JP2023173828A - Circularly polarizing plate, optical film using the same, and image display device - Google Patents

Circularly polarizing plate, optical film using the same, and image display device Download PDF

Info

Publication number
JP2023173828A
JP2023173828A JP2022086329A JP2022086329A JP2023173828A JP 2023173828 A JP2023173828 A JP 2023173828A JP 2022086329 A JP2022086329 A JP 2022086329A JP 2022086329 A JP2022086329 A JP 2022086329A JP 2023173828 A JP2023173828 A JP 2023173828A
Authority
JP
Japan
Prior art keywords
transmittance
polarizing plate
degrees
retardation
retardation plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022086329A
Other languages
Japanese (ja)
Inventor
毅 藤原
Takeshi Fujiwara
輝恒 大澤
Terutsune Osawa
淳一 大泉
Junichi Oizumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2022086329A priority Critical patent/JP2023173828A/en
Publication of JP2023173828A publication Critical patent/JP2023173828A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

To provide a circularly polarizing plate which offers high circularly polarizing capability and can reduce reflectance when used for anti-reflection purposes even when a polarizing plate with a low polarization degree is used.SOLUTION: A circularly polarizing plate is provided, consisting of a polarizing plate and a λ/4 retardation plate, the polarization plate having a polarization degree Pe (%) of 99.8% or less. When the angle θ (degrees) is defined for the direction in which the angle between the fast axis of the λ/4 retardation plate and the transmission axis of the polarizing plate is less than 90 degrees, θ satisfies an expression (1) below. expression 1.SELECTED DRAWING: None

Description

本発明は円偏光板、これを用いた光学フィルム及び画像表示装置に関する。 The present invention relates to a circularly polarizing plate, an optical film using the same, and an image display device.

従来、有機エレクトロルミネッセンス表示装置などのフラットパネルディスプレイには、表示面における外光の反射を低減するため、円偏光板が設けられている。このような円偏光板としては、一般に、偏光板及びλ/4位相差板を組み合わせたフィルムが用いられる。
典型的な反射防止用の円偏光板は、偏光板とλ/4位相差板を積層した構成からなり、偏光板の吸収軸とλ/4位相差板の遅相軸とのなす角を45度にすることにより外光の反射を抑制する機能を発揮する。
Conventionally, flat panel displays such as organic electroluminescent display devices are provided with circularly polarizing plates to reduce reflection of external light on the display surface. As such a circularly polarizing plate, a film that is a combination of a polarizing plate and a λ/4 retardation plate is generally used.
A typical antireflection circularly polarizing plate has a structure in which a polarizing plate and a λ/4 retardation plate are laminated, and the angle between the absorption axis of the polarizing plate and the slow axis of the λ/4 retardation plate is 45 By increasing the temperature, it has the ability to suppress the reflection of external light.

また、外光の反射を抑制する観点からλ/4位相差板は、散乱による偏光の乱れを抑制することが必要であり、低ヘイズのものを使用するのが一般的である。
例えば特許文献1では、偏光子とλ/4位相差フィルムとが積層された有機エレクトロルミネッセンス表示装置用円偏光板であって、前記λ/4位相差フィルムの遅相軸と前記偏光子の吸収軸とのなす角度が45度であり、前記λ/4位相差フィルムの、前記λ/4位相差フィルムの遅相軸に対して偏光の電場振動面とのなす角度が45度である直線偏光入射時の内部ヘイズ値が0.01~0.1%の範囲内である有機エレクトロルミネッセンス表示装置用円偏光板が提案されている(特許文献1)。
Further, from the viewpoint of suppressing reflection of external light, it is necessary for the λ/4 retardation plate to suppress disturbance of polarization due to scattering, and a plate with low haze is generally used.
For example, Patent Document 1 discloses a circularly polarizing plate for an organic electroluminescent display device in which a polarizer and a λ/4 retardation film are laminated, the slow axis of the λ/4 retardation film and the absorption of the polarizer. linearly polarized light whose angle with the axis is 45 degrees, and whose angle with the electric field vibration plane of the polarized light is 45 degrees with respect to the slow axis of the λ/4 retardation film; A circularly polarizing plate for an organic electroluminescent display device whose internal haze value at the time of incidence is within the range of 0.01 to 0.1% has been proposed (Patent Document 1).

特開2016-218488号公報JP2016-218488A

特許文献1に開示される円偏光板は、λ/4位相差フィルムの遅相軸に対して偏光の電場振動面とのなす角度を45度とする。すなわち、λ/4位相差板の軸に対して、偏光板の貼合角が45度であり、理論的には最も適した角度となる。
偏光板とλ/4位相差板からなる円偏光板は、上述のように、通常、偏光板の透過軸とλ/4位相差板の進相軸は通常45度をなす角(貼合角)で積層される。偏光度が高い偏光板では貼合角45度で円偏光板性能を示すが、偏光度が低い偏光板での最適な貼合角の知見はなかった。
そこで、本発明は、偏光度が低い偏光板を用いた場合であっても、反射防止用途に用いたときの反射率を低減できる円偏光性能の高い円偏光板を提供することを目的とする。
In the circularly polarizing plate disclosed in Patent Document 1, the angle between the electric field vibration plane of polarized light and the slow axis of the λ/4 retardation film is 45 degrees. That is, the bonding angle of the polarizing plate is 45 degrees with respect to the axis of the λ/4 retardation plate, which is theoretically the most suitable angle.
As mentioned above, in a circularly polarizing plate consisting of a polarizing plate and a λ/4 retardation plate, the transmission axis of the polarizing plate and the fast axis of the λ/4 retardation plate usually form an angle of 45 degrees (laminating angle). ) are laminated. A polarizing plate with a high degree of polarization exhibits circularly polarizing plate performance at a lamination angle of 45 degrees, but there is no knowledge of the optimal lamination angle for a polarizing plate with a low degree of polarization.
Therefore, an object of the present invention is to provide a circularly polarizing plate with high circularly polarizing performance that can reduce reflectance when used for antireflection purposes even when a polarizing plate with a low degree of polarization is used. .

本発明者らは、鋭意検討の結果、特定の式に基づき偏光板の偏光度に応じた貼合角を算出し、その結果に基づき円偏光板を設計することで、偏光度が低い偏光板を用いた場合であっても、反射防止用途に用いたときの反射率を低減できることを見出し、以下の本発明を完成させた。
すなわち、本発明は、以下の[1]~[9]を提供するものである。
As a result of intensive studies, the present inventors calculated the lamination angle according to the degree of polarization of the polarizing plate based on a specific formula, and designed a circularly polarizing plate based on the result. The inventors have discovered that the reflectance when used for antireflection purposes can be reduced even when using the following methods, and have completed the present invention as described below.
That is, the present invention provides the following [1] to [9].

[1]偏光板とλ/4位相差板からなる円偏光板において、偏光板の偏光度Pe(%)は99.8%以下であり、λ/4位相差板の進相軸と偏光板の透過軸のなす角度が90度未満になる方向にθ(度)であるときに、θが式(1)を満たす円偏光板。 [1] In a circularly polarizing plate consisting of a polarizing plate and a λ/4 retardation plate, the degree of polarization Pe (%) of the polarizing plate is 99.8% or less, and the fast axis of the λ/4 retardation plate and the polarizing plate are A circularly polarizing plate where θ satisfies formula (1) when the angle formed by the transmission axis of is θ (degrees) in the direction of less than 90 degrees.

[2]前記θが41度~44度の範囲である上記[1]に記載の円偏光板。
[3]前記偏光板の単体透過率が41%以上である、上記[1]又は[2]に記載の円偏光板。
[4]前記λ/4位相差板の進相軸の平均透過率が70~95%の範囲であり、遅相軸の平均透過率が70~95%の範囲である、上記[1]~[3]のいずれかに記載の円偏光板。
[5]前記λ/4位相差板の位相差が波長550nmに於いて125~150nmの範囲である、上記[1]~[4]のいずれかに記載の円偏光板。
[6]前記偏光板が塗布型偏光板である、上記[1]~[5]のいずれかに記載の円偏光板。
[7]上記[1]~[6]のいずれかに記載の円偏光板を備えた光学フィルム。
[8]上記[1]~[6]のいずれかに記載の円偏光板を備えた画像表示装置。
[9]上記[7]に記載の光学フィルムを備えた画像表示装置。
[2] The circularly polarizing plate according to [1] above, wherein the θ is in the range of 41 degrees to 44 degrees.
[3] The circularly polarizing plate according to [1] or [2] above, wherein the polarizing plate has a single transmittance of 41% or more.
[4] The average transmittance of the fast axis of the λ/4 retardation plate is in the range of 70 to 95%, and the average transmittance of the slow axis is in the range of 70 to 95%, [1] to The circularly polarizing plate according to any one of [3].
[5] The circularly polarizing plate according to any one of [1] to [4] above, wherein the λ/4 retardation plate has a retardation in a range of 125 to 150 nm at a wavelength of 550 nm.
[6] The circularly polarizing plate according to any one of [1] to [5] above, wherein the polarizing plate is a coated polarizing plate.
[7] An optical film comprising the circularly polarizing plate according to any one of [1] to [6] above.
[8] An image display device comprising the circularly polarizing plate according to any one of [1] to [6] above.
[9] An image display device comprising the optical film according to [7] above.

本発明によれば、偏光度が低い偏光板を用いた場合であっても、反射防止用途に用いたときの反射率を低減できる円偏光性能の高い円偏光板を提供することができる。 According to the present invention, even when a polarizing plate with a low degree of polarization is used, it is possible to provide a circularly polarizing plate with high circularly polarizing performance that can reduce reflectance when used for antireflection purposes.

