JP2023176278A - Underfloor reinforcement method and underfloor reinforcement structure - Google Patents

Underfloor reinforcement method and underfloor reinforcement structure Download PDF

Info

Publication number
JP2023176278A
JP2023176278A JP2022088475A JP2022088475A JP2023176278A JP 2023176278 A JP2023176278 A JP 2023176278A JP 2022088475 A JP2022088475 A JP 2022088475A JP 2022088475 A JP2022088475 A JP 2022088475A JP 2023176278 A JP2023176278 A JP 2023176278A
Authority
JP
Japan
Prior art keywords
hole
cavity
ground
vertical hole
floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022088475A
Other languages
Japanese (ja)
Other versions
JP7236776B1 (en
Inventor
聡男 西村
Toshio Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Reiwa Corp Co Ltd
Original Assignee
Reiwa Corp Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reiwa Corp Co Ltd filed Critical Reiwa Corp Co Ltd
Priority to JP2022088475A priority Critical patent/JP7236776B1/en
Application granted granted Critical
Publication of JP7236776B1 publication Critical patent/JP7236776B1/en
Publication of JP2023176278A publication Critical patent/JP2023176278A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

To provide an underfloor reinforcement method or the like increased in strength in a reinforced place.SOLUTION: The underfloor reinforcement method for reinforcing an underfloor by filling a cavity 3 between a ground 2 and a floor 1 comprises: a step of forming a through-hole 4 connected to the cavity 3 in the floor 1; a step of inserting a rod-like drill from the through-hole 4 into the cavity 3 side to dig in the ground 2, and forming a longitudinal hole extending down from the cavity 3 directly below the through-hole 4; a step of supplying a liquid ground reinforcement 5 from the through-hole 4 into the cavity 3 and the longitudinal hole; a step of inserting the drill from the through-hole 4 into the longitudinal hole and stirring the ground reinforcement 5 in the longitudinal hole to permeate the ground reinforcement 5 through soil around the longitudinal hole, and retaining the shape of the longitudinal hole through curing action of the ground reinforcement 5; a step of supplying a foaming resin from the through-hole 4 to fill the cavity 3 and the longitudinal hole; and a step of closing the through-hole 4 after the cavity 3 and the longitudinal hole have been filled with the foaming resin.SELECTED DRAWING: Figure 6

Description

特許法第30条第2項適用申請有り (1)掲載アドレス(トップページ)https://reiwa-corp.net/ (発明掲載ページ)https://reiwa-corp.net/construction.html 令和3年7月1日掲載Application for application of Article 30, Paragraph 2 of the Patent Act has been filed (1) Publication address (top page) https://reiwa-corp. net/ (invention publication page) https://reiwa-corp. net/construction. html Posted on July 1, 2021

本発明は、床下補強方法、及び床下補強構造に関する。 The present invention relates to an underfloor reinforcing method and an underfloor reinforcing structure.

工場や倉庫等の床は、一般的に、コンクリート、モルタル等のセメント系材料により構成される。この種の床は、通常、地盤を覆うように、所定の厚みを有する層状(板状)に形成される。このような床は、強度や耐荷重等に優れるため、広く用いられている。 Floors of factories, warehouses, etc. are generally made of cement-based materials such as concrete and mortar. This type of floor is usually formed into a layer (plate shape) having a predetermined thickness so as to cover the ground. Such floors are widely used because they have excellent strength and load resistance.

ところで、この種の床の下側には、時間の経過と共に、空洞が形成されてしまうことが知られている。空洞は、主に、床上に設置された各種の機械装置(例えば、工作機械)や、床上を移動する移動体(例えば、フォークリフト)等から発生した振動が地盤に伝わることにより、地盤が緩んで沈下するために形成されると考えられている。このような空洞は、床と地盤との間に形成されるため、空洞が形成された部分の床は、地盤から離れて宙に浮いたような状態となる。つまり、空洞が形成された部分の床は、地盤で支えられていないため、それ自体の強度だけで、荷重を支えることになる。このような状態の床を、放置したままでいると、床にクラック等の破損が発生し、場合によっては、床が陥没してしまうこともあった。 By the way, it is known that cavities are formed under this type of floor over time. Cavities are mainly caused by vibrations generated by various mechanical devices installed on the floor (e.g. machine tools) or moving objects moving on the floor (e.g. forklifts) being transmitted to the ground, causing the ground to loosen. It is thought that it is formed due to subsidence. Since such a cavity is formed between the floor and the ground, the part of the floor where the cavity is formed is separated from the ground and appears to be floating in the air. In other words, the floor in the area where the cavity is formed is not supported by the ground, so it supports the load solely by its own strength. If a floor in such a state is left unattended, damage such as cracks may occur in the floor, and in some cases, the floor may cave in.

また、空洞内は湿気(水分)が溜まり易いため、床にクラック等が発生すると、そのクラック等から床の内部にまで、水分が入り込んでしまうことがあった。床の内部には、一般的に、補強等を目的とした鉄筋が埋設されているため、そのような鉄筋に水分が接触すると、時間の経過と共に、鉄筋に錆が生じつつ、その鉄筋の体積が膨張することになる。すると、更にクラック等が成長して、床が破壊されてしまう。 Furthermore, since moisture (moisture) tends to accumulate inside the cavity, if cracks or the like occur in the floor, moisture may enter through the cracks or the like into the interior of the floor. Generally, reinforcing bars are buried inside the floor for reinforcement purposes, so if moisture comes into contact with such reinforcing bars, the reinforcing bars will rust over time and the volume of the reinforcing bars will decrease. will expand. As a result, cracks and the like will grow further and the floor will be destroyed.

従来、このような空洞が原因で床が破壊されてしまう前に、空洞を埋めて床下を補強する作業が行われている。 Conventionally, before the floor is destroyed due to such cavities, work has been carried out to fill the cavities and reinforce the underfloor.

例えば、特許文献1には、空洞が形成された部分のコンクリート床に、0.5cm~1.0cmの貫通孔を形成し、その貫通孔から空洞に水を注入して、地盤内に水を浸透させた後、その貫通孔に綿を詰めた状態で、その綿越しに、所定の樹脂を注入することが記載されている。このようにして注入された樹脂が、発泡して膨張することにより、空洞が樹脂で埋められる。なお、貫通孔は、最終的に、コンクリートで塞がれる。このような床下補強方法は、床を打ち替える必要がなく、施工が容易であり、しかもコスト的に有利であるため、近年、注目されている。 For example, in Patent Document 1, a through hole of 0.5 cm to 1.0 cm is formed in the concrete floor in the area where the cavity is formed, and water is injected into the cavity through the through hole to inject water into the ground. It is described that after infiltration, a predetermined resin is injected through the cotton with cotton stuffed in the through hole. The resin injected in this manner foams and expands, thereby filling the cavity with the resin. Note that the through hole will eventually be covered with concrete. Such an underfloor reinforcement method has attracted attention in recent years because it does not require replacing the floor, is easy to construct, and is advantageous in terms of cost.

