JP2023177269A - Method and system for assessing multi-level risks of antibiotic residues in water environment - Google Patents

Method and system for assessing multi-level risks of antibiotic residues in water environment Download PDF

Info

Publication number
JP2023177269A
JP2023177269A JP2023081488A JP2023081488A JP2023177269A JP 2023177269 A JP2023177269 A JP 2023177269A JP 2023081488 A JP2023081488 A JP 2023081488A JP 2023081488 A JP2023081488 A JP 2023081488A JP 2023177269 A JP2023177269 A JP 2023177269A
Authority
JP
Japan
Prior art keywords
target
antibiotic
derivative
drug resistance
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2023081488A
Other languages
Japanese (ja)
Other versions
JP7408041B2 (en
Inventor
王娜
Na Wang
施瑪麗
Mali Shi
郭欣妍
Xinyan Guo
張暁輝
Xiaohui Zhang
倪▲に▼
Ni Ni
袁青彬
Qingbin Yuan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Nanjing Tech University
Nanjing Institute of Environmental Sciences MEE
Original Assignee
Nanjing University
Nanjing Tech University
Nanjing Institute of Environmental Sciences MEE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University, Nanjing Tech University, Nanjing Institute of Environmental Sciences MEE filed Critical Nanjing University
Publication of JP2023177269A publication Critical patent/JP2023177269A/en
Application granted granted Critical
Publication of JP7408041B2 publication Critical patent/JP7408041B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0635Risk analysis of enterprise or organisation activities
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/18Testing for antimicrobial activity of a material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06393Score-carding, benchmarking or key performance indicator [KPI] analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/6807Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug or compound being a sugar, nucleoside, nucleotide, nucleic acid, e.g. RNA antisense
    • A61K47/6809Antibiotics, e.g. antitumor antibiotics anthracyclins, adriamycin, doxorubicin or daunomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Organic Chemistry (AREA)
  • Human Resources & Organizations (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Toxicology (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • General Business, Economics & Management (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Agronomy & Crop Science (AREA)
  • Animal Husbandry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Mining & Mineral Resources (AREA)

Abstract

To provide a method and a system for assessing multi-level risks of antibiotic residues in water environments, in the technical field of water environment assessment.SOLUTION: An assessing method according to the present invention comprises: a step S1 of monitoring environment; a step S2 of preliminary screening antibiotics: a step S3 of assessing microbial drug resistance; and a step S4 of performing high-level assessment. The step S2 comprises: a step S2-1 of determining an octanol/water partition coefficient; and a step S2-2 of determining antibiotic environment concentration. The present invention performs a cascade evaluation of target antibiotics or derivatives thereof in water environments having risks, and performs high-level assessment and high-risk assessment on differences in the drug resistances, thereby enabling identifying antibiotic types having high ecological risks which should be restricted or prohibited.SELECTED DRAWING: Figure 1

Description

本発明は、環境保護の分野に関し、具体的に、水環境中の残留抗生物質に対するマルチレ
ベルのリスク評価方法および評価システムに関する。
The present invention relates to the field of environmental protection, and specifically relates to a multi-level risk assessment method and system for antibiotic residues in aquatic environments.

抗生物質は、細菌を殺すことによって感染症を治療するために使用されるが、広く存在す
る生物群としての細菌も、殺されるリスクを回避するために、様々な形で抗生物質に対す
る耐性を獲得可能であり、この耐性は「細菌薬品耐性」と呼ばれ、薬品耐性能力を獲得し
た細菌は「薬品耐性細菌」と呼ばれる。
生態リスクとは、生態系が生態系に脅威を与える生態系外のあらゆる要素にさらされる可
能性のことで、ある地域における化学物質の排出、人間活動、自然災害などによって生態
系やその構成要素に悪影響を及ぼし、生態系の構造や機能にダメージを与え、生態系の安
全や健康を脅かす可能性があることを指す。
Antibiotics are used to treat infections by killing bacteria, but bacteria as a widespread group of organisms also develop resistance to antibiotics in various ways to avoid the risk of being killed. This resistance is called "bacterial drug resistance," and bacteria that have acquired the ability to resist drugs are called "drug-resistant bacteria."
Ecological risk is the potential for an ecosystem to be exposed to any element outside the ecosystem that poses a threat to the ecosystem, such as the release of chemicals in a region, human activities, natural disasters, etc. refers to the possibility of having a negative impact on the environment, damaging the structure and function of the ecosystem, and threatening the safety and health of the ecosystem.

