JP2023174403A - Metal additive manufacturing method and apparatus thereof - Google Patents

Metal additive manufacturing method and apparatus thereof Download PDF

Info

Publication number
JP2023174403A
JP2023174403A JP2022087256A JP2022087256A JP2023174403A JP 2023174403 A JP2023174403 A JP 2023174403A JP 2022087256 A JP2022087256 A JP 2022087256A JP 2022087256 A JP2022087256 A JP 2022087256A JP 2023174403 A JP2023174403 A JP 2023174403A
Authority
JP
Japan
Prior art keywords
metal
additive manufacturing
tip
metal additive
pressing tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022087256A
Other languages
Japanese (ja)
Inventor
佳典 吉田
Yoshinori Yoshida
あすか 沓掛
Asuka Kutsukake
琢磨 岡島
Takuma Okajima
樹一 伊藤
Juichi Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Tokai National Higher Education and Research System NUC
Original Assignee
Daido Steel Co Ltd
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Tokai National Higher Education and Research System NUC filed Critical Daido Steel Co Ltd
Priority to JP2022087256A priority Critical patent/JP2023174403A/en
Publication of JP2023174403A publication Critical patent/JP2023174403A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Powder Metallurgy (AREA)

Abstract

To provide a metal additive manufacturing method due to additive manufacturing capable of performing an adjustment process in series with the additive process with good controllability and accuracy.SOLUTION: The present invention relates to a metal additive manufacturing apparatus and method for modeling a metal additive manufacturing object by supplying a metal material onto a modeling stage and moving a localized melted part by an irradiated heat source. The device includes a movement control unit that positions a tip of a pressing tool at the rear in a moving direction of the local melting part, and freely maintains and controls a separation distance of the tip from the modeling stage, and it is characterized in that it slides following the movement of the local melting part while pressing the tip against the metal material. The method involves sliding the tip following the movement of the local melting part while pressing the tip against the metal material, in the movement control unit that positions the tip of the pressing tool at the rear in the moving direction of the local melting part, and freely maintains and controls the separation distance of the tip from the modeling stage.SELECTED DRAWING: Figure 1

Description

本発明は、付加製造による金属積層造形方法及びその装置に関する。 The present invention relates to a metal additive manufacturing method and apparatus using additive manufacturing.

アーク放電やレーザーなどからなる熱源を移動させつつ供給された金属材料を局所的に溶融及び凝固させてトラックを形成し、これを水平方向及び/又は鉛直方向に積み重ねて立体形状の構造体を造形していく金属積層造形方法が知られている。ここで、溶融及び凝固の過程で内部に空孔が形成されると、構造体の機械的特性が低下してしまう。そこで、溶融及び凝固の過程の中で塑性変形を与えて空孔を圧壊させながらトラックを形成していく方法が提案されている。 While moving a heat source such as an arc discharge or a laser, the supplied metal material is locally melted and solidified to form tracks, which are stacked horizontally and/or vertically to form a three-dimensional structure. Metal additive manufacturing methods are known. Here, if pores are formed inside during the melting and solidification process, the mechanical properties of the structure will deteriorate. Therefore, a method has been proposed in which tracks are formed while applying plastic deformation during the melting and solidification process to collapse the pores.

例えば、非特許文献1では、アーク放電による付加製造(AAM)において、大きなエネルギー入力によって溶融した金属が流動し、収縮空孔やクラックを生成し、また残留応力や変形を生じさせるといった、いわゆる「ボトルネック問題」について述べた上で、これに対して熱間圧延プロセスを与えることを提案している。金属ワイヤを供給されるトーチの後方において複数の円筒ローラーにて塑性変形を与えて、機械強度の回復を図っている。 For example, in Non-Patent Document 1, in additive manufacturing by arc discharge (AAM), molten metal flows due to large energy input, generates shrinkage pores and cracks, and also causes residual stress and deformation. After discussing the ``bottleneck problem,'' he proposed that a hot rolling process be applied to solve this problem. A plurality of cylindrical rollers apply plastic deformation to the back of the torch to which the metal wire is supplied, in order to restore mechanical strength.

また、特許文献1では、非特許文献1と同様に、アーク放電によるプラズマ熱溶解積層ガンやガスシールドレーザガンのような大きなエネルギー源を用いて、この移動と同期させてマイクロローラを運動させ、その場で溶融池後方の凝固直後領域の表面を塑性変形させて圧延、冷却を追従制御し、変形矯正、除去加工、及び/又は仕上げ加工を行う方法を開示している。 In addition, in Patent Document 1, similar to Non-Patent Document 1, a large energy source such as a plasma fusion deposition gun using arc discharge or a gas shield laser gun is used to move the micro roller in synchronization with this movement. This disclosure discloses a method of plastically deforming the surface of the region immediately after solidification behind the molten pool on the spot, controlling rolling and cooling, and performing deformation correction, removal processing, and/or finishing processing.

特開2020-108960号公報JP2020-108960A

"Improvement in Geometrical Accuracy and Mechanical Property for Arc-Based Additive Manufacturing Using Metamorphic Rolling Mechanism"; Yang Xie, Haiou Zhang,and Fei Zhou; Journal of Manufacturing Science and Engineering, NOVEMBER 2016, Vol. 138."Improvement in Geometrical Accuracy and Mechanical Property for Arc-Based Additive Manufacturing Using Metamorphic Rolling Mechanism"; Yang Xie, Haiou Zhang, and Fei Zhou; Journal of Manufacturing Science and Engineering, NOVEMBER 2016, Vol. 138.

付加製造による金属積層造形では、造形中に形成される初期空孔の制御が難しく、上記したような、付加工程と一連とした調整(塑性加工)工程を与えることが望まれる。特に、高い形状精度や機械的特性を要求されるような金属積層造形では、各積層工程における調整工程を制御性よく精確に実施できるようにすることも求められる。 In metal additive manufacturing using additive manufacturing, it is difficult to control the initial pores formed during modeling, and it is desirable to provide an adjustment (plastic working) process that is a series of the additive process as described above. In particular, in metal additive manufacturing that requires high shape accuracy and mechanical properties, it is also required to be able to accurately perform adjustment steps in each lamination process with good controllability.

本発明は、以上のような状況に鑑みてなされたものであって、その目的とするところは、付加工程と一連とした調整工程を制御性良く精確に実施し得る付加製造による金属積層造形方法及びその装置を提供することにある。 The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a metal additive manufacturing method using additive manufacturing in which an additive process and a series of adjustment processes can be performed accurately with good controllability. and to provide its equipment.