偏光子及び検光子の透過率を示す図である。It is a figure showing the transmittance of a polarizer and an analyzer. 偏光板サンプルPol-1の透過率を示す図である。FIG. 3 is a diagram showing the transmittance of polarizing plate sample Pol-1. 位相差板サンプルRet-1の透過率を示す図である。FIG. 3 is a diagram showing the transmittance of retardation plate sample Ret-1. 偏光子及び検光子の透過率を示す図である。It is a figure showing the transmittance of a polarizer and an analyzer. 分光放射輝度計の測定方法を示す概念図である。FIG. 2 is a conceptual diagram showing a measurement method using a spectroradiometer. 偏光板サンプルPol-2の透過率を示す図である。FIG. 3 is a diagram showing the transmittance of polarizing plate sample Pol-2. 位相差板サンプルRet-1の位相差を示す図である。FIG. 3 is a diagram showing the phase difference of the retardation plate sample Ret-1. 理想的なλ/4位相差板のリタデーションを示す図である。FIG. 3 is a diagram showing the retardation of an ideal λ/4 phase difference plate. Al蒸着膜の反射率の測定結果を示す図である。It is a figure which shows the measurement result of the reflectance of an Al vapor deposition film. 貼合角と貼合ずれ角の関係を示す図である。It is a figure which shows the relationship between a lamination angle and a lamination deviation angle. 円偏光板を構成する偏光板の透過軸及び吸収軸と位相差板の進相軸及び遅相軸を示す図である。FIG. 3 is a diagram showing a transmission axis and an absorption axis of a polarizing plate and a fast axis and a slow axis of a retardation plate that constitute a circularly polarizing plate. 偏光度Pと貼合ずれ角Δθminの関係を示す図である。It is a figure which shows the relationship between the degree of polarization P e and the bonding deviation angle Δθ min .

次に、本発明の実施形態の一例について説明する。但し、本発明は、次に説明する実施形態に限定されるものではない。 Next, an example of an embodiment of the present invention will be described. However, the present invention is not limited to the embodiment described below.

[円偏光板]
本発明の円偏光板は、偏光板とλ/4位相差板からなり、当該偏光板の偏光度Pe(%)は99.8%以下であり、λ/4位相差板の進相軸と偏光板の透過軸のなす角度が90度未満になる方向にθ(度)であるときに、当該θが下記式(1)を満足することが特徴である。当該式(1)を満足することで、偏光度が低い偏光板を用いた場合であっても、反射防止用途に用いたときの反射率を低減できる。
[Circular polarizing plate]
The circularly polarizing plate of the present invention consists of a polarizing plate and a λ/4 retardation plate, and the degree of polarization Pe (%) of the polarizing plate is 99.8% or less, and the fast axis of the λ/4 retardation plate is A feature is that when the angle formed by the transmission axis of the polarizing plate is θ (degrees) in a direction that is less than 90 degrees, θ satisfies the following formula (1). By satisfying the formula (1), even when a polarizing plate with a low degree of polarization is used, the reflectance can be reduced when used for antireflection purposes.

上記式(1)において、θは貼合角であり、偏光板の透過軸とλ/4位相差板の進相軸の角度である。Pは偏光板の偏光度を示す。
上記式(1)に示すように、貼合角θは偏光板の偏光度Pの関数であることがわかり、本発明によれば、偏光板の偏光度Pに応じて、最適な貼合角θが決定できる。
貼合角θとしては、具体的には、41度~44度の範囲であることが好ましい。
In the above formula (1), θ is the lamination angle, which is the angle between the transmission axis of the polarizing plate and the fast axis of the λ/4 retardation plate. P e indicates the degree of polarization of the polarizing plate.
As shown in the above formula (1), it can be seen that the lamination angle θ is a function of the degree of polarization P e of the polarizing plate, and according to the present invention, the optimal lamination angle θ is determined according to the degree of polarization P e of the polarizing plate. The combined angle θ can be determined.
Specifically, the bonding angle θ is preferably in the range of 41 degrees to 44 degrees.

また、本発明の円偏光板で用いる偏光板としては、単体での透過率(以下、「単体透過率」と記載する。)が41%以上であることが好ましい。単体透過率が41%以上であると、円偏光板としての性能が担保される。以上の観点から、偏光板の単体透過率は41.5%以上であることがより好ましく、42%以上であることがさらに好ましい。偏光板の単体透過率は高いほど好ましいが、上限値は通常50%程度である。 Further, it is preferable that the polarizing plate used in the circularly polarizing plate of the present invention has a transmittance of 41% or more as a single unit (hereinafter referred to as “single transmittance”). When the single transmittance is 41% or more, the performance as a circularly polarizing plate is ensured. From the above viewpoint, the single transmittance of the polarizing plate is more preferably 41.5% or more, and even more preferably 42% or more. The higher the single transmittance of the polarizing plate, the better, but the upper limit is usually about 50%.

偏光板の単体透過率Tは、下記のようにして算出できる。
まず、偏光子と偏光板の組み合わせで偏光子を回転させて透過率が最大及び最小となる透過率を測定し、それぞれをT及びTとし、前記透過率が最大及び最小となる角度において、偏光子のみで測定した透過率をそれぞれT及びTとする。求めたT、T、T及びTから、後述する式(4)及び式(5)よりT(=T1t)及びT(=T1a)を求める。
求めたT(=T1t)及びT(=T1a)から、式(14)を使って偏光板の単体透過率Tが算出できる。式(14)の通り、偏光板の単体透過率Tは視感度曲線関数を乗じた値に対して視感度曲線関数の積分値で除した値(Y値)であり、視感度曲線関数Lは国際照明委員会(CIE)で定められたCIE1931の視感度曲線関数である。
前記T、T、T及びTは、例えば、大塚電子社製光学材料検査装置RETS-100、コニカミノルタ社製分光放射輝度計CS-2000を用いて測定することができ、測定波長帯域は、例えば、400~800nm、380~780nmである。
The single transmittance T s of the polarizing plate can be calculated as follows.
First, with a combination of a polarizer and a polarizing plate, rotate the polarizer and measure the transmittance at which the transmittance is maximum and minimum, and let them be T p and T c respectively, and at the angles at which the transmittance is maximum and minimum. , the transmittances measured only with the polarizer are T 2 and T 1 , respectively. From the obtained T p , T c , T 1 and T 2 , T t (=T 1t ) and T a (=T 1a ) are obtained from Equation (4) and Equation (5) described below.
From the obtained T t (=T 1t ) and T a (=T 1a ), the single transmittance T s of the polarizing plate can be calculated using equation (14). As shown in equation (14), the single transmittance T s of the polarizing plate is the value (Y value) obtained by multiplying the visibility curve function by the integral value of the visibility curve function, and the visibility curve function L is the CIE1931 visibility curve function defined by the International Commission on Illumination (CIE).
The above T p , T c , T 1 and T 2 can be measured using, for example, an optical material inspection device RETS-100 manufactured by Otsuka Electronics, or a spectral radiance meter CS-2000 manufactured by Konica Minolta, and the measurement wavelength The bands are, for example, 400 to 800 nm and 380 to 780 nm.

本発明の円偏光板は、λ/4位相差板の進相軸の平均透過率が70~95%の範囲であることが好ましく、遅相軸の平均透過率が70~95%の範囲であることが好ましい。進相軸の透過率及び遅相軸の透過率が上記範囲であることで、円偏光板としての性能が担保される傾向がある。以上の観点から、進相軸の平均透過率が80~90%の範囲であることがさらに好ましく、遅相軸の平均透過率が80~90%の範囲であることがさらに好ましい。 In the circularly polarizing plate of the present invention, it is preferable that the average transmittance of the fast axis of the λ/4 retardation plate is in the range of 70 to 95%, and the average transmittance of the slow axis of the λ/4 retardation plate is in the range of 70 to 95%. It is preferable that there be. When the fast axis transmittance and the slow axis transmittance are within the above ranges, the performance as a circularly polarizing plate tends to be ensured. From the above viewpoint, it is more preferable that the average transmittance of the fast axis is in the range of 80 to 90%, and it is even more preferable that the average transmittance of the slow axis is in the range of 80 to 90%.

λ/4位相差板の進相軸の平均透過率及び遅相軸の平均透過率は、下記のようにして算出できる。
まず、偏光子とλ/4位相差板の組み合わせで偏光子を回転させて透過率が最大及び最小となる透過率を測定し、それぞれT及びTとする。また、前記透過率が最大及び最小となる角度において、偏光子のみで測定した透過率をそれぞれT及びTとする。偏光子とλ/4位相差板の組み合わせで偏光子を回転させて透過率が最大となる角度は、透過率が最大又は最小となる角度の一方が予め決まっているλ/4位相差板の進相軸又は遅相軸の一方の角度となり、偏光子とλ/4位相差板の組み合わせで偏光子を回転させて透過率が最小となる角度は、透過率が最大又は最小となる角度のもう一方が予め決まっているλ/4位相差板の進相軸又は遅相軸のもう一方の角度となる。求めたT、T、T及びTから、後述する式(6)及び式(7)を使ってλ/4位相差板の進相軸の透過率Tfast及び遅相軸の透過率Tslowが算出できる。λ/4位相差板の進相軸の平均透過率は測定全波長領域の透過率の平均であり、Tfastに視感度曲線関数を乗じた値に対して視感度曲線関数の積分値で除した値(Y値)である。λ/4位相差板の遅相軸の平均透過率は測定全波長領域の透過率の平均であり、Tslowに視感度曲線関数を乗じた値に対して視感度曲線関数の積分値で除した値(Y値)である。
前記T、T、T及びTは、例えば、大塚電子社製光学材料検査装置RETS-100を用いて測定することができ、測定波長帯域は、例えば、400~800nmである。
The average transmittance of the fast axis and the average transmittance of the slow axis of the λ/4 retardation plate can be calculated as follows.
First, the polarizer is rotated using a combination of a polarizer and a λ/4 retardation plate, and the transmittance at which the transmittance becomes maximum and minimum is measured, and these are defined as T p and T c , respectively. Furthermore, the transmittances measured only with the polarizer at the angles at which the transmittance is maximum and minimum are defined as T 2 and T 1 , respectively. The angle at which the transmittance is maximized by rotating the polarizer in a combination of a polarizer and a λ/4 retardation plate is the angle at which either the maximum or minimum transmittance is determined in advance for the λ/4 retardation plate. The angle at which the transmittance is minimum when rotating the polarizer with the combination of the polarizer and the λ/4 retardation plate is the angle at which the transmittance is maximum or minimum. The other angle is the predetermined fast axis or slow axis of the λ/4 phase difference plate. From the obtained T p , T c , T 1 and T 2 , the fast axis transmittance T fast and the slow axis transmittance of the λ/4 retardation plate can be calculated using equations (6) and (7) described later. The rate T slow can be calculated. The average transmittance of the fast axis of a λ/4 retardation plate is the average transmittance of the entire measured wavelength range, and is calculated by dividing the value obtained by multiplying T fast by the visibility curve function by the integral value of the visibility curve function. This is the value (Y value). The average transmittance of the slow axis of a λ/4 retardation plate is the average transmittance of the entire measured wavelength range, and is calculated by dividing the value obtained by multiplying T slow by the visibility curve function by the integral value of the visibility curve function. This is the value (Y value).
The T p , T c , T 1 and T 2 can be measured using, for example, an optical material inspection device RETS-100 manufactured by Otsuka Electronics Co., Ltd., and the measurement wavelength band is, for example, 400 to 800 nm.

