JP2023175531A - Secondary battery deterioration diagnosis method - Google Patents

Secondary battery deterioration diagnosis method Download PDF

Info

Publication number
JP2023175531A
JP2023175531A JP2022088016A JP2022088016A JP2023175531A JP 2023175531 A JP2023175531 A JP 2023175531A JP 2022088016 A JP2022088016 A JP 2022088016A JP 2022088016 A JP2022088016 A JP 2022088016A JP 2023175531 A JP2023175531 A JP 2023175531A
Authority
JP
Japan
Prior art keywords
deterioration
impedance
secondary battery
capacity
curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022088016A
Other languages
Japanese (ja)
Inventor
慧佑 安藤
Keisuke Ando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Automobile Research Institute Inc
Original Assignee
Japan Automobile Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Automobile Research Institute Inc filed Critical Japan Automobile Research Institute Inc
Priority to JP2022088016A priority Critical patent/JP2023175531A/en
Publication of JP2023175531A publication Critical patent/JP2023175531A/en
Pending legal-status Critical Current

Links

Abstract

To provide a secondary battery deterioration diagnosis method that easily and accurately acquires residual capacity information on a post-deteriorated secondary battery with an usage history being unknown.SOLUTION: A secondary battery deterioration diagnosis method using an AC impedance method comprises a pre-deterioration battery measurement step (S1); a characteristic preparation step (S3); a post-deterioration battery measurement step (S4); a deviation-amount estimation step (S7); and a state-of-health determination step (S8). The deviation-amount estimation step (S7) is configured to estimate a deviation degree of charge capacity of positive and negative poles with respect to before and after the deterioration on the basis of a relation characteristic prepared by the characteristic preparation step (S3) and a plurality of pieces of measurement data on impedance acquired by the post-deterioration battery measurement step (S4). The state-of-health determination step (S8) is configured to determine a state of health SOH of the post-deterioration secondary battery, deeming the deviation degree of the charge capacity of the positive and negative poles equivalent to a deterioration amount of the post-deterioration second battery.SELECTED DRAWING: Figure 1

Description

本発明は、使用履歴不明な劣化後二次電池の劣化度(残存容量)を診断する二次電池の劣化診断方法に関する。 The present invention relates to a secondary battery deterioration diagnosis method for diagnosing the degree of deterioration (remaining capacity) of a degraded secondary battery whose usage history is unknown.

リチウムイオン電池は市販化されてから30年以上にわたって携帯用電子機器の電源として使用されており、最近では電気自動車等の駆動用電源や、スマートグリッドでの利用も急速に拡大してきた。さらに、サステナビリティの観点から、一時利用での用途が終了した後、蓄電池を再利用する動きも広がっている。このため、リチウムイオン電池の健全性の把握が必要であるが、その評価・診断方法は十分ではない。 Lithium-ion batteries have been used as power sources for portable electronic devices for over 30 years since they were commercialized, and their use as power sources for electric vehicles and smart grids has recently expanded rapidly. Furthermore, from a sustainability perspective, there is a growing movement to reuse storage batteries after their temporary use has ended. For this reason, it is necessary to understand the health of lithium-ion batteries, but evaluation and diagnosis methods are not sufficient.

従来、電池の性能(初期性能、残存性能)を評価するためには、安定した環境下で充放電することで充放電曲線を描き、充電容量および放電容量を取得し、また、電気化学パルス法(直流法)又は交流インピーダンス法により、開回路電圧に対する通電時の応答電圧の変化から内部抵抗を取得することが行われてきた。特に、劣化前後の充放電容量の変化率は、電池の健全度又は劣化度(State of Health:SOH)と呼ばれるパラメータとして、劣化状態を表す指標として用いられている。以下、電池の健全度又は劣化度を「SOH」という。 Conventionally, in order to evaluate battery performance (initial performance, remaining performance), charging and discharging in a stable environment draws a charge-discharge curve to obtain the charge capacity and discharge capacity, and the electrochemical pulse method is also used. (DC method) or AC impedance method has been used to obtain internal resistance from the change in response voltage during energization with respect to open circuit voltage. In particular, the rate of change in charge/discharge capacity before and after deterioration is used as a parameter called the state of health (SOH) of the battery, and is used as an index representing the state of deterioration. Hereinafter, the state of health or deterioration of the battery will be referred to as "SOH".

リチウムイオン電池のSOHは、電池を構成する正極と負極の反応領域のズレである正負極の充電状態又は充電容量(State of Charge:SOC)のズレで説明することができる(非特許文献1を参照)。ただし、ズレが生じる原因は、リチウムイオンの消費を伴う電解液の劣化によるSEI(「Solid Electrolyte Interphase」の略)の形成、リチウムイオンの消費を伴う正極の劣化、リチウムイオンの消費を伴う負極の劣化に大別される。また、原因毎のズレ割合は、電池の使用履歴(電池温度、電池電圧、充放電回数等)に依存し変化する。特に、電気自動車等の駆動用リチウムイオン電池は、幅広い温度環境(-40℃~+60℃)で使用される上に、加減速時には出力/回生による複雑な充電と放電(充放電)が行われるため、その劣化反応は様々であると考えられる。以下、電池の充電状態又は充電容量を「SOC」という。 The SOH of a lithium ion battery can be explained by the difference in the state of charge or state of charge (SOC) of the positive and negative electrodes, which is the difference in the reaction area between the positive and negative electrodes that make up the battery (see Non-Patent Document 1). reference). However, the causes of misalignment are the formation of SEI (abbreviation for "Solid Electrolyte Interphase") due to deterioration of the electrolyte with the consumption of lithium ions, the deterioration of the positive electrode with the consumption of lithium ions, and the deterioration of the negative electrode with the consumption of lithium ions. It is broadly classified into deterioration. Furthermore, the deviation ratio for each cause changes depending on the usage history of the battery (battery temperature, battery voltage, number of times of charging and discharging, etc.). In particular, lithium-ion batteries for driving electric vehicles and the like are used in a wide range of temperature environments (-40°C to +60°C), and complex charging and discharging (charging and discharging) is performed by output/regeneration during acceleration and deceleration. Therefore, its deterioration reactions are thought to vary. Hereinafter, the charging state or charging capacity of a battery will be referred to as "SOC".

一般に、使用履歴不明なリチウムイオン電池のSOH診断には、安定した環境下で放電状態から満充電までの電気量(充電容量)を評価するのが理想的であるが、そのコスト・運用面を考えると現実的ではない。よって、別のSOH診断として、予め様々な条件で劣化させた電池に対して、SOHと交流インピーダンススペクトルを取得し、データ処理後にデータベース化する。そして、使用履歴不明な電池に対して取得した交流インピーダンススペクトルをデータベースと照合し、SOHを予測する手法が提案されている(特許文献1、2を参照)。 In general, for SOH diagnosis of lithium-ion batteries whose usage history is unknown, it is ideal to evaluate the amount of electricity (charge capacity) from the discharge state to full charge in a stable environment, but the cost and operational aspects are It's not realistic when you think about it. Therefore, as another SOH diagnosis, SOH and AC impedance spectra are obtained for batteries that have been degraded under various conditions in advance, and the data are processed and compiled into a database. A method has been proposed in which the AC impedance spectrum obtained for a battery whose usage history is unknown is compared with a database to predict the SOH (see Patent Documents 1 and 2).

特開2016-90346号公報JP2016-90346A 特開2013-26114号公報JP2013-26114A

K.Ando他、Journal Power Sources,390(2018)278-285.K. Ando et al., Journal Power Sources, 390 (2018) 278-285.

特許文献1、2に開示された残存容量を知るためのSOH診断の従来手法にあっては、以下の課題を有する。SOH診断のうち充放電容量の測定については、直接的に容量を測るため精度は高いが、まとまった時間が必要である。また製品の運用状況次第(例えば、車載中のリチウムイオン電池)では単純な充電と放電を行うことは困難である。SOH診断のうち交流インピーダンススペトルとデータベースの照合による解析については、データベースの準備に時間とコストを要する。診断は短時間かつ簡便である一方で、事前に用意する劣化データの条件範囲、データベースの情報量によっては、劣化挙動が様々であるリチウムイオン電池に対しては、誤差を大きく含むことが危惧される。 The conventional methods of SOH diagnosis for determining remaining capacity disclosed in Patent Documents 1 and 2 have the following problems. Measurement of charge/discharge capacity in SOH diagnosis is highly accurate because it directly measures capacity, but requires a considerable amount of time. Furthermore, depending on the operating conditions of the product (for example, a lithium ion battery installed in a vehicle), it is difficult to perform simple charging and discharging. For SOH diagnosis, analysis based on checking AC impedance spectrum and database requires time and cost to prepare the database. While diagnosis is quick and easy, there is a concern that it may contain large errors for lithium-ion batteries, which have varying deterioration behavior, depending on the condition range of the deterioration data prepared in advance and the amount of information in the database. .

容量が減少したメカニズムを知る充放電曲線解析(充放電微分曲線解析)による劣化要因の詳細な解析については、正負極のSOCズレが生じる原因である、「リチウムイオンの消費を伴う電解液の劣化によるSEI形成」、「リチウムイオンの消費を伴う正極の劣化」、「リチウムイオンの消費を伴う負極の劣化」を分離できるが、解析するためには使用履歴不明の電池毎に低い電流値(低Cレート)での充放電測定が必要で、まとまった時間を要する。また曲線解析には中高度な解析技術が求められる。 For detailed analysis of deterioration factors using charge-discharge curve analysis (charge-discharge differential curve analysis) to understand the mechanism of capacity decrease, see SEI formation caused by lithium ions," "positive electrode deterioration accompanied by lithium ion consumption," and "negative electrode deterioration accompanied by lithium ion consumption." It is necessary to measure charge and discharge at C rate), which takes a considerable amount of time. Also, curve analysis requires medium-to-advanced analysis technology.

本発明は、上記課題に着目してなされたもので、使用履歴不明な劣化後二次電池の残存容量情報を簡易かつ正確に取得する劣化診断方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a deterioration diagnosis method that easily and accurately acquires remaining capacity information of a degraded secondary battery whose usage history is unknown.

上記目的を達成するため、本発明では、取得が簡便なインピーダンスの測定データを用い、劣化前後の正負極の充電容量ズレ(SOCズレ)を定量評価し、使用履歴不明な劣化後二次電池の劣化度(SOH)を診断する手法を開発した。課題解決手段は、交流インピーダンス法による二次電池の劣化診断方法であって、劣化前電池測定ステップと、特性作成ステップと、劣化後電池測定ステップと、ズレ量推定ステップと、劣化度判定ステップと、を有する。ズレ量推定ステップは、特性作成ステップにより作成された関係特性と、劣化後電池測定ステップにより取得した複数のインピーダンスの測定データと、に基づいて、劣化前後における正負極の充電容量ズレ量を推定する。劣化度判定ステップは、正負極の充電容量ズレ量を、劣化後二次電池の容量劣化量と等価であるとみなし、劣化後二次電池の劣化度を判定する。 In order to achieve the above object, the present invention quantitatively evaluates the charge capacity difference (SOC difference) of the positive and negative electrodes before and after deterioration using impedance measurement data that is easy to obtain, and We have developed a method to diagnose the degree of deterioration (SOH). The problem solving means is a method for diagnosing deterioration of a secondary battery using an AC impedance method, which includes a step of measuring the battery before deterioration, a step of creating characteristics, a step of measuring the battery after deterioration, a step of estimating the amount of deviation, and a step of determining the degree of deterioration. , has. The deviation amount estimation step estimates the charge capacity deviation amount of the positive and negative electrodes before and after deterioration based on the relational characteristics created in the characteristic creation step and the measurement data of a plurality of impedances obtained in the post-deterioration battery measurement step. . In the deterioration degree determination step, the amount of charge capacity deviation between the positive and negative electrodes is considered to be equivalent to the capacity deterioration amount of the degraded secondary battery, and the deterioration degree of the degraded secondary battery is determined.