上記の問題に対して、本発明は、水環境中の残留抗生物質に対するマルチレベルのリスク
評価方法を提供する。
本発明の技術的解決策は以下の通りである。
水環境中の残留抗生物質に対するマルチレベルのリスク評価方法は、以下のステップを含
み、
S1、環境監視:
S1-1:目標流域における抗生物質の生産、使用および排出の背景調査を行い、生態リ
スク評価目標抗生物質の監視リストを確立し、目標抗生物質の環境監視を行い、前記目標
流域は河川流域、海域および水機能領域を含み、
S1-2:目標流域における目標抗生物質誘導体を監視し、目標抗生物質の副産物反応や
生物変換が発生した場合、目標抗生物質誘導体監視リストを確立し、目標抗生物質誘導体
の環境監視を行う必要もあり、
S2、抗生物質初期スクリーニング:ステップS1-1で得られた目標流域の目標抗生物
質およびステップS1-2で得られた目標流域の目標抗生物質誘導体を初期スクリーニン
グし、S2-1~S2-2のいずれかを満たす場合、ステップS3微生物薬品耐性評価に移
行して継続的に評価し、それ以外の場合、評価を終了し、
S2-1、オクタノール/水分配係数判定:目標抗生物質または目標抗生物質誘導体のオ
クタノール/水分配係数Kowを求め、取得したオクタノール/水分配係数Kowを10
の底を持つ対数値とし、lg Kow≧3.5の場合、この目標抗生物質または目標抗生
物質誘導体が強脂溶性と判定し、ステップS3微生物薬品耐性評価に移行して継続的に評
価し、
S2-2、抗生物質環境濃度判定:目標抗生物質または目標抗生物質誘導体の環境濃度M
ECを測定し、環境濃度MEC≧10の場合、この目標抗生物質または目標抗生物質誘導
体が連続的な入力源を有すると判定し、ステップS3微生物薬品耐性評価に移行して継続
的に評価する必要があり、
S3、微生物薬品耐性評価:薬品耐性リスク指数RQを用いて目標流域中の微生物群集
の薬品耐性リスクを特徴付け、以下の式に示すように:
RQ=MEC/PNEC
式において、MECはステップS2-2で測定された目標抗生物質または目標抗生物質誘
導体の環境濃度であり、PNECは目標流域中の微生物群集の予測された薬品耐性無効
濃度であり、以下の式に示すように:
PNEC=MIC/AF、
式において、MICは目標流域中の微生物群集の最小発育阻止濃度であり、AFは10の
値を取る無次元評価要因であり、EUCASTデータベースから目標流域中の微生物群集
の最小発育阻止濃度MICを決定し、目標流域中の微生物群集の予測された薬品耐性無効
濃度PNECRを取得し、前記微生物群集は細菌、真菌または放線菌属を含み、
目標流域中の微生物群集の薬品耐性リスクレベルは、RQ値の大きさに応じて、RQ
<0.01でリスクなし、0.01<RQ<0.1で低リスク、0.1<RQ<1で
中リスク、RQ>1で高リスクという4クラスに分けられ、RQ>0.1のとき、目
標流域中の微生物群集の薬品耐性リスクレベルが高いと見なされ、ステップS4高レベル
評価に移行して継続的に評価し、それ以外の場合、評価を終了し、
S4、高レベル評価:
S4-1、環境微生物抽出:50重量部の目標流域水試料をフィルター膜で濾過し、前記
フィルター膜の孔径は0.2~0.3μmであり、濾過後、フィルター膜を面積15~2
8mmの断片に切断し、断片を容器に入れ、断片体積の1.2~1.5倍のリン酸塩緩
衝溶液を加え、容器に断片体積の2.5~3倍のガラスビーズを添加し、ボルテックスで
15~20min振とうした後、フィルター膜とガラスビーズを濾過・除去して、細菌溶
液上澄み液を得て用意し、
S4-2、抗生物質勾配濃度培養:ステップS4-1で得られた細菌溶液の上澄み液をそれ
ぞれ5~6個の減菌済コニカルフラスコに加え、各減菌済コニカルフラスコには2.5~
3重量部の細菌溶液上澄み液が含まれ、各減菌済コニカルフラスコに、堆積物のバイオフ
ィルム形成を模擬するためのスライドを3枚入れ、0.2~0.5重量部のLB培地を加
え、5~6個の異なる減菌済コニカルフラスコに異なる濃度の目標抗生物質または目標抗
生物質誘導体を加え、5~6個の異なる減菌済コニカルフラスコ中の目標抗生物質または
目標抗生物質誘導体濃度はそれぞれ0、0.01μg/L、0.1μg/L、1μg/L
、10μg/L、100μg/Lであり、28~33℃の室温条件下で14日間振とう反
応させ、目標溶液を得、
S4-3、DNA抽出:ステップS4-2で得られた目標溶液から目標溶液DNAを抽出す
る同時、減菌済コニカルフラスコ中のスライド上の細菌をリン酸塩緩衝溶液に収集して細
菌DNAを抽出し、
S4-4、耐性遺伝子測定:目標抗生物質または目標抗生物質誘導体に対応する耐性遺伝
子を測定し、目標溶液DNAまたは細菌DNAの存在量を測定して耐性遺伝子の相対存在
量の平均値Pを算出する同時に、ステップS4前の耐性遺伝子の相対存在量の平均値P
を算出し、選択性係数Sを算出し、以下の式に示すように:
S=In(P/P
S4-5、モデルフィッティング:抗生物質濃度Cを横座標とし、目標溶液DNAまたは
細菌DNAに対応する選択性係数Sを縦座標として、logisticモデルを用いてフ
ィッティングし、S=0のとき、対応の抗生物質濃度CはMSC値であり、目標溶液DN
Aまたは細菌DNAのMSC値を比較し、小さいMSC値を管理基準として選択し、この
MSC値は、抗生物質濃度Cより高い抗生物質条件下で薬品耐性遺伝子を有する微生物が
濃縮され、その結果、微生物群集中の薬品耐性遺伝子の相対存在量が増加する。
本発明の一側面として、前記ステップS3は以下のステップをさらに含み、環境残留性評
価:データベースクエリーとモデル予測方法を組み合わせて目標抗生物質または目標抗生
物質誘導体の半減期t1/2を求め、環境残留性レベルは半減期t1/2値の大きさに応
じて、t1/2<60dで非残留性、60d<t1/2<180dで残留性、t1/2
180dで高残留性という3クラスに分けられ、t1/2>60の場合、目標抗生物質ま
たは目標抗生物質誘導体が環境残留性を有すると判定し、すなわち、目標流域中の微生物
群集の薬品耐性リスクRQの値にかかわらず、ステップS4に移行して継続的に評価す
る必要がある。環境残留性と微生物薬品耐性を組み合わせることにより、目標抗生物質ま
たは目標抗生物質誘導体が残留性と薬品耐性がある場合には高リスク評価を行い、残留性
がなく薬品耐性がある場合には適時に高レベルリスク評価を行うという、より正確な評価
方法を実現することができる。
本発明の一側面として、前記ステップS4-1とS4-3中のリン酸塩緩衝溶液では、Na
Cl溶液の質量濃度が10g/L、KCl溶液の質量濃度が0.25g/L、NaHP
溶液の質量濃度が1.6g/L、KHPO溶液の質量濃度が0.3g/Lであり
、残りは水であり、リン酸塩緩衝溶液のpHは7.4である。このリン酸塩緩衝溶液は細
菌と相性が良い。
本発明の一側面として、前記ステップS4-1中のLB培地では、トリプトンの質量濃度
が10g/L、酵母粉末の質量濃度が5g/L、塩化ナトリウムの質量濃度が10g/L
であり、残りは水である。このLB培地は細菌の培養に有効である。
本発明の一側面として、前記ステップS4-4では2~20種類の耐性遺伝子を取る。
本発明は、上記方法で使用される、水環境中の残留抗生物質に対するマルチレベルのリス
ク評価システムをさらに提供し、この評価システムは、
目標流域内の目標抗生物質および目標抗生物質誘導体の種類および含有量を監視するため
に使用され、まず情報処理装置において目標流域内の目標抗生物質監視リスト、目標抗生
物質誘導体監視リストを作成し、その後目標抗生物質および目標抗生物質誘導体の監視を
実行する環境監視システムと、
情報処理装置上で実際に検出した目標抗生物質、目標抗生物質誘導体と、環境監視システ
ムにより建築された目標抗生物質監視リスト、目標抗生物質誘導体監視リストとを比較し
、実際に検出した目標抗生物質、目標抗生物質誘導体が環境監視システムにより建築され
た目標抗生物質監視リスト、目標抗生物質誘導体監視リストに属するかどうかを判定する
初期スクリーニングシステムと、
情報処理装置上で、前記初期スクリーニングシステムの判定結果がYesである目標抗生
物質、目標抗生物質誘導体に対して微生物薬品耐性評価を行う微生物薬品耐性評価システ
ムと、
情報処理装置上で微生物薬品耐性リスクレベルの高い目標抗生物質、目標抗生物質誘導体
をさらに評価して、制限または禁止する必要のある生態学的リスクの高い抗生物質種類を
特定する高レベル評価システムと、を備える。
To address the above problems, the present invention provides a multi-level risk assessment method for antibiotic residues in aquatic environments.
The technical solution of the present invention is as follows.
The multi-level risk assessment method for antibiotic residues in the water environment includes the following steps:
S1, environmental monitoring:
S1-1: Conduct a background investigation on the production, use and discharge of antibiotics in the target watershed, establish an ecological risk assessment monitoring list for the target antibiotics, perform environmental monitoring of the target antibiotics, and the target watershed is a river basin, including marine areas and water functional areas;
S1-2: Monitor the target antibiotic derivatives in the target watershed, and if by-product reactions or biotransformations of the target antibiotics occur, it is also necessary to establish a target antibiotic derivative monitoring list and conduct environmental monitoring of the target antibiotic derivatives. can be,
S2, Initial screening of antibiotics: Initial screening of the target antibiotic in the target area obtained in step S1-1 and the target antibiotic derivative in the target area obtained in step S1-2, and If any of the above is satisfied, proceed to step S3 Microbial drug resistance evaluation and continuously evaluate; otherwise, end the evaluation,
S2-1, Determination of octanol/water partition coefficient: determine the octanol/water partition coefficient Kow of the target antibiotic or target antibiotic derivative, and set the obtained octanol/water partition coefficient Kow to 10
If lg Kow≧3.5, the target antibiotic or target antibiotic derivative is determined to be strongly lipophilic, and the process proceeds to step S3, microbial drug resistance evaluation, where it is continuously evaluated.
S2-2, Antibiotic environmental concentration determination: Environmental concentration M of target antibiotic or target antibiotic derivative
EC is measured, and if the environmental concentration MEC≧10, it is determined that this target antibiotic or target antibiotic derivative has a continuous input source, and it is necessary to proceed to step S3 microbial drug resistance evaluation and continuously evaluate. There is,
S3. Microbial drug resistance evaluation: The drug resistance risk index RQ R is used to characterize the drug resistance risk of the microbial community in the target watershed, as shown in the following formula:
RQ R =MEC/PNEC R ,
In the formula, MEC is the environmental concentration of the target antibiotic or target antibiotic derivative measured in step S2-2, PNEC R is the predicted drug resistance null concentration of the microbial community in the target watershed, and the following formula As shown:
PNEC R = MIC/AF,
In the formula, MIC is the minimum inhibitory concentration of the microbial community in the target watershed, AF is a dimensionless evaluation factor that takes a value of 10, and the minimum inhibitory concentration MIC of the microbial community in the target watershed is determined from the EUCAST database. obtain a predicted drug resistance null concentration PNECR of a microbial community in a target watershed, the microbial community comprising bacteria, fungi, or the genus Actinobacteria;
The drug resistance risk level of the microbial community in the target watershed is determined by the RQ R value.
RQ R is divided into four classes: no risk if <0.01, low risk if 0.01<RQ R <0.1, medium risk if 0.1<RQ R <1, and high risk if RQ R >1. >0.1, the drug resistance risk level of the microbial community in the target watershed is considered to be high, and the process moves to step S4 high level evaluation to continuously evaluate; otherwise, the evaluation is terminated;
S4, high level evaluation:
S4-1, Extraction of environmental microorganisms: 50 parts by weight of the target watershed water sample is filtered with a filter membrane, the pore size of the filter membrane is 0.2~0.3μm, and after filtration, the filter membrane has an area of 15~2μm.
Cut into 8 mm 2 pieces, place the pieces in a container, add 1.2 to 1.5 times the volume of the pieces in phosphate buffer solution, and add 2.5 to 3 times the volume of glass beads in the container. After shaking with a vortex for 15 to 20 minutes, filter and remove the filter membrane and glass beads to obtain and prepare a bacterial solution supernatant.
S4-2, Antibiotic gradient concentration culture: Add the supernatant of the bacterial solution obtained in step S4-1 to 5 to 6 sterilized conical flasks, and add 2.5 to
Each sterilized conical flask contained 3 parts by weight of bacterial solution supernatant, 3 slides to simulate sediment biofilm formation, and 0.2 to 0.5 parts by weight of LB medium. In addition, add different concentrations of the target antibiotic or target antibiotic derivative to 5 to 6 different sterilized conical flasks to determine the target antibiotic or target antibiotic derivative concentration in 5 to 6 different sterilized conical flasks. are 0, 0.01 μg/L, 0.1 μg/L, and 1 μg/L, respectively.
.
S4-3, DNA extraction: At the same time as extracting the target solution DNA from the target solution obtained in step S4-2, collect the bacteria on the slide in a sterilized conical flask into a phosphate buffer solution to extract bacterial DNA. extract,
S4-4, Resistance gene measurement: Measure the resistance gene corresponding to the target antibiotic or target antibiotic derivative, measure the abundance of target solution DNA or bacterial DNA, and calculate the average value P of the relative abundance of the resistance gene. At the same time, the average value P 0 of the relative abundance of resistance genes before step S4
and calculate the selectivity coefficient S, as shown in the following formula:
S=In(P/P 0 )
S4-5, model fitting: fitting using a logistic model with the antibiotic concentration C as the abscissa and the selectivity coefficient S corresponding to the target solution DNA or bacterial DNA as the ordinate, and when S = 0, the corresponding The antibiotic concentration C is the MSC value and the target solution DN
The MSC value of A or bacterial DNA is compared, and the smaller MSC value is selected as the control standard, and this MSC value indicates that microorganisms with drug resistance genes are enriched under antibiotic conditions higher than the antibiotic concentration C, and as a result, The relative abundance of drug resistance genes in the microbial community increases.
In one aspect of the present invention, step S3 further includes the following steps: environmental persistence assessment: determining the half-life t 1/2 of the target antibiotic or target antibiotic derivative by combining a database query and a model prediction method; The environmental persistence level depends on the half-life t 1/2 value: non-persistent when t 1/2 <60 d, persistent when 60 d < t 1/2 <180 d, and persistent when t 1/2 >
If t 1/2 > 60, the target antibiotic or target antibiotic derivative is determined to have environmental persistence, that is, the drug resistance of the microbial community in the target watershed is determined to be high. Regardless of the value of risk RQR , it is necessary to proceed to step S4 and continuously evaluate. By combining environmental persistence and microbial drug resistance, a high-risk assessment can be made if the target antibiotic or target antibiotic derivative is persistent and drug-resistant, and a timely assessment if the target antibiotic or target antibiotic derivative is persistent and drug-resistant. It is possible to realize a more accurate evaluation method of performing a high-level risk assessment.
As one aspect of the present invention, in the phosphate buffer solution in steps S4-1 and S4-3, Na
The mass concentration of Cl solution is 10 g/L, the mass concentration of KCl solution is 0.25 g/L, Na 2 HP
The mass concentration of the O 4 solution is 1.6 g/L, the mass concentration of the KH 2 PO 4 solution is 0.3 g/L, the remainder is water, and the pH of the phosphate buffer solution is 7.4. This phosphate buffer solution is compatible with bacteria.
As one aspect of the present invention, in the LB medium in step S4-1, the mass concentration of tryptone is 10 g/L, the mass concentration of yeast powder is 5 g/L, and the mass concentration of sodium chloride is 10 g/L.
and the rest is water. This LB medium is effective for culturing bacteria.
As one aspect of the present invention, in step S4-4, 2 to 20 types of resistance genes are selected.
The present invention further provides a multi-level risk assessment system for antibiotic residues in a water environment for use in the above method, which assessment system comprises:
It is used to monitor the types and contents of target antibiotics and target antibiotic derivatives in the target watershed, and first, a target antibiotic monitoring list and a target antibiotic derivative monitoring list in the target watershed are created in the information processing device, an environmental monitoring system that subsequently performs monitoring of the target antibiotic and target antibiotic derivative;
The target antibiotics and target antibiotic derivatives actually detected on the information processing device are compared with the target antibiotic monitoring list and target antibiotic derivative monitoring list constructed by the environmental monitoring system, and the target antibiotics actually detected are determined. , an initial screening system for determining whether the target antibiotic derivative belongs to a target antibiotic derivative monitoring list, a target antibiotic derivative monitoring list established by an environmental monitoring system;
a microbial drug resistance evaluation system that performs microbial drug resistance evaluation on a target antibiotic or target antibiotic derivative for which the determination result of the initial screening system is Yes on an information processing device;
A high-level evaluation system that further evaluates target antibiotics and target antibiotic derivatives with a high risk level of microbial drug resistance on an information processing device to identify types of antibiotics with a high ecological risk that need to be restricted or prohibited. , is provided.