また、λ/4位相差板の波長550nmにおける位相差(リタデーション)は125~150nmの範囲であることが好ましく、130~145nmの範囲であることがより好ましく、135~140nmの範囲であることがさらに好ましい。 Further, the retardation of the λ/4 retardation plate at a wavelength of 550 nm is preferably in the range of 125 to 150 nm, more preferably in the range of 130 to 145 nm, and more preferably in the range of 135 to 140 nm. More preferred.

本発明の円偏光板は、偏光度の低い偏光板を用いた場合でも、上記式(1)を満足するように貼合角を決定し、用いることで優れた円偏光板を提供することができる。具体的には、本発明における偏光板の偏光度としては、99.8%以下であることが必須であり、99.5%以下の偏光板を用いることができ、さらには99.0%以下の偏光板を用いることもできる。偏光度の下限値としては、96%以上であることが好ましく、97%以上であることがさらに好ましい。 In the circularly polarizing plate of the present invention, even when a polarizing plate with a low degree of polarization is used, an excellent circularly polarizing plate can be provided by determining the lamination angle so as to satisfy the above formula (1). can. Specifically, the polarization degree of the polarizing plate in the present invention must be 99.8% or less, and a polarizing plate with 99.5% or less can be used, and even 99.0% or less. It is also possible to use a polarizing plate. The lower limit of the degree of polarization is preferably 96% or more, more preferably 97% or more.

偏光板の偏光度Pは下記のようにして算出できる。
偏光子と偏光板の組み合わせで偏光子を回転させて透過率が最大及び最小となる透過率を測定し、それぞれをT及びTとしたときに後述する式(4)及び式(5)より偏光板の進相軸及び遅相軸の透過率T(=T1t)及びT(=T1a)を求める。
(=T1t)及びT(=T1a)から式(13)を使って偏光板の偏光度Pが算出できる。式(13)の通り、偏光板の偏光度Pは視感度曲線関数を乗じた値に対して視感度曲線関数の積分値で除した値(Y値)であり、視感度曲線関数Lは国際照明委員会(CIE)で定められたCIE1931の視感度曲線関数である。
前記T、Tは、例えば、大塚電子社製光学材料検査装置RETS-100、コニカミノルタ社製分光放射輝度計CS-2000を用いて測定することができ、測定波長帯域は、例えば、400~800nm、380~780nmである。
The degree of polarization P e of the polarizing plate can be calculated as follows.
In a combination of a polarizer and a polarizing plate, rotate the polarizer and measure the transmittance at which the transmittance is maximum and minimum, and when T p and T c are respectively, formula (4) and formula (5) described below are used. From this, the transmittances T t (=T 1t ) and T a (=T 1a ) of the fast axis and slow axis of the polarizing plate are determined.
The degree of polarization P e of the polarizing plate can be calculated from T t (=T 1t ) and T a (=T 1a ) using equation (13). As shown in equation (13), the polarization degree P e of the polarizing plate is the value (Y value) obtained by dividing the value multiplied by the visibility curve function by the integral value of the visibility curve function, and the visibility curve function L is This is a CIE1931 visibility curve function defined by the International Commission on Illumination (CIE).
The T p and T c can be measured using, for example, an optical material inspection device RETS-100 manufactured by Otsuka Electronics, or a spectral radiance meter CS-2000 manufactured by Konica Minolta, and the measurement wavelength band is, for example, 400 nm. ~800nm, 380~780nm.

偏光板としては、具体的には、ヨウ素系延伸偏光板、染料系延伸偏光板、塗布型偏光板、ワイヤーグリッド偏光板などが挙げられる。偏光度の低い偏光板としては、延伸倍率の低いヨウ素系延伸偏光板や染料系延伸偏光板、二色比の低い二色性色素を用いた染料系延伸偏光板、および塗布型偏光板が挙げられる。以下、塗布型偏光板について説明する。 Specific examples of the polarizing plate include an iodine-based stretched polarizing plate, a dye-based stretched polarizing plate, a coated polarizing plate, a wire grid polarizing plate, and the like. Examples of polarizing plates with a low degree of polarization include iodine-based stretched polarizing plates and dye-based stretched polarizing plates with low stretching ratios, dye-based stretched polarizing plates using dichroic dyes with low dichroic ratios, and coated polarizing plates. It will be done. The coated polarizing plate will be explained below.

(塗布型偏光板)
塗布型偏光板とは、基材に材料を塗布することによって作製された偏光板である。具体的には、基材フィルム上に、以下に記載する偏光膜形成用組成物を塗布したものが好ましい。
(Coating type polarizing plate)
A coated polarizing plate is a polarizing plate produced by applying a material to a base material. Specifically, it is preferable to apply a polarizing film-forming composition described below on a base film.

(偏光膜形成用組成物)
偏光膜形成用組成物は、色素を含むことが好ましい。色素としては、可視光領域の波長の少なくとも一部を吸収する物質または化合物であり、二色性色素が好適に挙げられる。ここで、二色性色素とは、分子の長軸方向における吸光度と、短軸方向における吸光度が異なる性質を有する色素をいう。
偏光膜形成用組成物は、色素とともに重合性液晶化合物を含むことが好ましい。重合性液晶化合物を重合することにより、膜強度を有する塗布型偏光膜を形成することができる。
偏光膜形成用組成物は、相分離を引き起こさない状態であれば、溶液であっても、液晶であっても、分散状態であってもよいが、基材フィルムへの塗布が容易である観点から、溶液であることが好ましい。また、偏光膜形成用組成物から溶剤を除いた固形分成分は、基材フィルムに配向させる観点から、任意の温度で液晶相の状態であることが好ましい。
このようにして作製された塗布型偏光板の偏光度としては、通常、97~99.5%程度である。
(Composition for forming polarizing film)
It is preferable that the composition for forming a polarizing film contains a dye. The dye is a substance or compound that absorbs at least a portion of wavelengths in the visible light region, and dichroic dyes are preferably mentioned. Here, the dichroic dye refers to a dye that has a property that the absorbance in the long axis direction of the molecule is different from the absorbance in the short axis direction.
It is preferable that the composition for forming a polarizing film contains a polymerizable liquid crystal compound together with a dye. By polymerizing a polymerizable liquid crystal compound, a coating type polarizing film having film strength can be formed.
The composition for forming a polarizing film may be in a solution, liquid crystal, or dispersed state as long as it does not cause phase separation, but from the viewpoint that it can be easily applied to the base film. Therefore, a solution is preferable. Further, the solid component of the polarizing film-forming composition excluding the solvent is preferably in a liquid crystal phase state at any temperature from the viewpoint of orientation in the base film.
The degree of polarization of the coated polarizing plate produced in this way is usually about 97 to 99.5%.

基材フィルムとしては、例えば、トリアセテート、アクリル、ポリエステル、ポリイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリカーボネート、シクロオレフィンポリマー、ポリオレフィン、ポリ塩化ビニル、トリアセチルセルロースまたはウレタン系のフィルム等が挙げられる。
基材フィルム表面には、色素の配向方向を制御するために、「液晶便覧」(丸善株式会社、平成12年10月30日発行)の226~239ページ等に記載の公知の方法(ラビング法、配向膜表面上にグルーブ(微細な溝構造)を形成する方法、偏光紫外光・偏光レーザーを用いる方法(光配向法)、LB膜形成による配向方法、無機物の斜め蒸着による配向方法等)により、配向処理(配向膜)を施していてもよい。特に、ラビング法、光配向法による配向処理を好ましく挙げることができる。
Examples of the base film include triacetate, acrylic, polyester, polyimide, polyetherimide, polyetheretherketone, polycarbonate, cycloolefin polymer, polyolefin, polyvinyl chloride, triacetylcellulose, or urethane-based films.
In order to control the orientation direction of the dye, the surface of the base film is coated with a known method (rubbing method) described in "Liquid Crystal Handbook" (Maruzen Co., Ltd., published October 30, 2000), pages 226 to 239. , a method of forming grooves (fine groove structure) on the surface of an alignment film, a method of using polarized ultraviolet light/polarized laser (photoalignment method), an alignment method by forming an LB film, an alignment method by oblique vapor deposition of an inorganic material, etc.) , an alignment treatment (alignment film) may be applied. Particularly preferred are alignment treatments using a rubbing method and a photoalignment method.

[光学フィルム]
本発明の円偏光板は、偏光性能に優れていることから、偏光フィルム等の光学フィルムに最適である。
[Optical film]
Since the circularly polarizing plate of the present invention has excellent polarizing performance, it is most suitable for optical films such as polarizing films.