本発明による装置は、造形ステージ上に金属材料を供給し照射される熱源による局所溶融部を移動させて金属積層造形物を造形する金属積層造形装置であって、押圧工具の先端部を前記局所溶融部の移動方向の後方に配置させ、前記造形ステージに対する前記先端部の離隔距離を自在に保持して制御する移動制御部を含み、前記先端部を前記金属材料に押圧させつつ前記局所溶融部の移動に追従して摺動させることを特徴とする。 The apparatus according to the present invention is a metal additive manufacturing apparatus that supplies a metal material onto a modeling stage and moves a locally melted part by an irradiated heat source to create a metal additively manufactured object, and the apparatus is a metal additive manufacturing apparatus that supplies a metal material onto a modeling stage and moves a locally melted part by an irradiated heat source to create a metal additively manufactured object. a movement control section that is disposed at the rear in the moving direction of the melting section and that freely maintains and controls the separation distance of the tip from the modeling stage, and presses the tip against the metal material while controlling the local melting section. It is characterized by sliding following the movement of.

かかる特徴によれば、付加工程と一連として押圧工具の先端部を摺動させる、いわゆる「しごき加工」による機械的性質の向上に大きく寄与し得る塑性変形を簡便かつ精確に与え得るのである。 According to this feature, it is possible to easily and accurately apply plastic deformation that can greatly contribute to improving mechanical properties by so-called "iron processing" in which the tip of the pressing tool is slid as a series of additional steps.

上記した発明において、前記先端部は2000℃以上の高融点金属からなることを特徴としてもよい。また、前記高融点金属は、ニオブ、タンタル、モリブテン、タングステンのうちから選択される1種、又はこれを基とする合金であることを特徴としてもよい。また、上記した発明において、前記押圧工具は、前記高融点金属からなる棒状体の一部を前記先端部としていることを特徴としてもよい。更に、前記先端部は部分球状の立体曲面を有することを特徴としてもよい。かかる特徴によれば、局所溶融部後方での熱間塑性変形を機械的性質の向上に大きく寄与し得るように十分に与え得るとともに、工具寿命の低下を抑制できて、先端部の安定した摺動も得られるのである。 In the above invention, the tip portion may be made of a metal with a high melting point of 2000° C. or higher. Furthermore, the high melting point metal may be one selected from niobium, tantalum, molybdenum, and tungsten, or an alloy based thereon. Further, in the above-described invention, the pressing tool may be characterized in that the tip portion is a part of the rod-shaped body made of the high-melting point metal. Furthermore, the tip may have a partially spherical three-dimensional curved surface. According to these features, sufficient hot plastic deformation behind the locally fused portion can be provided to greatly contribute to improving mechanical properties, and reduction in tool life can be suppressed, resulting in stable sliding at the tip. You can also get movement.

上記した発明において、前記移動制御部は、前記離隔距離を一定とする固定制御、及び、前記先端部を前記金属材料に所定圧力で押圧させる定圧制御のいずれか一方又は両方で前記押圧工具の保持状態を制御することを特徴としてもよい。かかる特徴によれば、固定制御では塑性変形を十分に与えつつ制御を簡便にできる一方、定圧制御では局所溶融部後方での所定温度以上の軟化位置における熱間塑性変形を簡便に制御できるのである。 In the above-described invention, the movement control section holds the pressing tool using either or both of fixed control that keeps the separation distance constant and constant pressure control that presses the tip part against the metal material with a predetermined pressure. It may be characterized by controlling the state. According to these features, fixed control can easily control while giving sufficient plastic deformation, while constant pressure control can easily control hot plastic deformation at a softening position at a predetermined temperature or higher behind the local melting zone. .

また、本発明による方法は、造形ステージ上に金属材料を供給し照射される熱源による局所溶融部を移動させて金属積層造形物を造形する金属積層造形方法であって、押圧工具の先端部を前記局所溶融部の移動方向の後方に配置させ、前記造形ステージに対する前記先端部の離隔距離を自在に保持して制御する移動制御部にて、前記先端部を前記金属材料に押圧させつつ前記局所溶融部の移動に追従して摺動させることを特徴とする。 Furthermore, the method according to the present invention is a metal additive manufacturing method in which a metal material is supplied onto a modeling stage and a locally melted part is moved by an irradiated heat source to create a metal additively manufactured object, and the method comprises: A movement control unit disposed behind the local melting portion in the moving direction and freely maintaining and controlling the separation distance of the tip from the modeling stage presses the tip against the metal material while controlling the local melting. It is characterized by sliding following the movement of the molten part.

かかる特徴によれば、付加工程と一連として押圧工具の先端部を摺動させる、いわゆる「しごき加工」による機械的性質の向上に大きく寄与し得る塑性変形を簡便かつ精確に与え得るのである。 According to this feature, it is possible to easily and accurately apply plastic deformation that can greatly contribute to improving mechanical properties by so-called "iron processing" in which the tip of the pressing tool is slid as a series of additional steps.

上記した発明において、前記先端部は前記金属材料の融点よりも1000℃以上高い融点を有する高融点金属からなることを特徴としてもよい。かかる特徴によれば、局所溶融部後方での熱間塑性変形を機械的性質の向上に大きく寄与し得るように十分に与え得るとともに、工具寿命の低下を抑制できるのである。 In the above invention, the tip portion may be made of a high melting point metal having a melting point higher than the melting point of the metal material by 1000° C. or more. According to this feature, hot plastic deformation behind the locally fused portion can be sufficiently provided to greatly contribute to improving mechanical properties, and a decrease in tool life can be suppressed.

上記した発明において、前記離隔距離を一定とする固定制御、及び、前記先端部を前記金属材料に所定圧力で押圧させる定圧制御のいずれか一方又は両方で前記押圧工具の保持状態を制御することを特徴としてもよい。かかる特徴によれば、固定制御では塑性変形を十分に与えつつ制御を簡便にできる一方、定圧制御では局所溶融部後方での所定温度以上の軟化位置における熱間塑性変形を簡便に制御できるのである。 In the above invention, the holding state of the pressing tool may be controlled by either or both of fixed control in which the separation distance is constant, and constant pressure control in which the tip portion is pressed against the metal material with a predetermined pressure. It may also be a feature. According to these features, fixed control can easily control while giving sufficient plastic deformation, while constant pressure control can easily control hot plastic deformation at a softening position at a predetermined temperature or higher behind the local melting zone. .

