JP2023177142A - Method for determining effectiveness of cancer treatment using ret kinase inhibitor - Google Patents

Method for determining effectiveness of cancer treatment using ret kinase inhibitor Download PDF

Info

Publication number
JP2023177142A
JP2023177142A JP2022089905A JP2022089905A JP2023177142A JP 2023177142 A JP2023177142 A JP 2023177142A JP 2022089905 A JP2022089905 A JP 2022089905A JP 2022089905 A JP2022089905 A JP 2022089905A JP 2023177142 A JP2023177142 A JP 2023177142A
Authority
JP
Japan
Prior art keywords
ret
amino acid
mutations
mutation
cancer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022089905A
Other languages
Japanese (ja)
Inventor
隆志 河野
Takashi Kono
敬史 中奥
Takashi NAKAOKU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL CANCER CENTER
Original Assignee
NATIONAL CANCER CENTER
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL CANCER CENTER filed Critical NATIONAL CANCER CENTER
Priority to JP2022089905A priority Critical patent/JP2023177142A/en
Priority to PCT/JP2023/019779 priority patent/WO2023234222A1/en
Publication of JP2023177142A publication Critical patent/JP2023177142A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Hospice & Palliative Care (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Cell Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

To provide a method for determining effectiveness of a cancer treatment using a RET kinase inhibitor.SOLUTION: A method for determining effectiveness of a cancer treatment using a RET kinase inhibitor, comprises: a step for detecting, in a sample isolated from a subject, an amino acid mutation in a calmodulin-like motif of a RET protein; and a step for, if the amino acid mutation is detected in the previous step, determining that the cancer treatment using the RET kinase inhibitor is highly effective for the subject.SELECTED DRAWING: None

Description

本発明は、RETキナーゼ阻害剤によるがん治療の有効性を判定する方法に関する。さらに、本発明は当該判定方法に用いるための試薬に関する。本発明はまた、前記判定方法の結果に基づき患者に投与されるRETキナーゼ阻害剤に関する。 The present invention relates to a method for determining the effectiveness of cancer treatment using a RET kinase inhibitor. Furthermore, the present invention relates to a reagent for use in the determination method. The present invention also relates to a RET kinase inhibitor that is administered to a patient based on the results of the determination method.

腫瘍形成の原動力となるがん遺伝子変異を同定することは、これらの変異が阻害剤の治療標的となるため重要である。これまでにいくつかのプロテインキナーゼ阻害剤は、がん原性キナーゼ遺伝子に活性化変異を持つ患者の予後を改善している。ヒトのがんに関連する単一又は少数のアミノ酸残基に影響を及ぼすホットスポット変異は、その細胞形質転換活性と薬剤感受性から、がん原性変異及び治療標的変異として集中的に研究されてきた。これには、BRAF(V600E),KRAS(G12C),EGFR(L858R),RET(M918T)遺伝子における変異が含まれる(非特許文献1及び2)。 Identification of cancer gene mutations that drive tumorigenesis is important because these mutations serve as therapeutic targets for inhibitors. To date, several protein kinase inhibitors have improved the prognosis of patients with activating mutations in oncogenic kinase genes. Hotspot mutations affecting single or small amino acid residues associated with human cancer have been intensively studied as oncogenic mutations and therapeutic target mutations due to their cell-transforming activity and drug sensitivity. Ta. This includes mutations in the BRAF (V600E), KRAS (G12C), EGFR (L858R), and RET (M918T) genes (Non-patent Documents 1 and 2).

特に、RET遺伝子に関し、甲状腺癌におけるそのホットスポット変異は創薬標的として利用されており(非特許文献3及び4)、最近開発されたRET特異的チロシンキナーゼ阻害剤(TKI)は、このようながん原性RET変異を有するがん患者に対して顕著な治療効果を示している(非特許文献1及び2)。さらに、RET遺伝子に関しては、ホットスポット変異がもたらすがん原性の分子機構が解明されている。具体的には、RETのキナーゼドメインにおけるホットスポット変異は、酵素活性や自己リン酸化のための基質提示を強化することでキナーゼ活性を向上させることが明らかになっている(非特許文献4)。また、RETのコアシステインモチーフ(CCM)におけるホットスポット変異は、対になっていないシステイン残基を生成することで分子間ジスルフィド結合を形成し、RETの二量体化と酵素の活性化を構成的に引き起こすことも明らかになっている(非特許文献3及び5)。 In particular, hotspot mutations in the RET gene in thyroid cancer have been used as drug discovery targets (Non-Patent Documents 3 and 4), and recently developed RET-specific tyrosine kinase inhibitors (TKIs) are It has shown remarkable therapeutic effects on cancer patients with oncogenic RET mutations (Non-patent Documents 1 and 2). Furthermore, regarding the RET gene, the molecular mechanism of carcinogenicity brought about by hot spot mutations has been elucidated. Specifically, it has been revealed that hot spot mutations in the kinase domain of RET improve kinase activity by enhancing enzyme activity and substrate presentation for autophosphorylation (Non-Patent Document 4). In addition, hotspot mutations in the core cysteine motif (CCM) of RET generate unpaired cysteine residues that form intermolecular disulfide bonds, constituting RET dimerization and enzyme activation. It has also been revealed that this can cause severe symptoms (Non-patent Documents 3 and 5).

その一方で、次世代シーケンサーを用いた数万例に及ぶがん症例のゲノム解析から、多くのがんゲノムには、よく知られているがん遺伝子にも「非クラスター(散在性)」変異があることもわかってきている(非特許文献6及び7)。このような変異は、臨床的意義不明の遺伝子変異(VUS)と呼ばれており、その発生頻度が低く、したがって治療標的となる可能性も低いことから、腫瘍形成や薬剤感受性におけるその役割については、これまで広範には研究されてきていない。がんプレシジョンメディシンにおいて、このようなVUSの発がん作用を予測することは、既存の阻害剤を用いた分子標的治療が有効な症例を選別するために有効であることから、急務とされている。実際、膨大な数のVUSが存在することから、アミノ酸配列からタンパク質の構造を予測するAlphaFold2解析(非特許文献8)等のインシリコ手法により、その機能アノテーションを迅速に行うことができると推測されている。しかし、構造予測と機能アノテーションの間には依然としてギャップがあるため、機能的に重要な「ドライバー」変異と生物学的に中立な「パッセンジャー」変異を区別することはできていない(非特許文献9)。 On the other hand, genome analysis of tens of thousands of cancer cases using next-generation sequencing has revealed that many cancer genomes contain "non-clustered" mutations, even in well-known cancer genes. It has also been found that there are (non-patent documents 6 and 7). Such mutations, called genetic mutations of unknown clinical significance (VUS), occur infrequently and are therefore unlikely to serve as therapeutic targets, and their role in tumorigenesis and drug sensitivity remains unclear. , has not been extensively studied so far. In cancer precision medicine, predicting such carcinogenic effects of VUS is an urgent task because it is effective for selecting cases for which molecular target therapy using existing inhibitors is effective. In fact, since there are a huge number of VUSs, it is speculated that their functional annotations can be quickly performed using in silico methods such as AlphaFold2 analysis (Non-Patent Document 8), which predicts protein structures from amino acid sequences. There is. However, there is still a gap between structural prediction and functional annotation, making it impossible to distinguish between functionally important "driver" mutations and biologically neutral "passenger" mutations (Non-patent Document 9). ).

このように、ホットスポット変異がもたらすがん原性の分子機構が解明されているRET遺伝子においても、非クラスター変異の中から、がん原性又は治療標的性のある変異をさらに特定することが出来れば、RETキナーゼ阻害剤治療が有効ながん患者が増加することが期待される。しかしながら、このような変異はまだ特定されていなかった。 In this way, even in the RET gene, where the molecular mechanism of oncogenicity brought about by hotspot mutations has been elucidated, it is still difficult to further identify mutations that are oncogenic or therapeutic targets among non-clustered mutations. If possible, it is expected that the number of cancer patients for whom RET kinase inhibitor treatment is effective will increase. However, such mutations had not yet been identified.

Wirth LJ.ら、N Engl J Med.、2020年、383:825~835ページWirth LJ. et al., N Engl J Med. , 2020, 383: pages 825-835. Subbiah V.ら、The lancet Diabetes&endocrinology、2021年、9:491~501ページSubbiah V. et al., The Lancet Diabetes & Endocrinology, 2021, 9:491-501. Mulligan LM.、Nat Rev Cancer、2014年、14:173~186ページMulligan LM. , Nat Rev Cancer, 2014, 14:173-186. Plaza-Menacho I.ら、Mol Cell、2014年、53:738~751ページPlaza-Menacho I. et al., Mol Cell, 2014, 53:738-751. Romei C.ら、Nat Rev Endocrinol.、2016年、12:192~202ページRomei C. et al., Nat Rev Endocrinol. , 2016, 12: 192-202 pages. Ikemura S.ら、Proceedings of the National Academy of Sciences of the United States of America、2019年、116:10025~10030ページIkemura S. et al., Proceedings of the National Academy of Sciences of the United States of America, 2019, 116:10025-10030. Foley SB.ら、EBioMedicine、2015年;2:74~81ページFoley SB. et al., EBioMedicine, 2015; 2: 74-81 pages. Jumper J.ら、Nature、2021年、596:583~589ページJumper J. et al., Nature, 2021, 596:583-589. Mulligan LM.Nat Rev Cancer、2014年14:173~186ページMulligan LM. Nat Rev Cancer 2014 14:173-186 Li J.ら、「Cryo-EM analyses reveal the common mechanism and diversification in the activation of RET by different ligands.」、Elife、2019年;8Li J. et al., “Cryo-EM analyzes reveal the common mechanism and diversification in the activation of RET by different ligands.”, Elife , 2019;8

本発明は、前記従来技術の有する課題に鑑みてなされたものであり、RET遺伝子における非クラスター変異の中から、がん原性又は治療標的性のある変異を同定し、当該変異を指標とする、RETキナーゼ阻害剤によるがん治療の有効性を判定する方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems of the prior art, and it identifies mutations that are carcinogenic or therapeutic target among non-cluster mutations in the RET gene, and uses the mutations as an indicator. The present invention aims to provide a method for determining the effectiveness of cancer treatment using a RET kinase inhibitor.

本発明者らは、前記目的を達成すべく、先ず、インシリコ駆動型インビトロ機能解析を行うことにより、治療標的であるRET遺伝子の多数のVUSの中から、がん原性変異や治療標的変異を同定することを試みた。より具体的には、異なるヒトの癌における71,756の変異体に対して、インシリコゲノムワイドモデリングを行い、既知のRET癌遺伝子に、3塩基又は5塩基置換のローカルバックグランドレベルを超えて変異を誘発している新規のヌクレオチドモチーフを同定した。この変異群は、最近RET細胞外ドメイン(ECD)の低温電子顕微鏡(EM)解析により同定されたカルモジュリン様モチーフ(CaLM、非特許文献10)に生じ、3次元的なアミノ酸置換クラスターを形成していた。また、高性能スーパーコンピュータ「富岳」を用いた分子動力学(MD)シミュレーションにより、CaLMの変異がRET-カルシウムイオン複合体間の結合を不安定にすることが示された。また、代表する110のRET変異体の網羅的な機能解析(インビトロでの細胞形質転換試験、シグナル伝達アッセイ等)により、ECDの変異体におけるアミノ酸置換はほとんど中立的であるのに対し、CaLM変異は新たな活性化変異クラスターであることが明らかになった。さらに、CaLM変異は、野生型RETでは人工的なCa2+フリー条件下でのみ起こるジスルフィド結合の形成を通じて、リガンド非依存的にRETキナーゼのホモ二量化を引き起こすことを見出し、本発明を完成するに至った。 In order to achieve the above objective, the present inventors first conducted an in silico-driven in vitro functional analysis to identify oncogenic mutations and therapeutic target mutations from among a large number of VUS of the RET gene, which is a therapeutic target. I tried to identify it. More specifically, we performed in silico genome-wide modeling on 71,756 variants in different human cancers to identify mutations in known RET oncogenes above local background levels of 3- or 5-base substitutions. We identified a novel nucleotide motif that induces This group of mutations occurs in the calmodulin-like motif (CaLM, Non-Patent Document 10), which was recently identified by cryo-electron microscopy (EM) analysis of the RET extracellular domain (ECD), and forms a three-dimensional amino acid substitution cluster. Ta. Furthermore, molecular dynamics (MD) simulations using the high-performance supercomputer "Fugaku" showed that mutations in CaLM destabilize the bond between RET and calcium ion complexes. In addition, comprehensive functional analysis (in vitro cell transformation tests, signal transduction assays, etc.) of 110 representative RET mutants revealed that amino acid substitutions in ECD mutants are almost neutral, whereas CaLM mutations was revealed to be a new activating mutation cluster. Furthermore, we found that the CaLM mutation causes homodimerization of RET kinase in a ligand-independent manner through the formation of disulfide bonds, which occurs only under artificial Ca 2+ -free conditions in wild-type RET, and completed the present invention. It's arrived.

すなわち、本発明は以下の態様を提供する。 That is, the present invention provides the following aspects.

[1] RETキナーゼ阻害剤によるがん治療の有効性を判定する方法であって、
被検者から単離した試料において、RETタンパク質のカルモジュリン様モチーフにおけるアミノ酸変異を検出する工程と、
前記工程にて、前記アミノ酸変異が検出されれば、前記被検者におけるRETキナーゼ阻害剤によるがん治療の有効性が高いと判定する工程とを、含む方法。
[1] A method for determining the effectiveness of cancer treatment with a RET kinase inhibitor, comprising:
Detecting amino acid mutations in the calmodulin-like motif of the RET protein in the sample isolated from the subject;
If the amino acid mutation is detected in the step, determining that the effectiveness of cancer treatment with the RET kinase inhibitor in the subject is high.

[2] 前記アミノ酸変異が、RETタンパク質において、567位のアスパラギン酸、568位のグリシン、571位のアスパラギン酸、574位のグルタミン酸及び584位のアスパラギン酸から選択される少なくとも1のアミノ酸が他のアミノ酸に置換されている変異である、[1]に記載の方法。 [2] The amino acid mutation is such that in the RET protein, at least one amino acid selected from aspartic acid at position 567, glycine at position 568, aspartic acid at position 571, glutamic acid at position 574, and aspartic acid at position 584 is The method according to [1], wherein the mutation is an amino acid substitution.

[3] [1]又は[2]に記載の方法に用いるための試薬であって、下記(i)若しくは(ii)に記載のオリゴヌクレオチド、又は(iii)に記載の抗体を含む試薬
(i)前記アミノ酸変異をコードするヌクレオチドを挟み込むように設計された、1対のオリゴヌクレオチド
(ii)前記アミノ酸変異をコードするヌクレオチドにハイブリダイズする、オリゴヌクレオチド
(iii)前記アミノ酸変異を特異的に認識する抗体。
[3] A reagent for use in the method described in [1] or [2], which contains the oligonucleotide described in (i) or (ii) below, or the antibody described in (iii). ) a pair of oligonucleotides designed to sandwich the nucleotides encoding said amino acid mutation; (ii) an oligonucleotide that hybridizes to the nucleotides encoding said amino acid mutation; and (iii) specifically recognizing said amino acid mutation. antibody.

[4] [1]又は[2]に記載の方法によってるがん治療の有効性が高いと判定された前記被検者に摂取させることを特徴とする、RETキナーゼ阻害剤。 [4] A RET kinase inhibitor, characterized in that it is ingested by the subject who has been determined to be highly effective in cancer treatment by the method described in [1] or [2].

本発明によれば、RETタンパク質のカルモジュリン様モチーフにおけるアミノ酸変異を検出することによって、RETキナーゼ阻害剤によるがん治療の有効性を予測することが可能となる。そして、これにより、前記薬剤を投与することが有効ではないと考えられるがん患者への薬剤の投与を回避することができるため、効率的ながん治療を実現することが可能となる。 According to the present invention, by detecting amino acid mutations in the calmodulin-like motif of the RET protein, it is possible to predict the effectiveness of cancer treatment with a RET kinase inhibitor. This makes it possible to avoid administering the drug to cancer patients for whom administration of the drug is considered ineffective, thereby making it possible to achieve efficient cancer treatment.

