JP2023171487A - Kinetic vision improving composition - Google Patents

Kinetic vision improving composition Download PDF

Info

Publication number
JP2023171487A
JP2023171487A JP2023173178A JP2023173178A JP2023171487A JP 2023171487 A JP2023171487 A JP 2023171487A JP 2023173178 A JP2023173178 A JP 2023173178A JP 2023173178 A JP2023173178 A JP 2023173178A JP 2023171487 A JP2023171487 A JP 2023171487A
Authority
JP
Japan
Prior art keywords
visual acuity
optimal
kinetic
eye
tea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023173178A
Other languages
Japanese (ja)
Inventor
貴久 古川
Takahisa Furukawa
祐子 杉田
Yuko Sugita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP2023173178A priority Critical patent/JP2023171487A/en
Publication of JP2023171487A publication Critical patent/JP2023171487A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicines Containing Plant Substances (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Tea And Coffee (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

To provide a novel kinetic vision improving composition and a novel kinetic vision improving medicine.SOLUTION: A kinetic vision improving composition contains tea leaves or extract thereof as an active ingredient and improves a kinetic speed recognition ability, and a kinetic vision improving medicine contains epigallocatechin gallate as an active ingredient and improves a kinetic speed recognition ability.SELECTED DRAWING: None

Description

本発明は、動体視力向上用組成物に関するものである。 The present invention relates to a composition for improving dynamic visual acuity.

人の視覚は感覚の中でも外界情報の8割以上を担うといわれ、最も重要な感覚である。良い視覚を維持することは、超高齢化社会において極めて重要な課題である。特に最近は、高齢者ドライバーによる交通事故が急増していることも大きな社会問題になっている。一般的に、視力検査で測定するのは静止時視力であるが、自動車の運転や、スポーツ、ゲームなどを行っているときには、静止時視力と共に、動く対象を瞬時に追跡して見る視覚機能が必要であり、これは動体視力(動体視覚機能)と呼ばれる。人の動体視力は運転やスポーツ能力などに重要であるが、その機能低下や異常によって病気を引き起こすわけではないため、これまでほとんど研究されてこなかった。本発明者らは、網膜視覚研究を行う過程で、サルなどで用いられてきた動体視覚機能解析法を改良し、客観的かつ定量的にマウスの動体視力(空間識別能、時間識別能、コントラスト識別能)を測定できる技術を開発し(非特許文献1)、人の動体視力を亢進する物質の探索を行っている。 Among human senses, vision is said to be responsible for over 80% of external information, making it the most important sense. Maintaining good vision is an extremely important issue in a super-aging society. Particularly recently, the rapidly increasing number of traffic accidents caused by elderly drivers has become a major social problem. Generally, resting visual acuity is measured in visual acuity tests, but when you are driving a car, playing sports, playing games, etc., your visual ability to instantly track and see moving objects is important as well as your resting visual acuity. This is called dynamic visual acuity (dynamic visual function). Dynamic visual acuity in humans is important for things such as driving and sports ability, but it has rarely been studied until now because a decline in its function or abnormality does not cause disease. In the process of conducting retinal vision research, the present inventors improved the dynamic visual function analysis method used in monkeys and other animals, and objectively and quantitatively analyzed the dynamic visual acuity (spatial discrimination ability, temporal discrimination ability, contrast ability) of mice. We have developed a technology that can measure visual acuity (discrimination ability) (Non-Patent Document 1), and are searching for substances that enhance human dynamic visual acuity.

我々の身近にある食品や飲料のうち、抹茶には多くの生理活性物質が含まれる。その中でも緑茶に多く含まれるカテキンは、神経保護作用を持つことが報告されている。また、緑茶をよく飲む人ほど、網膜への紫外線のダメージを受けにくいという報告もある(非特許文献2)。緑内障や他の眼の疾患についても緑茶の効果が報告されている。例えば、ラットにおいて網膜の保護作用があることから(非特許文献3)、緑茶による眼病予防も期待されている。こうした報告は、抹茶に多く含まれるカテキンの摂取が良好な視覚を保つ可能性を示唆しているが、視覚機能に対してカテキンがどのような影響を与えるのかについての報告はされていない。 Among the foods and drinks that are familiar to us, matcha contains many physiologically active substances. Among them, catechins, which are abundantly contained in green tea, have been reported to have neuroprotective effects. There is also a report that the more people drink green tea, the less damage their retinas receive from ultraviolet rays (Non-Patent Document 2). The effects of green tea on glaucoma and other eye diseases have also been reported. For example, since green tea has a protective effect on the retina in rats (Non-Patent Document 3), green tea is also expected to prevent eye diseases. These reports suggest that ingesting catechins, which are abundant in matcha, may maintain good vision, but there have been no reports on how catechins affect visual function.

Sugita Y, Miura K, Araki F, Furukawa T, Kawano K. Contributions of retinal direction-selective ganglion cells to optokinetic responses in mice. Eur J Neurosci. 2013, 38(6): 2823-31.Sugita Y, Miura K, Araki F, Furukawa T, Kawano K. Contributions of retinal direction-selective ganglion cells to optokinetic responses in mice. Eur J Neurosci. 2013, 38(6): 2823-31. Xu JY, Zheng XQ, Lu JL, Wu MY, Liang YR. Green tea polyphenols attenuating ultraviolet B-induced damage to human retinal pigment epithelial cells in vitro. Invest Ophthalmol Vis Sci 2010; 51: 6665-70.Xu JY, Zheng XQ, Lu JL, Wu MY, Liang YR. Green tea polyphenols attenuating ultraviolet B-induced damage to human retinal pigment epithelial cells in vitro. Invest Ophthalmol Vis Sci 2010; 51: 6665-70. Chu KO, Chan KP, Wang CC, Chu CY, Li WY, Choy KW, Roger MS, Pang CP. Green tea catechins and their oxidative protection in the rat eye. J Agric Food Chem 2010; 58: 1523-34.Chu KO, Chan KP, Wang CC, Chu CY, Li WY, Choy KW, Roger MS, Pang CP. Green tea catechins and their oxidative protection in the rat eye. J Agric Food Chem 2010; 58: 1523-34.