上記した発明において、前記定圧制御では、前記押圧工具の押圧開始位置にテーパー形状を与えておく工程を含むことを特徴としてもよい。かかる特徴によれば、局所溶融部後方での定圧制御下での熱間塑性変形を簡便に制御できるのである。 In the above-described invention, the constant pressure control may include a step of providing a tapered shape to a pressing start position of the pressing tool. According to this feature, hot plastic deformation behind the local melting part under constant pressure control can be easily controlled.

本発明による金属積層造形装置の一例を示すブロック図である。FIG. 1 is a block diagram showing an example of a metal additive manufacturing apparatus according to the present invention. 製造試験の積層パターンAを示す(a)上面図及び(b)側面図である。It is (a) a top view and (b) a side view which show lamination pattern A of a manufacturing test. 製造試験の積層パターンBを示す(a)上面図及び(b)側面図である。It is (a) a top view and (b) a side view which show laminated pattern B of a manufacturing test. 被造形体と金属積層による金属積層造形物の外観写真、及び、微小引張試験片の切り出し位置を示す図である。FIG. 2 is a photograph of an external appearance of a metal laminate-molded product formed by laminating a molded object and metals, and a diagram showing the cutout position of a micro-tensile test piece. 微小引張試験片の試験片形状を示す(a)上面図及び(b)外観写真である。It is (a) a top view and (b) an external appearance photograph which shows the test piece shape of a micro tensile test piece. 製造試験における金属積層造形物の製造条件と試験結果の表である。It is a table of manufacturing conditions and test results of a metal laminate-molded article in a manufacturing test.

本発明による1つの実施例としての金属積層造形装置及び金属積層造形方法について、図1を用いて説明する。 A metal additive manufacturing apparatus and a metal additive manufacturing method as one embodiment of the present invention will be described using FIG. 1.

図1に示すように、金属積層造形装置10は、被造形体5を固定して水平移動を可能とする送り台1と、レーザー光Lを照射させる照射部2と、押圧工具3と、これらの動作を制御する制御部14を含む。被造形体5は、その上面において金属材料9を溶融し積層させるための造形ステージとされ、上面を略水平とするように送り台1に固定される。照射部2から照射されるレーザー光Lは、被造形体5の上に供給された金属材料9を溶融させるための熱源であり、金属材料9を溶融させた局所溶融部8を形成させることができる。 As shown in FIG. 1, the metal additive manufacturing apparatus 10 includes a feed table 1 that fixes the object to be manufactured 5 and enables horizontal movement, an irradiation section 2 that irradiates a laser beam L, a pressing tool 3, and a press tool 3. The controller includes a controller 14 that controls the operation of the controller. The object to be modeled 5 is used as a model stage for melting and stacking the metal material 9 on its upper surface, and is fixed to the feed table 1 so that the upper surface is substantially horizontal. The laser beam L irradiated from the irradiation unit 2 is a heat source for melting the metal material 9 supplied onto the object to be modeled 5, and can form a local melting part 8 in which the metal material 9 is melted. can.

局所溶融部8はレーザー光Lの加熱によって金属材料9が局所的に溶融又は半溶融状態となった部分であり、一般的にレーザー光Lの照射される中心から照射スポット径の3倍程度の直径を有する円内の範囲とされる。実際には、レーザー光Lを金属材料9に対して移動させるため、局所溶融部8は移動速度に応じて円形から後方に伸びた形状の範囲に形成されると考えられる。ここで、半溶融状態とは、金属材料9の固相線温度以上の温度を有し、固液共存となった状態のことをいう。 The local melting part 8 is a part where the metal material 9 is locally melted or semi-molten by heating with the laser beam L, and is generally about three times the irradiation spot diameter from the center where the laser beam L is irradiated. It is defined as a range within a circle with a diameter. Actually, since the laser beam L is moved relative to the metal material 9, the local melted portion 8 is considered to be formed in a range of shape extending from a circle to the rear depending on the movement speed. Here, the semi-molten state refers to a state in which the metal material 9 has a temperature equal to or higher than the solidus temperature and solid-liquid coexist.

なお、熱源としてはその他に電子ビームやアーク放電などを利用し得る。また、押圧工具3はその先端部3aを溶融後の軟化したままの金属材料9によるトラックに押圧させつつ摺動させ、いわゆる「しごき加工」を付与することで、金属材料9を熱間塑性変形させて造形中に形成される初期空孔などを低減させることができる。 In addition, as the heat source, an electron beam, arc discharge, etc. can be used. In addition, the pressing tool 3 slides while pressing its tip 3a against the track of the metal material 9 that remains softened after melting, and by applying so-called "iron processing", the metal material 9 is subjected to hot plastic deformation. In this way, initial pores and the like formed during modeling can be reduced.

詳細には、送り台1は、被造形体5に少なくとも水平面内で一方向の送りをかけることができるよう、送り機構11aに接続される。送り機構11aとしては、例えばボールねじを含む機構などを利用することができる。また、送り機構11aは制御部14に含まれる送り制御部11に接続され、送り台1の移動に関する信号を送り制御部11から受けて送り台1を動作させるドライバを含む。 Specifically, the feed table 1 is connected to the feed mechanism 11a so that the object 5 can be fed in one direction at least in a horizontal plane. As the feeding mechanism 11a, for example, a mechanism including a ball screw can be used. Further, the feed mechanism 11a is connected to the feed control section 11 included in the control section 14, and includes a driver that receives a signal regarding movement of the feed table 1 from the feed control section 11 and operates the feed table 1.

このような送り機構11aの動作によって、照射部2に対する送りを被造形体5に与えるよう被造形体5を水平に移動させ、相対的に金属材料9の局所溶融部8を被造形体5に対して移動させることができる。つまり、被造形体5の上で、粉末などの状態で供給された金属材料9を溶融させて得た局所溶融部8を移動させつつ、金属材料9を順次凝固させてトラックを形成し、これを水平方向及び/又は鉛直方向に積み重ねて積層造形を行い、立体形状の金属積層造形物による構造体を造形することができる。なお、金属積層造形装置10は、送り台1を鉛直方向に移動させる高さ調整機構や水平面内で送り方向に直交する方向の位置を調整する機構をさらに備えていることも好ましい。 By such an operation of the feeding mechanism 11a, the object 5 to be formed is moved horizontally so that the object 5 is fed with respect to the irradiation section 2, and the locally melted portion 8 of the metal material 9 is relatively transferred to the object 5 to be formed. It can be moved against. That is, while moving the local melted portion 8 obtained by melting the metal material 9 supplied in the form of powder or the like on the object 5, the metal material 9 is sequentially solidified to form a track. By stacking them horizontally and/or vertically to perform layered manufacturing, it is possible to form a three-dimensional metal layered structure. It is also preferable that the metal additive manufacturing apparatus 10 further includes a height adjustment mechanism that moves the feed table 1 in the vertical direction and a mechanism that adjusts the position in a horizontal plane in a direction perpendicular to the feed direction.