特許第6885641号Patent No. 6885641

従来の床下補強方法には、改善の余地があった。例えば、時間の経過と共に、振動等の影響で、空洞を埋めた部分の樹脂が床や地盤に対して位置ずれすることにより、再び補強箇所に新たな空洞が形成されてしまう虞があった。そのため、この種の床下補強方法では、補修箇所の更なる強度の向上が望まれていた。 Conventional underfloor reinforcement methods have room for improvement. For example, over time, due to the influence of vibrations and the like, the resin in the part that filled the cavity becomes misaligned with respect to the floor or ground, and there is a risk that a new cavity will be formed again at the reinforced location. Therefore, in this type of underfloor reinforcement method, it has been desired to further improve the strength of the repaired area.

本発明の目的は、補強箇所の強度が向上した床下補強方法等を提供することである。 An object of the present invention is to provide an underfloor reinforcing method and the like in which the strength of reinforced areas is improved.

前記課題を解決するための手段は、以下の通りである。即ち、
<1> 地盤と、その地盤上に施工された所定の厚みを有する床との間に形成された空洞を埋めることで床下を補強する床下補強方法であって、前記床に、厚み方向に貫通しつつ前記空洞と繋がる貫通孔を形成する貫通孔形成工程と、前記貫通孔から前記空洞側に棒状のドリルを挿入して前記ドリルにより地盤を掘り下げることで、前記貫通孔の真下に、前記空洞から下方に延びた縦穴を形成する縦穴形成工程と、前記貫通孔から前記空洞及び前記縦穴に液状の地盤強化剤を供給する第1供給工程と、前記貫通孔から前記縦穴に前記ドリルを挿入して前記ドリルにより前記縦穴内の前記地盤強化剤を攪拌することにより、前記地盤強化剤を前記縦穴の周囲の土壌に浸透させて、前記地盤強化剤による硬化作用により、前記縦穴の形状を保持させる縦穴形状保持工程と、前記縦穴形状保持工程の後、前記貫通孔から前記空洞及び前記縦穴を埋めるように、発泡性樹脂を供給する第2供給工程と、前記空洞及び前記縦穴が、前記発泡性樹脂で埋められた後、前記貫通孔を塞ぐ閉塞工程とを備える床下補強方法。
Means for solving the above problem are as follows. That is,
<1> An underfloor reinforcement method for reinforcing the underfloor by filling a cavity formed between the ground and a floor having a predetermined thickness constructed on the ground, the method comprising penetrating the floor in the thickness direction. a through-hole forming step of forming a through-hole connected to the cavity, and inserting a rod-shaped drill from the through-hole into the cavity side and digging into the ground with the drill, thereby forming the cavity directly below the through-hole. a vertical hole forming step of forming a vertical hole extending downward from the through hole, a first supply step of supplying a liquid ground strengthening agent from the through hole to the cavity and the vertical hole, and inserting the drill from the through hole into the vertical hole. By stirring the ground strengthening agent in the vertical hole with the drill, the soil strengthening agent is infiltrated into the soil around the vertical hole, and the shape of the vertical hole is maintained by the hardening action of the soil strengthening agent. a vertical hole shape retaining step, and a second supply step of supplying a foamable resin from the through hole to fill the cavity and the vertical hole after the vertical hole shape retaining step; A method for reinforcing an underfloor, comprising a step of closing the through hole after the through hole is filled with resin.

<2> 前記第2供給工程において、前記貫通孔に、前記発泡性樹脂を供給するノズルを挿入すると共に、前記貫通孔と前記ノズルとの間に形成される隙間を、液体を含ませた保水性シートで塞ぐ前記<1>に記載の床下補強方法。 <2> In the second supply step, a nozzle for supplying the foamable resin is inserted into the through hole, and a gap formed between the through hole and the nozzle is filled with water containing liquid. The underfloor reinforcing method according to <1> above, in which the underfloor reinforcement method is covered with a rubber sheet.

<3> 前記閉塞工程において、前記第2供給工程で使用した前記保水性シートを、前記貫通孔に詰め込み、その詰め込んだ前記保水性シートを覆うように、セメント系材料で前記貫通孔を塞ぐ前記<2>に記載の床下補強方法。 <3> In the closing step, the water-retaining sheet used in the second supplying step is packed into the through-hole, and the through-hole is closed with a cement-based material so as to cover the packed water-retaining sheet. The underfloor reinforcement method described in <2>.

<4> 地盤と、その地盤上に施工された所定の厚みを有する床との間に形成された空洞を埋める床下補強構造であって、前記床に形成され、厚み方向に貫通しつつ前記空洞と繋がる貫通孔と、前記貫通孔の真下に形成され、前記空洞から下方に延びつつ、周囲の土壌に浸透した地盤強化剤による硬化作用により、形状が保持される縦穴と、前記空洞及び前記縦穴を埋める発泡性樹脂からなる発泡済み樹脂と、前記貫通孔を塞ぐ栓と、を備える床下補強構造。 <4> An underfloor reinforcement structure that fills a cavity formed between the ground and a floor having a predetermined thickness constructed on the ground, the structure being formed in the floor and penetrating the cavity in the thickness direction. a through hole connected to the through hole, a vertical hole formed directly below the through hole, extending downward from the cavity and retaining its shape due to the hardening action of a soil strengthening agent that has permeated into the surrounding soil, and the cavity and the vertical hole. An underfloor reinforcing structure comprising a foamed resin made of a foamable resin that fills the through hole, and a plug that closes the through hole.

本発明によれば、補強箇所の強度が向上した床下補強方法等を提供することができる。 According to the present invention, it is possible to provide an underfloor reinforcing method and the like in which the strength of the reinforced portion is improved.

地盤上に施工された床の一例を示す説明図Explanatory diagram showing an example of a floor constructed on the ground 床と地盤との間に空洞が形成された状態を示す説明図Explanatory diagram showing a state in which a cavity is formed between the floor and the ground 貫通孔形成工程を示す説明図Explanatory diagram showing the through hole forming process 縦穴形成工程を示す説明図Explanatory diagram showing the vertical hole forming process 縦穴形成工程により、地盤を掘り下げて形成された縦穴を示す説明図An explanatory diagram showing a vertical hole formed by digging into the ground during the vertical hole formation process 第1供給工程を示す説明図Explanatory diagram showing the first supply process 縦穴形状保持工程を示す説明図Explanatory diagram showing the vertical hole shape retention process 周囲の混合物が硬化して形状が保持された状態の縦穴を示す説明図Explanatory diagram showing a vertical hole with the surrounding mixture hardened and retaining its shape 第2供給工程を示す説明図Explanatory diagram showing the second supply process 閉塞工程を示す説明図Explanatory diagram showing the occlusion process 貫通孔を塞ぐ栓の拡大断面図Enlarged cross-sectional view of the plug that closes the through hole