このように、本発明の劣化診断方法は、二次電池におけるインピーダンスのSOC依存性を利用し、劣化前後での正負極の充電容量ズレ量を推定することで、劣化後二次電池の劣化度を判定している。この結果、使用履歴不明な劣化後二次電池の残存容量情報を簡易かつ正確に取得することができる。 As described above, the deterioration diagnosis method of the present invention utilizes the SOC dependence of impedance in a secondary battery and estimates the amount of charge capacity difference between the positive and negative electrodes before and after deterioration, thereby determining the degree of deterioration of the secondary battery after deterioration. is being determined. As a result, remaining capacity information of a degraded secondary battery whose usage history is unknown can be easily and accurately acquired.

使用履歴不明な劣化後リチウムイオン電池のSOH診断方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the SOH diagnosis method of the lithium ion battery after deterioration whose usage history is unknown. 充電状態(容量)vs.インピーダンス曲線の規格化方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the normalization method of a state of charge (capacity) vs. impedance curve. リチウムイオン電池のインピーダンスの帰属方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the impedance attribution method of a lithium ion battery. リチウムイオン電池の放電曲線特性(a)とインピーダンス比率のSOC依存性(b)を示す実例である。This is an example showing the discharge curve characteristics (a) and SOC dependence of impedance ratio (b) of a lithium ion battery. 劣化前リチウムイオン電池(SOH100%)と人工的に作り出した劣化後リチウムイオン電池(SOH90%、SOH80%)のSOH診断におけるSOCズレ量(a)と実測容量・実測SOH・SOCズレ量・推定SOHの対比表(b)を示す実例である。SOC deviation amount (a) in SOH diagnosis of lithium ion battery before deterioration (SOH 100%) and artificially created lithium ion battery after deterioration (SOH 90%, SOH 80%), measured capacity, measured SOH, SOC deviation amount, estimated SOH This is an example showing the comparison table (b). 未劣化電池と4種類の異なるサイクル劣化電池による正極のインピーダンスを用いた規格化前の曲線特性(a)と規格化後の曲線特性(b)を示す実例である。This is an example showing the curve characteristics before normalization (a) and the curve characteristics after normalization (b) using the impedance of the positive electrode of an undegraded battery and four different types of cycle-aged batteries. リチウムイオン電池のインピーダンスのSOC依存性とSOC50%の時のナイキストプロットおよびボード線図を示す実例である。This is an example showing the SOC dependence of the impedance of a lithium ion battery, and a Nyquist plot and a Bode diagram when the SOC is 50%. 正極ハーフセルのインピーダンスのSOC依存性とSOC50%の時のナイキストプロットおよびボード線図を示す実例である。This is an example showing the SOC dependence of the impedance of a positive electrode half cell, and a Nyquist plot and a Bode diagram when the SOC is 50%. 負極ハーフセルのインピーダンスのSOC依存性とSOC50%の時のナイキストプロットおよびボード線図を示す実例である。This is an example showing the SOC dependence of the impedance of a negative electrode half cell, and a Nyquist plot and a Bode diagram when the SOC is 50%.

以下、本発明による二次電池の劣化診断方法を実施するための形態を、図面に示す実施例1に基づいて説明する。 EMBODIMENT OF THE INVENTION Hereinafter, the form for carrying out the deterioration diagnosis method of the secondary battery by this invention is demonstrated based on Example 1 shown in drawing.

実施例1の劣化診断方法は、使用履歴不明なリチウムイオン電池(正極と負極の間をリチウムイオンが移動することで充電と放電を行う二次電池の一例)に適用し、劣化後リチウムイオン電池の劣化度SOHを判定する劣化診断方法である。以下、実施例1の劣化診断方法を、「劣化診断手順の説明」、「劣化診断作用」、「インピーダンス曲線の規格化作用」、「インピーダンスの正負極帰属作用」、「劣化診断方法による効果」に分けて説明する。ここで、実施例1の劣化診断方法に適用された使用履歴不明なリチウムイオン電池は、正極活物質としてLiNi1/3Co1/3Mn1/3Oを用い、負極活物質としてグラファイトを用い、電解質としてリチウムイオン電池用電解液を用いた二次電池である。 The deterioration diagnosis method of Example 1 is applied to a lithium ion battery whose usage history is unknown (an example of a secondary battery where lithium ions are charged and discharged by moving between the positive electrode and the negative electrode). This is a deterioration diagnosis method for determining the degree of deterioration SOH of. The deterioration diagnosis method of Example 1 will be described below as follows: "Explanation of deterioration diagnosis procedure", "Deterioration diagnosis effect", "Impedance curve standardization effect", "Positive and negative pole assignment effect of impedance", and "Effects of the deterioration diagnosis method" I will explain it separately. Here, the lithium ion battery with unknown usage history applied to the deterioration diagnosis method of Example 1 uses LiNi 1/3 Co 1/3 Mn 1/3 O 2 as the positive electrode active material and graphite as the negative electrode active material. This is a secondary battery that uses an electrolyte for lithium ion batteries as the electrolyte.

[劣化診断手順の説明]
図1は、使用履歴不明なリチウムイオン電池の正負極のSOCズレを推定し、劣化度SOHを判定するSOH診断フローチャートである。図1のS1~S3は準備手順、S4~S8は使用履歴不明の電池のSOH診断手順である。
[Explanation of deterioration diagnosis procedure]
FIG. 1 is an SOH diagnosis flowchart for estimating the SOC deviation of the positive and negative electrodes of a lithium ion battery whose usage history is unknown and determining the degree of deterioration SOH. S1 to S3 in FIG. 1 are preparation steps, and S4 to S8 are SOH diagnosis steps for a battery whose usage history is unknown.

S1(劣化前電池測定ステップ)では、SOH100%の電池(劣化前二次電池)に対して、容量測定および充電状態を変えたインピーダンス測定を行う。ただし、インピーダンス測定方法は、交流電圧あるいは交流電流を印加し、電流あるいは電圧を測定する方法に限定されず、複数の周波数信号が重畳された電圧波形あるいは電流波形を印加して、電流波形あるいは電圧波形を測定し、電圧波形、電流波形をそれぞれ離散フーリエ変換(DFT)して、周波数毎の比を求める方法等でもよい。また、インピーダンス測定は、定常状態に限定されず、充放電用の電流に、インピーダンス測定用の交流電流あるいは電流波形を重畳して測定してもよい。測定は複数の周波数について行なう。 In S1 (pre-deterioration battery measurement step), capacity measurement and impedance measurement with different charging states are performed on a 100% SOH battery (pre-deterioration secondary battery). However, the impedance measurement method is not limited to applying an alternating voltage or current to measure the current or voltage, but also applying a voltage waveform or current waveform on which multiple frequency signals are superimposed to measure the current waveform or voltage. A method may also be used in which the waveform is measured, the voltage waveform and the current waveform are each subjected to discrete Fourier transform (DFT), and the ratio for each frequency is determined. Moreover, impedance measurement is not limited to a steady state, and may be measured by superimposing an alternating current or a current waveform for impedance measurement on the charging/discharging current. Measurements are made at multiple frequencies.

S2(帰属判定ステップ)では、S1で得られたナイキストプロットで確認できる抵抗成分について、正極に帰属する抵抗成分であるのか、負極に帰属する抵抗成分であるのかを判定する。特に、充電状態によって大きさが変わる抵抗成分の帰属については、電池のインピーダンスを構成する正極と負極のうち、どちらの極に帰属するのかを正確に把握する。なお、インピーダンスの正負極帰属についての詳しい説明は後述する(図3)。 In S2 (belonging determination step), it is determined whether the resistance component that can be confirmed in the Nyquist plot obtained in S1 is a resistance component that belongs to the positive electrode or a resistance component that belongs to the negative electrode. In particular, with regard to the attribution of a resistance component whose magnitude changes depending on the state of charge, it is accurately determined to which of the positive and negative electrodes that make up the impedance of the battery it belongs. Note that a detailed explanation of the positive and negative pole assignment of impedance will be given later (FIG. 3).

S3(特性作成ステップ)では、S2での判定結果により帰属する抵抗成分毎にインピーダンスを求め、充電状態(容量)vs.インピーダンス曲線を作成する。ここで、インピーダンス曲線は、後述するS6の手法により規格化しておくことが望ましい。インピーダンスは、特定周波数のZもしくはZ’、フィッティング解析で得られた抵抗値Rのいずれでもよい。さらに、充電状態(容量)vs.インピーダンス曲線に対して、回帰曲線を取得しておくことが望ましい。回帰曲線は、近似直線に限定されず、多項式近似曲線、指数近似曲線、対数近似曲線等から選択できる。回帰曲線は単純な線形補間でも構わない。 In S3 (characteristic creation step), impedance is determined for each resistance component to which it belongs based on the determination result in S2, and a state of charge (capacity) vs. impedance curve is created. Here, it is desirable that the impedance curve be normalized by the method of S6, which will be described later. The impedance may be Z or Z' at a specific frequency, or a resistance value R obtained by fitting analysis. Furthermore, it is desirable to obtain a regression curve for the state of charge (capacity) vs. impedance curve. The regression curve is not limited to an approximate straight line, and can be selected from a polynomial approximate curve, an exponential approximate curve, a logarithmic approximate curve, and the like. The regression curve may be a simple linear interpolation.

S4(劣化後電池測定ステップ)では、使用履歴不明な劣化後リチウムイオン電池(劣化後二次電池)に対して、充電状態を変えたインピーダンス測定を行う。ここで、充電状態(容量)vs.インピーダンス曲線を作成できるインピーダンス測定を行うことが望ましいが、S6での規格化する方法に対応できる最低2つの充電状態でインピーダンス測定を行えばよい。ここで、2つの充電状態でインピーダンス測定を行う場合、少なくともフル充電域(例えば、SOC80%以上)と放電域(例えば、SOC5%~10%程度)を含む充電状態によるインピーダンス測定を行い、測定データを取得する。なお、フル充電域としてSOC80%以上にすると、SOCが100%のフル充電状態とほとんど変わらない測定データを取得できる。また、放電域としてSOC5%~10%程度にすると、SOCが0%近傍にした場合の負極由来のZ’増大等によるバラツキ影響を受けない測定データを取得できる。 In S4 (degraded battery measuring step), impedance measurement is performed with the state of charge changed for a degraded lithium ion battery (deteriorated secondary battery) whose usage history is unknown. Here, it is desirable to perform impedance measurement that can create a charging state (capacity) vs. impedance curve, but it is sufficient to perform impedance measurement in at least two charging states that are compatible with the standardization method in S6. Here, when performing impedance measurements in two charging states, impedance measurements are performed in charging states that include at least a full charge range (for example, SOC 80% or more) and a discharge range (for example, SOC about 5% to 10%), and the measured data is get. Note that when the SOC is set to 80% or higher as the full charge range, measurement data that is almost the same as a fully charged state with an SOC of 100% can be obtained. Furthermore, by setting the SOC to about 5% to 10% as the discharge region, it is possible to obtain measurement data that is not affected by variations due to an increase in Z' caused by the negative electrode when the SOC is near 0%.