本発明は以下の有益な効果を有する。
(1)本発明の水環境中の残留抗生物質に対するマルチレベルのリスク評価方法は、リス
クを有する水環境目標抗生物質または目標抗生物質誘導体に対してカスケード評価を行い
、まず目標抗生物質または目標抗生物質誘導体を初期スクリーニングし、条件を満たせば
微生物薬品耐性評価に移行して次の評価を行い、薬品耐性の相違について、継続的に高レ
ベル評価およびリスク評価を行うか、または評価を終了し、最終的にMSC値を得、これ
は薬品耐性遺伝子を持つ微生物が対応の抗生物質濃度Cよりも高い抗生物質条件下で濃縮
され、微生物群集における薬品耐性遺伝子の相対存在量が増加することを示す。
(2)本発明の水環境中の残留抗生物質に対するマルチレベルのリスク評価方法は、環境
残留性と微生物薬品耐性を組み合わせることにより、目標抗生物質または目標抗生物質誘
導体が残留性と薬品耐性がある場合には高リスク評価を行い、残留性がなく薬品耐性があ
る場合には適時に高レベルリスク評価を行うという、より正確な評価方法を実現すること
ができる。
(3)本発明の水環境中の残留抗生物質に対するマルチレベルのリスク評価方法は、実験
方法により、MSC値を正確に測定し、抗生物質濃度Cを横座標、目標溶液DNAまたは
細菌DNAに対応する選択性係数Sを縦座標とし、logisticモデルでフィッティ
ングして目標溶液DNAまたは細菌DNAのMSC値を得、その小さいMSC値を管理基
準とする。
(4)本発明の水環境中の残留抗生物質に対するマルチレベルのリスク評価方法で得られ
た評価結果は、水環境の連続監視、発生源分析および発生源管理において重要な役割を果
たし、評価結果によると、点源による汚染について調査・処罰、期限是正などの行政措置
を適用でき、面源による汚染について生態学的リスクの高い抗生物質種の使用を関連地域
で制限または禁止することができる。
The present invention has the following beneficial effects.
(1) The multi-level risk assessment method for residual antibiotics in the water environment of the present invention performs a cascade evaluation on target antibiotics or target antibiotic derivatives in the water environment that pose a risk. Perform initial screening of substance derivatives, and if conditions are met, proceed to microbial drug resistance evaluation and perform the next evaluation, and continue high-level evaluation and risk assessment for differences in drug resistance, or terminate the evaluation. We finally obtained the MSC value, which indicates that microorganisms with drug resistance genes are enriched under antibiotic conditions higher than the corresponding antibiotic concentration C, increasing the relative abundance of drug resistance genes in the microbial community. .
(2) The multi-level risk assessment method for residual antibiotics in the water environment of the present invention combines environmental persistence and microbial drug resistance to ensure that the target antibiotic or target antibiotic derivative has persistence and drug resistance. A more accurate evaluation method can be realized in which a high-level risk assessment is performed in a timely manner when there is no persistence and there is drug resistance.
(3) The multi-level risk assessment method for residual antibiotics in the water environment of the present invention uses an experimental method to accurately measure the MSC value, and the antibiotic concentration C is the abscissa, corresponding to the target solution DNA or bacterial DNA. The selectivity coefficient S is taken as the ordinate, and the MSC value of the target solution DNA or bacterial DNA is obtained by fitting with a logistic model, and the smaller MSC value is used as the control standard.
(4) The evaluation results obtained by the multilevel risk assessment method for antibiotic residues in the water environment of the present invention play an important role in continuous monitoring, source analysis, and source control of the water environment, and the evaluation results According to the Ministry of Health, Labor and Welfare, administrative measures such as investigation, punishment, and correction of deadlines can be applied to point source pollution, and the use of antibiotic species with high ecological risks can be restricted or prohibited in relevant areas for point source pollution.

本発明の方法のフローチャートである。3 is a flowchart of the method of the invention. 本発明の実験例における相対存在量と抗生物質耐性遺伝子の濃度を示す模式図である。FIG. 2 is a schematic diagram showing the relative abundance and concentration of antibiotic resistance genes in experimental examples of the present invention.