〔実施形態1〕
以下、本発明の実施形態1に係る床下補強方法を、図1~図11を参照しつつ説明する。図1は、地盤2上に施工された床1の一例を示す説明図である。ここで、先ず、本実施形態の床下補強方法が施される床1について、簡単に説明する。床1は、コンクリート、モルタル等のセメント系材料を主材(母材)として構成された所定の厚みを有する層状(板状)の部材である。このような床1としては、例えば、コンクリート床、モルタル床等が挙げられる。また、床1の内部には、鉄筋等の補強部材が配設されていてもよい。床1は、工場、倉庫、店舗等の建築物の床である。
[Embodiment 1]
The underfloor reinforcing method according to Embodiment 1 of the present invention will be described below with reference to FIGS. 1 to 11. FIG. 1 is an explanatory diagram showing an example of a floor 1 constructed on a ground 2. As shown in FIG. First, the floor 1 to which the underfloor reinforcing method of this embodiment is applied will be briefly described. The floor 1 is a layered (plate-shaped) member having a predetermined thickness and made of a cement-based material such as concrete or mortar as a main material (base material). Examples of such a floor 1 include a concrete floor, a mortar floor, and the like. Furthermore, reinforcing members such as reinforcing bars may be provided inside the floor 1. Floor 1 is the floor of a building such as a factory, warehouse, or store.

なお、他の実施形態においては、本発明の目的を損なわない限り、建築物の床以外に、地盤上に形成される土木建築物の床や、道路、滑走路等の路面に対して、本実施形態の床下補強方法が適用されてもよい。図1には、地盤2の表面2a上に、直接、床1が施工されている状態が示されている。なお、他の実施形態においては、本発明の目的を損なわない限り、地盤2の表面2aに、地盤強化等を目的とした他の層(例えば、砕石層)が形成されていてもよい。 In addition, in other embodiments, the present invention may be applied to floors of civil engineering buildings formed on the ground, and road surfaces such as roads and runways, in addition to building floors, as long as the purpose of the present invention is not impaired. A method of reinforcing the underfloor may be applied. FIG. 1 shows a state in which a floor 1 is constructed directly on the surface 2a of the ground 2. In addition, in other embodiments, another layer (for example, a crushed stone layer) for the purpose of strengthening the ground may be formed on the surface 2a of the ground 2, as long as the object of the present invention is not impaired.

図1に示されるように、地盤2上に床1が施工された当初は、地盤2と床1との間に空洞はみられない。なお、以降の説明では、床1が、所定の厚み(0.5mm~20mm)を有する「コンクリート床」であるとする。 As shown in FIG. 1, when the floor 1 is initially constructed on the ground 2, there is no cavity between the ground 2 and the floor 1. In the following description, it is assumed that the floor 1 is a "concrete floor" having a predetermined thickness (0.5 mm to 20 mm).

図2は、床1と地盤2との間に空洞3が形成された状態を示す説明図である。時間の経過と共に、床1上に設置された振動源(工作機械、フォークリフト等)からの振動等の影響により、床1下の地盤2が緩んで沈下することがある。図2には、このように地盤2が緩んで、床1の下面1bと、地盤2の表面2aとの間に、所定の深さの空洞3が形成された状態が示されている。本実施形態の床下補強方法は、このような床1下に形成された空洞3等を所定の樹脂(発泡性樹脂の硬化物)で埋めることで、床1下を補強するものである。 FIG. 2 is an explanatory diagram showing a state in which a cavity 3 is formed between the floor 1 and the ground 2. As time passes, the ground 2 under the floor 1 may loosen and sink due to the influence of vibrations from vibration sources (machine tools, forklifts, etc.) installed on the floor 1. FIG. 2 shows a state in which the ground 2 has loosened in this way and a cavity 3 of a predetermined depth is formed between the lower surface 1b of the floor 1 and the surface 2a of the ground 2. The underfloor reinforcing method of this embodiment is for reinforcing the underfloor 1 by filling the cavity 3 etc. formed under the floor 1 with a predetermined resin (cured foamable resin).

このような本実施形態の床下補強方法は、主として、貫通孔形成工程、縦穴形成工程、第1供給工程、縦穴形状保持工程、第2供給工程及び閉塞工程を備える。 The underfloor reinforcing method of this embodiment mainly includes a through hole forming step, a vertical hole forming step, a first supply step, a vertical hole shape maintaining step, a second supply step, and a closing step.

貫通孔形成工程は、床1に、厚み方向に貫通しつつ空洞3と繋がる貫通孔4を形成する工程である。図3は、貫通孔形成工程を示す説明図である。この貫通孔形成工程では、床1のうち、空洞3と上下方向で重なる部分に、ドリルDを使用して、床1の上面1a側から下面1b側に向かって貫通する所定の孔径(例えば、10mm~15mm程度)を備えた貫通孔4が形成される。貫通孔4は、床1の厚み方向(上下方向)に貫通しつつ空洞3と繋がっている。床1を上面1a側から平面視した際、貫通孔4は、空洞3と重なるように、床1に設けられている。通常、貫通孔4の大きさは、空洞3と比べて非常に小さい。このような貫通孔4は、床1の下側にある1つの空洞3に対して、1つだけ形成しても良いし、2つ以上形成してもよい。なお、補強箇所における強度の更なる向上等の観点より、貫通孔4は、1つの空洞3に対して、複数形成されることが好ましい。また、複数の貫通孔4を床1に形成する場合、隣り合った貫通孔4同士の間隔を、所定の大きさ(例えば、50cm~100cmの範囲)に設定することが好ましい。また、貫通孔形成工程において使用されるドリルDとしては、例えば、市販のコンクリート用ドリルが挙げられる。貫通孔形成工程により、床1に貫通孔4が形成された後、縦穴形成工程が行われる。 The through-hole forming step is a step of forming a through-hole 4 in the floor 1 in the thickness direction and connected to the cavity 3. FIG. 3 is an explanatory diagram showing a through hole forming step. In this through-hole forming step, a drill D is used to drill a hole in a portion of the floor 1 that vertically overlaps with the cavity 3 to form a hole with a predetermined diameter (for example, A through hole 4 having a diameter of approximately 10 mm to 15 mm is formed. The through hole 4 is connected to the cavity 3 while passing through the floor 1 in the thickness direction (vertical direction). The through hole 4 is provided in the floor 1 so as to overlap the cavity 3 when the floor 1 is viewed from the top surface 1a side. Usually, the size of the through hole 4 is very small compared to the cavity 3. Only one or two or more such through holes 4 may be formed in each cavity 3 under the floor 1. Note that, from the viewpoint of further improving the strength at the reinforced portion, it is preferable that a plurality of through holes 4 be formed in one cavity 3. Further, when a plurality of through holes 4 are formed in the floor 1, it is preferable to set the interval between adjacent through holes 4 to a predetermined size (for example, in the range of 50 cm to 100 cm). Further, as the drill D used in the through-hole forming step, for example, a commercially available concrete drill can be mentioned. After the through holes 4 are formed in the floor 1 in the through hole forming step, a vertical hole forming step is performed.