S5(温度補正ステップ)では、必要に応じてS3およびS4で取得したインピーダンスの温度補正を行う。温度補正は、リチウムイオン電池のインピーダンスの温度依存性に基づいて、インピーダンス測定時の環境温度により補正を行う。具体的な手法は、S3およびS4において、複数の温度における充電状態(容量)vs.インピーダンス曲線を取得し、温度とインピーダンスの関係からアレニウスプロットを作成し、温度補正を行う。 In S5 (temperature correction step), temperature correction of the impedance obtained in S3 and S4 is performed as necessary. Temperature correction is performed based on the temperature dependence of the impedance of the lithium ion battery, using the environmental temperature at the time of impedance measurement. Specifically, in S3 and S4, state of charge (capacity) vs. impedance curves are obtained at a plurality of temperatures, an Arrhenius plot is created from the relationship between temperature and impedance, and temperature correction is performed.

S6(規格化ステップ)では、必要に応じてS5で温度補正したインピーダンス曲線、又はS3およびS4で取得したインピーダンス曲線を、リチウムイオン電池のインピーダンスを劣化前後において同一のスケールで評価するために規格化する。ここで、「インピーダンス曲線の規格化」とは、SOH100%の電池の充電状態(容量)vs.インピーダンス(Ω)曲線の関係特性を、SOH100%の電池の充電状態(容量)vs.インピーダンス比率(%)曲線の関係特性に変換することをいう(図6(a),(b)を参照)。なお、インピーダンス曲線の規格化についての詳しい説明は後述する(図2)。 In S6 (normalization step), the impedance curves temperature-corrected in S5 or the impedance curves obtained in S3 and S4 are normalized to evaluate the impedance of the lithium ion battery on the same scale before and after deterioration, if necessary. do. Here, "normalization of the impedance curve" refers to the relationship between the state of charge (capacity) vs. impedance (Ω) curve of a 100% SOH battery, and the state of charge (capacity) vs. impedance ratio of a 100% SOH battery ( %) is converted into a curved relational characteristic (see Figures 6(a) and (b)). Note that a detailed explanation of the normalization of the impedance curve will be given later (FIG. 2).

S7(ズレ量推定ステップ)では、使用履歴不明なリチウムイオン電池の劣化前後における正負極のSOCズレ量を推定する。具体的には、S4で取得した最低2つの充電状態によるインピーダンスの測定データによりインピーダンス比率(例えば、ΔZ’SOC10%/ΔZ’SOC80%)を算出する。そして、算出したインピーダンス比率を、S6で規格化したSOH100%の電池の充電状態(容量)vs.インピーダンス比率(%)曲線の関係特性に照合することで正負極のSOCズレ量を推定する(図5(a)を参照)。 In S7 (deviation amount estimation step), the SOC deviation amount of the positive and negative electrodes before and after deterioration of the lithium ion battery whose usage history is unknown is estimated. Specifically, an impedance ratio (for example, ΔZ' SOC10% /ΔZ' SOC80% ) is calculated based on the impedance measurement data obtained in at least two charging states acquired in S4. Then, by comparing the calculated impedance ratio with the relationship characteristic of the state of charge (capacity) vs. impedance ratio (%) curve of a 100% SOH battery standardized in S6, the amount of SOC deviation between the positive and negative electrodes is estimated (Fig. 5(a)).

S8(劣化度判定ステップ)では、使用履歴不明な劣化後リチウムイオン電池の劣化度SOHを判定する。具体的には、S7で推定した正負極のSOCズレ量は、容量劣化量と等価であるとみなし、使用履歴不明な劣化後リチウムイオン電池の劣化度SOHを、
SOH=1-(正負極のSOCズレ量/SOH100%での容量)……(1)
の式を用いて算出する。なお、劣化後リチウムイオン電池の劣化比率(%)は、劣化度SOHに100%を掛け合わせる式により求められる。残存容量情報は、劣化度SOHに新品電池のフル充電容量を掛け合わせる式により求められる。
In S8 (deterioration degree determination step), the deterioration degree SOH of the degraded lithium ion battery whose usage history is unknown is determined. Specifically, the amount of SOC deviation of the positive and negative electrodes estimated in S7 is considered to be equivalent to the amount of capacity deterioration, and the degree of deterioration SOH of the degraded lithium ion battery whose usage history is unknown is calculated as follows:
SOH=1-(SOC deviation amount of positive and negative electrodes/capacity at 100% SOH)...(1)
Calculate using the formula. Note that the deterioration ratio (%) of the lithium ion battery after deterioration is determined by a formula in which the degree of deterioration SOH is multiplied by 100%. The remaining capacity information is obtained by multiplying the degree of deterioration SOH by the full charge capacity of a new battery.

図2は、充電状態(容量)vs.インピーダンス曲線の規格化フローチャートであり、図1のS6を補足する。この規格化により、正極および負極の劣化によって増大する分のインピーダンスが補正される。 FIG. 2 is a normalization flowchart of the state of charge (capacity) vs. impedance curve, and supplements S6 in FIG. 1. This normalization corrects the impedance that increases due to deterioration of the positive and negative electrodes.

S61では、図1のS3にて作成されたSOH100%の劣化前リチウムイオン電池の充電状態(容量)vs.インピーダンス(Ω)曲線を取得する。S62では、正極に帰属する低周波数範囲の曲線特性において、インピーダンス(Ω)が最低のSOCを決定する。そして、S63では、最低のインピーダンス(Ω)が100%になるように、他の測定点での充電容量SOCのインピーダンス比率(%)を算出する。S64では、複数の測定点でのインピーダンス比率(%)の算出に基づき、複数のインピーダンス比率(%)の算出点を繋いで充電状態(容量)vs.インピーダンス比率(%)曲線を作成する。 In S61, the state of charge (capacity) vs. impedance (Ω) curve of the SOH 100% lithium ion battery before deterioration created in S3 of FIG. 1 is acquired. In S62, the SOC with the lowest impedance (Ω) in the curve characteristics in the low frequency range belonging to the positive electrode is determined. Then, in S63, impedance ratios (%) of the charging capacity SOC at other measurement points are calculated so that the lowest impedance (Ω) becomes 100%. In S64, based on calculation of impedance ratio (%) at a plurality of measurement points, a state of charge (capacity) vs. impedance ratio (%) curve is created by connecting a plurality of calculation points of impedance ratio (%).

図3は、リチウムイオン電池のインピーダンスを構成する正極又は負極のうち、どちらの極に帰属するかを判定するフローチャートであり、図1のS2を補足する。 FIG. 3 is a flowchart for determining which of the positive electrode and the negative electrode that constitutes the impedance of the lithium ion battery belongs to, and supplements S2 in FIG. 1.

S21では、SOH100%の劣化前リチウムイオン電池の充電状態(容量)vs.インピーダンス曲線を、異なる周波数範囲(例えば、低周波数範囲と高周波数範囲)に分けて取得する。 In S21, the charging state (capacity) vs. impedance curve of the SOH 100% lithium ion battery before deterioration is obtained by dividing it into different frequency ranges (for example, a low frequency range and a high frequency range).

S22では、SOH100%の劣化前リチウムイオン電池を解体する。S23では、解体電池のセルから正極および負極を評価できる正極ハーフセルおよび負極ハーフセルを再組する。ここで、正極ハーフセルおよび負極ハーフセルは、単極での評価が行えるセルであれば構成、形状に特に制限はなく、構成は対称セル、対極リチウム金属ハーフセル、参照極付きセル等が望ましく、形状はコイン型セル、ラミネート型セル、評価用セル等が望ましい。 In S22, the SOH 100% lithium ion battery before deterioration is disassembled. In S23, the positive electrode half cell and the negative electrode half cell whose positive electrode and negative electrode can be evaluated are reassembled from the cells of the disassembled battery. Here, the configuration and shape of the positive electrode half cell and negative electrode half cell are not particularly limited as long as they can be evaluated as a single electrode.The configuration is preferably a symmetrical cell, a counter electrode lithium metal half cell, a cell with a reference electrode, etc. Coin-type cells, laminate-type cells, evaluation cells, etc. are desirable.

S24では、正極ハーフセルおよび負極ハーフセルのそれぞれの充電状態(容量)vs.インピーダンス曲線を、異なる周波数範囲(例えば、低周波数範囲と高周波数範囲)に分けて取得する。 In S24, the state of charge (capacity) vs. impedance curves of each of the positive half cell and the negative half cell are obtained in different frequency ranges (for example, a low frequency range and a high frequency range).

S25では、S21にて取得されたリチウムイオン電池の充電状態(容量)vs.インピーダンス曲線と、S24にて取得された正極ハーフセルおよび負極ハーフセルのそれぞれの充電状態(容量)vs.インピーダンス曲線と、を比較する。インピーダンス曲線特性の近似性判断により同様の曲線を描くものを見つけることで、リチウムイオン電池のインピーダンスを正極又は負極に帰属させる。つまり、異なる周波数範囲の曲線特性のうち何れの特性が正極又は負極に帰属するのかを判定する。 In S25, the state of charge (capacity) vs. impedance curve of the lithium ion battery acquired in S21 and the state of charge (capacity) vs. impedance curve of each of the positive electrode half cell and negative electrode half cell acquired in S24 are calculated. compare. The impedance of the lithium ion battery is attributed to the positive electrode or the negative electrode by determining the similarity of impedance curve characteristics to find curves that draw similar lines. That is, it is determined which of the curve characteristics in different frequency ranges belongs to the positive pole or the negative pole.