本発明は、新規な動体視力向上用組成物および動体視力向上用医薬を提供することを課題とする。 An object of the present invention is to provide a novel composition for improving dynamic visual acuity and a novel drug for improving dynamic visual acuity.

本発明は、上記の課題を解決するために以下の各発明を包含する。
[1]茶葉または茶葉抽出物を有効成分として含有する動体視力向上用組成物。
[2]茶葉抽出物が、エピガロカテキンガレートを含む前記[1]に記載の組成物。
[3]動体視力向上が、動体速度識別能の向上である前記[1]または[2]に記載の組成物。
[4]飲食品である前記[1]~[3]のいずれかに記載の組成物。
[5]エピガロカテキンガレートを有効成分として含有する動体視力向上用医薬。
[6]動体視力向上が、動体速度識別能の向上である前記[5]に記載の組成物。
The present invention includes the following inventions to solve the above problems.
[1] A composition for improving dynamic visual acuity containing tea leaves or tea leaf extract as an active ingredient.
[2] The composition according to [1] above, wherein the tea leaf extract contains epigallocatechin gallate.
[3] The composition according to [1] or [2] above, wherein the improvement in dynamic object visual acuity is an improvement in the ability to discriminate the speed of a moving object.
[4] The composition according to any one of [1] to [3] above, which is a food or drink.
[5] A drug for improving dynamic visual acuity containing epigallocatechin gallate as an active ingredient.
[6] The composition according to [5] above, wherein the improvement in dynamic body visual acuity is an improvement in the ability to discriminate the speed of a moving body.

本発明により、新規な動体視力向上用組成物および動体視力向上用医薬を提供することができる。本発明の組成物および医薬は、特に動体速度識別能を向上させることができる。 According to the present invention, a novel composition for improving dynamic visual acuity and a novel drug for improving dynamic visual acuity can be provided. The composition and medicament of the present invention can particularly improve the ability to discriminate moving body speed.

視運動性応答測定で使用した視覚刺激の説明図であり、上段は使用した垂直方向の正弦波縞の空間周波数と時間周波数の説明図、下段は1回の試行における刺激開始から刺激終了までの説明図である。An explanatory diagram of the visual stimulus used in the optokinetic response measurement. The upper row is an explanatory diagram of the spatial frequency and temporal frequency of the vertical sinusoidal stripes used, and the lower row is an illustration of the period from stimulus start to stimulus end in one trial. It is an explanatory diagram. 視運動性応答測定で使用した装置の図である。FIG. 2 is a diagram of the apparatus used in optokinetic response measurement. 実施例1の各群の視運動性応答の平均速度の大きさをガウス関数でフィットした結果を示す図であり、(A)はコントロール群、(B)は抹茶群、(C)は煎茶群、(D)は各マウスの最適時空間周波数のプロットである。FIG. 2 is a diagram showing the results of fitting the average speed of the optokinetic response of each group in Example 1 using a Gaussian function, in which (A) is the control group, (B) is the matcha group, and (C) is the sencha group. , (D) is a plot of the optimal spatiotemporal frequency for each mouse. 実施例1の視運動性応答測定の結果を示す図であり、(A)は最適空間周波数[cycle/deg]、(B)は最適時間周波数[Hz]、(C)は反応の強さ[deg/s](1秒間にどのくらい動くのか)、(D)は最適速度 [deg/s]、(E)はゲインの結果である。FIG. 3 is a diagram showing the results of optokinetic response measurement in Example 1, in which (A) is the optimal spatial frequency [cycle/deg], (B) is the optimal temporal frequency [Hz], and (C) is the response strength [ deg/s] (how much it moves in one second), (D) is the optimal speed [deg/s], and (E) is the result of the gain. 実施例2のエピガロカテキンガレート投与前および投与後の視運動性応答の平均速度の大きさをガウス関数でフィットした結果を示す図であり、(A)はエピガロカテキンガレート投与前、(B)はエピガロカテキンガレート投与後、(C)は各マウスの最適時空間周波数のプロットである。FIG. 2 is a diagram showing the results of fitting the average velocity of the optokinetic response before and after administration of epigallocatechin gallate in Example 2 with a Gaussian function, (A) before administration of epigallocatechin gallate, (B) ) is a plot of the optimal spatiotemporal frequency of each mouse after epigallocatechin gallate administration, and (C) is a plot of the optimal spatiotemporal frequency of each mouse. 実施例2の視運動性応答測定の結果を示す図であり、(A)は最適空間周波数[cycle/deg]、(B)は最適時間周波数[Hz]、(C)は反応の強さ[deg/s](1秒間にどのくらい動くのか)、(D)は最適速度 [deg/s]、(E)はゲインの結果である。FIG. 3 is a diagram showing the results of optokinetic response measurement in Example 2, in which (A) is the optimal spatial frequency [cycle/deg], (B) is the optimal temporal frequency [Hz], and (C) is the response strength [ deg/s] (how much it moves in one second), (D) is the optimal speed [deg/s], and (E) is the result of the gain.

