JP2023170081A - Film, tape and adhesive patch using the same - Google Patents

Film, tape and adhesive patch using the same Download PDF

Info

Publication number
JP2023170081A
JP2023170081A JP2022081551A JP2022081551A JP2023170081A JP 2023170081 A JP2023170081 A JP 2023170081A JP 2022081551 A JP2022081551 A JP 2022081551A JP 2022081551 A JP2022081551 A JP 2022081551A JP 2023170081 A JP2023170081 A JP 2023170081A
Authority
JP
Japan
Prior art keywords
film
average thickness
convex
concave
uneven shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022081551A
Other languages
Japanese (ja)
Inventor
祐貴泰 山口
Yukiyasu Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Holdings Inc
Original Assignee
Toppan Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Holdings Inc filed Critical Toppan Holdings Inc
Priority to JP2022081551A priority Critical patent/JP2023170081A/en
Publication of JP2023170081A publication Critical patent/JP2023170081A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Adhesive Tapes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

To provide a film made of, for example, a hard plastic material having heat resistance and gas barrier properties, and capable of having both stretchability and breakage resistance, and a tape and an adhesive patch using the same.SOLUTION: A film with a convex and concave shape in which a convex portion and a concave portion are repeatedly arranged on both a front surface and a bottom surface, a relation among a height difference h between a concave surface and a convex surface, an average thickness t of the film, and a corner shape portion r satisfies t<r<h, a thickness of a thinnest portion of the film is -20% or more and 0% or less than the average thickness, and a breaking strength measured according to JISK7127:1999 is 5 N/15 mm or more and 30 N/15 mm or less.SELECTED DRAWING: Figure 1

Description

本発明は、フィルム、それを用いたテープおよび貼付剤に関する。 The present invention relates to a film, a tape and a patch using the same.

一般にプラスチックフィルムは、軽量である、化学的に安定である、加工がしやすい、柔軟で強度がある、大量生産が可能、などの性質があり、様々なものに利用されている。その用途としては、例えば、食料品や医薬品等を包装する包装材や、テープ、光学フィルム、保護フィルム、建装材等々、多岐にわたる。具体的な材料としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリカーボネート、ポリアミド、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどの熱可塑性樹脂やエポキシ樹脂、ポリウレタン、ポリイミドなどの熱硬化性樹脂などが挙げられる。 In general, plastic films have properties such as being lightweight, chemically stable, easy to process, flexible and strong, and capable of mass production, and are used for a variety of purposes. Its uses are wide-ranging, such as packaging materials for foodstuffs, medicines, etc., tapes, optical films, protective films, and construction materials. Specific materials include, for example, thermoplastic resins such as polyethylene, polypropylene, polystyrene, polycarbonate, polyamide, polyethylene terephthalate, and polybutylene terephthalate, and thermosetting resins such as epoxy resins, polyurethane, and polyimide.

プラスチックフィルムに用いられる材料は、機械的特性、熱的特性、化学的特性などの特性をそれぞれ固有に有しており、用途に応じて適切な材料が選択される。 The materials used for plastic films each have unique properties such as mechanical properties, thermal properties, and chemical properties, and appropriate materials are selected depending on the purpose.

しかしながら、複数の特性を同時に満たすことが困難な場合がある。例えば、耐熱性やガスバリア性と伸縮性を材料の特性だけで同時に満たすことは難しい。耐熱性やガスバリア性を有する材料は比較的硬い材料に限られるためである。 However, it may be difficult to satisfy multiple characteristics simultaneously. For example, it is difficult to satisfy heat resistance, gas barrier properties, and elasticity at the same time based on material properties alone. This is because materials having heat resistance and gas barrier properties are limited to relatively hard materials.

そこで、上記のような耐熱性やガスバリア性を有するような硬い材料に対して伸縮性を付与する技術として、特許文献1や特許文献2に示すように、フィルムに細かい折り目のような構造を設けて上記のように相反する特性を両立する試みが行われている。 Therefore, as a technique for imparting elasticity to hard materials that have heat resistance and gas barrier properties, as shown in Patent Document 1 and Patent Document 2, a structure such as fine creases is created in the film. Attempts are being made to achieve both of the contradictory characteristics described above.