実施例1
水環境中の残留抗生物質に対するマルチレベルのリスク評価方法は、以下のステップを含
み、
S1、環境監視:
S1-1:目標流域における抗生物質の生産、使用および排出の背景調査を行い、生態リ
スク評価目標抗生物質の監視リストを確立し、目標抗生物質の環境監視を行い、前記目標
流域は河川流域であり、
S1-2:目標流域における目標抗生物質誘導体を監視し、目標抗生物質の副産物反応や
生物変換が発生した場合、目標抗生物質誘導体監視リストを確立し、目標抗生物質誘導体
の環境監視を行う必要もあり、
S2、抗生物質初期スクリーニング:ステップS1-1で得られた目標流域の目標抗生物
質およびステップS1-2で得られた目標流域の目標抗生物質誘導体を初期スクリーニン
グし、S2-1~S2-2のいずれかを満たす場合、ステップS3微生物薬品耐性評価に移
行して継続的に評価し、それ以外の場合、評価を終了し、
S2-1、オクタノール/水分配係数判定:目標抗生物質または目標抗生物質誘導体のオ
クタノール/水分配係数Kowを求め、取得したオクタノール/水分配係数Kowを10
の底を持つ対数値とし、lg Kow≧3.5の場合、この目標抗生物質または目標抗生
物質誘導体が強脂溶性と判定し、ステップS3微生物薬品耐性評価に移行して継続的に評
価し、一部の抗生物質のlog kow 値は表2に示され、
S2-2、抗生物質環境濃度判定:目標抗生物質または目標抗生物質誘導体の環境濃度M
ECを測定し、環境濃度MEC≧10の場合、この目標抗生物質または目標抗生物質誘導
体が連続的な入力源を有すると判定し、ステップS3微生物薬品耐性評価に移行して継続
的に評価する必要があり、
S3、微生物薬品耐性評価:薬品耐性リスク指数RQを用いて目標流域中の微生物群集
の薬品耐性リスクを特徴付け、微生物群集は細菌であり、以下の式に示すように:
RQ=MEC/PNEC
式において、MECはステップS2-2で測定された目標抗生物質または目標抗生物質誘
導体の環境濃度であり、PNECは目標流域中の微生物群集の予測された薬品耐性無効
濃度であり、以下の式に示すように:
PNEC=MIC/AF、
式において、MICは目標流域中の微生物群集の最小発育阻止濃度であり、AFは10の
値を取る無次元評価要因であり、EUCASTデータベースから目標流域中の微生物群集
の最小発育阻止濃度MICを決定し、目標流域中の微生物群集の予測された薬品耐性無効
濃度PNECRを取得し、一部の抗生物質の最小発育阻止濃度(MIC)と微生物薬品耐
性予測無効濃度(PNECr)は表3に示され、
目標流域中の微生物群集の薬品耐性リスクレベルは、RQ値の大きさに応じて、RQ
<0.01でリスクなし、0.01<RQ<0.1で低リスク、0.1<RQ<1で
中リスク、RQ>1で高リスクという4クラスに分けられ、RQ>0.1のとき、目
標流域中の微生物群集の薬品耐性リスクレベルが高いと見なされ、ステップS4高レベル
評価に移行して継続的に評価し、それ以外の場合、評価を終了し、
S4、高レベル評価:
S4-1、環境微生物抽出:50重量部の目標流域水試料をフィルター膜で濾過し、フィ
ルター膜の孔径は0.25μmであり、濾過後、フィルター膜を面積20mmの断片に
切断し、断片を容器に入れ、断片体積の1.3倍のリン酸塩緩衝溶液を加え、リン酸塩緩
衝溶液では、NaCl溶液の質量濃度が10g/L、KCl溶液の質量濃度が0.25g
/L、NaHPO溶液の質量濃度が1.6g/L、KHPO溶液の質量濃度が0
.3g/Lであり、残りは水であり、リン酸塩緩衝溶液のpHは7.4であり、さらに、
容器に断片体積の2.8倍のガラスビーズを添加し、ボルテックスで18min振とうし
た後、フィルター膜とガラスビーズを濾過・除去して、細菌溶液上澄み液を得て用意し、
S4-2、抗生物質勾配濃度培養:ステップS4-1で得られた細菌溶液上澄み液をそれぞ
れ5個の減菌済コニカルフラスコに加え、各減菌済コニカルフラスコには2.7重量部の
細菌溶液上澄み液が含まれ、各減菌済コニカルフラスコに、堆積物のバイオフィルム形成
を模擬するためのスライドを3枚入れ、0.4重量部のLB培地を加え、LB培地では、
トリプトンの質量濃度が10g/L、酵母粉末の質量濃度が5g/L、塩化ナトリウムの
質量濃度が10g/Lであり、残りは水であり、さらに5個の異なる減菌済コニカルフラ
スコに異なる濃度の目標抗生物質または目標抗生物質誘導体を加え、5個の異なる減菌済
コニカルフラスコ中の目標抗生物質または目標抗生物質誘導体の濃度はそれぞれ0.01
μg/L、0.1μg/L、1μg/L、10μg/L、100μg/Lであり、30℃
の室温条件下で14日間振とう反応させて目標溶液を得、
S4-3、DNA抽出:ステップS4-2で得られた目標溶液から目標溶液DNAを抽出す
る同時に、減菌済コニカルフラスコ中のスライド上の細菌をリン酸塩緩衝溶液に収集して
細菌DNAを抽出し、
S4-4、耐性遺伝子測定:目標抗生物質または目標抗生物質誘導体に対応する耐性遺伝
子を測定し、耐性遺伝子は2~20種を取り、20種未満の場合最大値を取り、抗生物質
に対応する耐性遺伝子種類は表4に示され、目標溶液DNAまたは細菌DNAの存在量を
測定して耐性遺伝子の相対存在量の平均値Pを算出する同時に、ステップS4以前の耐性
遺伝子の相対存在量の平均値Pも算出し、以下の式に示すように選択性係数Sを算出し

S=In(P/P
S4-5、モデルフィッティング:抗生物質濃度Cを横座標とし、目標溶液DNAまたは
細菌DNAに対応する選択性係数Sを縦座標として、logisticモデルを用いてフ
ィッティングし、S=0のとき、対応の抗生物質濃度CはMSC値であり、目標溶液DN
Aまたは細菌DNAのMSC値を比較し、小さいMSC値を管理基準として選択し、この
MSC値は、抗生物質濃度Cより高い抗生物質条件下で薬品耐性遺伝子を有する微生物が
濃縮され、その結果、微生物群集中の薬品耐性遺伝子の相対存在量が増加する。
Example 1
The multi-level risk assessment method for antibiotic residues in the water environment includes the following steps:
S1, environmental monitoring:
S1-1: Conduct a background investigation on the production, use and discharge of antibiotics in the target watershed, establish a monitoring list of target antibiotics for ecological risk assessment, perform environmental monitoring of target antibiotics, and ensure that the target watershed is a river basin. can be,
S1-2: Monitor the target antibiotic derivatives in the target watershed, and if by-product reactions or biotransformations of the target antibiotics occur, it is also necessary to establish a target antibiotic derivative monitoring list and conduct environmental monitoring of the target antibiotic derivatives. can be,
S2, Initial screening of antibiotics: Initial screening of the target antibiotic in the target area obtained in step S1-1 and the target antibiotic derivative in the target area obtained in step S1-2, and If any of the above is satisfied, proceed to step S3 Microbial drug resistance evaluation and continuously evaluate; otherwise, end the evaluation,
S2-1, Determination of octanol/water partition coefficient: determine the octanol/water partition coefficient Kow of the target antibiotic or target antibiotic derivative, and set the obtained octanol/water partition coefficient Kow to 10
If lg Kow≧3.5, the target antibiotic or target antibiotic derivative is determined to be strongly lipophilic, and the process proceeds to step S3, microbial drug resistance evaluation, where it is continuously evaluated. The log kow values of some antibiotics are shown in Table 2,
S2-2, Antibiotic environmental concentration determination: Environmental concentration M of target antibiotic or target antibiotic derivative
EC is measured, and if the environmental concentration MEC≧10, it is determined that this target antibiotic or target antibiotic derivative has a continuous input source, and it is necessary to proceed to step S3 microbial drug resistance evaluation and continuously evaluate. There is,
S3, Microbial drug resistance evaluation: The drug resistance risk index RQR is used to characterize the drug resistance risk of the microbial community in the target watershed, where the microbial community is bacteria, as shown in the following formula:
RQ R =MEC/PNEC R ,
In the formula, MEC is the environmental concentration of the target antibiotic or target antibiotic derivative measured in step S2-2, PNEC R is the predicted drug resistance null concentration of the microbial community in the target watershed, and the following formula As shown:
PNEC R = MIC/AF,
In the formula, MIC is the minimum inhibitory concentration of the microbial community in the target watershed, AF is a dimensionless evaluation factor that takes a value of 10, and the minimum inhibitory concentration MIC of the microbial community in the target watershed is determined from the EUCAST database. The predicted antimicrobial resistance concentrations PNECR of the microbial community in the target watershed were obtained, and the minimum inhibitory concentrations (MICs) and predicted antimicrobial drug resistance concentrations (PNECr) of some antibiotics are shown in Table 3. ,
The drug resistance risk level of the microbial community in the target watershed is determined by the RQR value depending on the RQR value .
RQ R is divided into four classes: no risk if <0.01, low risk if 0.01<RQ R <0.1, medium risk if 0.1<RQ R <1, and high risk if RQ R >1. >0.1, the drug resistance risk level of the microbial community in the target watershed is considered to be high, and the process moves to step S4 high level evaluation to continuously evaluate; otherwise, the evaluation is terminated;
S4, high level evaluation:
S4-1, Environmental microorganism extraction: 50 parts by weight of target watershed water sample is filtered through a filter membrane, the pore size of the filter membrane is 0.25 μm, and after filtration, the filter membrane is cut into pieces with an area of 20 mm2 , and the pieces are into a container, add phosphate buffer solution 1.3 times the volume of the fragment, and in the phosphate buffer solution, the mass concentration of NaCl solution is 10 g/L and the mass concentration of KCl solution is 0.25 g/L.
/L, the mass concentration of Na 2 HPO 4 solution is 1.6 g/L, the mass concentration of KH 2 PO 4 solution is 0
.. 3 g/L, the remainder is water, the pH of the phosphate buffer solution is 7.4, and further,
Add glass beads 2.8 times the fragment volume to the container, shake with vortex for 18 min, filter and remove the filter membrane and glass beads to obtain and prepare a bacterial solution supernatant,
S4-2, Antibiotic gradient concentration culture: Add the bacterial solution supernatant obtained in step S4-1 to five sterilized conical flasks, and add 2.7 parts by weight of bacteria to each sterilized conical flask. Three slides were placed in each sterilized conical flask containing the solution supernatant to simulate sediment biofilm formation, and 0.4 parts by weight of LB medium was added.
The mass concentration of tryptone is 10 g/L, the mass concentration of yeast powder is 5 g/L, the mass concentration of sodium chloride is 10 g/L, the remainder is water, and five different sterilized conical flasks have different concentrations. of target antibiotic or target antibiotic derivative were added, and the concentration of target antibiotic or target antibiotic derivative in five different sterile conical flasks was 0.01, respectively.
μg/L, 0.1 μg/L, 1 μg/L, 10 μg/L, 100 μg/L, and at 30°C
The target solution was obtained by a shaking reaction for 14 days at room temperature.
S4-3, DNA extraction: At the same time, extract the target solution DNA from the target solution obtained in step S4-2, and collect the bacteria on the slide in a sterilized conical flask into a phosphate buffer solution to extract bacterial DNA. extract,
S4-4, Resistance gene measurement: Measure the resistance gene corresponding to the target antibiotic or target antibiotic derivative, select 2 to 20 resistance genes, and if there are less than 20 types, take the maximum value and determine the resistance gene corresponding to the antibiotic. The types of resistance genes are shown in Table 4, and the abundance of target solution DNA or bacterial DNA is measured to calculate the average value P of the relative abundance of resistance genes.At the same time, the average relative abundance of resistance genes before step S4 is calculated. The value P 0 is also calculated and the selectivity coefficient S is calculated as shown in the following formula:
S=In(P/P 0 )
S4-5, model fitting: fitting using a logistic model with the antibiotic concentration C as the abscissa and the selectivity coefficient S corresponding to the target solution DNA or bacterial DNA as the ordinate, and when S = 0, the corresponding The antibiotic concentration C is the MSC value and the target solution DN
The MSC value of A or bacterial DNA is compared, and the smaller MSC value is selected as the control standard, and this MSC value indicates that microorganisms with drug resistance genes are enriched under antibiotic conditions higher than the antibiotic concentration C, and as a result, The relative abundance of drug resistance genes in the microbial community increases.