[画像表示装置]
本発明の円偏光板及び光学フィルムは、偏光性能に優れており、携帯情報端末機、パソコン、テレビ、プロジェクター、サイネージ、電子卓上計算機、電子時計、ワープロ、ウェアラブルディスプレイ、フォルダブルディスプレイ、電子ペーパー、ゲーム機、ビデオ、カメラ、フォトアルバム、温度計、オーディオ、自動車や機械類の計器類等の画像表示装置に好適に用いることができ、具体的には、反射低減層として有機ELディスプレイ方式の画像表示装置により好適に用いることができる。
上記以外にも光通信機器、医療機器、建築材料、玩具等に好ましく用いられる。
[Image display device]
The circularly polarizing plate and optical film of the present invention have excellent polarization performance, and can be used in mobile information terminals, personal computers, televisions, projectors, signage, electronic desktop calculators, electronic watches, word processors, wearable displays, foldable displays, electronic paper, etc. It can be suitably used for image display devices such as game consoles, videos, cameras, photo albums, thermometers, audio, and instruments for automobiles and machinery. Specifically, it can be used as a reflection reduction layer for organic EL display type images. It can be suitably used for display devices.
In addition to the above, it is also preferably used for optical communication equipment, medical equipment, building materials, toys, etc.

以下、上記式(1)を導き出した過程について説明する。 The process of deriving the above equation (1) will be explained below.

位相差フィルム・光学材料検査装置(大塚電子社製「RETS-100」)のグラントムソンプリズムである偏光子と、検光子を同一の偏光特性を持つと仮定して直交位Tc(偏光子0度/検光子90度)、平行位Tp(偏光子90度/検光子90度)、偏光子0度(T)、及び偏光子90度(T)の透過率をそれぞれ測定した(図1)。
次に、波長分散を持つそれぞれの透過率をT(直交位=偏光子0度)、T(平行位=偏光子90度)、T(偏光子0度)、T(偏光子90度)としたとき、グラントムソンプリズムの透過軸方向の透過率(Tt-prism)及び吸収軸方向の透過率(Ta-prism)をそれぞれ、以下の式(2)及び(3)を用いて、波長400~800nmについて、1nm毎に各波長の透過率を求めた。
Assuming that the polarizer, which is a Glan-Thompson prism, and the analyzer of the retardation film/optical material inspection device (Otsuka Electronics Co., Ltd. "RETS-100") have the same polarization characteristics, the orthogonal position Tc (polarizer 0 degree /analyzer 90 degrees), parallel position Tp (polarizer 90 degrees/analyzer 90 degrees), polarizer 0 degrees (T 1 ), and polarizer 90 degrees (T 2 ), the transmittance was measured (Figure 1 ).
Next, the respective transmittances with wavelength dispersion are T c (orthogonal position = polarizer 0 degrees), T p (parallel position = polarizer 90 degrees), T 1 (polarizer 0 degrees), T 2 (polarizer 90 degrees), the transmittance in the transmission axis direction (T t-prism ) and the transmittance in the absorption axis direction (T a-prism ) of the Glan-Thompson prism are expressed by the following equations (2) and (3), respectively. The transmittance of each wavelength was determined for each wavelength of 1 nm from 400 to 800 nm.


位相差フィルム・光学材料検査装置(大塚電子社製「RETS-100」)を使用して、偏光子のみを使って軸出しを行い、以下の偏光板サンプルと位相差板サンプルの透過率の測定を行った。
偏光板サンプルPol-1;ポリビニルアルコール(PVA)ヨウ素偏光板
偏光板サンプルPol-2;塗布型偏光板、単体透過率T43.4%、偏光度P97.1%
位相差板サンプルRet-1;λ/4位相差板(エドモンド社製「WP140HE」)
Using a retardation film/optical material inspection device (“RETS-100” manufactured by Otsuka Electronics Co., Ltd.), align the axis using only the polarizer and measure the transmittance of the following polarizing plate samples and retardation plate samples. I did it.
Polarizing plate sample Pol-1; polyvinyl alcohol (PVA) iodine polarizing plate Polarizing plate sample Pol-2; coated polarizing plate, single transmittance T s 43.4%, polarization degree P e 97.1%
Retardation plate sample Ret-1; λ/4 retardation plate (“WP140HE” manufactured by Edmund Corporation)

偏光板サンプルPol-1については、偏光板サンプルの0度方向を透過軸としたとき、直交位(偏光子0度/偏光板90度)、平行位(偏光子90度/偏光板90度)、偏光子0度及び偏光子90度の透過率を測定した(図2)。波長分散を持つそれぞれの透過率をT(直交位)、T(平行位)、T(偏光子0度)、T(偏光子90度)としたとき、偏光板サンプルPol-1の透過軸方向の透過率(T)及び吸収軸方向の透過率(T)をそれぞれ以下の式(4)及び(5)を用いて、波長400~800nmについて、1nm毎に各波長の透過率を求めた。 For polarizing plate sample Pol-1, when the 0 degree direction of the polarizing plate sample is the transmission axis, the orthogonal position (polarizer 0 degrees/polarizing plate 90 degrees), parallel position (polarizer 90 degrees/polarizing plate 90 degrees) , the transmittance of the polarizer at 0 degrees and the polarizer at 90 degrees was measured (FIG. 2). When the respective transmittances with wavelength dispersion are T c (orthogonal position), T p (parallel position), T 1 (polarizer 0 degrees), and T 2 (polarizer 90 degrees), polarizing plate sample Pol-1 The transmittance in the transmission axis direction (T t ) and the transmittance in the absorption axis direction (T a ) are calculated using the following equations (4) and (5), respectively, for wavelengths of 400 to 800 nm, and the transmittance of each wavelength is calculated every 1 nm. The transmittance was determined.

位相差板サンプルRet-1については、位相差板サンプルRet-1の0度方向を進相軸としたとき、直交位(偏光子0度/位相差板90度)、平行位(偏光子90度/位相差板90度)、偏光子0度及び偏光子90度の透過率を測定した(図3)。波長分散を持つそれぞれの透過率をT(直交位)、T(平行位)、T(偏光子0度)、T(偏光子90度)としたとき、位相差板サンプルRet-1の進相軸方向の透過率(Tfast)及び遅相軸方向の透過率(Tslow)をそれぞれ以下の式(6)及び(7)を用いて、波長400~800nmについて、1nm毎に各波長の透過率を求めた。 Regarding the retardation plate sample Ret-1, when the 0 degree direction of the retardation plate sample Ret-1 is the fast axis, the orthogonal position (polarizer 0 degrees/retardation plate 90 degrees), parallel position (polarizer 90 degrees), The transmittance of the polarizer was measured (FIG. 3). When the respective transmittances with wavelength dispersion are T c (orthogonal position), T p (parallel position), T 1 (polarizer 0 degrees), and T 2 (polarizer 90 degrees), the retardation plate sample Ret- The transmittance in the fast axis direction (T fast ) and the transmittance in the slow axis direction (T slow ) of 1 are calculated every 1 nm for wavelengths of 400 to 800 nm using the following equations (6) and (7), respectively. The transmittance of each wavelength was determined.

分光放射輝度計(コニカミノルタ社製「CS-2000」)を使用して、偏光子及び検光子に同一偏光特性を持つPVAヨウ素偏光板である偏光板サンプルPol-1の直交位(偏光子0度/検光子90度)、平行位(偏光子90度/検光子90度)、偏光子0度及び偏光子の90度の透過率を測定した(図4)。波長分散を持つそれぞれの透過率をT(直交位)、T(平行位)、T(偏光子0度)、T(偏光子90度)としたとき、PVAヨウ素偏光板である偏光板サンプルPol-1の進相軸方向の透過率(Tt-PVA)及び遅相軸方向の透過率(Ta-PVA)をそれぞれ以下の式(8)及び(9)を用いて、波長400~800nmについて、1nm毎に各波長の透過率を求めた。
図5に分光放射輝度計を用いた測定方法を示す概念図を示す。
Using a spectral radiance meter (“CS-2000” manufactured by Konica Minolta), the polarizer and analyzer were measured at orthogonal positions (polarizer 0 The transmittance of the polarizer was measured at 0 degrees and 90 degrees of the polarizer (FIG. 4). When the respective transmittances with wavelength dispersion are T c (orthogonal position), T p (parallel position), T 1 (polarizer 0 degrees), and T 2 (polarizer 90 degrees), it is a PVA iodine polarizing plate. The transmittance in the fast axis direction (T t-PVA ) and the transmittance in the slow axis direction (T a-PVA ) of polarizing plate sample Pol-1 are calculated using the following equations (8) and (9), respectively. The transmittance of each wavelength was determined for every 1 nm from 400 to 800 nm.
FIG. 5 shows a conceptual diagram showing a measurement method using a spectral radiance meter.

分光放射輝度計(コニカミノルタ社製「CS-2000」)を使用して、偏光子のみを使って軸出しを行い偏光板サンプルPol-2(単体透過率T43.4%、偏光度P97.1%の偏光板)の透過率の測定を行った。コニカミノルタ社製分光放射輝度計CS-2000の光学系構成は大塚電子社製位相差フィルム・光学材料検査装置RETS-100と同様にした。偏光板サンプルPol-2の0度方向を透過軸としたとき、直交位(偏光子0度/偏光板90度)、平行位(偏光子90度/偏光板90度)、偏光子0度及び偏光子90度の透過率を測定した(図6)。波長分散を持つそれぞれの透過率をT(直交位)、T(平行位)、T(偏光子0度)、T(偏光子90度)としたとき、偏光板サンプルPol-2の透過軸方向の透過率(T)及び吸収軸方向の透過率(T)をそれぞれ以下の式(10)及び(11)を用いて、波長380~780nmについて、1nm毎に各波長の透過率を求めた。 Using a spectral radiance meter (Konica Minolta "CS-2000"), axis alignment was performed using only a polarizer, and polarizing plate sample Pol-2 (single transmittance T s 43.4%, polarization degree P The transmittance of the polarizing plate (e 97.1%) was measured. The optical system configuration of the spectral radiance meter CS-2000 manufactured by Konica Minolta was the same as that of the retardation film/optical material inspection device RETS-100 manufactured by Otsuka Electronics. When the 0 degree direction of polarizing plate sample Pol-2 is taken as the transmission axis, orthogonal position (polarizer 0 degree/polarizing plate 90 degree), parallel position (polarizer 90 degree/polarizing plate 90 degree), polarizer 0 degree, and The transmittance of the polarizer at 90 degrees was measured (Figure 6). When the respective transmittances with wavelength dispersion are T c (orthogonal position), T p (parallel position), T 1 (polarizer 0 degrees), and T 2 (polarizer 90 degrees), polarizing plate sample Pol-2 The transmittance (T t ) in the transmission axis direction and the transmittance (T a ) in the absorption axis direction are calculated using the following equations (10) and (11), respectively, for wavelengths from 380 to 780 nm, and are calculated for each wavelength by 1 nm. The transmittance was determined.