[劣化診断作用]
使用履歴不明な劣化後リチウムイオン電池に対し劣化診断を行う劣化診断作用を、図1のフローチャートを参照しながら説明する。まず、劣化前リチウムイオン電池(SOH100%電池)は存在するが、充電状態(容量)vs.インピーダンス曲線による比較データが存在しない場合には、図1において、S1→S2→S3へと進む。S1では、劣化前リチウムイオン電池に対して、容量測定および充電状態を変えたインピーダンス測定が行われる。次のS2では、S1で得られたナイキストプロットで確認できる抵抗成分について、正極に帰属するのか、負極に帰属するのかが判定される。次のS3では、S2での判定結果により帰属する抵抗成分毎にインピーダンスが求められ、充電状態(容量)vs.インピーダンス曲線による比較データが作成される。ここで、使用履歴不明な劣化後リチウムイオン電池に対して劣化診断を行うとき、劣化前リチウムイオン電池の充電状態(容量)vs.インピーダンス曲線による比較データが予め用意されている場合には、図1のS1→S2→S3へと進む準備手順を省略できる。
[Deterioration diagnosis effect]
A deterioration diagnosis operation for performing a deterioration diagnosis on a degraded lithium ion battery whose usage history is unknown will be explained with reference to the flowchart of FIG. First, if there is a lithium ion battery (SOH 100% battery) before deterioration, but there is no comparison data based on the state of charge (capacity) vs. impedance curve, the process proceeds from S1 to S2 to S3 in FIG. In S1, capacity measurement and impedance measurement with different charging states are performed on the lithium ion battery before deterioration. In the next S2, it is determined whether the resistance component that can be confirmed in the Nyquist plot obtained in S1 belongs to the positive electrode or the negative electrode. In the next step S3, the impedance is determined for each resistance component based on the determination result in S2, and comparison data based on the state of charge (capacity) vs. impedance curve is created. Here, when performing a deterioration diagnosis on a degraded lithium-ion battery whose usage history is unknown, if comparative data based on the state of charge (capacity) vs. impedance curve of the pre-degraded lithium-ion battery is prepared in advance, the The preparation procedure of proceeding from S1 to S2 to S3 in step 1 can be omitted.

そして、劣化前リチウムイオン電池の充電状態(容量)vs.インピーダンス曲線による比較データが作成されると、又は、比較データが用意されていると、図1において、S4→S5→S6→S7→S8へと進み、SOH診断が実行される。 When the comparison data based on the state of charge (capacity) vs. impedance curve of the lithium ion battery before deterioration is created or when the comparison data is prepared, in FIG. 1, S4 → S5 → S6 → S7 → S8 Then, SOH diagnosis is performed.

S4では、使用履歴不明な劣化後リチウムイオン電池に対して、充電状態を変えたインピーダンス測定が行われる。S5では、必要に応じてS3およびS4で取得したインピーダンスの温度補正が行われる。S6では、必要に応じてS5で温度補正したインピーダンス、又はS3およびS4で取得したインピーダンスを、リチウムイオン電池のインピーダンスを劣化前後において同一のスケールで評価するために規格化される。S7では、使用履歴不明な劣化後リチウムイオン電池の正負極のSOCズレ量が推定される。S8では、使用履歴不明な劣化後リチウムイオン電池の劣化度SOHが判定される。 In S4, impedance measurement is performed on the degraded lithium ion battery whose usage history is unknown, with the state of charge changed. In S5, temperature correction of the impedance obtained in S3 and S4 is performed as necessary. In S6, the impedance temperature-corrected in S5 as necessary or the impedance obtained in S3 and S4 is standardized in order to evaluate the impedance of the lithium ion battery on the same scale before and after deterioration. In S7, the SOC deviation amount of the positive and negative electrodes of the degraded lithium ion battery whose usage history is unknown is estimated. In S8, the degree of deterioration SOH of the degraded lithium ion battery whose usage history is unknown is determined.

このように、使用履歴不明な劣化後リチウムイオン電池に対しては、複数の充電状態で測定されたインピーダンスの測定データを用い、リチウムイオン電池の容量減少の主要因である「正極と負極の反応領域のズレ(正負極のSOCズレ)」が推定される。そして、正負極のSOCズレ量を、劣化後のリチウムイオン電池の容量劣化量と等価であるとみなし、劣化後のリチウムイオン電池の劣化度SOHが判定される。 In this way, for degraded lithium-ion batteries whose usage history is unknown, we use impedance measurement data measured in multiple charging states to investigate the "reaction between the positive and negative electrodes," which is the main cause of capacity reduction in lithium-ion batteries. "region deviation (SOC deviation between positive and negative poles)" is estimated. Then, the amount of SOC deviation between the positive and negative electrodes is considered to be equivalent to the amount of capacity deterioration of the lithium ion battery after deterioration, and the degree of deterioration SOH of the lithium ion battery after deterioration is determined.

次に、使用履歴不明な劣化後リチウムイオン電池に対して劣化診断を行う場合、正負極のSOCズレ量は容量劣化量と等価であるとみなして劣化診断を行えることを裏付ける劣化診断検証作用について、図4及び図5を参照しながら説明する。 Next, when performing a deterioration diagnosis on a degraded lithium-ion battery whose usage history is unknown, we will explain the deterioration diagnosis verification function that supports deterioration diagnosis by assuming that the amount of SOC deviation between the positive and negative electrodes is equivalent to the amount of capacity deterioration. , will be explained with reference to FIGS. 4 and 5.

SOH100%のリチウムイオン電池の作製:直径14mmに打ち抜いたLiNi1/3Co1/3Mn1/3O正極を作用極に、直径15.9mmのグラファイト負極を対極に、ポリプロピレン多孔膜をセパレータに、1 mol/L LiPF in EC:DEC (50:50v/v%)+VC(1wt%)+PS(1wt%)を電解液に用いて2032型コインセルを作製した。 Fabrication of 100% SOH lithium ion battery: A LiNi 1/3 Co 1/3 Mn 1/3 O 2 positive electrode punched to a diameter of 14 mm is used as a working electrode, a graphite negative electrode with a diameter of 15.9 mm is used as a counter electrode, and a polypropylene porous membrane is used as a separator. Next, a 2032-type coin cell was fabricated using 1 mol/L LiPF 6 in EC:DEC (50:50v/v%)+VC(1wt%)+PS(1wt%) as the electrolyte.

充放電試験装置を用いて、初期充放電によるコンディショニング処理を実施した後、定格容量の1/50の電流値(C/50)で50時間率容量測定と、50時間率容量に対して10%毎の充電状態で交流インピーダンス測定と、を行った。なお、交流インピーダンス測定は、例えば、振幅:10mV、周波数範囲:7MHz~5mHz、測定点数:10点/decadeとする。 After performing conditioning treatment by initial charging and discharging using a charge/discharge test device, 50-hour rate capacity measurement was performed at a current value (C/50) of 1/50 of the rated capacity, and 10% of the 50-hour rate capacity was measured. AC impedance measurements were performed under each charging state. Note that the AC impedance measurement is performed at, for example, amplitude: 10 mV, frequency range: 7 MHz to 5 mHz, and number of measurement points: 10 points/decade.

50時間率容量測定によりSOH100%のリチウムイオン電池の放電曲線を作成した(図4(a)の実線特性)。10%毎の充電状態で交流インピーダンススペクトル(ナイキストプロット)から12Hzと0.01HzのZ'の差(ΔZ'=Z'0.01Hz-Z'12Hz)を求め、充電状態(容量)vs.インピーダンス(ΔZ')曲線を作成した(図4(b)の●を結ぶ実線特性)。 A discharge curve of a 100% SOH lithium ion battery was created by 50-hour rate capacity measurement (solid line characteristics in FIG. 4(a)). Find the difference between Z' between 12Hz and 0.01Hz (ΔZ' = Z' 0.01Hz - Z' 12Hz ) from the AC impedance spectrum (Nyquist plot) at every 10% charging state, and calculate the charging state (capacity) vs. impedance. (ΔZ') curve was created (solid line characteristic connecting ● in FIG. 4(b)).

使用履歴不明なリチウムイオン電池の作製:人工的に「正極と負極の反応領域のズレ(正負極のSOCズレ)」が発生した電池を作製するために、まず正極ハーフセルおよび負極ハーフセルを作製した。 Fabrication of a lithium ion battery with unknown usage history: In order to fabricate a battery with an artificial "misalignment of the reaction regions between the positive and negative electrodes (SOC deviation between positive and negative electrodes)", a positive half cell and a negative half cell were first fabricated.

正極ハーフセルは、直径14mmに打ち抜いたLiNi1/3Co1/3Mn1/3O正極を作用極に、直径16.0mmのリチウム金属を対極に、ポリプロピレン多孔膜をセパレータに、1 mol/L LiPF in EC:DEC (50:50v/v%)+VC(1wt%)+PS(1wt%)を電解液に用いた2032型コインセルとした。 The positive electrode half cell consists of a LiNi 1/3 Co 1/3 Mn 1/3 O 2 positive electrode punched to a diameter of 14 mm as a working electrode, a lithium metal with a diameter of 16.0 mm as a counter electrode, and a polypropylene porous membrane as a separator. A 2032 type coin cell was made using L LiPF 6 in EC:DEC (50:50v/v%)+VC(1wt%)+PS(1wt%) as the electrolyte.

負極ハーフセルは、直径15.9mmに打ち抜いたグラファイト負極を作用極に、直径16.0mmのリチウム金属を対極に、ポリプロピレン多孔膜をセパレータに、1 mol/L LiPF in EC:DEC (50:50v/v%)+VC(1wt%)+PS(1wt%)を電解液に用いた2032型コインセルとした。 The negative electrode half cell consists of a graphite negative electrode punched to a diameter of 15.9 mm as a working electrode, a lithium metal with a diameter of 16.0 mm as a counter electrode, a polypropylene porous membrane as a separator, and 1 mol/L LiPF 6 in EC:DEC (50:50v /v%)+VC(1wt%)+PS(1wt%) was used as the electrolyte to make a 2032 type coin cell.

正極ハーフセルは、初期充放電によるコンディショニング処理を実施した後、10%だけ充電もしくは20%だけ充電した状態でコインセルを解体し電極を取り出した。負極ハーフセルは、初期充放電によるコンディショニング処理を実施した後、放電状態でコインセルを解体し電極を取り出した。 After the positive electrode half cell was subjected to conditioning treatment by initial charging and discharging, the coin cell was disassembled and the electrode was taken out in a state where it was charged only 10% or 20%. After the negative electrode half cell was subjected to conditioning treatment by initial charging and discharging, the coin cell was disassembled in the discharged state and the electrode was taken out.

10%だけ充電した正極と放電状態の負極を組み合わせることでSOH約90%のリチウムイオン電池と、20%だけ充電した正極と放電状態の負極を組み合わせることでSOH約80%のリチウムイオン電池と、をそれぞれ作製した。 By combining a 10% charged positive electrode and a discharged negative electrode, you can create a lithium ion battery with an SOH of approximately 90%, and by combining a 20% charged positive electrode and a discharged negative electrode, you can create a lithium ion battery with an SOH of approximately 80%. were prepared respectively.

充放電試験装置を用いて、初期充放電によるコンディショニング処理を実施した後、定格容量の1/50の電流値(C/50)で50時間率容量測定と、50時間率容量に対して10%毎の充電状態で交流インピーダンス測定と、を行った。なお、交流インピーダンス測定は、例えば、振幅:10mV、周波数範囲:7MHz~5mHz、測定点数:10点/decadeとする。 After performing conditioning treatment by initial charging and discharging using a charge/discharge test device, 50-hour rate capacity measurement was performed at a current value (C/50) of 1/50 of the rated capacity, and 10% of the 50-hour rate capacity was measured. AC impedance measurements were performed under each charging state. Note that the AC impedance measurement is performed at, for example, amplitude: 10 mV, frequency range: 7 MHz to 5 mHz, and number of measurement points: 10 points/decade.