正選択のための突然変異モデルを示す図である。上のグラフは1,290個のRET変異の発生数(丸)と変異分布の平滑化表示(線)を示したものである。下の棒グラフはOncodriveCLUSTLによって決定された変異クラスターをp値及びドメイン/モチーフの分布とともに示したものである。CLD,カドヘリン様ドメイン;CRD,システインリッチドメイン;TM,膜貫通ドメイン;KD,キナーゼドメイン;CaLM,カルモジュリン様モチーフ;CCM,コアシステインモチーフを示す。円グラフは、CaLMとCCM変異クラスターについて、癌種とOncoKBでの意義付け(文献19)の割合を示している。なお、前記括弧内に示す文献の番号(ここでは19)は、下記<参考文献>に示す各番号に記載の文献に対応する(以下、同様)。FIG. 3 shows a mutation model for positive selection. The upper graph shows the number of occurrences of 1,290 RET mutations (circles) and a smoothed representation of the mutation distribution (line). The bar graph below shows the mutation clusters determined by OncodriveCLUSTL along with p-values and domain/motif distributions. CLD, cadherin-like domain; CRD, cysteine-rich domain; TM, transmembrane domain; KD, kinase domain; CaLM, calmodulin-like motif; CCM, core cysteine motif. The pie chart shows the ratio of cancer types and OncoKB significance (Reference 19) for CaLM and CCM mutation clusters. Note that the literature number shown in parentheses (19 here) corresponds to the literature listed in each number shown in <References> below (the same applies hereinafter). RET変異のNIH3T3細胞形質転換能とERKリン酸化活性を示すバブルプロットである。横軸はアミノ酸残基番号を示し、縦軸は野生型RETと比較したERKリン酸化をlog10フォールドチェンジで示す。各変異のプロットの大きさは、フォーカス形成の強度を3段階で示している。各プロットの色はOncoKBで注釈されたグレードを示す(文献19)。カラーでの表示下、青はがん原性、水色はがん原性の可能性が高い、灰色は意義不明、紫は不詳、緑は中立の可能性が高い、を示す。ギムザ染色したNIH3T3細胞の代表的な画像をグラフ領域に示している。It is a bubble plot showing the ability of RET mutations to transform NIH3T3 cells and ERK phosphorylation activity. The horizontal axis shows amino acid residue numbers, and the vertical axis shows ERK phosphorylation compared to wild-type RET in log10 fold change. The size of the plot for each mutation indicates the strength of focus formation in three levels. The color of each plot indicates the grade annotated with OncoKB (Reference 19). Under the color display, blue indicates carcinogenicity, light blue indicates high possibility of carcinogenicity, gray indicates significance is unknown, purple indicates unknown, and green indicates high probability of neutrality. Representative images of Giemsa-stained NIH3T3 cells are shown in the graph area. ERKリン酸化アッセイの結果を示す写真である。空ベクター又は野生型RET、110のRET変異体、及びキナーゼデッド変異体(K758M)の発現プラスミドをトランスフェクトしたHEK293H細胞を用いて、リン酸化ERK(pERK)、ERK、及びRETの免疫ブロット分析を行った。ERKに対して正規化した相対的なpERKレベルは図1Bにプロットして示す。It is a photograph showing the results of ERK phosphorylation assay. Immunoblot analysis of phosphorylated ERK (pERK), ERK, and RET was performed using HEK293H cells transfected with empty vector or expression plasmids for wild-type RET, 110 RET mutants, and a kinase-dead mutant (K758M). went. Relative pERK levels normalized to ERK are plotted in Figure 1B. RET変異体の選択方法の概要を示す図である。探索コホートは79,720の腫瘍から融合やコピー数変化などの変化を除いた71,756の変異データからなり、OncodriveCLUSTL解析が行われ、RET遺伝子のモデリング結果が出力された。GENIEサンプルで検出された860種類のミスセンス/インフレーム挿入欠失RET変異のうち、6つのCaLM、25の既知の活性化候補変異(文献5,6,9,10,12,13)、及びGENIEで3例以上の観察されるその他の79種類のRET変異体について、遺伝子網羅的な細胞ベースアッセイを行った。FIG. 2 is a diagram showing an overview of a method for selecting RET mutants. The exploration cohort consisted of 71,756 mutation data from 79,720 tumors excluding changes such as fusions and copy number changes, and Oncodrive CLUSTL analysis was performed to output the RET gene modeling results. Among the 860 missense/in-frame insertion deletion RET mutations detected in GENIE samples, 6 CaLM, 25 known activating candidate mutations (References 5, 6, 9, 10, 12, 13), and GENIE Gene-wide cell-based assays were performed on 79 other RET variants observed in three or more cases. OncodriveCLUSTL解析を示す図である。GENIEコホートから得られた合計1,290のRETバリアントは、TCGA(v0.2.8)サンプルから生成した変異トリヌクレオチドコンテキストに基づくバックグラウンド変異率モデルを用いたトリヌクレオチドエンリッチメント解析に供された(左図)。TCGAデータセットは、GENIEデータセット(バージョン7.0)と同様の割合で多様なタイプの変異を含むため、バックグラウンドモデルとして使用された(右図)。グラフ内の表は、2つのデータセットのサンプル数、変異数、遺伝子数を示す。FIG. 3 is a diagram showing Oncodrive CLUSTL analysis. A total of 1,290 RET variants obtained from the GENIE cohort were subjected to trinucleotide enrichment analysis using a background mutation rate model based on mutant trinucleotide contexts generated from TCGA (v0.2.8) samples. (Left figure). The TCGA dataset was used as a background model (right panel) because it contains a similar proportion of diverse types of mutations as the GENIE dataset (version 7.0). The table within the graph shows the number of samples, number of mutations, and number of genes for the two datasets. ECDにおけるRET変異を示す、円グラフである。円グラフは、ECDの変異について、がん種の割合とOncoKBでのアノテーション(文献22)を示している。Figure 2 is a pie chart showing RET mutations in ECD. The pie chart shows the proportion of cancer types and the annotation in OncoKB (Reference 22) regarding ECD mutations. ICDにおけるRET変異を示す、円グラフである。円グラフは、ICDの変異について、がん種の割合とOncoKBでのアノテーション(文献22)を示している。Figure 2 is a pie chart showing RET mutations in ICD. The pie chart shows the proportion of cancer types and the annotation in OncoKB (Reference 22) regarding ICD mutations. CaLMとCCMセグメントにおける単独変異と複合変異を示す、円グラフである。どちらも各腫瘍でほとんどが単独変異として検出される。Figure 2 is a pie chart showing single and combined mutations in CaLM and CCM segments. Both are mostly detected as single mutations in each tumor. CaLMの構造を示す、3次元図である。RET-GDNF-GFRα1六量体の細胞外部分の俯瞰図(PDB:6Q2N)とCaLMの拡大図を示す。拡大図では、Ca2+イオン(カラーでの表示下、緑球)の位置とCa2+イオン保持に寄与するアミノ酸残基を図示している。変異した残基は赤でハイライトされている。俯瞰図では、オレンジ:カドヘリン様ドメイン(CLD)、グレー:システインリッチドメイン(CRD)、水色:グリア細胞由来神経栄養因子(GDNF)、ピンク:GDNFファミリー受容体α1(GFRα1)で表す。FIG. 3 is a three-dimensional diagram showing the structure of CaLM. An overhead view of the extracellular portion of the RET-GDNF-GFRα1 hexamer (PDB: 6Q2N) and an enlarged view of CaLM are shown. The enlarged view illustrates the position of Ca 2+ ions (under color display, green sphere) and the amino acid residues that contribute to Ca 2+ ion retention. Mutated residues are highlighted in red. In the overhead view, orange: cadherin-like domain (CLD), gray: cysteine-rich domain (CRD), light blue: glial cell-derived neurotrophic factor (GDNF), pink: GDNF family receptor α1 (GFRα1). カルモジュリンの構造を示す、3次元図である。カルモジュリンのCa2+結合モチーフを表している(PDBコード:2BE6)。カラーでの表示下、QT延長症候群患者に認められる変異残基は赤でハイライトされている。FIG. 3 is a three-dimensional diagram showing the structure of calmodulin. Represents the Ca 2+ binding motif of calmodulin (PDB code: 2BE6). Under the color display, mutated residues found in long QT syndrome patients are highlighted in red. Ca2+イオンとRET-CRDモノマー間において10ナノ秒間隔で算出した結合自由エネルギーのバイオリンプロットである。各ストリップの幅は、結合自由エネルギー値を示す時間ポイントの割合を表す。黒い破線は中央値を表す。各点線は第一四分位の終わりと第四四分位の始まりを表す。*:P値<0.05;****:P値<0.0001。P値はTukeyの多重比較検定による一元配置分散分析(one-way ANOVA)で求めた。FIG. 3 is a violin plot of binding free energies calculated at 10 nanosecond intervals between Ca 2+ ions and RET-CRD monomers. FIG. The width of each strip represents the percentage of time points exhibiting binding free energy values. The black dashed line represents the median value. Each dotted line represents the end of the first quartile and the beginning of the fourth quartile. *: P value <0.05; ****: P value < 0.0001. P values were determined by one-way ANOVA using Tukey's multiple comparison test. CRDモノマーにおけるCα原子のRMSDのバイオリンプロットである。各アミノ酸の重原子のRMSDを100ピコ秒間隔で初期位置に対して計算しプロットした。左は野生型(WT)及び臨床で認められたCaLM変異体のRMSDを示す。右は、人工アラニン変異体での結果を示す。FIG. 3 is a violin plot of the RMSD of Cα atoms in CRD monomers. The RMSD of the heavy atom of each amino acid was calculated and plotted with respect to the initial position at 100 picosecond intervals. The left shows the RMSD of wild type (WT) and clinically observed CaLM mutants. The right side shows the results for the artificial alanine mutant. 人工CaLM変異体のがん化能を解析した結果を示す、写真である。左:ERKリン酸化アッセイ。空ベクター又はWT RET、110のRET変異体、及びキナーゼデッド変異体(K758M)発現プラスミドをトランスフェクトしたHEK293H細胞を用いて、pERK、ERK、RET、及びβ-アクチンの免疫ブロット分析を行った。右:NIH3T3フォーカス形成アッセイ。親細胞(非感染)、空ウイルス感染、D567Y(CaLM変異体)、C634R(CCM変異体)、M918T(キナーゼドメイン変異体)及び人工CaLM変異体タンパク質を発現するレンチウイルスを用いてNIH3T3細胞の形質転換能を評価した。It is a photograph showing the results of analyzing the cancerous ability of artificial CaLM mutants. Left: ERK phosphorylation assay. Immunoblot analysis of pERK, ERK, RET, and β-actin was performed using HEK293H cells transfected with empty vector or WT RET, 110 RET mutants, and kinase dead mutant (K758M) expression plasmids. Right: NIH3T3 focus formation assay. Characterization of NIH3T3 cells using lentiviruses expressing parental cells (uninfected), empty virus infection, D567Y (CaLM mutant), C634R (CCM mutant), M918T (kinase domain mutant) and artificial CaLM mutant proteins. Conversion ability was evaluated. 1マイクロ秒のシミュレーションにおいて10ナノ秒ごとに計算した結合自由エネルギーを示す、グラフである。3本の線は、野生型(カラーでの表示下、黒)、D567Y(カラーでの表示下、赤)、D567N(カラーでの表示下、青)のRET-CRDのCa2+イオンとの結合自由エネルギーの時間変化を10ナノ秒の各時間枠で示したものである。1 is a graph showing binding free energies calculated every 10 nanoseconds in a 1 microsecond simulation. The three lines represent the binding of wild-type (lower color display, black), D567Y (lower color display, red), and D567N (lower color display, blue) RET-CRD to Ca 2+ ions. It shows the change in free energy over time in each time frame of 10 nanoseconds. CRDモノマーのシミュレーション中の野生型(カラーでの表示下、黒線)、D567Y(カラーでの表示下、赤線)、D567N(カラーでの表示下、青線)におけるCa2+とCaLMのアミノ酸残基間の平均距離を示すレーダープロットである。配位結合に寄与するアミノ酸の負電荷側鎖のカルボキシル炭素原子または主鎖の酸素原子とCa2+イオンとの距離を算出した。567番のアミノ酸残基における計算は、アスパラギン酸(野生型)、アスパラギン(D567N)、チロシン(D567Y)について実施した。D567N変異体ではCγ原子から、D567Y変異体では側鎖の芳香環中心からCa2+イオンまでの距離を算出した。各数値は、MDシミュレーション時間中で100ピコ秒ごとに計算した距離の平均値(Å)を表す。Amino acid residues of Ca 2+ and CaLM in wild type (lower color display, black line), D567Y (lower color display, red line), and D567N (lower color display, blue line) during CRD monomer simulations. Figure 2 is a radar plot showing the average distance between bases. The distance between the carboxyl carbon atom of the negatively charged side chain of the amino acid that contributes to the coordination bond or the oxygen atom of the main chain and the Ca 2+ ion was calculated. Calculations for amino acid residue No. 567 were performed for aspartic acid (wild type), asparagine (D567N), and tyrosine (D567Y). The distance from the Cγ atom for the D567N mutant and from the aromatic ring center of the side chain to the Ca 2+ ion for the D567Y mutant was calculated. Each number represents the average distance (Å) calculated every 100 ps during the MD simulation time. MDシミュレーションにおいて100ピコ秒ごとに計算されたCa2+イオンと配位結合形成に寄与するアミノ酸残基(T564,C565,D567,H569,E574,D584)間の距離を示すバイオリンプロット図である。各プロットの幅は、相対的な最小距離の頻度に比例している。黒い破線は最小距離の中央値を表している。各点線は、第一四分位の終わりと第四四分位の始まりを表している。アスタリスクは有意に異なる分布を示す。n.s.:有意差なし,****:P<0.0001。P値はTukeyの多重比較検定による一元配置分散分析(one-way ANOVA)で求めた。It is a violin plot diagram showing the distance between Ca 2+ ions and amino acid residues (T564, C565, D567, H569, E574, D584) that contribute to coordinate bond formation calculated every 100 picoseconds in MD simulation. The width of each plot is proportional to the frequency of the relative minimum distance. The black dashed line represents the median minimum distance. Each dotted line represents the end of the first quartile and the beginning of the fourth quartile. Asterisks indicate significantly different distributions. n. s. : No significant difference, ***: P<0.0001. P values were determined by one-way ANOVA using Tukey's multiple comparison test. 野生型とD567変異体におけるCa2+イオンの初期座標の位置に対するRMSD値である。左図は3本の線は100ピコ秒の各時間枠における野生型(カラーでの表示下、黒)、D567Y(カラーでの表示下、赤)、D567N(カラーでの表示下、青)RET-CRDの時間変化を示す。右図は100ピコ秒の時間枠ごとに計算したRMSDの値を示すバイオリンプロット。黒い破線はRMSDの中央値を示す。各点線は、第一四分位の終わりと第四四分位の始まりを示す。アスタリスクは、有意に異なる分布を示す。n.s.:有意差なし,****:P<0.0001。P値はTukeyの多重比較検定による一元配置分散分析(one-way ANOVA)で求めた。RMSD values for the initial coordinate positions of Ca 2+ ions in the wild type and the D567 mutant. In the left panel, the three lines represent wild type (lower color display, black), D567Y (lower color display, red), and D567N (lower color display, blue) RET in each time frame of 100 ps. - Shows the change in CRD over time. The figure on the right is a violin plot showing the RMSD values calculated for each 100 ps time frame. The black dashed line indicates the median RMSD. Each dotted line marks the end of the first quartile and the beginning of the fourth quartile. Asterisks indicate significantly different distributions. n. s. : No significant difference, ***: P<0.0001. P values were determined by one-way ANOVA using Tukey's multiple comparison test. RET野生型(カラーでの表示下、黒点)、D567Y(カラーでの表示下、赤点)、D567N(カラーでの表示下、青点)のMDシミュレーション時のCa2+イオン(x軸)とCRDモノマーの各残基の重原子(y軸)のRMSDの散布図である。各スポットは、MDシミュレーション時間中に100ピコ秒ごとに計算されたRMSD値を示している。Ca 2+ ions (x-axis) and CRD during MD simulation of RET wild type (lower color display, black dots), D567Y (lower color display, red dots), and D567N (lower color display, blue dots) FIG. 2 is a scatter plot of the RMSD of the heavy atoms (y-axis) of each residue of the monomer. Each spot shows the RMSD value calculated every 100 ps during the MD simulation time. 野生型RETとD567変異体の初期座標の位置を基準にして、各残基の重原子について計算したRMSD値である。色分けは図4Dと同様である。This is the RMSD value calculated for the heavy atom of each residue based on the initial coordinate position of wild-type RET and the D567 mutant. The color coding is the same as in FIG. 4D. RET-GDNF-GFRα1細胞外複合体のMDシミュレーションから算出したCa2+イオンとCRD間の相互作用エネルギー(左)、CRDのRMSD(中)、CRD中のシステイン残基(C565、C570、C581、C585)のSASA(右)を示すバイオリンプロットである。MDシミュレーションは野生型(WT)とRET変異体それぞれについて3回ずつ行い、0.5-1マイクロ秒のトラジェクトリから20ピコ秒ごとに抽出した構造を計算の対象とした。黒い破線は中央値を表す。各点線は、第1四分位の終わりと第4四分位の始まりを表す。n.s.:有意差なし、****:P値<0.0001。P値はTukeyの多重比較検定による一元配置分散分析(one-way ANOVA)で求めた。Interaction energy between Ca 2+ ions and CRD calculated from MD simulation of RET-GDNF-GFRα1 extracellular complex (left), RMSD of CRD (middle), cysteine residues in CRD (C565, C570, C581, C585) ) is a violin plot showing the SASA (right). MD simulations were performed three times each for the wild type (WT) and the RET mutant, and structures extracted every 20 picoseconds from a 0.5-1 microsecond trajectory were used as targets for calculation. The black dashed line represents the median value. Each dotted line represents the end of the first quartile and the beginning of the fourth quartile. n. s. : No significant difference, ***: P value <0.0001. P values were determined by one-way ANOVA using Tukey's multiple comparison test. RETタンパク質の模式図である。CLD:カドヘリン様ドメイン,CRD:システインリッチドメイン,KD:キナーゼドメイン,(カラーでの表示下、)緑丸:Ca2+イオン結合部位、破線:細胞膜。FIG. 2 is a schematic diagram of RET protein. CLD: cadherin-like domain, CRD: cysteine-rich domain, KD: kinase domain, (under color display) green circle: Ca 2+ ion binding site, dashed line: cell membrane. 分子間RET二量体形成アッセイの結果を示す、写真である。ドキシサイクリン誘導性のFLAGタグ付き完全長RET cDNAを導入/非導入したFlp-In T-Rex 293細胞を、カルシウム含有(左)又はカルシウムフリー(右)培地でドキシサイクリンとともに48時間培養した。全細胞ライセートを還元条件又は非還元条件、すなわちジチオスレイトールの有無条件下で調製し、SDS-PAGEで分離し、抗FLAG抗体を用いた免疫ブロット分析を行った。1 is a photograph showing the results of an intermolecular RET dimer formation assay. Flp-In T-Rex 293 cells transfected with/without doxycycline-inducible FLAG-tagged full-length RET cDNA were cultured with doxycycline in calcium-containing (left) or calcium-free (right) medium for 48 hours. Whole cell lysates were prepared under reducing or non-reducing conditions, ie, in the presence or absence of dithiothreitol, separated by SDS-PAGE, and subjected to immunoblot analysis using an anti-FLAG antibody. CLD4-CRDタンパク質での分子間二量体形成を解析した結果を示す、写真である。Sf21細胞で発現したGSTタグ付きRET CRD-CLD4ポリペプチドを還元条件または非還元条件、すなわち2-メルカプトエタノール存在下又は非存在下で精製し、SDS-PAGEで分離し、抗GST抗体を用いて免疫ブロット分析を行った。左図は、WT、C634R、D567N変異体ポリペプチドの分子間二量体形成を示す。右は、カルシウムキレート条件、すなわちEDTAの存在下又は非存在下で精製したWT RETポリペプチドの分子間二量体形成を示す。This is a photograph showing the results of analysis of intermolecular dimer formation in CLD4-CRD protein. GST-tagged RET CRD-CLD4 polypeptide expressed in Sf21 cells was purified under reducing or non-reducing conditions, i.e., in the presence or absence of 2-mercaptoethanol, separated by SDS-PAGE, and purified using an anti-GST antibody. Immunoblot analysis was performed. The left panel shows intermolecular dimerization of WT, C634R, D567N mutant polypeptides. Right shows intermolecular dimerization of purified WT RET polypeptide under calcium chelating conditions, ie, in the presence or absence of EDTA. カルシウム欠乏によって誘導されるRET自己リン酸化と下流ERKリン酸化を解析した結果を示す、写真である。WT又は変異型の完全長RET cDNAをトランスフェクトしたHEK293H細胞を、カルシウム含有培地又はカルシウムフリー培地中で48時間培養した。RET CaLM変異体を、K758M(キナーゼデッド)及びC634R(CCM)変異体と共に検証した。タンパク質ライセートは、pRET、RET、pERK、及びERKの免疫ブロット分析に供した。2 is a photograph showing the results of analysis of RET autophosphorylation and downstream ERK phosphorylation induced by calcium deficiency. HEK293H cells transfected with WT or mutant full-length RET cDNA were cultured in calcium-containing or calcium-free medium for 48 hours. The RET CaLM mutant was validated along with the K758M (kinase dead) and C634R (CCM) mutants. Protein lysates were subjected to immunoblot analysis for pRET, RET, pERK, and ERK. RET-GDNF/GFRα1細胞外複合体のMDシミュレーションから算出したRET-ECDとGDNF/GFRα1(左)又はRET-CRDとGDNF/GFRα1(中)間の相互作用エネルギー及びCRDとGDNF/GFRα1間の接触面積(右)を示すバイオリンプロットである。黒い破線は中央値を表す。各点線は、第一四分位の終わりと第四四分位の始まりを表す。n.s.:有意差なし、****:P値<0.0001。P値はTukeyの多重比較検定による一元配置分散分析(one-way ANOVA)で求めた。Interaction energy between RET-ECD and GDNF/GFRα1 (left) or RET-CRD and GDNF/GFRα1 (middle) calculated from MD simulation of RET-GDNF/GFRα1 extracellular complex and contact between CRD and GDNF/GFRα1 Violin plot showing area (right). The black dashed line represents the median value. Each dotted line represents the end of the first quartile and the beginning of the fourth quartile. n. s. : No significant difference, ***: P value <0.0001. P values were determined by one-way ANOVA using Tukey's multiple comparison test. D567N変異によるRET-CRDとリガンド/共受容体間の接触面積の増加を示す、図である。2つのGDNFと1つのGFRα1分子に結合したWT(左)又はD567N(右)RETサブユニットの平均構造は、RET細胞外複合体の3回のMDシミュレーションそれぞれから得られた0.5-1マイクロ秒の間のトラジェクトリを用いて計算し、タンパク質表面構造モデルで示す。上図は2つのGDNFとGFRα1分子のCRD結合界面を示しており、CRDドメインから5Å以内にあるアミノ酸残基は、カラー表示下、赤色でハイライトされている。CRD-GFRα1結合界面の拡大図を下図に示す。FIG. 3 shows an increase in the contact area between RET-CRD and ligand/co-receptor due to the D567N mutation. The average structure of a WT (left) or D567N (right) RET subunit bound to two GDNF and one GFRα1 molecule is 0.5-1 microns obtained from each of three MD simulations of the RET extracellular complex. Calculated using trajectories for seconds and shown as a protein surface structure model. The above figure shows the CRD binding interface of two GDNF and GFRα1 molecules, and amino acid residues within 5 Å from the CRD domain are highlighted in red under the color display. An enlarged view of the CRD-GFRα1 binding interface is shown below. ERKリン酸化アッセイの結果を示す、写真である。空ベクター又はWT RET、K758M(キナーゼデッド)、C634R(CCM)、D567N、及びD567Y RET変異体の発現プラスミドをトランスフェクトし、記載のようにGDNF/GFRα1で処理した。HEK293H細胞ライセートは、pERK、ERK、RET及びβ-アクチンの免疫ブロック分析に供された。It is a photograph showing the results of ERK phosphorylation assay. Empty vector or expression plasmids of WT RET, K758M (kinase dead), C634R (CCM), D567N, and D567Y RET mutants were transfected and treated with GDNF/GFRa1 as described. HEK293H cell lysates were subjected to immunoblock analysis of pERK, ERK, RET and β-actin. RET-GDNF-GFRα1細胞外複合体のMDシミュレーションから算出されたCa2+イオンから5Å以内に位置するCRD残基のRMSDを示すバイオリンプロットである。MDシミュレーションは野生型(WT)又は各RET変異体について3回ずつ行い、0.5-1マイクロ秒間のトラジェクトリから20ピコ秒ごとに抽出した構造を計算の対象とした。黒い破線は中央値を表す。各点線は第一四分位の終わりと第四四分位の始まりを表す。***:P<0.0001。P値はTukeyの多重比較検定による一元配置分散分析(one-way ANOVA)で求めた。FIG. 3 is a violin plot showing the RMSD of CRD residues located within 5 Å from Ca 2+ ions calculated from MD simulations of the RET-GDNF-GFRα1 extracellular complex. MD simulations were performed three times for the wild type (WT) or each RET mutant, and structures extracted every 20 picoseconds from 0.5-1 microsecond trajectories were used as targets for calculation. The black dashed line represents the median value. Each dotted line represents the end of the first quartile and the beginning of the fourth quartile. ***: P<0.0001. P values were determined by one-way ANOVA using Tukey's multiple comparison test. Sf21細胞で発現させたWT又はD567NとC634R変異体の精製GSTタグ付きRET CLD4-CRDタンパク質を、CBB染色にて解析した結果を示す、写真である。還元条件又は非還元条件、すなわち2-MEの存在下又は非存在下で行った。This is a photograph showing the results of CBB staining analysis of purified GST-tagged RET CLD4-CRD proteins of WT or D567N and C634R mutants expressed in Sf21 cells. It was carried out under reducing or non-reducing conditions, ie, in the presence or absence of 2-ME. Sf21細胞で発現させたD567N,D567Y及びD567A変異体の精製GSTタグ付きRET CLD4-CRDタンパク質を、CBB染色にて解析した結果を示す、写真である。カルシウムの存在下で還元条件又は非還元条件、すなわち2-MEの存在下又は非存在下で行った。This is a photograph showing the results of CBB staining analysis of purified GST-tagged RET CLD4-CRD proteins of D567N, D567Y, and D567A mutants expressed in Sf21 cells. It was carried out under reducing or non-reducing conditions in the presence of calcium, ie, in the presence or absence of 2-ME. 細胞内のタンパク質間相互作用を調べるためのNanoBiTアッセイの結果を示す、グラフである。RET-ECD C末端にLgBiT又はSmBiTを融合して発現するプラスミドを用いてU2OS細胞にトランスフェクトした。トランスフェクション後24時間で、細胞を最終濃度7.4μg/mLのGDNF及びGFRα1を含む、又は含まない状態で、Nano-Glo Live Cell基質とともにインキュベートした。左図はGDNFとGFRα1を44分間添加した後の発光の増加によりRETの二量体化を評価したものである。実線と点線はそれぞれ、R77E/R144E変異を持つ、あるいは持たないWT、D567Y、D567N、C634R変異体の測定値を示す。点は平均±SDを表す。右図はR77E/R144E 変異のないWTと変異型RETの発光の相対最大増加量をR77E/R144E 変異のあるものと比較した結果を示す。列は平均±SDを表す。1 is a graph showing the results of a NanoBiT assay for investigating intracellular protein-protein interactions. U2OS cells were transfected using a plasmid expressing LgBiT or SmBiT fused to the RET-ECD C terminus. Twenty-four hours after transfection, cells were incubated with Nano-Glo Live Cell substrate with or without GDNF and GFRα1 at a final concentration of 7.4 μg/mL. The left panel shows RET dimerization evaluated by the increase in luminescence after adding GDNF and GFRα1 for 44 minutes. The solid line and the dotted line indicate the measured values of the WT, D567Y, D567N, and C634R mutants with and without the R77E/R144E mutation, respectively. Points represent mean±SD. The right figure shows the results of comparing the relative maximum increase in luminescence of WT without the R77E/R144E mutation and mutant RET with that with the R77E/R144E mutation. Columns represent mean±SD. CaLM変異体の形質転換能を解析した結果を示す、写真である。左図はNIH3T3フォーカス形成を示す。CaLM変異体を発現するレンチウイルスを用いた場合の形質転換能を、空ウイルス感染及びC634R(CCM)変異体を発現するレンチウイルスを用いて場合と比較して検討した。GDNF/GFRα1の非存在下及び存在下(1.0又は2.5ng/mL)で形質転換能を評価した。右図は各変異体の形質転換能をグラフ化して示す。空ウイルス感染時の値をバックグラウンドとして、ImageJプログラムで測定したフォーカス面積を算出した。それぞれの値は3つの独立した実験の平均±SDを示す。It is a photograph showing the results of analyzing the transformation ability of CaLM mutants. The left figure shows NIH3T3 focus formation. The transformation ability when using a lentivirus expressing the CaLM mutant was examined in comparison with empty virus infection and using a lentivirus expressing the C634R (CCM) mutant. Transformation ability was evaluated in the absence and presence of GDNF/GFRα1 (1.0 or 2.5 ng/mL). The figure on the right shows the transformation ability of each mutant graphically. The focus area was calculated using the ImageJ program using the value at the time of empty virus infection as the background. Each value represents the mean ± SD of three independent experiments. RET阻害剤によるシグナル伝達の抑制を解析した結果を示す、写真である。RET CaLM及びC634R(CCM)変異体を発現するHEK293H細胞を、セルペルカチニブ(上)又はプラルセチニブ(下)で6時間処理し、細胞溶解液をpERK、ERK、RET及びβ-アクチンの免疫ブロット分析に供した。It is a photograph showing the results of analysis of suppression of signal transduction by a RET inhibitor. HEK293H cells expressing RET CaLM and C634R (CCM) mutants were treated with selpercatinib (top) or pralsetinib (bottom) for 6 hours, and cell lysates were subjected to immunoblot analysis for pERK, ERK, RET, and β-actin. did. RET阻害剤によるRET依存性細胞増殖の抑制を解析した結果を示す、図である。RET CaLM、CCM、M918T変異体を発現するBa/F3細胞のIL-3非依存性増殖を、記載した濃度のセルペルカチニブ(左)又はプラルセチニブ(右)で72時間処理し検証した。相対的な生存率(%)を色調で示す。FIG. 3 is a diagram showing the results of analysis of suppression of RET-dependent cell proliferation by a RET inhibitor. IL-3-independent proliferation of Ba/F3 cells expressing RET CaLM, CCM, M918T mutants was verified by treatment with the indicated concentrations of selpercatinib (left) or pralsetinib (right) for 72 hours. Relative survival rate (%) is shown in color. RET阻害剤によるRET変異体発現NIH3T3細胞の同種移植腫瘍増殖の抑制を解析した結果を示す、グラフである。皮下腫瘍が約100~200mmの体積に成長した時点で薬物治療を開始した。すべての変異体に対して、ビヒクル又は3mg/kgのセルペルカチニブ又はプラルセチニブを1日2回投与した。各治療群には4匹のマウスが含まれる。データは平均±S.D.で示す。*,P値<0.05;**,P値<0.01;***,P値<0.001;****,P値<0.0001。P値はTukeyの多重比較検定による一元配置分散分析(one-way ANOVA)で求めた。1 is a graph showing the results of analysis of suppression of allograft tumor growth of RET mutant-expressing NIH3T3 cells by a RET inhibitor. Drug treatment was started when the subcutaneous tumor had grown to a volume of approximately 100-200 mm 3 . All variants received vehicle or 3 mg/kg selpercatinib or pralsetinib twice daily. Each treatment group includes 4 mice. Data are mean±S. D. Indicated by *, P value <0.05; **, P value <0.01; ****, P value <0.001; ****, P value <0.0001. P values were determined by one-way ANOVA using Tukey's multiple comparison test. RET阻害剤によるRET変異体発現NIH3T3細胞の同種移植腫瘍増殖の抑制を解析した結果を示す、写真である。1 is a photograph showing the results of analysis of suppression of allograft tumor growth of RET mutant-expressing NIH3T3 cells by a RET inhibitor. RET阻害剤によるRET変異体発現NIH3T3細胞の同種移植腫瘍増殖の抑制を解析した結果を示す、グラフである。1 is a graph showing the results of analysis of suppression of allograft tumor growth of RET mutant-expressing NIH3T3 cells by a RET inhibitor. RET-CaLM変異体の発がん性/腫瘍形成活性はRET-TKIによって抑制されることを示す、図である。「a」においては、RET変異体を発現するBa/F3細胞に対するセルペルカチニブ及びプラルセチニブのGI50値を示す。データは6回の反復施行の平均値を表す。GI50、50%増殖抑制濃度。「b」においては、RET変異体発現NIH3T3細胞の同種移植腫瘍マウスをビヒクル(上)、セルペルカチニブ(中)、またはプラルセチニブ(下)で処理した後の腫瘍を観察した結果を示す。D567Y(左)及びC634R(右)変異体の腫瘍は、治療終了後にマウスから摘出された。FIG. 3 shows that the carcinogenic/tumorigenic activity of RET-CaLM mutants is suppressed by RET-TKI. In "a", GI50 values of selpercatinib and pralsetinib against Ba/F3 cells expressing RET mutants are shown. Data represent the average of 6 replicates. GI50, 50% growth inhibitory concentration. "b" shows the results of tumor observation after treating mice with allografted tumors of RET mutant-expressing NIH3T3 cells with vehicle (top), selpercatinib (middle), or pralsetinib (bottom). D567Y (left) and C634R (right) mutant tumors were excised from mice after the end of treatment.