本発明は、茶葉または茶葉抽出物を有効成分として含有する動体視力向上用組成物を提供する。茶葉はツバキ科の常緑樹であるチャノキ(Camellia sinensis)の葉を意味し、芽、茎を含むものであってもよい。茶葉は、生の茶葉でもよく、飲料用に処理を施したものでもよい。茶葉の処理には、不発酵、半発酵、高発酵があるが、いずれの処理を施したものでもよい。不発酵茶としては緑茶(煎茶、玉露、かぶせ茶、番茶、玉緑茶、抹茶、ほうじ茶、釜炒り茶、てん茶等)、半発酵茶としてはウーロン茶、包種茶、発酵茶としては紅茶、プーアール茶が挙げられる。茶葉は、細切して用いてもよく、粉末にして用いてもよい。本発明の組成物の有効成分である茶葉または茶葉抽出物は、緑茶の茶葉または緑茶の茶葉抽出物であることが好ましい。 The present invention provides a composition for improving dynamic visual acuity containing tea leaves or a tea leaf extract as an active ingredient. Tea leaves refer to the leaves of Camellia sinensis, an evergreen tree belonging to the Camellia family, and may include buds and stems. The tea leaves may be raw tea leaves or may be processed for drinking. Treatment of tea leaves includes unfermented, semi-fermented, and highly fermented, and any of these treatments may be used. Unfermented teas include green tea (sencha, gyokuro, kabusecha, bancha, tamaryokucha, matcha, hojicha, kamairicha, tencha, etc.); semi-fermented teas include oolong tea and pouchongcha; fermented teas include black tea and pu-erh. One example is tea. The tea leaves may be used after being cut into pieces, or may be used after being made into powder. The tea leaves or tea leaf extracts that are the active ingredients of the composition of the present invention are preferably green tea leaves or green tea leaf extracts.

本発明の組成物が茶葉抽出物を有効成分とする場合、茶葉抽出物はエピガロカテキンガレートを含むことが好ましい。本発明者らは、エピガロカテキンガレートを単独でマウスに投与した場合でも、動体視力が向上することを確認している。 When the composition of the present invention contains a tea leaf extract as an active ingredient, the tea leaf extract preferably contains epigallocatechin gallate. The present inventors have confirmed that dynamic visual acuity is improved even when epigallocatechin gallate is administered alone to mice.

茶葉抽出物は、茶葉を溶媒で抽出処理して得ることができ、従来公知の方法を採用可能である。茶葉は抽出前に粉砕処理を行ってもよい。抽出溶媒としては、水、親水性溶媒またはこれらの混合物が挙げられる。親水性溶媒としては、例えば、メタノール、エタノール、プロピルアルコール、イソプロピルアルコール等の低級アルコール、アセトン、メチルエチルケトン等の低級脂肪族ケトン、1,3-ブチレングリコール、プロピレングリコール、グリセリン等の多価アルコールを挙げることができる。抽出溶媒は、水またはエタノール水溶液であってもよく、水であってもよい。エタノール水溶液におけるエタノールの濃度は特に限定されないが、70重量%以下であってもよい。水で抽出する場合、抽出温度は60~100℃であってもよく、65~95℃であってもよく、70~80℃であってもよい。抽出時間は5~60分であってもよい。水と茶葉との重量比は、茶葉1に対し、茶葉乾燥重量の10倍以上の水を用いてもよく、茶葉乾燥重量の10倍~100倍量の水を用いてもよい。茶葉抽出物は、抽出処理後、ろ過、遠心分離等の処理により固形分を除去してもよい。さらに、濃縮、乾燥等の処理を行ってもよい。 The tea leaf extract can be obtained by extracting tea leaves with a solvent, and a conventionally known method can be used. Tea leaves may be pulverized before extraction. Extraction solvents include water, hydrophilic solvents, or mixtures thereof. Examples of the hydrophilic solvent include lower alcohols such as methanol, ethanol, propyl alcohol, and isopropyl alcohol, lower aliphatic ketones such as acetone and methyl ethyl ketone, and polyhydric alcohols such as 1,3-butylene glycol, propylene glycol, and glycerin. be able to. The extraction solvent may be water or an aqueous ethanol solution, or may be water. The concentration of ethanol in the ethanol aqueous solution is not particularly limited, but may be 70% by weight or less. When extracting with water, the extraction temperature may be 60-100°C, 65-95°C, or 70-80°C. The extraction time may be 5 to 60 minutes. Regarding the weight ratio of water to tea leaves, water may be used in an amount of 10 times or more the dry weight of tea leaves, or 10 to 100 times the dry weight of tea leaves. After the extraction process, the tea leaf extract may be subjected to a process such as filtration or centrifugation to remove solid content. Furthermore, treatments such as concentration and drying may be performed.

本発明の組成物は、動体視力を向上させる用途に使用することができる。動体視力とは、視線を外さずに動いている物体を持続して識別することができる視力であり、動体の速度の識別能(時間識別能)、動体の細かさの識別能(空間識別能)、動体のコントラストの識別能(コントラスト識別能)等が含まれる。本発明の組成物は、動体視力のなかでも動体速度識別能が向上し、さらに動体を追う目の速さ(反応の強さ)、最も識別しやすい動体の速度(最適速度)、目が動体を追随できる割合(ゲイン)が向上することが、本発明者らにより確認されている。 The composition of the present invention can be used to improve dynamic visual acuity. Dynamic visual acuity is visual acuity that allows you to continuously identify moving objects without taking your line of sight. ), contrast discrimination ability of a moving object (contrast discrimination ability), etc. The composition of the present invention improves the ability to discriminate the speed of a moving object in terms of visual acuity, and further improves the speed of the eye tracking a moving object (strength of reaction), the speed of the moving object that is easiest to identify (optimal speed), and the ability of the eye to identify moving objects. The inventors of the present invention have confirmed that the ratio (gain) that can be followed is improved.