50時間率容量測定によりSOH90%、SOH80%のリチウムイオン電池の放電曲線を作成した(図4(a)の点線特性と破線特性)。10%毎の充電状態で交流インピーダンススペクトル(ナイキストプロット)から12Hzと0.01HzのZ'の差(ΔZ'=Z'0.01Hz-Z'12Hz)を求め、ΔZ'/ΔZ'minで規格化した後、容量vs.ΔZ'/ΔZ'min曲線を作成した(図4(b)の■を結ぶ点線特性と▲を結ぶ破線特性)。 Discharge curves of lithium ion batteries with 90% SOH and 80% SOH were created by 50-hour rate capacity measurement (dotted line characteristics and broken line characteristics in FIG. 4(a)). Find the difference between Z' between 12Hz and 0.01Hz (ΔZ' = Z' 0.01Hz - Z' 12Hz ) from the AC impedance spectrum (Nyquist plot) at every 10% charging state, and standardize it by ΔZ'/ΔZ'min. After that, a capacitance vs. ΔZ'/ΔZ'min curve was created (the dotted line characteristic connecting ■ and the broken line characteristic connecting ▲ in FIG. 4(b)).

SOH100%のリチウムイオン電池、SOH約90%のリチウムイオン電池およびSOH約80%のリチウムイオン電池のそれぞれの充電状態(容量)vs.インピーダンス曲線が重なるようにフィッティングさせた。この結果、図4(b)のSOC依存性をあらわすSOH100%特性、SOH90%特性、SOH80%特性に示すように、SOHの違いだけ充電状態(容量)がずれた状態でフィッティングされることを確認した。 Fitting was performed so that the state of charge (capacity) vs. impedance curves of a lithium ion battery with 100% SOH, a lithium ion battery with about 90% SOH, and a lithium ion battery with about 80% SOH overlapped with each other. As a result, as shown in the SOH 100% characteristic, SOH 90% characteristic, and SOH 80% characteristic representing SOC dependence in Figure 4(b), it was confirmed that the fitting was performed with the state of charge (capacity) deviated by the difference in SOH. did.

使用履歴不明な劣化後リチウムイオン電池(SOH約90%のリチウムイオン電池およびSOH約80%のリチウムイオン電池)について、SOC10%およびSOC80%のΔZ'を求め、その割合(ΔZ'SOC10%/ΔZ'SOC80%)をそれぞれ求めた。そして、図5(a)に示すように、求めた(ΔZ'SOC10%/ΔZ'SOC80%)の値を、SOH100%のリチウムイオン電池の容量vs.ΔZ'/ΔZ'min曲線に照合し、SOH約90%のリチウムイオン電池でのSOCズレ量0.79mAhと、SOH約80%のリチウムイオン電池でのSOCズレ量1.22mAhとを求める。そして、上記(1)式により推定SOHを求め、その結果を図5(b)の対比表に示す。 For degraded lithium ion batteries with unknown usage history (lithium ion batteries with SOH of about 90% and lithium ion batteries with SOH of about 80%), calculate ΔZ' at SOC10% and SOC80%, and calculate the ratio (ΔZ' SOC10% /ΔZ ' SOC80% ) was determined for each. Then, as shown in FIG. 5(a), the obtained value of (ΔZ' SOC10% /ΔZ' SOC80% ) is compared with the capacity vs. ΔZ'/ΔZ'min curve of a 100% SOH lithium ion battery, An SOC deviation amount of 0.79 mAh in a lithium ion battery with an SOH of approximately 90% and an SOC deviation amount of 1.22 mAh in a lithium ion battery with an SOH of approximately 80% are determined. Then, the estimated SOH is calculated using the above equation (1), and the results are shown in the comparison table in FIG. 5(b).

図5(b)の対比表から明らかなように、SOH約90%のリチウムイオン電池の場合、実測容量2.88mAh、実測SOH87%、SOCズレ量0.79mAh、推定SOH76%という結果が得られた。SOH約80%のリチウムイオン電池の場合、実測容量2.33mAh、実測SOH70%、SOCズレ量1.22mAh、推定SOH63%という結果が得られた。すなわち、使用履歴不明な劣化後リチウムイオン電池でありながら、推定SOHの値は、実測SOHから約10%ずれる程度の精度により推定できることが確認された。このように、SOH約90%のリチウムイオン電池とSOH約80%のリチウムイオン電池を予め人工的に作製して行った検証実験によって、正負極のSOCズレ量は、容量劣化量と等価であるとみなすことができるという検証結果を得た。 As is clear from the comparison table in Figure 5(b), in the case of a lithium-ion battery with an SOH of approximately 90%, results were obtained with an actual capacity of 2.88 mAh, an actual SOH of 87%, an SOC deviation of 0.79 mAh, and an estimated SOH of 76%. Ta. In the case of a lithium ion battery with an SOH of approximately 80%, results were obtained with an actual capacity of 2.33 mAh, an actual SOH of 70%, an SOC deviation of 1.22 mAh, and an estimated SOH of 63%. That is, it was confirmed that the estimated SOH value could be estimated with an accuracy of approximately 10% deviation from the actually measured SOH even though the battery was a degraded lithium ion battery whose usage history was unknown. In this way, through verification experiments in which lithium ion batteries with an SOH of approximately 90% and lithium ion batteries with an SOH of approximately 80% were artificially prepared in advance, the amount of SOC deviation between the positive and negative electrodes was equivalent to the amount of capacity deterioration. We obtained verification results that it can be considered as

[インピーダンス曲線の規格化作用]
インピーダンス曲線の規格化は、図2のフローチャートにおいて、S61→S62→S63→S64へと進むことで実行される。つまり、S61では、図1のS3にて作成された劣化前リチウムイオン電池の充電状態(容量)vs.インピーダンス(Ω)曲線が取得される。S62では、正極に帰属する低周波数範囲の曲線特性において、インピーダンス(Ω)が最低のSOCが決定される。S63では、最低のインピーダンス(Ω)が100%になるように、他の測定点のSOCのインピーダンス比率(%)が算出される。S64では、インピーダンス比率(%)の算出に基づき、複数のインピーダンス比率(%)の算出点を繋いで充電状態(容量)vs.インピーダンス比率(%)曲線が作成される。
[Impedance curve normalization effect]
The normalization of the impedance curve is executed by proceeding from S61 to S62 to S63 to S64 in the flowchart of FIG. That is, in S61, the state of charge (capacity) vs. impedance (Ω) curve of the lithium ion battery before deterioration created in S3 of FIG. 1 is acquired. In S62, the SOC with the lowest impedance (Ω) in the curve characteristics in the low frequency range belonging to the positive electrode is determined. In S63, impedance ratios (%) of the SOCs at other measurement points are calculated so that the lowest impedance (Ω) becomes 100%. In S64, based on the impedance ratio (%) calculation, a charging state (capacity) vs. impedance ratio (%) curve is created by connecting a plurality of impedance ratio (%) calculation points.

次に、インピーダンス曲線の規格化により、電極サイズおよび正極又は負極の劣化の影響が排除されることの検証作用を、図6を参照しながら説明する。 Next, the effect of verifying that the influence of electrode size and deterioration of the positive electrode or negative electrode is eliminated by normalizing the impedance curve will be described with reference to FIG. 6.

LiNi1/3Co1/3Mn1/3O正極を作用極に、LiTiO12負極を対極に、ポリプロピレン多孔膜をセパレータに、1 mol/L LiPF in EC:DEC (50:50v/v%)+VC(1wt%)+PS(1wt%)を電解液に用いてラミネートセルを作製した。ラミネートセルは25℃又は45℃の環境下で定格容量の1/10の電流値(C/10)で充放電サイクル試験を行った。100サイクル、200サイクル、300サイクルに到達したラミネートセルを解体し、サイクル劣化した正極を取り出した。取り出した正極を用いて正極ハーフセルを作製した。 1 mol / L LiPF 6 in EC : DEC ( 50 :50v/v%)+VC(1wt%)+PS(1wt%) was used as the electrolyte to fabricate a laminate cell. The laminate cell was subjected to a charge/discharge cycle test at a current value of 1/10 of the rated capacity (C/10) in an environment of 25°C or 45°C. The laminate cells that had reached 100, 200, and 300 cycles were disassembled, and the cycle-deteriorated positive electrodes were taken out. A positive electrode half cell was produced using the taken out positive electrode.

作製したそれぞれの正極ハーフセルについて、充放電試験装置を用いて、初期充放電によるコンディショニング処理を実施した後、定格容量の1/50の電流値(C/50)で50時間率容量測定と、50時間率容量に対して10%毎の充電状態で交流インピーダンス測定を行った。なお、交流インピーダンス測定は、例えば、振幅:10mV、周波数範囲:7MHz~5mHz、測定点数:10点/decadeとする。 After carrying out conditioning treatment by initial charging and discharging for each of the produced positive electrode half cells using a charging and discharging test device, a 50-hour rate capacity measurement was performed at a current value (C/50) of 1/50 of the rated capacity, and a AC impedance measurement was performed at every 10% charging state with respect to the time rate capacity. Note that the AC impedance measurement is performed at, for example, amplitude: 10 mV, frequency range: 7 MHz to 5 mHz, and number of measurement points: 10 points/decade.

10%毎の充電状態で交流インピーダンススペクトル(ナイキストプロット)から12Hzと0.01HzのZ'の差(ΔZ'=Z'0.01Hz-Z'12Hz)を求めて、容量vs.ΔZ'(Ω)曲線を作成した(図6(a)規格化前)。規格化前のインピーダンス曲線は、図6(a)から明らかなように、サイクル劣化した正極のインピーダンス(Ω)は、未劣化の正極のインピーダンス(Ω)に比べて大きくなることを確認した。 Calculate the difference in Z' between 12Hz and 0.01Hz (ΔZ' = Z' 0.01Hz - Z' 12Hz ) from the AC impedance spectrum (Nyquist plot) at every 10% charging state, and calculate the capacity vs. ΔZ' (Ω). ) A curve was created (Figure 6(a) before normalization). As is clear from the impedance curve before normalization in FIG. 6(a), it was confirmed that the impedance (Ω) of the cycle-degraded positive electrode is larger than the impedance (Ω) of the undegraded positive electrode.

一方で、容量vs.ΔZ'(Ω)曲線をグラフ内の最低インピーダンス(Ω)が100%になるように規格化した容量vs.ΔZ'(%)曲線を作成した(図6(b)規格化後)。規格化後のインピーダンス曲線は、図6(b)から明らかなように、スケール・形状ともに劣化前後でよく一致すること確認した。 On the other hand, a capacitance vs. ΔZ' (%) curve was created by normalizing the capacitance vs. ΔZ' (Ω) curve so that the lowest impedance (Ω) in the graph was 100% (Figure 6(b) standard (after). As is clear from FIG. 6(b), it was confirmed that the impedance curves after normalization matched well in both scale and shape before and after deterioration.