後述の実施例に示すとおり、がん遺伝子であるRET遺伝子に関し、その多数のVUSの中から、がん原性変異又は治療標的変異となる複数のアミノ酸置換が、カルモジュリン様モチーフに存在していることを見出した。よって、本発明は、RETキナーゼ阻害剤によるがん治療の有効性を判定する方法であって、被検者から単離した試料において、RETタンパク質のカルモジュリン様モチーフにおけるアミノ酸変異を検出する工程と、前記工程にて、前記アミノ酸変異が検出されれば、前記被検者におけるRETキナーゼ阻害剤によるがん治療の有効性が高いと判定する工程とを、含む方法に関する。 As shown in the Examples below, among the many VUS of the oncogene RET gene, multiple amino acid substitutions that are oncogenic mutations or therapeutic target mutations are present in the calmodulin-like motif. I discovered that. Therefore, the present invention provides a method for determining the effectiveness of cancer treatment using a RET kinase inhibitor, which comprises the steps of: detecting amino acid mutations in the calmodulin-like motif of the RET protein in a sample isolated from a subject; If the amino acid mutation is detected in the step, the present invention relates to a method including the step of determining that the effectiveness of cancer treatment using a RET kinase inhibitor in the subject is high.

<RETタンパク質等>
本発明にかかる「RET(トランスフェクション中の再構成、REARRANGED DURING TRANSFECTION)タンパク質」は、RETチロシンキナーゼタンパク質又はRET受容体型チロシンキナーゼタンパク質とも称され、ヒトにおいて10q11.2に座乗している遺伝子にコードされているタンパク質である。本発明において、「RETタンパク質」は、ヒト由来のものであれば、典型的には、配列番号:2に記載のアミノ酸配列からなるタンパク質(RET51、RETアイソフォームa)及び配列番号:4に記載のアミノ酸配列からなるタンパク質(RET9、RETアイソフォームc)が挙げられる。また、前記タンパク質をコードするポリヌクレオチドは、典型的には各々、配列番号:1に記載の塩基配列からなるポリヌクレオチド(RET転写産物変異体2)及び配列番号:3に記載の塩基配列からなるポリヌクレオチド(RET転写産物変異体4)である。なお、配列番号:2に記載のアミノ酸配列からなるタンパク質(RET51)と配列番号:4に記載のアミノ酸配列からなるタンパク質(RET9)とは、1位のメチオニンから1063位のグリシンまではアミノ酸配列が一致しているが、C末端部分の配列及び長さが相違する。
<RET protein etc.>
The "RET (REARRANGED DURING TRANSFECTION) protein" according to the present invention is also referred to as RET tyrosine kinase protein or RET receptor tyrosine kinase protein, and is a protein that is expressed in a gene located at 10q11.2 in humans. It is an encoded protein. In the present invention, "RET protein" typically refers to a protein consisting of the amino acid sequence set forth in SEQ ID NO: 2 (RET51, RET isoform a) and a protein set forth in SEQ ID NO: 4, if it is of human origin. (RET9, RET isoform c) consisting of the amino acid sequence. Further, the polynucleotide encoding the protein typically consists of a polynucleotide (RET transcript variant 2) consisting of the base sequence set forth in SEQ ID NO: 1 and a base sequence set forth in SEQ ID NO: 3, respectively. polynucleotide (RET transcript variant 4). The protein (RET51) consisting of the amino acid sequence set forth in SEQ ID NO: 2 and the protein (RET9) consisting of the amino acid sequence set forth in SEQ ID NO: 4 have the same amino acid sequence from methionine at position 1 to glycine at position 1063. They are identical, but differ in the sequence and length of the C-terminal portion.

また、RETタンパク質は、図1Aに示すとおり、N末端側から順に、カドヘリン様ドメイン(CLD)1(29~154位)、CLD2(172~261位)、CLD3(265~379位)、CLD4(404~506位)及びシステインリッチドメイン(CRD、515~634位)を含む、細胞外ドメイン(ECD、1~635位)と、膜貫通ドメイン(TM、636~657位)と、キナーゼドメイン(KD、723~1012位)を含む細胞内ドメイン(ICD、666位以降~C末端のアミノ酸)とを有する。さらに、CRDにおいては、カルモジュリン様モチーフ(CaLM、560~586位)とコアシステインモチーフ(CCM、629~643位)とを有する。 In addition, as shown in Figure 1A, the RET protein contains, in order from the N-terminus, cadherin-like domain (CLD) 1 (positions 29 to 154), CLD2 (positions 172 to 261), CLD3 (positions 265 to 379), and CLD4 ( extracellular domain (ECD, positions 1 to 635), transmembrane domain (TM, positions 636 to 657), and kinase domain (KD, positions 636 to 657) , 723-1012)) (ICD, amino acids from position 666 onwards to the C-terminus). Furthermore, CRD has a calmodulin-like motif (CaLM, positions 560-586) and a core cysteine motif (CCM, positions 629-643).

本発明は、CaLMにおけるアミノ酸変異を対象とするものであり、後述の実施例に示すとおり、Ca2+イオン結合を低下させる変異、Ca2+イオン存在下でもジスルフィド結合を形成させる変異、Ca2+イオン存在下でもホモ二量体化を誘導する変異、及び、Ca2+イオン存在下でもRETキナーゼを構成的に活性化させる変異のうちの少なくともいずれかの変異であればよい。 The present invention targets amino acid mutations in CaLM, and as shown in the Examples below, mutations that reduce Ca 2+ ion binding, mutations that form disulfide bonds even in the presence of Ca 2+ ions, and mutations that reduce Ca 2+ ion presence. The mutation may be at least one of the following: a mutation that induces homodimerization even in the presence of Ca 2+ ions, and a mutation that constitutively activates RET kinase even in the presence of Ca 2+ ions.

本発明にかかるアミノ酸変異は、より具体的に、CaLMのアミノ酸配列において1又は複数のアミノ酸が置換、欠失、付加、及び/又は挿入される変異である。ここで「複数」とは27アミノ酸以内(例えば、26アミノ酸以内、25アミノ酸以内、24アミノ酸以内、23アミノ酸以内、22アミノ酸以内、21アミノ酸以内)、好ましくは20アミノ酸以内(例えば、19アミノ酸以内、18アミノ酸以内、17アミノ酸以内、16アミノ酸以内)、より好ましくは15アミノ酸以内(例えば、14アミノ酸以内、13アミノ酸以内、12アミノ酸以内、11アミノ酸以内)、さらに好ましくは10アミノ酸以内(例えば、9アミノ酸以内、8アミノ酸以内、7アミノ酸以内、6アミノ酸以内)、より好ましくは5アミノ酸以内(例えば、4アミノ酸以内、3アミノ酸以内、2アミノ酸)である。 More specifically, the amino acid mutation according to the present invention is a mutation in which one or more amino acids are substituted, deleted, added, and/or inserted in the amino acid sequence of CaLM. Here, "plurality" means within 27 amino acids (for example, within 26 amino acids, within 25 amino acids, within 24 amino acids, within 23 amino acids, within 22 amino acids, within 21 amino acids), preferably within 20 amino acids (for example, within 19 amino acids, within 18 amino acids, within 17 amino acids, within 16 amino acids), more preferably within 15 amino acids (for example, within 14 amino acids, within 13 amino acids, within 12 amino acids, within 11 amino acids), and even more preferably within 10 amino acids (for example, within 9 amino acids). within 8 amino acids, within 7 amino acids, within 6 amino acids), more preferably within 5 amino acids (for example, within 4 amino acids, within 3 amino acids, within 2 amino acids).

また、アミノ酸変異が導入される「CaLMのアミノ酸配列」としては、前記のとおり、通常560~586位からなるアミノ酸配列であるが、好ましくは567~584位からなるアミノ酸配列であり、より好ましくは、567位のアスパラギン酸、568位のグリシン、571位のアスパラギン酸、574位のグルタミン酸及び584位のアスパラギン酸から選択される少なくとも1のアミノ酸である。 Furthermore, as described above, the "amino acid sequence of CaLM" into which amino acid mutations are introduced is usually an amino acid sequence consisting of positions 560 to 586, preferably an amino acid sequence consisting of positions 567 to 584, and more preferably an amino acid sequence consisting of positions 567 to 584. , aspartic acid at position 567, glycine at position 568, aspartic acid at position 571, glutamic acid at position 574, and aspartic acid at position 584.

さらに、導入される変異の種類としては、好ましくは他のアミノ酸への置換である。ここで「他のアミノ酸」とは、各位における野生型のアミノ酸とは異なるアミノ酸を意味するが、567位のアスパラギン酸から置換される他のアミノ酸としては、好ましくは、チロシン又はアスパラギンである。568位のグリシンから置換される他のアミノ酸としては、好ましくはセリンである。571位のアスパラギン酸から置換される他のアミノ酸としては、好ましくはアスパラギンである。574位のグルタミン酸から置換される他のアミノ酸としては、好ましくはアスパラギン酸である。584位のアスパラギン酸から置換される他のアミノ酸としては、好ましくはアスパラギンである。 Furthermore, the type of mutation introduced is preferably a substitution with another amino acid. Here, the term "other amino acid" refers to an amino acid different from the wild-type amino acid at each position, and the other amino acid substituted for aspartic acid at position 567 is preferably tyrosine or asparagine. The other amino acid substituted for glycine at position 568 is preferably serine. The other amino acid substituted for aspartic acid at position 571 is preferably asparagine. The other amino acid substituted for glutamic acid at position 574 is preferably aspartic acid. The other amino acid substituted for aspartic acid at position 584 is preferably asparagine.

<RETタンパク質におけるアミノ酸変異の検出>
本発明においては、被検者から単離した試料において、前述のアミノ酸変異を検出する。
<Detection of amino acid mutations in RET protein>
In the present invention, the aforementioned amino acid mutations are detected in a sample isolated from a subject.

本発明において、がん治療の有効性の判定対象となる「被検者」は、通常、がんを罹患しているヒト(がん患者)であるが、がんを再発する可能性のあるヒト、がんの罹患のおそれがあるヒトであってもよい。 In the present invention, the "subject" who is the subject of determining the effectiveness of cancer treatment is usually a human being suffering from cancer (cancer patient), but there is a possibility that the cancer will recur. The subject may be a human being, or a human being at risk of developing cancer.

かかる被検者から単離される「試料」とは、生体試料(例えば、細胞、組織、臓器、体液(血液、リンパ液等)、消化液、喀痰、肺胞・気管支洗浄液、尿、便)であればよく、がん細胞を含む試料であってもよく、またがん細胞を含まない試料であってもよい。さらに、本発明にかかる試料としては、これらの生体試料から得られる核酸抽出物(ゲノムDNA抽出物、mRNA抽出物、mRNA抽出物から調製されたcDNA調製物やcRNA調製物等)やタンパク質抽出物も含まれる。また、前記試料は、ホルマリン固定処理、アルコール固定処理、凍結処理又はパラフィン包埋処理が施してあるものでもよい。なお、ゲノムDNA、mRNA、cDNA又はタンパク質は、当業者であれば、前記試料の種類及び状態等を考慮し、それに適した公知の手法を選択して調製することが可能である。 The "sample" isolated from such a subject may be a biological sample (e.g., cells, tissues, organs, body fluids (blood, lymph, etc.), digestive fluids, sputum, alveolar/bronchial lavage fluid, urine, stool). The sample may contain cancer cells or may not contain cancer cells. Furthermore, samples according to the present invention include nucleic acid extracts (genomic DNA extracts, mRNA extracts, cDNA preparations and cRNA preparations prepared from mRNA extracts, etc.) and protein extracts obtained from these biological samples. Also included. Further, the sample may be one that has been subjected to formalin fixation, alcohol fixation, freezing, or paraffin embedding. In addition, those skilled in the art can select and prepare known methods suitable for the type and condition of the sample, etc., by those skilled in the art.

また、かかる試料におけるアミノ酸変異の検出は、当業者であれば、公知の検出方法を用いて行うことが出来る。かかるアミノ酸変異の検出方法としては、当該変異部位をコードするDNA(以下、単に「DNA変異部位」とも称する)を単離し、単離したDNAの配列を決定することにより実施することができる。該DNAの単離は、例えば、前記変異部位をコードするDNAを挟み込むように設計された一対のオリゴヌクレオチドを用いて、ゲノムDNAを鋳型としたPCR等によって行うことができる。単離したDNA配列の決定は、マキサムギルバート法やサンガー法等、当業者に公知の方法で行うことができる。また、次世代シーケンシング(NGS;Next Generation Sequencing)に供することにより、配列決定を行なうこともできる。そして、このようにして決定した配列情報に基づき、本発明にかかるアミノ酸変異を検出することが可能となる。 Furthermore, detection of amino acid mutations in such samples can be carried out by those skilled in the art using known detection methods. Such an amino acid mutation can be detected by isolating DNA encoding the mutation site (hereinafter also simply referred to as "DNA mutation site") and determining the sequence of the isolated DNA. The DNA can be isolated, for example, by PCR using genomic DNA as a template, using a pair of oligonucleotides designed to sandwich the DNA encoding the mutation site. The isolated DNA sequence can be determined by methods known to those skilled in the art, such as the Maxam-Gilbert method and the Sanger method. Furthermore, the sequence can also be determined by subjecting it to Next Generation Sequencing (NGS). Then, based on the sequence information determined in this way, it becomes possible to detect the amino acid mutations according to the present invention.

次世代シーケンシング法としては特に制限はないが、合成シーケンシング法(sequencing-by-synthesis、例えば、イルミナ社製Solexaゲノムアナライザー、Hiseq又はMiseqによるシーケンシング)、パイロシーケンシング法(例えば、ロッシュ・ダイアグノステックス(454)社製のシーケンサーGSLX又はFLXによるシーケンシング(所謂454シーケンシング))、リガーゼ反応シーケンシング法(例えば、ライフテクノロジー社製のSoliD又は5500xlによるシーケンシング)等が挙げられる。 There are no particular restrictions on next-generation sequencing methods, but synthetic sequencing methods (sequencing-by-synthesis, for example, sequencing using Illumina's Solexa genome analyzer, Hiseq or Miseq), pyrosequencing methods (for example, Roche Sequencing using the sequencer GSLX or FLX manufactured by Diagnostics (454) (so-called 454 sequencing), ligase reaction sequencing method (for example, sequencing using SoliD or 5500xl manufactured by Life Technologies), and the like.