本発明の組成物は、飲食品として好適に実施することができる。飲食品には、健康食品、機能性表示食品、特定保健用食品、病者用食品、栄養強化食品、サプリメント等が含まれる。飲食品の形態は特に限定されない。例えば、錠剤、顆粒剤、散剤、ドリンク剤等の形態;茶飲料、清涼飲料、炭酸飲料、栄養飲料、果実飲料、乳酸飲料等の飲料;飴、キャンディー、ガム、チョコレート、スナック菓子、ビスケット、ゼリー、ジャム、クリーム、焼き菓子、パン等の菓子およびパン類;かまぼこ、ハム、ソーセージ等の水産・畜産加工食品;加工乳、発酵乳等の乳製品;サラダ油、てんぷら油、マーガリン、マヨネーズ、ショートニング、ホイップクリーム、ドレッシング等の油脂および油脂加工食品;ソース、たれ等の調味料;カレー、シチュー、丼、お粥、雑炊等のレトルトパウチ食品;アイスクリーム、シャーベット、かき氷等の冷菓などを挙げることができる。 The composition of the present invention can be suitably used as a food or drink. Food and beverages include health foods, foods with functional claims, foods for specified health uses, foods for the sick, nutritionally fortified foods, supplements, etc. The form of the food and drink is not particularly limited. For example, in the form of tablets, granules, powders, drinks, etc.; beverages such as tea drinks, soft drinks, carbonated drinks, nutritional drinks, fruit drinks, lactic acid drinks; candies, candies, gums, chocolates, snacks, biscuits, jellies, etc. Sweets and breads such as jams, creams, baked goods, and bread; Processed seafood and livestock foods such as kamaboko, ham, and sausage; Dairy products such as processed milk and fermented milk; Salad oil, tempura oil, margarine, mayonnaise, shortening, and whipped cream. Fats and oil-processed foods such as creams and dressings; seasonings such as sauces and sauces; retort pouch foods such as curry, stew, rice bowls, porridge, and porridge; frozen desserts such as ice cream, sherbet, and shaved ice. .

本発明の組成物中の有効成分の含量は特に限定されず、0.01~99%(w/w)であってもよく、0.1~95%(w/w)であってもよい。 The content of the active ingredient in the composition of the present invention is not particularly limited, and may be 0.01 to 99% (w/w), or 0.1 to 95% (w/w). .

本発明は、エピガロカテキンガレートを有効成分として含有する動体視力向上用医薬を提供する。エピガロカテキンガレートは、例えば、緑茶葉から抽出して精製することにより製造することができる(特開2001-97968等)。また、テアビゴ(登録商標、太陽化学株式会社)等の市販品を使用してもよい。 The present invention provides a drug for improving dynamic visual acuity containing epigallocatechin gallate as an active ingredient. Epigallocatechin gallate can be produced, for example, by extracting and purifying green tea leaves (Japanese Unexamined Patent Publication No. 2001-97968, etc.). Alternatively, commercially available products such as Teavigo (registered trademark, Taiyo Kagaku Co., Ltd.) may be used.

本発明の医薬は、有効成分であるエピガロカテキンガレートに、薬学的に許容される担体または添加剤を適宜配合して製剤化することができる。具体的には錠剤、被覆錠剤、丸剤、散剤、顆粒剤、カプセル剤、液剤、懸濁剤、乳剤等の経口剤;注射剤、輸液、坐剤、軟膏、パッチ剤、経腸栄養剤等の非経口剤とすることができる。担体または添加剤の配合割合については、医薬品分野において通常採用されている範囲に基づいて適宜設定すればよい。配合できる担体または添加剤は特に制限されないが、例えば、水、生理食塩水、その他の水性溶媒、水性または油性基剤等の各種担体;賦形剤、結合剤、pH調整剤、崩壊剤、吸収促進剤、滑沢剤、着色剤、矯味剤、香料等の各種添加剤が挙げられる。 The medicament of the present invention can be formulated by appropriately blending the active ingredient epigallocatechin gallate with a pharmaceutically acceptable carrier or additive. Specifically, oral preparations such as tablets, coated tablets, pills, powders, granules, capsules, solutions, suspensions, and emulsions; injections, infusions, suppositories, ointments, patches, enteral nutrition, etc. It can be used as a parenteral preparation. The blending ratio of carriers or additives may be appropriately set based on the range normally employed in the pharmaceutical field. The carriers or additives that can be incorporated are not particularly limited, but include various carriers such as water, physiological saline, other aqueous solvents, aqueous or oily bases; excipients, binders, pH adjusters, disintegrants, and absorbents. Examples include various additives such as accelerators, lubricants, colorants, flavoring agents, and fragrances.

錠剤、カプセル剤などに混和することができる添加剤としては、例えば、ゼラチン、コーンスターチ、トラガント、アラビアゴムのような結合剤、結晶性セルロースのような賦形剤、コーンスターチ、ゼラチン、アルギン酸などのような膨化剤、ステアリン酸マグネシウムのような潤滑剤、ショ糖、乳糖またはサッカリンのような甘味剤、ペパーミント、アカモノ油またはチェリーのような香味剤などが用いられる。調剤単位形態がカプセルである場合には、上記タイプの材料にさらに油脂のような液状担体を含有することができる。注射のための無菌組成物は通常の製剤手順(例えば有効成分を注射用水、天然植物油等の溶媒に溶解または懸濁させる等)に従って調製することができる。注射用の水性液としては、例えば、生理食塩水、ブドウ糖やその他の補助薬を含む等張液(例えば、D-ソルビトール、D-マンニトール、塩化ナトリウムなど)などが用いられ、適当な溶解補助剤、例えば、アルコール(例、エタノール)、ポリアルコール(例、プロピレングリコール、ポリエチレングリコール)、非イオン性界面活性剤(例、ポリソルベート80TM、HCO-50)などと併用してもよい。油性液としては、例えば、ゴマ油、大豆油などが用いられ、溶解補助剤である安息香酸ベンジル、ベンジルアルコールなどと併用してもよい。また、緩衝剤(例えば、リン酸塩緩衝液、酢酸ナトリウム緩衝液)、無痛化剤(例えば、塩化ベンザルコニウム、塩酸プロカインなど)、安定剤(例えば、ヒト血清アルブミン、ポリエチレングリコールなど)、保存剤(例えば、ベンジルアルコール、フェノールなど)、酸化防止剤などと配合してもよい。 Examples of additives that can be incorporated into tablets, capsules, etc. include gelatin, cornstarch, tragacanth, binders such as gum arabic, excipients such as crystalline cellulose, cornstarch, gelatin, alginic acid, etc. leavening agents such as magnesium stearate, lubricants such as magnesium stearate, sweetening agents such as sucrose, lactose or saccharin, flavoring agents such as peppermint, redwood oil or cherry, and the like. When the dosage unit form is a capsule, materials of the above type can additionally contain a liquid carrier such as an oil or fat. Sterile compositions for injection can be prepared according to conventional pharmaceutical procedures, such as dissolving or suspending the active ingredient in a solvent such as water for injection, natural vegetable oils, or the like. Examples of aqueous solutions for injection include physiological saline, isotonic solutions containing glucose and other adjuvants (e.g., D-sorbitol, D-mannitol, sodium chloride, etc.), and appropriate solubilizing agents. For example, it may be used in combination with alcohol (eg, ethanol), polyalcohol (eg, propylene glycol, polyethylene glycol), nonionic surfactant (eg, polysorbate 80TM, HCO-50), and the like. As the oily liquid, sesame oil, soybean oil, etc. are used, and may be used in combination with solubilizing agents such as benzyl benzoate and benzyl alcohol. Also, buffering agents (e.g., phosphate buffer, sodium acetate buffer), soothing agents (e.g., benzalkonium chloride, procaine hydrochloride, etc.), stabilizers (e.g., human serum albumin, polyethylene glycol, etc.), preservatives, etc. It may also be blended with agents (eg, benzyl alcohol, phenol, etc.), antioxidants, and the like.

