのリソースエレメント(図8では、OFDMシンボル(シングルキャリアシンボルブロック)♯1~♯13)に、位相雑音推定用のパイロット信号が配置されている。すなわち、NPilot_SPAサブキャリア(トーン)間隔の複数の第1パイロット配置サブキャリア(トーン)では、時間的に連続した複数のリソースエレメントに、位相雑音推定用のパイロット信号が配置されている。
また、図8に示すパイロット配置パタン1において、NPilot_Freqサブキャリア(トーン)間隔の複数のパイロット配置サブキャリア(トーン)のうちで複数の第1パイロット配置サブキャリア(トーン)を除く複数の第2パイロット配置サブキャリア(トーン)では、時間領域におけるNPilot_Time個のリソースエレメント周期で、位相雑音推定用のパイロット信号が配置されている。すなわち、第2パイロット配置サブキャリア(トーン)では、離散的にパイロット信号が配置されている。NPilot_Timeは、2以上の整数値であり、主に変調方式(つまり、チャネル符号化ビットをマッピングする信号空間配置)に応じて変更される。例えば、変調多値数が小さい場合(つまり、信号空間配置の信号点数が少ない場合)、近接信号点間の位相マージンが大きいため、NPilot_Timeの値を大きく設定して、パイロット信号の挿入損失を低減する。一方、変調多値数が大きい場合(つまり、信号点数が多い場合)、近接信号点間の位相マージンが小さいため、NPilot_Timeの値を小さくして、短い時間間隔でパイロット信号を用いる位相雑音推定ができるようにする。なお、NPilot_SPAサブキャリア(トーン)間隔の複数の第1パイロット配置サブキャリア(トーン)以外のサブキャリア(トーン)にはパイロット信号が多重されないモード(つまり、NPilot_Time=∞のモード)があってもよい。
ここで、DFT-spread OFDMでは、情報シンボルのシングルキャリア信号にパイロット信号をFDM多重するとマルチキャリアになるため、PAPRが増大してしまう。しかし、パイロット配置パタン1のパイロット信号多重では、各シングルキャリアシンボルブロックにおいてFDM多重するパイロット信号のトーン間隔は一定である。従って、信号帯域幅の異なるInterleaved FDMAになるため、完全なシングルキャリアに比較してPAPRは増大するものの、PAPRの増大を低く抑えることができる。
図8に示すように、先頭のOFDMシンボル(又は、先頭のシングルキャリアシンボルブロック)に多重したパイロット信号は、同期検波のチャネル応答推定のための復調用パイロット信号である。5G及びBeyond 5G方式では、低伝送遅延を実現するためにサブキャリア間隔をLTEの15 kHzからスケーラブルに広帯域化して、スロット長を短くしている。従って、スロット区間における伝搬路のマルチパスフェージングに起因する振幅及び位相変動は非常に小さい。このため、スロットの先頭位置で推定した各サブキャリア(トーン)位置のチャネル応答は、スロット内の全てのOFDMシンボル(シングルキャリアシンボルブロック)に用いることができる。図8の実施例では、復調用パイロット信号は、OFDMシンボル(又は、シングルキャリアシンボルブロック)の全てのサブキャリア(トーン)位置に連続して多重されている。
以上のパイロット配置パタン1によれば、NPilot_Freqサブキャリア(トーン)間隔の複数のパイロット配置サブキャリア(トーン)のうちでNPilot_SPAサブキャリア(トーン)間隔の複数の第1パイロット配置サブキャリア(トーン)では、(先頭のOFDMシンボル(シングルキャリアシンボルブロック)を除く)全てのリソースエレメントに、位相雑音推定用のパイロット信号が配置されている。すなわち、NPilot_SPAサブキャリア(トーン)間隔の複数の第1パイロット配置サブキャリア(トーン)では、時間的に連続した複数のリソースエレメントに、位相雑音推定用のパイロット信号が配置されている。
また、パイロット配置パタン1によれば、情報シンボルとパイロットシンボルとは異なるリソースエレメントにマッピングされる。これにより、FDSPT多重法と異なり、パイロットシンボルは情報シンボルと直交している。このため、情報シンボルからの干渉を受けないパイロットシンボルを用いて高精度に位相雑音を推定することができる。
また、パイロット配置パタン1によれば、NPilot_Freqサブキャリア(トーン)間隔の複数のパイロット配置サブキャリア(トーン)のうちで複数の第1パイロット配置サブキャリア(トーン)を除く複数の第2パイロット配置サブキャリア(トーン)では、時間領域におけるNPilot_Time個のリソースエレメント周期で、位相雑音推定用のパイロット信号が配置されている。これにより、FET多重法に比較してパイロット信号の挿入損失を小さくすることができる。
また、パイロット配置パタン1によれば、DFT-spread OFDMのシングルキャリアシンボルブロックでは、パイロット信号は周波数領域で情報シンボル間に一定周波数間隔で多重されている。このため、Interleaved FDMA、FETと同様に、完全なシングルキャリアに比較してピーク電力対平均電力比(PAPR:Peak-to-Average Power Ratio)は増大するものの、PAPRの増大をOFDMに比較して低く抑えることができる。
<パイロット配置パタンの例2>
図9は、パイロット配置パタンの例2の説明に供する図である。図9に示すパイロット配置パタン2は、図8のパイロット配置パタン1と比べて、復調用パイロット信号の配置が異なっている。すなわち、図9に示すように、復調用パイロット信号は、周波数領域において離散的なサブキャリア(トーン)位置に間引いて多重されている。このように復調用パイロット信号が間引いて多重されると、復調用パイロット信号が多重されていないリソースエレメント(RE:Resource Element)には、例えば制御情報を多重することができる。シングルキャリアのDFT-spread OFDMにおいて、パイロット信号と制御情報シンボルとを周波数領域で櫛の歯状にInterleaved FDMA多重する場合には、PAPRの増大は生じない。
<パイロット配置パタンの例3>
図10は、パイロット配置パタンの例3の説明に供する図である。図10に示すパイロット配置パタン3は、マルチアンテナ送信の場合のパイロット配置パタンの一例である。すなわち、無線送信装置10が第1アンテナ及び第2アンテナを含むNTXAnt(2以上の整数)個のアンテナを有していることを前提としている。図10では、特にNTXAnt=2のケースが示されている。
図10に示すパイロット配置パタン3によれば、第1アンテナにて送信されるOFDM信号では、上記のパイロット配置パタン1と同じパタンによって位相雑音推定用のパイロット信号が配置されている。また、パイロット配置パタン3によれば、第2アンテナにて送信されるOFDM信号では、パイロット配置パタン1の複数のパイロット配置サブキャリア(トーン)を1サブキャリア(トーン)だけ周波数方向にずらした複数のパイロット配置サブキャリア(トーン)に、パイロット配置パタン1と同じパタンによって位相雑音推定用のパイロット信号が配置されている。なお、第3アンテナ以降に関しては、1つ前のアンテナの複数のパイロット配置サブキャリア(トーン)を1サブキャリア(トーン)だけ周波数方向に順次ずらした複数のパイロット配置サブキャリア(トーン)に、パイロット配置パタン1と同じパタンによって位相雑音推定用のパイロット信号を配置すればよい。すなわち、図10に示すパイロット配置パタン3によれば、異なる送信アンテナのパイロット信号はFDMで直交多重されている。NTxAnt(2以上の整数)個の送信アンテナから送信されるパイロット信号が直交する。このため、或るリソースエレメントに一の送信アンテナから送信されるパイロット信号が多重されている場合、他の送信アンテナから送信されるOFDM信号のそのリソースエレメントではミューティングが行われる。
なお、先頭のOFDMシンボル(又は、先頭のシングルキャリアシンボルブロック)に多重される復調用パイロット信号に関しては、復調用パイロット信号を周波数領域でNTXAntサブキャリア毎にFDM多重する場合、及び、復調用パイロット信号をアンテナ間でCDM多重する場合が考えられる。復調用パイロット信号をFDM多重する場合、復調用パイロット信号が多重されていないサブキャリア位置のチャネル応答は、パイロット信号が多重されているサブキャリア位置のチャネル応答の推定値を内挿補間(Interpolation)することにより推定され得る。
<パイロット配置パタンの例4>
図11は、パイロット配置パタンの例4の説明に供する図である。図11に示すパイロット配置パタン4では、図10のパイロット配置パタン3と異なり、NPilot_Freqサブキャリア間隔の複数のパイロット配置サブキャリアのうちで複数の第1パイロット配置サブキャリアを除く複数の第2パイロット配置サブキャリアにおいてパイロット信号が配置されるリソースエレメントに関して、第1アンテナにて送信されるOFDM信号のリソースエレメントと第2アンテナにて送信されるOFDM信号のリソースエレメントとが、互いに時間的に重ならない。具体的には、NPilot_Freqサブキャリア間隔の複数のパイロット配置サブキャリアのうちで複数の第1パイロット配置サブキャリアを除く複数の第2パイロット配置サブキャリアにおいてパイロット信号が配置されるリソースエレメントに関して、第1アンテナにて送信されるOFDM信号のリソースエレメントは、第2アンテナにて送信されるOFDM信号のリソースエレメントから1リソースエレメントだけ時間領域方向にシフトしている。送信アンテナが3個以上の場合も同じルールでパイロット信号を配置することができる。このようなルールによってパイロット信号を配置することによって、NTxAnt(2以上の整数)個の送信アンテナから送信されるOFDM信号の全体を見れば、パイロット信号が時間領域において連続的に配置(多重)される。以上の説明のサブキャリアは、トーンと読み替えられてもよい。
<パイロット配置パタンの例5>
図12は、パイロット配置パタンの例5の説明に供する図である。図12に示すパイロット配置パタン5は、マルチアンテナ送信の場合のパイロット配置パタンの一例である。すなわち、無線送信装置10が第1アンテナ及び第2アンテナを含むNTXAnt(2以上の整数)個のアンテナを有していることを前提としている。図12では、特にNTXAnt=2のケースが示されている。図12に示すパイロット配置パタン5では、OFDM信号の全サブキャリアのうちで、各セットがNTxAnt個の連続するサブキャリアを含み且つ隣合う各2つのセットの間隔がNPilot_Freqサブキャリアである、複数のパイロット配置サブキャリアセットに、位相雑音推定用のパイロット信号を配置されている。
また、図12に示すパイロット配置パタン5において、上記の複数のパイロット配置サブキャリアセットのうちでNPilot_SPAサブキャリア間隔の複数の第1パイロット配置サブキャリアセットでは、全てのリソースエレメント(図12では、OFDMシンボル(シングルキャリアシンボルブロック)♯1~♯13)に、位相雑音推定用のパイロット信号を配置されている。
また、図12に示すパイロット配置パタン5において、上記の複数のパイロット配置サブキャリアセットのうちで上記の複数の第1パイロット配置サブキャリアセットを除く複数の第2パイロット配置サブキャリアセットでは、時間領域におけるNPilot_Time個のリソースエレメント周期で、位相雑音推定用のパイロット信号を配置されている。すなわち、第2パイロット配置サブキャリアセットでは、離散的にパイロット信号が配置されている。NPilot_Timeは、2以上の整数値であり、主に変調方式(つまり、チャネル符号化ビットをマッピングする信号空間配置)に応じて変更される。
各送信アンテナから送信されるパイロット信号は、拡散され、そして、周波数領域のNTxAnt個の連続するサブキャリアにCDMによって直交多重される。すなわち、パイロット信号出力部12は、各送信アンテナから送信されるパイロット信号を拡散し、拡散されたパイロット信号をOFDM信号形成部13に出力してもよい。CDM直交多重の方法として、次の2つの方法を用いることができる。
第1の方法では、各送信アンテナのパイロット信号を系列長NTxAntの異なるWalsh-Hadamard符号で拡散して、周波数領域のNTxAnt個のサブキャリアのパイロット配置サブキャリアセットにマッピングする方法である。
第2の方法は、次の式(2)に示す定振幅のZadoff-Chu系列の巡回シフトを用いて、多重する方法である。
Figure 2023179112000005
式(2)において、nは、系列インデックスを表す。また、Nseqは、系列長を表す。また、Mは、ルートインデックスを表す。ルートインデックスは、系列長と互いに素の関係になっていることが必須である。Zadoff-Chu系列を巡回シフトした系列は、互いに低い相互相関特性を有することが既に報告されている。巡回シフト数をNCSで表すと、送信アンテナ数が2の場合、つまりNCS2の場合、送信アンテナ#0のパイロット信号は、巡回シフトされない。そして、送信アンテナ#1のパイロット信号は、系列長の1/2のサンプル数分巡回シフトされる。この場合、周波数領域の2(=NTxAnt=NCS)サブキャリアにおいてパイロット信号が直交多重される。
なお、先頭のOFDMシンボル(又は、先頭のシングルキャリアシンボルブロック)に多重される復調用パイロット信号に関しては、復調用パイロット信号を周波数領域でNTXAntサブキャリア毎にFDM多重する場合、及び、復調用パイロット信号を、NTxAnt個の連続するサブキャリアにおいてアンテナ間でCDM多重する場合が考えられる。以上の説明のサブキャリアは、トーンと読み替えられてもよい。