また、上記のようにDNA配列を決定しなくとも、アミノ酸変異は検出することが出来る。かかる方法としては、PCR-SSP(PCR-配列特異的プライマー)法が挙げられる。本発明にかかるアミノ酸変異をPCR-SSP法により検出する場合には、プライマーを構成する一対のオリゴヌクレオチドのうちの片方のオリゴヌクレオチドの3’末端がDNA変異部位の特定の塩基種に相補的な塩基種になるように設計する。そして、このように設計された一対のオリゴヌクレオチドを用いたPCRにより増幅されるのは、前記部位の特定の塩基種を有するゲノムDNAを鋳型にした場合に限られ、前記部位が異なる塩基種であるゲノムDNAを鋳型にした場合は増幅されない。このため、かかる一対のオリゴヌクレオチドを利用することにより、本発明にかかるアミノ酸変異を検出することができる。 Furthermore, amino acid mutations can be detected without determining the DNA sequence as described above. Such methods include the PCR-SSP (PCR-sequence specific primer) method. When detecting an amino acid mutation according to the present invention by the PCR-SSP method, the 3' end of one of the pair of oligonucleotides constituting the primer is complementary to a specific base type at the DNA mutation site. Designed to be a base species. PCR using a pair of oligonucleotides designed in this way can only be amplified when genomic DNA having a specific base type at the site is used as a template, and when the site is a different base type. If a certain genomic DNA is used as a template, it will not be amplified. Therefore, by using such a pair of oligonucleotides, the amino acid mutation according to the present invention can be detected.

アミノ酸変異を検出するためのさらに別の方法としては、PCR-SSCP(PCR-一本鎖高次構造多型)法が挙げられる。すなわち、DNA変異部位を挟み込むように設計された一対のオリゴヌクレオチドを用いたPCRにより増幅された2本鎖DNAを、熱やアルカリ等で処理することにより変性させ、1本鎖DNAにした後、変性剤を含まないポリアクリルアミドゲル電気泳動にかけると、ゲル中で1本鎖DNAは分子内相互作用により折り畳まれ、高次構造を形成することになる。そして、その折り畳まれ構造の相互作用は、塩基種の相違により変化するため、分離した当該1本鎖DNAを銀染色やラジオアイソトープにより検出し、当該1本鎖DNAのゲル上での移動度を対照と比較することにより、本発明にかかるアミノ酸変異を検出することができる。 Yet another method for detecting amino acid mutations includes the PCR-SSCP (PCR-single strand conformation polymorphism) method. That is, double-stranded DNA amplified by PCR using a pair of oligonucleotides designed to sandwich a DNA mutation site is denatured by treatment with heat, alkali, etc. to become single-stranded DNA, and then When subjected to polyacrylamide gel electrophoresis that does not contain a denaturing agent, single-stranded DNA is folded in the gel due to intramolecular interactions, forming a higher-order structure. Since the interaction of the folded structure changes depending on the base type, the separated single-stranded DNA is detected by silver staining or radioisotope, and the mobility of the single-stranded DNA on the gel is measured. Amino acid mutations according to the present invention can be detected by comparison with a control.

本発明にかかるアミノ酸変異を検出する別の方法としては、インターカレーターを利用する方法が挙げられる。この方法においては、先ず、試料からゲノムDNAを調製する。次いで、DNA二重鎖間に挿入されると蛍光を発するインターカレーターを含む反応系において、前記ゲノムDNAを鋳型として、DNA変異部位を含む領域を増幅する。そして、前記反応系の温度を変化させ、前記インターカレーターが発する蛍光の強度の変動を検出し、検出した前記温度の変化に伴う前記蛍光の強度の変動を対照と比較する。このような方法としては、HRM(high resolution melting、高分解融解曲線解析)法が挙げられる。 Another method for detecting amino acid mutations according to the present invention includes a method using an intercalator. In this method, first, genomic DNA is prepared from a sample. Next, a region containing the DNA mutation site is amplified using the genomic DNA as a template in a reaction system containing an intercalator that emits fluorescence when inserted between DNA double strands. Then, the temperature of the reaction system is changed, the fluctuation in the intensity of the fluorescence emitted by the intercalator is detected, and the fluctuation in the intensity of the fluorescence accompanying the detected temperature change is compared with a control. Such a method includes a high resolution melting (HRM) method.

本発明にかかるアミノ酸変異をを検出するさらに別の方法としては、DNA変異部位を含む領域にハイブリダイズするオリゴヌクレオチドプローブを利用する方法が挙げられる。この方法においては、先ず、試料からゲノムDNAを調製する。一方で、DNA変異部位を含む領域に特異的にハイブリダイズし、レポーター蛍光色素及びクエンチャー蛍光色素が標識されたオリゴヌクレオチドプローブを調製する。そして、前記ゲノムDNAに、前記オリゴヌクレオチドプローブをハイブリダイズさせ、さらに前記オリゴヌクレオチドプローブがハイブリダイズした前記ゲノムDNAを鋳型として、多位を含むDNAを増幅する。そして、前記増幅に伴うオリゴヌクレオチドプローブの分解により、前記レポーター蛍光色素が発する蛍光を検出する。このような方法としては、ダブルダイプローブ法、いわゆるTaqMan(登録商標)プローブ法が挙げられる。 Still another method for detecting amino acid mutations according to the present invention includes a method using an oligonucleotide probe that hybridizes to a region containing a DNA mutation site. In this method, first, genomic DNA is prepared from a sample. On the other hand, an oligonucleotide probe that specifically hybridizes to a region containing a DNA mutation site and is labeled with a reporter fluorescent dye and a quencher fluorescent dye is prepared. Then, the oligonucleotide probe is hybridized to the genomic DNA, and the genomic DNA hybridized with the oligonucleotide probe is used as a template to amplify the DNA containing the polynucleotide. Then, fluorescence emitted by the reporter fluorescent dye is detected due to decomposition of the oligonucleotide probe accompanying the amplification. Such a method includes a double die probe method, so-called TaqMan (registered trademark) probe method.

さらに、本発明は上記方法に限定されることはなく。例えば、RFLP(Restriction Fragment Length Polymorphism;制限酵素断片長多型)、CAPS法(PCR-RFLP法)、変性剤濃度勾配ゲル電気泳動法(DGGE法)、インベーダー(Invader)法、シングルヌクレオチドプライマー伸長(SNuPE)法、アレル特異的オリゴヌクレオチド(ASO)ハイブリダイゼーション法、リボヌクレアーゼAミスマッチ切断法、DNAアレイ法といった、アミノ酸変異(DNA変異)を検出するための他の公知の技術も、本発明において利用し得る。 Furthermore, the present invention is not limited to the above method. For example, RFLP (Restriction Fragment Length Polymorphism), CAPS method (PCR-RFLP method), denaturing gradient gel electrophoresis method (DGGE method), Invader method, single nucleotide primer extension ( Other known techniques for detecting amino acid mutations (DNA mutations) are also utilized in the present invention, such as the SNuPE method, allele-specific oligonucleotide (ASO) hybridization method, ribonuclease A mismatch cleavage method, and DNA array method. obtain.

なお、上記方法は、ゲノムDNAのみを対象とするものではなく、その転写産物(cDAN)も対象にし得る。さらに、試料が転写産物(mRNA、cDNA)である場合には、上述の検出方法の他、RT-PCR法、ダイレクトシークエンシング、ノーザンブロッティング、ドットブロット法、cDNAマイクロアレイ解析等も用いることができる。 Note that the above-mentioned method does not target only genomic DNA, but may also target its transcription product (cDAN). Furthermore, when the sample is a transcription product (mRNA, cDNA), in addition to the above-mentioned detection methods, RT-PCR, direct sequencing, Northern blotting, dot blotting, cDNA microarray analysis, etc. can also be used.

また、本発明において、試料が翻訳産物(RETタンパク質)である場合には、そのアミノ酸変異を検出する方法としては、例えば、免疫染色法、ウェスタンブロッティング法、ELISA法、フローサイトメトリー法、免疫沈降法、抗体アレイ解析が挙げられる。これら免疫学的検出方法においては、本発明にかかるアミノ酸変異を特異的に認識する抗体(本発明にかかるアミノ酸変異部位を含む領域をエピトープとする、RETタンパク質に対する抗体)が用いられる。 In addition, in the present invention, when the sample is a translation product (RET protein), methods for detecting amino acid mutations thereof include, for example, immunostaining, Western blotting, ELISA, flow cytometry, and immunoprecipitation. methods and antibody array analysis. In these immunological detection methods, an antibody that specifically recognizes the amino acid mutation according to the present invention (an antibody against RET protein whose epitope is a region containing the amino acid mutation site according to the present invention) is used.

このようなRETタンパク質に対する抗体は、当業者であれば適宜公知の手法を選択して調製することができる。かかる公知の手法としては、本発明にかかるアミノ酸変異部位を含む領域からなるポリペプチド等を免疫動物に接種し、該動物の免疫系を活性化させた後、該動物の血清(ポリクローナル抗体)を回収する方法や、ハイブリドーマ法、組換えDNA法、ファージディスプレイ法等のモノクローナル抗体の作製方法が挙げられる。 Such antibodies against RET protein can be prepared by those skilled in the art by appropriately selecting known techniques. Such a known method involves inoculating an immunized animal with a polypeptide consisting of a region containing an amino acid mutation site according to the present invention, activating the animal's immune system, and then injecting the animal's serum (polyclonal antibody) into the immunized animal. Examples include recovery methods, and monoclonal antibody production methods such as hybridoma methods, recombinant DNA methods, and phage display methods.

また、翻訳産物の検出において、標識物質を結合させた抗体を用いれば、当該標識を検出することにより、RETタンパク質を直接検出することが可能である。標識物質としては、抗体に結合することができ、検出可能なものであれば特に制限されることはなく、例えば、ペルオキシダーゼ、β-D-ガラクトシダーゼ、マイクロペルオキシダーゼ、ホースラディッシュペルオキシダーゼ(HRP)、フルオレセインイソチオシアネート(FITC)、ローダミンイソチオシアネート(RITC)、アルカリホスファターゼ、ビオチン及び放射性物質が挙げられる。さらに、標識物質を結合させた抗体を用いてRETタンパク質を直接検出する方法以外に、標識物質を結合させた二次抗体、プロテインG又はプロテインA等を用いてRETタンパク質を間接的に検出する方法を利用することもできる。 Further, in detecting translation products, if an antibody to which a labeling substance is bound is used, it is possible to directly detect the RET protein by detecting the label. The labeling substance is not particularly limited as long as it can bind to the antibody and can be detected, such as peroxidase, β-D-galactosidase, microperoxidase, horseradish peroxidase (HRP), fluorescein Examples include thiocyanate (FITC), rhodamine isothiocyanate (RITC), alkaline phosphatase, biotin and radioactive substances. Furthermore, in addition to the method of directly detecting the RET protein using an antibody bound to a labeling substance, there is also a method of indirectly detecting the RET protein using a secondary antibody, protein G, protein A, etc. bound to a labeling substance. You can also use

<がん治療の有効性の判定>
後述の実施例において示すとおり、本発明にかかるアミノ酸変異は、RETタンパク質の活性化をもたらし、がんの悪性化等に寄与してと考えられる。その一方で、かかる変異を有するがんに対して、セルペルカチニブ、プラルセチニブ等のRETキナーゼ阻害剤は高い有効性を示す。そのため、このような本発明にかかるアミノ酸変異が検出される被検者においては、RETキナーゼ阻害剤による治療が有効である蓋然性が高い。
<Determination of effectiveness of cancer treatment>
As shown in the Examples below, the amino acid mutations according to the present invention are thought to cause activation of RET protein and contribute to malignant progression of cancer. On the other hand, RET kinase inhibitors such as selpercatinib and pralsetinib are highly effective against cancers having such mutations. Therefore, there is a high probability that treatment with a RET kinase inhibitor will be effective in subjects in whom such amino acid mutations according to the present invention are detected.

本発明において、がん治療の有効性を評価する対象となる「RETキナーゼ阻害剤」としては、RETタンパク質の機能を直接的に又は間接的に抑制できる物質であれば特に制限はない。本発明に適用し得る公知のRETキナーゼ阻害剤としては、例えば、6-(2-ヒドロキシ-2-メチルプロポキシ)-4-(6-{6-[(6-メトキシピリジン-3-イル)メチル]-3,6-ジアザビシクロ[3.1.1]ヘプタン-3-イル}ピリジン-3-イル)ピラゾロ[1,5-a]ピリジン-3-カルボニトリル(一般名:セルペルカチニブ(Selpercatinib))、cis-N-{(1S)-1-[6-(4-フルオロ-1H-ピラゾール-1-イル)ピリジン-3-イル]エチル}-1-メトキシ-4-{4-メチル-6-[(5-メチル-1H-ピラゾール-3-イル)アミノ]ピリミジン-2-イル}シクロヘキサン-1-カルボアミド(一般名:プラルセチニブ(Pralsetinib、BLU-667))、4-(4-ブロモ-2-フルオロアニリノ)-6-メトキシ-7-(1-メチルピペリジン-4-イルメトキシ)キナゾリン(一般名:バンデタニブ(Vandetanib))、4-[4-[3-[4-クロロ‐3-(トリフルオロメチル)フェニル]ウレイド]フェノキシ]-N-メチルピリジン-2-カルボアミド(一般名:ソラフェニブ(Sorafenib))、N-[2-(ジエチルアミノ)エチル]-5-[(Z)-(5-フルオロ-2-オキソ-1,2-ジヒドロ-3H-インドール-3-イリデン)メチル]-2,4-ジメチル-1H-ピロール-3-カルボキシアミド モノ[(2S)-2-ヒドロキシサクシネート](一般名:スニチニブ(Sunitinib))、N-(3,3-ジメチルインドリン-6-イル)-2-(ピリジン-4-イルメチルアミノ)ニコチンアミド(一般名:モテサニブ(Motesanib))、N-(4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル)-N-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミド(一般名;XL184)が挙げられる。 In the present invention, the "RET kinase inhibitor" to be evaluated for the effectiveness of cancer treatment is not particularly limited as long as it is a substance that can directly or indirectly inhibit the function of RET protein. Known RET kinase inhibitors that can be applied to the present invention include, for example, 6-(2-hydroxy-2-methylpropoxy)-4-(6-{6-[(6-methoxypyridin-3-yl)methyl ]-3,6-diazabicyclo[3.1.1]heptan-3-yl}pyridin-3-yl)pyrazolo[1,5-a]pyridine-3-carbonitrile (generic name: Selpercatinib), cis-N-{(1S)-1-[6-(4-fluoro-1H-pyrazol-1-yl)pyridin-3-yl]ethyl}-1-methoxy-4-{4-methyl-6-[ (5-Methyl-1H-pyrazol-3-yl)amino]pyrimidin-2-yl}cyclohexane-1-carboxamide (generic name: pralsetinib (BLU-667)), 4-(4-bromo-2-fluoro Anilino)-6-methoxy-7-(1-methylpiperidin-4-ylmethoxy)quinazoline (generic name: Vandetanib), 4-[4-[3-[4-chloro-3-(trifluoromethyl) ) phenyl]ureido]phenoxy]-N-methylpyridine-2-carboxamide (generic name: Sorafenib), N-[2-(diethylamino)ethyl]-5-[(Z)-(5-fluoro-2 -oxo-1,2-dihydro-3H-indol-3-ylidene)methyl]-2,4-dimethyl-1H-pyrrole-3-carboxamide mono[(2S)-2-hydroxysuccinate] (common name: Sunitinib), N-(3,3-dimethylindolin-6-yl)-2-(pyridin-4-ylmethylamino)nicotinamide (generic name: Motesanib), N-(4-( 6,7-dimethoxyquinolin-4-yloxy)phenyl)-N-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide (common name; XL184).

また、このようなRETキナーゼ阻害剤による治療対象となる「がん」としては、特に制限はないが、固形腫瘍であってもよく、液性腫瘍であってもよい。固形腫瘍としては、例えば、肺がん(非小細胞肺がん、小細胞肺がん、肺腺がん、細気管支肺細胞癌腫、中皮腫等)、甲状腺がん(甲状腺髄様がん、甲状腺乳頭がん等)、大腸がん、中枢神経がんが挙げられる。液性腫瘍としては、例えば、血液がん、白血病が挙げられる。また、その状態としても、進行性のものであってもよく、転移性のものであってもよく、また再発性のものであってもよい。 Further, the "cancer" to be treated with such a RET kinase inhibitor is not particularly limited, but may be a solid tumor or a liquid tumor. Examples of solid tumors include lung cancer (non-small cell lung cancer, small cell lung cancer, lung adenocarcinoma, bronchiolopulmonary cell carcinoma, mesothelioma, etc.), thyroid cancer (medullary thyroid cancer, papillary thyroid cancer, etc.) ), colorectal cancer, and central nervous system cancer. Examples of liquid tumors include blood cancer and leukemia. Furthermore, the condition may be progressive, metastatic, or recurrent.

<がん治療の有効性を判定するための薬剤>
本発明は、前述の判定方法に用いるための試薬であって、下記(i)又は(ii)に記載のオリゴヌクレオチドを含む試薬をも提供する。
(i)本発明にかかるアミノ酸変異をコードするヌクレオチドを挟み込むように設計された、1対のオリゴヌクレオチド
(ii)本発明にかかるアミノ酸変異をコードするヌクレオチドにハイブリダイズする、オリゴヌクレオチド。
<Drugs for determining the effectiveness of cancer treatment>
The present invention also provides a reagent for use in the above-mentioned determination method, which includes the oligonucleotide described in (i) or (ii) below.
(i) A pair of oligonucleotides designed to sandwich nucleotides encoding the amino acid mutations according to the present invention. (ii) Oligonucleotides that hybridize to the nucleotides encoding the amino acid mutations according to the present invention.

これらポリヌクレオチドは、RET遺伝子の特定のヌクレオチド配列に相補的なヌクレオチド配列を有する。ここで「相補的」とは、ハイブリダイズする限り、完全に相補的でなくともよい。これらポリヌクレオチドは、該特定のヌクレオチド配列に対して、通常、80%以上、好ましくは90%以上、より好ましくは95%以上、特に好ましくは100%の相同性を有する。 These polynucleotides have nucleotide sequences that are complementary to specific nucleotide sequences of the RET gene. Here, "complementary" does not need to be completely complementary as long as they hybridize. These polynucleotides usually have 80% or more, preferably 90% or more, more preferably 95% or more, particularly preferably 100% homology to the specific nucleotide sequence.

(i)本発明にかかるアミノ酸変異をコードするヌクレオチドを挟み込むように設計された一対のオリゴヌクレオチド(プライマーセット)に関し、該オリゴヌクレオチドの長さは、通常15~100ヌクレオチドであり、好ましくは17~30ヌクレオチドであり、より好ましくは17~22ヌクレオチドである。なお、上述の検出法によっては、当該一対のオリゴヌクレオチドのうちのどちらか片方のオリゴヌクレオチドは、本発明にかかるアミノ酸変異をコードするヌクレオチドに相補的なヌクレオチド配列を含んでいてもよい。 (i) Regarding a pair of oligonucleotides (primer set) designed to sandwich nucleotides encoding amino acid mutations according to the present invention, the length of the oligonucleotides is usually 15 to 100 nucleotides, preferably 17 to 100 nucleotides. 30 nucleotides, more preferably 17 to 22 nucleotides. Note that, depending on the above-mentioned detection method, one of the pair of oligonucleotides may contain a nucleotide sequence complementary to the nucleotide encoding the amino acid mutation according to the present invention.

(ii)本発明にかかるアミノ酸変異をコードするヌクレオチドにハイブリダイズする、オリゴヌクレオチド。(オリゴヌクレオチドプローブ)に関し、オリゴヌクレオチドプローブは、通常のハイブリダイゼーション条件下、好ましくはストリンジェントなハイブリダイゼーション条件下において、上記DNA変異を含む領域に特異的にハイブリダイズするものが好ましい。 (ii) An oligonucleotide that hybridizes to a nucleotide encoding an amino acid mutation according to the invention. Regarding the (oligonucleotide probe), the oligonucleotide probe is preferably one that specifically hybridizes to the region containing the above DNA mutation under normal hybridization conditions, preferably stringent hybridization conditions.

また、本発明のオリゴヌクレオチドは、適宜、アイソトープ、蛍光色素、ビオチン等によって標識して用いてもよい。標識する方法としては、T4ポリヌクレオチドキナーゼを用いて、オリゴヌクレオチドの5’端を32Pでリン酸化することにより標識する方法、及びクレノウ酵素等のDNAポリメラーゼを用い、ランダムヘキサマーオリゴヌクレオチド等をプライマーとして32P等のアイソトープ、蛍光色素又はビオチン等によって標識された基質塩基を取り込ませる方法(ランダムプライム法等)を例示することができる。 Furthermore, the oligonucleotide of the present invention may be used after being appropriately labeled with an isotope, a fluorescent dye, biotin, or the like. Labeling methods include labeling by phosphorylating the 5' end of the oligonucleotide with 32P using T4 polynucleotide kinase, and labeling random hexamer oligonucleotides using DNA polymerase such as Klenow enzyme. Examples include a method (random prime method, etc.) in which a substrate base labeled with an isotope such as 32 P, a fluorescent dye, or biotin is incorporated as a primer.