本発明の医薬をヒトに投与する場合における、エピガロカテキンガレートの用量は、剤型や患者の年齢などに依存するが、1日当たり1mg~1,000mgの範囲内であってもよく、一日当たり10mg~500mgの範囲内であってもよい。 When the pharmaceutical of the present invention is administered to humans, the dose of epigallocatechin gallate depends on the dosage form and the age of the patient, but may be in the range of 1 mg to 1,000 mg per day. It may be within the range of 10 mg to 500 mg.

本発明の医薬は、動体視力向上用医薬として有用である。本発明の医薬は、動体視力のなかでも動体速度識別能が向上し、さらに動体を追う目の速さ(反応の強さ)、最も識別しやすい動体の速度(最適速度)が向上することが、本発明者らにより確認されている。 The medicament of the present invention is useful as a medicament for improving dynamic visual acuity. The medicine of the present invention improves the ability to discriminate the speed of a moving object in terms of visual acuity, and also improves the speed of the eye to follow a moving object (strength of reaction) and the speed of the moving object that is easiest to identify (optimal speed). , has been confirmed by the present inventors.

以下、実施例により本発明を詳細に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited thereto.

〔実施例1:抹茶、煎茶が視覚機能に与える影響〕
1.材料および方法
(1)実験動物
C57/BL6Jマウス(2か月齢、雄、体重20~30g)を使用した。マウスは室温20~26℃、湿度30~70%、12時間サイクルの暗明で維持された動物室で飼育した。通常の飼料には、マウス飼育繁殖用飼料ラボMRストック(日本農業工業株式会社)を与え、抹茶、煎茶を含んだ飼料にはラボMRストック(日本農業工業株式会社)を与えた。抹茶と煎茶は「ネスレ 抹茶と健康研究会」から提供を受けた。飼料および水は自由摂取とした。実験は大阪大学動物実験実施規程に沿って行った。
[Example 1: Effects of matcha and sencha on visual function]
1. Materials and methods (1) Experimental animals
C57/BL6J mice (2 months old, male, weight 20-30 g) were used. Mice were housed in an animal room maintained at a room temperature of 20–26°C, humidity of 30–70%, and a 12-h dark/light cycle. For the normal feed, Labo MR Stock (Nippon Agricultural Industry Co., Ltd.), a feed for raising and breeding mice, was given, and for the feed containing matcha and sencha, Labo MR Stock (Nippon Agricultural Industry Co., Ltd.) was given. Matcha and sencha were provided by the Nestlé Matcha and Health Research Group. Feed and water were available ad libitum. The experiment was conducted in accordance with the Osaka University Animal Experiment Practice Regulations.

(2)実験群
コントロール群(n=5):通常の飼料を1か月間与えた。
抹茶群(n=5):抹茶を2%含む飼料を1か月間与えた。
煎茶群(n=5):煎茶を2%含む飼料を1か月間与えた。
抹茶を含む飼料および抹茶を含む飼料を1か月間与えた後に視運動性応答を測定した。
(2) Experimental group Control group (n=5): Regular feed was given for one month.
Matcha group (n=5): Feed containing 2% matcha was given for 1 month.
Sencha group (n=5): Feed containing 2% Sencha for 1 month.
The optomotor response was measured after feeding the matcha-containing diet and the matcha-containing diet for 1 month.

(3)視運動性応答測定
視覚刺激はMATLAB/Psychtoolbox(Brainard DH. The Psychophysics Toolbox. Spatial Vision. 1997; 10: 433-36.)により作成し、マウスの周り三面に設置したモニタに呈示した。視覚刺激は正弦波縞を用いた。正弦波縞刺激のパラメータを空間周波数と時間周波数を変えていき、時空間特性を調べた。空間周波数(SF:Spatial Frequency)は視覚刺激の刺激が動く時の縞の細かさ、時間周波数(TF:Temporal Frequency)は縞が動く速さである。空間周波数はSF=0.0313、0.0625、0.125、0.25、0.5 cycle/degreeの5種類、時間周波数はTF=0.1875、0.375、0.75、1.5、3、6、12、24 Hzの8種類で変化させた(図1参照)。
(3) Optokinetic response measurement Visual stimuli were created using MATLAB/Psychtoolbox (Brainard DH. The Psychophysics Toolbox. Spatial Vision. 1997; 10: 433-36.) and presented on monitors placed on three sides around the mouse. The visual stimulus used was a sine wave stripe. We investigated the spatiotemporal characteristics by changing the spatial and temporal frequencies of the parameters of the sinusoidal fringe stimulation. Spatial frequency (SF) is the fineness of the stripes when a visual stimulus moves, and temporal frequency (TF) is the speed at which the stripes move. The spatial frequency was varied in 5 types: SF=0.0313, 0.0625, 0.125, 0.25, 0.5 cycle/degree, and the temporal frequency was varied in 8 types: TF=0.1875, 0.375, 0.75, 1.5, 3, 6, 12, 24 Hz ( (see Figure 1).