図13は、シングルキャリアDFT-spread OFDMにおけるCDMパイロット信号多重法の一例の説明に供する図である。図13には、上記の第2の方法に対応する方法が示されている。また、ここでは、同一のルートインデックスのZadoff-Chu系列に異なる巡回シフトを与えて直交する位相雑音推定用のパイロット信号を生成する。また、Zadoff-Chu系列を仮定し、系列長をNZCで表す。パイロット信号出力部12は、図13に示す拡散系列生成部と、巡回シフト生成部とを有していてもよい。
拡散符号生成部は、Zadoff-Chu系列等の拡散符号を生成する。巡回シフト部は、拡散符号を拡散符号生成部から受け取り、この拡散符号を用いて、送信アンテナ数NTxAntに相当する数である巡回シフト数と同じ数の巡回シフト系列を生成する。巡回シフト数をNCSとすると、巡回シフトインデックスの巡回シフト系列長(つまり、巡回シフト量)は、NΔCS=NZC/NCSとなる。NTxAntの値が大きくなるに従って巡回シフト数を大きくなると、異なる巡回シフト系列間のシフト量NΔCS、つまり系列長は、短くなる。系列長NΔCSの時間は、マルチパスの最大遅延時間よりも長くする必要がある。マルチパスの遅延時間が巡回シフト量NΔCSよりも長くなってしまうと、異なる巡回シフトを用いる符号間の符号間干渉が生じてしまうためである。
<パイロット配置パタンの例6>
図14は、パイロット配置パタンの例6の説明に供する図である。図14に示すパイロット配置パタン6では、OFDM信号の全サブキャリアのうちでNPilot_Freqサブキャリア間隔の複数のパイロット配置サブキャリアに、パイロット信号が配置されている。
また、図14に示すパイロット配置パタン6において、各パイロット配置サブキャリアでは、時間領域におけるNPilot_Time個のリソースエレメント周期で、パイロット信号が配置されている。
また、図14に示すパイロット配置パタン6において、隣接する各2つのパイロット配置サブキャリアでは、パイロット信号が配置されるリソースエレメントが時間領域で重ならないように、パイロット信号が配置されている。特に、図14に示すパイロット配置パタン6では、隣接する各2つのパイロット配置サブキャリアのうちの周波数方向に並ぶ第1パイロット配置サブキャリア及び第2パイロット配置サブキャリアに関して、第2パイロット配置サブキャリアにおいてパイロットが配置される最初のリソースエレメントの時間領域の位置が、第1パイロット配置サブキャリアにおいてパイロットが配置される最初のリソースエレメントの時間領域の位置と時間領域で隣接するように、パイロット信号が配置されている。以上の説明のサブキャリアは、トーンと読み替えられてもよい。
<パイロット配置パタンの例7>
図15,16は、パイロット配置パタンの例7の説明に供する図である。図15,16に示すパイロット配置パタン7は、マルチアンテナ送信の場合のパイロット配置パタンの一例である。すなわち、無線送信装置10が第1アンテナ(送信アンテナ♯0)及び第2アンテナ(送信アンテナ♯1)を含むNTXAnt(2以上の整数)個のアンテナを有していることを前提としている。図15,16では、特にNTXAnt=2のケースが示されている。
図15,16に示すパイロット配置パタン7によれば、第1アンテナにて送信されるOFDM信号では、上記のパイロット配置パタン6と同じパタンによって位相雑音推定用のパイロット信号が配置されている。また、パイロット配置パタン7によれば、第2アンテナにて送信されるOFDM信号では、パイロット配置パタン6の複数のパイロット配置サブキャリアを1サブキャリアだけ周波数方向にずらした複数のパイロット配置サブキャリアに、パイロット配置パタン6と同じパタンによって位相雑音推定用のパイロット信号が配置されている。なお、第3アンテナ以降に関しては、1つ前のアンテナの複数のパイロット配置サブキャリアを1サブキャリアだけ周波数方向に順次ずらした複数のパイロット配置サブキャリアに、パイロット配置パタン6と同じパタンによって位相雑音推定用のパイロット信号を配置すればよい。すなわち、図15,16に示すパイロット配置パタン7によれば、異なる送信アンテナのパイロット信号はFDMで直交多重されている。NTxAnt(2以上の整数)個の送信アンテナから送信されるパイロット信号が直交する。このため、図16に示すように、或るリソースエレメントに一の送信アンテナから送信されるパイロット信号が多重されている場合、他の送信アンテナから送信されるOFDM信号のそのリソースエレメントではミューティングが行われる。以上の説明のサブキャリアは、トーンと読み替えられてもよい。
<パイロット配置パタンの例8>
図17は、パイロット配置パタンの例8の説明に供する図である。図17に示すパイロット配置パタン6は、マルチアンテナ送信の場合のパイロット配置パタンの一例である。すなわち、無線送信装置10が第1アンテナ及び第2アンテナを含むNTXAnt(2以上の整数)個のアンテナを有していることを前提としている。図17では、特にNTXAnt=2のケースが示されている。図17に示すパイロット配置パタン8では、OFDM信号の全サブキャリアのうちで、各セットがNTxAnt個の連続するサブキャリアを含み且つ隣合う各2つのセットの間隔がNPilot_Freqサブキャリアである、複数のパイロット配置サブキャリアセットに、位相雑音推定用のパイロット信号を配置されている。
また、図17に示すパイロット配置パタン8によれば、各パイロット配置サブキャリアセットでは、時間領域におけるNPilot_Time個のリソースエレメント周期でパイロット信号が配置されている。
また、図17に示すパイロット配置パタン8によれば、隣接する各2つのパイロット配置サブキャリアセットでは、パイロット信号が配置されるリソースエレメントが時間領域で重ならないように、パイロット信号が配置されている。特に、図17に示すパイロット配置パタン8において、各パイロット配置サブキャリアセットでは、各パイロット配置サブキャリアにおいてパイロット信号を配置するリソースエレメントが時間的に重なるように、パイロット信号が配置されている。そして、隣接する各2つのパイロット配置サブキャリアセットのうちの周波数方向に並ぶ第1パイロット配置サブキャリアセット及び第2パイロット配置サブキャリアセットに関して、第2パイロット配置サブキャリアセットにおいてパイロットが配置される最初のリソースエレメントの時間領域の位置が、第1パイロット配置サブキャリアセットにおいてパイロットが配置される最初のリソースエレメントの時間領域の位置と時間領域で隣接するように、パイロット信号が配置されている。
各送信アンテナから送信されるパイロット信号は、拡散され、そして、周波数領域のNTxAnt個の連続するサブキャリアにCDMによって直交多重される。すなわち、パイロット信号出力部12は、各送信アンテナから送信されるパイロット信号を拡散し、拡散されたパイロット信号をOFDM信号形成部13に出力してもよい。CDM直交多重の方法としては、パイロット配置パタンの例5の説明における上述の2つの方法を用いることができる。
<第2実施形態>
第2実施形態は、無線受信装置の一例に関する。
<無線受信装置の基本構成例>
図18は、第2実施形態における無線受信装置の基本構成の一例を示す図である。図18において無線受信装置20は、受信無線部21と、信号処理部22とを有している。信号処理部22は、パイロットシンボルを用いる位相雑音推定・補償部23と、高速フーリエ変換(離散フーリエ変換)部24と、等化処理部25と、判定帰還シンボルを用いる位相雑音推定・補償部26と、誤り訂正復号部27とを有している。
受信無線部21は、無線受信装置20のアンテナ(不図示)を介して受け取った受信無線信号に対して無線受信処理(ダウンコンバート、アナログディジタル変換等)を施して得られた受信信号(時間領域のOFDM信号)を信号処理部22に出力する。
位相雑音推定・補償部23は、受信無線部21から受信信号(時間領域のOFDM信号)を受け取り、パイロット信号を用いて受信信号の位相雑音を推定し、補償する。
高速フーリエ変換(離散フーリエ変換)部24は、位相雑音を補償した時間領域信号を周波数領域信号に変換する。
等化処理部25は、周波数領域信号の各サブキャリア信号のチャネル応答を推定して、伝搬路の位相及び振幅の変動を補償する等化処理を行う。OFDMの場合、等化処理部25を、サブキャリア当たり1タップの等化器で実現できる。すなわち、等化処理部25を、同期検波復調器で実現できる。さらに、等化処理部25は、等化後のシンボルをデマッピングして誤り訂正復号前の硬判定ビットを再生する。等化処理部25は、繰り返し処理の位相雑音補償後は、等化後のシンボルから各ビットの信頼度情報を生成する。
位相雑音推定・補償部26は、硬判定ビットを再マッピングしてシンボルを生成し、チャネル応答の推定値を乗算後、IFFTにより時間領域信号に変換する。さらに、位相雑音推定・補償部26は、受信信号と上記の時間領域信号から、残留位相雑音を推定し、補償する。従って、判定帰還シンボルを用いる位相雑音推定・補償部26は、周波数領域信号を時間領域信号に変換するIFFTを含む。
誤り訂正復号部27は、繰り返し処理の位相雑音補償後に、等化後のシンボルから各ビットの信頼度情報を受け取り、誤り訂正復号を行う。
図19は、パイロットシンボルを用いる位相雑音推定・補償部の一例を示すブロック図である。図19において位相雑音推定・補償部23は、直交基底関数生成部(出力部)23Aと、重み係数生成部(重み生成部)23Bと、位相雑音算出部23Cと、乗算部23Dとを有している。
時間領域のOFDMシンボル区間のサンプル数を、NFFTで表す。そして、各サンプル位置における位相雑音を次の式で表す。この式において、Tは、転置を表す。
Figure 2023179112000006
基底関数に、離散コサイン変換(DCT:Discrete Cosine Transform)を用いる場合を説明する。NFFT長のD個の基底関数を、
Figure 2023179112000007
で表すと、DCTは、次の式(3)で表される。
Figure 2023179112000008
式(3)において、0≦l<NFFT及び0≦i<Dが満たされる。
(D)=[v,v,・・・,vD-1]に対して、次の式(4)を満たすように、重み係数γ(=[γ,γ,・・・γD-1)を定義する。
Figure 2023179112000009
重み係数γは、平均2乗誤差最小(LS:Least Squares)規範により、次の式(5)によって求めることができる。
Figure 2023179112000010
例えば、重み係数γは、時間領域で連続して多重されているパイロットシンボルを用いて推定される。例えば、上記のパイロット配置パタンの例1等で説明したNPilot_SPAサブキャリア間隔の複数の第1パイロット配置サブキャリアに配置されたパイロット信号が、重み係数γの推定に用いられてもよい。また、上記のパイロット配置パタンの例6等では、OFDMシンボルによって位相雑音推定用のパイロット信号が配置されているサブキャリアは異なるが、いずれのOFDMシンボルにも位相雑音推定用のパイロット信号が配置されている。このため、複数のサブキャリアの全体で見れば、パイロット信号が時間領域で連続して多重されている。このため、上記のパイロット配置パタンの例6等に関しては、これらのパイロット信号を重み係数γに用いることができる。
行列Wを、次の式(6)で定義する。
Figure 2023179112000011
行列Wの行数は、FFTサンプル数に相当するサブキャリア数に対応し、列数は、基底関数の数に対応している。また、Λは、各サブキャリア位置に対応するチャネル係数を対角成分に有する対角行列を表す。
Figure 2023179112000012
は、DFT行列を表す。また、Zは、受信信号のサンプル値を対角成分にマッピングした対角行列を表す。
式(5)により、重み係数γの推定値である、
Figure 2023179112000013
は、LSアルゴリズムに基づいて、次の式(7)で求めることができる。
Figure 2023179112000014
式(7)において、Wは、WからFDM多重した送信パイロットシンボルsを多重したサブキャリア位置に対応する行を抽出した行列を表す。また、上付きの記号(・)は、複素共役転置を表す。また、(・)-1は、逆行列を表す。
重み係数生成部23Bは、パイロット信号抽出部41にて抽出されたパイロット信号を用いて、例えば式(7)に従って、重み係数γの推定値を算出する。
位相雑音算出部23Cは、重み係数生成部23Bにて算出された重み係数γの推定値と直交基底関数生成部23Aにて生成された基底関数とを用いて、式(4)に従って、位相雑音の推定値e-jΦを算出する。位相雑音の推定値e-jΦは、サンプル単位で算出されて、乗算部23Dに出力される。
乗算部23Dは、位相雑音の推定値e-jΦをサンプル単位で受信信号に乗算することにより、位相雑音を補償する。
なお、基底関数に、位相雑音の共分散行列の固有ベクトルを用いることもできる。位相雑音の複素表示を、ψ(t)=ejΦ(t)で定義する。ψ(t)の共分散rψ(τ)は、次の式によって算出することができる。
Figure 2023179112000015
OFDMシンボルのサンプル数(又は、シングルキャリアシンボルブロック内のシンボル)数をNFFTとした場合の離散的なψ(t)を次の式で表す。
Figure 2023179112000016
ここで、Tをサンプリング間隔とすると、次の式が成り立つ。
Figure 2023179112000017
位相雑音の共分散行列を次の式(8)で定義する。
Figure 2023179112000018
共分散行列は、パイロットの変調位相及び変調振幅が既知のパイロット信号を用いて推定される。式(8)の共分散行列を、次の式(9)に示すように、固有値分解(特異値分解)する。
Figure 2023179112000019
式(9)において、
Figure 2023179112000020
は、固有値である。
Figure 2023179112000021