本発明のオリゴヌクレオチドは、例えば市販のオリゴヌクレオチド合成機により作製することができる。オリゴヌクレオチドプローブは、制限酵素処理等によって取得される二本鎖DNA断片として作製することもできる。また、本発明のオリゴヌクレオチドは、天然のヌクレオチド(デオキシリボヌクレオチド(DNA)やリボヌクレオチド(RNA))のみから構成されていなくともよく、非天然型のヌクレオチドにてその一部又は全部が構成されていてもよい。本発明に用いられる非天然型のヌクレオチドとしては、天然のヌクレオチドと同様の機能を有するものであれば特に制限されないが、DNA変異を含む領域等に対するハイブリダイゼーションの効率を上昇させ、オリゴヌクレオチドプライマー及びオリゴヌクレオチドプローブの鎖長を短くすることができるという観点から、PNA(polyamide nucleic acid)、LNA(登録商標、locked nucleic acid)、ENA(登録商標、2’-O,4’-C-Ethylene-bridged nucleic acids)、及びこれらの複合体が好ましい。なお、PNAは、DNAやRNAのリン酸と5炭糖からなる主鎖をポリアミド鎖に置換したものである。LNAとはBNA(Bridged Nucleic Acid、架橋化核酸)とも称され、ヌクレオチドの2’の酸素と4’の炭素を架橋したRNAである。 The oligonucleotide of the present invention can be produced using, for example, a commercially available oligonucleotide synthesizer. Oligonucleotide probes can also be produced as double-stranded DNA fragments obtained by restriction enzyme treatment or the like. Furthermore, the oligonucleotide of the present invention does not need to be composed only of natural nucleotides (deoxyribonucleotides (DNA) and ribonucleotides (RNA)), and may be partially or entirely composed of non-natural nucleotides. It's okay. The non-natural nucleotide used in the present invention is not particularly limited as long as it has the same function as a natural nucleotide, but it increases the efficiency of hybridization to regions containing DNA mutations, and is useful for oligonucleotide primers and From the viewpoint of being able to shorten the chain length of oligonucleotide probes, PNA (polyamide nucleic acid), LNA (registered trademark, locked nuclear acid), ENA (registered trademark, 2'-O,4'-C-Ethylene-) bridged nuclear acids), and complexes thereof are preferred. Note that PNA is a DNA or RNA whose main chain consisting of phosphoric acid and pentose is replaced with a polyamide chain. LNA is also referred to as BNA (Bridged Nucleic Acid), and is RNA in which the 2' oxygen and 4' carbon of a nucleotide are bridged.

前記の試薬においては、有効成分であるオリゴヌクレオチド以外に、例えば、滅菌水、生理食塩水、植物油、界面活性剤、脂質、溶解補助剤、緩衝剤、保存剤等が必要に応じて混合されていてもよい。 In the above reagent, in addition to the oligonucleotide as an active ingredient, for example, sterile water, physiological saline, vegetable oil, surfactant, lipid, solubilizing agent, buffer, preservative, etc. are mixed as necessary. It's okay.

さらに、本発明は、前記オリゴヌクレオチドを含む、RETキナーゼ阻害剤によるがん治療の有効性を判定するためのキットも提供することができる。本発明のキットにおいては、前記オリゴヌクレオチド以外の標品を含むことができる。このような標品としては、例えば、生体試料からDNA等を抽出するための試薬、PCR反応に必要な試薬(例えば、デオキシリボヌクレオチドや耐熱性DNAポリメラーゼ等)が挙げられる。また、キットには、前記判定方法等も記載した、その使用説明書を含めることができる。 Furthermore, the present invention can also provide a kit for determining the effectiveness of cancer treatment with a RET kinase inhibitor, which includes the oligonucleotide. The kit of the present invention can contain preparations other than the oligonucleotides described above. Examples of such preparations include reagents for extracting DNA and the like from biological samples, and reagents necessary for PCR reactions (eg, deoxyribonucleotides, thermostable DNA polymerase, etc.). The kit can also include instructions for use that also describe the determination method and the like.

また、上記の通り、本発明にかかるアミノ酸変異を含む領域をエピトープとする、RETタンパク質に対する抗体も、本発明の判定方法に用いられ得る。よって、前述のオリゴヌクレオチド同様に、本発明においては、当該抗体を含む、RETキナーゼ阻害剤によるがん治療の有効性を判定するための薬剤又はキットの態様も提供し得る。 Further, as described above, an antibody against RET protein whose epitope is a region containing an amino acid mutation according to the present invention can also be used in the determination method of the present invention. Therefore, like the oligonucleotide described above, the present invention can also provide an embodiment of a drug or kit containing the antibody for determining the effectiveness of cancer treatment with a RET kinase inhibitor.

<がんを治療する方法、がんの治療剤>
上記の通り、本発明にかかるアミノ酸変異を検出された被検者は、RETキナーゼ阻害剤によるがん治療の有効性が高いと考えられる。このため、被検者のうち、本発明にかかるアミノ酸変異を保持する患者に選択的に、RETキナーゼ阻害剤を投与することにより、効率的にがんの治療を行うことが可能である。したがって、本発明は、がんを治療する方法であって、上記本発明の方法によりRETキナーゼ阻害剤によるがん治療の有効性が高いと判定された被検者に、前記RETキナーゼ阻害剤を投与する工程を含む方法を。提供するものである。
<Methods for treating cancer, therapeutic agents for cancer>
As mentioned above, it is thought that cancer treatment using a RET kinase inhibitor will be highly effective for subjects in whom the amino acid mutation according to the present invention has been detected. Therefore, by selectively administering a RET kinase inhibitor to patients who carry the amino acid mutation according to the present invention among subjects, it is possible to efficiently treat cancer. Therefore, the present invention provides a method for treating cancer, in which the RET kinase inhibitor is administered to a subject who has been determined to have high efficacy in cancer treatment with a RET kinase inhibitor by the method of the present invention. A method comprising the step of administering. This is what we provide.

また、本発明は、RETキナーゼ阻害剤を有効成分とするがんの治療剤であって、上記本発明の方法によりRETキナーゼ阻害剤によるがん治療の有効性が高いと判定された被検者に投与される治療剤を提供するものである。 The present invention also provides a therapeutic agent for cancer containing a RET kinase inhibitor as an active ingredient, which is applicable to subjects who have been determined to have high efficacy in cancer treatment with the RET kinase inhibitor by the method of the present invention. The present invention provides therapeutic agents to be administered to patients.

「RETキナーゼ阻害剤」としては、上述のとおりである。被検者への当該薬剤の投与方法は、その薬剤の種類やがんの種類等に応じて適宜選択されるが、例えば、経口、静脈内、腹腔内、経皮、筋肉内、気管内(エアゾール)、直腸内、膣内等の投与形態を採用することができる。 The "RET kinase inhibitor" is as described above. The method of administering the drug to the subject is appropriately selected depending on the type of drug and the type of cancer, but examples include oral, intravenous, intraperitoneal, transdermal, intramuscular, and intratracheal ( Administrative forms such as aerosol), intrarectal, intravaginal, etc. can be adopted.

以下、実施例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。また、本実施例は、以下に示す材料及び方法を用いて行った。 EXAMPLES Hereinafter, the present invention will be described in more detail based on Examples, but the present invention is not limited to the following Examples. Further, this example was carried out using the materials and methods shown below.

(RET変異の選択)
探索コホートでは、米国癌学会のプロジェクトGENIE(バージョン7.0)(https://genie.cbioportal.org/)のウェブサイトから、79,720個の腫瘍から遺伝子融合やコピー数変化等の全体的な変化を除いた71,756個の変異データをダウンロードした(図2A)。変異は、研究対象コホート(すなわちGENIE)のトリヌクレオチド変異確率から導かれるローカルバックグラウンドモデルに基づいてがんドライバー遺伝子を検出する塩基配列ベースのクラスタリングアルゴリズムであるOncodriveCLUSTL(文献14)を用いて解析した(図2Bの左)。GENIEの変異データを変異プロファイルデータとして使用し、処理を行った。バックグラウンドデータセット(トレーニングコホート)は、GENIEデータセットとそれぞれの変異タイプの割合が近いことから、TCGAのMC3ワーキンググループが提供している全エクソームシーケンスのMutation Annotation Format(version 0.2.8)(文献41)の体細胞変異データで構成した(図2B右)。なお、前記括弧内に示す文献の番号(ここでは14,41)は、下記<参考文献>に示す各番号に記載の文献に対応する(以下、同様)。
(Selection of RET mutations)
In the exploratory cohort, we collected global information such as gene fusions and copy number changes from 79,720 tumors from the American Cancer Society's Project GENIE (version 7.0) (https://genie.cbioportal.org/) website. We downloaded the mutation data for 71,756 items excluding the major changes (Figure 2A). Mutations were analyzed using OncodriveCLUSTL (Reference 14), a nucleotide sequence-based clustering algorithm that detects cancer driver genes based on a local background model derived from trinucleotide mutation probabilities in the study cohort (i.e., GENIE). (Left of Figure 2B). Processing was performed using GENIE mutation data as mutation profile data. Since the background dataset (training cohort) has a similar proportion of each mutation type to the GENIE dataset, we used the whole exome sequence Mutation Annotation Format (version 0.2.8) provided by the TCGA MC3 working group. ) (Reference 41) (Fig. 2B right). Note that the literature numbers shown in parentheses (herein, 14, 41) correspond to the literature described in each number shown in <References> below (the same applies hereinafter).

(細胞株と試薬)
HEK293H及びFlp-in T-RExTM 293細胞はThermo Fisher Scientific(Waltham,MA,USA)から入手した。Ba/F3細胞は、慶應義塾大学医学部の安田浩之博士から提供されたものである。293FT細胞はInvitrogen(Carlsbad,CA,USA)、WEHI-3B細胞は理研バイオリソースセンター(茨城,日本)からそれぞれ入手した。U2OS細胞はAmerican Type Culture Collction(Manassas,VA,USA)から入手した.293H、Flp-in T-rex 293、及び293FT細胞は、Thermo Fisher Scientificから購入した10%ウシ胎児血清(FBS)を添加したDMEMで培養した。WEHI-3B細胞は、10%FBSを含むRPMI培地にて培養した。Ba/F3細胞は、10%FBS及び10%WEHI-3B調整培地(IL-3の供給源)を含むRPMI培地中で培養した。全ての細胞は37℃、5% COでインキュベートした。RET(カタログ番号14556)、リン酸化Tyr905 RET(カタログ番号3221)、ERK(カタログ番号9102)、リン酸化Thr202/Tyr204 ERK(カタログ番号4370)に対する一次抗体と、ウサギIgG(カタログ番号7074)及びマウスIgG(カタログ番号7076)に対する抗体はCell Signaling Technology(Danvers,MA,USA)社から購入した。β-アクチンに対する抗体(カタログ番号ab8227)は、Abcam(Cambridge,UK)より購入した。FLAGに対する抗体(カタログ番号F1804)は、Sigma-Aldrich(Saint Louis,MO,USA)から購入した。GSTに対する抗体(カタログ番号27-4577-01)は、Cytiva(東京,日本)から購入した。ヒトGDNF組換えタンパク質(カタログ番号212-GD)及びヒトGFRα1組換えタンパク質(カタログ番号714-GR)は、R&D Systems(Minneapolis,MN,USA)より購入した。セルペルカチニブ(カタログ番号S8781)及びプラルセチニブ(カタログ番号S8716)は、Selleck(Houston,TX,USA)から購入した。これらの化合物はDMSOに溶解して10mMのストックとし、-20℃で保存した。
(Cell lines and reagents)
HEK293H and Flp-in T-REx 293 cells were obtained from Thermo Fisher Scientific (Waltham, MA, USA). Ba/F3 cells were provided by Dr. Hiroyuki Yasuda of Keio University School of Medicine. 293FT cells were obtained from Invitrogen (Carlsbad, CA, USA) and WEHI-3B cells were obtained from RIKEN BioResource Center (Ibaraki, Japan). U2OS cells were obtained from American Type Culture Collection (Manassas, VA, USA). 293H, Flp-in T-rex 293, and 293FT cells were cultured in DMEM supplemented with 10% fetal bovine serum (FBS) purchased from Thermo Fisher Scientific. WEHI-3B cells were cultured in RPMI medium containing 10% FBS. Ba/F3 cells were cultured in RPMI medium containing 10% FBS and 10% WEHI-3B conditioned medium (source of IL-3). All cells were incubated at 37°C, 5% CO2 . Primary antibodies against RET (Cat. No. 14556), phosphorylated Tyr905 RET (Cat. No. 3221), ERK (Cat. No. 9102), phosphorylated Thr202/Tyr204 ERK (Cat. No. 4370) and rabbit IgG (Cat. No. 7074) and mouse IgG. (Cat. No. 7076) was purchased from Cell Signaling Technology (Danvers, Mass., USA). Antibody against β-actin (catalog number ab8227) was purchased from Abcam (Cambridge, UK). Antibody against FLAG (catalog number F1804) was purchased from Sigma-Aldrich (Saint Louis, MO, USA). Antibody against GST (catalog number 27-4577-01) was purchased from Cytiva (Tokyo, Japan). Human GDNF recombinant protein (catalog number 212-GD) and human GFRα1 recombinant protein (catalog number 714-GR) were purchased from R&D Systems (Minneapolis, MN, USA). Selpercatinib (catalog number S8781) and pralsetinib (catalog number S8716) were purchased from Selleck (Houston, TX, USA). These compounds were dissolved in DMSO to make a 10mM stock and stored at -20°C.

(野生型及び変異型RET cDNAを発現するレンチウイルスベクターの構築)
野生型及び変異型RETの完全長cDNAをInvitrogen社で合成し、pLenti-6/V5-DESTプラスミド(Invitrogen社)にライゲーションした。最終的なコンストラクトはサンガーシークエンシングで確認した。cDNA産物の発現は、一過性にトランスフェクトした細胞の免疫ブロットにより確認した。レンチウイルスは、リポフェクタミン3000(Invitrogen)を用いてpLenti-6/V5-DESTプラスミド及びViraPowerパッケージングミックス(Invitrogen)でトランスフェクトした293FT細胞(10cmプレートあたり6×10細胞)において生成された。培地交換後24-48時間でウイルス上清を回収し、感染に使用した。
(Construction of lentiviral vectors expressing wild type and mutant RET cDNA)
Full-length cDNAs of wild-type and mutant RET were synthesized by Invitrogen and ligated into pLenti-6/V5-DEST plasmid (Invitrogen). The final construct was confirmed by Sanger sequencing. Expression of the cDNA product was confirmed by immunoblotting of transiently transfected cells. Lentivirus was generated in 293FT cells (6×10 6 cells per 10 cm plate) transfected with pLenti-6/V5-DEST plasmid and ViraPower packaging mix (Invitrogen) using Lipofectamine 3000 (Invitrogen). Viral supernatants were collected 24-48 hours after medium change and used for infection.

(リン酸化アッセイ)
6ウェルプレートに播種したHEK293H細胞に、リポフェクタミン3000を用いて0.25μgのプラスミドDNAを一過性にトランスフェクションした。トランスフェクション後48時間血清飢餓条件下で培養し、プロテアーゼ/フォスファターゼ阻害剤カクテル(Cell Signaling Technology)を含むRIPA緩衝液[20mM Tris-HCl(pH7.5),150mM NaCl,1mM NaEDTA,1mM EGTA,1% NP-40,1% sodium deoxycholate,25mM sodium pyrophosphate,1mM β-glycerophosphate,1mM NaVO, and 1μg/mL leupeptin]で溶解させた。細胞ライセートを14,000rpmで15分間遠心分離し、上清を回収した。上清をSDS-PAGEにかけた後、ポリフッ化ビニリデン(PVDF)膜に免疫ブロットした。PVDF膜を0.1%Tween20及び1.0%ウシ血清アルブミンを含むTBS(TBST)で1時間ブロッキングした後、以下の一次抗体でプローブした:抗RET、抗リン酸化-Thy202/Tyr204 ERK、及び抗ERK。PVDF膜をTBSTで洗浄後、HRP標識抗ウサギ2次抗体でインキュベートし、化学発光試薬(Perkin Elmer,Waltham,MA,USA)で可視化した。シグナル強度は、LAS3000イメージングシステム(Quansys Biosciences,West Logan,UT,USA)とマルチゲージソフトウェア(富士フイルム,東京,日本)を用いて定量化した。カルシウム含有/非含有培地条件での実験のために、トランスフェクション後48時間、細胞をカルシウム含有/非含有培地で培養した。リン酸化アッセイでは、GDNFとGFRα1をトランスフェクション後48時間に添加し、さらに6時間インキュベートした。阻害剤はトランスフェクション後48時間に添加し、さらに6時間インキュベートした。アッセイは独立して3回繰り返した。
(phosphorylation assay)
HEK293H cells seeded in a 6-well plate were transiently transfected with 0.25 μg of plasmid DNA using Lipofectamine 3000. After transfection, the cells were cultured under serum-starved conditions for 48 hours and incubated in RIPA buffer [20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM Na EDTA, 1 mM EGTA] containing protease/phosphatase inhibitor cocktail ( Cell Signaling Technology). . It was . The cell lysate was centrifuged at 14,000 rpm for 15 minutes and the supernatant was collected. The supernatant was subjected to SDS-PAGE and then immunoblotted onto a polyvinylidene fluoride (PVDF) membrane. PVDF membranes were blocked with TBS containing 0.1% Tween20 and 1.0% bovine serum albumin (TBST) for 1 hour and then probed with the following primary antibodies: anti-RET, anti-phospho-Thy202/Tyr204 ERK, and Anti-ERK. After washing the PVDF membrane with TBST, it was incubated with HRP-labeled anti-rabbit secondary antibody and visualized with chemiluminescence reagent (Perkin Elmer, Waltham, Mass., USA). Signal intensity was quantified using a LAS3000 imaging system (Quansys Biosciences, West Logan, UT, USA) and Multigauge software (Fujifilm, Tokyo, Japan). For experiments with calcium-containing/non-calcium media conditions, cells were cultured in calcium-containing/non-calcium media for 48 hours after transfection. For phosphorylation assays, GDNF and GFRα1 were added 48 hours post-transfection and incubated for an additional 6 hours. Inhibitors were added 48 hours post-transfection and incubated for an additional 6 hours. The assay was repeated three times independently.

(Ba/F3細胞アッセイ)
Ba/F3 細胞(4.0×10)を10μg/mLポリブレン(Sigma-Aldrich)存在下、3000×g、150分間、32℃で遠心分離し、レンチウイルスに感染させた。37℃、5% COで一晩培養後、細胞を24ウェルプレートに播種し、IL-3と8μg/mLブラストサイジン(Invitrogen)を含む培地で10日間選択した。ブラストサイジン耐性細胞は、IL-3フリー培地で2週間培養した。外来性RETタンパク質の発現は、免疫ブロットにより確認した。薬剤処理では、5×10個のBa/F3細胞を96ウェルプレートに6重にプレーティングし、連続的に希釈した阻害剤をウェルに添加した。薬剤処理後72時間の細胞生存率をCellTiter-Glo luminescent cell viability reagent(Promega,Madison,WI,USA)を使用して、EnVision(Perkin Elmer)を用いて測定した。細胞生存率は、未処理サンプルの細胞数に対する薬剤処理サンプルの細胞数として算出した(n=6)。データは、GraphPad Prism version 9.0(GraphPad Software Inc.,San Diego,CA,USA)を用いてグラフ表示した。
(Ba/F3 cell assay)
Ba/F3 cells (4.0×10 5 ) were centrifuged at 3000×g for 150 minutes at 32° C. in the presence of 10 μg/mL polybrene (Sigma-Aldrich) and infected with lentivirus. After overnight culture at 37° C. and 5% CO 2 , cells were seeded in 24-well plates and selected for 10 days in medium containing IL-3 and 8 μg/mL Blasticidin (Invitrogen). Blasticidin-resistant cells were cultured in IL-3 free medium for 2 weeks. Expression of exogenous RET protein was confirmed by immunoblotting. For drug treatment, 5x10 Ba/F3 cells were plated in six replicates in a 96-well plate, and serially diluted inhibitors were added to the wells. Cell viability 72 hours after drug treatment was measured using CellTiter-Glo luminescent cell viability reagent (Promega, Madison, Wis., USA) using EnVision (Perkin Elmer). Cell viability was calculated as the number of cells in the drug-treated sample relative to the number of cells in the untreated sample (n=6). Data were displayed graphically using GraphPad Prism version 9.0 (GraphPad Software Inc., San Diego, CA, USA).

(NIH3T3形質転換アッセイ)
NIH3T3細胞を8μg/mLポリブレン(Sigma-Aldrich)存在下で24時間レンチウイルスに感染させ、既述(文献26)のように5%子ウシ血清添加DMEM-F12で2週間培養した。GDNF及びGFRα1を用いて行ったフォーカス形成アッセイでは、感染させたNIH3T3細胞を5%子ウシ血清の存在下で0、1、又は2.5ng/mLのGDNF及びGFRα1と共に14日間培養した。細胞の形質転換はギムザ染色で評価した。再現性は、同じ実験を3回行うことで確認した。フォーカスエリアはImageJソフトウェア(National Institutes of Health,Bethesda,MD,USA)を用いて定量化した。
(NIH3T3 transformation assay)
NIH3T3 cells were infected with lentivirus for 24 hours in the presence of 8 μg/mL polybrene (Sigma-Aldrich), and cultured for 2 weeks in DMEM-F12 supplemented with 5% calf serum as previously described (Reference 26). For focus formation assays performed with GDNF and GFRα1, infected NIH3T3 cells were cultured with 0, 1, or 2.5 ng/mL GDNF and GFRα1 in the presence of 5% calf serum for 14 days. Cell transformation was assessed by Giemsa staining. Reproducibility was confirmed by performing the same experiment three times. Focus areas were quantified using ImageJ software (National Institutes of Health, Bethesda, MD, USA).