実施例2
本実施例は、上記実施例1で用いた水環境中の残留抗生物質に対するマルチレベルのリス
ク評価システムであり、このシステムは、
目標流域内の目標抗生物質および目標抗生物質誘導体の種類および含有量を監視するため
に使用され、まず情報処理装置において目標流域内の目標抗生物質監視リスト、目標抗生
物質誘導体監視リストを作成し、その後目標抗生物質および目標抗生物質誘導体の監視を
実行する環境監視システムと、
情報処理装置上で実際に検出した目標抗生物質、目標抗生物質誘導体と、環境監視システ
ムにより建築された目標抗生物質監視リスト、目標抗生物質誘導体監視リストとを比較し
、実際に検出した目標抗生物質、目標抗生物質誘導体が環境監視システムにより建築され
た目標抗生物質監視リスト、目標抗生物質誘導体監視リストに属するかどうかを判定する
初期スクリーニングシステムと、
情報処理装置上で、前記初期スクリーニングシステムの判定結果がYesである目標抗生
物質、目標抗生物質誘導体に対して微生物薬品耐性評価を行う微生物薬品耐性評価システ
ムと、
情報処理装置上で微生物薬品耐性リスクレベルの高い目標抗生物質、目標抗生物質誘導体
をさらに評価して、制限または禁止する必要のある生態学的リスクの高い抗生物質種類を
特定する高レベル評価システムと、を備える。
Example 2
This example is a multi-level risk assessment system for residual antibiotics in the water environment used in Example 1 above.
It is used to monitor the types and contents of target antibiotics and target antibiotic derivatives in the target watershed, and first, a target antibiotic monitoring list and a target antibiotic derivative monitoring list in the target watershed are created in the information processing device, an environmental monitoring system that subsequently performs monitoring of the target antibiotic and target antibiotic derivative;
The target antibiotics and target antibiotic derivatives actually detected on the information processing device are compared with the target antibiotic monitoring list and target antibiotic derivative monitoring list constructed by the environmental monitoring system, and the target antibiotics actually detected are determined. , an initial screening system for determining whether the target antibiotic derivative belongs to a target antibiotic derivative monitoring list, a target antibiotic derivative monitoring list established by an environmental monitoring system;
a microbial drug resistance evaluation system that performs microbial drug resistance evaluation on a target antibiotic or target antibiotic derivative for which the determination result of the initial screening system is Yes on an information processing device;
A high-level evaluation system that further evaluates target antibiotics and target antibiotic derivatives with a high risk level of microbial drug resistance on an information processing device to identify types of antibiotics with a high ecological risk that need to be restricted or prohibited. , is provided.

実施例3
本実施例は、実施例1とは以下の点で異なり:
目標流域は海域である。
Example 3
This example differs from Example 1 in the following points:
The target basin is the sea area.

実施例4
本実施例は、実施例1とは以下の点で異なり:
目標流域は水機能領域、例えば溜池である。
Example 4
This example differs from Example 1 in the following points:
The target watershed is a water functional area, such as a reservoir.

実施例5
本実施例は、実施例1とは以下の点で異なり:
ステップS3中の微生物群集は真菌である。
Example 5
This example differs from Example 1 in the following points:
The microbial community in step S3 is fungi.

実施例6
本実施例は、実施例1とは以下の点で異なり:
ステップS3中の微生物群集は放線菌属である。
Example 6
This example differs from Example 1 in the following points:
The microbial community in step S3 is of the genus Actinobacteria.

実施例7
本実施例は、実施例1とは以下の点で異なり:
ステップS3は以下のステップをさらに含み、環境残留性評価:データベースクエリーと
モデル予測方法を組み合わせて目標抗生物質または目標抗生物質誘導体の半減期t1/2
を求め、環境残留性レベルは半減期t1/2値の大きさに応じて、t1/2<60dで非
残留性、60d<t1/2<180dで残留性、t1/2>180dで高残留性という3
クラスに分けられ、t1/2>60の場合、目標抗生物質または目標抗生物質誘導体が環
境残留性を有すると判定し、すなわち、目標流域中の微生物群集の薬品耐性リスクRQ
の値にかかわらず、表5に示すように、ステップS4に移行して継続的に評価する必要が
ある。
Example 7
This example differs from Example 1 in the following points:
Step S3 further includes the following steps: environmental persistence assessment: combining database queries and model prediction methods to determine the half-life t1 /2 of the target antibiotic or target antibiotic derivative;
The environmental persistence level is determined according to the half-life t 1/2 value: non-persistent when t 1/2 <60 d, persistent when 60 d < t 1/2 <180 d, and persistent when t 1/2 > 3 with high persistence at 180d
If t 1/2 > 60, it is determined that the target antibiotic or target antibiotic derivative has environmental persistence, that is, the drug resistance risk of the microbial community in the target watershed RQ R
Regardless of the value of , as shown in Table 5, it is necessary to proceed to step S4 and continuously evaluate.

実施例8
本実施例は、実施例1とは以下の点で異なり:
S4-1、環境微生物抽出:50重量部の目標流域水試料をフィルター膜で濾過し、フィ
ルター膜の孔径は0.2μmであり、濾過後、フィルター膜を面積15mmの断片に切
断し、断片を容器に入れ、断片体積の1.2倍のリン酸塩緩衝溶液を加え、リン酸塩緩衝
溶液では、NaCl溶液の質量濃度が10g/L、KCl溶液の質量濃度が0.25g/
L、NaHPO溶液の質量濃度が1.6g/L、KHPO溶液の質量濃度が0.
3g/Lであり、残りは水であり、リン酸塩緩衝溶液のpHは7.4であり、さらに容器
に断片体積の2.5倍のガラスビーズを添加し、ボルテックスで15min振とうした後
、フィルター膜とガラスビーズを濾過・除去して細菌溶液上澄み液を得て用意し、
S4-2、抗生物質勾配濃度培養:ステップS4-1で得られた細菌溶液上澄み液をそれぞ
れ5個の減菌済コニカルフラスコに加え、各減菌済コニカルフラスコには2.5重量部の
細菌溶液上澄み液が含まれ、各減菌済コニカルフラスコに、堆積物のバイオフィルム形成
を模擬するためのスライドを3枚入れ、0.2重量部のLB培地を加え、LB培地では、
トリプトンの質量濃度が10g/L、酵母粉末の質量濃度が5g/L、塩化ナトリウムの
質量濃度が10g/Lであり、残りは水であり、さらに6個の異なる減菌済コニカルフラ
スコに異なる濃度の目標抗生物質または目標抗生物質誘導体を加え、6個の異なる減菌済
コニカルフラスコ中の目標抗生物質または目標抗生物質誘導体の濃度はそれぞれ0.01
μg/L、0.1μg/L、1μg/L、10μg/L、100μg/Lであり、28℃
の室温条件下で14日間振とう反応させて目標溶液を得る。
Example 8
This example differs from Example 1 in the following points:
S4-1, Environmental microorganism extraction: 50 parts by weight of the target watershed water sample was filtered through a filter membrane, the pore size of the filter membrane was 0.2 μm, and after filtration, the filter membrane was cut into pieces with an area of 15 mm2 , and the pieces were into a container and add a phosphate buffer solution of 1.2 times the fragment volume.In the phosphate buffer solution, the mass concentration of the NaCl solution is 10 g/L, and the mass concentration of the KCl solution is 0.25 g/L.
L, the mass concentration of the Na 2 HPO 4 solution is 1.6 g/L, and the mass concentration of the KH 2 PO 4 solution is 0.
3 g/L, the remainder is water, the pH of the phosphate buffer solution is 7.4, and after adding 2.5 times the fragment volume of glass beads to the container and shaking on a vortex for 15 min. , filter and remove the filter membrane and glass beads to obtain and prepare the bacterial solution supernatant,
S4-2, Antibiotic gradient concentration culture: Add the bacterial solution supernatant obtained in step S4-1 to five sterilized conical flasks, and add 2.5 parts by weight of bacteria to each sterilized conical flask. Three slides were placed in each sterilized conical flask containing the solution supernatant to simulate sediment biofilm formation, and 0.2 parts by weight of LB medium was added.
The mass concentration of tryptone is 10 g/L, the mass concentration of yeast powder is 5 g/L, the mass concentration of sodium chloride is 10 g/L, the remainder is water, and six different sterilized conical flasks have different concentrations. of target antibiotic or target antibiotic derivative were added, and the concentration of target antibiotic or target antibiotic derivative in six different sterile conical flasks was 0.01, respectively.
μg/L, 0.1 μg/L, 1 μg/L, 10 μg/L, 100 μg/L, 28°C
The target solution is obtained by performing a shaking reaction under room temperature conditions for 14 days.