リチウムイオン電池のインピーダンスは、SOC依存性以外に、評価する電極のサイズ、正極又は負極の劣化等によっても変化することから、SOC依存性のみを評価するためには、電極サイズおよび正極又は負極の劣化の影響を排除する必要がある。 In addition to SOC dependence, the impedance of a lithium ion battery changes depending on the size of the electrode to be evaluated and the deterioration of the positive or negative electrode. Therefore, in order to evaluate only the SOC dependence, it is necessary to It is necessary to eliminate the effects of deterioration.

これに対し、容量vs.ΔZ'(Ω)曲線の関係特性を、グラフ内の最低インピーダンス(Ω)が100%になるように規格化し、容量vs.ΔZ'(%)曲線(図6(b)規格化後)の関係特性にすることで、スケール・形状ともに劣化前後でよく一致する。つまり、電極サイズおよび正極又は負極の劣化の影響が排除されることが確認された。よって、インピーダンス曲線を規格化すると、使用履歴不明なリチウムイオン電池のインピーダンスの劣化前後における電極サイズおよび正極又は負極の劣化の影響が排除され、SOC依存性による同一のスケールで評価することができるという検証結果を得た。 On the other hand, the relationship characteristics of the capacitance vs. ΔZ' (Ω) curve are normalized so that the lowest impedance (Ω) in the graph is 100%, and the capacitance vs. ΔZ' (%) curve (Figure 6(b) ) After normalization), the scale and shape match well before and after deterioration. In other words, it was confirmed that the influence of electrode size and deterioration of the positive electrode or negative electrode was eliminated. Therefore, by normalizing the impedance curve, the influence of the electrode size and deterioration of the positive or negative electrode before and after deterioration of the impedance of a lithium-ion battery whose usage history is unknown is eliminated, and it is possible to evaluate it on the same scale due to SOC dependence. Obtained verification results.

[インピーダンスの正負極帰属作用]
インピーダンスの正負極帰属は、図3のフローチャートにおいて、S21→S22→S23→S24→S25へと進むことで実行される。つまり、S21では、SOH100%のリチウムイオン電池の充電状態(容量)vs.インピーダンス曲線が、異なる周波数範囲(例えば、低周波数範囲と高周波数範囲)に分けて取得される。S22では、SOH100%(劣化前)のリチウムイオン電池が解体される。S23では、解体電池のセルから正極および負極を評価できる正極ハーフセルおよび負極ハーフセルが再組される。S24では、正極ハーフセルおよび負極ハーフセルのそれぞれの充電状態(容量)vs.インピーダンス曲線が、異なる周波数範囲(例えば、低周波数範囲と高周波数範囲)に分けて取得される。S25では、S21とS24にて取得された充電状態(容量)vs.インピーダンス曲線が比較され、異なる周波数範囲の曲線特性のうち何れの特性が正極又は負極に帰属するのかが判定される。
[Positive and negative polarity attribution effect of impedance]
Attribution of impedance to positive and negative polarities is executed by proceeding from S21 to S22 to S23 to S24 to S25 in the flowchart of FIG. That is, in S21, the state of charge (capacity) vs. impedance curve of a 100% SOH lithium ion battery is obtained divided into different frequency ranges (for example, a low frequency range and a high frequency range). In S22, the lithium ion battery with 100% SOH (before deterioration) is disassembled. In S23, the positive electrode half cell and the negative electrode half cell whose positive electrode and negative electrode can be evaluated from the cells of the disassembled battery are reassembled. In S24, the state of charge (capacity) vs. impedance curves of each of the positive half cell and the negative half cell are obtained separately for different frequency ranges (for example, a low frequency range and a high frequency range). In S25, the state of charge (capacity) vs. impedance curves acquired in S21 and S24 are compared, and it is determined which of the curve characteristics in different frequency ranges belongs to the positive electrode or the negative electrode.

次に、インピーダンスの正負極帰属作用において、SOH100%のリチウムイオン電池の低周波数範囲の特性は、リチウムイオン電池の正極に帰属するという検証作用を、図7A、図7B、図7Cを参照しながら説明する。 Next, with reference to FIGS. 7A, 7B, and 7C, we will verify that the characteristics in the low frequency range of a 100% SOH lithium-ion battery are attributable to the positive electrode of the lithium-ion battery in terms of impedance attribution to the positive and negative electrodes. explain.

正極ハーフセルおよび負極ハーフセルについて、充放電試験装置を用いて、初期充放電によるコンディショニング処理を実施した後、定格容量の1/50の電流値(C/50)で50時間率容量測定と、50時間率容量に対して10%毎の充電状態で交流インピーダンス測定を行った。なお、交流インピーダンス測定は、例えば、振幅:10mV、周波数範囲:7MHz~5mHz、測定点数:10点/decadeとする。 For the positive electrode half cell and the negative electrode half cell, after conditioning treatment by initial charging and discharging using a charging/discharging test device, a 50-hour rate capacity measurement was performed at a current value (C/50) of 1/50 of the rated capacity, and a 50-hour AC impedance was measured at every 10% charge state relative to the rate capacity. Note that the AC impedance measurement is performed at, for example, amplitude: 10 mV, frequency range: 7 MHz to 5 mHz, and number of measurement points: 10 points/decade.

正極ハーフセルについては、10%毎の充電状態で交流インピーダンススペクトル(ナイキストプロット)から220,000Hzと126Hzの差(ΔZ'正極高周波=Z'126Hz-Z'220,000Hz)および12Hzと0.01HzのZ'の差(ΔZ'正極低周波=Z'0.01Hz-Z'12Hz)を求め、それぞれの容量vs.ΔZ'曲線を作成した。 For the positive electrode half cell, the difference between 220,000 Hz and 126 Hz (ΔZ' positive electrode high frequency = Z' 126 Hz - Z' 220,000 Hz ) and the difference between 12 Hz and 0.01 Hz from the AC impedance spectrum (Nyquist plot) at every 10% charging state. The difference in Z'(ΔZ' positive low frequency = Z' 0.01 Hz - Z' 12 Hz ) was determined, and a capacitance vs. ΔZ' curve was created for each.

負極ハーフセルについては、10%毎の充電状態で交流インピーダンススペクトル(ナイキストプロット)から6,400Hzと85Hzの差(ΔZ'負極高周波=Z'85Hz-Z'6,400Hz)および85Hzと0.1Hzの差(ΔZ'負極低周波=Z'0.1Hz-Z'85Hz)を求め、容量vs.ΔZ'曲線を作成した。 For the negative electrode half cell, the difference between 6,400 Hz and 85 Hz (ΔZ' negative electrode high frequency = Z' 85 Hz - Z' 6,400 Hz) and the difference between 85 Hz and 0.1 Hz are determined from the AC impedance spectrum (Nyquist plot ) at every 10% charging state. The difference (ΔZ' negative low frequency = Z' 0.1 Hz - Z' 85 Hz ) was determined, and a capacitance vs. ΔZ' curve was created.

図7A、図7B、図7CにSOH100%のリチウムイオン電池、正極ハーフセル、負極ハーフセルのそれぞれの容量vs.ΔZ'曲線、ナイキストプロットおよびボード線図を示す。SOH100%のリチウムイオン電池の容量vs.ΔZ'曲線に対して、正極ハーフセルおよび負極ハーフセルのそれぞれの容量vs.ΔZ'曲線の形状を比較した。形状比較したところ、SOH100%のリチウムイオン電池の低周波の容量vs.ΔZ'曲線(図7Aの●を結ぶ実線特性)は、正極ハーフセルの正極低周波曲線(図7Bの●を結ぶ実線特性)とよく一致した。よって、SOH100%のリチウムイオン電池の低周波数範囲は、正極由来であり、リチウムイオン電池の正極に帰属すると検証された。 7A, FIG. 7B, and FIG. 7C show capacity vs. ΔZ′ curves, Nyquist plots, and Bode diagrams of 100% SOH lithium ion batteries, positive electrode half cells, and negative electrode half cells, respectively. The shapes of the capacity vs. ΔZ' curves of the positive electrode half cell and the negative electrode half cell were compared with the capacity vs. ΔZ' curve of a 100% SOH lithium ion battery. When comparing the shapes, it was found that the low frequency capacity vs. ΔZ' curve of the 100% SOH lithium ion battery (the solid line characteristic connecting the ● in Figure 7A) is the positive electrode low frequency curve of the positive electrode half cell (the solid line characteristic connecting the ● in Figure 7B). ) was in good agreement. Therefore, it was verified that the low frequency range of the 100% SOH lithium ion battery originates from the positive electrode and belongs to the positive electrode of the lithium ion battery.

[劣化診断方法による効果]
以上説明したように、実施例1のリチウムイオン電池(二次電池)の劣化診断方法にあっては、下記に列挙する効果を奏する。
[Effects of deterioration diagnosis method]
As explained above, the method for diagnosing deterioration of a lithium ion battery (secondary battery) of Example 1 has the following effects.

(1)交流インピーダンス法による二次電池の劣化診断方法であって、劣化前二次電池に対して充電状態を変えて複数のインピーダンスを測定する劣化前電池測定ステップ(S1)と、複数のインピーダンスの測定データに基づいて、劣化前二次電池の充電容量に対するインピーダンス曲線の関係特性を作成する特性作成ステップ(S3)と、使用履歴不明な劣化後二次電池に対して充電状態を変えて複数のインピーダンスを測定する劣化後電池測定ステップ(S4)と、特性作成ステップ(S3)により作成された関係特性と、劣化後電池測定ステップ(S4)により取得した複数のインピーダンスの測定データと、に基づいて、劣化前後における正負極の充電容量ズレ量(SOCズレ量)を推定するズレ量推定ステップ(S7)と、正負極の充電容量ズレ量を、劣化後二次電池の容量劣化量と等価であるとみなし、劣化後二次電池の劣化度SOHを判定する劣化度判定ステップ(S8)と、を有する。このため、使用履歴不明な劣化後二次電池の残存容量情報を簡易かつ正確に取得することができる。すなわち、使用履歴不明な劣化後二次電池のインピーダンスのSOC依存性を利用し、複数の充電状態で計測されたインピーダンスから劣化後二次電池の正負極のSOCズレ量を推定し、劣化度SOHの判定が行われる。 (1) A method for diagnosing deterioration of a secondary battery using an AC impedance method, which includes a pre-deterioration battery measurement step (S1) of measuring a plurality of impedances by changing the charging state of the pre-deterioration secondary battery, and a plurality of impedances. A characteristic creation step (S3) of creating a relational characteristic of the impedance curve to the charging capacity of the secondary battery before deterioration based on the measurement data of Based on the degraded battery measurement step (S4) for measuring the impedance of the battery, the relational characteristics created in the characteristic creation step (S3), and the plurality of impedance measurement data obtained in the degraded battery measurement step (S4). A deviation amount estimation step (S7) of estimating the charge capacity deviation amount of the positive and negative electrodes (SOC deviation amount) before and after deterioration, and a deviation amount estimation step (S7) in which the charge capacity deviation amount of the positive and negative electrodes is equivalent to the capacity deterioration amount of the secondary battery after deterioration. and a deterioration degree determination step (S8) of determining the deterioration degree SOH of the degraded secondary battery. Therefore, remaining capacity information of a degraded secondary battery whose usage history is unknown can be easily and accurately acquired. That is, using the SOC dependence of the impedance of a degraded secondary battery whose usage history is unknown, the SOC deviation amount of the positive and negative electrodes of the degraded secondary battery is estimated from the impedance measured in multiple charging states, and the degree of degradation SOH is estimated. A determination is made.