縦穴形成工程は、貫通孔4から空洞3側に棒状のドリルDを挿入してドリルDにより地盤2を掘り下げることで、貫通孔4の真下に、空洞3から下方に延びた縦穴31を形成する工程である。図4は、縦穴形成工程を示す説明図である。 In the vertical hole forming process, a rod-shaped drill D is inserted into the cavity 3 side from the through hole 4 and the ground 2 is dug with the drill D, thereby forming a vertical hole 31 extending downward from the cavity 3 directly below the through hole 4. It is a process. FIG. 4 is an explanatory diagram showing the vertical hole forming process.

縦穴形成工程では、貫通孔4の真下に、空洞3に繋がる縦穴31が形成される。縦穴形成工程で使用されるドリルDとしては、貫通孔4に挿入された状態で、空洞3の深さよりも長く、かつ地盤2を掘り下げて空洞3の下側に所定の深さ(長さ)の縦穴31を形成できるものであれば、特に制限はない。そのため、通常は、上述した貫通孔形成工程で使用したドリルDが、そのまま縦穴形成工程で使用される。なお、他の実施形態においては、貫通孔形成工程で使用したドリルとは別に用意したドリルを、縦穴形成工程で使用してもよい。図4には、貫通孔形成工程で使用したドリルDが示される。 In the vertical hole forming step, a vertical hole 31 connected to the cavity 3 is formed directly below the through hole 4 . The drill D used in the vertical hole forming process is a drill D that is longer than the depth of the cavity 3 when inserted into the through hole 4, and is drilled into the ground 2 to a predetermined depth (length) below the cavity 3. There is no particular restriction as long as the vertical hole 31 can be formed. Therefore, normally, the drill D used in the above-described through hole forming step is used as is in the vertical hole forming step. In addition, in other embodiments, a drill prepared separately from the drill used in the through hole forming step may be used in the vertical hole forming step. FIG. 4 shows a drill D used in the through hole forming step.

縦穴形成工程では、床1に設けられた貫通孔4に、所定の長さ有する棒状のドリルDが、床1の上面1a側から下面1b側に向かって挿入される。貫通孔4に挿入されたドリルDの先端を、貫通孔4の真下にある空洞3の底(つまり、地盤2の表面2a)に押し当てつつ、その状態のドリルDを回転させることにより、地盤2がドリルDにより掘り下げられて、空洞3と繋がった縦穴31が形成される。縦穴31は、全体的には、上方に開口した有底の筒型をなしている。縦穴31の深さ(上下方向の長さ)は、本発明の目的を損なわなリ限り、特に制限はないが、例えば、空洞3の深さ(上下方向の長さ)に対して、2倍~5倍程度の深さに設定されることが好ましい。縦穴31の深さは、例えば、10cm~30cmであることが好ましい。なお、縦穴31の内径は、床1に設けられた貫通孔4の孔径と略同じである。 In the vertical hole forming step, a rod-shaped drill D having a predetermined length is inserted into the through hole 4 provided in the floor 1 from the upper surface 1a side of the floor 1 toward the lower surface 1b side. By pressing the tip of the drill D inserted into the through hole 4 against the bottom of the cavity 3 (that is, the surface 2a of the ground 2) located directly below the through hole 4, and rotating the drill D in this state, the ground 2 is dug with a drill D, and a vertical hole 31 connected to the cavity 3 is formed. The vertical hole 31 has an overall cylindrical shape with a bottom that is open upward. The depth (length in the vertical direction) of the vertical hole 31 is not particularly limited as long as it does not impair the purpose of the present invention, but for example, it may be twice the depth (length in the vertical direction) of the cavity 3. It is preferable to set the depth to about 5 times. The depth of the vertical hole 31 is preferably, for example, 10 cm to 30 cm. Note that the inner diameter of the vertical hole 31 is approximately the same as the diameter of the through hole 4 provided in the floor 1.

図5は、縦穴形成工程により、地盤2を掘り下げて形成された縦穴31を示す説明図である。縦穴31は、貫通孔4の真下にあり、空洞3と繋がっている。このように縦穴31が形成された後、第1供給工程が行われる。 FIG. 5 is an explanatory diagram showing a vertical hole 31 formed by digging into the ground 2 in the vertical hole forming process. The vertical hole 31 is located directly below the through hole 4 and is connected to the cavity 3. After the vertical hole 31 is formed in this manner, a first supply step is performed.

第1供給工程は、貫通孔4から空洞3及び縦穴31に液状の地盤強化剤5を供給する工程である。図6は、第1供給工程を示す説明図である。地盤強化剤5は、液状であり、地盤2の表面2a等から、地盤2を構成する土壌2b中に浸透して、その浸透した部分の地盤2を固める。図6に示されるように、地盤2には縦穴31が形成されているため、その縦穴31内にも地盤強化剤5が供給される。本実施形態では、土壌2b中等に含まれる水分と反応して硬化するタイプの地盤強化剤5が使用される。このような地盤強化剤5としては、例えば、イソシアネート系地盤強化剤(例えば、ポリメチレンポリフェニルポリイソシアネート)等が挙げられる。なお、地盤強化剤5は、適宜、溶剤等を含んでもよい。 The first supply step is a step of supplying the liquid ground strengthening agent 5 from the through hole 4 to the cavity 3 and the vertical hole 31. FIG. 6 is an explanatory diagram showing the first supply step. The ground strengthening agent 5 is in a liquid state, penetrates into the soil 2b constituting the ground 2 from the surface 2a of the ground 2, etc., and hardens the ground 2 in the permeated portion. As shown in FIG. 6, since a vertical hole 31 is formed in the ground 2, the soil strengthening agent 5 is also supplied into the vertical hole 31. In this embodiment, a type of ground strengthening agent 5 that hardens by reacting with moisture contained in the soil 2b and the like is used. Examples of such a ground strengthening agent 5 include isocyanate-based ground strengthening agents (eg, polymethylene polyphenyl polyisocyanate). In addition, the ground reinforcement agent 5 may contain a solvent etc. suitably.

第1供給工程において、地盤強化剤5の供給は、例えば、所定の吐出ノズル6を備えた供給装置(例えば、電動式ミニポンプ、最大吐出圧力:1.4MPa)を用いて行われる。この場合、長手状の吐出ノズル6の先端が、貫通孔4を介して空洞3内に入れられ、そして、その状態の吐出ノズル6から、液状の地盤強化剤5が吐出される。なお、地盤強化剤5を空洞3内に供給する方法は、これに限られず、目的に応じて、適宜、選択される。地盤強化剤5の供給量は、地盤2の状況(例えば、土壌2bの種類や水分量等)に応じて、適宜、設定される。 In the first supply step, the ground strengthening agent 5 is supplied using, for example, a supply device (for example, an electric mini pump, maximum discharge pressure: 1.4 MPa) equipped with a predetermined discharge nozzle 6. In this case, the tip of the elongated discharge nozzle 6 is inserted into the cavity 3 through the through hole 4, and the liquid ground strengthening agent 5 is discharged from the discharge nozzle 6 in this state. Note that the method for supplying the ground strengthening agent 5 into the cavity 3 is not limited to this, and may be selected as appropriate depending on the purpose. The supply amount of the soil strengthening agent 5 is appropriately set according to the condition of the soil 2 (for example, the type of soil 2b, the moisture content, etc.).