特開2019-89321号公報JP2019-89321A 特開2020-185084号公報Japanese Patent Application Publication No. 2020-185084

しかしながら、特許文献1のようなフィルムは一般的な平滑なフィルムと比較すると破断強度が低下しやすい問題を抱えている。これは、伸縮時の応力が折り目の角部に集中しやすくなり、そこを起点として破断しやすくなるためである。 However, a film such as that disclosed in Patent Document 1 has a problem in that its breaking strength tends to be lower than that of a general smooth film. This is because stress during expansion and contraction tends to concentrate at the corners of the folds, making it easier to break starting from there.

一方、特許文献2では、上記のような破断強度の低下を抑制するために折り目の角部に丸みrをつけることで応力集中を抑制することが提案されている。しかしながら、破断強度の低下につながる要因は角部の応力集中だけでなく、フィルムに内在する厚み差による応力集中も挙げられる。すなわち、上記のような折り目のついたフィルムを作製するには、元々均一な厚みのフィルムを型に嵌めて凹凸構造を設けるため、構造形成時に斜面部が引き延ばされることによる厚み差が生じやすく、角部の丸みrだけでは破断強度の低下を抑制できない場合があった。 On the other hand, Patent Document 2 proposes to suppress stress concentration by rounding the corners of the fold in order to suppress the above-mentioned decrease in breaking strength. However, factors that lead to a decrease in breaking strength include not only stress concentration at the corners but also stress concentration due to thickness differences inherent in the film. In other words, in order to produce a film with creases as described above, a film that originally has a uniform thickness is fitted into a mold to create an uneven structure, which tends to cause thickness differences due to the sloped portion being stretched during the formation of the structure. In some cases, the reduction in breaking strength could not be suppressed only by rounding the corners r.

その結果、例えば、テープや貼付剤の基材として使用する場合や、フィルム片面または両面にガスバリア層や導通層などの機能層を設けて伸びる機能性フィルムとして使用する際には、対象物に貼る作業や剥がす作業にて取り扱う際に、途中でフィルムが破けてしまうといった問題を招来する。 As a result, for example, when used as a base material for tapes or patches, or when used as a stretchable functional film with a functional layer such as a gas barrier layer or conductive layer on one or both sides, it is difficult to attach it to an object. This causes problems such as the film being torn during handling or peeling.

本発明は上記課題に対して、樹脂材料に伸縮性を付与しつつ破断しにくくしたフィルム、それを用いたテープおよび貼付剤を提供することを目的とする。 SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, an object of the present invention is to provide a film that is made difficult to break while imparting elasticity to a resin material, and a tape and a patch using the same.

上記課題を解決するために、本発明の代表的なフィルムの一つは、
表面および裏面ともに凹凸形状を有したフィルムであって、前記凹凸形状は凸部と凹部が繰り返し配列され、隣接する前記凸部と前記凹部とは、その間に配置された斜面部を共有しており、前記裏面は前記表面の凹凸形状に追従した凹凸形状を有しており、
凹部表面と凸部表面の高低差hが前記フィルムの平均厚みtよりも大きいフィルムであって、
フィルム断面において、前記凸部の頂部または前記凹部の底部と前記斜面部とを繋ぐ接続部の丸みr、あるいは、前記凸部の頂部または前記凹部の底部の断面中心線が円の一部で近似できる場合には、前記円の半径である丸みrが、前記フィルムの平均厚みtよりも大きく、かつ前記高低差hよりも小さく、
前記フィルムの最薄部の厚みが、前記フィルムの平均厚みtに対して-20%以上、0%以下の厚みであり、
前記凸部と前記凹部が繰り返し配列された方向に引っ張ったときに、JISK7127:1999に従って測定される破断強度が5N/15mm以上、30N/15mmであることにより達成される。
In order to solve the above problems, one of the typical films of the present invention is
The film has an uneven shape on both the front and back surfaces, the uneven shape is a repeating array of protrusions and depressions, and the adjacent protrusions and depressions share a sloped part arranged between them. , the back surface has an uneven shape that follows the uneven shape of the front surface,
A film in which the height difference h between the surface of the concave portion and the surface of the convex portion is greater than the average thickness t of the film,
In the cross section of the film, the roundness r of the connecting part connecting the top of the convex part or the bottom of the concave part and the slope part, or the cross-sectional center line of the top of the convex part or the bottom of the concave part is approximated by a part of a circle. If possible, the radius r of the circle is larger than the average thickness t of the film and smaller than the height difference h,
The thickness of the thinnest part of the film is -20% or more and 0% or less of the average thickness t of the film,
This is achieved when the breaking strength measured in accordance with JIS K7127:1999 is 5 N/15 mm or more and 30 N/15 mm when pulled in the direction in which the convex portions and the concave portions are repeatedly arranged.