各試行の最初に静止した縞刺激パターンがモニタに呈示された。静止パターンが333 ミリ秒間呈示された後、そのパターンが左方向あるいは右方向のいずれかに30秒間動いた。パターンが動いた後に、灰色の一様な画面に変り、試行が終了した。2秒後に次の試行が開始された。各試行刺激条件は62種類(31種類×2方向)の刺激条件の中からランダムに選ばれた(図1参照)。 A stationary stripe stimulus pattern was presented on the monitor at the beginning of each trial. A stationary pattern was presented for 333 ms, after which the pattern moved either to the left or to the right for 30 s. After the pattern moved, the screen changed to a solid gray screen and the trial ended. The next trial began 2 seconds later. Each trial stimulation condition was randomly selected from 62 types (31 types x 2 directions) of stimulation conditions (see Figure 1).

動く視覚刺激を呈示している間のマウスの右眼の眼球運動を計測した。マウスにはケタミン麻酔のもと、ヘッドホルダーを頭蓋骨に歯科用セメントで接着した。実験中、マウスの動きが最小限になるように、ヘッドホルダーをステンレス棒にネジで止めることにより頭部を固定し、胴体も小型ケースで固定した。赤外線ライトをマウスの右眼に照らし、マウスの体軸から60 degの位置にホットミラーを設置した(図2参照)。ホットミラーで反射したマウスの右眼の像を、赤外線を感知するカメラ(CCDカメラ)で5ミリ秒ごと記録した(サンプリングレート: 200Hz)。ホットミラーは赤外線を反射するが、可視光は通すので、マウスはホットミラーの後ろにあるモニタ上の視覚刺激をみることができる。 Eye movements of the mouse's right eye were measured while presenting moving visual stimuli. A head holder was attached to the mouse's skull with dental cement under ketamine anesthesia. During the experiment, to minimize mouse movement, the head was fixed by screwing the head holder to a stainless steel rod, and the body was also fixed in a small case. An infrared light was shined on the mouse's right eye, and a hot mirror was placed at a position 60 degrees from the mouse's body axis (see Figure 2). The image of the mouse's right eye reflected by the hot mirror was recorded every 5 milliseconds with an infrared sensing camera (CCD camera) (sampling rate: 200Hz). The hot mirror reflects infrared light but allows visible light to pass through, allowing the mouse to see visual stimuli on a monitor behind the hot mirror.

眼の位置のデータは、マウスの眼の画像をソフトウェア(GetEye)で解析することで求めた。時々刻々のマウスの眼の画像から、瞳孔の重心の位置を計算する。その瞳孔重心位置をもとに眼の位置(視線の向き)を計算した。眼球位置のキャリブレーションは次のように行った。マウスの眼球のモデル(Remtulla S, Hallett PE. A schematic eye for the mouse, and comparisons with the rat. Vision Res 1985; 25: 21-31.)を実験中のマウスの眼球と同じ位置に置き、左右それぞれの方向に2 degずつ10 degまで回転したときの瞳孔重心の画像上の位置を記録した。このデータに基づいて、瞳孔重心の画像上の位置とマウスの眼の位置(視線の向き)の対応関係を求め、マウスの眼の位置を算出した。その後、眼の位置のデータを微分して眼球速度を計算した。試行ごとに刺激開始後30秒間の眼球速度の平均を測り、これを誘発された眼球運動反応の大きさとした。データ解析は、MATLAB(MathWorks,MA)を用いて行った。 Eye position data was obtained by analyzing mouse eye images using software (GetEye). The position of the center of gravity of the pupil is calculated from momentary images of the mouse eye. The position of the eyes (direction of line of sight) was calculated based on the position of the center of gravity of the pupil. Calibration of the eyeball position was performed as follows. A mouse eyeball model (Remtulla S, Hallett PE. A schematic eye for the mouse, and comparisons with the rat. Vision Res 1985; 25: 21-31.) was placed in the same position as the mouse eyeball during the experiment, and the left and right The position of the pupil center of gravity on the image when rotated by 2 degrees in each direction up to 10 degrees was recorded. Based on this data, the correspondence between the position of the pupil center of gravity on the image and the position of the mouse's eye (direction of line of sight) was determined, and the position of the mouse's eye was calculated. Eye velocity was then calculated by differentiating the eye position data. For each trial, the average eye velocity for 30 seconds after the onset of the stimulus was measured, and this was taken as the magnitude of the evoked eye movement response. Data analysis was performed using MATLAB (MathWorks, MA).