位相差フィルム・光学材料検査装置(大塚電子社製「RETS-100」)を使用して、位相差板サンプルRet-1の位相差(リタデーション)測定を行った(図7)。
理想的なλ/4位相差板のリタデーションは図8に示す。
また、自記分光光度計(日立ハイテク社製「U-4000」)を使用してAl蒸着膜の反射率測定を行った(図9)。
The retardation of the retardation plate sample Ret-1 was measured using a retardation film/optical material inspection device (“RETS-100” manufactured by Otsuka Electronics Co., Ltd.) (FIG. 7).
The retardation of an ideal λ/4 retardation plate is shown in FIG.
In addition, the reflectance of the Al deposited film was measured using a self-recording spectrophotometer (“U-4000” manufactured by Hitachi High-Tech Corporation) (FIG. 9).

位相差フィルム・光学材料検査装置(大塚電子社製「RETS-100」)及び分光放射輝度計(コニカミノルタ社製「CS-2000」)を使用して得られた偏光板サンプルPol-1およびPol-2の透過率スペクトル、位相差フィルム・光学材料検査装置(大塚電子社製「RETS-100」)を使用して得られた位相差板サンプルRet-1の透過率スペクトルと位相差スペクトル及び自記分光光度計(日立ハイテク社製「U-4000」)を使用して得られたAl蒸着膜(反射膜)の反射率から、偏光板に入射した光が位相差板を通って反射膜で反射し位相差板から偏光板を抜けて帰って来る透過率(以下、「反射透過率」と記載する。)が最小となる偏光板と位相差板の貼合角の検討を行った。偏光板の透過軸透過率及び吸収軸透過率をそれぞれT1t、T1a、位相差板の進相軸透過率及び遅相軸透過率をそれぞれTfast、Tslow、位相差板の位相が位相差λ/4からずれる位相角をΔδ、反射膜の反射率をR、図10に示すようにλ/4位相差板の進相軸から偏光板の透過軸のなす角度が90度未満になる方向に貼り合わせる角度θ(貼合角)が、π/4よりずれる角度(貼合ずれ角)をΔθ、視感度曲線関数をLとしたとき反射透過率は、以下の式(12)となる。 Polarizing plate samples Pol-1 and Pol obtained using a retardation film/optical material inspection device (“RETS-100” manufactured by Otsuka Electronics) and a spectral radiance meter (“CS-2000” manufactured by Konica Minolta) -2 transmittance spectrum, transmittance spectrum and retardation spectrum of retardation plate sample Ret-1 obtained using a retardation film/optical material inspection device (“RETS-100” manufactured by Otsuka Electronics Co., Ltd.), and self-recorded From the reflectance of the Al deposited film (reflective film) obtained using a spectrophotometer (Hitachi High-Tech Corporation "U-4000"), light incident on the polarizing plate passes through the retardation plate and is reflected by the reflective film. We investigated the lamination angle between the polarizing plate and the retardation plate that would minimize the transmittance from the retardation plate through the polarizing plate (hereinafter referred to as "reflected transmittance"). The transmission axis transmittance and absorption axis transmittance of the polarizing plate are T 1t and T 1a respectively, the fast axis transmittance and slow axis transmittance of the retardation plate are T fast and T slow respectively, and the phase of the retardation plate is The phase angle that deviates from the phase difference λ/4 is Δδ, the reflectance of the reflective film is R, and as shown in Figure 10, the angle formed by the fast axis of the λ/4 retardation plate and the transmission axis of the polarizing plate is less than 90 degrees. When the angle of lamination θ (lamination angle) in the direction deviates from π/4 (lamination deviation angle) is Δθ, and the visibility curve function is L, the reflection transmittance is expressed by the following formula (12). .

このとき、偏光度P及び単体透過率Tはそれぞれ下記式(13)、(14)で表される。 At this time, the degree of polarization P e and the single transmittance T s are expressed by the following formulas (13) and (14), respectively.

透過率を測定したデータ(図6)から任意の偏光度Pe-target及び単体透過率Ts-targetを得るために、以下の式(15)及び(16)の係数k、Kαを、下記式(17)のΔが最小となるようにExcelソルバーの数値計算により求めた。 In order to obtain an arbitrary polarization degree P e-target and a single transmittance T s-target from the transmittance measurement data (FIG. 6), the coefficients k t and K α of the following equations (15) and (16) are , was determined by numerical calculation using an Excel solver so that Δ in the following formula (17) was minimized.

上記式(12)を微分すると、以下の式(18)が得られる。微分式(18)が略0である場合を計算することで、反射透過率Tが極小値をとるΔθを求めることができる。 By differentiating the above equation (12), the following equation (18) is obtained. By calculating the case where the differential equation (18) is approximately 0, it is possible to determine Δθ at which the reflection transmittance T R takes the minimum value.

Δθ≒0としたときに、dT/dΔθ=0となるΔθminの近似を行うと、以下の式(19)~(21)となる。ΔθminはTが最小となる貼合ずれ角であり、π/4+Δθminが貼合角θとなる。 When Δθ≈0, approximating Δθ min such that dT R /dΔθ=0 results in the following equations (19) to (21). Δθ min is the bonding deviation angle at which T R is the minimum, and π/4+Δθ min is the bonding angle θ.

図11に示す円偏光板に於ける偏光板の透過軸透過率及び吸収軸透過率をそれぞれT1t、T1a、位相差板の進相軸透過率及び遅相軸透過率をそれぞれTfast、Tslow、位相差板の位相が位相差λ/4からずれる位相角をΔδ、図10に示すようにλ/4位相差板の進相軸から偏光板の透過軸のなす角度が90度未満になる方向に貼り合わせる角度θ(貼合角)が、π/4よりずれる角度(貼合ずれ角)をΔθ、光の角速度をω、時間をt、視感度曲線関数をLとしたとき円偏光板の出射ベクトル(Tcircularccw)は、以下の式(22)で表される。 In the circularly polarizing plate shown in FIG. 11, the transmission axis transmittance and absorption axis transmittance of the polarizing plate are T 1t and T 1a , respectively, and the fast axis transmittance and slow axis transmittance of the retardation plate are T fast , respectively. T slow is the phase angle at which the phase of the retardation plate deviates from the phase difference λ/4, Δδ, and as shown in Figure 10, the angle formed by the transmission axis of the polarizing plate from the fast axis of the λ/4 retardation plate is less than 90 degrees. When the angle θ (bonding angle) of laminating in the direction of The output vector (T circularccw ) of the polarizing plate is expressed by the following equation (22).

次に、実施例により本発明をさらに詳しく説明する。実施例に記載される実測値に基づいて、上記式(1)に至る過程を説明するものである。 Next, the present invention will be explained in more detail with reference to Examples. The process leading to the above equation (1) will be explained based on the actual measured values described in the examples.

[参考例1]
偏光板サンプルPol-1の透過率(図2)、位相差板サンプルRet-1の透過率(図3)と位相差(図7)及びAl蒸着膜の反射率(図9)を測定したところ、偏光板の単体透過率T41.0%、偏光度P99.9999%となった。式(13)の二次近似により最小の反射透過率T0.456%及び式(20)より最小の反射透過率となる貼合ずれ角Δθmin0.191度を得た。位相差板の進相軸及び遅相軸の平均透過率はそれぞれ89.7%及び87.9%、透過率(Y値)はそれぞれ89.8%及び88.6%、位相差板の波長550nmにおける位相差は138.13nmであった。
[Reference example 1]
The transmittance of the polarizing plate sample Pol-1 (Figure 2), the transmittance (Figure 3) and phase difference of the retardation plate sample Ret-1 (Figure 7), and the reflectance of the Al deposited film (Figure 9) were measured. , the single transmittance T s of the polarizing plate was 41.0%, and the polarization degree P e was 99.9999%. A minimum reflection transmittance T R of 0.456% was obtained by the quadratic approximation of equation (13), and a bonding deviation angle Δθ min 0.191 degrees that resulted in the minimum reflection transmittance was obtained from equation (20). The average transmittance of the fast axis and slow axis of the retardation plate is 89.7% and 87.9%, respectively, the transmittance (Y value) is 89.8% and 88.6%, respectively, and the wavelength of the retardation plate The phase difference at 550 nm was 138.13 nm.

[実施例1]
偏光板サンプルPol-2の透過率(図6)、位相差板サンプルRet-1の透過率(図3)と位相差(図7)及びAl蒸着膜の反射率(図9)を測定し、単体透過率T43.4%、偏光度P97.1%を得た。式(13)の二次近似により最小の反射透過率T0.692%及び式(20)より最小の反射透過率となる貼合ずれ角Δθmin-3.15度を得た。位相差板の進相軸及び遅相軸の平均透過率、透過率(Y値)、位相差板の波長550nmにおける位相差は参考例1と同様である。
[Example 1]
The transmittance of the polarizing plate sample Pol-2 (Figure 6), the transmittance of the retardation plate sample Ret-1 (Figure 3) and phase difference (Figure 7), and the reflectance of the Al vapor deposited film (Figure 9) were measured. A single transmittance T s of 43.4% and a polarization degree P e of 97.1% were obtained. A minimum reflection transmittance T R of 0.692% was obtained by the quadratic approximation of equation (13), and a bonding deviation angle Δθ min -3.15 degrees that resulted in the minimum reflection transmittance was obtained from equation (20). The average transmittance of the fast axis and the slow axis of the retardation plate, the transmittance (Y value), and the phase difference of the retardation plate at a wavelength of 550 nm are the same as in Reference Example 1.