第1供給工程により、空洞3及び縦穴31内に地盤強化剤5が供給された後、適宜、吐出ノズル6を貫通孔4から抜き出して、次の縦穴形状保持工程が行われる。 After the ground strengthening agent 5 is supplied into the cavity 3 and the vertical hole 31 in the first supply step, the discharge nozzle 6 is appropriately extracted from the through hole 4, and the next vertical hole shape holding step is performed.

縦穴形状保持工程は、貫通孔4から縦穴31にドリルDを挿入してドリルDにより縦穴31内の地盤強化剤5を攪拌することにより、地盤強化剤5を縦穴31の周囲(周面及び底面)の土壌に浸透させて、地盤強化剤5による硬化作用により、縦穴31の形状を保持させる工程である。図7は、縦穴形状保持工程を示す説明図である。 In the vertical hole shape holding step, a drill D is inserted into the vertical hole 31 from the through hole 4, and the ground strengthening agent 5 in the vertical hole 31 is stirred by the drill D. ) is infiltrated into the soil, and the shape of the vertical hole 31 is maintained by the hardening action of the soil strengthening agent 5. FIG. 7 is an explanatory diagram showing the vertical hole shape holding step.

第1供給工程後の縦穴31内には、液状の地盤強化剤5が収容された状態となっている。そのような縦穴31内にドリルDを挿入して、ドリルDの回転により縦穴31内の地盤強化剤5を攪拌すると、地盤強化剤5が、地盤2を構成する土壌2bと混ざり合いながら、縦穴31の周囲(周面及び底面)の土壌に、強制的に浸透することになる。その際、地盤強化剤5は、縦穴31の周面等から外側に向かって広がるように効率よく浸透する。 After the first supply step, the liquid ground strengthening agent 5 is accommodated in the vertical hole 31. When a drill D is inserted into such a vertical hole 31 and the soil strengthening agent 5 in the vertical hole 31 is stirred by the rotation of the drill D, the soil strengthening agent 5 mixes with the soil 2b constituting the ground 2 and is mixed with the soil 2b constituting the ground 2. 31 (surrounding surface and bottom surface) will be forcibly penetrated into the soil. At this time, the soil strengthening agent 5 efficiently permeates from the circumferential surface of the vertical hole 31 so as to spread outward.

縦穴31内に挿入されて回転したドリルDの周囲には、地盤強化剤5と土壌2bとが混ざり合った混合物Mが存在している。そのような混合物Mが、縦穴31の周面及び底面を形成する。そのような状態において、地盤強化剤5の硬化作用により、混合物Mが固まると、地盤2の中において、形状が保持された縦穴31が得られる。図8は、周囲の混合物Mが硬化して形状が保持された状態の縦穴31を示す説明図である。 A mixture M in which the ground reinforcement agent 5 and the soil 2b are mixed exists around the drill D that has been inserted into the vertical hole 31 and rotated. Such a mixture M forms the circumferential surface and bottom surface of the vertical hole 31. In such a state, when the mixture M hardens due to the hardening action of the soil strengthening agent 5, a vertical hole 31 whose shape is maintained is obtained in the soil 2. FIG. 8 is an explanatory diagram showing the vertical hole 31 in a state where the surrounding mixture M is hardened and the shape is maintained.

縦穴形状保持工程で使用されるドリルDは、上述した縦穴形成工程や貫通孔形成工程で使用したものと同じであっても良いし、別途用意した他のドリルを用いてもよい。なお、作業効率の向上等の観点より、縦穴形状保持工程では、縦穴形成工程や貫通孔形成工程で使用したものと同じドリルDを用いることが好ましい。 The drill D used in the vertical hole shape holding process may be the same as that used in the vertical hole forming process and the through hole forming process described above, or another separately prepared drill may be used. In addition, from the viewpoint of improving work efficiency, it is preferable to use the same drill D used in the vertical hole forming process and the through hole forming process in the vertical hole shape holding process.

第1供給工程後、ドリルDで攪拌しなくても、縦穴31内に収容された液状の地盤強化剤5は、縦穴31の周囲に存在する土壌中に浸透することになる。しかしながら、ドリルDによる攪拌を行わないと、空洞3の底側に存在する土壌が縦穴31内に流れ込むことや、縦穴31の形が崩れる等して、十分な大きさの縦穴31を確保できない場合がある。また、ドリルDによる攪拌を行わないと、地盤強化剤5の浸透が不均一になり易く、縦穴31の形が保持され難くなる場合がある。したがって、縦穴形状保持工程は、第1供給工程の後、縦穴31内の地盤強化剤5が土壌中に浸透してしまう前に、行う必要がある。 After the first supply step, the liquid soil strengthening agent 5 accommodated in the vertical hole 31 will permeate into the soil existing around the vertical hole 31 even without stirring with the drill D. However, if the agitation by the drill D is not performed, the soil existing on the bottom side of the cavity 3 may flow into the vertical hole 31, or the shape of the vertical hole 31 may collapse, and a sufficient size of the vertical hole 31 cannot be secured. There is. Moreover, if stirring by the drill D is not performed, the penetration of the soil strengthening agent 5 tends to be uneven, and the shape of the vertical hole 31 may be difficult to maintain. Therefore, the vertical hole shape holding step needs to be performed after the first supply step and before the soil strengthening agent 5 in the vertical hole 31 permeates into the soil.

第2供給工程は、縦穴形状保持工程の後、貫通孔4から空洞3及び縦穴31を埋めるように、発泡性樹脂8を供給する工程である。図9は、第2供給工程を示す説明図である。発泡性樹脂8は、未硬化の状態では液状である。そのような未硬化の発泡性樹脂8が、発泡により体積が膨張して硬化することにより、固体状の樹脂(後述する発泡済み樹脂80)となる。 The second supply step is a step of supplying the foamable resin 8 from the through hole 4 so as to fill the cavity 3 and the vertical hole 31 after the vertical hole shape holding step. FIG. 9 is an explanatory diagram showing the second supply step. The foamable resin 8 is liquid in an uncured state. When such uncured foamable resin 8 expands in volume due to foaming and is cured, it becomes a solid resin (foamed resin 80 to be described later).