照射部2は、レーザー制御部12に接続されレーザー光Lの出力を調整しON-OFFの切り換えをすることができる。これによって、上記した局所溶融部8を得ることができる。レーザー制御部12もまた制御部14に含まれる。なお、図示しない角度調整機構を備え、レーザー光Lの照射角度を調整可能とされることも好ましい。 The irradiation unit 2 is connected to the laser control unit 12 and can adjust the output of the laser light L and switch it ON and OFF. As a result, the above-mentioned locally melted portion 8 can be obtained. Laser control section 12 is also included in control section 14 . Note that it is also preferable that an angle adjustment mechanism (not shown) is provided so that the irradiation angle of the laser beam L can be adjusted.

一方、押圧工具3は、押圧工具3を移動させる移動機構13aを介して、押圧工具3の移動制御を行う移動制御部13に接続される。移動制御部13もまた制御部14に含まれる。押圧工具3の先端部3aは、移動制御部13によって、造形ステージである被造形体5の表面に対する離隔距離を自在に保持して可変とされる。つまり、押圧工具3は先端部3aを下に向けて垂下されつつ、移動機構13aによって上下動可能に保持されるとともに、上記した離隔距離を所与の値とする位置で固定保持可能とされる。例えば、移動機構13a及び移動制御部13は、公知のサーボ機構によって構成することができる。なお、この離隔距離は供給された金属材料の9の厚さと押圧工具3によって付与しようとする変形の量によって、適宜定められる。 On the other hand, the pressing tool 3 is connected to a movement control section 13 that controls the movement of the pressing tool 3 via a moving mechanism 13a that moves the pressing tool 3. The movement control section 13 is also included in the control section 14 . The distal end portion 3a of the pressing tool 3 is made variable by freely maintaining the separation distance from the surface of the object to be modeled 5, which is a modeling stage, by the movement control unit 13. In other words, the pressing tool 3 is suspended with the tip 3a facing downward, and is held movable up and down by the moving mechanism 13a, and can be held fixed at a position where the above-mentioned separation distance is a given value. . For example, the movement mechanism 13a and the movement control section 13 can be configured by a known servo mechanism. Note that this separation distance is appropriately determined depending on the thickness of the supplied metal material 9 and the amount of deformation to be applied by the pressing tool 3.

ここで、移動制御部13は、先端部3aと被造形体5の表面との離隔距離を一定とする固定制御、及び、先端部3aを金属材料9によるトラックに所定圧力で押圧させる定圧制御のいずれか一方又は両方で押圧工具3の保持状態を制御可能とすることが好ましい。固定制御によれば、塑性変形後の金属材料9によるトラックの高さを一定に保ち、塑性変形による調整工程をより精確に実施できる。また、定圧制御によれば、塑性変形後の金属材料9の塑性変形の量を一定にし得る。なお、定圧制御であるが、押圧工具3にかかる負荷を一定にするものであって、先端部3aの金属材料9に対する圧力については問わない。 Here, the movement control unit 13 performs fixed control to keep the distance between the tip 3a and the surface of the object 5 constant, and constant pressure control to press the tip 3a against the track formed by the metal material 9 with a predetermined pressure. It is preferable that the holding state of the pressing tool 3 can be controlled by one or both of them. According to the fixed control, the height of the track formed by the metal material 9 after plastic deformation can be kept constant, and the adjustment process by plastic deformation can be performed more accurately. Moreover, according to constant pressure control, the amount of plastic deformation of the metal material 9 after plastic deformation can be made constant. Note that although constant pressure control is used, the load applied to the pressing tool 3 is kept constant, and the pressure on the metal material 9 of the tip portion 3a is not concerned.

押圧工具3は、また、局所溶融部8の移動に追従できるようにするが、例えば、局所溶融部8に対して所定距離だけ離間するようにすると制御が容易となり好ましい。そのため、押圧工具3の照射部2に対する水平方向(送り方向)の位置を調整する機構を備えることが好ましい。この所定距離は、「しごき加工」を与えて局所溶融部8の通過後の金属材料9によるトラックに十分な加工を付与して空孔を減じて機械的性質を向上させるために、所定範囲内の温度となったトラックの部分に先端部3aを押し当てることのできるように定められる。そのため、この所定距離は、所定範囲内の温度も含めて、金属材料9の種類、送り速度、局所溶融部8からの抜熱などの多種の条件によって定まることになる。そこで、このような所定距離は例えば実験的に求めて定めることができる。 The pressing tool 3 is also made to be able to follow the movement of the local melting part 8, but it is preferable to set it apart from the local melting part 8 by a predetermined distance, for example, because control becomes easier. Therefore, it is preferable to provide a mechanism for adjusting the position of the pressing tool 3 in the horizontal direction (feeding direction) with respect to the irradiation section 2. This predetermined distance is within a predetermined range in order to apply "iron processing" to sufficiently process the track formed by the metal material 9 after passing through the local melting zone 8, thereby reducing pores and improving mechanical properties. The temperature is determined so that the tip 3a can be pressed against a portion of the track that has reached a temperature of . Therefore, this predetermined distance is determined by various conditions such as the type of metal material 9, feeding speed, and heat removal from the local melting portion 8, including the temperature within the predetermined range. Therefore, such a predetermined distance can be determined experimentally, for example.

例えば、局所溶融部8から所定距離だけ離間した押圧工具3の先端部3aの位置において、金属材料9が半溶融状態を維持していると、しごき加工によって空孔を圧壊させやすく空孔率を低減させる観点から好ましい。一方、同位置において金属材料9が凝固後であって軟化した状態であると、しごき加工によって塑性加工を付与できて、素地の機械的性質を向上させる観点から好ましい。 For example, if the metal material 9 maintains a semi-molten state at the tip 3a of the pressing tool 3 that is a predetermined distance away from the locally molten part 8, the pores are easily crushed by ironing and the porosity is reduced. It is preferable from the viewpoint of reduction. On the other hand, if the metal material 9 is in a softened state after solidification at the same position, plastic working can be imparted by ironing, which is preferable from the viewpoint of improving the mechanical properties of the base material.