2.結果
図3に、各群の視運動性応答の平均速度の大きさをガウス関数でフィットしたものを示した。(A)はコントロール群、(B)は抹茶群、(C)は煎茶群である。縦軸は時間周波数、横軸は空間周波数に示す。各マウスの最適時空間周波数のプロットを右上(D)に示した。全ての実験群で空間周波数、時間周波数が低すぎても高すぎても反応は弱かった。コントロール群に比べ、抹茶群、煎茶群のマウスは最適時間周波数が高いことがわかった。それぞれ5匹のデータから最も良くフィットするガウス関数を求めた結果、コントロール群では、空間周波数0.157±0.03[cycle/deg]、時間周波数1.03±0.15 [Hz]のとき、最も大きい眼球運動反応が観測された。抹茶群では、空間周波数0.161±0.01 [cycle/deg]、時間周波数1.40±0.35 [Hz] が最適周波数であった。煎茶群では、空間周波数0.147±0.01 [cycle/deg]、時間周波数1.40±0.24[Hz]が最適周波数であった。この結果から、各群において、視運動性応答を誘発するのに最適な時空間周波数があることが示唆された。
2. Results Figure 3 shows the magnitude of the average velocity of the optokinetic response of each group fitted with a Gaussian function. (A) is the control group, (B) is the matcha group, and (C) is the sencha group. The vertical axis shows temporal frequency, and the horizontal axis shows spatial frequency. A plot of the optimal spatiotemporal frequency for each mouse is shown in the upper right (D). In all experimental groups, the response was weak when the spatial and temporal frequencies were too low or too high. Compared to the control group, mice in the matcha and sencha groups were found to have a higher optimal temporal frequency. As a result of finding the best-fitting Gaussian function from the data of each of the five animals, in the control group, the largest eye movement response was observed when the spatial frequency was 0.157±0.03 [cycle/deg] and the temporal frequency was 1.03±0.15 [Hz]. It was done. In the matcha group, the optimal frequency was a spatial frequency of 0.161±0.01 [cycle/deg] and a temporal frequency of 1.40±0.35 [Hz]. In the Sencha group, the optimal frequency was a spatial frequency of 0.147±0.01 [cycle/deg] and a temporal frequency of 1.40±0.24[Hz]. These results suggested that there is an optimal spatiotemporal frequency for eliciting optomotor responses in each group.

図4に、各群の(A)最適空間周波数[cycle/deg]、(B)最適時間周波数[Hz]、(C)反応の強さ[deg/s](1秒間にどのくらい動くのか)、(D)最適速度 [deg/s]、(E)ゲインの結果を示した。(A)は動体の細かさの識別能であり、(B)は動体の速さの識別能であり、(C)は動体を追う目の速さであり、(D)は最も識別しやすい動体の速度であり、(E)は目が動体を追随できる割合である。抹茶群、煎茶群では、コントロール群に比べて時間周波数が有意に高いことが示された。また、反応の強さ、最適速度、ゲインも有意に高く、早いスピードで動くものに対する反応が大きいことが明らかになった。 Figure 4 shows (A) optimal spatial frequency [cycle/deg], (B) optimal temporal frequency [Hz], (C) reaction strength [deg/s] (how much movement per second) for each group. The results of (D) optimal speed [deg/s] and (E) gain are shown. (A) is the ability to discern the fineness of a moving object, (B) is the ability to discern the speed of a moving object, (C) is the speed of the eye following a moving object, and (D) is the easiest to identify. This is the speed of the moving object, and (E) is the rate at which the eyes can follow the moving object. It was shown that the temporal frequency was significantly higher in the matcha and sencha groups than in the control group. In addition, the response strength, optimal speed, and gain were significantly higher, and it became clear that the response to objects moving at fast speeds was greater.

〔実施例2:エピガロカテキンガレート(EGGC)が視覚機能に与える影響〕
1.材料および方法
5匹のC57/BL6Jマウス(2か月齢、雄、体重20~30g)を使用した。EGGC(ナカライテスク、製造元:長良サイエンス株式会社)を10mg/mlの濃度で生理食塩水に溶解し、EGCGを50mg/kgの用量で、4日間腹腔内投与した。EGGC投与前とEGGCを4日間投与した後に、実施例1と同じ方法で視運動性応答を測定した。
[Example 2: Effect of epigallocatechin gallate (EGGC) on visual function]
1. material and method
Five C57/BL6J mice (2 months old, male, weight 20-30 g) were used. EGGC (Nacalai Tesque, manufacturer: Nagara Science Co., Ltd.) was dissolved in physiological saline at a concentration of 10 mg/ml, and EGCG was intraperitoneally administered at a dose of 50 mg/kg for 4 days. Before administration of EGGC and after administration of EGGC for 4 days, optomotor responses were measured in the same manner as in Example 1.

2.結果
図5に、EGCG投与前とEGCG投与後の視運動性応答の平均速度の大きさをガウス関数でフィットしたものを示した。縦軸は時間周波数、横軸は空間周波数に示す。実施例1と同じように、EGCG投与前およびEGCG投与後のどちらも、空間周波数、時間周波数が低すぎても高すぎても反応は弱かった。各マウスの最適時空間周波数を右上に示した。EGCG投与前に比べ、EGCG投与後のマウスは最適時間周波数が高いことがわかった。それぞれ5匹のデータから最も良くフィットするガウス関数を求めた結果、EGCG投与前では、空間周波数0.16±0.01[cycle/deg]、時間周波数1.06±0.04 [Hz]のとき、最も大きい眼球運動反応が観測された。EGCG投与後では、空間周波数0.16±0.02 [cycle/deg]、時間周波数1.29±0.11 [Hz]が最適周波数であった。
2. Results Figure 5 shows the magnitude of the average velocity of the optomotor response before and after EGCG administration, which was fitted with a Gaussian function. The vertical axis shows temporal frequency, and the horizontal axis shows spatial frequency. As in Example 1, both before and after EGCG administration, the response was weak whether the spatial frequency or temporal frequency was too low or too high. The optimal spatiotemporal frequency for each mouse is shown in the upper right. It was found that the optimal temporal frequency was higher in mice after EGCG administration than before EGCG administration. As a result of finding the best-fitting Gaussian function from the data of each 5 animals, we found that before EGCG administration, the largest eye movement response was at a spatial frequency of 0.16±0.01 [cycle/deg] and a temporal frequency of 1.06±0.04 [Hz]. Observed. After EGCG administration, the optimal frequency was a spatial frequency of 0.16±0.02 [cycle/deg] and a temporal frequency of 1.29±0.11 [Hz].