(RET二量体化アッセイ)
Flp-InTM T-RExTM-293システムを用いて、野生型、D567N、D567Y、C634Rの完全長RET cDNAと空ベクターを発現するT-RExTM293細胞を製造元のプロトコルにしたがって樹立した。クローン化した細胞は、0.1μg/mLドキシサイクリン(富士フィルム,大阪,日本)添加のカルシウム含有/非含有DMEMで6時間培養した。このアッセイでは、40mMジチオトレイトール(Cell Signaling Technology)含有/非含有のRIPA bufferでライセートを調製した。免疫ブロット解析では、一次抗体として抗FLAG抗体を使用した。
(RET dimerization assay)
Using the Flp-In T-REx -293 system, T-REx 293 cells expressing wild type, D567N, D567Y, C634R full-length RET cDNA and empty vector were established according to the manufacturer's protocol. The cloned cells were cultured for 6 hours in DMEM with/without calcium supplemented with 0.1 μg/mL doxycycline (Fuji Film, Osaka, Japan). In this assay, lysates were prepared in RIPA buffer with/without 40 mM dithiothreitol (Cell Signaling Technology). In immunoblot analysis, anti-FLAG antibody was used as the primary antibody.

Sf21細胞アッセイでは、RETのCLD4-CRD(アミノ酸番号 382-635位)領域をコードするcDNAを含むpFastBacTM(Thermo Fisher Scientific)バキュロウイルスプラスミドをCellfectinTM II Reagent(Thermo Fisher Scientific)によりSf21細胞にトランスフェクトした。トランスフェクトされた細胞は、5mM EDTAを含有/非含有抽出バッファー(50mM HEPES,0.3M NaCl,0.2% NP-40,pH7.5)で溶解した。遠心分離(10,000×g)後、上清にGST-セファロースビーズを加え、4℃で30分間回転させながら混合した。ビーズを抽出バッファーで十分に洗浄し、1% 2-メルカプトエタノール(2-ME)含有/非含有ローディングバッファー(50mM Tris-HCl,pH6.8,2% SDS,10% glycerol,0.1% bromophenol blue)で混合して95℃、5分間インキュベーションを行った。試料を電気泳動し、一次抗体として抗GST抗体を用いた免疫ブロッティング、またはクーマシーブリリアントブルー(CBB)染色により二量体形成を検出した。 In the Sf21 cell assay, pFastBac (Thermo Fisher Scientific) baculovirus plasmid containing cDNA encoding the CLD4-CRD (amino acid number 382-635) region of RET was transfected with Cellfectin II Reagent (Thermo Fisher Scientific). her Scientific) into Sf21 cells. It was effected. Transfected cells were lysed with extraction buffer (50mM HEPES, 0.3M NaCl, 0.2% NP-40, pH 7.5) with/without 5mM EDTA. After centrifugation (10,000×g), GST-Sepharose beads were added to the supernatant and mixed with rotation at 4° C. for 30 minutes. The beads were thoroughly washed with extraction buffer and loaded with/without 1% 2-mercaptoethanol (2-ME) (50 mM Tris-HCl, pH 6.8, 2% SDS, 10% glycerol, 0.1% bromophenol). blue) and incubated at 95°C for 5 minutes. Samples were electrophoresed and dimer formation was detected by immunoblotting using an anti-GST antibody as the primary antibody or Coomassie brilliant blue (CBB) staining.

(NanoBiTアッセイ)
WT、C634R、D567N、D567Y RETのRET-ECDドメイン(アミノ酸番号 1-662位)のC末端にペプチドリンカーを介して融合したSmall BiT(SmBit)又はLarge BiT(LgBit)ルシフェラーゼサブユニット(Promega)を発現するプラスミドをU2OS細胞にトランスフェクトした。次に、トランスフェクトされた細胞を96ウェルプレートに播種した。次いで細胞(1ウェルあたり1.13×10個)に、SmBitとLgBiTプラスミドDNAの質量比1:1の混合物5ngをトランスフェクションした。24時間後、細胞をOpti-MEMで5時間血清飢餓状態にした。NanoGloライブセルルシフェラーゼ基質を添加した15分後に、GDNFとGFRα1を最終濃度7.4μg/mLになるように添加し、発光動態を45分間Syngy HTXプレートリーダー(BioTek,Winooski,VT,US)を用いて測定した。
(NanoBiT assay)
Small BiT (SmBit) or Large BiT (LgBit) luciferase subunit (Promega) fused via a peptide linker to the C-terminus of the RET-ECD domain (amino acid number 1-662) of WT, C634R, D567N, D567Y RET. The expressing plasmid was transfected into U2OS cells. The transfected cells were then seeded into 96-well plates. Cells (1.13×10 4 per well) were then transfected with 5 ng of a mixture of SmBit and LgBiT plasmid DNA at a mass ratio of 1:1. After 24 hours, cells were serum starved with Opti-MEM for 5 hours. Fifteen minutes after adding the NanoGlo live cell luciferase substrate, GDNF and GFRα1 were added to a final concentration of 7.4 μg/mL, and the luminescence kinetics was measured for 45 minutes using a Syngy HTX plate reader (BioTek, Winooski, VT, US). It was measured using

(In vivo腫瘍形成アッセイ)
RET C634R、D567N、D567Y変異体を発現するNIH3T3細胞は、レンチウイルス感染後20日間8μg/mLのブラストサイジンに暴露することにより選択された。細胞数を計測し、氷上で100μL培養液と100μLマトリゲル(BD Biosciences,Franklin Lakes,NJ,USA)の1:1混合液として再懸濁した。NIH3T3細胞(5×10個/マウス)を6週齢の雌性BALB/c-nu/nuマウス(Charles River,Wilmington,MA,US)の脇腹に皮下注射した。マウスは変異体毎に3群に分け、腫瘍の大きさが約100mmから200mmになった時点で治療を開始した。全ての変異体での実験において、マウスにはビヒクル又は3mg/kgのセルペルカチニブ若しくはプラルセチニブが1日2回投与された。腫瘍の成長はノギスを用いて一定間隔で測定し、腫瘍体積は以下の式で算出した:腫瘍体積(mm)=0.5×長さ(mm)×幅(mm)×幅(mm)。実験終了時に皮下腫瘍重量を測定し、標準プロトコルにしたがってマウスを安楽死させた。この実験は、国立がんセンター(NCC)動物倫理委員会の承認を得ている(承認番号:A277bM1-21)。
(In vivo tumor formation assay)
NIH3T3 cells expressing RET C634R, D567N, D567Y mutants were selected by exposure to 8 μg/mL blasticidin for 20 days after lentiviral infection. Cell numbers were counted and resuspended on ice in a 1:1 mixture of 100 μL culture medium and 100 μL Matrigel (BD Biosciences, Franklin Lakes, NJ, USA). NIH3T3 cells (5×10 6 cells/mouse) were injected subcutaneously into the flank of 6-week-old female BALB/c-nu/nu mice (Charles River, Wilmington, MA, US). Mice were divided into three groups for each mutant, and treatment was started when the tumor size increased from approximately 100 mm to 200 mm . In all mutant experiments, mice received vehicle or 3 mg/kg selpercatinib or pralsetinib twice daily. Tumor growth was measured at regular intervals using calipers, and tumor volume was calculated using the following formula: tumor volume (mm 3 ) = 0.5 x length (mm) x width (mm) x width (mm). . At the end of the experiment, subcutaneous tumor weights were measured and mice were euthanized according to standard protocols. This experiment was approved by the National Cancer Center (NCC) Animal Ethics Committee (approval number: A277bM1-21).

(単量体のMDシミュレーション)
RET CRDの低温電子顕微鏡での初期構造データは、Protein Data Bank(PDB code:6Q2N)から入手した。MDシミュレーションのための単量体モデルは、E鎖の508-622残基を用いて構築し、その他の残基は削除した。結合順の割り当てと水素原子の付加は、Maestro 2020-2(Schrodinger,Inc.,New York,USA)のProtein Preparationモジュールを用いて実施した。乱れたループ構造(残基508-514及び547-548)は、Prime(文献42,43)を用いてモデル化した。全てのタンパク質モデルのN末端とC末端は、それぞれアセチル基とN-メチル基でキャップした。RET変異モデルは、6Q2N構造をベースにしてMaestro(Schrodinger,Inc.)の”Sequence viewer”を用いて、同じプロトコルで作成した。水素結合の最適化とエネルギーの最小化は、PROPKA(文献44)とOPLS3e力場(文献45)を用いて行った。
(MD simulation of monomer)
Initial cryo-electron microscopy structural data of RET CRD was obtained from Protein Data Bank (PDB code: 6Q2N). A monomer model for MD simulations was constructed using residues 508-622 of the E chain, and other residues were deleted. Bond order assignment and hydrogen atom addition were performed using the Protein Preparation module of Maestro 2020-2 (Schrodinger, Inc., New York, USA). The disordered loop structure (residues 508-514 and 547-548) was modeled using Prime (42, 43). The N-terminus and C-terminus of all protein models were capped with acetyl and N-methyl groups, respectively. A RET mutation model was created based on the 6Q2N structure using the "Sequence Viewer" of Maestro (Schrodinger, Inc.) according to the same protocol. Hydrogen bond optimization and energy minimization were performed using PROPKA (Reference 44) and OPLS3e force field (Reference 45).

相互作用解析及び結合自由エネルギー評価のためのMDシミュレーションは、Desmond(Schrodinger,Inc.)、水和物モデルの作成にはMaestroのMolecular Dynamics System Setupモジュールを使用した。全てのエネルギー最小化されたモデルは、バッファ距離10Åの斜方晶ボックスに配置され、水和モデルを作成した。水和モデルにはSPC水モデル(文献46)を使用した。塩化ナトリウム(0.15M)は系を中和するための対イオンとして含まれた。ファンデルワールス相互作用のカットオフ半径は9Å、時間ステップ、系の初期温度、圧力はそれぞれ2.0fs、300K、1.01325barとした。トラジェクトリフレームのサンプリング間隔は100ピコ秒に設定した。最終的なシミュレーションはNPTアンサンブルを使用して1マイクロ秒で行った。 Desmond (Schrodinger, Inc.) was used for MD simulation for interaction analysis and binding free energy evaluation, and Maestro's Molecular Dynamics System Setup module was used for creating the hydrate model. All energy minimized models were placed in an orthorhombic box with a buffer distance of 10 Å to create a hydration model. The SPC water model (Reference 46) was used as the hydration model. Sodium chloride (0.15M) was included as a counterion to neutralize the system. The cutoff radius of van der Waals interaction was 9 Å, and the time step, initial temperature of the system, and pressure were 2.0 fs, 300 K, and 1.01325 bar, respectively. The sampling interval of trajectory frames was set to 100 picoseconds. The final simulation was performed in 1 microsecond using the NPT ensemble.

MDシミュレーションの全てのトラジェクトリは、タンパク質Cαの最初のフレームに整列させた。RMSDと距離の解析は、MaestroのSimulation Interactions Diagramモジュールを用いて、最初のフレームの座標に基づいて行った。CRDへのCaイオンの結合自由エネルギーを予測するためにMM/PB(GB)SA法を採用した(文献47)。結合自由エネルギー解析は、各トラジェクトリについて100フレーム間隔で行い、解析にはPrime(文献42,43)を使用した。 All trajectories of the MD simulations were aligned to the first frame of protein Cα. RMSD and distance analysis was performed using Maestro's Simulation Interactions Diagram module based on the coordinates of the first frame. The MM/PB(GB)SA method was adopted to predict the binding free energy of Ca ions to CRD (Reference 47). Binding free energy analysis was performed for each trajectory at 100 frame intervals, and Prime (References 42, 43) was used for the analysis.

(RET-GDNF-GFRA1細胞外複合体のMDシミュレーション)
RET/GFR1/GDNF細胞外複合体の初期構造データはProtein Data Bank(PDB code:6Q2N)から入手した。乱れたループ構造はMOEプログラム(Chemical Computing Group Inc.,Montreal,QC,Canada)のStructure Preparationモジュールを用いてモデル化した。全てのタンパク質モデルのN末端とC末端は、それぞれアセチル基とN-メチル基でキャップした。滴定可能な残基については、pH7.0における優勢なプロトン化状態を割り当てた。D567Y又はD567Nの変異はMOEを用いて野生型RETの構造に導入した。
(MD simulation of RET-GDNF-GFRA1 extracellular complex)
Initial structural data for the RET/GFR1/GDNF extracellular complex was obtained from the Protein Data Bank (PDB code: 6Q2N). The disordered loop structure was modeled using the Structure Preparation module of the MOE program (Chemical Computing Group Inc., Montreal, QC, Canada). The N-terminus and C-terminus of all protein models were capped with acetyl and N-methyl groups, respectively. For titratable residues, the predominant protonation state at pH 7.0 was assigned. The D567Y or D567N mutation was introduced into the wild-type RET structure using MOE.

全てのMDシミュレーションはGROMACS 2021 プログラム(文献48)を用いて行った。タンパク質とイオンには Amber ff99SB-ILDN 力場 (文献49)を使用し、水分子のモデルにはTIP3P(文献50)を使用した。各複合体モデルの周囲に約28万個の水分子を10Åの包囲距離で配置し、系を中和するためにナトリウムと塩化物イオン(それぞれ150mM)をシミュレーションボックス内に導入した。静電相互作用はParticle Mesh Ewald法(文献51)で計算し、カットオフ半径は10Åとした。P-LINCSアルゴリズムは、全ての結合長を平衡値で拘束するために使用された(文献53)。エネルギー最小化後、各系を粒子数・体積・温度一定(NVT)アンサンブルで100ピコ秒平衡化し、タンパク質重原子に位置拘束をかけ、粒子数・圧力・温度一定(NPT)アンサンブルで100ピコ秒動作させた。温度は確率論的速度リスケーリング(文献54)により310Kに、圧力はParrinello-Rahmanバロスタットにより1バールに維持された(文献55)。温度と圧力の時定数はそれぞれ0.1ピコ秒と2ピコ秒に設定した。野生型RETとそのD567Y及びD567N変異体について、それぞれ異なる速度で3回の独立した1μ秒のプロダクションランを行った。CRDとGDNF/GFRα1との接触面積は、High Throughput Molecular Dynamics(HTMD) environment 1.14.0(文献56)を用いて、プローブ半径を1.4Åとして計算した。 All MD simulations were performed using the GROMACS 2021 program (Reference 48). Amber ff99SB-ILDN force field (Reference 49) was used for proteins and ions, and TIP3P (Reference 50) was used for the water molecule model. Approximately 280,000 water molecules were placed around each complex model with a surrounding distance of 10 Å, and sodium and chloride ions (150 mM each) were introduced into the simulation box to neutralize the system. The electrostatic interaction was calculated by the Particle Mesh Ewald method (Reference 51), and the cutoff radius was set to 10 Å. The P-LINCS algorithm was used to constrain all bond lengths to their equilibrium values (ref. 53). After energy minimization, each system was equilibrated for 100 ps in a constant particle number, volume, and temperature (NVT) ensemble, positional restraints were applied to protein heavy atoms, and equilibrated for 100 ps in a constant particle number, pressure, and temperature (NPT) ensemble. Got it working. The temperature was maintained at 310 K by stochastic rate rescaling (ref. 54) and the pressure at 1 bar by a Parrinello-Rahman barostat (ref. 55). The temperature and pressure time constants were set to 0.1 ps and 2 ps, respectively. Three independent 1 μsec production runs were performed at different speeds for wild-type RET and its D567Y and D567N mutants. The contact area between CRD and GDNF/GFRα1 was calculated using High Throughput Molecular Dynamics (HTMD) environment 1.14.0 (Reference 56) with a probe radius of 1.4 Å.

以下にて、上記材料及び方法を用いて得られた結果を示す。 Below we show the results obtained using the above materials and methods.

(実施例1) CaLMは隠れたがん原性変異クラスターである
多数のVUSの中からがん原性変異の隠れたクラスターを発見するために、OncodriveCLUSTLプログラム(文献17)を用いてゲノム全体の3塩基のエンリッチメント解析を行った。GENIEコホート(文献18)(バージョン7;79,720例)から得られた合計71,756個のバリアントを、The Cancer Genome Atlas(TCGA)の9,104サンプルから作成した変異トリヌクレオチドのコンテキストに基づくバックグラウンド変異率モデルと比較して解析した(図2A及び2B)。VUSの検討では、RETは1,290例(1.6%)の腫瘍において多くのタイプ(860)のミスセンス及びインフレーム挿入欠失変異を有し、そのほとんどがOncoKB(文献19)により「意義不明」と注釈されていることから、治療標的拡大研究の対象とするがん遺伝子とした(図2C及び2D)。RETキナーゼのCRDには、C634Rホットスポット変異を含む既知のCCMクラスターと、VUSのみからなる557-580残基における新規クラスターの2つの変異クラスター要素がある(図1A)。細胞内ドメイン(ICD)には、ホットスポット変異V804M、R886W、M918T(文献12)を含む他の3つのクラスターが確認され、変異モデルの信頼性が示された。557~580位のアミノ酸残基は最近、低温電子顕微鏡解析により同定されたECDのCaLMに相当していた(文献15)。CaLM変異は様々な種類の腫瘍で観察されたが、CCM変異は甲状腺がんに集中して認められた(図1A)。これらの変異はほとんどが独立した変異として観察され、CCMと同様に複合変異としてはほとんど観察されなかった(図2E)。これはインシリコ解析での正の選択性と一致する。
(Example 1) CaLM is a hidden oncogenic mutation cluster In order to discover hidden clusters of oncogenic mutations among a large number of VUS, the OncodriveCLUSTL program (Reference 17) was used to analyze the entire genome. Three base enrichment analysis was performed. A total of 71,756 variants obtained from the GENIE cohort (Reference 18) (version 7; 79,720 cases) based on the context of mutant trinucleotides created from 9,104 samples of The Cancer Genome Atlas (TCGA). This was analyzed in comparison to a background mutation rate model (Figures 2A and 2B). In the VUS study, RET had many types (860) of missense and in-frame insertion deletion mutations in 1,290 (1.6%) tumors, most of which were classified as “significant” by OncoKB (Reference 19). Since this cancer gene was annotated as "unknown," it was selected as a target cancer gene for therapeutic target expansion research (Figures 2C and 2D). There are two mutational cluster elements in the RET kinase CRD: a known CCM cluster containing the C634R hotspot mutation and a novel cluster at residues 557-580 consisting only of VUS (Fig. 1A). Three other clusters containing hotspot mutations V804M, R886W, and M918T (Reference 12) were confirmed in the intracellular domain (ICD), demonstrating the reliability of the mutation model. Amino acid residues at positions 557 to 580 corresponded to CaLM of ECD, which was recently identified by cryo-electron microscopy analysis (Reference 15). Although CaLM mutations were observed in various types of tumors, CCM mutations were mainly observed in thyroid cancer (Figure 1A). Most of these mutations were observed as independent mutations, and similar to CCM, they were rarely observed as compound mutations (Fig. 2E). This is consistent with the positive selectivity in in silico analysis.

次に、6つのCaLM変異、25の既知変異(文献5,6,11,12,20,21)、及びGENIEケースで3例以上認められたその他の79変異を含む110のRET変異体で、遺伝子網羅的な細胞ベースのアッセイを行った。RET変異体cDNAの導入が、NIH3T3細胞における形質転換活性及びHEK293H細胞におけるRET下流のERKリン酸化に及ぼす影響を調べた(図1B及び1C)。その結果、CaLMはCCMやICDのホットスポット変異体と同様の強度を有するがん原性変異体のクラスターであることが確認されたが、一方で特にECDにおいてはほとんどの変異体は機能的に中立であった。 Next, 110 RET variants including 6 CaLM mutations, 25 known mutations (References 5, 6, 11, 12, 20, 21), and 79 other mutations found in 3 or more GENIE cases. Gene-comprehensive cell-based assays were performed. The effects of introduction of RET mutant cDNA on transforming activity in NIH3T3 cells and ERK phosphorylation downstream of RET in HEK293H cells were investigated (FIGS. 1B and 1C). The results confirmed that CaLM is a cluster of oncogenic mutants with similar potency to hotspot mutants in CCM and ICD, whereas most mutants, especially in ECD, are functionally It was neutral.