上記したように、被造形体5は送り台1によって送りを与えられる。一方、押圧工具3は、局所溶融部8の移動方向の後方に配置され、局所溶融部8の移動に追従する。よって、押圧工具3は、局所溶融部8に対して被造形体5の送り方向に位置することになる。つまり、図示したように、送り台1の送り方向を左方向にする場合、押圧工具3は局所溶融部8の左側に位置する。なお、被造形体5を固定して局所溶融部8と押圧工具3の両者に送りをかけるような構造としてもよい。 As described above, the object to be printed 5 is fed by the feed table 1. On the other hand, the pressing tool 3 is disposed at the rear in the moving direction of the local melting section 8 and follows the movement of the local melting section 8. Therefore, the pressing tool 3 is positioned in the feeding direction of the object 5 with respect to the local melting portion 8 . That is, as shown in the figure, when the feed direction of the feed table 1 is to the left, the pressing tool 3 is located on the left side of the local melting part 8. Note that a structure may be adopted in which the object to be modeled 5 is fixed and both the local melting portion 8 and the pressing tool 3 are fed.

さらに、押圧工具3の先端部3aは、上記したように溶融後の高温の金属材料9に押し当てられる。そのため、先端部3aは融点を2000℃以上とする高融点金属からなることが好ましい。また、先端部3aは、金属材料9の融点よりも1000℃以上高い融点を有する高融点金属からなることも好ましい。これらのような高融点金属としては、例えば、ニオブ、タンタル、モリブテン、タングステンが挙げられ、これらのうちから選択される1種、又はこれを基とする合金とすることができる。このような高融点金属を用いることで押圧工具3の寿命の低下を抑制でき、さらには先端部3aの安定した摺動を得て塑性加工を安定させ得る。 Further, the tip 3a of the pressing tool 3 is pressed against the melted high-temperature metal material 9 as described above. Therefore, the tip portion 3a is preferably made of a high melting point metal having a melting point of 2000° C. or higher. Further, it is also preferable that the tip portion 3a is made of a high melting point metal having a melting point higher than the melting point of the metal material 9 by 1000° C. or more. Examples of such high melting point metals include niobium, tantalum, molybdenum, and tungsten, and one selected from these or an alloy based on these may be used. By using such a high melting point metal, it is possible to suppress a decrease in the life of the pressing tool 3, and furthermore, it is possible to obtain stable sliding of the tip portion 3a and stabilize plastic working.

なお、このような高融点金属は比較的高価であるため、棒状体の一部を高融点金属として先端部3aを構成することも好ましい。また、先端部3aは、しごき加工において安定して摺動するものであれば、その形状は特に限定されない。例えば、半球状体や楕円体の一部などの部分球状の立体曲面を有する形状のほか、直方体のような棒状体の切断面であってもよい。 Incidentally, since such a high melting point metal is relatively expensive, it is also preferable that a part of the rod-shaped body is made of a high melting point metal to form the tip portion 3a. Further, the shape of the tip portion 3a is not particularly limited as long as it can slide stably during ironing. For example, in addition to a shape having a partially spherical three-dimensional curved surface such as a part of a hemisphere or an ellipsoid, it may also be a cut surface of a rod-shaped body such as a rectangular parallelepiped.

金属積層造形装置10は、金属材料9を溶融し凝固させるため、金属材料9の酸化を抑制できるよう、不活性ガス雰囲気を得られるチャンバー内に送り台1、照射部2、押圧工具3を設置させることが好ましい。また、かかるチャンバーは不活性ガスのパージを容易とするよう、不活性ガスの供給源とともに内部空間の空気を排出する真空ポンプを備える。不活性ガスとしては例えばアルゴンガスを用い得る。 In the metal additive manufacturing apparatus 10, in order to melt and solidify the metal material 9, a feed table 1, an irradiation unit 2, and a pressing tool 3 are installed in a chamber where an inert gas atmosphere can be obtained so as to suppress oxidation of the metal material 9. It is preferable to let The chamber also includes a source of inert gas as well as a vacuum pump for evacuating air from the interior space to facilitate purging of the inert gas. For example, argon gas can be used as the inert gas.

金属積層造形装置10を用いた金属積層造形方法については以下のようになる。 The metal additive manufacturing method using the metal additive manufacturing apparatus 10 is as follows.

まず、送り台1上に被造形体5を固定し、上記したチャンバー内の雰囲気を不活性ガス雰囲気とした上で、被造形体5の上に金属材料9として例えば金属粉末を敷く。被造形体5上に敷いた金属材料9の厚さは一定とし、例えば、0.1mmとする。なお、被造形体5において、押圧工具3による押圧を開始する位置にテーパー形状を設けておくことも好ましく、予めテーパー形状を形成する工程を含んでもよい。 First, the object 5 to be formed is fixed on the feed table 1, the atmosphere inside the chamber is made into an inert gas atmosphere, and then, for example, metal powder is spread as the metal material 9 on the object 5 to be formed. The thickness of the metal material 9 spread on the object 5 is constant, for example, 0.1 mm. Note that it is also preferable to provide a tapered shape in the object 5 at the position where pressing by the pressing tool 3 is started, and may include a step of forming the tapered shape in advance.

次に、移動制御部13によって、先端部3aの造形ステージとなる被造形体5の表面からの離隔距離を所定の距離とするよう鉛直方向の位置を調整する。なお、押圧工具3の先端部3aの局所溶融部8に対する水平方向の位置は予め調整してある。 Next, the movement control unit 13 adjusts the position in the vertical direction so that the distance of the distal end portion 3a from the surface of the object to be modeled 5, which serves as a modeling stage, is a predetermined distance. Note that the horizontal position of the tip 3a of the pressing tool 3 with respect to the locally melted portion 8 is adjusted in advance.

レーザー制御部12によって照射部2からレーザー光Lを照射させると同時に、送り制御部11によって送り機構11aを介して送り台1に送りをかける。これによって、金属材料9に局所溶融部8を形成しつつ、溶融後の金属材料9によるトラックに押圧工具3の先端部3aを押圧し摺動させて「しごき加工」によって塑性変形を付与できる。なお、この間、移動制御部13は、上記した固定制御及び/又は定圧制御を行って、先端部3aの被造形体5に対する離隔距離及び/又はトラックに対する押圧力を制御している。 The laser control section 12 causes the irradiation section 2 to irradiate the laser beam L, and at the same time, the feed control section 11 feeds the feed base 1 via the feed mechanism 11a. Thereby, while forming local melted portions 8 in the metal material 9, plastic deformation can be applied by "ironing" by pressing and sliding the tip 3a of the pressing tool 3 on the track formed by the melted metal material 9. During this time, the movement control unit 13 performs the above-described fixing control and/or constant pressure control to control the separation distance of the tip portion 3a from the object 5 and/or the pressing force against the track.