は、固有ベクトルである。
これらの固有ベクトルを、基底関数とすればよい。
以上のように、式(7)の重み係数γの計算をOFDMシンボルのサンプル単位で計算し、式(4)より位相雑音を推定する方法であるため、シングルキャリアシンボルブロックのシンボル単位で同様の処理を行うことにより、シングルキャリアにも直接適用できる。
<無線受信装置の構成例>
図20は、第2実施形態における無線受信装置の一例を示すブロック図である。図20において無線受信装置20は、FFT部31と、等化器(同期検波器)32と、デマッピング部33と、誤り訂正復号部34とを有する。また、無線受信装置20は、パイロット信号抽出部41と、チャネル応答推定部42と、シンボル推定値生成部43と、パイロットシンボル生成部44と、サブキャリアマッピング部45と、乗算部46と、IFFT部47と、位相雑音補償信号生成部48と、乗算部49とを有している。FFT部31は、上記の高速フーリエ変換(離散フーリエ変換)部24に対応する。等化器(同期検波器)32と、デマッピング部33とは、上記の等化処理部25に対応する。また、誤り訂正復号部34は、上記の誤り訂正復号部27に対応する。また、パイロット信号抽出部41と、チャネル応答推定部42と、シンボル推定値生成部43と、パイロットシンボル生成部44と、サブキャリアマッピング部45と、乗算部46と、IFFT部47と、位相雑音補償信号生成部48と、乗算部49とは、上記の位相雑音推定・補償部26に対応する。
FFT部31は、パイロットシンボルを用いる位相雑音推定・補償部23で位相雑音を補償した後の受信信号(時間領域のOFDM信号(以下では、「第1の時間領域信号」と呼ぶことがある))を受け取り、受け取った第1の時間領域信号を周波数領域信号に変換する。
ここで、無線送信装置10において、FFT部31の段数に相当する情報シンボルをブロック化してOFDM信号を生成するケースを考える。情報シンボルsをIFFT処理してOFDM信号dを生成する(0≦k,n≦NFFT-1)。dは、次の式(10)で表される。
Figure 2023179112000022
このとき、FFTブロック内のサンプルタイミングnにおける受信信号rは、次の式(11)で表される。
Figure 2023179112000023
式(11)において、hは、パスlにおけるチャネルインパルス応答である(0≦l≦L-1)。また、Wは、AWGN(Additive White Gaussian Noise)成分を表す。また、Φは、残留位相雑音を表す。式(11)において、rの中でマルチパスフェージングを受けた情報シンボルの項を、yで表す。すなわち、yは、次の式で表される。
Figure 2023179112000024
FFT部31は、受信信号rをFFTにより周波数領域信号Rに変換する。Rは、次の式(12)で表される。
Figure 2023179112000025
式(12)において、H,p,Wは、それぞれ、h,ejΦn,wのFFT変換である。式(11)、式(12)にあるように、時間領域でランダム位相回転を与える位相雑音は、周波数領域ではサブキャリア間干渉(ICI)の畳込みで表される。
パイロット信号抽出部41は、FFT部31で得られた周波数領域信号に含まれるパイロット信号を抽出する。
OFDMの場合、等化器32は、1タップの等化器で構成され、同期検波復調を行う。各サブキャリア位置のチャネル応答は、スロットの先頭のOFDMシンボル位置に多重した復調用パイロット信号を用いて推定する。あるいは、スロットの先頭のスロットの先頭のOFDMシンボル位置に多重した復調用パイロット信号に加えて、情報シンボル間に多重されたパイロット信号を用いてもよい。
デマッピング部33は、同期検波後のシンボル系列の各シンボルをデマッピングし、送信ビットを再生する。位相雑音推定、補償に用いる場合は、デマッピング部33は、硬判定ビットを生成する。デマッピング部33は、誤り訂正復号部35に対しては、各ビットが“1”、あるいは“0(-1)”になる確率の比の対数値である対数尤度比(LLR)を生成する。
受信機がアンテナダイバーシチ受信を用いる場合には、複数のアンテナ、受信無線部、等化器(同期検波器)の出力信号を、同相(In-phase)成分、直交(Quadrature)成分、独立に加算する。
誤り訂正復号部34は、デマッピング部33で生成した各ビットが“1”、あるいは“0(-1)”になる確率の比の対数値である対数尤度比(LLR)を入力して、誤り訂正復号処理を実行し、得られた復号ビットを出力する。
シンボル推定値生成部43は、送信ビットの硬判定ビットをマッピングすることにより、情報シンボルの推定値である、
Figure 2023179112000026
を生成する。ここで、上付きインデックスiは、繰り返しループ回数を表す。
サブキャリアマッピング部45は、シンボル推定値生成部43で得られた情報シンボルの推定値、及びパイロットシンボル生成部26で生成されたパイロットシンボルをサブキャリアにマッピングする。パイロットシンボル系列は、基地局装置では既知であり、ユーザ端末は予め既知であるか、制御チャネルで基地局から事前に通知される。
チャネル応答推定部42は、サブキャリアkにおけるチャネル応答の推定値である、
Figure 2023179112000027
を推定する。
乗算部46は、シンボル推定値生成部43で生成されてサブキャリアkにマッピングされた情報シンボルの推定値と、サブキャリアkにおけるチャネル応答の推定値とを、次の式のように乗算する。乗算部46で得られる乗算結果は、周波数領域の「受信信号レプリカ」と呼ぶことができる。
Figure 2023179112000028
IFFT部47は、周波数領域の受信信号レプリカをIFFT変換して、時間領域の受信信号レプリカ(以下では、「第2の時間領域信号」と呼ぶことがある)である、
Figure 2023179112000029
に変換する。
位相雑音補償信号生成部48は、受信信号と、時間領域の受信信号レプリカ(上記の「第2の時間領域信号」)とを用いて、位相雑音を推定し、前記推定された位相雑音の逆特性の位相雑音補償信号を出力する。
例えば、ループ回数iにおける判定帰還後の信号である、
Figure 2023179112000030
は、次の式(13)で表される。
Figure 2023179112000031
式(13)に示すように、
Figure 2023179112000032
の復号誤りが少ない場合は、
Figure 2023179112000033
となる。式(13)に示すように、
Figure 2023179112000034
には,雑音(AWGN)成分が含まれているため、平均化処理により、雑音成分を低減する。式(13)で求めたループ回数iにおける信号
Figure 2023179112000035
から、次の式(14)を用いて、位相雑音の推定値である、
Figure 2023179112000036
を求める。
Figure 2023179112000037
式(13)の各サンプルタイミングにおける位相雑音である、
Figure 2023179112000038
には位相雑音以外の雑音成分が含まれているため、複数のサンプルタイミングにおける位相雑音の値を平均化することにより、雑音成分を抑圧する必要がある。一方、平均化窓幅を増大すると位相雑音の追従性が劣化してしまう。
平均化後の各サンプルタイミングにおける位相雑音を、
Figure 2023179112000039
で表す。
Figure 2023179112000040
を用いて、各サンプルタイミングにおける位相雑音の補償値である、
Figure 2023179112000041
を、位相雑音補償信号生成部48、算出して、乗算部43に出力する。
乗算部49は、上記の各サンプルタイミングにおける位相雑音の補償値を、残留位相雑音を含む受信信号である、
Figure 2023179112000042
に乗算することにより、残留位相雑音を補償する。以上の処理を所定の回数繰り返す。繰り返し回数は、予め設定されていてもよい。又は、残留位相雑音を測定し、残留位相雑音が予め設定した値よりも小さくなった場合に、繰り返し処理が終了されてもよい。
<第3実施形態>
第3実施形態は、無線受信装置の他の一例に関する。具体的には、第2実施形態では、誤り訂正復号前(チャネル符号化復号前)の信号をデマッピングした硬判定ビットによりシンボル推定値を生成した一方で、第3実施形態では、誤り訂正復号後のビットからシンボル数推定値を生成する。なお、第3実施形態の無線受信装置の基本構成は、第2実施形態の無線受信装置20の基本構成と同じである。
図21は、第3実施形態における無線受信装置の一例を示すブロック図である。図21において無線受信装置50は、FFT部31と、等化器(同期検波器)32と、デマッピング部33と、誤り訂正復号部34とを有する。また、無線受信装置50は、パイロット信号抽出部41と、チャネル応答推定部42と、シンボル推定値生成部51と、パイロットシンボル生成部44と、サブキャリアマッピング部52と、乗算部46と、IFFT部47と、位相雑音補償信号生成部48と、乗算部49とを有している。FFT部31は、上記の高速フーリエ変換(離散フーリエ変換)部24に対応する。等化器(同期検波器)32と、デマッピング部33とは、上記の等化処理部25に対応する。また、誤り訂正復号部34は、上記の誤り訂正復号部27に対応する。また、パイロット信号抽出部41と、チャネル応答推定部42と、シンボル推定値生成部51と、サブキャリアマッピング部52と、パイロットシンボル生成部44と、乗算部46と、IFFT部47と、位相雑音補償信号生成部48と、乗算部49とは、上記の位相雑音推定・補償部26に対応する。
無線受信装置50におけるデマッピング部33は、等化処理後の時間領域信号に含まれる情報シンボルをデマッピングして、各シンボルにおける各ビットが“1”,あるいは“0(-1)”になる確率の比の対数値である対数尤度比(LLR: Log-Likelihood Ratio)を計算する。
無線受信装置50における誤り訂正復号部34は、デマッピング部33で得られた各シンボルにおける各ビットの信頼度情報LLRを入力して誤り訂正復号処理を実行する。そして、誤り訂正復号部34は、得られた復号ビットを出力する。
例えば、誤り訂正復号部34は、各ビットの対数尤度比をデインタリーブし、デインタリーブ後の対数尤度比を入力して誤り訂正復号処理を行い、信頼度が向上した各ビットの対数尤度比を硬判定することによって、送信ビットを再生する。あるいは、誤り訂正復号器出力の各ビットのLLRから、各ビットが“1”あるいは“0(-1)”になる確率を計算する。信号空間配置の各シンボル(信号点)の各ビットは独立であると仮定して、各ビットの“1”あるいは“0(-1)”になる確率からシンボルの確率を計算する。このようにして生成した軟判定シンボルを用いることもできる。
シンボル推定値生成部51は、誤り訂正復号部34にて再生された送信ビットの硬判定ビットをマッピングすることにより、情報シンボルの推定値を生成する。
サブキャリアマッピング部52は、シンボル推定値生成部51で得られた情報シンボルの推定値、及びパイロットシンボル生成部44で生成されたパイロットシンボルをサブキャリアにマッピングする。
乗算部46は、シンボル推定値生成部51で生成されてサブキャリアkにマッピングされた情報シンボルの推定値と、サブキャリアkにおけるチャネル応答の推定値とを、乗算する。
<第4実施形態>
第4実施形態は、無線受信装置の他の一例に関する。特に、第4実施形態は、シングルキャリアDFT-spread OFDMに対応する構成に関する。すなわち、第4実施形態の無線受信装置は、第2実施形態のマルチキャリアOFDMに対応する無線受信装置20の構成と比べて、シングルキャリアDFT-spread OFDMに対応する構成を有している。なお、第4実施形態の無線受信装置の基本構成は、第2実施形態の無線受信装置20の基本構成と同じである。
図22は、第4実施形態における無線受信装置の一例を示すブロック図である。図22において無線受信装置60は、FFT部31と、等化器32と、IDFT部61と、デマッピング部62と、誤り訂正復号部34とを有する。また、無線受信装置60は、パイロット信号抽出部41と、チャネル応答推定部42と、シンボル推定値生成部43と、DFT部63と、パイロット信号生成部64と、サブキャリアマッピング部45と、乗算部46と、IFFT部47と、位相雑音補償信号生成部48と、乗算部49とを有している。FFT部31は、上記の高速フーリエ変換(離散フーリエ変換)部24に対応する。等化器32と、IDFT部61と、デマッピング部62とは、上記の等化処理部25に対応する。また、誤り訂正復号部34は、上記の誤り訂正復号部27に対応する。パイロット信号抽出部41と、チャネル応答推定部42と、シンボル推定値生成部43と、DFT部63と、パイロット信号生成部64と、サブキャリアマッピング部45と、乗算部46と、IFFT部47と、位相雑音補償信号生成部48と、乗算部49とは、上記の位相雑音推定・補償部26に対応する。
無線受信装置60における等化器32は、FFT部31で得られた周波数領域信号に対して波形等化を実行する。通常、平均2乗誤差最小(MMSE: Minimum Mean Square Error)アルゴリズムに基づく等化重み係数を用いる。
IDFT部61は、等化後の周波数領域信号を時間領域信号に変換する。
デマッピング部62は、情報シンボル系列の各シンボルをデマッピングし、送信ビットを再生する。位相雑音推定、補償に用いる場合は、硬判定ビットを生成する。誤り訂正復号部34に対しては、各ビットが“1”、あるいは“0(-1)”になる確率の比の対数値である対数尤度比(LLR)を生成する。受信機がアンテナダイバーシチ受信を用いる場合には、複数のアンテナ、受信無線部、等化器(同期検波器)の出力信号を同相(In-phase)成分と直交(Quadrature)成分で独立に加算する.