図6に、EGCG投与前後の(A)最適空間周波数[cycle/deg]、(B)最適時間周波数[Hz]、(C)反応の強さ[deg/s](1秒間にどのくらい動くのか)、(D)最適速度 [deg/s]、(E)ゲインの結果を示した。EGCG投与後では、EGCG投与前に比べて時間周波数が有意に高いことが示された。また、反応の強さ、最適速度も有意に高く、早いスピードで動くものに対する反応が大きいことが明らかになった。 Figure 6 shows (A) optimal spatial frequency [cycle/deg], (B) optimal temporal frequency [Hz], and (C) response strength [deg/s] (how much movement per second) before and after EGCG administration. , (D) optimal speed [deg/s], and (E) gain results. It was shown that the temporal frequency was significantly higher after EGCG administration than before EGCG administration. In addition, the strength of the reaction and the optimal speed were significantly higher, and it became clear that the reaction was greater for objects that moved at fast speeds.

なお本発明は上述した各実施形態および実施例に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考として援用される。 It should be noted that the present invention is not limited to the embodiments and examples described above, and various changes can be made within the scope of the claims, and technical means disclosed in different embodiments can be combined as appropriate. The resulting embodiments also fall within the technical scope of the present invention. Additionally, all academic and patent documents mentioned herein are incorporated by reference herein.

Claims (4)

茶葉または茶葉抽出物(ただし、ケンペロール配糖体をケンペロールアグリコンに変換する酵素処理及び/又は酸加水分解処理が施されたものを除く)を有効成分として含有する動体視力向上用組成物。 A composition for improving visual acuity containing tea leaves or tea leaf extracts (excluding those subjected to enzyme treatment and/or acid hydrolysis treatment to convert kaempferol glycosides to kaempferol aglycones) as an active ingredient. 茶葉又はその抽出物が緑茶又はその抽出物である請求項1に記載の組成物。 The composition according to claim 1, wherein the tea leaves or extract thereof are green tea or an extract thereof. 動体視力向上が、動体速度識別能の向上である請求項1または2に記載の組成物。 3. The composition according to claim 1, wherein the improvement in dynamic object visual acuity is an improvement in the ability to discriminate the speed of a moving object. 飲食品である請求項1~3のいずれかに記載の組成物。 The composition according to any one of claims 1 to 3, which is a food or drink.
JP2023173178A 2019-07-05 2023-10-04 Kinetic vision improving composition Pending JP2023171487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023173178A JP2023171487A (en) 2019-07-05 2023-10-04 Kinetic vision improving composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019126523A JP7367956B2 (en) 2019-07-05 2019-07-05 Composition for improving dynamic vision
JP2023173178A JP2023171487A (en) 2019-07-05 2023-10-04 Kinetic vision improving composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019126523A Division JP7367956B2 (en) 2019-07-05 2019-07-05 Composition for improving dynamic vision

Publications (1)

Publication Number Publication Date
JP2023171487A true JP2023171487A (en) 2023-12-01

Family

ID=74226797

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019126523A Active JP7367956B2 (en) 2019-07-05 2019-07-05 Composition for improving dynamic vision
JP2023173178A Pending JP2023171487A (en) 2019-07-05 2023-10-04 Kinetic vision improving composition

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019126523A Active JP7367956B2 (en) 2019-07-05 2019-07-05 Composition for improving dynamic vision

Country Status (1)

Country Link
JP (2) JP7367956B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022255282A1 (en) * 2021-05-31 2022-12-08 国立大学法人大阪大学 Dynamic visual acuity-enhancing composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019043846A1 (en) * 2017-08-30 2019-03-07 大塚製薬株式会社 Kaempferol analog-containing composition
WO2020175579A1 (en) * 2019-02-27 2020-09-03 大塚製薬株式会社 Composition containing plant-derived extract and/or plant-derived processed product

Also Published As

Publication number Publication date
JP2021011449A (en) 2021-02-04
JP7367956B2 (en) 2023-10-24

Similar Documents

Publication Publication Date Title
JP5686496B2 (en) Metabolic syndrome improvement / prevention composition
JP7287631B2 (en) food composition
JP7522153B2 (en) Food and drink composition
JP2023171487A (en) Kinetic vision improving composition
JP2009298740A (en) Composition for ameliorating cognitive motor function
JP2024092042A (en) Oral composition
KR20180138109A (en) Composition for preventing, improving, alleviating or treating macular disease
KR102722498B1 (en) Composition for improving cognitive function, composition for improving anxiety symptoms, and composition for inhibiting brain atrophy
DE60222895T2 (en) TREATMENT OF ERRORS IN THE EYE CONTROL FUNCTION
US20230124668A1 (en) Psychological fatigue preventer or improver
WO2022255282A1 (en) Dynamic visual acuity-enhancing composition
KR101610894B1 (en) Taste-masked granules containing vitamin C
WO2019168185A1 (en) Food composition for preventing and/or reducing risk of abnormalities in posterior segment of eye
JP6502603B2 (en) Ophthalmic composition and functional food
JP2021187785A (en) Improver of mental fatigue, lack of motivation, or sleepiness
US20230050805A1 (en) Autonomic nerve regulator and cognitive function improver
KR102115977B1 (en) Composition for prevention or treatment of inflammatory eye disease comprising (7S,8R)-dihydrodehydrodiconiferylalcohol-9-β-D-glucopyranoside
JP6253235B2 (en) Neurite outgrowth inducer and use thereof
JP2006141410A (en) Foods and drinks having effect of relieving eye controlling function errors
TW202426025A (en) Sleep improving agent
JP2024105030A (en) Short-term memory improver
JP2019198233A (en) Qol improving or maintaining agent on mental aspect
JPWO2019208435A1 (en) Exocrine promoter
JP2013163669A (en) Visible light-induced retinopathy inhibitor, and eye disease preventing and therapeutic agent using the same
KR20200050436A (en) Composition for preventing or treating methamphetamine addiction comprising alpha-pinene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240820

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20241018