レーザー制御部12によってレーザー光Lの照射を停止した後、所定距離だけ送りをかけてから送り制御部11によって送りを停止し、1本のトラックの形成を終える。必要に応じて同様にトラックの形成を繰り返して水平方向及び/又は鉛直方向に積み重ねて積層造形を行い、立体形状の金属積層造形物を造形することができる。 After the laser control unit 12 stops irradiating the laser beam L, the laser beam L is fed by a predetermined distance, and then the feed control unit 11 stops the feeding, thereby completing the formation of one track. Laminate manufacturing can be performed by repeating the formation of tracks and stacking them horizontally and/or vertically as needed, thereby producing a three-dimensional metal layered product.

ここで、先端部3aを軟化したトラックに対して摺動させる「しごき加工」においては、例えばローラーを用いた押圧加工とは軟化した金属材料9に付与する応力状態が異なると考えられる。ローラーを用いた押圧加工ではトラックの表面に直交する方向の押し付け力が付与されるのみであるのに対し、「しごき加工」ではそのような押し付け力に加えて摺動で生じる摩擦力によってトラックの表面近傍に水平方向の力が付与される。このような応力状態がもたらすメカニズムについては現時点では不明であるが、少なくともトラックを積層して得られる金属積層造形物の空孔を低減させ機械的性質の向上に大きく寄与することが分かっている。これについては後述する。なお、金属積層造形物の断面における空孔率としては10%以下となるように空孔を低減されることが好ましい。 Here, in the "ironing process" in which the tip portion 3a is slid on the softened track, the state of stress applied to the softened metal material 9 is considered to be different from that in pressing process using a roller, for example. In pressing processing using rollers, only a pressing force is applied in the direction perpendicular to the surface of the track, whereas in "ironing processing", in addition to such pressing force, the friction force generated by sliding is applied to the track. A horizontal force is applied near the surface. Although the mechanism caused by such a stress state is currently unknown, it is known that at least it reduces the porosity of metal additive-produced products obtained by laminating tracks and greatly contributes to improving the mechanical properties. This will be discussed later. Note that it is preferable that the porosity in the cross section of the metal layered product is reduced to 10% or less.

以上のように、金属積層造形装置10によれば、金属材料9に局所溶融部8を形成し、これを移動させてトラックを得る付加工程と、これと一連とした「しごき加工」による調整工程を制御性良く精確に実施し得る。 As described above, according to the metal additive manufacturing apparatus 10, there is an additional process of forming a localized melted part 8 in the metal material 9 and moving it to obtain a track, and a series of adjustment processes using "iron processing". can be carried out accurately and with good controllability.

[製造試験]
次に、金属積層造形装置10によって実際にトラックを形成させ積層させて金属積層による金属積層造形物を得た製造試験について、図2乃至図6を用いて説明する。
[Manufacturing test]
Next, a manufacturing test in which tracks were actually formed and laminated using the metal additive manufacturing apparatus 10 to obtain a metal additive-molded product by metal lamination will be described using FIGS. 2 to 6.

図2及び図3に示すように、一端にテーパー形状5aを設けた上面視円形の被造形体5(図4参照)を用意し、その表面にトラックを形成させるパスを定めた。なお、図内のx、y方向は水平面内の方向で、z方向が鉛直方向である。x方向は、被造形体5に対して局所溶融部8及び押圧工具3を移動させる向き(レーザー光Lを走査する向き)であり、送り方向の向きとは逆向きである。そして、テーパー形状5aは押圧工具3の押圧開始位置に形成してある。このようなテーパー形状を与えた場合、移動制御部13を定圧制御とすることで、押圧工具3の先端部3aは被造形体5のテーパー形状を有する表面に沿って移動することになり、被造形体5の表面に対する離隔距離を自動的に得られる。つまり、押圧工具3の位置制御を容易とし得る。なお、テーパー形状5aの勾配は1/10とした。積層パターンについては後述する。 As shown in FIGS. 2 and 3, a shaped object 5 having a tapered shape 5a at one end and circular in top view (see FIG. 4) was prepared, and a path for forming a track on its surface was determined. Note that the x and y directions in the figure are directions within the horizontal plane, and the z direction is the vertical direction. The x direction is the direction in which the local melting portion 8 and the pressing tool 3 are moved relative to the object 5 (the direction in which the laser beam L is scanned), and is the opposite direction to the feeding direction. The tapered shape 5a is formed at the pressing start position of the pressing tool 3. When such a tapered shape is given, by controlling the movement control unit 13 at a constant pressure, the tip 3a of the pressing tool 3 moves along the tapered surface of the object 5, and The separation distance from the surface of the shaped body 5 can be automatically obtained. In other words, the position control of the pressing tool 3 can be facilitated. Note that the slope of the tapered shape 5a was set to 1/10. The lamination pattern will be described later.

トラックは、積層パターンの長手方向(x方向)に厚さ0.1mmで形成し、y方向に0.15mmピッチで平行となるように複数形成させて全体の幅を3.6mmになるようにした。また、幅3.6mmの層を複数形成させて全体の厚さを積層パターンA(図2参照)において1mm、積層パターンB(図3参照)において1.5mmとなるようにした。ここで、積層パターンAにおいては、隣り合う層においてトラックを形成させるパスのy方向の位置を揃えた。一方、積層パターンBにおいては隣り合う層においてパスのy方向の位置を半ピッチずらした。 The tracks were formed with a thickness of 0.1 mm in the longitudinal direction (x direction) of the laminated pattern, and a plurality of tracks were formed parallel to each other at a pitch of 0.15 mm in the y direction so that the overall width was 3.6 mm. did. Further, a plurality of layers each having a width of 3.6 mm were formed so that the overall thickness was 1 mm in laminated pattern A (see FIG. 2) and 1.5 mm in laminated pattern B (see FIG. 3). Here, in the laminated pattern A, the positions of paths for forming tracks in adjacent layers in the y direction were aligned. On the other hand, in stacked pattern B, the positions of the paths in the y direction were shifted by half a pitch in adjacent layers.