実施例9
本実施例は、実施例1とは以下の点で異なり:
S4-1、環境微生物抽出:50重量部の目標流域水試料をフィルター膜で濾過し、フィ
ルター膜の孔径は0.3μmであり、濾過後、フィルター膜を面積28mmの断片に切
断し、断片を容器に入れ、断片体積の1.5倍のリン酸塩緩衝溶液を加え、リン酸塩緩衝
溶液では、NaCl溶液の質量濃度が10g/L、KCl溶液の質量濃度が0.25g/
L、NaHPO溶液の質量濃度が1.6g/L、KHPO溶液の質量濃度が0.
3g/Lであり、残りは水であり、リン酸塩緩衝溶液のpHは7.4であり、さらに、容
器に断片体積の3倍のガラスビーズを添加し、ボルテックスで20min振とうした後、
フィルター膜とガラスビーズを濾過・除去して、細菌溶液上澄み液を得て用意し、
S4-2、抗生物質勾配濃度培養:ステップS4-1で得られた細菌溶液上澄み液をそれぞ
れ6個の減菌済コニカルフラスコに加え、各減菌済コニカルフラスコには3重量部の細菌
溶液上澄み液が含まれ、各減菌済コニカルフラスコに、堆積物のバイオフィルム形成を模
擬するためのスライドを3枚入れ、0.5重量部のLB培地を加え、LB培地では、トリ
プトンの質量濃度が10g/L、酵母粉末の質量濃度が5g/L、塩化ナトリウムの質量
濃度が10g/Lであり、残りは水であり、さらに6個の異なる減菌済コニカルフラスコ
に異なる濃度の目標抗生物質または目標抗生物質誘導体を加え、6個の異なる減菌済コニ
カルフラスコ中の目標抗生物質または目標抗生物質誘導体の濃度はそれぞれ0.01μg
/L、0.1μg/L、1μg/L、10μg/L、100μg/Lであり、33℃の室
温条件下で14日間振とう反応させて目標溶液を得る。
Example 9
This example differs from Example 1 in the following points:
S4-1, Environmental microorganism extraction: 50 parts by weight of the target watershed water sample was filtered through a filter membrane, the pore size of the filter membrane was 0.3 μm, and after filtration, the filter membrane was cut into pieces with an area of 28 mm2 , and the pieces were into a container and add a phosphate buffer solution of 1.5 times the fragment volume.In the phosphate buffer solution, the mass concentration of the NaCl solution is 10 g/L and the mass concentration of the KCl solution is 0.25 g/L.
L, the mass concentration of the Na 2 HPO 4 solution is 1.6 g/L, and the mass concentration of the KH 2 PO 4 solution is 0.
3 g/L, the remainder is water, the pH of the phosphate buffer solution is 7.4, and after adding 3 times the fragment volume of glass beads to the container and shaking on a vortex for 20 min,
Filter and remove the filter membrane and glass beads to obtain and prepare the bacterial solution supernatant,
S4-2, Antibiotic gradient concentration culture: Add the bacterial solution supernatant obtained in step S4-1 to six sterilized conical flasks, and add 3 parts by weight of the bacterial solution supernatant to each sterilized conical flask. In each sterilized conical flask, 0.5 parts of LB medium was added, and the mass concentration of tryptone was 10 g/L, the mass concentration of yeast powder is 5 g/L, the mass concentration of sodium chloride is 10 g/L, the remainder is water, and six different sterilized conical flasks are charged with different concentrations of the target antibiotic or Target antibiotic derivative was added, and the concentration of target antibiotic or target antibiotic derivative in six different sterile conical flasks was 0.01 μg each.
/L, 0.1 μg/L, 1 μg/L, 10 μg/L, and 100 μg/L, and the target solution is obtained by shaking and reacting at room temperature at 33° C. for 14 days.

実験例
実施例1中の方法のパラメータを例にとると、目標抗生物質はテトラサイクリン、得られ
た目標抗生物質の濃度と選択性係数Sの対応関係図は図2に示され、この目標抗生物質は
目標溶液DNAの存在量から算出した耐性遺伝子の相対存在量の平均値Pを選択し、具体
的なパラメータは表1に示される。
Experimental Example Taking the parameters of the method in Example 1 as an example, the target antibiotic is tetracycline, and the correspondence diagram between the concentration of the target antibiotic and the selectivity coefficient S is shown in Figure 2. The average value P of the relative abundance of resistance genes calculated from the abundance of target solution DNA was selected, and the specific parameters are shown in Table 1.

Claims (6)

ステップS1~S4を含み、
ステップS1、環境監視:
ステップS1-1:目標流域における抗生物質の生産、使用および排出の背景調査を行
い、生態リスク評価目標抗生物質の監視リストを確立し、目標抗生物質の環境監視を行い
、前記目標流域は河川流域、海域および水機能領域を含み、
ステップS1-2:目標流域における目標抗生物質誘導体を監視し、目標抗生物質の副
産物反応や生物変換が発生した場合、目標抗生物質誘導体監視リストを確立し、目標抗生
物質誘導体の環境監視を行う必要があり、
ステップS2、抗生物質初期スクリーニング:ステップS1-1で得られた目標流域の目
標抗生物質およびステップS1-2で得られた目標流域の目標抗生物質誘導体を初期スク
リーニングし、ステップS2-1~S2-2のいずれかを満たす場合、ステップS3微生物
薬品耐性評価に移行して継続的に評価し、それ以外の場合、評価を終了し、
ステップS2-1、オクタノール/水分配係数判定:目標抗生物質または目標抗生物質
誘導体のオクタノール/水分配係数Kowを求め、取得したオクタノール/水分配係数K
owを10の底を持つ対数値とし、lg Kow≧3.5の場合、この目標抗生物質また
は目標抗生物質誘導体が強脂溶性と判定し、ステップS3微生物薬品耐性評価に移行して
継続的に評価し、
ステップS2-2、抗生物質環境濃度判定:目標抗生物質または目標抗生物質誘導体の
環境濃度MECを測定し、環境濃度MEC≧10の場合、この目標抗生物質または目標抗
生物質誘導体が連続的な入力源を有すると判定し、ステップS3微生物薬品耐性評価に移
行して継続的に評価する必要があり、
ステップS3、微生物薬品耐性評価:薬品耐性リスク指数RQを用いて目標流域中の微
生物群集の薬品耐性リスクを特徴付け、以下の式に示すように:
RQ=MEC/PNEC
式において、MECはステップS2-2で測定された目標抗生物質または目標抗生物質誘
導体の環境濃度であり、PNECは目標流域中の微生物群集の予測された薬品耐性無効
濃度であり、以下の式に示すように:
PNEC=MIC/AF、
式において、MICは目標流域中の微生物群集の最小発育阻止濃度であり、AFは10の
値を取る無次元評価要因であり、EUCASTデータベースから目標流域中の微生物群集
の最小発育阻止濃度MICを決定し、目標流域中の微生物群集の予測された薬品耐性無効
濃度PNECRを取得し、前記微生物群集は細菌、真菌または放線菌属を含み、
目標流域中の微生物群集の薬品耐性リスクレベルは、RQ値の大きさに応じて、RQ
<0.01でリスクなし、0.01<RQ<0.1で低リスク、0.1<RQ<1で
中リスク、RQ>1で高リスクという4クラスに分けられ、RQ>0.1のとき、目
標流域中の微生物群集の薬品耐性リスクレベルが高いと見なされ、ステップS4高レベル
評価に移行して継続的に評価し、それ以外の場合、評価を終了し、
ステップS4、高レベル評価:
ステップS4-1、環境微生物抽出:50重量部の目標流域水試料をフィルター膜で濾
過し、前記フィルター膜の孔径は0.2~0.3μmであり、濾過後、フィルター膜を面
積15~28mmの断片に切断し、断片を容器に入れ、断片体積の1.2~1.5倍の
リン酸塩緩衝溶液を加え、容器に断片体積の2.5~3倍のガラスビーズを添加し、ボル
テックスで15~20min振とうした後、フィルター膜とガラスビーズを濾過・除去し
て、細菌溶液上澄み液を得て用意し、
ステップS4-2、抗生物質勾配濃度培養:ステップS4-1で得られた細菌溶液の上澄
み液をそれぞれ5~6個の減菌済コニカルフラスコに加え、各減菌済コニカルフラスコに
は2.5~3重量部の細菌溶液上澄み液が含まれ、各減菌済コニカルフラスコに、堆積物
のバイオフィルム形成を模擬するためのスライドを3枚入れ、0.2~0.5重量部のL
B培地を加え、5~6個の異なる減菌済コニカルフラスコに異なる濃度の目標抗生物質ま
たは目標抗生物質誘導体を加え、5~6個の異なる減菌済コニカルフラスコ中の目標抗生
物質または目標抗生物質誘導体濃度はそれぞれ0、0.01μg/L、0.1μg/L、
1μg/L、10μg/L、100μg/Lであり、28~33℃の室温条件下で14日
間振とう反応させ、目標溶液を得、
ステップS4-3、DNA抽出:ステップS4-2で得られた目標溶液から目標溶液DN
Aを抽出する同時、減菌済コニカルフラスコ中のスライド上の細菌をリン酸塩緩衝溶液に
収集して細菌DNAを抽出し、
ステップS4-4、耐性遺伝子測定:目標抗生物質または目標抗生物質誘導体に対応す
る耐性遺伝子を測定し、目標溶液DNAまたは細菌DNAの存在量を測定して耐性遺伝子
の相対存在量の平均値Pを算出する同時に、ステップS4前の耐性遺伝子の相対存在量の
平均値Pを算出し、選択性係数Sを算出し、以下の式に示すように:
S=In(P/P
ステップS4-5、モデルフィッティング:抗生物質濃度Cを横座標とし、目標溶液D
NAまたは細菌DNAに対応する選択性係数Sを縦座標として、logisticモデル
を用いてフィッティングし、S=0のとき、対応の抗生物質濃度CはMSC値であり、目
標溶液DNAまたは細菌DNAのMSC値を比較し、小さいMSC値を管理基準として選
択し、このMSC値は、抗生物質濃度Cより高い抗生物質条件下で薬品耐性遺伝子を有す
る微生物が濃縮され、その結果、微生物群集中の薬品耐性遺伝子の相対存在量が増加する