[実施例2]
偏光板サンプルPol-2の透過率(図6)、位相差板サンプルRet-1の透過率(図3)と位相差(図7)及びAl蒸着膜の反射率(図9)を測定し、偏光板サンプルの測定結果から単体透過率T42.5%、偏光度P99.5%になるように係数k0.990、係数kα0.168としたとき、式(13)の二次近似によりそれぞれ最小の反射透過率T0.520%及び式(20)より最小の反射透過率となる貼合ずれ角Δθmin-1.20度を得た。位相差板の進相軸及び遅相軸の平均透過率、透過率(Y値)、位相差板の波長550nmにおける位相差は参考例1と同様である。
[Example 2]
The transmittance of the polarizing plate sample Pol-2 (Figure 6), the transmittance of the retardation plate sample Ret-1 (Figure 3) and phase difference (Figure 7), and the reflectance of the Al vapor deposited film (Figure 9) were measured. Based on the measurement results of the polarizing plate sample, when the coefficient k t is set to 0.990 and the coefficient k α is set to 0.168 so that the single transmittance T s is 42.5% and the degree of polarization P e is 99.5%, Equation (13) A minimum reflection transmittance T R of 0.520% was obtained by quadratic approximation, and a bonding deviation angle Δθ min −1.20 degrees, which resulted in a minimum reflection transmittance, was obtained from equation (20). The average transmittance of the fast axis and the slow axis of the retardation plate, the transmittance (Y value), and the phase difference of the retardation plate at a wavelength of 550 nm are the same as in Reference Example 1.

[実施例3]
偏光板サンプルPol-2の透過率(図6)、位相差板サンプルRet-1の透過率(図3)と位相差(図7)及びAl蒸着膜の反射率(図9)を測定し、偏光板サンプルの測定結果から単体透過率T42.5%、偏光度P99.0%になるように係数k0.988、係数kα0.336としたとき、式(13)の二次近似によりそれぞれ最小の反射透過率T0.550%及び式(20)より最小の反射透過率となる貼合ずれ角Δθmin-1.78度を得た。位相差板の進相軸及び遅相軸の平均透過率、透過率(Y値)、位相差板の波長550nmにおける位相差は参考例1と同様である。
[Example 3]
The transmittance of the polarizing plate sample Pol-2 (Figure 6), the transmittance of the retardation plate sample Ret-1 (Figure 3) and phase difference (Figure 7), and the reflectance of the Al vapor deposited film (Figure 9) were measured. Based on the measurement results of the polarizing plate sample, when the coefficient k t is set to 0.988 and the coefficient k α is set to 0.336 so that the single transmittance T s is 42.5% and the degree of polarization P e is 99.0%, Equation (13) A minimum reflection transmittance T R of 0.550% was obtained by quadratic approximation, and a bonding deviation angle Δθ min −1.78 degrees, which resulted in a minimum reflection transmittance, was obtained from equation (20). The average transmittance of the fast axis and the slow axis of the retardation plate, the transmittance (Y value), and the phase difference of the retardation plate at a wavelength of 550 nm are the same as in Reference Example 1.

[実施例4]
偏光板サンプルPol-2の透過率(図6)、位相差板サンプルRet-1の透過率(図3)と位相差(図7)及びAl蒸着膜の反射率(図9)を測定し、偏光板サンプルの測定結果から単体透過率T42.5%、偏光度P98.5%になるように係数k0.985、係数kα0.505としたとき、式(13)の二次近似によりそれぞれ最小の反射透過率T0.579%及び式(20)より最小の反射透過率となる貼合ずれ角Δθmin-2.22度を得た。位相差板の進相軸及び遅相軸の平均透過率、透過率(Y値)、位相差板の波長550nmにおける位相差は参考例1と同様である。
[Example 4]
The transmittance of the polarizing plate sample Pol-2 (Figure 6), the transmittance of the retardation plate sample Ret-1 (Figure 3) and phase difference (Figure 7), and the reflectance of the Al vapor deposited film (Figure 9) were measured. Based on the measurement results of the polarizing plate sample, when the coefficient k t is set to 0.985 and the coefficient k α is set to 0.505 so that the single transmittance T s is 42.5% and the degree of polarization P e is 98.5%, Equation (13) A minimum reflection transmittance T R of 0.579% was obtained by quadratic approximation, and a bonding deviation angle Δθ min −2.22 degrees, which resulted in the minimum reflection transmittance, was obtained from equation (20). The average transmittance of the fast axis and the slow axis of the retardation plate, the transmittance (Y value), and the phase difference of the retardation plate at a wavelength of 550 nm are the same as in Reference Example 1.

[実施例5]
偏光板サンプルPol-2の透過率(図6)、位相差板サンプルRet-1の透過率(図3)と位相差(図7)及びAl蒸着膜の反射率(図9)を測定し、偏光板サンプルの測定結果から単体透過率T42.5%、偏光度P98.0%になるように係数k0.983、係数kα0.673としたとき、式(13)の二次近似によりそれぞれ最小の反射透過率T0.609%及び式(20)より最小の反射透過率となる貼合ずれ角Δθmin-2.59度を得た。位相差板の進相軸及び遅相軸の平均透過率、透過率(Y値)、位相差板の波長550nmにおける位相差は参考例1と同様である。
[Example 5]
The transmittance of the polarizing plate sample Pol-2 (Figure 6), the transmittance of the retardation plate sample Ret-1 (Figure 3) and phase difference (Figure 7), and the reflectance of the Al vapor deposited film (Figure 9) were measured. Based on the measurement results of the polarizing plate sample, when the coefficient k t is set to 0.983 and the coefficient k α is set to 0.673 so that the single transmittance T s is 42.5% and the degree of polarization P e is 98.0%, Equation (13) A minimum reflection transmittance T R of 0.609% was obtained by quadratic approximation, and a bonding deviation angle Δθ min −2.59 degrees, which resulted in a minimum reflection transmittance, was obtained from equation (20). The average transmittance of the fast axis and the slow axis of the retardation plate, the transmittance (Y value), and the phase difference of the retardation plate at a wavelength of 550 nm are the same as in Reference Example 1.

[実施例6]
偏光板サンプルPol-2の透過率(図6)、位相差板サンプルRet-1の透過率(図3)と位相差(図7)及びAl蒸着膜の反射率(図9)を測定し、偏光板サンプルの測定結果から単体透過率T42.5%、偏光度P97.5%になるように係数k0.981、係数Kα0.841としたとき、式(13)の二次近似によりそれぞれ最小の反射透過率T0.638%及び式(20)より最小の反射透過率となる貼合ずれ角Δθmin-2.92度を得た。位相差板の進相軸及び遅相軸の平均透過率、透過率(Y値)、位相差板の波長550nmにおける位相差は参考例1と同様である。
[Example 6]
The transmittance of the polarizing plate sample Pol-2 (Figure 6), the transmittance of the retardation plate sample Ret-1 (Figure 3) and phase difference (Figure 7), and the reflectance of the Al vapor deposited film (Figure 9) were measured. Based on the measurement results of the polarizing plate sample, when the coefficient k t is set to 0.981 and the coefficient K α is set to 0.841 so that the single transmittance T s is 42.5% and the degree of polarization P e is 97.5%, Equation (13) A minimum reflection transmittance T R of 0.638% was obtained by quadratic approximation, and a bonding deviation angle Δθ min −2.92 degrees, which resulted in a minimum reflection transmittance, was obtained from equation (20). The average transmittance of the fast axis and the slow axis of the retardation plate, the transmittance (Y value), and the phase difference of the retardation plate at a wavelength of 550 nm are the same as in Reference Example 1.

[実施例7]
偏光板サンプルPol-2の透過率(図6)、位相差板サンプルRet-1の透過率(図3)と位相差(図7)及びAl蒸着膜の反射率(図9)を測定し、偏光板サンプルの測定結果から単体透過率T42.0%、偏光度P99.5%になるように係数k0.979、係数kα0.166としたとき、式(13)の二次近似によりそれぞれ最小の反射透過率T0.508%及び式(20)より最小の反射透過率となる貼合ずれ角Δθmin-1.20度を得た。位相差板の進相軸及び遅相軸の平均透過率、透過率(Y値)、位相差板の波長550nmにおける位相差は参考例1と同様である。
[Example 7]
The transmittance of the polarizing plate sample Pol-2 (Figure 6), the transmittance of the retardation plate sample Ret-1 (Figure 3) and phase difference (Figure 7), and the reflectance of the Al vapor deposited film (Figure 9) were measured. Based on the measurement results of the polarizing plate sample, when the coefficient k t is set to 0.979 and the coefficient k α is set to 0.166 so that the single transmittance T s is 42.0% and the degree of polarization P e is 99.5%, Equation (13) A minimum reflection transmittance T R of 0.508% was obtained by quadratic approximation, and a bonding deviation angle Δθ min −1.20 degrees, which resulted in a minimum reflection transmittance, was obtained from equation (20). The average transmittance of the fast axis and the slow axis of the retardation plate, the transmittance (Y value), and the phase difference of the retardation plate at a wavelength of 550 nm are the same as in Reference Example 1.

[実施例8]
偏光板サンプルPol-2の透過率(図6)、位相差板サンプルRet-1の透過率(図3)と位相差(図7)及びAl蒸着膜の反射率(図9)を測定し、偏光板サンプルの測定結果から単体透過率T42.0%、偏光度P99.0%になるように係数k0.976、係数kα0.332としたとき、式(13)の二次近似によりそれぞれ最小の反射透過率T0.537%及び式(20)より最小の反射透過率となる貼合ずれ角Δθmin-1.78度を得た。位相差板の進相軸及び遅相軸の平均透過率、透過率(Y値)、位相差板の波長550nmにおける位相差は参考例1と同様である。
[Example 8]
The transmittance of the polarizing plate sample Pol-2 (Figure 6), the transmittance of the retardation plate sample Ret-1 (Figure 3) and phase difference (Figure 7), and the reflectance of the Al vapor deposited film (Figure 9) were measured. Based on the measurement results of the polarizing plate sample, when the coefficient k t is set to 0.976 and the coefficient k α is set to 0.332 so that the single transmittance T s is 42.0% and the degree of polarization P e is 99.0%, Equation (13) A minimum reflection transmittance T R of 0.537% was obtained by quadratic approximation, and a bonding deviation angle Δθ min −1.78 degrees, which resulted in a minimum reflection transmittance, was obtained from equation (20). The average transmittance of the fast axis and the slow axis of the retardation plate, the transmittance (Y value), and the phase difference of the retardation plate at a wavelength of 550 nm are the same as in Reference Example 1.