また、各積層パターンにおけるトラック形成の開始側の端部では、被造形体5のテーパー形状5aを延長して維持するようにテーパー形状が与えられていると、押圧工具3の先端部3aをテーパー形状に沿って移動可能とできて好ましい。そのため、被造形体のみならず積層部分においてもテーパー形状を維持すべく、各層のトラック形成の開始位置の部分を機械加工したり、積層する毎にトラック形成の開始位置を後方にずらしたりしてもよい。このような積層パターンによって金属積層造形物による構造体6(図4参照)を得た。 In addition, if the end of each lamination pattern on the start side of track formation is tapered so as to extend and maintain the tapered shape 5a of the object 5, the tip 3a of the pressing tool 3 is tapered. It is preferable that it can be moved along the shape. Therefore, in order to maintain the tapered shape not only in the object to be printed but also in the laminated parts, the starting position of track formation for each layer is machined, and the starting position of track formation is shifted backward each time the layers are laminated. Good too. With such a lamination pattern, a structure 6 (see FIG. 4) made of a metal layered product was obtained.

金属材料9としてはマルエージング鋼の粉末を用い、レーザー光Lの出力は126W、スポット径φ0.2mm、送り速度15mm/s、局所溶融部8と先端部3aの水平距離を1.0mmとしてトラックの形成を行なった。なお、積層造形はアルゴンガス雰囲気中にて行った。 Maraging steel powder was used as the metal material 9, the output of the laser beam L was 126 W, the spot diameter was 0.2 mm, the feed rate was 15 mm/s, and the horizontal distance between the local melting part 8 and the tip 3a was 1.0 mm. was formed. Note that the layered manufacturing was performed in an argon gas atmosphere.

図4及び図5に示すように、得られた構造体6のテーパー形状5aの部分を避けて微小引張試験片7を切り出した。微小引張試験片7は、全長15.4mmの平行部の断面を幅1.0mm及び厚さ0.4mmとする引張試験片である。また、各構造体6の断面(y-z平面)を観察し、空孔率を求めた。空孔率は、断面写真を撮影した上でかかる写真の画像を2値化し、空孔に当たる部分の面積率から算出した。 As shown in FIGS. 4 and 5, a micro tensile test piece 7 was cut out avoiding the tapered portion 5a of the obtained structure 6. The micro tensile test piece 7 is a tensile test piece having a total length of 15.4 mm, a cross section of a parallel portion having a width of 1.0 mm, and a thickness of 0.4 mm. Further, the cross section (yz plane) of each structure 6 was observed to determine the porosity. The porosity was calculated from the area ratio of the portion corresponding to the pores by taking a cross-sectional photograph and then binarizing the image of the photograph.

図6に示すように、条件1及び条件3においては押圧工具3による「しごき加工」を行わず、つまり空孔を低減させる塑性加工による調整を行わず、条件2及び条件4において「しごき加工」を行った。 As shown in FIG. 6, under conditions 1 and 3, "iron processing" with the press tool 3 is not performed, that is, no adjustment by plastic working to reduce voids is performed, and under conditions 2 and 4, "iron processing" is not performed. I did it.

微小引張試験片による引張試験の結果は、条件2及び条件4において、条件1及び条件3に対して非常に高い引張強度を得た。つまり、しごき加工を行わなかった場合に比べてしごき加工を行った場合に引張強度を向上させることができた。 As a result of a tensile test using a micro tensile test piece, very high tensile strength was obtained under conditions 2 and 4 compared to conditions 1 and 3. In other words, the tensile strength was able to be improved when the ironing process was performed compared to the case where the ironing process was not performed.

また、空孔率は、積層パターンAの場合、条件1の20.6%に対して条件2では6.9%と非常に小さくなった。積層パターンBにおいても同様に、条件3の16.0%に対して条件4では2.9%と非常に小さくなった。つまり、しごき加工を行わなかった場合に比べて、しごき加工を行った場合に多くの空孔を圧壊することができた。また、この結果は引張試験の結果によく対応していることも判る。 Further, in the case of laminated pattern A, the porosity was 20.6% in condition 1, whereas it was very small at 6.9% in condition 2. Similarly, in laminated pattern B, the ratio was 16.0% under condition 3, whereas it was very small at 2.9% under condition 4. In other words, more pores could be crushed when ironing was performed than when ironing was not performed. It can also be seen that these results correspond well to the results of the tensile test.

これらのように、製造試験において、しごき加工を付与したトラックを積層して得られる金属積層造形物による構造体においては、空孔率を低く抑え、高い引張強度を得られることが分かった。 As described above, in manufacturing tests, it was found that a structure made of a metal laminate-molded product obtained by laminating ironed tracks can suppress porosity to a low level and obtain high tensile strength.

なお、積層パターンについては、隣り合う層においてパスの位置を半ピッチずらした積層パターンBにおいて引張強度を高くして空孔率を小さくしたことが確認された。 Regarding the laminated pattern, it was confirmed that the tensile strength was increased and the porosity was decreased in laminated pattern B in which the positions of the paths in adjacent layers were shifted by half a pitch.

以上、本発明の代表的な実施例を説明したが、本発明は必ずしもこれに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、種々の代替実施例及び改変例を見出すことができるであろう。 Although typical embodiments of the present invention have been described above, the present invention is not necessarily limited thereto, and those skilled in the art will understand without departing from the spirit of the present invention or the scope of the appended claims. , various alternative embodiments and modifications may be found.

1 送り台
2 照射部
3 押圧工具
9 金属材料
10 金属積層造形装置
14 制御部

1 Feeding stand 2 Irradiation section 3 Pressing tool 9 Metal material 10 Metal additive manufacturing device 14 Control section

Claims (10)