本発明によれば、樹脂材料に伸縮性を付与しつつ破断しにくくしたフィルム、それを用いたテープおよび貼付剤を提供することができる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, it is possible to provide a film that is made difficult to break while imparting elasticity to a resin material, and a tape and a patch using the same.
Problems, configurations, and effects other than those described above will be made clear by the following description of the embodiments.

図1は、本実施形態のフィルムの一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of the film of this embodiment. 図2は、本実施形態のフィルムの一例を示す断面図である。FIG. 2 is a sectional view showing an example of the film of this embodiment. 図3は、本実施形態のフィルムにおける凹凸形状の延在方向例を示した斜視図である。FIG. 3 is a perspective view showing an example of the extending direction of the uneven shape in the film of this embodiment.

以下に、本発明の実施形態について図面を参照しつつ説明する。
なお、各図は模式的に示した図であり、各部の大きさや形状等は理解を容易にするために適宜誇張、簡略化して示している。また、説明を簡単にするため、各図の対応する部位には同じ符号を付している。
Embodiments of the present invention will be described below with reference to the drawings.
Note that each figure is a schematic diagram, and the size, shape, etc. of each part are appropriately exaggerated or simplified to facilitate understanding. Further, to simplify the explanation, corresponding parts in each figure are given the same reference numerals.

本実施形態のフィルム1は、図1に示すように、凸部2、及び、凹部3が斜面部4を介して繰り返し凹凸形状が形成されている。また、フィルム1の裏面凹凸は表面凹凸に追従するように凹凸形状が形成されており、フィルム1は俯瞰してみると波打ったような形状を有している。 As shown in FIG. 1, the film 1 of this embodiment has a concave and convex shape in which convex portions 2 and concave portions 3 are repeatedly formed with a slope portion 4 interposed therebetween. Further, the unevenness on the back surface of the film 1 is formed in an uneven shape so as to follow the unevenness on the front surface, and the film 1 has a wavy shape when viewed from above.

また、フィルム1は図3に示すように、延在方向(図で左右方向)に沿って凸部2と凹部3が繰り返し形成されている。凸部2と凹部3は、一様な高さでフィルム1の延在方向に交差する(ここでは直交する)方向に延びる。 Further, as shown in FIG. 3, the film 1 has convex portions 2 and concave portions 3 repeatedly formed along the extending direction (left-right direction in the figure). The convex portions 2 and the concave portions 3 extend in a direction intersecting (in this case perpendicular to) the extending direction of the film 1 at a uniform height.

また、フィルム1の断面凹凸形状は、図1に示すように凸部2および凹部3が頂部2aおよび底部3aに平坦部を有する台形形状、または図2に示すように凸部2および凹部3が頂部2aおよび底部3aに平坦部を有さない円弧形状である。 The uneven cross-sectional shape of the film 1 is a trapezoidal shape in which the protrusions 2 and the recesses 3 have flat parts at the top 2a and the bottom 3a, as shown in FIG. The top portion 2a and the bottom portion 3a have an arcuate shape with no flat portions.