[実施例9]
偏光板サンプルPol-2の透過率(図6)、位相差板サンプルRet-1の透過率(図3)と位相差(図7)及びAl蒸着膜の反射率(図9)を測定し、偏光板サンプルの測定結果から単体透過率T42.0%、偏光度P98.5%になるように係数k0.974、係数kα0.499としたとき、式(13)の二次近似によりそれぞれ最小の反射透過率T0.566%及び式(20)より最小の反射透過率となる貼合ずれ角Δθmin-2.22度を得た。位相差板の進相軸及び遅相軸の平均透過率、透過率(Y値)、位相差板の波長550nmにおける位相差は参考例1と同様である。
[Example 9]
The transmittance of the polarizing plate sample Pol-2 (Figure 6), the transmittance of the retardation plate sample Ret-1 (Figure 3) and phase difference (Figure 7), and the reflectance of the Al vapor deposited film (Figure 9) were measured. Based on the measurement results of the polarizing plate sample, when the coefficient k t is set to 0.974 and the coefficient k α is set to 0.499 so that the single transmittance T s is 42.0% and the degree of polarization P e is 98.5%, Equation (13) A minimum reflection transmittance T R of 0.566% was obtained by quadratic approximation, and a bonding deviation angle Δθ min −2.22 degrees, which resulted in a minimum reflection transmittance, was obtained from equation (20). The average transmittance of the fast axis and the slow axis of the retardation plate, the transmittance (Y value), and the phase difference of the retardation plate at a wavelength of 550 nm are the same as in Reference Example 1.

[実施例10]
偏光板サンプルPol-2の透過率(図6)、位相差板サンプルRet-1の透過率(図3)と位相差(図7)及びAl蒸着膜の反射率(図9)を測定し、偏光板サンプルの測定結果から単体透過率T42.0%、偏光度P98.0%になるように係数k0.971、係数kα0.665としたとき、式(13)の二次近似によりそれぞれ最小の反射透過率T0.594%及び式(20)より最小の反射透過率となる貼合ずれ角Δθmin-2.59度を得た。位相差板の進相軸及び遅相軸の平均透過率、透過率(Y値)、位相差板の波長550nmにおける位相差は参考例1と同様である。
[Example 10]
The transmittance of the polarizing plate sample Pol-2 (Figure 6), the transmittance of the retardation plate sample Ret-1 (Figure 3) and phase difference (Figure 7), and the reflectance of the Al vapor deposited film (Figure 9) were measured. Based on the measurement results of the polarizing plate sample, when the coefficient k t is set to 0.971 and the coefficient k α is set to 0.665 so that the single transmittance T s is 42.0% and the degree of polarization P e is 98.0%, Equation (13) A minimum reflection transmittance T R of 0.594% was obtained by quadratic approximation, and a bonding deviation angle Δθ min −2.59 degrees, which resulted in a minimum reflection transmittance, was obtained from equation (20). The average transmittance of the fast axis and the slow axis of the retardation plate, the transmittance (Y value), and the phase difference of the retardation plate at a wavelength of 550 nm are the same as in Reference Example 1.

[実施例11]
偏光板サンプルPol-2の透過率(図6)、位相差板サンプルRet-1の透過率(図3)と位相差(図7)及びAl蒸着膜の反射率(図9)を測定し、偏光板サンプルの測定結果から単体透過率T42.0%、偏光度P97.5%になるように係数k0.969、係数Kα0.831としたとき、式(13)の二次近似によりそれぞれ最小の反射透過率T0.623%及び式(20)より最小の反射透過率となる貼合ずれ角Δθmin-2.92度を得た。位相差板の進相軸及び遅相軸の平均透過率、透過率(Y値)、位相差板の波長550nmにおける位相差は参考例1と同様である。
[Example 11]
The transmittance of the polarizing plate sample Pol-2 (Figure 6), the transmittance of the retardation plate sample Ret-1 (Figure 3) and phase difference (Figure 7), and the reflectance of the Al vapor deposited film (Figure 9) were measured. Based on the measurement results of the polarizing plate sample, when the coefficient k t is set to 0.969 and the coefficient K α is set to 0.831 so that the single transmittance T s is 42.0% and the degree of polarization P e is 97.5%, Equation (13) A minimum reflection transmittance T R of 0.623% was obtained by quadratic approximation, and a bonding deviation angle Δθ min −2.92 degrees, which resulted in a minimum reflection transmittance, was obtained from equation (20). The average transmittance of the fast axis and the slow axis of the retardation plate, the transmittance (Y value), and the phase difference of the retardation plate at a wavelength of 550 nm are the same as in Reference Example 1.

[実施例12]
偏光板サンプルPol-2の透過率(図6)、位相差板サンプルRet-1の透過率(図3)と位相差(図7)及びAl蒸着膜の反射率(図9)を測定し、偏光板サンプルの測定結果から単体透過率T43.0%、偏光度P99.5%になるように係数k1.002、係数kα0.170としたとき、式(13)の二次近似によりそれぞれ最小の反射透過率T0.533%及び式(20)より最小の反射透過率となる貼合ずれ角Δθmin-1.20度を得た。位相差板の進相軸及び遅相軸の平均透過率、透過率(Y値)、位相差板の波長550nmにおける位相差は参考例1と同様である。
[Example 12]
The transmittance of the polarizing plate sample Pol-2 (Figure 6), the transmittance of the retardation plate sample Ret-1 (Figure 3) and phase difference (Figure 7), and the reflectance of the Al vapor deposited film (Figure 9) were measured. Based on the measurement results of the polarizing plate sample, when the coefficient k t is set to 1.002 and the coefficient k α is set to 0.170 so that the single transmittance T s is 43.0% and the degree of polarization P e is 99.5%, Equation (13) A minimum reflection transmittance T R of 0.533% was obtained by second-order approximation, and a lamination deviation angle Δθ min −1.20 degrees, which resulted in a minimum reflection transmittance, was obtained from equation (20). The average transmittance of the fast axis and the slow axis of the retardation plate, the transmittance (Y value), and the phase difference of the retardation plate at a wavelength of 550 nm are the same as in Reference Example 1.

[実施例13]
偏光板サンプルPol-2の透過率(図6)、位相差板サンプルRet-1の透過率(図3)と位相差(図7)及びAl蒸着膜の反射率(図9)を測定し、偏光板サンプルの測定結果から単体透過率T43.0%、偏光度P99.0%になるように係数k1.000、係数kα0.340としたとき、式(13)の二次近似によりそれぞれ最小の反射透過率T0.563%及び式(20)より最小の反射透過率となる貼合ずれ角Δθmin-1.78度を得た。位相差板の進相軸及び遅相軸の平均透過率、透過率(Y値)、位相差板の波長550nmにおける位相差は参考例1と同様である。
[Example 13]
The transmittance of the polarizing plate sample Pol-2 (Figure 6), the transmittance of the retardation plate sample Ret-1 (Figure 3) and phase difference (Figure 7), and the reflectance of the Al vapor deposited film (Figure 9) were measured. Based on the measurement results of the polarizing plate sample, when the coefficient k t is set to 1.000 and the coefficient k α is set to 0.340 so that the single transmittance T s is 43.0% and the degree of polarization P e is 99.0%, Equation (13) is obtained. A minimum reflection transmittance T R of 0.563% was obtained by quadratic approximation, and a bonding deviation angle Δθ min −1.78 degrees, which resulted in a minimum reflection transmittance, was obtained from equation (20). The average transmittance of the fast axis and the slow axis of the retardation plate, the transmittance (Y value), and the phase difference of the retardation plate at a wavelength of 550 nm are the same as in Reference Example 1.

[実施例14]
偏光板サンプルPol-2の透過率(図6)、位相差板サンプルRet-1の透過率(図3)と位相差(図7)及びAl蒸着膜の反射率(図9)を測定し、偏光板サンプルの測定結果から単体透過率T43.0%、偏光度P98.5%になるように係数k0.997、係数kα0.510としたとき、式(13)の二次近似によりそれぞれ最小の反射透過率T0.593%及び式(20)より最小の反射透過率となる貼合ずれ角Δθmin-2.22度を得た。位相差板の進相軸及び遅相軸の平均透過率、透過率(Y値)、位相差板の波長550nmにおける位相差は参考例1と同様である。
[Example 14]
The transmittance of the polarizing plate sample Pol-2 (Figure 6), the transmittance of the retardation plate sample Ret-1 (Figure 3) and phase difference (Figure 7), and the reflectance of the Al vapor deposited film (Figure 9) were measured. Based on the measurement results of the polarizing plate sample, when the coefficient k t is set to 0.997 and the coefficient k α is set to 0.510 so that the single transmittance T s is 43.0% and the degree of polarization P e is 98.5%, Equation (13) A minimum reflection transmittance T R of 0.593% was obtained by quadratic approximation, and a bonding deviation angle Δθ min −2.22 degrees, which resulted in a minimum reflection transmittance, was obtained from equation (20). The average transmittance of the fast axis and the slow axis of the retardation plate, the transmittance (Y value), and the phase difference of the retardation plate at a wavelength of 550 nm are the same as in Reference Example 1.