発泡性樹脂8としてはこの種の空洞3を埋める方法で用いられる一般的なものを使用できる。発泡性樹脂8としては、例えば、主剤と触媒とから構成されるウレタン系発泡性樹脂が挙げられる。ウレタン系発泡性樹脂の主剤としては、例えば、メチレンビス(4,1-フェニレン)=ジイソシアネート等を含むものからなる。また、ウレタン系発泡性樹脂の触媒としては、例えば、ジメチルミリスチルアミン等を含むものからなる。ウレタン系発泡性樹脂は、このような主剤及び触媒が、それぞれ所定の割合で配合された液状の組成物からなる。なお、ウレタン系発泡性樹脂等の発泡性樹脂8は、適宜、溶剤等を含んでもよい。 As the foamable resin 8, a general resin used in this type of method for filling the cavity 3 can be used. As the foamable resin 8, for example, a urethane-based foamable resin composed of a base resin and a catalyst can be mentioned. The main ingredient of the urethane foamable resin includes, for example, methylene bis(4,1-phenylene) diisocyanate. The catalyst for the urethane foamable resin includes, for example, dimethylmyristylamine. The urethane-based foamable resin is composed of a liquid composition containing such a main ingredient and a catalyst in predetermined proportions. Note that the foamable resin 8 such as urethane-based foamable resin may contain a solvent or the like as appropriate.

第2供給工程において、発泡性樹脂8の供給は、例えば、所定の吐出ノズル6Aを備えた供給装置を用いて行われる。この供給装置としては、例えば、上述した第1供給工程で用いたものと同様のもの(同様の吐出圧力を備えたもの)を用いることができる。図9に示されるように、長手状の吐出ノズル6Aの先端が、貫通孔4を介して空洞3内に入れられ、そして、その状態の吐出ノズル6Aから、所定量の液状の発泡性樹脂8が吐出される。なお、発泡性樹脂8を空洞3内に供給する方法は、これに限られず、目的に応じて、適宜、選択される。 In the second supply step, the foamable resin 8 is supplied using, for example, a supply device equipped with a predetermined discharge nozzle 6A. As this supply device, for example, a device similar to that used in the first supply step described above (equipped with a similar discharge pressure) can be used. As shown in FIG. 9, the tip of the elongated discharge nozzle 6A is inserted into the cavity 3 through the through hole 4, and from the discharge nozzle 6A in this state, a predetermined amount of liquid foaming resin 8 is ejected. is discharged. Note that the method of supplying the foamable resin 8 into the cavity 3 is not limited to this, and may be selected as appropriate depending on the purpose.

このように吐出ノズル6Aを利用して発泡性樹脂8が供給されると、発泡性樹脂8は、縦穴31や空洞3に充填される。所定量の発泡性樹脂8が空洞3や縦穴3に供給された後、吐出ノズル6Aは、貫通孔4から適宜、抜き取られる。空洞3や縦穴3に供給された発泡性樹脂8は、時間の経過と共に発泡を伴った化学反応が進行して、体積が膨張しつつ硬化する。 When the foamable resin 8 is supplied using the discharge nozzle 6A in this manner, the vertical hole 31 and the cavity 3 are filled with the foamable resin 8. After a predetermined amount of foamable resin 8 is supplied to the cavity 3 or the vertical hole 3, the discharge nozzle 6A is removed from the through hole 4 as appropriate. The foamable resin 8 supplied to the cavity 3 or the vertical hole 3 undergoes a chemical reaction accompanied by foaming over time, and hardens while expanding in volume.

第2供給工程において、発泡性樹脂8を貫通孔4から空洞3内及び縦穴31内へ供給する際、貫通孔4から外側(床1の上面1a側)へ発泡性樹脂8が溢れ出さないように、適宜、処置が施されてもよい。例えば、貫通孔4に、吐出ノズル6Aを差し入れて、発泡性樹脂8の供給を行う場合、その貫通孔4と、吐出ノズル6Aとの間にできる隙間を、所定サイズの保水性シート(ウエスペーパー等)に水分等の液体を含ませたものからなる流出防止材7で塞いで、発泡性樹脂8が貫通孔4から外側に溢れるのを抑制してもよい。流出防止材7は、液体を含んだ状態の保水性シートを、貫通孔4を囲むように環状に形成されることが好ましい。 In the second supply step, when the foamable resin 8 is supplied from the through hole 4 into the cavity 3 and the vertical hole 31, the foamable resin 8 is prevented from overflowing from the through hole 4 to the outside (to the upper surface 1a side of the floor 1). may be treated as appropriate. For example, when supplying the foamable resin 8 by inserting the discharge nozzle 6A into the through hole 4, the gap created between the through hole 4 and the discharge nozzle 6A is filled with a water-retentive sheet (waste paper) of a predetermined size. The foamable resin 8 may be prevented from overflowing to the outside from the through-hole 4 by blocking it with an outflow prevention material 7 made of a liquid such as water, etc.) impregnated with a liquid such as moisture. The outflow prevention material 7 is preferably formed of a water-retaining sheet containing liquid in an annular shape so as to surround the through hole 4 .

閉塞工程は、空洞3及び縦穴31が、発泡性樹脂8で埋められた後、貫通孔4を塞ぐ工程である。図10は、閉塞工程を示す説明図であり、図11は、貫通孔4を塞ぐ栓9の拡大断面図である。この閉塞工程では、貫通孔4が、少なくともモルタル等のセメント系材料からなる栓9により塞がれる。なお、図11に示されるように、閉塞工程では、先ず貫通孔4の下側部分に、上述した第2供給工程で使用した、流出防止材7(保水性シート)を丸めたものを詰めることが好ましい。次いで、その丸めた流出防止材7の上に、プラスチック製のスポンジ等からなる多孔性部材10を重ねる形で、貫通孔4に充填されることが好ましい。そして、その多孔性部材10の上に、重ねる形で、上述したセメント系材料からなる栓9が形成される。このように貫通孔4を栓9で塞ぐことにより、貫通孔4が形成された部分の床1の気密性及び水密性が保たれる。 The closing process is a process of closing the through hole 4 after the cavity 3 and the vertical hole 31 are filled with the foamable resin 8. FIG. 10 is an explanatory diagram showing the closing step, and FIG. 11 is an enlarged sectional view of the stopper 9 that closes the through hole 4. In this closing step, the through hole 4 is closed with a plug 9 made of at least a cement material such as mortar. In addition, as shown in FIG. 11, in the closing step, first, the lower part of the through hole 4 is filled with rolled up outflow prevention material 7 (water-retaining sheet) used in the second supply step described above. is preferred. Next, it is preferable that a porous member 10 made of a plastic sponge or the like be layered on top of the rolled outflow prevention material 7, and filled into the through hole 4. Then, the plug 9 made of the above-mentioned cement material is formed on top of the porous member 10 in an overlapping manner. By blocking the through hole 4 with the stopper 9 in this manner, the airtightness and watertightness of the floor 1 in the area where the through hole 4 is formed is maintained.

以上のような、貫通孔形成工程、縦穴形成工程、第1供給工程、縦穴形状保持工程、第2供給工程及び閉塞工程を経ることにより、床1下に形成された空洞3及び縦穴31を、発泡性樹脂8の硬化物である発泡済み樹脂80で埋めることで、床1下が補強される。したがって、発泡済み樹脂80により、床1の下側にある地盤2が補強されると共に、その補強された地盤2によって床1が下側から支えられることで、床1が補強される。 By going through the through hole forming step, vertical hole forming step, first supply step, vertical hole shape holding step, second supply step and closing step as described above, the cavity 3 and the vertical hole 31 formed under the floor 1 are The area under the floor 1 is reinforced by filling it with foamed resin 80, which is a cured product of foamable resin 8. Therefore, the foamed resin 80 reinforces the ground 2 below the floor 1, and the reinforced ground 2 supports the floor 1 from below, thereby reinforcing the floor 1.