ことを特徴とする水環境中の残留抗生物質に対するマルチレベルのリスク評価方法。
including steps S1 to S4,
Step S1, environmental monitoring:
Step S1-1: Conduct a background investigation on the production, use and discharge of antibiotics in the target basin, establish an ecological risk assessment monitoring list for the target antibiotics, perform environmental monitoring of the target antibiotics, and the target basin is a river basin. , including marine and water functional areas;
Step S1-2: Monitor the target antibiotic derivative in the target watershed, and if by-product reactions or biotransformations of the target antibiotic occur, establish a target antibiotic derivative monitoring list and perform environmental monitoring of the target antibiotic derivative. There is,
Step S2, initial antibiotic screening: Initial screening of the target antibiotic in the target area obtained in step S1-1 and the target antibiotic derivative in the target area obtained in step S1-2 is carried out, and steps S2-1 to S2- If either of 2 is satisfied, proceed to step S3 Microbial drug resistance evaluation and continuously evaluate; otherwise, end the evaluation,
Step S2-1, determination of octanol/water partition coefficient: determine the octanol/water partition coefficient Kow of the target antibiotic or target antibiotic derivative, and obtain the obtained octanol/water partition coefficient K
If ow is a logarithmic value with a base of 10, and lg Kow≧3.5, the target antibiotic or target antibiotic derivative is determined to be strongly lipophilic, and the process proceeds to Step S3, microbial drug resistance evaluation, where it is continuously evaluated. Evaluate,
Step S2-2, antibiotic environmental concentration determination: measure the environmental concentration MEC of the target antibiotic or target antibiotic derivative, and if the environmental concentration MEC≧10, this target antibiotic or target antibiotic derivative is a continuous input source. It is necessary to proceed to step S3 microbial drug resistance evaluation and continuously evaluate.
Step S3, Microbial drug resistance evaluation: The drug resistance risk index RQ R is used to characterize the drug resistance risk of the microbial community in the target watershed, as shown in the following formula:
RQ R =MEC/PNEC R ,
In the formula, MEC is the environmental concentration of the target antibiotic or target antibiotic derivative measured in step S2-2, PNEC R is the predicted drug resistance null concentration of the microbial community in the target watershed, and the following formula As shown:
PNEC R = MIC/AF,
In the formula, MIC is the minimum inhibitory concentration of the microbial community in the target watershed, AF is a dimensionless evaluation factor that takes a value of 10, and the minimum inhibitory concentration MIC of the microbial community in the target watershed is determined from the EUCAST database. obtain a predicted drug resistance null concentration PNECR of a microbial community in a target watershed, the microbial community comprising bacteria, fungi, or the genus Actinobacteria;
The drug resistance risk level of the microbial community in the target watershed is determined by the RQ R value.
RQ R is divided into four classes: no risk if <0.01, low risk if 0.01<RQ R <0.1, medium risk if 0.1<RQ R <1, and high risk if RQ R >1. >0.1, the drug resistance risk level of the microbial community in the target watershed is considered to be high, and the process moves to step S4 high level evaluation to continuously evaluate; otherwise, the evaluation is terminated;
Step S4, high level evaluation:
Step S4-1, environmental microorganism extraction: 50 parts by weight of the target watershed water sample is filtered with a filter membrane, the pore size of the filter membrane is 0.2~0.3μm, and after filtration, the filter membrane is divided into an area of 15~28mm. Cut into 2 pieces, put the pieces in a container, add 1.2 to 1.5 times the volume of the phosphate buffer solution, and add 2.5 to 3 times the volume of glass beads to the container. After shaking with a vortex for 15 to 20 minutes, filter and remove the filter membrane and glass beads to obtain and prepare a bacterial solution supernatant.
Step S4-2, Antibiotic gradient concentration culture: Add the supernatant of the bacterial solution obtained in step S4-1 to 5 to 6 sterilized conical flasks, and add 2. Contains ~3 parts by weight of bacterial solution supernatant, each sterile conical flask contains three slides to simulate sediment biofilm formation, and 0.2 to 0.5 parts by weight of L
Add B medium and add different concentrations of target antibiotic or target antibiotic derivative to 5-6 different sterilized conical flasks, add target antibiotic or target antibiotic derivative in 5-6 different sterilized conical flasks. The substance derivative concentrations are 0, 0.01 μg/L, 0.1 μg/L, respectively.
1 μg/L, 10 μg/L, 100 μg/L, and a shaking reaction was performed for 14 days under room temperature conditions of 28 to 33°C to obtain the target solution.
Step S4-3, DNA extraction: target solution DN from the target solution obtained in step S4-2
At the same time as extracting A, collect the bacteria on the slide in a sterile conical flask into a phosphate buffer solution to extract bacterial DNA;
Step S4-4, resistance gene measurement: measure the resistance gene corresponding to the target antibiotic or target antibiotic derivative, measure the abundance of the target solution DNA or bacterial DNA, and calculate the average value P of the relative abundance of the resistance gene. At the same time as calculating, the average value P0 of the relative abundance of resistance genes before step S4 is calculated, and the selectivity coefficient S is calculated, as shown in the following formula:
S=In(P/P 0 )
Step S4-5, model fitting: antibiotic concentration C is the abscissa, target solution D
A logistic model is used to fit the selectivity coefficient S corresponding to NA or bacterial DNA as the ordinate, and when S=0, the corresponding antibiotic concentration C is the MSC value, and the MSC of the target solution DNA or bacterial DNA The values were compared and the smaller MSC value was selected as the control standard. This MSC value indicates that microorganisms with drug resistance genes are concentrated under antibiotic conditions higher than the antibiotic concentration The relative abundance of genes increases,
A multi-level risk assessment method for antibiotic residues in the aquatic environment.
前記ステップS3は以下のステップをさらに含み、環境残留性評価:データベースクエリ
ーとモデル予測方法を組み合わせて目標抗生物質または目標抗生物質誘導体の半減期t
/2を求め、環境残留性レベルは半減期t1/2値の大きさに応じて、t1/2<60d
で非残留性、60d<t1/2<180dで残留性、t1/2>180dで高残留性とい
う3クラスに分けられ、t1/2>60の場合、目標抗生物質または目標抗生物質誘導体
が環境残留性を有すると判定し、すなわち、目標流域中の微生物群集の薬品耐性リスクR
の値にかかわらず、ステップS4に移行して継続的に評価する必要がある、ことを特
徴とする請求項1に記載の方法。
The step S3 further includes the following steps: environmental persistence evaluation: combining the database query and model prediction method to determine the half-life t 1 of the target antibiotic or target antibiotic derivative;
/2 , and the environmental persistence level is determined as t 1/2 <60d depending on the half-life t 1/2 value.
It is divided into three classes: non-residual at 60d < t 1/2 < 180 d, persistent at t 1/2 > 180 d, and when t 1/2 > 60, the target antibiotic or target antibiotic It is determined that the derivative has environmental persistence, i.e., the drug resistance risk R of the microbial community in the target watershed.
The method according to claim 1, characterized in that regardless of the value of QR , it is necessary to proceed to step S4 and continuously evaluate.
前記ステップS4-1とS4-3中のリン酸塩緩衝溶液では、NaCl溶液の質量濃度が1
0g/L、KCl溶液の質量濃度が0.25g/L、NaHPO溶液の質量濃度が1
.6g/L、KHPO溶液の質量濃度が0.3g/Lであり、残りは水であり、リン
酸塩緩衝溶液のpHは7.4である、ことを特徴とする請求項1に記載の方法。
In the phosphate buffer solution in steps S4-1 and S4-3, the mass concentration of the NaCl solution is 1.
0 g/L, the mass concentration of KCl solution is 0.25 g/L, the mass concentration of Na 2 HPO 4 solution is 1
.. 6 g/L, the mass concentration of the KH 2 PO 4 solution is 0.3 g/L, the remainder is water, and the pH of the phosphate buffer solution is 7.4. Method described.
前記ステップS4-1中のLB培地では、トリプトンの質量濃度が10g/L、酵母粉末
の質量濃度が5g/L、塩化ナトリウムの質量濃度が10g/Lであり、残りは水である
、ことを特徴とする請求項1に記載の方法。
In the LB medium in step S4-1, the mass concentration of tryptone is 10 g/L, the mass concentration of yeast powder is 5 g/L, the mass concentration of sodium chloride is 10 g/L, and the remainder is water. A method according to claim 1, characterized in that:
前記ステップS4-4では2~20種類の耐性遺伝子を取る、ことを特徴とする請求項1
に記載の方法。
Claim 1, wherein in step S4-4, 2 to 20 types of resistance genes are obtained.
The method described in.
請求項1~5のいずれか1項に記載の方法で使用される、水環境中の残留抗生物質に対す
るマルチレベルのリスク評価システムであって、
目標流域内の目標抗生物質および目標抗生物質誘導体の種類および含有量を監視するため
に使用され、まず情報処理装置において目標流域内の目標抗生物質監視リスト、目標抗生
物質誘導体監視リストを作成し、その後目標抗生物質および目標抗生物質誘導体の監視を
実行する環境監視システムと、
情報処理装置上で実際に検出した目標抗生物質、目標抗生物質誘導体と、環境監視システ
ムにより建築された目標抗生物質監視リスト、目標抗生物質誘導体監視リストとを比較し
、実際に検出した目標抗生物質、目標抗生物質誘導体が環境監視システムにより建築され
た目標抗生物質監視リスト、目標抗生物質誘導体監視リストに属するかどうかを判定する
初期スクリーニングシステムと、
情報処理装置上で、前記初期スクリーニングシステムの判定結果がYesである目標抗生
物質、目標抗生物質誘導体に対して微生物薬品耐性評価を行う微生物薬品耐性評価システ
ムと、
情報処理装置上で微生物薬品耐性リスクレベルの高い目標抗生物質、目標抗生物質誘導体
をさらに評価して、制限または禁止する必要のある生態学的リスクの高い抗生物質種類を
特定する高レベル評価システムと、を備える、ことを特徴とする水環境中の残留抗生物質
に対するマルチレベルのリスク評価システム。
A multi-level risk assessment system for antibiotic residues in an aquatic environment, used in the method according to any one of claims 1 to 5, comprising:
It is used to monitor the types and contents of target antibiotics and target antibiotic derivatives in the target watershed, and first, a target antibiotic monitoring list and a target antibiotic derivative monitoring list in the target watershed are created in the information processing device, an environmental monitoring system that subsequently performs monitoring of the target antibiotic and target antibiotic derivative;
The target antibiotics and target antibiotic derivatives actually detected on the information processing device are compared with the target antibiotic monitoring list and target antibiotic derivative monitoring list constructed by the environmental monitoring system, and the target antibiotics actually detected are determined. , an initial screening system for determining whether the target antibiotic derivative belongs to a target antibiotic derivative monitoring list, a target antibiotic derivative monitoring list established by an environmental monitoring system;
a microbial drug resistance evaluation system that performs microbial drug resistance evaluation on a target antibiotic or target antibiotic derivative for which the determination result of the initial screening system is Yes on an information processing device;
A high-level evaluation system that further evaluates target antibiotics and target antibiotic derivatives with a high risk level of microbial drug resistance on an information processing device to identify types of antibiotics with a high ecological risk that need to be restricted or prohibited. A multi-level risk assessment system for antibiotic residues in a water environment, comprising:
JP2023081488A 2022-06-01 2023-05-17 Multi-level risk assessment method and evaluation system for antibiotic residues in aquatic environment Active JP7408041B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210618679.5A CN115062933B (en) 2022-06-01 2022-06-01 Multi-level risk assessment method for microbial drug resistance of antibiotic residues in water environment
CN202210618679.5 2022-06-01