(2)特性作成ステップ(S3)にて作成された劣化前二次電池の充電容量に対するインピーダンス(Ω)曲線の関係特性を規格化前特性というとき、規格化前特性からインピーダンス(Ω)が最低の充電容量(SOC)を決定し、最低のインピーダンス(Ω)が100%になるように、他の測定点での充電容量のインピーダンス比率(%)を算出し、劣化前二次電池の充電容量に対するインピーダンス比率(%)曲線の関係特性に規格化する規格化ステップ(S6)を有する。ズレ量推定ステップ(S7)は、規格化された充電容量に対するインピーダンス比率(%)曲線の関係特性と、少なくともフル充電域と放電域を含む充電状態によるインピーダンスの測定データにより算出されるインピーダンス比率(%)と、を用い、劣化後二次電池の正負極の充電容量ズレ量(SOCズレ量)を推定する。このため、曲線特性の規格化により電極サイズおよび正極又は負極の劣化の影響が排除され、二次電池のインピーダンスのSOC依存性を、劣化前後において同一のスケールで評価することができる。加えて、使用履歴不明な劣化後二次電池の劣化診断を行うとき、劣化後二次電池に対してインピーダンス比率(%)を算出できる少なくとも2つの充電状態でのインピーダンスの測定データを取得するだけで良い。この結果、インピーダンス測定にまとまった長い時間を要することが無く、劣化後二次電池に対するインピーダンス測定を短時間にて簡単に終え、精度良く劣化度SOHを判定する簡易SOH診断が可能になる。 (2) When the relationship characteristic of the impedance (Ω) curve against the charging capacity of the secondary battery before deterioration created in the characteristic creation step (S3) is called the pre-standardization characteristic, the impedance (Ω) is the lowest from the pre-standardization characteristic. Determine the charging capacity (SOC) of the secondary battery before deterioration, calculate the impedance ratio (%) of the charging capacity at other measurement points so that the lowest impedance (Ω) becomes 100%, and calculate the charging capacity of the secondary battery before deterioration. It has a normalization step (S6) of normalizing the relational characteristic of the impedance ratio (%) curve to the impedance ratio (%) curve. The deviation amount estimation step (S7) calculates the impedance ratio (%) calculated from the relationship characteristic of the impedance ratio (%) curve to the standardized charging capacity and the impedance measurement data according to the charging state including at least the full charging region and the discharging region. %) and, the charge capacity deviation amount (SOC deviation amount) of the positive and negative electrodes of the degraded secondary battery is estimated. Therefore, by normalizing the curve characteristics, the influence of the electrode size and deterioration of the positive electrode or the negative electrode is eliminated, and the SOC dependence of the impedance of the secondary battery can be evaluated on the same scale before and after deterioration. In addition, when diagnosing the deterioration of a degraded secondary battery whose usage history is unknown, all that is required is to obtain impedance measurement data in at least two charging states that can be used to calculate the impedance ratio (%) for the degraded secondary battery. That's fine. As a result, it is not necessary to take a long time to measure the impedance, and the impedance measurement for the degraded secondary battery can be easily completed in a short period of time, thereby making it possible to perform a simple SOH diagnosis that accurately determines the degree of SOH deterioration.

(3)劣化前二次電池の正極および負極を評価できる正極ハーフセルと負極ハーフセルを作製し、劣化前二次電池の充電容量に対するインピーダンス曲線と、正極ハーフセルの充電容量に対するインピーダンス曲線と、負極ハーフセルの充電容量に対するインピーダンス曲線を、異なる周波数範囲毎に取得する。劣化前二次電池と正極ハーフセルと負極ハーフセルの充電容量に対するインピーダンス曲線を比較し、劣化前二次電池の異なる周波数範囲の曲線特性のうち、何れの特性が正極又は負極に帰属するのかを判定する帰属判定ステップ(S2)を有する。特性作成ステップ(S3)および規格化ステップ(S6)は、測定データの正極又は負極の帰属判定結果に基づいて、劣化前二次電池の充電容量に対するインピーダンス曲線の関係特性を作成する。このため、劣化後二次電池の劣化度SOHを判定するとき、正極の帰属又は負極の帰属に分けた評価により判定することができる。加えて、劣化前二次電池の充電容量に対するインピーダンス曲線の関係特性を、特定の周波数範囲のインピーダンス測定により取得された測定データにより作成することができる。すなわち、劣化前二次電池の充電容量に対するインピーダンス曲線の関係特性を作成するとき、および、関係特性を規格化するとき、まとまった長い時間を要することが無い。 (3) Create a positive half cell and a negative half cell that can evaluate the positive and negative electrodes of the secondary battery before deterioration, and draw the impedance curve for the charging capacity of the secondary battery before deterioration, the impedance curve for the charging capacity of the positive half cell, and the impedance curve for the negative half cell. Obtain impedance curves for charging capacity for different frequency ranges. Compare the impedance curves for charging capacity of the secondary battery before deterioration, the positive electrode half cell, and the negative electrode half cell, and determine which of the curve characteristics in different frequency ranges of the secondary battery before deterioration belongs to the positive electrode or the negative electrode. It has a belonging determination step (S2). The characteristic creation step (S3) and the standardization step (S6) create a relational characteristic of the impedance curve to the charging capacity of the secondary battery before deterioration, based on the result of determining whether the measurement data belongs to the positive electrode or the negative electrode. For this reason, when determining the degree of deterioration SOH of a secondary battery after deterioration, it can be determined by evaluating whether the positive electrode belongs or the negative electrode belongs. In addition, the relationship characteristic of the impedance curve with respect to the charge capacity of the secondary battery before deterioration can be created using measurement data obtained by impedance measurement in a specific frequency range. That is, it does not take a long time to create the relationship characteristics of the impedance curve to the charge capacity of the secondary battery before deterioration and to standardize the relationship characteristics.

(4)インピーダンスの測定により取得した測定データに対し、環境温度により温度補正を行う温度補正ステップ(S5)を有する。このため、使用履歴不明な劣化後二次電池の残存容量情報を取得するとき、環境温度の違いに起因する劣化診断精度の低下を防止することができる。 (4) A temperature correction step (S5) is included in which the measurement data obtained by impedance measurement is subjected to temperature correction based on the environmental temperature. Therefore, when acquiring remaining capacity information of a degraded secondary battery whose usage history is unknown, it is possible to prevent deterioration diagnosis accuracy from decreasing due to differences in environmental temperature.

次に、実施例1の劣化診断方法を提供することにより得られる有用性や付随効果を説明する。実施例1の劣化診断方法を、中古電気自動車の価値判断、リチウムイオン電池の再利用判断等に活用することができる。リチウムイオン電池の劣化診断方法によるシステムを、車載機としたり、充電器や検査機に組み込んだりすることで、リチウムイオン電池の残存容量の評価精度を上げることができる。また、リチウムイオン電池の劣化診断システムとして標準化されることになると、安心な電池二次利用に繋がり、市場が活性化する。さらに、リチウムイオン電池の劣化診断システムがより活用しやすいような、例えば、正極と負極にインピーダンスのSOC依存性が高い活物質を選択する、正極と負極のインピーダンス差を大きくなるように電極を作製するといった二次電池の設計指針を提供することができる。 Next, the usefulness and accompanying effects obtained by providing the deterioration diagnosis method of Example 1 will be explained. The deterioration diagnosis method of Example 1 can be utilized for determining the value of used electric vehicles, determining whether to reuse lithium ion batteries, etc. By installing a system using a lithium-ion battery deterioration diagnosis method as an in-vehicle device or incorporating it into a charger or inspection device, it is possible to improve the accuracy of evaluating the remaining capacity of a lithium-ion battery. Additionally, if it becomes standardized as a deterioration diagnosis system for lithium-ion batteries, it will lead to safe secondary use of batteries and revitalize the market. Furthermore, electrodes can be created to make it easier to use in a lithium-ion battery deterioration diagnosis system, such as by selecting active materials with high impedance dependence on SOC for the positive and negative electrodes, and by creating electrodes that have a large impedance difference between the positive and negative electrodes. It is possible to provide design guidelines for secondary batteries such as:

以上、本発明の二次電池の劣化診断方法を実施例1に基づき説明してきた。しかし、具体的な二次電池の種類や手順については、この実施例1に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、例えば、劣化診断方法におけるステップ変更やステップ追加等は許容される。 The method for diagnosing deterioration of a secondary battery according to the present invention has been described above based on the first embodiment. However, the specific types and procedures of secondary batteries are not limited to this Example 1, and as long as they do not deviate from the gist of the invention according to each claim, for example, in the deterioration diagnosis method. Step changes and step additions are permitted.

実施例1では、劣化診断方法を適用する二次電池の種類として、正極又は負極の充電状態によりインピーダンスが変化するリチウムイオン電池の例を示した。しかし、二次電池の種類はリチウムイオン電池に限られず、全固体電池、ナトリウムイオン電池、マグネシウムイオン電池等、他の二次電池であっても勿論良い。 In Example 1, as a type of secondary battery to which the deterioration diagnosis method is applied, a lithium ion battery whose impedance changes depending on the state of charge of the positive electrode or the negative electrode was shown as an example. However, the type of secondary battery is not limited to a lithium ion battery, and may of course be other secondary batteries such as an all-solid-state battery, a sodium ion battery, a magnesium ion battery, etc.

実施例1では、二次電池の正極活物質の種類として、LiNi1/3Co1/3Mn1/3Oを用いる例を示した。しかし、正極活物質の種類はこれに限定されず、
LiNi0.5Co0.2Mn0.3O2、LiNi0.6Co0.2Mn0.2O2、LiNi0.8Co0.1Mn0.1O2に代表されるLiNi1-x-yCoxMnyO2、LiNi0.8Co0.15Al0.05O2に代表されるLiNi1-x-yCoxAlyO2、LiMn2O4、LiNi0.5Mn1.5O4に代表されるLiNi2-xMnxO2、又は、それらの混合物、等であっても良い。
In Example 1, an example was shown in which LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used as the type of positive electrode active material of the secondary battery. However, the type of positive electrode active material is not limited to this,
LiNi 1-xy Co x Mn y O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 represented by LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 It may be LiNi 1-xy Co x Al y O 2 , LiMn 2 O 4 , LiNi 2-x Mn x O 2 typified by LiNi 0.5 Mn 1.5 O 4 , or a mixture thereof. .

実施例1では、二次電池の負極活物質の種類として、グラファイトを用いる例を示した。しかし、負極活物質の種類はこれに限定されず、黒鉛系、シリコン系合金、LiTiO12、又は、それらの混合物、等であっても良い。 In Example 1, an example was shown in which graphite was used as the type of negative electrode active material of the secondary battery. However, the type of negative electrode active material is not limited thereto, and may be graphite-based, silicon-based alloy, Li 4 Ti 5 O 12 , or a mixture thereof.