特に、本実施形態の場合、発泡済み樹脂80が、床1下に形成された空洞3のみならず、その空洞3から下方に延びた縦穴31に充填された状態となる。そのため、発泡済み樹脂80のうち、空洞3に充填された部分からなる本体部81が、縦穴31に充填された部分からなる柱部82により、下方から支えられた状態となる。縦穴31は、上述したように、周囲の土壌2bに浸透した地盤強化剤5による硬化作用により形状が保持されたもの(つまり、地盤2を構成する土壌2bと地盤強化剤5との混合物Mが固まって形成されたもの)であり、そのような縦穴31の内部に、柱部82が収容されている。柱部82は、上下方向に延びた概ね円柱状をなしている。本体部81は、このような状態の柱部82により下方から支えられる形となるため、位置ずれや、地盤2と共に沈下し難い構造となっており、床1を支持する効果が高いと言える。このような床下補強方法によれば、従来法と比べて、補強箇所の強度が向上する。 In particular, in the case of this embodiment, the foamed resin 80 is filled not only in the cavity 3 formed under the floor 1 but also in the vertical hole 31 extending downward from the cavity 3. Therefore, the main body portion 81, which is the portion of the foamed resin 80 that is filled in the cavity 3, is supported from below by the column portion 82, which is the portion that is filled in the vertical hole 31. As described above, the vertical hole 31 has its shape maintained by the hardening effect of the soil strengthening agent 5 that has permeated into the surrounding soil 2b (that is, the shape of the vertical hole 31 is maintained due to the hardening action of the soil strengthening agent 5 that has penetrated into the surrounding soil 2b (that is, the mixture M of the soil 2b and the soil strengthening agent 5 forming the ground 2 A column 82 is housed inside such a vertical hole 31. The column portion 82 has a generally cylindrical shape extending in the vertical direction. Since the main body part 81 is supported from below by the pillar part 82 in such a state, it has a structure that is difficult to shift or sink with the ground 2, and can be said to be highly effective in supporting the floor 1. According to such an underfloor reinforcement method, the strength of the reinforced portion is improved compared to conventional methods.

なお、床1の下面1b側に開口した隙間(クラック等)が形成されている場合、空洞3等に充填された発泡性樹脂8は、そのような隙間にも入り込むことができる。したがって、本実施形態の床下補強方法によれば、そのような隙間の補修も同時に行うことができる。 Note that if a gap (such as a crack) is formed that opens on the lower surface 1b side of the floor 1, the foamable resin 8 filled in the cavity 3 or the like can also enter such a gap. Therefore, according to the underfloor reinforcing method of this embodiment, such gaps can be repaired at the same time.

なお、本実施形態の床下補強方法により、補強された床1下の構造を、床下補強構造100と称する。床下補強構造100は、地盤2と、その地盤2上に施工された所定の厚みを有する床1との間に形成された空洞2を埋める構造である。このような床下補強構造100は、床1に形成され、厚み方向に貫通しつつ空洞3と繋がる貫通孔4と、貫通孔4の真下に形成され、空洞3から下方に延びつつ、地盤2を構成する土壌2bと地盤強化剤5との混合物Mにより形状が保持される縦穴31と、空洞3及び縦穴31を埋める発泡性樹脂からなる発泡済み樹脂80と、貫通孔4を塞ぐ栓9とを備える。 In addition, the structure under the floor 1 reinforced by the underfloor reinforcement method of this embodiment is called the underfloor reinforcement structure 100. The underfloor reinforcement structure 100 is a structure that fills a cavity 2 formed between a ground 2 and a floor 1 constructed on the ground 2 and having a predetermined thickness. Such an underfloor reinforcing structure 100 is formed in the floor 1 and includes a through hole 4 that extends in the thickness direction and connects to the cavity 3, and is formed directly below the through hole 4, extending downward from the cavity 3 and connecting the ground 2. A vertical hole 31 whose shape is maintained by a mixture M of the soil 2b and a soil strengthening agent 5, a foamed resin 80 made of a foamable resin that fills the cavity 3 and the vertical hole 31, and a plug 9 that closes the through hole 4. Be prepared.

1…床、2…地盤、3…空洞、4…貫通孔、5…地盤強化剤、6,6A…吐出ノズル、7…流出防止材、8…発泡性樹脂、80…発泡済み樹脂、81…本体部、82…柱部、9…栓、100…床下補強構造、D…ドリル 1... Floor, 2... Ground, 3... Cavity, 4... Through hole, 5... Ground reinforcement agent, 6, 6A... Discharge nozzle, 7... Outflow prevention material, 8... Foaming resin, 80... Foamed resin, 81... Main body part, 82... Pillar part, 9... Plug, 100... Underfloor reinforcement structure, D... Drill

Claims (4)