造形ステージ上に金属材料を供給し照射される熱源による局所溶融部を移動させて金属積層造形物を造形する金属積層造形装置であって、
押圧工具の先端部を前記局所溶融部の移動方向の後方に配置させ、前記造形ステージに対する前記先端部の離隔距離を自在に保持して制御する移動制御部を含み、前記先端部を前記金属材料に押圧させつつ前記局所溶融部の移動に追従して摺動させることを特徴とする金属積層造形装置。
A metal additive manufacturing apparatus that supplies a metal material onto a modeling stage and moves a localized melted part by an irradiated heat source to create a metal additively manufactured object,
The tip of the pressing tool is disposed at the rear in the moving direction of the local melting part, and includes a movement control unit that freely maintains and controls the separation distance of the tip with respect to the modeling stage, and A metal additive manufacturing apparatus characterized in that the metal additive manufacturing apparatus slides while following the movement of the local melting part while being pressed by.
前記先端部は2000℃以上の高融点金属からなることを特徴とする請求項1記載の金属積層造形装置。 2. The metal additive manufacturing apparatus according to claim 1, wherein the tip portion is made of a metal with a high melting point of 2000° C. or higher. 前記高融点金属は、ニオブ、タンタル、モリブテン、タングステンのうちから選択される1種、又はこれを基とする合金であることを特徴とする請求項2記載の金属積層造形装置。 3. The metal additive manufacturing apparatus according to claim 2, wherein the high melting point metal is one selected from niobium, tantalum, molybdenum, and tungsten, or an alloy based thereon. 前記押圧工具は、前記高融点金属からなる棒状体の一部を前記先端部としていることを特徴とする請求項3記載の金属積層造形装置。 4. The metal additive manufacturing apparatus according to claim 3, wherein the pressing tool has a part of the rod-shaped body made of the high melting point metal as the tip end. 前記先端部は部分球状の立体曲面を有することを特徴とする請求項4記載の金属積層造形装置。 5. The metal additive manufacturing apparatus according to claim 4, wherein the tip portion has a partially spherical three-dimensional curved surface. 前記移動制御部は、前記離隔距離を一定とする固定制御、及び、前記先端部を前記金属材料に所定圧力で押圧させる定圧制御のいずれか一方又は両方で前記押圧工具の保持状態を制御することを特徴とする請求項1乃至5のうちの1つに記載の金属積層造形装置。 The movement control unit controls the holding state of the pressing tool by either or both of fixed control in which the separation distance is constant, and constant pressure control in which the tip is pressed against the metal material with a predetermined pressure. 6. A metal additive manufacturing apparatus according to claim 5, characterized in that: 造形ステージ上に金属材料を供給し照射される熱源による局所溶融部を移動させて金属積層造形物を造形する金属積層造形方法であって、
押圧工具の先端部を前記局所溶融部の移動方向の後方に配置させ、前記造形ステージに対する前記先端部の離隔距離を自在に保持して制御する移動制御部にて、前記先端部を前記金属材料に押圧させつつ前記局所溶融部の移動に追従して摺動させることを特徴とする金属積層造形方法。
A metal additive manufacturing method for manufacturing a metal additive manufacturing object by supplying a metal material onto a modeling stage and moving a localized melted part by an irradiated heat source, the method comprising:
The tip of the pressing tool is placed behind the local melting portion in the moving direction, and a movement control unit that freely maintains and controls the separation distance of the tip with respect to the modeling stage moves the tip of the pressing tool to the metal material. A metal additive manufacturing method characterized by sliding the local melted portion while following the movement of the local melted portion.
前記先端部は前記金属材料の融点よりも1000℃以上高い融点を有する高融点金属からなることを特徴とする請求項7記載の金属積層造形方法。 8. The metal additive manufacturing method according to claim 7, wherein the tip portion is made of a high melting point metal having a melting point higher than the melting point of the metal material by 1000° C. or more. 前記離隔距離を一定とする固定制御、及び、前記先端部を前記金属材料に所定圧力で押圧させる定圧制御のいずれか一方又は両方で前記押圧工具の保持状態を制御することを特徴とする請求項7又は8に記載の金属積層造形方法。 Claim characterized in that the holding state of the pressing tool is controlled by either or both of fixed control in which the separation distance is constant, and constant pressure control in which the tip is pressed against the metal material with a predetermined pressure. 8. The metal additive manufacturing method according to 7 or 8. 前記定圧制御では、前記押圧工具の押圧開始位置にテーパー形状を与えておく工程を含むことを特徴とする請求項9記載の金属積層造形方法。


10. The metal additive manufacturing method according to claim 9, wherein the constant pressure control includes a step of giving a tapered shape to a pressing start position of the pressing tool.


JP2022087256A 2022-05-27 2022-05-27 Metal additive manufacturing method and apparatus thereof Pending JP2023174403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022087256A JP2023174403A (en) 2022-05-27 2022-05-27 Metal additive manufacturing method and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022087256A JP2023174403A (en) 2022-05-27 2022-05-27 Metal additive manufacturing method and apparatus thereof

Publications (1)

Publication Number Publication Date
JP2023174403A true JP2023174403A (en) 2023-12-07

Family

ID=89030378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022087256A Pending JP2023174403A (en) 2022-05-27 2022-05-27 Metal additive manufacturing method and apparatus thereof

Country Status (1)

Country Link
JP (1) JP2023174403A (en)

Similar Documents

Publication Publication Date Title
TWI712458B (en) Wire manufactured by additive manufacturing methods
JP7002142B2 (en) How to control the deformation and accuracy of parts in parallel during the additive manufacturing process
Panchenko et al. A high-performance WAAM process for Al–Mg–Mn using controlled short-circuiting metal transfer at increased wire feed rate and increased travel speed
CN109689267B (en) Method and apparatus for building metal objects by solid freeform fabrication with two welding torches
TW201736028A (en) Fabrication of metallic parts by additive manufacturing
CN210098977U (en) Composite heat source synchronous rolling additive manufacturing equipment
US20170239753A1 (en) System and Method for Depositing a Metal to Form a Three-Dimensional Part
KR20140038958A (en) Method and arrangement for building metallic objects by solid freedom fabrication
CN111112793A (en) Electric arc additive manufacturing method of magnesium alloy structural part and equipment used by electric arc additive manufacturing method
JP7170142B2 (en) 3D metal printing method and apparatus for such method
WO2020126086A1 (en) Method and system for generating a three-dimensional workpiece
CN111344096A (en) Method and apparatus for manufacturing layered molded article
CN112605397A (en) In-situ alloying method for electric arc additive manufacturing
US20220395906A1 (en) Laser treatment systems and methods for in-situ laser shock peening (lsp) treatment of parts during production thereof by a selective laser sintering or melting (sls/slm) process, and additive manufacturing systems and methods implementing the same
JP2019137880A (en) Tool regeneration method
JP2023174403A (en) Metal additive manufacturing method and apparatus thereof
CN111005022B (en) Method for preparing high-hardness iron-based coating on surface of beryllium bronze copper roller by utilizing three lasers in synergy mode
US20230294357A1 (en) Additive manufacturing system and unified additive-deformation-machining (adm) process of manufacturing
CN111565877B (en) Method and apparatus for manufacturing shaped object, and shaped object
EP3984669A1 (en) Method of regenerating a build plate
CN117102512B (en) Laser composite additive manufacturing device and manufacturing method for double alloy parts
EP4104962A1 (en) Electron beam welding
JP7315804B1 (en) LAMINATED PRODUCT AND METHOD FOR MANUFACTURING LAMINATED PRODUCT
CN113909631B (en) Suspended structure material adding process with auxiliary device at tail end of robot
Powers Electron beam materials processing