(実施例2) CaLM変異によるCRDの構造的不安定化
RETのCaLMは、カルモジュリン(図3B)と同様に、寄与するアミノ酸の負電荷を持つ側鎖やカルボニル骨格と配位結合を形成することでCa2+イオンを捕捉する(図3A)(文献15)。RET-CaLMの変異は、Ca2+イオンとの結合に関与するアミノ酸の置換(すなわち、D567YとD567N、G568S、D571N、E574D、D584N)により、3次元クラスターが形成される。これは、QT延長症候群を引き起こすカルモジュリンをコードするCALM1遺伝子のD95及びN97残基の生殖細胞系列変異と類似している。これらのCALM1変異はCa2+イオン保持の不安定化と関連していることから(文献22,23)、RET-Ca2+イオン複合体のコンフォメーション保持に対するCaLM変異の影響を予測するためにMDシミュレーションを実施した。
(Example 2) Structural destabilization of CRD by CaLM mutation Similar to calmodulin (Figure 3B), RET CaLM forms coordinate bonds with the negatively charged side chains and carbonyl skeletons of contributing amino acids. (Fig. 3A ) (Reference 15). The RET-CaLM mutations form a three-dimensional cluster due to substitution of amino acids involved in binding to Ca 2+ ions (ie, D567Y and D567N, G568S, D571N, E574D, and D584N). This is similar to germline mutations in the D95 and N97 residues of the CALM1 gene encoding calmodulin, which causes long QT syndrome. Since these CALM1 mutations are associated with destabilization of Ca 2+ ion retention (References 22, 23), MD simulations were performed to predict the effect of CaLM mutations on the conformational retention of the RET-Ca 2+ ion complex. was carried out.

先ず、CaLM変異を有する又は有さないRET-CRDモノマー構造を用いて1マイクロ秒のシミュレーションを行い、局所的な構造維持への影響を調査した。D567Y及びD567N変異体のCRDに対するCa2+イオンの結合自由エネルギー(ΔGbind)は野生型RETよりも高く(図3C及び図4A)、CaLM変異によるCRD-Ca2+複合体の不安定化が示唆された。シミュレーションでは、Ca2+イオンの位置は567位の変異残基の反対側方向に移動していた(図4B及び4C)。CaLM変異によるCa2+イオン位置の不安定性は、Ca2+イオンの初期位置からの平均二乗偏差(RMSD)の増加によって示された(図4D)。これと並行して、D567残基変異に伴うCRDの構造的揺らぎは、骨格Cα原子のRMSDによって示された(図4D左、図4E及び4F)。他のCaLM変異体でも同様の結果が得られ(図3D左)、CaLM-Ca2+複合体の不安定化ががん原性の背景に存在することが強く示唆された。さらに、本発明者らはシミュレーションの結果を検証するために、Ca2+イオン保持に寄与する側鎖の影響を取り除いた人工変異体(アラニンに置換した変異体)の特性を調べた(図3D右)。結果としてアラニン変異体は、臨床で認められたCaLM変異体と同様に高いRMSD値を示した。このアラニン変異体のがん原性は、RET下流のERK活性化及びNIH3T3細胞の形質転換によって確認された(図3E)。 First, a 1 microsecond simulation was performed using RET-CRD monomer structures with or without CaLM mutations to investigate the effect on local structure maintenance. The binding free energy (ΔGbind) of Ca 2+ ions to CRD of D567Y and D567N mutants was higher than that of wild-type RET (Figure 3C and Figure 4A), suggesting that the CaLM mutation destabilizes the CRD-Ca 2+ complex. . In the simulation, the position of the Ca 2+ ion was shifted toward the opposite side of the mutated residue at position 567 (FIGS. 4B and 4C). The instability of Ca 2+ ion positions due to CaLM mutations was indicated by an increase in the root mean square deviation (RMSD) of Ca 2+ ions from their initial positions (Fig. 4D). In parallel, the structural fluctuations of the CRD associated with the D567 residue mutation were indicated by the RMSD of the backbone Cα atoms (FIG. 4D left, FIGS. 4E and 4F). Similar results were obtained with other CaLM mutants (Fig. 3D left), strongly suggesting that destabilization of the CaLM-Ca 2+ complex is behind the carcinogenicity. Furthermore, in order to verify the simulation results, the present inventors investigated the characteristics of an artificial mutant (mutant substituted with alanine) in which the influence of the side chain that contributes to Ca 2+ ion retention was removed (Fig. 3D, right). ). As a result, the alanine mutant showed a high RMSD value similar to the clinically recognized CaLM mutant. The tumorigenicity of this alanine mutant was confirmed by ERK activation downstream of RET and transformation of NIH3T3 cells (Fig. 3E).

(実施例3) CaLM変異が異常な分子間ジスルフィド結合形成を誘発する
生理的条件下では、RETタンパク質はグリア細胞由来神経栄養因子(GDNF)リガンドやGDNFファミリー受容体α1(GFRα1)等の共受容体と結合してホモ2量体化し、6量体複合体を形成する(図3A)(文献15)。CaLM変異がRETの構造及びリガンド/共受容体との相互作用に及ぼす影響を調べるため、二量体化した細胞外RET、2分子のGFRα1及びGDNFからなる低温電子顕微鏡構造(PDB:6Q2N)を用いてマイクロ秒スケールのMDシミュレーションを実施した。CaLM変異体は、野生型RET複合体と比較して、Ca2+イオンとその周囲の残基との相互作用が失われ、CRD構造に歪みが認められた(図5A左・中、及び補足図6A)。また、CaLM変異体のCRD構造に歪みが生じることで、システイン残基C565,C570,C585の溶媒露出表面積(SASA)が増加した(図5A右)。これらのシステイン残基は生理的にはCRDドメイン内に埋もれており、野生型RET構造ではドメイン内ジスルフィド結合を形成する(文献15)。これらのシミュレーション結果が得られたことから、CaLM変異によって分子間ジスルフィド結合の形成が誘導されるかどうかを検討した。
(Example 3) CaLM mutation induces abnormal intermolecular disulfide bond formation Under physiological conditions, RET protein co-recepts glial cell-derived neurotrophic factor (GDNF) ligands and GDNF family receptor α1 (GFRα1). and homodimerizes to form a hexameric complex (Fig. 3A) (Reference 15). To investigate the effects of CaLM mutations on the structure of RET and its interactions with ligands/co-receptors, we constructed a cryo-electron microscopy structure (PDB: 6Q2N) consisting of dimerized extracellular RET, two molecules of GFRα1 and GDNF. A microsecond-scale MD simulation was carried out using this method. Compared to the wild-type RET complex, the CaLM mutant lost the interaction between Ca 2+ ions and surrounding residues, and the CRD structure was distorted (Fig. 5A left and middle, and Supplementary Fig. 6A). Furthermore, distortion of the CRD structure of the CaLM mutant increased the solvent exposed surface area (SASA) of cysteine residues C565, C570, and C585 (Fig. 5A right). These cysteine residues are physiologically buried within the CRD domain and form intradomain disulfide bonds in the wild-type RET structure (Reference 15). Based on these simulation results, we investigated whether CaLM mutations induce the formation of intermolecular disulfide bonds.

HEK293H細胞にRET全長のcDNAを外因性に発現させると、CaLM変異体はC634R CCM変異体と同様に異常な分子間ジスルフィド結合を介して2量体化した(図5B、C左)。CaLM変異におけるCa2+イオン保持の減弱を模倣し、培養液からCa2+イオンを枯渇させると、野生型RETにおいても分子間ジスルフィド結合形成による2量体化を引き起こしたため(図5C右)、CaLMがRETの異常な2量体化を抑制していることが示唆された。RETはカドヘリン様ドメイン(CLD)2及び3にまたがる領域に3つのCa2+イオン結合部位を有する(図5B)(文献15)。そこで精製したCLD4-CRDタンパク質を用いた二量体化アッセイを行い、CaLMの二量体化に対する抑制的役割を検証した。CaLM変異体はCa2+イオン存在下でのジスルフィド結合による二量体化を促進し、Ca2+イオンの枯渇は野生型RETにおいてもジスルフィド結合による二量体を促進した(図5D、図6B及び6C)。同様に、Ca2+イオン枯渇によるRETおよび下流のERKリン酸化は、CaLM変異体よりも野生型RETでより顕著であった(図5E)。 When the full-length RET cDNA was exogenously expressed in HEK293H cells, the CaLM mutant dimerized through an abnormal intermolecular disulfide bond, similar to the C634R CCM mutant (Fig. 5B, C left). Mimicking the attenuation of Ca 2+ ion retention in the CaLM mutant, depleting Ca 2+ ions from the culture medium also caused dimerization through intermolecular disulfide bond formation in wild-type RET (Fig. 5C, right); It was suggested that it suppresses abnormal dimerization of RET. RET has three Ca 2+ ion binding sites in the region spanning cadherin-like domains (CLD) 2 and 3 (Fig. 5B) (Reference 15). Therefore, a dimerization assay using purified CLD4-CRD protein was performed to verify the inhibitory role of CaLM on dimerization. The CaLM mutant promoted dimerization via disulfide bonds in the presence of Ca 2+ ions, and depletion of Ca 2+ ions also promoted dimerization via disulfide bonds in wild-type RET (Figure 5D, Figures 6B and 6C). ). Similarly, RET and downstream ERK phosphorylation upon Ca2 + ion depletion was more pronounced in wild-type RET than in the CaLM mutant (Fig. 5E).

共受容体/リガンドは、RET分子を二量体化させるのに貢献している(文献24)。NanoBiTシステム(文献25)を用いたRET-ECDドメインの経時的な二分子相互作用アッセイにより、野生型RETのみならずCaLM(D567N、D567Y)及びCCM(C634R)変異体の二量体化もリガンド/共受容体の添加に影響されることが示された(図6D左)。不活性な二量体化を抑制するR77EとR144Eの二重変異を導入しても二量体化反応が消失しないことから、これらの反応はリガンド/共受容体を含む能動的な二量体化によってもたらされ、これらの分子を含まない不活性な二量体化は介在しないことが示された(図6D右)。今回のMDシミュレーションでは、D567N RET変異体は野生型RETやD567Y変異体よりも、RET-リガンド/共受容体の接触が促進されることによって、より安定なRET-GDNF-GFRα1六量体複合体を形成することが示された(図5F及び5G)。また、GDNFとGFRαの添加により、D567N変異体のNIH3T3細胞での形質転換能とHEK293H細胞でのERK活性化が、D567Y変異体とC634R変異体よりも明らかに増加した(図5H、図6E)。これらのデータは、D567N変異体の発がん特性がリガンド/共受容体の存在下で増大することを示唆しており、MDシミュレーションで観察されたタンパク質間相互作用の増強と一致する。 Coreceptors/ligands contribute to dimerization of RET molecules (24). A time-course bimolecular interaction assay of the RET-ECD domain using the NanoBiT system (Reference 25) revealed that not only wild-type RET but also the dimerization of CaLM (D567N, D567Y) and CCM (C634R) mutants were detected as ligands. /coreceptor addition (Fig. 6D, left). Introducing the R77E and R144E double mutations, which suppress inactive dimerization, did not abolish dimerization reactions, suggesting that these reactions are caused by active dimerization containing a ligand/co-receptor. It was shown that there was no intervening inactive dimerization that did not involve these molecules (Fig. 6D, right). In the present MD simulations, the D567N RET mutant forms a more stable RET-GDNF-GFRα1 hexameric complex than wild-type RET or the D567Y mutant due to enhanced RET-ligand/co-receptor contact. (Figures 5F and 5G). Furthermore, the addition of GDNF and GFRα clearly increased the transformation ability of the D567N mutant in NIH3T3 cells and the activation of ERK in HEK293H cells compared to the D567Y and C634R mutants (Figure 5H, Figure 6E). . These data suggest that the oncogenic properties of the D567N mutant are increased in the presence of ligand/coreceptor, consistent with the enhanced protein-protein interactions observed in MD simulations.

(実施例4) RET-CaLM変異体はRET-TKIのターゲットとなる
最後に、RET-CaLM変異体が既存のRET-TKIの標的となるかどうかを検証した。HEK293H細胞で外因性に発現したCaLM変異体によって引き起こされたERKリン酸化の亢進は、米国食品医薬品局により承認された2つのRET特異的TKIであるセルペルカチニブとプラルセチニブによって抑制された(図7A)(文献20)。RET-CaLM変異体の安定発現により、C634R及びM918Tホットスポット変異体と同様にインターロイキン-3(IL-3)非依存的にBa/F3細胞の増殖が可能になり、CaLM変異体の発がん活性が確認された。CaLM変異体を発現するBa/F3細胞の増殖は、C634R及びM918T変異体に有効な濃度と同程度の濃度のセルペルカチニブおよびプラルセチニブによって抑制された(図7B及び図8のa)。D567N及びD567Y変異体を安定的に発現するNIH3T3細胞は、C634R変異体を発現する細胞と同様にヌードマウスで腫瘍を形成した。セルペルカチニブとプラルセチニブはいずれも、C634R変異体を発現するNIH3T3細胞に対する効果と同様に、D567NとD567Yを発現するNIH3T3細胞の増殖を抑制した(図7C~7E及び図8のb)。これらの結果は、RET-CaLM変異体が既存のRET-TKIで治療標的となり得ることを示す。
(Example 4) RET-CaLM mutants are targets of RET-TKIs Finally, it was verified whether RET-CaLM mutants are targets of existing RET-TKIs. Enhanced ERK phosphorylation caused by exogenously expressed CaLM mutants in HEK293H cells was suppressed by selpercatinib and pralsetinib, two RET-specific TKIs approved by the US Food and Drug Administration (Figure 7A) ( Reference 20). Stable expression of the RET-CaLM mutant enabled proliferation of Ba/F3 cells in an interleukin-3 (IL-3)-independent manner, similar to the C634R and M918T hotspot mutants, and the oncogenic activity of the CaLM mutant. was confirmed. Proliferation of Ba/F3 cells expressing the CaLM mutant was inhibited by selpercatinib and pralsetinib at concentrations comparable to those effective for the C634R and M918T mutants (FIGS. 7B and 8a). NIH3T3 cells stably expressing the D567N and D567Y mutants formed tumors in nude mice similar to cells expressing the C634R mutant. Both selpercatinib and pralsetinib suppressed the proliferation of NIH3T3 cells expressing D567N and D567Y, similar to their effects on NIH3T3 cells expressing the C634R mutant (FIGS. 7C-7E and FIG. 8b). These results indicate that RET-CaLM mutants can be therapeutic targets with existing RET-TKIs.