シンボル推定値生成部43は、送信ビットの硬判定ビットをマッピングすることにより、情報シンボルの推定値を生成する。
DFT部63は、シンボル推定値生成部43にて生成された複数の情報シンボル推定値を周波数領域信号に変換する。
サブキャリアマッピング部45は、DFT部63で得られた周波数領域信号をトーンにマッピングする。また、サブキャリアマッピング部45は、パイロット信号生成部64で生成されたパイロット信号を情報シンボルのトーン間のトーン位置に多重する。
パイロット信号抽出部41は、FFT部31で得られた周波数領域信号に含まれるパイロット信号を抽出する。
図23は、パイロット信号抽出部の一例を示すブロック図である。図24は、パイロット信号抽出部の処理動作の一例の説明に供する図である。ここでは、図13のZadoff-Chu系列の巡回シフトにより送信アンテナ固有の直交系列を用いてパイロット信号が送信された場合のパイロット信号系列の抽出について説明する。
図23に示すように、パイロット信号抽出部41は、サブキャリアデマッピング部41Aと、パイロット抽出処理部41Bとを有している。
サブキャリアデマッピング部41Aは、FFT部31にて得られた周波数領域信号において情報シンボル間のトーンに多重されているパイロット信号を抽出する。
パイロット抽出処理部41Bは、サブキャリアデマッピング部41Aにて抽出されたパイロット信号に、周波数領域のパイロット信号の巡回シフト系列の複素共役を乗算し、得られたNCS個の信号を同相加算することにより(つまり、逆拡散することにより)、送信アンテナ固有のパイロット信号を生成(抽出)する。
ここで、離散フーリエ変換(高速フーリエ変換)により、時間領域のシフトは、周波数領域の位相回転処理に相当する。時間領域における巡回シフト数NCSに対して、周波数領域では、トーン毎に2π/NCSだけ位相シフトが生じる。従って、離散的にマッピングされたNCS個のトーンの間で位相回転量が2πになるため、NCS個のトーンの間での符号の相互相関は、ゼロになる。
チャネル応答推定部42は、トーンkにおけるチャネル応答の推定値を推定する。
乗算部46は、シンボル推定値生成部43で生成されてトーンkにマッピングされた情報シンボルの推定値と、トーンkにおけるチャネル応答の推定値とを、乗算する。
<第5実施形態>
第5実施形態は、無線受信装置の他の一例に関する。具体的には、第4実施形態では、誤り訂正復号前(チャネル符号化復号前)の信号をデマッピングした硬判定ビットによりシンボル推定値を生成した一方で、第5実施形態では、誤り訂正復号後のビットからシンボル数推定値を生成する。なお、第5実施形態の無線受信装置の基本構成は、第2実施形態の無線受信装置20の基本構成と同じである。
図25は、第5実施形態における無線受信装置の一例を示すブロック図である。図25において無線受信装置70は、FFT部31と、等化器32と、IDFT部61と、デマッピング部62と、誤り訂正復号部34とを有する。また、無線受信装置70は、パイロット信号抽出部41と、チャネル応答推定部42と、シンボル推定値生成部51と、DFT部63と、パイロット信号生成部64と、サブキャリアマッピング部45と、乗算部46と、IFFT部47と、位相雑音補償信号生成部48と、乗算部49とを有している。FFT部31は、上記の高速フーリエ変換(離散フーリエ変換)部24に対応する。等化器32と、IDFT部61と、デマッピング部62とは、上記の等化処理部25に対応する。また、誤り訂正復号部34は、上記の誤り訂正復号部27に対応する。パイロット信号抽出部41と、チャネル応答推定部42と、シンボル推定値生成部51と、DFT部63と、パイロット信号生成部64と、サブキャリアマッピング部45と、乗算部46と、IFFT部47と、位相雑音補償信号生成部48と、乗算部49とは、上記の位相雑音推定・補償部26に対応する。
無線受信装置70におけるデマッピング部62は、等化処理後の時間領域信号に含まれる情報シンボルをデマッピングして、各シンボルにおける各ビットが“1”、あるいは“0(-1)”になる確率の比の対数値である対数尤度比(LLR: Log-Likelihood Ratio)を生成する。
無線受信装置70における誤り訂正復号部34は、デマッピング部62で得られた各シンボルにおける各ビットが“1”,あるいは“0(-1)”になる確率の比の対数値である対数尤度比(LLR: Log-Likelihood Ratio)を入力して,誤り訂正復号を行う。そして、誤り訂正復号後の信頼度が向上したLLRを出力する。
無線受信装置70におけるシンボル推定値生成部51は、誤り訂正復号部34にてから出力される対数尤度比(LLR)を硬判定したビットをマッピングすることにより、情報シンボルの推定値を生成する。
無線受信装置70におけるDFT部63は、シンボル推定値生成部51にて生成された複数の情報シンボル推定値を周波数領域信号に変換する。
無線受信装置70におけるサブキャリアマッピング部45は、DFT部63で得られた周波数領域信号、及びパイロット信号生成部64で生成されたパイロット信号をそれぞれのトーン位置にマッピングする。
乗算部46は、シンボル推定値生成部51で生成されてトーンkにマッピングされた情報シンボルの推定値と、トーンkにおけるチャネル応答の推定値とを、乗算する。
<第6実施形態>
第6実施形態は、第2実施形態から第5実施形態において説明した位相雑音補償信号生成部48における平均化処理の一例に関する。
図26は、位相雑音補償信号生成部における平均化処理の一例の説明に供する図である。この平均化処理は、サンプル単位の処理であるため、OFDM及びDFT-spread OFDMの双方に適用できる。
Figure 2023179112000043
をブロック平均化した信号のt番目(1≦t≦NFFT/NWD)の位相である
Figure 2023179112000044
は、次の式(15)によって表される。
Figure 2023179112000045
式(15)においてNWDは、平均化窓幅(平均化サンプル数)を示す。NWDの大きさは外部雑音(AWGN)の低減効果(抑圧効果)と位相雑音推定の追従性とのトレードオフの関係にある。すなわち、NWDを大きくすると雑音成分の抑圧効果は向上するものの、位相雑音推定の追従性は劣化する。
連続する平均化窓の中心位置における位相雑音の推定値である、
Figure 2023179112000046
を線形補間、2次補間、又は、高次関数による補間を実行して、その間のサンプルタイミングにおける位相雑音である、
Figure 2023179112000047
を推定する。
例えば、位相雑音補償信号生成部(第2の位相雑音補償処理部)48は、FFTブロックに対応するOFDMシンボルのNFFT個のサンプルをNBlk個のブロックに分割した各ブロックのNFFT/NBlk個のサンプルの位相雑音推定値を、同相成分と直交成分とで独立に平均する。そして、位相雑音補償信号生成部(第2の位相雑音補償処理部)48は、得られたNBlk個のブロックの位相雑音推定値の平均値を、線形補間、2次補間、又は、高次関数を用いた補間によって補間することによって、各サンプル点における位相雑音を推定する。
<第7実施形態>
第7実施形態は、第2実施形態から第5実施形態において説明した位相雑音補償信号生成部48における平均化処理の他の一例に関する。以下ではOFDMの場合を説明するが、シングルキャリアのDFT-spread OFDMの場合も同様の手順で実現可能である。
サンプリングタイミングnにおける位相雑音の1サンプル前の位相雑音との相対的な位相シフトを、
Figure 2023179112000048
で表す。
受信信号と、チャネル応答及び位相雑音を考慮したシンボル推定値との誤差信号eは、次の式(16)によって表される。
Figure 2023179112000049
位相雑音補償処理部(第2の位相雑音補償処理部)49は、次の式(17)に示すように、LMSアルゴリズムを用いて相対的な位相シフトψを更新する。
Figure 2023179112000050
なお、式(17)においてμψは、ステップサイズを表す。
<第8実施形態>
第8実施形態は、無線受信装置の他の一例に関する。特に、第8実施形態の無線受信装置は、OFDMを用いた場合の位相ロックループ(PLL: Phase Locked Loop)を用いる位相雑音推定及び位相雑音補償に関する。なお、第8実施形態の無線受信装置の基本構成は、第2実施形態の無線受信装置20の基本構成と同じである。
図27は、第8実施形態における無線受信装置の一例を示すブロック図である。図27において無線受信装置80は、FFT部31と、等化器(同期検波器)32と、デマッピング部33と、誤路訂正復号部34とを有する。また、無線受信装置80は、ビットマッピング部81と、位相検出器(PD: Phase Detector)82と、ループフィルタ83と、位相雑音補償処理部(第2の位相雑音補償処理部)84と、スイッチ85とを有している。FFT部31は、上記の高速フーリエ変換(離散フーリエ変換)部24に対応する。等化器(同期検波器)32と、デマッピング部33とは、上記の等化処理部25に対応する。また、誤り訂正復号部34は、上記の誤り訂正復号部27に対応する。また、ビットマッピング部81と、位相検出器(PD)82と、ループフィルタ83と、位相雑音補償処理部(第2の位相雑音補償処理部)84とは、上記の位相雑音推定・補償部26に対応する。
無線受信装置80におけるデマッピング部33は、スイッチ85によって等化器(同期検波器)32とデマッピング部33とが接続されているとき、等化処理後の時間領域信号に含まれる情報シンボルをデマッピングして、各シンボルにおける各ビットの信頼度情報(つまり、対数尤度比(LLR:Log-Likelihood Ratio))を計算する。また、デマッピング部33は、スイッチ85によって位相雑音補償処理部84とデマッピング部33とが接続されているとき、補償処理後の時間領域信号に含まれる情報シンボルをデマッピングして、各シンボルにおける各ビットの信頼度情報を計算する。
無線受信装置80における誤り訂正復号部34は、デマッピング部33で得られた各シンボルにおける各ビットの信頼度情報(LLR)を入力して誤り訂正復号処理を実行する。そして、誤り訂正復号部34は、信頼度が向上した各ビットの対数尤度比(LLR)を出力する。
ビットマッピング部81は、誤り訂正復号部34の出力の対数尤度比(LLR)を硬判定したビットを再マッピングすることにより、情報シンボルの推定値を生成する。
位相検出器(PD)82は、位相雑音補償処理部84が着目する情報シンボルに対して位相雑音に起因する位相変動を補償した信号と、基準信号(ビットマッピング部81にて生成された情報シンボルの推定値が基準信号として用いられる)との位相差を検出する。
位相検出器(PD)82出力の位相差信号には雑音(AWGN)成分が含まれているため、ループフィルタ83は、位相検出器(PD)82の出力の位相差信号を平均化することにより、雑音に起因する位相変動を抑圧して、残留位相雑音の推定値を生成する。
位相雑音補償処理部84は、ループフィルタ83の出力の残留位相雑音の推定値の複素共役を等化器(同期検波器)32の出力信号に乗算することにより、残留位相雑音を補償する。スイッチ85によって位相雑音補償処理部84とデマッピング部33とが接続されている状態で、このPLLの繰り返し処理を行うことにより、残留位相雑音を低いレベルに抑圧できる。
なお、等化器32の後に、IDFTを挿入することによって、DFT-spread OFDMに適用可能な無線受信装置を実現することができる。
<第9実施形態>
第9実施形態は、無線受信装置の他の一例に関する。なお、第9実施形態の無線受信装置の基本構成は、第2実施形態の無線受信装置20の基本構成と同じである。
図28は、第9実施形態におけるOFDMを用いた場合の無線受信装置の一例を示すブロック図である。図28において無線受信装置90は、FFT部31と、等化器(同期検波器)32と、デマッピング部33と、誤り訂正復号部34とを有する。また、無線受信装置90は、パイロット信号抽出部41と、チャネル応答推定部42と、共通位相誤差補償部91と、デマッピング部92と、シンボル推定部93と、キャリア間干渉(ICI:Inter-Carrier Interference)推定部94と、キャリア間干渉(ICI)補償部95とを有している。FFT部31は、上記の高速フーリエ変換(離散フーリエ変換)部24に対応する。等化器(同期検波器)32と、デマッピング部33とは、上記の等化処理部25に対応する。また、誤り訂正復号部34は、上記の誤り訂正復号部27に対応する。パイロット信号抽出部41と、チャネル応答推定部42と、共通位相誤差補償部91と、デマッピング部92と、シンボル推定部93と、キャリア間干渉推定部94と、キャリア間干渉補償部95とは、上記の位相雑音推定・補償部26に対応する。
ここで、上記の通り、位相雑音は時間領域の送信信号あるいは受信信号にランダム位相回転を与えるため、周波数領域では全てのサブキャリアで共通の位相誤差(位相回転)(CPE: Common Phase Error)、及びサブキャリア間で異なるサブキャリア間干渉を与える。サブキャリア間干渉は簡単にキャリア間干渉(ICI: Inter-Carrier Interference)と呼ばれている。従って、OFDMのFFT処理後の各サブキャリア信号に対して、等化(同期検波)後のシンボルのCPEを補償する。CPE補償後のシンボルをデマッピングした後、シンボル推定値を生成し、各サブキャリア位置の受信シンボル、シンボル推定値、及びチャネル応答の推定値と、平均2乗誤差最小(MMSE: Minimum Mean Square Error)規範の重み係数とから、キャリア間干渉(ICI)を推定し、各シンボルからICIを除去(補償)する。
マルチパスフェージングを受けた時間領域のブロック単位の受信信号は、次の式(18)で表される。
Figure 2023179112000051
式(18)において、xは、パイロット信号あるいは情報シンボルを表す。また、hは、チャネルインパルス応答を表す。また、wは、背景雑音成分を表す。背景雑音成分を考慮しない場合の受信信号rは、次のように表される。
Figure 2023179112000052
ここで、
Figure 2023179112000053
はベクトルの巡回畳込み(Circular convolution)を表す。
また、
Figure 2023179112000054
である。
受信信号rの周波数領域信号R(k=0,1,・・・,NFFT-1)は、非特許文献9に開示されているように、次の式(19)によって表される。
Figure 2023179112000055
式(19)において、X,H,ηは、それぞれ、サブキャリアkにおける、情報シンボル、チャネル応答、及び背景雑音成分を表す。Jは、式(20)に示すように、時間領域の位相雑音
Figure 2023179112000056
を離散フーリエ変換した周波数領域信号を表す。
Figure 2023179112000057
式(20)において、特に、ゼロ周波数成分Jは、次の式(21)のように表わすことができる。
Figure 2023179112000058
式(21)において、Φは、ブロック間の平均の位相偏移を表す。また、Δφは、サンプル点におけるΦからの位相偏移を表す。Δφは非常に小さな値であるため、式(21)の近似が成り立つ。ゼロ周波数成分Jは、全てのサブキャリア位置で共通の位相回転であるため、Common Phase Error(CPE)と呼ばれ、容易に推定できる。また、式(19)の右辺第2項は、サブキャリア位置に応じて異なるサブキャリア間干渉(ICI)である。式(19)に示したように、時間領域における位相雑音に起因する位相変動は、周波数領域では、CPEと各サブキャリア位置で異なるキャリア間干渉(ICI)とになる。キャリア間干渉Jは、全てのkについて推定することは演算量が増大するため、ある特定のk次のキャリア間干渉まで推定し、補償する。
式(19)に示したεは、補償しない残留のICIの項と外部雑音との和であり、平均0であり、分散が
Figure 2023179112000059
である、ガウス雑音でモデル化される。パイロット信号を用いて、次の式(22)に示すように、平均2乗誤差最小規範によって、Jを求める。