Publications (2)

Publication Number Publication Date
JP2023177269A true JP2023177269A (en) 2023-12-13
JP7408041B2 JP7408041B2 (en) 2024-01-05

Family

ID=83197700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023081488A Active JP7408041B2 (en) 2022-06-01 2023-05-17 Multi-level risk assessment method and evaluation system for antibiotic residues in aquatic environment

Country Status (3)

Country Link
US (1) US11959122B2 (en)
JP (1) JP7408041B2 (en)
CN (1) CN115062933B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114262715B (en) * 2021-12-28 2023-07-28 中国环境科学研究院 Method for evaluating environmental health risk of resistance genes in compost products

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006034950A (en) * 2004-05-27 2006-02-09 Sankyo Co Ltd ACTIVE DECOMPOSITION AND REMOVAL METHOD OF beta-LACTAM COMPOUND USING NUCLEOPHILIC REAGENT
JP2007125032A (en) * 1994-09-12 2007-05-24 Infectio Diagnostic (Idi) Inc Specific and universal probes and amplification primers to rapidly detect and identify common bacterial pathogens and antibiotic resistant genes from clinical specimens for routine diagnosis in microbiology laboratories
JP2019521682A (en) * 2016-07-04 2019-08-08 アリファックス ソチエタ レスポンサビリタ リミタータAlifax S.R.L. Integrated device for performing diagnostic analysis
JP2020198878A (en) * 2019-06-06 2020-12-17 南京▲農業▼大学 Test paper strips and methods for detecting tetracycline antibiotics in water using biosensors
JP7009688B1 (en) * 2021-09-15 2022-01-26 南京大学 Sensor array and detection device consisting of LOMF for detecting antibiotics

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102876772A (en) * 2012-06-20 2013-01-16 山东省海洋水产研究所 Method for detecting tetracycline resistance gene in seawater
US10655188B2 (en) 2014-06-13 2020-05-19 Q-Linea Ab Method for determining the identity and antimicrobial susceptibility of a microorganism
CN105112497A (en) 2015-09-08 2015-12-02 国家海洋环境监测中心 Method for separating and screening escherichia coli and staphylococcus aureus in estuary and nearshore marine environments and evaluating resistance of antibiotics
CN106841431A (en) * 2017-01-13 2017-06-13 天津大学 PPCPs ecological risk evaluating methods in a kind of water environment
CN110869511A (en) 2017-07-07 2020-03-06 美国控股实验室公司 Method and system for detecting antibiotic resistance
WO2021053691A1 (en) * 2019-09-16 2021-03-25 Mit School Of Bioengineering Sciences & Research Device and assay for detection of antibiotics in industrial effluents
CN111944914A (en) * 2020-07-16 2020-11-17 中国科学院生态环境研究中心 Method for evaluating water health risk based on resistance gene and virulence factor gene
CN112877396B (en) 2021-01-18 2023-06-27 广东工业大学 Method for evaluating migration risk of resistance genes
CN114509420B (en) 2022-04-19 2022-12-13 广东工业大学 Method for evaluating migration risk of antibiotic resistance gene

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007125032A (en) * 1994-09-12 2007-05-24 Infectio Diagnostic (Idi) Inc Specific and universal probes and amplification primers to rapidly detect and identify common bacterial pathogens and antibiotic resistant genes from clinical specimens for routine diagnosis in microbiology laboratories
JP2006034950A (en) * 2004-05-27 2006-02-09 Sankyo Co Ltd ACTIVE DECOMPOSITION AND REMOVAL METHOD OF beta-LACTAM COMPOUND USING NUCLEOPHILIC REAGENT
JP2019521682A (en) * 2016-07-04 2019-08-08 アリファックス ソチエタ レスポンサビリタ リミタータAlifax S.R.L. Integrated device for performing diagnostic analysis
JP2020198878A (en) * 2019-06-06 2020-12-17 南京▲農業▼大学 Test paper strips and methods for detecting tetracycline antibiotics in water using biosensors
JP7009688B1 (en) * 2021-09-15 2022-01-26 南京大学 Sensor array and detection device consisting of LOMF for detecting antibiotics

Also Published As

Publication number Publication date
US20230392183A1 (en) 2023-12-07
CN115062933B (en) 2023-04-18
JP7408041B2 (en) 2024-01-05
US11959122B2 (en) 2024-04-16
CN115062933A (en) 2022-09-16

Similar Documents

Publication Publication Date Title
Wu et al. Selective enrichment of bacterial pathogens by microplastic biofilm
Chen et al. Patterns and processes in marine microeukaryotic community biogeography from Xiamen coastal waters and intertidal sediments, southeast China
Liu et al. Understanding, monitoring, and controlling biofilm growth in drinking water distribution systems
Garcia et al. Identification of free-living amoebae and amoeba-associated bacteria from reservoirs and water treatment plants by molecular techniques
Simpson et al. Microbial source tracking: state of the science
Bižić-Ionescu et al. Organic particles: heterogeneous hubs for microbial interactions in aquatic ecosystems
Ica et al. Characterization of mono-and mixed-culture Campylobacter jejuni biofilms
Searcy et al. Capture and retention of Cryptosporidium parvum oocysts by Pseudomonas aeruginosa biofilms
JP7408041B2 (en) Multi-level risk assessment method and evaluation system for antibiotic residues in aquatic environment
Hassard et al. Physicochemical factors influence the abundance and culturability of human enteric pathogens and fecal indicator organisms in estuarine water and sediment
Tlili et al. Micropollutant-induced tolerance of in situ periphyton: establishing causality in wastewater-impacted streams
CN101802610A (en) A high throughput test method for evaluation of biocides against anaerobic microorganisms
Mehta et al. Using experimental evolution to identify druggable targets that could inhibit the evolution of antimicrobial resistance
Ramos‐Barbero et al. Prokaryotic and viral community structure in the singular chaotropic salt lake Salar de Uyuni
Wang et al. Metagenomic analysis revealed sources, transmission, and health risk of antibiotic resistance genes in confluence of Fenhe, Weihe, and Yellow Rivers
Zhao et al. Monitoring antibiotic resistomes and bacterial microbiomes in the aerosols from fine, hazy, and dusty weather in Tianjin, China using a developed high-volume tandem liquid impinging sampler
Wang et al. Tidal flat aquaculture pollution governs sedimentary antibiotic resistance gene profiles but not bacterial community based on metagenomic data
Wicaksono et al. Antimicrobial-specific response from resistance gene carriers studied in a natural, highly diverse microbiome
Rees et al. Biodegradation processes in a laboratory-scale groundwater contaminant plume assessed by fluorescence imaging and microbial analysis
Cao et al. Distribution characteristics of soil viruses under different precipitation gradients on the Qinghai-Tibet Plateau
Wang et al. Intra‐aggregate pore structures and Escherichia coli distribution by water flow within and movement out of soil macroaggregates
Su et al. Animal corpse degradation enriches antibiotic resistance genes but remains recalcitrant in drinking water microcosm
Yu et al. Phage predation promotes filamentous bacterium piscinibacter colonization and improves structural and hydraulic stability of microbial aggregates
Carneiro et al. Critical evaluation of the factors affecting Escherichia coli environmental decay for outfall plume models
Remenár et al. Isolation of previously uncultivable bacteria from a nickel contaminated soil using a diffusion-chamber-based approach

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231113

R150 Certificate of patent or registration of utility model

Ref document number: 7408041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150