実施例1では、二次電池の電解質の種類として、リチウムイオン電池用電解液を用いる例を示した。しかし、電解質の種類はこれに限定されず、全固体電池用固体電解質、又は、それらの混合物、等であっても良い。 In Example 1, an example was shown in which a lithium ion battery electrolyte was used as the type of electrolyte for the secondary battery. However, the type of electrolyte is not limited to this, and may be a solid electrolyte for all-solid-state batteries, a mixture thereof, or the like.

実施例1では、交流インピーダンス測定として、振幅:10mV、周波数範囲:7MHz~5mHz、測定点数:10点/decadeとする例を示した。しかし、交流インピーダンス測定はこれに限定されるものではない。例えば、交流インピーダンススペクトルの周波数範囲としては、10MHz~0.1mHzとしても良い。また、測定点数としても交流インピーダンススペクトルの周波数範囲のうち最低2点としても良い。 In Example 1, an example was shown in which the AC impedance was measured with amplitude: 10 mV, frequency range: 7 MHz to 5 mHz, and number of measurement points: 10 points/decade. However, AC impedance measurement is not limited to this. For example, the frequency range of the AC impedance spectrum may be 10 MHz to 0.1 mHz. Further, the number of measurement points may be at least two points in the frequency range of the AC impedance spectrum.

S1 劣化前電池測定ステップ
S2 帰属判定ステップ
S3 特性作成ステップ
S4 劣化後電池測定ステップ
S5 温度補正ステップ
S6 規格化ステップ
S7 ズレ量推定ステップ
S8 劣化度判定ステップ
S1 Pre-deterioration battery measurement step S2 Attribution determination step S3 Characteristic creation step S4 Deterioration battery measurement step S5 Temperature correction step S6 Standardization step S7 Deviation amount estimation step S8 Degradation degree determination step

Claims (4)

交流インピーダンス法による二次電池の劣化診断方法であって、
劣化前二次電池に対して充電状態を変えて複数のインピーダンスを測定する劣化前電池測定ステップと、
前記複数のインピーダンスの測定データに基づいて、前記劣化前二次電池の充電容量に対するインピーダンス曲線の関係特性を作成する特性作成ステップと、
使用履歴不明な劣化後二次電池に対して充電状態を変えて複数のインピーダンスを測定する劣化後電池測定ステップと、
前記特性作成ステップにより作成された関係特性と、前記劣化後電池測定ステップにより取得した複数のインピーダンスの測定データと、に基づいて、劣化前後における正負極の充電容量ズレ量を推定するズレ量推定ステップと、
前記正負極の充電容量ズレ量を、前記劣化後二次電池の容量劣化量と等価であるとみなし、前記劣化後二次電池の劣化度を判定する劣化度判定ステップと、を有する
ことを特徴とする二次電池の劣化診断方法。
A method for diagnosing deterioration of a secondary battery using an AC impedance method,
a pre-deterioration battery measurement step of measuring a plurality of impedances by changing the charging state of the pre-deterioration secondary battery;
a characteristic creation step of creating a relationship characteristic of an impedance curve to a charging capacity of the secondary battery before deterioration based on the plurality of impedance measurement data;
a degraded battery measurement step of measuring a plurality of impedances by changing the charging state of a degraded secondary battery whose usage history is unknown;
A deviation amount estimation step of estimating the amount of charge capacity deviation of the positive and negative electrodes before and after deterioration based on the relational characteristics created in the characteristic creation step and the plurality of impedance measurement data acquired in the post-deterioration battery measurement step. and,
A deterioration degree determining step of determining the degree of deterioration of the deteriorated secondary battery by regarding the charge capacity deviation amount of the positive and negative electrodes to be equivalent to the capacity deterioration amount of the deteriorated secondary battery. A method for diagnosing deterioration of secondary batteries.
請求項1に記載された二次電池の劣化診断方法において、
前記特性作成ステップにて作成された前記劣化前二次電池の充電容量に対するインピーダンス(Ω)曲線の関係特性を規格化前特性というとき、
前記規格化前特性からインピーダンス(Ω)が最低の充電容量を決定し、最低のインピーダンス(Ω)が100%になるように、他の測定点での充電容量のインピーダンス比率を算出し、前記劣化前二次電池の充電容量に対するインピーダンス比率(%)曲線の関係特性に規格化する規格化ステップを有し、
前記ズレ量推定ステップは、前記規格化された充電容量に対するインピーダンス比率(%)曲線の関係特性と、少なくともフル充電域と放電域を含む充電状態によるインピーダンスの測定データにより算出されるインピーダンス比率(%)と、を用い、前記劣化後二次電池の正負極の充電容量ズレ量を推定する
ことを特徴とする二次電池の劣化診断方法。
In the method for diagnosing deterioration of a secondary battery according to claim 1,
When the relationship characteristic of the impedance (Ω) curve against the charging capacity of the secondary battery before deterioration created in the characteristic creation step is referred to as the characteristic before normalization,
The charging capacity with the lowest impedance (Ω) is determined from the characteristics before normalization, and the impedance ratio of the charging capacity at other measurement points is calculated so that the lowest impedance (Ω) becomes 100%, and the impedance ratio of the charging capacity at other measurement points is determined. a normalization step of normalizing the relational characteristics of the impedance ratio (%) curve to the charge capacity of the previous secondary battery;
In the step of estimating the amount of deviation, the impedance ratio (%) is calculated based on the relationship characteristic of the impedance ratio (%) curve with respect to the standardized charging capacity and the impedance measurement data according to the charging state including at least the full charge region and the discharge region. ) to estimate the charge capacity difference between the positive and negative electrodes of the degraded secondary battery.
請求項2に記載された二次電池の劣化診断方法において、
前記劣化前二次電池の正極および負極を評価できる正極ハーフセルと負極ハーフセルを作製し、
前記劣化前二次電池の充電容量に対するインピーダンス曲線と、前記正極ハーフセルの充電容量に対するインピーダンス曲線と、前記負極ハーフセルの充電容量に対するインピーダンス曲線を、異なる周波数範囲毎に取得し、
前記劣化前二次電池と前記正極ハーフセルと前記負極ハーフセルの充電容量に対するインピーダンス曲線を比較し、曲線特性の近似性判断に基づいて、前記劣化前二次電池の異なる周波数範囲の曲線特性のうち、何れの特性が正極又は負極に帰属するのかを判定する帰属判定ステップを有し、
前記特性作成ステップおよび前記規格化ステップは、測定データの正極又は負極の帰属判定結果に基づいて、前記劣化前二次電池の充電容量に対するインピーダンス曲線の関係特性を作成する
ことを特徴とする二次電池の劣化診断方法。
In the method for diagnosing deterioration of a secondary battery according to claim 2,
Producing a positive electrode half cell and a negative electrode half cell that can evaluate the positive electrode and negative electrode of the secondary battery before deterioration,
Obtaining an impedance curve for the charging capacity of the secondary battery before deterioration, an impedance curve for the charging capacity of the positive electrode half cell, and an impedance curve for the charging capacity of the negative electrode half cell for each different frequency range,
The impedance curves for the charging capacity of the secondary battery before deterioration, the positive electrode half cell, and the negative electrode half cell are compared, and based on the similarity judgment of the curve characteristics, among the curve characteristics in different frequency ranges of the secondary battery before deterioration, an attribution determination step of determining which characteristic belongs to the positive electrode or the negative electrode;
The characteristic creation step and the standardization step create a relational characteristic of an impedance curve to a charge capacity of the secondary battery before deterioration based on a determination result of whether the measurement data belongs to a positive electrode or a negative electrode. How to diagnose battery deterioration.
請求項1から3までの何れか一項に記載された二次電池の劣化診断方法において、
前記インピーダンスの測定により取得した測定データに対し、環境温度により温度補正を行う温度補正ステップを有する
ことを特徴とする二次電池の劣化診断方法。
In the method for diagnosing deterioration of a secondary battery according to any one of claims 1 to 3,
A method for diagnosing deterioration of a secondary battery, comprising a temperature correction step of performing temperature correction based on an environmental temperature on the measurement data obtained by measuring the impedance.
JP2022088016A 2022-05-30 2022-05-30 Secondary battery deterioration diagnosis method Pending JP2023175531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022088016A JP2023175531A (en) 2022-05-30 2022-05-30 Secondary battery deterioration diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022088016A JP2023175531A (en) 2022-05-30 2022-05-30 Secondary battery deterioration diagnosis method

Publications (1)

Publication Number Publication Date
JP2023175531A true JP2023175531A (en) 2023-12-12

Family

ID=89121176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022088016A Pending JP2023175531A (en) 2022-05-30 2022-05-30 Secondary battery deterioration diagnosis method

Country Status (1)

Country Link
JP (1) JP2023175531A (en)

Similar Documents

Publication Publication Date Title
Lin et al. A study on the impact of open circuit voltage tests on state of charge estimation for lithium-ion batteries
Monem et al. Lithium-ion batteries: Evaluation study of different charging methodologies based on aging process
Swierczynski et al. Lifetime Estimation of the Nanophosphate $\hbox {LiFePO} _ {4}\hbox {/C} $ Battery Chemistry Used in Fully Electric Vehicles
CN103344917B (en) A kind of lithium battery cycle life method for rapidly testing
US9791519B2 (en) Apparatus and method for accurate energy device state-of-charge (SoC) monitoring and control using real-time state-of-health (SoH) data
US9588185B2 (en) Method and apparatus for detecting cell deterioration in an electrochemical cell or battery
CN103823188B (en) Method for evaluating health state of lithium ion battery pack
Kim et al. OCV hysteresis effect-based SOC estimation in extended Kalman filter algorithm for a LiFePO 4/C cell
US10281530B2 (en) Battery capacity measuring device and battery capacity measuring method
EP3021127A1 (en) Method for estimating state of electricity storage device
CN104577242B (en) A kind of batteries management system and method
CN109143108A (en) A kind of estimation method of the lithium ion battery SOH based on electrochemical impedance spectroscopy
JP2016085062A (en) Device and method for determining battery deterioration
Thingvad et al. Characterization of nmc lithium-ion battery degradation for improved online state estimation
Ansean et al. Electric vehicle Li-Ion battery evaluation based on internal resistance analysis
Lee et al. A new battery parameter identification considering current, SOC and Peukert's effect for hybrid electric vehicles
Zhou et al. An online state of health estimation method for lithium-ion batteries based on integrated voltage
Harigopal et al. Assessment of State of Charge estimation techniques for Li-Ion battery pack
Kaypmaz et al. An advanced cell model for diagnosing faults in operation of Li-ion Polymer batteries
Sarrafan et al. Real-time state-of-charge tracking system using mixed estimation algorithm for electric vehicle battery system
Li et al. State-of-charge estimation of lithium-ion battery using multi-state estimate technic for electric vehicle applications
EP3006950A1 (en) Estimation method for state of charge of lithium iron phosphate power battery packs
CN110085898A (en) A kind of Soft Roll power battery method for group matching
JP2023175531A (en) Secondary battery deterioration diagnosis method
Sadabadi et al. Development of an electrochemical model for a Lithium Titanate Oxide|| nickel manganese cobalt battery module