Figure 2023179112000060
式(22)において、X及びRは、それぞれ、パイロットシンボルの複素信号と、それに対する受信信号の周波数領域信号である。
式(22)から、
Figure 2023179112000061
は、次の式(23)によって表される。
Figure 2023179112000062
図28に示した無線受信装置90の共通位相誤差補償部91は、例えば、パイロット信号を用いて、式(23)に従って、CPE(Common Phase Error)を推定する。
式(23)によって推定したCPEを用いて、MMSEの等化ウエイトは、次の式(24)で与えられる。
Figure 2023179112000063
式(24)において、
Figure 2023179112000064
である。Eは、希望波信号の1シンボル当たりの信号電力である。また、
Figure 2023179112000065
である。
式(23)によって推定したCPEを用いて、最大比合成(MRC:Maximal Ratio Combining)ウエイトは、次の式(25)によって与えられる。
Figure 2023179112000066
チャネル応答推定部42は、サブキャリアkにおけるチャネル応答の推定値を推定し、共通位相誤差補償部91およびICI推定部94に出力する。
共通位相誤差補償部91は、例えば、式(25)に従って算出される等化重み係数を、周波数領域の受信信号(周波数領域のOFDM信号)に乗算することによって、CPEを補償する。
デマッピング部92は、CPEを補償したシンボル系列の各シンボルをデマッピングし、送信ビットを再生する。
シンボル推定部93は、送信ビットの硬判定ビットを再マッピングすることにより、情報シンボルの推定値を生成する。
前述のように位相雑音は、周波数領域では複数のサブキャリアに干渉を与えるサブキャリア間干渉(ICI)を生じる。続いて、受信信号のFFT処理後の各シンボル、各シンボルの推定値、及び各シンボル位置のチャネル応答の推定値を用いて、キャリア間干渉(ICI)を推定する。実際のシステムでは、2次程度のICIを補償すれば、時変の位相雑音の変動に近接する位相雑音の推定精度が得られる。
サブキャリアインデックスlである
Figure 2023179112000067
のサブセットを、
Figure 2023179112000068
として定義する。
サブキャリアのサブセットLに対する周波数領域の受信信号Rを、
Figure 2023179112000069
で表す。
Figure 2023179112000070
は、次の式(26)で表すことができる。
Figure 2023179112000071
式(26)において、
Figure 2023179112000072
である。また、Jは、位相雑音の周波数スペクトル成分である。また、
Figure 2023179112000073
は、ICIである。また、ηは、雑音成分である。
式(26)を行列標記して、
Figure 2023179112000074
と記すと、平均2乗誤差最小(MMSE)となるJの推定値は、次の式(27)によって、
Figure 2023179112000075
で求めることができる。
ここで、補償しない高次の残留キャリア間干渉及び背景雑音の和であるεの成分は、
Figure 2023179112000076
である。
行列Mは、次の式(28)によって求めることができる。
Figure 2023179112000077
式(28)において、
Figure 2023179112000078
は、Jの相関行列である。
Figure 2023179112000079
は、εの相関行列である。
これらは、パイロット信号、あるいは着目するFFTブロックの前のFFTブロックの情報シンボルを用いて判定帰還処理により求めることができる。
キャリア間干渉推定部94は、例えば式(27)及び式(28)を用いて、キャリア間干渉の推定値を算出する。
キャリア間干渉補償部95は、キャリア間干渉推定部94にて推定したキャリア間干渉を、FFT部31の出力信号の各シンボルから差し引くことによりキャリア干渉を補償したシンボルを生成する。
<第10実施形態>
第10実施形態は、無線受信装置の他の一例に関する。具体的には、第9実施形態では、誤り訂正復号前(チャネル符号化復号前)の信号をデマッピングした硬判定ビットによりシンボル推定値を生成した一方で、第10実施形態では、誤り訂正復号後の復号ビットからシンボル数推定値を生成する。なお、第10実施形態の無線受信装置の基本構成は、第2実施形態の無線受信装置20の基本構成と同じである。
図29は、第10実施形態における無線受信装置の一例を示すブロック図である。図29において無線受信装置100は、FFT部31と、等化器(同期検波器)32と、デマッピング部33と、誤り訂正復号部34とを有する。また、無線受信装置100は、パイロット信号抽出部41と、チャネル応答推定部42と、共通位相誤差補償部91と、デマッピング部92と、誤り訂正復号部101と、シンボル推定部93と、キャリア間干渉生成部94と、キャリア間干渉補償部95とを有している。FFT部31は、上記の高速フーリエ変換(離散フーリエ変換)部24に対応する。等化器(同期検波器)32と、デマッピング部33とは、上記の等化処理部25に対応する。また、誤り訂正復号部34は、上記の誤り訂正復号部27に対応する。パイロット信号抽出部41と、チャネル応答推定部42と、共通位相誤差補償部91と、デマッピング部92と、誤り訂正復号部101と、シンボル推定部93と、キャリア間干渉生成部94と、キャリア間干渉補償部95とは、上記の位相雑音推定・補償部26に対応する。
無線受信装置100におけるデマッピング部92は、共通位相誤差(CPE)補償後のシンボルをデマッピングして、各シンボルにおける各ビットが“1”,あるいは“0(-1)”になる確率の比の対数値である対数尤度比(LLR: Log-Likelihood Ratio)を計算する。
無線受信装置100における誤り訂正復号部101は、デマッピング部92で得られた各シンボルにおける各ビットの対数尤度比をデインタリーブした後、入力して誤り訂正復号を行う。そして、誤り訂正復号部101は、信頼度が向上した復号ビットを出力する。
無線受信装置100におけるシンボル推定部93は、誤り訂正復号部101にて再生された送信ビットの硬判定ビットをマッピングすることにより、情報シンボルの推定値を生成する。
<第11実施形態>
第11実施形態は、無線受信装置の他の一例に関する。特に、第11実施形態は、シングルキャリアDFT-spread OFDMに対応する構成に関する。すなわち、第11実施形態の無線受信装置は、第9実施形態のマルチキャリアOFDMに対応する無線受信装置90の構成と比べて、シングルキャリアDFT-spread OFDMに対応する構成を有している。なお、第11実施形態の無線受信装置の基本構成は、第2実施形態の無線受信装置20の基本構成と同じである。
図30は、第11実施形態における無線受信装置の一例を示すブロック図である。図30において無線受信装置110は、FFT部31と、等化器32と、IDFT部61と、デマッピング部62と、誤り訂正復号部34とを有する。また、無線受信装置110は、パイロット信号抽出部41と、チャネル応答推定部42と、周波数領域等化器(FDE)111と、共通位相誤差補償部91と、IDFT部112と、デマッピング部92と、シンボル推定部93と、DFT部113と、キャリア間干渉生成部94と、キャリア間干渉補償部95とを有している。FFT部31は、上記の高速フーリエ変換(離散フーリエ変換)部24に対応する。周波数領域(FDE)等化器32と、IDFT部61と、デマッピング部62とは、上記の等化処理部25に対応する。また、誤り訂正復号部34は、上記の誤り訂正復号部27に対応する。パイロット信号抽出部41と、チャネル応答推定部42と、周波数領域(FDE)等化器111と、共通位相誤差補償部91と、IDFT部112と、デマッピング部92と、シンボル推定部93と、DFT部113と、キャリア間干渉生成部94と、キャリア間干渉補償部95とは、上記の位相雑音推定・補償部26に対応する。
無線受信装置110において周波数領域等化器(FDE)111と、共通位相誤差補償部91とは、例えば、式(24)に従って算出される等化重み係数を、周波数領域のシングルキャリアの受信信号に乗算することによって、等化する。伝搬路の振幅変動及び位相変動を補償する等化処理とCPEの補償とを同時に行う。
無線受信装置110においてIDFT部112は、等化及びCPE補償の後の周波数領域信号を時間領域信号(シングルキャリアのシンボル列)に変換する。
デマッピング部92は、シングルキャリアの各シンボルをデマッピングし、送信ビットを再生する。
シンボル推定部93は、硬判定ビットを再マッピングすることにより、情報シンボルの推定値を生成する。
DFT部113は、シンボル推定部93にて生成された複数の情報シンボル推定値を周波数領域信号に変換する。
<第12実施形態>
第12実施形態は、無線受信装置の他の一例に関する。具体的には、第11実施形態では、誤り訂正復号前(チャネル符号化復号前)のシンボルをデマッピングした硬判定ビットによりシンボル推定値を生成した一方で、第12実施形態では、誤り訂正復号後のビットからシンボル数推定値を生成する。なお、第12実施形態の無線受信装置の基本構成は、第2実施形態の無線受信装置20の基本構成と同じである。
図31は、第12実施形態における無線受信装置の一例を示すブロック図である。図31において無線受信装置120は、FFT部31と、周波数領域等化器32と、IDFT部61と、デマッピング部62と、誤り訂正復号部34とを有する。また、無線受信装置120は、パイロット信号抽出部41と、チャネル応答推定部42と、周波数領域等化器111と、共通位相誤差補償部91と、IDFT部112と、デマッピング部92と、誤り訂正復号部101と、シンボル推定部93と、DFT部113と、キャリア間干渉生成部94と、キャリア間干渉補償部95とを有している。FFT部31は、上記の高速フーリエ変換(離散フーリエ変換)部24に対応する。周波数領域等化器32と、IDFT部61と、デマッピング部62とは、上記の等化処理部25に対応する。また、誤り訂正復号部34は、上記の誤り訂正復号部27に対応する。パイロット信号抽出部41と、チャネル応答推定部42と、周波数領域等化器111と、共通位相誤差補償部91と、IDFT部112と、デマッピング部92と、誤り訂正復号部101と、シンボル推定部93と、DFT部113と、キャリア間干渉生成部94と、キャリア間干渉補償部95とは、上記の位相雑音推定・補償部26に対応する。
無線受信装置120においてIDFT部112は、等化及び共通位相誤差(CPE)補償の後の周波数領域信号を時間領域のシングルキャリア信号に変換する。
マッピング部92は、等化及び共通位相誤差(CPE)補償の後の時間領域の情報シンボルをデマッピングして、各シンボルにおける各ビットが“1”,あるいは“0(-1)”になる確率の比の対数値である対数尤度比(LLR: Log-Likelihood Ratio)を計算する。
誤り訂正復号部101は、デマッピング部92で得られた各シンボルにおける各ビットの対数尤度比をデインタリーブ後に入力して誤り訂正復号を行う。そして、誤り訂正復号部101は、信頼度が向上した復号ビットを出力する。
シンボル推定部93は、誤り訂正復号部101にて再生された送信ビットの硬判定ビットをマッピングすることにより、情報シンボルの推定値を生成する。
DFT部113は、シンボル推定部93にて生成されたシングルキャリアの情報シンボル推定値を周波数領域信号に変換する。
<他の実施形態>
図32は、無線送信装置のハードウェア構成例を示す図である。図32において無線送信装置200は、通信回路201と、プロセッサ202と、メモリ203とを有している。プロセッサ202は、例えば、マイクロプロセッサ、MPU(Micro Processing Unit)、又はCPU(Central Processing Unit)であってもよい。プロセッサ202は、複数のプロセッサを含んでもよい。メモリ203は、揮発性メモリ及び不揮発性メモリの組み合わせによって構成される。メモリ203は、プロセッサ202から離れて配置されたストレージを含んでもよい。この場合、プロセッサ202は、図示されていないI (input)/O (output)インタフェースを介してメモリ203にアクセスしてもよい。
第1実施形態の無線送信装置10は、図32に示したハードウェア構成を有することができる。第1実施形態の無線送信装置10の情報シンボル出力部11と、パイロット信号出力部12と、OFDM信号形成部13とは、プロセッサ202がメモリ203に記憶されたプログラムを読み込んで実行することにより実現されてもよい。送信無線部14は、通信回路201によって実現されてもよい。プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、無線送信装置10に供給することができる。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)を含む。さらに、非一時的なコンピュータ可読媒体の例は、CD-ROM(Read Only Memory)、CD-R、CD-R/Wを含む。さらに、非一時的なコンピュータ可読媒体の例は、半導体メモリを含む。半導体メモリは、例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory)を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によって無線送信装置10に供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムを無線送信装置10に供給できる。
図33は、無線受信装置のハードウェア構成例を示す図である。図33において無線受信装置300は、通信回路301と、プロセッサ302と、メモリ303とを有している。プロセッサ302は、例えば、マイクロプロセッサ、MPU(Micro Processing Unit)、又はCPU(Central Processing Unit)であってもよい。プロセッサ302は、複数のプロセッサを含んでもよい。メモリ303は、揮発性メモリ及び不揮発性メモリの組み合わせによって構成される。メモリ303は、プロセッサ302から離れて配置されたストレージを含んでもよい。この場合、プロセッサ302は、図示されていないI (input)/O (output)インタフェースを介してメモリ303にアクセスしてもよい。
第2実施形態から第12実施形態の無線受信装置20,50,60,70,80,90,100,110,120は、それぞれ、図33に示したハードウェア構成を有することができる。第2実施形態から第12実施形態の無線受信装置20,50,60,70,80,90,100,110,120の信号処理部22は、プロセッサ302がメモリ303に記憶されたプログラムを読み込んで実行することにより実現されてもよい。受信無線部21は、通信回路301によって実現されてもよい。プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、無線受信装置20,50,60,70,80,90,100,110,120に供給することができる。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)を含む。さらに、非一時的なコンピュータ可読媒体の例は、CD-ROM(Read Only Memory)、CD-R、CD-R/Wを含む。さらに、非一時的なコンピュータ可読媒体の例は、半導体メモリを含む。半導体メモリは、例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory)を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によって無線受信装置20,50,60,70,80,90,100,110,120に供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムを無線受信装置20,50,60,70,80,90,100,110,120に供給できる。