地盤と、その地盤上に施工された所定の厚みを有する床との間に形成された空洞を埋めることで床下を補強する床下補強方法であって、
前記床に、厚み方向に貫通しつつ前記空洞と繋がる貫通孔を形成する貫通孔形成工程と、
前記貫通孔から前記空洞側に棒状のドリルを挿入して前記ドリルにより地盤を掘り下げることで、前記貫通孔の真下に、前記空洞から下方に延びた縦穴を形成する縦穴形成工程と、
前記貫通孔から前記空洞及び前記縦穴に液状の地盤強化剤を供給する第1供給工程と、
前記貫通孔から前記縦穴に前記ドリルを挿入して前記ドリルにより前記縦穴内の前記地盤強化剤を攪拌することにより、前記地盤強化剤を前記縦穴の周囲の土壌に浸透させて、前記地盤強化剤による硬化作用により、前記縦穴の形状を保持させる縦穴形状保持工程と、
前記縦穴形状保持工程の後、前記貫通孔から前記空洞及び前記縦穴を埋めるように、発泡性樹脂を供給する第2供給工程と、
前記空洞及び前記縦穴が、前記発泡性樹脂で埋められた後、前記貫通孔を塞ぐ閉塞工程とを備える床下補強方法。
An underfloor reinforcement method for reinforcing the underfloor by filling a cavity formed between the ground and a floor having a predetermined thickness constructed on the ground, the method comprising:
a through-hole forming step of forming a through-hole in the floor that extends in the thickness direction and connects to the cavity;
A vertical hole forming step of inserting a rod-shaped drill into the cavity side from the through hole and digging into the ground with the drill to form a vertical hole extending downward from the cavity directly below the through hole;
a first supply step of supplying a liquid ground strengthening agent from the through hole to the cavity and the vertical hole;
By inserting the drill into the vertical hole from the through hole and stirring the ground strengthening agent in the vertical hole with the drill, the soil strengthening agent is infiltrated into the soil around the vertical hole, and the ground strengthening agent is infiltrated into the soil around the vertical hole. a vertical hole shape retaining step of retaining the shape of the vertical hole through a hardening action;
After the vertical hole shape holding step, a second supply step of supplying a foamable resin from the through hole so as to fill the cavity and the vertical hole;
An underfloor reinforcing method comprising: filling the cavity and the vertical hole with the foamable resin, and then closing the through hole.
前記第2供給工程において、前記貫通孔に、前記発泡性樹脂を供給するノズルを挿入すると共に、前記貫通孔と前記ノズルとの間に形成される隙間を、液体を含ませた保水性シートで塞ぐ請求項1に記載の床下補強方法。 In the second supply step, a nozzle for supplying the foamable resin is inserted into the through hole, and a gap formed between the through hole and the nozzle is filled with a water-retentive sheet impregnated with liquid. The underfloor reinforcing method according to claim 1, wherein the underfloor reinforcing method is closed. 前記閉塞工程において、前記第2供給工程で使用した前記保水性シートを、前記貫通孔に詰め込み、その詰め込んだ前記保水性シートを覆うように、セメント系材料で前記貫通孔を塞ぐ請求項2に記載の床下補強方法。 3. In the closing step, the water-retaining sheet used in the second supplying step is packed into the through-hole, and the through-hole is closed with a cement-based material so as to cover the packed water-retaining sheet. The underfloor reinforcement method described. 地盤と、その地盤上に施工された所定の厚みを有する床との間に形成された空洞を埋める床下補強構造であって、
前記床に形成され、厚み方向に貫通しつつ前記空洞と繋がる貫通孔と、
前記貫通孔の真下に形成され、前記空洞から下方に延びつつ、周囲の土壌に浸透した地盤強化剤による硬化作用により、形状が保持される縦穴と、
前記空洞及び前記縦穴を埋める発泡性樹脂からなる発泡済み樹脂と、
前記貫通孔を塞ぐ栓と、を備える床下補強構造。
An underfloor reinforcement structure that fills a cavity formed between the ground and a floor having a predetermined thickness constructed on the ground,
a through hole formed in the floor and connected to the cavity while penetrating in the thickness direction;
a vertical hole that is formed directly below the through hole, extends downward from the cavity, and maintains its shape due to the hardening effect of a soil strengthening agent that has permeated into the surrounding soil;
a foamed resin made of a foamable resin that fills the cavity and the vertical hole;
An underfloor reinforcement structure comprising: a plug that closes the through hole.
JP2022088475A 2022-05-31 2022-05-31 Underfloor reinforcement method and underfloor reinforcement structure Active JP7236776B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022088475A JP7236776B1 (en) 2022-05-31 2022-05-31 Underfloor reinforcement method and underfloor reinforcement structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022088475A JP7236776B1 (en) 2022-05-31 2022-05-31 Underfloor reinforcement method and underfloor reinforcement structure

Publications (2)

Publication Number Publication Date
JP7236776B1 JP7236776B1 (en) 2023-03-10
JP2023176278A true JP2023176278A (en) 2023-12-13

Family

ID=85503271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022088475A Active JP7236776B1 (en) 2022-05-31 2022-05-31 Underfloor reinforcement method and underfloor reinforcement structure

Country Status (1)

Country Link
JP (1) JP7236776B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343920A (en) * 1976-09-30 1978-04-20 Matsushita Electric Works Ltd Dry floor base method
JPS5367921A (en) * 1976-11-29 1978-06-16 Matsushita Electric Works Ltd Method of covering floor ground
JP2009293277A (en) * 2008-06-05 2009-12-17 Tenwa Matsufuji Soil improvement method
JP2010126955A (en) * 2008-11-26 2010-06-10 Uretek Japan Co Ltd Sunk floor correction method
JP2020197048A (en) * 2019-05-31 2020-12-10 株式会社阿部技建 Underfloor reinforcing and ground strengthening method
JP2022062900A (en) * 2020-10-09 2022-04-21 株式会社阿部技建 Underfloor reinforcement structure, and reinforcement method of underfloor reinforcement structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343920A (en) * 1976-09-30 1978-04-20 Matsushita Electric Works Ltd Dry floor base method
JPS5367921A (en) * 1976-11-29 1978-06-16 Matsushita Electric Works Ltd Method of covering floor ground
JP2009293277A (en) * 2008-06-05 2009-12-17 Tenwa Matsufuji Soil improvement method
JP2010126955A (en) * 2008-11-26 2010-06-10 Uretek Japan Co Ltd Sunk floor correction method
JP2020197048A (en) * 2019-05-31 2020-12-10 株式会社阿部技建 Underfloor reinforcing and ground strengthening method
JP2022062900A (en) * 2020-10-09 2022-04-21 株式会社阿部技建 Underfloor reinforcement structure, and reinforcement method of underfloor reinforcement structure

Also Published As

Publication number Publication date
JP7236776B1 (en) 2023-03-10

Similar Documents

Publication Publication Date Title
US7645097B2 (en) Method for saturating cavities present in a mass of soil or in a body in general
EP0264998A1 (en) Method of manufacturing a foundation
JP2004027813A5 (en)
US4180350A (en) Method for forming foundation piers
KR101793037B1 (en) Construction method of permanent wall with retaining wall combined PHC pile and steel pipe
JP2012202047A (en) Underfloor repair method
KR20070114966A (en) Pressurized grouting packer with waterproof function
KR100999467B1 (en) Combination grouting reinforce structure for excavation hole and construction method thereof
JP7236776B1 (en) Underfloor reinforcement method and underfloor reinforcement structure
KR100560440B1 (en) The foundation reinforcement method of having used composite fiberglass reinforced plastic reinforcement type grouting equipment and this equipment method for a tunnel and slope
KR20190093278A (en) Construction method for reducing floor noise in parking lot
KR100455915B1 (en) Micropile type packer and method for constructing micropile of pressure type using the micropile type packer
KR100493927B1 (en) Movable foaming-urethane packer and pressure soil-nailing construction method using the packer
KR100781492B1 (en) Structure of retaining wall, and construction methods for the same
JP6885641B1 (en) Underfloor reinforcement structure and underfloor reinforcement structure reinforcement method
AU2004287921A1 (en) Method for increasing the strength of a volume of soil, particularly for containing and supporting excavation faces
KR101816006B1 (en) Method for supporting an augered pile and apparatus thereof
KR100687496B1 (en) Construction method of pile for building
JP7306637B2 (en) Masonry retaining wall reinforcement method
KR810001855B1 (en) Caue filling method for tunnel back lining
KR100554364B1 (en) Method for increasing the bearing capacity of foundation soils for buildings
JP6174831B1 (en) Construction method of earth retaining wall
JP3232191B2 (en) Slope cutting method
JPH10325141A (en) Crusher for pile head of cast-in-plate concrete pile and crushing method thereof
JP3832804B2 (en) Construction method using urethane foam mixed soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220621

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20220617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230220

R150 Certificate of patent or registration of utility model

Ref document number: 7236776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150