<参考文献>
1. Howlader N, Forjaz G, Mooradian MJ, Meza R, Kong CY, Cronin KA, et al. The Effect of Advances in Lung-Cancer Treatment on Population Mortality. The New England journal of medicine 2020;383:640-9
2. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. The New England journal of medicine 2011;364:2507-16
3. Skoulidis F, Li BT, Dy GK, Price TJ, Falchook GS, Wolf J, et al. Sotorasib for Lung Cancers with KRAS p.G12C Mutation. The New England journal of medicine 2021;384:2371-81
4. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. The New England journal of medicine 2010;362:2380-8
5. Wirth LJ, Sherman E, Robinson B, Solomon B, Kang H, Lorch J, et al. Efficacy of Selpercatinib in RET-Altered Thyroid Cancers. N Engl J Med 2020;383:825-35
6. Subbiah V, Hu MI, Wirth LJ, Schuler M, Mansfield AS, Curigliano G, et al. Pralsetinib for patients with advanced or metastatic RET-altered thyroid cancer (ARROW): a multi-cohort, open-label, registrational, phase 1/2 study. The lancet Diabetes & endocrinology 2021;9:491-501
7. Ikemura S, Yasuda H, Matsumoto S, Kamada M, Hamamoto J, Masuzawa K, et al. Molecular dynamics simulation-guided drug sensitivity prediction for lung cancer with rare EGFR mutations. Proceedings of the National Academy of Sciences of the United States of America 2019;116:10025-30
8. Foley SB, Rios JJ, Mgbemena VE, Robinson LS, Hampel HL, Toland AE, et al. Use of Whole Genome Sequencing for Diagnosis and Discovery in the Cancer Genetics Clinic. EBioMedicine 2015;2:74-81
9. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021;596:583-9
10. Buel GR, Walters KJ. Can AlphaFold2 predict the impact of missense mutations on structure? Nature structural & molecular biology 2022;29:1-2
11. Mulligan LM. RET revisited: expanding the oncogenic portfolio. Nat Rev Cancer 2014;14:173-86
12. Plaza-Menacho I, Barnouin K, Goodman K, Martinez-Torres RJ, Borg A, Murray-Rust J, et al. Oncogenic RET kinase domain mutations perturb the autophosphorylation trajectory by enhancing substrate presentation in trans. Mol Cell 2014;53:738-51
13. Romei C, Ciampi R, Elisei R. A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma. Nat Rev Endocrinol 2016;12:192-202
14. Arnedo-Pac C, Mularoni L, Muinos F, Gonzalez-Perez A, Lopez-Bigas N. OncodriveCLUSTL: a sequence-based clustering method to identify cancer drivers. Bioinformatics 2019;35:4788-90
15. Li J, Shang G, Chen YJ, Brautigam CA, Liou J, Zhang X, et al. Cryo-EM analyses reveal the common mechanism and diversification in the activation of RET by different ligands. Elife 2019;8
16. Jung J, Kobayashi C, Kasahara K, Tan C, Kuroda A, Minami K, et al. New parallel computing algorithm of molecular dynamics for extremely huge scale biological systems. Journal of computational chemistry 2021;42:231-41
17. Arnedo-Pac C, Mularoni L, Muinos F, Gonzalez-Perez A, Lopez-Bigas N. OncodriveCLUSTL: a sequence-based clustering method to identify cancer drivers. Bioinformatics 2019;35:4788-90
18. AACR Project GENIE: Powering Precision Medicine through an International Consortium. Cancer Discov 2017;7:818-31
19. Chakravarty D, Gao J, Phillips SM, Kundra R, Zhang H, Wang J, et al. OncoKB: A Precision Oncology Knowledge Base. JCO Precis Oncol 2017;2017
20. Thein KZ, Velcheti V, Mooers BHM, Wu J, Subbiah V. Precision therapy for RET-altered cancers with RET inhibitors. Trends in cancer 2021;7:1074-88
21. Kohno T, Tabata J, Nakaoku T. REToma: a cancer subtype with a shared driver oncogene. Carcinogenesis 2020;41:123-9
22. Wang K, Holt C, Lu J, Brohus M, Larsen KT, Overgaard MT, et al. Arrhythmia mutations in calmodulin cause conformational changes that affect interactions with the cardiac voltage-gated calcium channel. Proceedings of the National Academy of Sciences 2018;115:E10556-E65
23. Priori SG, Napolitano C, Memmi M, Colombi B, Drago F, Gasparini M, et al. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation 2002;106:69-74
24. Bigalke JM, Aibara S, Roth R, Dahl G, Gordon E, Dorbeus S, et al. Cryo-EM structure of the activated RET signaling complex reveals the importance of its cysteine-rich domain. Sci Adv 2019;5:eaau4202
25. Dixon AS, Schwinn MK, Hall MP, Zimmerman K, Otto P, Lubben TH, et al. NanoLuc Complementation Reporter Optimized for Accurate Measurement of Protein Interactions in Cells. ACS chemical biology 2016;11:400-8
26. Kohsaka S, Nagano M, Ueno T, Suehara Y, Hayashi T, Shimada N, et al. A method of high-throughput functional evaluation of EGFR gene variants of unknown significance in cancer. Sci Transl Med 2017;9
27. Subbiah V, Yang D, Velcheti V, Drilon A, Meric-Bernstam F. State-of-the-Art Strategies for Targeting RET-Dependent Cancers. J Clin Oncol 2020;38:1209-21
28. Kohno T, Ichikawa H, Totoki Y, Yasuda K, Hiramoto M, Nammo T, et al. KIF5B-RET fusions in lung adenocarcinoma. Nat Med 2012;18:375-7
29. Gainor JF, Curigliano G, Kim DW, Lee DH, Besse B, Baik CS, et al. Pralsetinib for RET fusion-positive non-small-cell lung cancer (ARROW): a multi-cohort, open-label, phase 1/2 study. The Lancet Oncology 2021;22:959-69
30. Drilon A, Oxnard GR, Tan DSW, Loong HHF, Johnson M, Gainor J, et al. Efficacy of Selpercatinib in RET Fusion-Positive Non-Small-Cell Lung Cancer. The New England journal of medicine 2020;383:813-24
31. Rich TA, Reckamp KL, Chae YK, Doebele RC, Iams WT, Oh MS, et al. Analysis of cell-free DNA from 32,989 advanced cancers reveals novel co-occurring activating RET alterations and oncogenic signaling pathway aberrations. Clin Cancer Res 2019;Epub ahead of print
32. Watanabe S, Takeda M, Otani T, Yoshida T, Sakai K, Olek E, et al. Complete Response to Selective RET Inhibition With Selpercatinib (LOXO-292) in a Patient With RET Fusion-Positive Breast Cancer. JCO Precis Oncol 2021;5
33. Tsui DCC, Kavanagh BD, Honce JM, Rossi C, Patil T, Camidge DR. Central Nervous System Response to Selpercartinib in Patient With RET-rearranged Non-small Cell Lung Cancer After Developing Leptomeningeal Disease on Pralsetinib. Clinical lung cancer 2021
34. Ortiz MV, Gerdemann U, Raju SG, Henry D, Smith S, Rothenberg SM, et al. Activity of the Highly Specific RET Inhibitor Selpercatinib (LOXO-292) in Pediatric Patients With Tumors Harboring RET Gene Alterations. JCO Precis Oncol 2020;4
35. Yoshizawa T, Uchibori K, Araki M, Matsumoto S, Ma B, Kanada R, et al. Microsecond-timescale MD simulation of EGFR minor mutation predicts the structural flexibility of EGFR kinase core that reflects EGFR inhibitor sensitivity. NPJ Precis Oncol 2021;5:32
36. Assadollahi V, Rashidieh B, Alasvand M, Abdolahi A, Lopez JA. Interaction and molecular dynamics simulation study of Osimertinib (AstraZeneca 9291) anticancer drug with the EGFR kinase domain in native protein and mutated L844V and C797S. Journal of cellular biochemistry 2019;120:13046-55
37. Zabriskie MS, Eide CA, Tantravahi SK, Vellore NA, Estrada J, Nicolini FE, et al. BCR-ABL1 compound mutations combining key kinase domain positions confer clinical resistance to ponatinib in Ph chromosome-positive leukemia. Cancer cell 2014;26:428-42
38. Eide CA, Zabriskie MS, Savage Stevens SL, Antelope O, Vellore NA, Than H, et al. Combining the Allosteric Inhibitor Asciminib with Ponatinib Suppresses Emergence of and Restores Efficacy against Highly Resistant BCR-ABL1 Mutants. Cancer cell 2019;36:431-43.e5
39. Nakaoku T, Kohno T, Araki M, Niho S, Chauhan R, Knowles PP, et al. A secondary RET mutation in the activation loop conferring resistance to vandetanib. Nat Commun 2018;9:625
40. Lourenco C, Resetca D, Redel C, Lin P, MacDonald AS, Ciaccio R, et al. MYC protein interactors in gene transcription and cancer. Nat Rev Cancer 2021;21:579-91
41. Ellrott K, Bailey MH, Saksena G, Covington KR, Kandoth C, Stewart C, et al. Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines. Cell Systems 2018;6:271-81.e7
42. Jacobson MP, Friesner RA, Xiang Z, Honig B. On the role of the crystal environment in determining protein side-chain conformations. J Mol Biol 2002;320:597-608
43. Jacobson MP, Pincus DL, Rapp CS, Day TJ, Honig B, Shaw DE, et al. A hierarchical approach to all-atom protein loop prediction. Proteins 2004;55:351-67
44. Li H, Robertson AD, Jensen JH. Very fast empirical prediction and rationalization of protein pKa values. Proteins 2005;61:704-21
45. Roos K, Wu C, Damm W, Reboul M, Stevenson JM, Lu C, et al. OPLS3e: Extending Force Field Coverage for Drug-Like Small Molecules. Journal of chemical theory and computation 2019;15:1863-74
46. Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. The Journal of Physical Chemistry 1987;91:6269-71
47. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, et al. Calculating Structures and Free Energies of Complex Molecules: Combining Molecular Mechanics and Continuum Models. Acc Chem Res 2000;33:889-97
48. Abraham MJ, Murtola T, Schulz R, Pall S, Smith JC, Hess B, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015;1-2:19-25
49. Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 2010;78:1950-8
50. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics 1983;79:926-35
51. Darden T, York D, Pedersen L. Particle mesh Ewald: An N log(N) method for Ewald sums in large systems. The Journal of Chemical Physics 1993;98:10089-92
52. Feenstra KA, Hess B, Berendsen HJC. Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems. J Comput Chem 1999;20:786-98
53. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: A linear constraint solver for molecular simulations. J Comput Chem 1997;18:1463-72
54. Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. The Journal of Chemical Physics 2007;126:014101
55. Parrinello M, Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics 1981;52:7182-90
56. Doerr S, Harvey MJ, Noe F, De Fabritiis G. HTMD: High-Throughput Molecular Dynamics for Molecular Discovery. J Chem Theory Comput 2016;12:1845-52
<References>
1. Howlader N, Forjaz G, Mooradian MJ, Meza R, Kong CY, Cronin KA, et al. The Effect of Advances in Lung-Cancer Treatment on Population Mortality. The New England journal of medicine 2020;383:640-9
2. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. The New England journal of medicine 2011;364:2507-16
3. Skoulidis F, Li BT, Dy GK, Price TJ, Falchook GS, Wolf J, et al. Sotorasib for Lung Cancers with KRAS p. G12C Mutation. The New England journal of medicine 2021;384:2371-81
4. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. The New England journal of medicine 2010;362:2380-8
5. Wirth LJ, Sherman E, Robinson B, Solomon B, Kang H, Lorch J, et al. Efficacy of Selpercatinib in RET-Altered Thyroid Cancers. N Engl J Med 2020;383:825-35
6. Subbiah V, Hu MI, Wirth LJ, Schuler M, Mansfield AS, Curigliano G, et al. Pralsetinib for patients with advanced or metastatic RET-altered thyroid cancer (ARROW): a multi-cohort, open-label, regis trational, phase 1/2 study. The lancet Diabetes & Endocrinology 2021;9:491-501
7. Ikemura S, Yasuda H, Matsumoto S, Kamada M, Hamamoto J, Masuzawa K, et al. Molecular dynamics simulation-guided drug sensitivity prediction for lung cancer with rare EGFR mutations. Proceedings of the National Academy of Sciences of the United States of America 2019;116:10025-30
8. Foley SB, Rios JJ, Mgbemena VE, Robinson LS, Hampel HL, Toland AE, et al. Use of Whole Genome Sequencing for Diagnosis and Discovery in the Cancer Genetics Clinic. EBioMedicine 2015;2:74-81
9. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021;596:583-9
10. Buel GR, Walters KJ. Can AlphaFold2 predict the impact of missense mutations on structure? Nature structural & molecular biology 2022;29:1-2
11. Mulligan LM. RET revisited: expanding the oncogenic portfolio. Nat Rev Cancer 2014;14:173-86
12. Plaza-Menacho I, Barnouin K, Goodman K, Martinez-Torres RJ, Borg A, Murray-Rust J, et al. Oncogenic RET kinase domain mutations perturb the autophosphorylation trajectory by enhancing substrate presentation in trans. Mol Cell 2014;53:738-51
13. Romei C, Ciampi R, Elisei R. A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma. Nat Rev Endocrinol 2016;12:192-202
14. Arnedo-Pac C, Mularoni L, Muinos F, Gonzalez-Perez A, Lopez-Bigas N. OncodriveCLUSTL: a sequence-based clustering method to identify cancer drivers. Bioinformatics 2019;35:4788-90
15. Li J, Shang G, Chen YJ, Brautigam CA, Liou J, Zhang X, et al. Cryo-EM analyzes reveals the common mechanism and diversification in the activation of RET by different ligands. Elife 2019;8
16. Jung J, Kobayashi C, Kasahara K, Tan C, Kuroda A, Minami K, et al. New parallel computing algorithm of molecular dynamics for extremely huge scale biological systems. Journal of computational chemistry 2021;42:231-41
17. Arnedo-Pac C, Mularoni L, Muinos F, Gonzalez-Perez A, Lopez-Bigas N. OncodriveCLUSTL: a sequence-based clustering method to identify cancer drivers. Bioinformatics 2019;35:4788-90
18. AACR Project GENIE: Powering Precision Medicine through an International Consortium. Cancer Discov 2017;7:818-31
19. Chakravarty D, Gao J, Phillips SM, Kundra R, Zhang H, Wang J, et al. OncoKB: A Precision Oncology Knowledge Base. JCO Precis Oncol 2017;2017
20. Thein KZ, Velcheti V, Mooers BHM, Wu J, Subbiah V. Precision therapy for RET-altered cancers with RET inhibitors. Trends in cancer 2021;7:1074-88
21. Kohno T, Tabata J, Nakaoku T. REToma: a cancer subtype with a shared driver oncogene. Carcinogenesis 2020;41:123-9
22. Wang K, Holt C, Lu J, Brohus M, Larsen KT, Overgaard MT, et al. Arrhythmia mutations in calmodulin cause conformational changes that affect interactions with the cardiac voltage-gated c alcium channel. Proceedings of the National Academy of Sciences 2018;115:E10556-E65
23. Priori SG, Napolitano C, Memmi M, Colombi B, Drago F, Gasparini M, et al. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation 2002;106:69-74
24. Bigalke JM, Aibara S, Roth R, Dahl G, Gordon E, Dorbeus S, et al. Cryo-EM structure of the activated RET signaling complex reveals the importance of its cysteine-rich domain. Sci Adv 2019;5:eaau4202
25. Dixon AS, Schwinn MK, Hall MP, Zimmerman K, Otto P, Lubben TH, et al. NanoLuc Complementation Reporter Optimized for Accurate Measurement of Protein Interactions in Cells. ACS chemical biology 2016;11:400-8
26. Kohsaka S, Nagano M, Ueno T, Suehara Y, Hayashi T, Shimada N, et al. A method of high-throughput functional evaluation of EGFR gene variants of unknown significance in cancer. Sci Transl Med 2017;9
27. Subbiah V, Yang D, Velcheti V, Drilon A, Meric-Bernstam F. State-of-the-Art Strategies for Targeting RET-Dependent Cancers. J Clin Oncol 2020;38:1209-21
28. Kohno T, Ichikawa H, Totoki Y, Yasuda K, Hiramoto M, Nammo T, et al. KIF5B-RET fusions in lung adenocarcinoma. Nat Med 2012;18:375-7
29. Gainor JF, Curigliano G, Kim DW, Lee DH, Besse B, Baik CS, et al. Pralsetinib for RET fusion-positive non-small-cell lung cancer (ARROW): a multi-cohort, open-label, phase 1/2 study. The Lancet Oncology 2021;22:959-69
30. Drilon A, Oxnard GR, Tan DSW, Loong HHF, Johnson M, Gainor J, et al. Efficacy of Selpercatinib in RET Fusion-Positive Non-Small-Cell Lung Cancer. The New England journal of medicine 2020;383:813-24
31. Rich TA, Reckamp KL, Chae YK, Doebele RC, Iams WT, Oh MS, et al. Analysis of cell-free DNA from 32,989 advanced cancers reveals novel co-occurring activating RET alterations and oncogeni c signaling pathway aberrations. Clin Cancer Res 2019; Epub ahead of print
32. Watanabe S, Takeda M, Otani T, Yoshida T, Sakai K, Olek E, et al. Complete Response to Selective RET Inhibition With Selpercatinib (LOXO-292) in a Patient With RET Fusion-Positive Breast C ancer. JCO Precis Oncol 2021;5
33. Tsui DCC, Kavanagh BD, Honce JM, Rossi C, Patil T, Camidge DR. Central Nervous System Response to Selpercartinib in Patient With RET-rearranged Non-small Cell Lung Cancer After Development ing Leptomeningeal Disease on Pralsetinib. Clinical lung cancer 2021
34. Ortiz MV, Gerdemann U, Raju SG, Henry D, Smith S, Rothenberg SM, et al. Activity of the Highly Specific RET Inhibitor Selpercatinib (LOXO-292) in Pediatric Patients With Tumors Harboring RET Gen e Alterations. JCO Precis Oncol 2020;4
35. Yoshizawa T, Uchibori K, Araki M, Matsumoto S, Ma B, Kanada R, et al. Microsecond-timescale MD simulation of EGFR minor mutation predictors the structural flexibility of EGFR kinase core that r effects EGFR inhibitor sensitivity. NPJ Precis Oncol 2021; 5:32
36. Assadollahi V, Rashidieh B, Alasvand M, Abdullahi A, Lopez JA. Interaction and molecular dynamics simulation study of Osimertinib (AstraZeneca 9291) anticancer drug with the EGFR kina se domain in native protein and mutated L844V and C797S. Journal of cellular biochemistry 2019;120:13046-55
37. Zabriskie MS, Eide CA, Tantravahi SK, Vellore NA, Estrada J, Nicolini FE, et al. BCR-ABL1 compound mutations combining key kinase domain positions confer clinical resistance to ponatinib in Ph chromosom e-positive leukemia. Cancer cell 2014;26:428-42
38. Eide CA, Zabriskie MS, Savage Stevens SL, Antelope O, Vellore NA, Than H, et al. Combining the Allosteric Inhibitor Asciminib with Ponatinib Suppresses Emergence of and Restores Efficacy against Highly Resistant BCR-ABL1 Mutants. Cancer cell 2019;36:431-43. e5
39. Nakaoku T, Kohno T, Araki M, Niho S, Chauhan R, Knowles PP, et al. A secondary RET mutation in the activation loop conferring resistance to vandetanib. Nat Commun 2018;9:625
40. Lourenco C, Resetca D, Redel C, Lin P, MacDonald AS, Ciaccio R, et al. MYC protein interactors in gene transcription and cancer. Nat Rev Cancer 2021;21:579-91
41. Elrott K, Bailey MH, Saksena G, Covington KR, Kandoth C, Stewart C, et al. Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines. Cell Systems 2018;6:271-81. e7
42. Jacobson MP, Friesner RA, Xiang Z, Honig B. On the role of the crystal environment in determining protein side-chain conformations. J Mol Biol 2002;320:597-608
43. Jacobson MP, Pincus DL, Rapp CS, Day TJ, Honig B, Shaw DE, et al. A hierarchical approach to all-atom protein loop prediction. Proteins 2004;55:351-67
44. Li H, Robertson AD, Jensen JH. Very fast empirical prediction and rationalization of protein pKa values. Proteins 2005;61:704-21
45. Roos K, Wu C, Damm W, Reboul M, Stevenson JM, Lu C, et al. OPLS3e: Extending Force Field Coverage for Drug-Like Small Molecules. Journal of chemical theory and computation 2019;15:1863-74
46. Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. The Journal of Physical Chemistry 1987;91:6269-71
47. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, et al. Calculating Structures and Free Energies of Complex Molecules: Combining Molecular Mechanics and Continuum Models. Acc Chem Res 2000;33:889-97
48. Abraham MJ, Murtola T, Schulz R, Pall S, Smith JC, Hess B, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015;1-2:19-25
49. Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 2010;78:1950-8
50. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics 1983;79:926-35
51. Darden T, York D, Pedersen L. Particle mesh Ewald: An N log(N) method for Ewald sums in large systems. The Journal of Chemical Physics 1993;98:10089-92
52. Feenstra KA, Hess B, Berendsen HJC. Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems. J Comput Chem 1999;20:786-98
53. Hess B, Bekker H, Berendsen HJC, Fraaij JGEM. LINCS: A linear constraint solver for molecular simulations. J Comput Chem 1997;18:1463-72
54. Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. The Journal of Chemical Physics 2007;126:014101
55. Parrinello M, Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics 1981;52:7182-90
56. Doerr S, Harvey MJ, Noe F, De Fabritiis G. HTMD: High-Throughput Molecular Dynamics for Molecular Discovery. J Chem Theory Comput 2016;12:1845-52

以上説明したように、本発明によれば、RETタンパク質のカルモジュリン様モチーフにおけるアミノ酸変異を検出することによって、RETキナーゼ阻害剤によるがん治療の有効性を予測することが可能となる。そして、これにより、当該薬剤を投与することが有効ではないと考えられるがん患者への薬剤の投与を回避することができる。そのため本発明は、がん治療の効率を高める上で、極めて有用である。 As explained above, according to the present invention, it is possible to predict the effectiveness of cancer treatment using a RET kinase inhibitor by detecting amino acid mutations in the calmodulin-like motif of the RET protein. This makes it possible to avoid administering the drug to cancer patients for whom administration of the drug is considered ineffective. Therefore, the present invention is extremely useful in increasing the efficiency of cancer treatment.

Claims (4)

RETキナーゼ阻害剤によるがん治療の有効性を判定する方法であって、
被検者から単離した試料において、RETタンパク質のカルモジュリン様モチーフにおけるアミノ酸変異を検出する工程と、
前記工程にて、前記アミノ酸変異が検出されれば、前記被検者におけるRETキナーゼ阻害剤によるがん治療の有効性が高いと判定する工程とを、含む方法。
A method for determining the effectiveness of cancer treatment with a RET kinase inhibitor, the method comprising:
Detecting amino acid mutations in the calmodulin-like motif of the RET protein in the sample isolated from the subject;
If the amino acid mutation is detected in the step, determining that the effectiveness of cancer treatment with the RET kinase inhibitor in the subject is high.
前記アミノ酸変異が、RETタンパク質において、567位のアスパラギン酸、568位のグリシン、571位のアスパラギン酸、574位のグルタミン酸及び584位のアスパラギン酸から選択される少なくとも1のアミノ酸が他のアミノ酸に置換されている変異である、請求項1に記載の方法。 The amino acid mutation is a substitution of at least one amino acid selected from aspartic acid at position 567, glycine at position 568, aspartic acid at position 571, glutamic acid at position 574, and aspartic acid at position 584 with another amino acid in the RET protein. 2. The method according to claim 1, wherein the mutation is 請求項1又は2に記載の方法に用いるための試薬であって、下記(i)若しくは(ii)に記載のオリゴヌクレオチド、又は(iii)に記載の抗体を含む試薬
(i)前記アミノ酸変異をコードするヌクレオチドを挟み込むように設計された、1対のオリゴヌクレオチド
(ii)前記アミノ酸変異をコードするヌクレオチドにハイブリダイズする、オリゴヌクレオチド
(iii)前記アミノ酸変異を特異的に認識する抗体。
A reagent for use in the method according to claim 1 or 2, comprising the oligonucleotide according to (i) or (ii) below, or the antibody according to (iii). a pair of oligonucleotides designed to sandwich the encoding nucleotides; (ii) an oligonucleotide that hybridizes to the nucleotide encoding the amino acid mutation; and (iii) an antibody that specifically recognizes the amino acid mutation.
請求項1又は2に記載の方法によってるがん治療の有効性が高いと判定された前記被検者に摂取させることを特徴とする、RETキナーゼ阻害剤。 A RET kinase inhibitor, characterized in that it is ingested by the subject who has been determined to have high effectiveness in cancer treatment by the method according to claim 1 or 2.
JP2022089905A 2022-06-01 2022-06-01 Method for determining effectiveness of cancer treatment using ret kinase inhibitor Pending JP2023177142A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022089905A JP2023177142A (en) 2022-06-01 2022-06-01 Method for determining effectiveness of cancer treatment using ret kinase inhibitor
PCT/JP2023/019779 WO2023234222A1 (en) 2022-06-01 2023-05-26 Method for determining effectiveness of cancer treatment using ret kinase inhibitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022089905A JP2023177142A (en) 2022-06-01 2022-06-01 Method for determining effectiveness of cancer treatment using ret kinase inhibitor

Publications (1)

Publication Number Publication Date
JP2023177142A true JP2023177142A (en) 2023-12-13

Family

ID=89024973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022089905A Pending JP2023177142A (en) 2022-06-01 2022-06-01 Method for determining effectiveness of cancer treatment using ret kinase inhibitor

Country Status (2)

Country Link
JP (1) JP2023177142A (en)
WO (1) WO2023234222A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6032616B2 (en) * 2011-08-04 2016-11-30 国立研究開発法人国立がん研究センター KIF5B gene and RET gene fusion gene and method for determining the effectiveness of cancer treatment targeting the fusion gene
WO2017155044A1 (en) * 2016-03-11 2017-09-14 国立研究開発法人国立がん研究センター Secondary mutation detection method and secondary mutation detection kit

Also Published As

Publication number Publication date
WO2023234222A1 (en) 2023-12-07

Similar Documents

Publication Publication Date Title
Belli et al. ESMO recommendations on the standard methods to detect RET fusions and mutations in daily practice and clinical research
US20220251667A1 (en) Novel estrogen receptor mutations and uses thereof
Masood et al. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in non-small cell lung cancer harboring uncommon EGFR mutations: Focus on afatinib
Bertotti et al. The genomic landscape of response to EGFR blockade in colorectal cancer
Bollag et al. Vemurafenib: the first drug approved for BRAF-mutant cancer
Vizoso et al. Epigenetic activation of a cryptic TBC1D16 transcript enhances melanoma progression by targeting EGFR
Du et al. Structure–function analysis of oncogenic EGFR Kinase Domain Duplication reveals insights into activation and a potential approach for therapeutic targeting
Cheng et al. Molecular pathology of lung cancer: key to personalized medicine
Bordi et al. Circulating DNA in diagnosis and monitoring EGFR gene mutations in advanced non-small cell lung cancer
WO2017151517A1 (en) Methods of treating cancer
US20170198353A1 (en) Kras mutations and resistance to anti-egfr treatment
Whyte et al. Correlation of PIK3Ca mutations with gene expression and drug sensitivity in NCI-60 cell lines
Harada et al. NTRK fusions in lung cancer: from biology to therapy
CA2556227A1 (en) Method to determine responsiveness of cancer to epidermal growth factor receptor targeting treatments
JP2009278978A (en) Mutation in bcr-abl tyrosine kinase associated with resistance to sti-571
EP2912194B1 (en) Androgen receptor variants and methods for making and using
Vermeer et al. ErbB2, EphrinB1, Src kinase and PTPN13 signaling complex regulates MAP kinase signaling in human cancers
Harada et al. TRK inhibitors in non-small cell lung cancer
Biswas et al. Genomic profiling of multiple sequentially acquired tumor metastatic sites from an “exceptional responder” lung adenocarcinoma patient reveals extensive genomic heterogeneity and novel somatic variants driving treatment response
Kojadinovic et al. Targeting TRK: A fast-tracked application of precision oncology and future directions
US20150080239A1 (en) Classification and Actionability Indices for Cancer
Chu et al. Kinase fusion-related thyroid carcinomas: distinct pathologic entities with evolving diagnostic implications
Kim et al. Akt-mediated Ephexin1–Ras interaction promotes oncogenic Ras signaling and colorectal and lung cancer cell proliferation
WO2015066432A1 (en) Method of treating post-myeloproliferative neoplasms (mpns) and post-mpn acute myeloid leukemia
Myers et al. Hotspot oncomutations: implications for personalized cancer treatment