以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
パイロット信号を含むOFDM(Orthogonal Frequency Division Multiplexing)信号を形成する信号形成部と、
前記形成されたOFDM信号から無線信号を形成する送信無線部と、
を具備し、
前記信号形成部は、
前記OFDM信号の全サブキャリアのうちでNPilot_Freqサブキャリア間隔の複数のパイロット配置サブキャリアに前記パイロット信号を配置し、
前記複数のパイロット配置サブキャリアのうちでNPilot_SPAサブキャリア間隔の複数の第1パイロット配置サブキャリアでは、各リソースエレメントがサブキャリアとOFDMシンボルとの組み合わせによって定義される全てのリソースエレメントに前記パイロット信号を配置し、
前記複数のパイロット配置サブキャリアのうちで前記複数の第1パイロット配置サブキャリアを除く複数の第2パイロット配置サブキャリアでは、時間領域におけるNPilot_Time個のリソースエレメント周期で前記パイロット信号を配置する、
パイロット配置パタンによって、前記パイロット信号を配置する、
無線送信装置。
(付記2)
前記OFDM信号は、DFT(Discrete Fourier Transformation)拡散OFDM信号であり、
前記信号形成部は、
時間領域のパイロットシンボルをブロック化したパイロットシンボルブロックを離散フーリエ変換によって周波数領域信号に変換する変換部と、
前記周波数領域信号を前記パイロット配置サブキャリアにマッピングするマッピング部と、
前記マッピングされた周波数領域信号を逆離散フーリエ変換によって時間領域信号に変換する逆変換部と、
を具備する、
付記1記載の無線送信装置。
(付記3)
前記無線送信装置は、第1アンテナ及び第2アンテナを含む複数のアンテナを具備し、
前記信号形成部は、
前記第1アンテナにて送信されるOFDM信号では、前記パイロット配置パタンによって前記パイロット信号を配置し、
前記第2アンテナにて送信されるOFDM信号では、前記パイロット配置パタンの複数のパイロット配置サブキャリアを1サブキャリアだけ周波数方向にずらした複数のパイロット配置サブキャリアに、前記パイロット配置パタンと同じパタンによって前記パイロット信号を配置する、
付記1記載の無線送信装置。
(付記4)
TxAnt個の送信アンテナと、
パイロット信号を含むOFDM(Orthogonal Frequency Division Multiplexing)信号を形成する信号形成部と、
前記形成されたOFDM信号から無線信号を形成する送信無線部と、
を具備し、
前記信号形成部は、
前記OFDM信号の全サブキャリアのうちで、各セットがNTxAnt個の連続するサブキャリアを含み且つ隣合う各2つのセットの間隔がNPilot_Freqサブキャリアである、複数のパイロット配置サブキャリアセットに、前記パイロット信号を配置し、
前記複数のパイロット配置サブキャリアセットのうちでNPilot_SPAサブキャリア間隔の複数の第1パイロット配置サブキャリアセットでは、各リソースエレメントがサブキャリアとOFDMシンボルとの組み合わせによって定義される、全てのリソースエレメントに前記パイロット信号を配置し、
前記複数のパイロット配置サブキャリアセットのうちで前記複数の第1パイロット配置サブキャリアセットを除く複数の第2パイロット配置サブキャリアセットでは、時間領域におけるNPilot_Time個のリソースエレメント周期で前記パイロット信号を配置する、
パイロット配置パタンによって、前記パイロット信号を配置し、
前記NTxAnt個の送信アンテナからそれぞれ送信される複数の前記パイロット信号は、互いに異なる送信アンテナに固有の拡散系列によって拡散されている、
無線送信装置。
(付記5)
パイロット信号を含むOFDM(Orthogonal Frequency Division Multiplexing)信号を形成する信号形成部と、
前記形成されたOFDM信号から無線信号を形成する送信無線部と、
を具備し、
前記信号形成部は、
前記OFDM信号の全サブキャリアのうちでNPilot_Freqサブキャリア間隔の複数のパイロット配置サブキャリアに前記パイロット信号を配置し、
各パイロット配置サブキャリアでは、時間領域におけるNPilot_Time個のリソースエレメント周期で前記パイロット信号を配置し、
隣接する各2つのパイロット配置サブキャリアでは、前記パイロット信号が配置されるリソースエレメントが時間領域で重ならないように、前記パイロット信号を配置する、
パイロット配置パタンによって、前記パイロット信号を配置する、
無線送信装置。
(付記6)
前記信号形成部は、前記隣接する各2つのパイロット配置サブキャリアのうちの周波数方向に並ぶ第1パイロット配置サブキャリア及び第2パイロット配置サブキャリアに関して、前記第2パイロット配置サブキャリアにおいて前記パイロット信号が配置される最初のリソースエレメントの時間領域の位置が、前記第1パイロット配置サブキャリアにおいて前記パイロット信号が配置される最初のリソースエレメントの時間領域の位置と時間領域で隣接するように、前記パイロット信号を配置する、
付記5記載の無線送信装置。
(付記7)
前記無線送信装置は、第1アンテナ及び第2アンテナを含む複数のアンテナを具備し、
前記信号形成部は、
前記第1アンテナにて送信されるOFDM信号では、前記パイロット配置パタンによって前記パイロット信号を配置し、
前記第2アンテナにて送信されるOFDM信号では、前記パイロット配置パタンの複数のパイロット配置サブキャリアを1サブキャリアだけ周波数方向にずらした複数のパイロットサブキャリアに、前記パイロット配置パタンと同じパタンによって前記パイロット信号を配置する、
付記5記載の無線送信装置。
(付記8)
TxAnt個の送信アンテナと、
パイロット信号を含むOFDM(Orthogonal Frequency Division Multiplexing)信号を形成する信号形成部と、
前記形成されたOFDM信号から無線信号を形成する送信無線部と、
を具備し、
前記信号形成部は、
前記OFDM信号の全サブキャリアのうちで、各セットがNTxAnt個の連続するサブキャリアを含み且つ隣合う各2つのセットの間隔がNPilot_Freqサブキャリアである、複数のパイロット配置サブキャリアセットに、前記パイロット信号を配置し、
各パイロット配置サブキャリアセットでは、時間領域におけるNPilot_Time個のリソースエレメント周期で前記パイロット信号を配置し、
隣接する各2つのパイロット配置サブキャリアセットでは、前記パイロット信号が配置されるリソースエレメントが時間領域で重ならないように、前記パイロット信号を配置する、
パイロット配置パタンによって、前記パイロット信号を配置し、
前記NTxAnt個の送信アンテナからそれぞれ送信される複数の前記パイロット信号は、互いに異なる送信アンテナに固有の拡散系列によって拡散されている、
無線送信装置。
(付記9)
前記信号形成部は、
各パイロット配置サブキャリアセットでは、各パイロット配置サブキャリアにおいて前記パイロット信号を配置するリソースエレメントが時間的に重なるように、前記パイロット信号を配置し、
前記隣接する各2つのパイロット配置サブキャリアセットのうちの周波数方向に並ぶ第1パイロット配置サブキャリアセット及び第2パイロット配置サブキャリアセットに関して、前記第2パイロット配置サブキャリアセットにおいて前記パイロット信号が配置される最初のリソースエレメントの時間領域の位置が、前記第1パイロット配置サブキャリアセットにおいて前記パイロット信号が配置される最初のリソースエレメントの時間領域の位置と時間領域で隣接するように、前記パイロット信号を配置する、
付記8記載の無線送信装置。
(付記10)
OFDM(Orthogonal Frequency Division Multiplexing)信号についての信号処理を実行する信号処理部を具備し、
前記信号処理部は、
受信OFDM信号に含まれるパイロット信号に基づいて、該受信OFDM信号の位相雑音を推定して該受信OFDM信号の位相雑音を補償する位相雑音補償部と、
第1の時間領域信号を受け取り、前記受け取った第1の時間領域信号を周波数領域信号に変換する変換部と、
前記変換部で得られた周波数領域信号に対して等化処理を実行する等化部と、
前記等化処理後の周波数領域信号に含まれる情報シンボルをデマッピングして情報ビットを再生するデマッピング部と、
前記変換部で得られた周波数領域信号に含まれるパイロット信号を抽出する抽出部と、
前記抽出されたパイロット信号を用いてチャネル応答を推定するチャネル推定部と、
前記再生された情報ビットをシンボルにマッピングして再生シンボルを得るシンボル推定部と、
前記得られた再生シンボルに、前記推定されたチャネル応答を乗算する第1の乗算部と、
前記チャネル応答が乗算された再生シンボルを第2の時間領域信号に変換する逆変換部と、
前記第1の時間領域信号と前記逆変換部で得られた第2の時間領域信号とを用いて、位相雑音の推定し、前記推定された位相雑音の逆特性を出力する位相雑音補償信号生成部と、
前記変換部の入力段に配設され、前記出力された位相雑音の逆特性を前記位相雑音補償部によって位相雑音を補償された後の受信OFDM信号に乗算することによって該受信OFDM信号の位相雑音を補償し、該位相雑音補償後の受信OFDM信号を前記第1の時間領域信号として前記変換部に出力する第2の乗算部と、
を含む、
無線受信装置。
(付記11)
OFDM(Orthogonal Frequency Division Multiplexing)信号についての信号処理を実行する信号処理部を具備し、
前記信号処理部は、
受信OFDM信号に含まれるパイロット信号に基づいて、該受信OFDM信号の位相雑音を推定して該OFDM信号の位相雑音を補償する位相雑音補償部と、
第1の時間領域信号を受け取り、前記受け取った第1の時間領域信号を周波数領域信号に変換する変換部と、
前記変換部で得られた周波数領域信号に対して等化処理を実行する等化部と、
前記等化処理後の周波数領域信号に含まれる情報シンボルをデマッピングして、各シンボルにおける各ビットの信頼度情報を計算するデマッピング部と、
前記各ビットの信頼度情報を用いて誤り訂正復号処理を実行し、得られた復号ビットを出力する復号部と、
前記変換部で得られた周波数領域信号に含まれるパイロット信号を抽出する抽出部と、
前記抽出されたパイロット信号を用いてチャネル応答を推定するチャネル推定部と、
前記復号部から出力された復号ビットをシンボルにマッピングして再生シンボルを得るシンボル推定部と、
前記得られた再生シンボルに、前記推定されたチャネル応答を乗算する第1の乗算部と、
前記チャネル応答が乗算された再生シンボルを第2の時間領域信号に変換する逆変換部と、
前記第1の時間領域信号と前記逆変換部で得られた第2の時間領域信号とを用いて、位相雑音の推定し、前記推定された位相雑音の逆特性を出力する位相雑音補償信号生成部と、
前記変換部の入力段に配設され、前記出力された位相雑音の逆特性を前記位相雑音補償部によって位相雑音を補償された後の受信OFDM信号に乗算することによって該受信OFDM信号の位相雑音を補償し、該位相雑音補償後の受信OFDM信号を前記第1の時間領域信号として前記変換部に出力する第2の乗算部と、
を含む、
無線受信装置。
(付記12)
OFDM(Orthogonal Frequency Division Multiplexing)信号についての信号処理を実行する信号処理部を具備し、
前記信号処理部は、
受信OFDM信号に含まれるパイロット信号に基づいて、該受信OFDM信号の位相雑音を推定して該受信OFDM信号の位相雑音を補償する位相雑音補償部と、
第1の時間領域信号を受け取り、前記受け取った第1の時間領域信号を第1の周波数領域信号に変換する第1の変換部と、
前記第1の変換部で得られた第1の周波数領域信号に対して等化処理を実行する等化部と、
前記等化処理後の周波数領域信号を第2の時間領域信号である情報シンボルに変換する第1の逆変換部と、
前記情報シンボルをデマッピングして情報ビットを再生するデマッピング部と、
前記第1の変換部で得られた第1の周波数領域信号に含まれるパイロット信号を抽出する抽出部と、
前記抽出されたパイロット信号を用いてチャネル応答を推定するチャネル推定部と、
前記再生された情報ビットをシンボルにマッピングして再生シンボルを得るシンボル推定部と、
前記再生シンボルを第2の周波数領域信号であるシンボルに変換する第2の変換部と、
前記第2の周波数領域信号であるシンボルをサブキャリアにマッピングするマッピング部と、
前記サブキャリアにマッピングされたシンボルに、前記推定されたチャネル応答を乗算する第1の乗算部と、
前記チャネル応答が乗算されたシンボルを第3の時間領域信号に変換する第2の逆変換部と、
前記第1の時間領域信号と前記第2の逆変換部で得られた第3の時間領域信号とを用いて、位相雑音の推定し、前記推定された位相雑音の逆特性を出力する位相雑音補償信号生成部と、
前記第1の変換部の入力段に配設され、前記出力された位相雑音の逆特性を前記位相雑音補償部によって位相雑音を補償された後の受信OFDM信号に乗算することによって該受信OFDM信号の位相雑音を補償し、該位相雑音補償後の受信OFDM信号を前記第1の時間領域信号として前記第1の変換部に出力する第2の乗算部と、
を含む、
無線受信装置。
(付記13)
OFDM(Orthogonal Frequency Division Multiplexing)信号についての信号処理を実行する信号処理部を具備し、
前記信号処理部は、
受信OFDM信号に含まれるパイロット信号に基づいて、該受信OFDM信号の位相雑音を推定して該受信OFDM信号の位相雑音を補償する位相雑音補償部と、
第1の時間領域信号を受け取り、前記受け取った第1の時間領域信号を第1の周波数領域信号に変換する第1の変換部と、
前記第1の変換部で得られた第1の周波数領域信号に対して等化処理を実行する等化部と、
前記等化処理後の周波数領域信号を第2の時間領域信号である情報シンボルに変換する第1の逆変換部と、
前記情報シンボルをデマッピングして、各シンボルにおける各ビットの信頼度情報を計算するデマッピング部と、
前記各ビットの信頼度情報を用いて誤り訂正復号処理を実行し、得られた復号ビットを出力する復号部と、
前記第1の変換部で得られた第1の周波数領域信号に含まれるパイロット信号を抽出する抽出部と、
前記抽出されたパイロット信号を用いてチャネル応答を推定するチャネル推定部と、
前記復号部から出力された復号ビットをシンボルにマッピングして再生シンボルを得るシンボル推定部と、
前記再生シンボルを第2の周波数領域信号であるシンボルに変換する第2の変換部と、
前記第2の周波数領域信号であるシンボルをサブキャリアにマッピングするマッピング部と、
前記サブキャリアにマッピングされたシンボルに、前記推定されたチャネル応答を乗算する第1の乗算部と、
前記チャネル応答が乗算されたシンボルを第3の時間領域信号に変換する第2の逆変換部と、
前記第1の時間領域信号と前記第2の逆変換部で得られた第3の時間領域信号とを用いて、位相雑音の推定し、前記推定された位相雑音の逆特性を出力する位相雑音補償信号生成部と、
前記第1の変換部の入力段に配設され、前記出力された位相雑音の逆特性を前記位相雑音補償部によって位相雑音を補償された後の受信OFDM信号に乗算することによって該受信OFDM信号の位相雑音を補償し、該位相雑音補償後の受信OFDM信号を前記第1の時間領域信号として前記第1の変換部に出力する第2の乗算部と、
を含む、
無線受信装置。
(付記14)
前記位相雑音補償部は、
複数の基底関数を出力する出力部と、
前記受信OFDM信号に含まれるパイロット信号と前記複数の基底関数とを用いて、該受信OFDM信号に含まれる位相雑音と各基底関数に重み係数を乗算して得られる乗算結果との線形和の平均2乗誤差を計算し、前記計算した平均2乗誤差を最小にするように各基底関数の重み係数を生成する重み生成部と、
前記生成された重み係数を用いて基底関数の線形和を求めることによって位相雑音を算出する位相雑音算出部と、