[実施例15]
偏光板サンプルPol-2の透過率(図6)、位相差板サンプルRet-1の透過率(図3)と位相差(図7)及びAl蒸着膜の反射率(図9)を測定し、偏光板サンプルの測定結果から単体透過率T43.0%、偏光度P98.0%になるように係数k0.995、係数kα0.681としたとき、式(13)の二次近似によりそれぞれ最小の反射透過率T0.623%及び式(20)より最小の反射透過率となる貼合ずれ角Δθmin-2.59度を得た。位相差板の進相軸及び遅相軸の平均透過率、透過率(Y値)、位相差板の波長550nmにおける位相差は参考例1と同様である。
[Example 15]
The transmittance of the polarizing plate sample Pol-2 (Figure 6), the transmittance of the retardation plate sample Ret-1 (Figure 3) and phase difference (Figure 7), and the reflectance of the Al vapor deposited film (Figure 9) were measured. Based on the measurement results of the polarizing plate sample, when the coefficient k t is set to 0.995 and the coefficient k α is set to 0.681 so that the single transmittance T s is 43.0% and the degree of polarization P e is 98.0%, Equation (13) A minimum reflection transmittance T R of 0.623% was obtained by quadratic approximation, and a bonding deviation angle Δθ min −2.59 degrees, which resulted in a minimum reflection transmittance, was obtained from equation (20). The average transmittance of the fast axis and the slow axis of the retardation plate, the transmittance (Y value), and the phase difference of the retardation plate at a wavelength of 550 nm are the same as in Reference Example 1.

[実施例16]
偏光板サンプルPol-2の透過率(図6)、位相差板サンプルRet-1の透過率(図3)と位相差(図7)及びAl蒸着膜の反射率(図9)を測定し、偏光板サンプルの測定結果から単体透過率T43.0%、偏光度P97.5%になるように係数k0.992、係数kα0.851としたとき、式(13)の二次近似によりそれぞれ最小の反射透過率T0.654%及び式(20)より最小の反射透過率となる貼合ずれ角Δθmin-2.92度を得た。位相差板の進相軸及び遅相軸の平均透過率、透過率(Y値)、位相差板の波長550nmにおける位相差は参考例1と同様である。
[Example 16]
The transmittance of the polarizing plate sample Pol-2 (Figure 6), the transmittance of the retardation plate sample Ret-1 (Figure 3) and phase difference (Figure 7), and the reflectance of the Al vapor deposited film (Figure 9) were measured. Based on the measurement results of the polarizing plate sample, when the coefficient k t is set to 0.992 and the coefficient k α is set to 0.851 so that the single transmittance T s is 43.0% and the degree of polarization P e is 97.5%, Equation (13) A minimum reflection transmittance T R of 0.654% was obtained by second-order approximation, and a lamination deviation angle Δθ min −2.92 degrees, which resulted in the minimum reflection transmittance, was obtained from equation (20). The average transmittance of the fast axis and the slow axis of the retardation plate, the transmittance (Y value), and the phase difference of the retardation plate at a wavelength of 550 nm are the same as in Reference Example 1.

[実施例17]
参考例1、実施例1~実施例16に於ける偏光度Pと式(23)が最小となる貼合ずれ角Δθmimnの関係は、図12に示す通り偏光板の単体透過率Tとは関係無く偏光度Pだけに依存し、以下の式(23)の関係であった。係数は位相差板の特性のパラメータである。
[Example 17]
In Reference Example 1 and Examples 1 to 16, the relationship between the degree of polarization P e and the bonding deviation angle Δθ min at which equation (23) is the minimum is as shown in FIG . It depends only on the degree of polarization Pe , regardless of the relationship expressed by the following equation (23). The coefficient is a parameter of the characteristics of the retardation plate.

上記式(23)から実際の実施を想定して、最適値(貼合ずれ角Δθmin)から±0.5度程度、角度がずれることを考慮して、π/4+Δθminが貼合角θとなるので、偏光度Pの単位を%とし、(1)式を導いた。すなわち、45+3.08-0.5より大きく、45+3.08+0.5より小さいと計算され、式(1)は47.58より大きく、48.58より小さいと計算された。 From the above formula (23), assuming actual implementation, π/4 + Δθ min is the bonding angle θ, taking into account that the angle deviates by about ±0.5 degrees from the optimal value (bonding deviation angle Δθ min ). Therefore, the unit of polarization degree P e is set to %, and formula (1) is derived. That is, it was calculated to be larger than 45+3.08-0.5 and smaller than 45+3.08+0.5, and formula (1) was calculated to be larger than 47.58 and smaller than 48.58.

本発明の円偏光板は、偏光度が低い偏光板を用いた場合であっても、本発明に基づいて最適な貼合角を決定できることから、反射防止用途に用いたときの反射率を低減することが可能である。したがって、本発明の円偏光板は、携帯情報端末機、パソコン、テレビ、プロジェクター、サイネージ、電子卓上計算機、電子時計、ワープロ、ウェアラブルディスプレイ、フォルダブルディスプレイ、電子ペーパー、ゲーム機、ビデオ、カメラ、フォトアルバム、温度計、オーディオ、自動車や機械類の計器類等の画像表示装置用として極めて有用であり、産業上の利用可能性は高いといえる。 The circularly polarizing plate of the present invention reduces reflectance when used for antireflection applications because the optimal lamination angle can be determined based on the present invention even when a polarizing plate with a low degree of polarization is used. It is possible to do so. Therefore, the circularly polarizing plate of the present invention can be used in portable information terminals, personal computers, televisions, projectors, signage, electronic desk calculators, electronic clocks, word processors, wearable displays, foldable displays, electronic paper, game consoles, videos, cameras, and photos. It is extremely useful for image display devices such as albums, thermometers, audio equipment, and instruments for automobiles and machinery, and can be said to have high industrial applicability.

Claims (9)

偏光板とλ/4位相差板からなる円偏光板において、偏光板の偏光度Pe(%)は99.8%以下であり、λ/4位相差板の進相軸と偏光板の透過軸のなす角度が90度未満になる方向にθ(度)であるときに、θが式(1)を満たす円偏光板。
In a circularly polarizing plate consisting of a polarizing plate and a λ/4 retardation plate, the degree of polarization Pe (%) of the polarizing plate is 99.8% or less, and the fast axis of the λ/4 retardation plate and the transmission axis of the polarizing plate are A circularly polarizing plate where θ satisfies formula (1) when θ (degrees) is in a direction in which the angle formed by the angle is less than 90 degrees.
前記θが41度~44度の範囲である請求項1に記載の円偏光板。 The circularly polarizing plate according to claim 1, wherein the θ is in a range of 41 degrees to 44 degrees. 前記偏光板の単体透過率が41%以上である、請求項1又は2に記載の円偏光板。 The circularly polarizing plate according to claim 1 or 2, wherein the polarizing plate has a single transmittance of 41% or more. 前記λ/4位相差板の進相軸の平均透過率が70~95%の範囲であり、遅相軸の平均透過率が70~95%の範囲である、請求項1又は2に記載の円偏光板。 The average transmittance of the fast axis of the λ/4 retardation plate is in the range of 70 to 95%, and the average transmittance of the slow axis is in the range of 70 to 95%. Circularly polarizing plate. 前記λ/4位相差板の位相差が波長550nmにおいて125~150nmの範囲である請求項1又は2に記載の円偏光板。 The circularly polarizing plate according to claim 1 or 2, wherein the retardation of the λ/4 retardation plate is in the range of 125 to 150 nm at a wavelength of 550 nm. 前記偏光板が塗布型偏光板である、請求項1又は2に記載の円偏光板。 The circularly polarizing plate according to claim 1 or 2, wherein the polarizing plate is a coated polarizing plate. 請求項1又は2に記載の円偏光板を備えた光学フィルム。 An optical film comprising the circularly polarizing plate according to claim 1 or 2. 請求項1又は2に記載の円偏光板を備えた画像表示装置。 An image display device comprising the circularly polarizing plate according to claim 1 or 2. 請求項7に記載の光学フィルムを備えた画像表示装置。 An image display device comprising the optical film according to claim 7.
JP2022086329A 2022-05-26 2022-05-26 Circularly polarizing plate, optical film using the same, and image display device Pending JP2023173828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022086329A JP2023173828A (en) 2022-05-26 2022-05-26 Circularly polarizing plate, optical film using the same, and image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022086329A JP2023173828A (en) 2022-05-26 2022-05-26 Circularly polarizing plate, optical film using the same, and image display device

Publications (1)

Publication Number Publication Date
JP2023173828A true JP2023173828A (en) 2023-12-07

Family

ID=89031018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022086329A Pending JP2023173828A (en) 2022-05-26 2022-05-26 Circularly polarizing plate, optical film using the same, and image display device

Country Status (1)

Country Link
JP (1) JP2023173828A (en)

Similar Documents

Publication Publication Date Title
JP6549335B2 (en) Electro-optic guest-host liquid crystal variable transmission filter with wide viewing angle
JP3174367B2 (en) Laminated wave plate and circularly polarizing plate
US20060146405A1 (en) Privacy screen for a display
WO2010058633A1 (en) Circularly polarizing plate and display device
JP2006522955A (en) Liquid crystal display device with internal polarizer
JP7284182B2 (en) Retarder Stack Pairs for Conversion of Polarization Basis Vectors
KR20050050589A (en) Privacy screen for a display
CN113167951A (en) Polarization based optical filter with angle sensitive transmission
KR20140013960A (en) High light transmittance and color adjusting circular polarizing plate and reflective liquid crystal displays comprising the same
TWI580995B (en) Anti-ambient-light-reflection film
US7132138B2 (en) Liquid crystal information displays
Tu et al. Design, fabrication and testing of achromatic elliptical polarizer
EP1295167A1 (en) Liquid crystal display including o-type & e-type polarizer
US10353245B2 (en) Tunable terahertz achromatic wave plate and a terahertz achromatic range tuning method
JP2007534971A (en) Super twisted nematic liquid crystal display using crystalline thin film polarizer
KR102062828B1 (en) Optical film, optical element and display device
TW201629591A (en) Optical stack including reflective polarizer and compensation film
TWI569054B (en) Wideband phase retarder film and wideband circular polarizer using the same
JP2006133385A (en) Light collimating system, condensing backlight system, and liquid crystal display apparatus
JPH11281817A (en) Polarizing film
JP2023173828A (en) Circularly polarizing plate, optical film using the same, and image display device
TW202018344A (en) Image display device, image display member, and optical member
TWI840616B (en) Retardation plate, and circularly polarizing plate, liquid crystal display, and organic el display including the same
KR102251179B1 (en) Curved liquid crystal display device for preventing light leakage
Miller et al. Patterned liquid crystal polymer C-plate retarder and color polarizer