を含む、
付記10記載の無線受信装置。
(付記15)
前記位相雑音補償信号生成部は、FFTブロックに対応するOFDMシンボルのNFFT個のサンプルをNBlk個のブロックに分割した各ブロックのNFFT/NBlk個のサンプルの位相雑音推定値を、同相成分と直交成分とで独立に平均し、得られた前記NBlk個のブロックの位相雑音推定値の平均値を、線形補間、2次補間、又は、高次関数を用いた補間によって補間することによって、各サンプル点における位相雑音を推定する、
付記10記載の無線受信装置。
(付記16)
前記位相雑音補償信号生成部は、
前記第1の時間領域信号と前記逆変換部で得られた第2の時間領域信号とを用いて、FFTブロックに対応するOFDMシンボルのNFFT個のサンプル位置の位相雑音の推定する手段と、
前記推定された各サンプルの位相雑音をそれぞれOFDMシンボルにわたって平均2乗誤差最小規範の適応アルゴリズムにより平均化する手段と、
を含む、
付記10記載の無線受信装置。
(付記17)
OFDM(Orthogonal Frequency Division Multiplexing)信号についての信号処理を実行する信号処理部を具備し、
前記信号処理部は、
受信OFDM信号に含まれるパイロット信号に基づいて、該受信OFDM信号の位相雑音を推定して該受信OFDM信号の位相雑音を補償する位相雑音補償部と、
前記位相雑音補償部によって位相雑音を補償された後の受信OFDM信号を受け取り、該受け取った受信OFDM信号を周波数領域信号に変換する変換部と、
前記変換部で得られた周波数領域信号に対して等化処理を実行する等化部と、
前記等化処理後の周波数領域信号に含まれる情報シンボルをデマッピングして、各シンボルにおける各ビットの信頼度情報を計算するデマッピング部と、
前記各ビットの信頼度情報を用いて誤り訂正復号処理を実行し、得られた復号ビットを出力する復号部と、
前記等化処理後の周波数領域信号と基準信号との位相差を検出する検出部と、
前記検出された位相差の雑音成分を低減して得られた位相差を出力するループフィルタと、
前記デマッピング部の入力段に配設され、前記出力された位相差を用いて前記等化処理後の周波数領域信号の位相雑音を補償する位相雑音補償処理部と、
前記復号ビットをシンボルにマッピングして再生シンボルを得て、前記再生シンボルを前記基準信号として出力するシンボル推定部と、
を含む、
無線受信装置。
(付記18)
OFDM(Orthogonal Frequency Division Multiplexing)信号についての信号処理を実行する信号処理部を具備し、
受信OFDM信号に含まれるパイロット信号に基づいて、該受信OFDM信号の位相雑音を推定して該受信OFDM信号の位相雑音を補償する位相雑音補償部と、
前記位相雑音補償部によって位相雑音を補償された後の受信OFDM信号を受け取り、該受け取った受信OFDM信号を周波数領域信号に変換する変換部と、
前記変換部で得られた周波数領域信号に対して等化処理を実行する等化部と、
前記変換部で得られた周波数領域信号に含まれるパイロット信号を抽出する抽出部と、
前記抽出されたパイロット信号を用いてチャネル応答を推定するチャネル推定部と、
前記変換部で得られた周波数領域信号に含まれる情報シンボルをデマッピングして情報ビットを再生するデマッピング部と、
前記再生された情報ビットをシンボルにマッピングして再生シンボルを得るシンボル推定部と、
前記変換部で得られた周波数領域信号に含まれる情報シンボルと、前記推定されたチャネル応答と、前記再生シンボルとに基づいて、平均2乗誤差最小規範により位相雑音の離散フーリエ変換係数を算出する算出部と、
前記等化部の入力段に配設され、前記変換部で得られた周波数領域信号と前記算出された離散フーリエ変換係数とを用いて畳み込み処理を行うことによって、前記位相雑音補償部によって位相雑音を補償された後の受信OFDM信号の位相雑音を補償するキャリア間干渉補償部と、
を含む、
無線受信装置。
10 無線送信装置
11 情報シンボル出力部
12 パイロット信号出力部
13 OFDM信号形成部
14 送信無線部
20,50,60,70,80,90,100,110,120 無線受信装置
21 受信無線部
22 信号処理部

Claims (18)

  1. パイロット信号を含むOFDM(Orthogonal Frequency Division Multiplexing)信号を形成する信号形成部と、
    前記形成されたOFDM信号から無線信号を形成する送信無線部と、
    を具備し、
    前記信号形成部は、
    前記OFDM信号の全サブキャリアのうちでNPilot_Freqサブキャリア間隔の複数のパイロット配置サブキャリアに前記パイロット信号を配置し、
    前記複数のパイロット配置サブキャリアのうちでNPilot_SPAサブキャリア間隔の複数の第1パイロット配置サブキャリアでは、各リソースエレメントがサブキャリアとOFDMシンボルとの組み合わせによって定義される全てのリソースエレメントに前記パイロット信号を配置し、
    前記複数のパイロット配置サブキャリアのうちで前記複数の第1パイロット配置サブキャリアを除く複数の第2パイロット配置サブキャリアでは、時間領域におけるNPilot_Time個のリソースエレメント周期で前記パイロット信号を配置する、
    パイロット配置パタンによって、前記パイロット信号を配置する、
    無線送信装置。
  2. 前記OFDM信号は、DFT(Discrete Fourier Transformation)拡散OFDM信号であり、
    前記信号形成部は、
    時間領域のパイロットシンボルをブロック化したパイロットシンボルブロックを離散フーリエ変換によって周波数領域信号に変換する変換部と、
    前記周波数領域信号を前記パイロット配置サブキャリアにマッピングするマッピング部と、
    前記マッピングされた周波数領域信号を逆離散フーリエ変換によって時間領域信号に変換する逆変換部と、
    を具備する、
    請求項1記載の無線送信装置。
  3. 前記無線送信装置は、第1アンテナ及び第2アンテナを含む複数のアンテナを具備し、
    前記信号形成部は、
    前記第1アンテナにて送信されるOFDM信号では、前記パイロット配置パタンによって前記パイロット信号を配置し、
    前記第2アンテナにて送信されるOFDM信号では、前記パイロット配置パタンの複数のパイロット配置サブキャリアを1サブキャリアだけ周波数方向にずらした複数のパイロット配置サブキャリアに、前記パイロット配置パタンと同じパタンによって前記パイロット信号を配置する、
    請求項1記載の無線送信装置。
  4. TxAnt個の送信アンテナと、
    パイロット信号を含むOFDM(Orthogonal Frequency Division Multiplexing)信号を形成する信号形成部と、
    前記形成されたOFDM信号から無線信号を形成する送信無線部と、
    を具備し、
    前記信号形成部は、
    前記OFDM信号の全サブキャリアのうちで、各セットがNTxAnt個の連続するサブキャリアを含み且つ隣合う各2つのセットの間隔がNPilot_Freqサブキャリアである、複数のパイロット配置サブキャリアセットに、前記パイロット信号を配置し、
    前記複数のパイロット配置サブキャリアセットのうちでNPilot_SPAサブキャリア間隔の複数の第1パイロット配置サブキャリアセットでは、各リソースエレメントがサブキャリアとOFDMシンボルとの組み合わせによって定義される、全てのリソースエレメントに前記パイロット信号を配置し、
    前記複数のパイロット配置サブキャリアセットのうちで前記複数の第1パイロット配置サブキャリアセットを除く複数の第2パイロット配置サブキャリアセットでは、時間領域におけるNPilot_Time個のリソースエレメント周期で前記パイロット信号を配置する、
    パイロット配置パタンによって、前記パイロット信号を配置し、
    前記NTxAnt個の送信アンテナからそれぞれ送信される複数の前記パイロット信号は、互いに異なる送信アンテナに固有の拡散系列によって拡散されている、
    無線送信装置。
  5. パイロット信号を含むOFDM(Orthogonal Frequency Division Multiplexing)信号を形成する信号形成部と、
    前記形成されたOFDM信号から無線信号を形成する送信無線部と、
    を具備し、
    前記信号形成部は、
    前記OFDM信号の全サブキャリアのうちでNPilot_Freqサブキャリア間隔の複数のパイロット配置サブキャリアに前記パイロット信号を配置し、
    各パイロット配置サブキャリアでは、時間領域におけるNPilot_Time個のリソースエレメント周期で前記パイロット信号を配置し、
    隣接する各2つのパイロット配置サブキャリアでは、前記パイロット信号が配置されるリソースエレメントが時間領域で重ならないように、前記パイロット信号を配置する、
    パイロット配置パタンによって、前記パイロット信号を配置する、
    無線送信装置。
  6. 前記信号形成部は、前記隣接する各2つのパイロット配置サブキャリアのうちの周波数方向に並ぶ第1パイロット配置サブキャリア及び第2パイロット配置サブキャリアに関して、前記第2パイロット配置サブキャリアにおいて前記パイロット信号が配置される最初のリソースエレメントの時間領域の位置が、前記第1パイロット配置サブキャリアにおいて前記パイロット信号が配置される最初のリソースエレメントの時間領域の位置と時間領域で隣接するように、前記パイロット信号を配置する、
    請求項5記載の無線送信装置。
  7. 前記無線送信装置は、第1アンテナ及び第2アンテナを含む複数のアンテナを具備し、
    前記信号形成部は、
    前記第1アンテナにて送信されるOFDM信号では、前記パイロット配置パタンによって前記パイロット信号を配置し、
    前記第2アンテナにて送信されるOFDM信号では、前記パイロット配置パタンの複数のパイロット配置サブキャリアを1サブキャリアだけ周波数方向にずらした複数のパイロットサブキャリアに、前記パイロット配置パタンと同じパタンによって前記パイロット信号を配置する、
    請求項5記載の無線送信装置。
  8. TxAnt個の送信アンテナと、
    パイロット信号を含むOFDM(Orthogonal Frequency Division Multiplexing)信号を形成する信号形成部と、
    前記形成されたOFDM信号から無線信号を形成する送信無線部と、
    を具備し、
    前記信号形成部は、
    前記OFDM信号の全サブキャリアのうちで、各セットがNTxAnt個の連続するサブキャリアを含み且つ隣合う各2つのセットの間隔がNPilot_Freqサブキャリアである、複数のパイロット配置サブキャリアセットに、前記パイロット信号を配置し、
    各パイロット配置サブキャリアセットでは、時間領域におけるNPilot_Time個のリソースエレメント周期で前記パイロット信号を配置し、
    隣接する各2つのパイロット配置サブキャリアセットでは、前記パイロット信号が配置されるリソースエレメントが時間領域で重ならないように、前記パイロット信号を配置する、
    パイロット配置パタンによって、前記パイロット信号を配置し、
    前記NTxAnt個の送信アンテナからそれぞれ送信される複数の前記パイロット信号は、互いに異なる送信アンテナに固有の拡散系列によって拡散されている、
    無線送信装置。
  9. 前記信号形成部は、
    各パイロット配置サブキャリアセットでは、各パイロット配置サブキャリアにおいて前記パイロット信号を配置するリソースエレメントが時間的に重なるように、前記パイロット信号を配置し、
    前記隣接する各2つのパイロット配置サブキャリアセットのうちの周波数方向に並ぶ第1パイロット配置サブキャリアセット及び第2パイロット配置サブキャリアセットに関して、前記第2パイロット配置サブキャリアセットにおいて前記パイロット信号が配置される最初のリソースエレメントの時間領域の位置が、前記第1パイロット配置サブキャリアセットにおいて前記パイロット信号が配置される最初のリソースエレメントの時間領域の位置と時間領域で隣接するように、前記パイロット信号を配置する、
    請求項8記載の無線送信装置。
  10. OFDM(Orthogonal Frequency Division Multiplexing)信号についての信号処理を実行する信号処理部を具備し、
    前記信号処理部は、
    受信OFDM信号に含まれるパイロット信号に基づいて、該受信OFDM信号の位相雑音を推定して該受信OFDM信号の位相雑音を補償する位相雑音補償部と、
    第1の時間領域信号を受け取り、前記受け取った第1の時間領域信号を周波数領域信号に変換する変換部と、
    前記変換部で得られた周波数領域信号に対して等化処理を実行する等化部と、
    前記等化処理後の周波数領域信号に含まれる情報シンボルをデマッピングして情報ビットを再生するデマッピング部と、
    前記変換部で得られた周波数領域信号に含まれるパイロット信号を抽出する抽出部と、
    前記抽出されたパイロット信号を用いてチャネル応答を推定するチャネル推定部と、
    前記再生された情報ビットをシンボルにマッピングして再生シンボルを得るシンボル推定部と、
    前記得られた再生シンボルに、前記推定されたチャネル応答を乗算する第1の乗算部と、
    前記チャネル応答が乗算された再生シンボルを第2の時間領域信号に変換する逆変換部と、
    前記第1の時間領域信号と前記逆変換部で得られた第2の時間領域信号とを用いて、位相雑音の推定し、前記推定された位相雑音の逆特性を出力する位相雑音補償信号生成部と、
    前記変換部の入力段に配設され、前記出力された位相雑音の逆特性を前記位相雑音補償部によって位相雑音を補償された後の受信OFDM信号に乗算することによって該受信OFDM信号の位相雑音を補償し、該位相雑音補償後の受信OFDM信号を前記第1の時間領域信号として前記変換部に出力する第2の乗算部と、
    を含む、
    無線受信装置。
  11. OFDM(Orthogonal Frequency Division Multiplexing)信号についての信号処理を実行する信号処理部を具備し、
    前記信号処理部は、
    受信OFDM信号に含まれるパイロット信号に基づいて、該受信OFDM信号の位相雑音を推定して該OFDM信号の位相雑音を補償する位相雑音補償部と、
    第1の時間領域信号を受け取り、前記受け取った第1の時間領域信号を周波数領域信号に変換する変換部と、
    前記変換部で得られた周波数領域信号に対して等化処理を実行する等化部と、
    前記等化処理後の周波数領域信号に含まれる情報シンボルをデマッピングして、各シンボルにおける各ビットの信頼度情報を計算するデマッピング部と、
    前記各ビットの信頼度情報を用いて誤り訂正復号処理を実行し、得られた復号ビットを出力する復号部と、
    前記変換部で得られた周波数領域信号に含まれるパイロット信号を抽出する抽出部と、
    前記抽出されたパイロット信号を用いてチャネル応答を推定するチャネル推定部と、
    前記復号部から出力された復号ビットをシンボルにマッピングして再生シンボルを得るシンボル推定部と、
    前記得られた再生シンボルに、前記推定されたチャネル応答を乗算する第1の乗算部と、
    前記チャネル応答が乗算された再生シンボルを第2の時間領域信号に変換する逆変換部と、
    前記第1の時間領域信号と前記逆変換部で得られた第2の時間領域信号とを用いて、位相雑音の推定し、前記推定された位相雑音の逆特性を出力する位相雑音補償信号生成部と、
    前記変換部の入力段に配設され、前記出力された位相雑音の逆特性を前記位相雑音補償部によって位相雑音を補償された後の受信OFDM信号に乗算することによって該受信OFDM信号の位相雑音を補償し、該位相雑音補償後の受信OFDM信号を前記第1の時間領域信号として前記変換部に出力する第2の乗算部と、
    を含む、
    無線受信装置。
  12. OFDM(Orthogonal Frequency Division Multiplexing)信号についての信号処理を実行する信号処理部を具備し、
    前記信号処理部は、
    受信OFDM信号に含まれるパイロット信号に基づいて、該受信OFDM信号の位相雑音を推定して該受信OFDM信号の位相雑音を補償する位相雑音補償部と、
    第1の時間領域信号を受け取り、前記受け取った第1の時間領域信号を第1の周波数領域信号に変換する第1の変換部と、
    前記第1の変換部で得られた第1の周波数領域信号に対して等化処理を実行する等化部と、
    前記等化処理後の周波数領域信号を第2の時間領域信号である情報シンボルに変換する第1の逆変換部と、
    前記情報シンボルをデマッピングして情報ビットを再生するデマッピング部と、
    前記第1の変換部で得られた第1の周波数領域信号に含まれるパイロット信号を抽出する抽出部と、
    前記抽出されたパイロット信号を用いてチャネル応答を推定するチャネル推定部と、
    前記再生された情報ビットをシンボルにマッピングして再生シンボルを得るシンボル推定部と、
    前記再生シンボルを第2の周波数領域信号であるシンボルに変換する第2の変換部と、
    前記第2の周波数領域信号であるシンボルをサブキャリアにマッピングするマッピング部と、
    前記サブキャリアにマッピングされたシンボルに、前記推定されたチャネル応答を乗算する第1の乗算部と、
    前記チャネル応答が乗算されたシンボルを第3の時間領域信号に変換する第2の逆変換部と、
    前記第1の時間領域信号と前記第2の逆変換部で得られた第3の時間領域信号とを用いて、位相雑音の推定し、前記推定された位相雑音の逆特性を出力するの位相雑音補償信号生成部と、
    前記第1の変換部の入力段に配設され、前記出力された位相雑音の逆特性を前記位相雑音補償部によって位相雑音を補償された後の受信OFDM信号に乗算することによって該受信OFDM信号の位相雑音を補償し、該位相雑音補償後の受信OFDM信号を前記第1の時間領域信号として前記第1の変換部に出力する第2の乗算部と、
    を含む、
    無線受信装置。
  13. OFDM(Orthogonal Frequency Division Multiplexing)信号についての信号処理を実行する信号処理部を具備し、
    前記信号処理部は、
    受信OFDM信号に含まれるパイロット信号に基づいて、該受信OFDM信号の位相雑音を推定して該受信OFDM信号の位相雑音を補償する位相雑音補償部と、
    第1の時間領域信号を受け取り、前記受け取った第1の時間領域信号を第1の周波数領域信号に変換する第1の変換部と、
    前記第1の変換部で得られた第1の周波数領域信号に対して等化処理を実行する等化部と、
    前記等化処理後の周波数領域信号を第2の時間領域信号である情報シンボルに変換する第1の逆変換部と、
    前記情報シンボルをデマッピングして、各シンボルにおける各ビットの信頼度情報を計算するデマッピング部と、
    前記各ビットの信頼度情報を用いて誤り訂正復号処理を実行し、得られた復号ビットを出力する復号部と、
    前記第1の変換部で得られた第1の周波数領域信号に含まれるパイロット信号を抽出する抽出部と、
    前記抽出されたパイロット信号を用いてチャネル応答を推定するチャネル推定部と、
    前記復号部から出力された復号ビットをシンボルにマッピングして再生シンボルを得るシンボル推定部と、
    前記再生シンボルを第2の周波数領域信号であるシンボルに変換する第2の変換部と、
    前記第2の周波数領域信号であるシンボルをサブキャリアにマッピングするマッピング部と、
    前記サブキャリアにマッピングされたシンボルに、前記推定されたチャネル応答を乗算する第1の乗算部と、
    前記チャネル応答が乗算されたシンボルを第3の時間領域信号に変換する第2の逆変換部と、
    前記第1の時間領域信号と前記第2の逆変換部で得られた第3の時間領域信号とを用いて、位相雑音の推定し、前記推定された位相雑音の逆特性を出力する位相雑音補償信号生成部と、
    前記第1の変換部の入力段に配設され、前記出力された位相雑音の逆特性を前記位相雑音補償部によって位相雑音を補償された後の受信OFDM信号に乗算することによって該受信OFDM信号の位相雑音を補償し、該位相雑音補償後の受信OFDM信号を前記第1の時間領域信号として前記第1の変換部に出力する第2の乗算部と、
    を含む、
    無線受信装置。
  14. 前記位相雑音補償部は、
    複数の基底関数を出力する出力部と、
    前記受信OFDM信号に含まれるパイロット信号と前記複数の基底関数とを用いて、該受信OFDM信号に含まれる位相雑音と各基底関数に重み係数を乗算して得られる乗算結果との線形和の平均2乗誤差を計算し、前記計算した平均2乗誤差を最小にするように各基底関数の重み係数を生成する重み生成部と、
    前記生成された重み係数を用いて基底関数の線形和を求めることによって位相雑音を算出する位相雑音算出部と、
    を含む、
    請求項10記載の無線受信装置。
  15. 前記位相雑音補償信号生成部は、FFTブロックに対応するOFDMシンボルのNFFT個のサンプルをNBlk個のブロックに分割した各ブロックのNFFT/NBlk個のサンプルの位相雑音推定値を、同相成分と直交成分とで独立に平均し、得られた前記NBlk個のブロックの位相雑音推定値の平均値を、線形補間、2次補間、又は、高次関数を用いた補間によって補間することによって、各サンプル点における位相雑音を推定する、
    請求項10記載の無線受信装置。
  16. 前記位相雑音補償信号生成部は、
    前記第1の時間領域信号と前記逆変換部で得られた第2の時間領域信号とを用いて、FFTブロックに対応するOFDMシンボルのNFFT個のサンプル位置の位相雑音の推定する手段と、
    前記推定された各サンプルの位相雑音をそれぞれOFDMシンボルにわたって平均2乗誤差最小規範の適応アルゴリズムにより平均化する手段と、
    を含む、
    請求項10記載の無線受信装置。
  17. OFDM(Orthogonal Frequency Division Multiplexing)信号についての信号処理を実行する信号処理部を具備し、
    前記信号処理部は、
    受信OFDM信号に含まれるパイロット信号に基づいて、該受信OFDM信号の位相雑音を推定して該受信OFDM信号の位相雑音を補償する位相雑音補償部と、
    前記位相雑音補償部によって位相雑音を補償された後の受信OFDM信号を受け取り、該受け取った受信OFDM信号を周波数領域信号に変換する変換部と、
    前記変換部で得られた周波数領域信号に対して等化処理を実行する等化部と、
    前記等化処理後の周波数領域信号に含まれる情報シンボルをデマッピングして、各シンボルにおける各ビットの信頼度情報を計算するデマッピング部と、
    前記各ビットの信頼度情報を用いて誤り訂正復号処理を実行し、得られた復号ビットを出力する復号部と、
    前記等化処理後の周波数領域信号と基準信号との位相差を検出する検出部と、
    前記検出された位相差の雑音成分を低減して得られた位相差を出力するループフィルタと、
    前記デマッピング部の入力段に配設され、前記出力された位相差を用いて前記等化処理後の周波数領域信号の位相雑音を補償する位相雑音補償処理部と、
    前記復号ビットをシンボルにマッピングして再生シンボルを得て、前記再生シンボルを前記基準信号として出力するシンボル推定部と、
    を含む、
    無線受信装置。
  18. OFDM(Orthogonal Frequency Division Multiplexing)信号についての信号処理を実行する信号処理部を具備し、
    受信OFDM信号に含まれるパイロット信号に基づいて、該受信OFDM信号の位相雑音を推定して該受信OFDM信号の位相雑音を補償する位相雑音補償部と、
    前記位相雑音補償部によって位相雑音を補償された後の受信OFDM信号を受け取り、該受け取った受信OFDM信号を周波数領域信号に変換する変換部と、
    前記変換部で得られた周波数領域信号に対して等化処理を実行する等化部と、
    前記変換部で得られた周波数領域信号に含まれるパイロット信号を抽出する抽出部と、
    前記抽出されたパイロット信号を用いてチャネル応答を推定するチャネル推定部と、
    前記変換部で得られた周波数領域信号に含まれる情報シンボルをデマッピングして情報ビットを再生するデマッピング部と、
    前記再生された情報ビットをシンボルにマッピングして再生シンボルを得るシンボル推定部と、
    前記変換部で得られた周波数領域信号に含まれる情報シンボルと、前記推定されたチャネル応答と、前記再生シンボルとに基づいて、平均2乗誤差最小規範により位相雑音の離散フーリエ変換係数を算出する算出部と、
    前記等化部の入力段に配設され、前記変換部で得られた周波数領域信号と前記算出された離散フーリエ変換係数とを用いて畳み込み処理を行うことによって、前記位相雑音補償部によって位相雑音を補償された後の受信OFDM信号の位相雑音を補償するキャリア間干渉補償部と、
    を含む、
    無線受信装置。
JP2022092200A 2022-06-07 2022-06-07 無線送信装置及び無線受信装置 Pending JP2023179112A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022092200A JP2023179112A (ja) 2022-06-07 2022-06-07 無線送信装置及び無線受信装置
US18/204,686 US20230396476A1 (en) 2022-06-07 2023-06-01 Radio transmission device and radio reception device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022092200A JP2023179112A (ja) 2022-06-07 2022-06-07 無線送信装置及び無線受信装置

Publications (1)

Publication Number Publication Date
JP2023179112A true JP2023179112A (ja) 2023-12-19

Family

ID=88976192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022092200A Pending JP2023179112A (ja) 2022-06-07 2022-06-07 無線送信装置及び無線受信装置

Country Status (2)

Country Link
US (1) US20230396476A1 (ja)
JP (1) JP2023179112A (ja)

Also Published As

Publication number Publication date
US20230396476A1 (en) 2023-12-07

Similar Documents

Publication Publication Date Title
JP5337165B2 (ja) キャリア間干渉が限定された無線通信ネットワークのチャネル推定方法及びシステム
US9210000B2 (en) Channel estimating method for FBMC telecommunication system
US20160359655A1 (en) Method and apparatus for ifdma receiver architecture
Chen et al. Intercarrier interference suppression and channel estimation for OFDM systems in time-varying frequency-selective fading channels
EP1872551A1 (en) Time domain windowing and inter-carrier interference cancellation
WO2020217941A1 (ja) 変調装置及び復調装置
WO2016067675A1 (ja) 位相雑音補償受信機
JPWO2017183631A1 (ja) Los−mimo復調装置、通信装置、los−mimo伝送システム、los−mimo復調方法及びプログラム
US10218548B1 (en) Wireless radio receiver that performs adaptive phase tracking
US10103906B2 (en) Method and apparatus for attenuating interference or cancelling interference in filter bank multicarrier system
JP2018007056A (ja) 無線通信システム、無線送信装置および無線受信装置
JP2023179112A (ja) 無線送信装置及び無線受信装置
US10218549B1 (en) Wireless radio receiver that performs adaptive phase tracking
Lei et al. CFR and SNR estimation based on complementary Golay sequences for single-carrier block transmission in 60-GHz WPAN
KR101203861B1 (ko) 채널 추정 방법, 채널 추정기, 단말기 및 기지국
Dayi Improving 5g nr uplink channel estimation with artificial neural networks: a practical study on NR PUSCH receiver
Dikarev et al. Phase Noise Compensation for 5G NR System with DFT-s-OFDM in the Presence of Timing Errors
Guo et al. Joint estimation of synchronization parameters and channels for generalized-OFDMA uplink
Salehi et al. Channel estimation for MIMO-OFDM systems based on multiplexed pilot and superimposed pilot
Tonello Exact matched filter performance bound for multitone modulation in fading channels
EP1665710B1 (en) Apparatus and method for adaptive orthogonality correction
EP1958409A1 (en) Apparatus for estimating time and frequency offset using antenna diversity in ofdm communication system and method thereof
Kumar et al. Analysis of Channel Sensing Technique: A New Approach to Channel Estimating in Mobile OFDM System
Adeyemo et al. Comparative Analysis of CMA and MMSE in MIMO-OFDM system
Prianka et al. A new approach to improve ICI self-cancellation technique in OFDM