フィルム1が図1のような台形形状となっている場合、隣接する凸部2および凹部3は、その間の斜面部4を共有しており(凸部または凹部の一部を構成し)、凸部2の頂部2aおよび凹部3の底部3aと、斜面部4とをつなぐ角部(接続部)5の断面は丸みrを有している。このとき、丸みrは、当該箇所の断面(凸部2又は凹部3が延びる方向(図1,2で紙面垂直方向)に直交する面で切断した断面)において断面中心線(フィルム表面と裏面の中間点をつないだ線)を円の一部で近似したときに、該円の半径により算出されるものと定義する。
一方、フィルム1が図2のような円弧形状となっている場合は、頂部2a全体あるいは底部3a全体の断面が丸みrを有している。換言すれば、凸部2の頂部2aまたは凹部3の底部3aの断面中心線が円の一部で近似できる場合、該円の半径を丸みrと定義する。
When the film 1 has a trapezoidal shape as shown in FIG. The cross section of a corner (connection) 5 connecting the top 2a of the portion 2 and the bottom 3a of the recess 3 with the slope 4 has a roundness r. At this time, the roundness r is determined by the cross-sectional center line (between the front and back surfaces of the film) in the cross section of the relevant location (the cross section cut along a plane perpendicular to the direction in which the convex portions 2 or concave portions 3 extend (direction perpendicular to the paper surface in FIGS. 1 and 2)). When a line connecting intermediate points is approximated by a part of a circle, it is defined as being calculated by the radius of the circle.
On the other hand, when the film 1 has an arc shape as shown in FIG. 2, the cross section of the entire top 2a or the entire bottom 3a has a roundness r. In other words, when the cross-sectional center line of the top 2a of the convex portion 2 or the bottom 3a of the concave portion 3 can be approximated by a part of a circle, the radius of the circle is defined as the roundness r.

フィルム1は、後述する凹凸形状の作製方法の関係上、フィルム1内で厚みが厚い箇所と薄い箇所が内在しており、これらの平均厚みをtとする。 The film 1 has thick parts and thin parts in the film 1 due to the method for producing the uneven shape described below, and the average thickness of these parts is defined as t.

フィルム1は、表面(裏面)における凸部2の最高位置と凹部3の最低位置との距離である高低差h(μm)に対して、丸みr(μm)、平均厚みt(μm)が以下の関係を満たし、かつ平均厚みtに対してフィルムの最も薄い箇所が-20%以上の厚みである。
式(1): t < r < h
The film 1 has a roundness r (μm) and an average thickness t (μm) of the following with respect to the height difference h (μm), which is the distance between the highest position of the convex part 2 and the lowest position of the concave part 3 on the front surface (back side). The following relationship is satisfied, and the thickness of the thinnest part of the film is -20% or more with respect to the average thickness t.
Formula (1): t < r < h

仮に、平均厚みtに対して高低差hが低いとすると(t>h)は、凹凸形状が波打ったような形状にならず、フィルム1の伸縮性付与の効果が発揮されなくなってしまう。このため、高低差hは平均厚みtより相対的に大きいことが必要である。 If the height difference h is small relative to the average thickness t (t>h), the uneven shape will not have a wavy shape, and the effect of imparting stretchability to the film 1 will not be exhibited. Therefore, the height difference h needs to be relatively larger than the average thickness t.

また、仮に丸みrが平均厚みt以下であるとすると(r≦t)、引っ張り時に角部への応力集中が大きくなることから、破断強度が著しく低下してしまう。 Furthermore, if the roundness r is equal to or less than the average thickness t (r≦t), the stress concentration at the corners becomes large during tension, resulting in a significant decrease in the breaking strength.

また、仮に高低差hが丸みr以下であるとすると(h≦r)、フィルム1全体として凹凸感が損なわれて平坦なフィルムに近い形状になることから、伸縮性の効果が薄れてしまう。このため、高低差hは丸みrより相対的に大きくした方が伸縮性の効果が得やすくなる。 Furthermore, if the height difference h is less than or equal to the roundness r (h≦r), the film 1 as a whole loses its unevenness and becomes shaped like a flat film, which weakens the elasticity effect. Therefore, it is easier to obtain the elasticity effect by making the height difference h relatively larger than the roundness r.

また、フィルム1内の厚み差は少ないことが好ましく、フィルム1内に存在する最も薄い箇所の厚みは平均厚みtに対して-20%以上、0%以下の範囲となっていることが必要である。仮に、最も薄い箇所の厚みが上記範囲から外れる場合、引っ張り時に薄膜部への応力集中が大きくなることから、破断強度が低下してしまう。 Further, it is preferable that the difference in thickness within the film 1 is small, and the thickness of the thinnest part within the film 1 must be in the range of -20% or more and 0% or less with respect to the average thickness t. be. If the thickness of the thinnest part deviates from the above range, the stress concentration on the thin film portion during tension will increase, resulting in a decrease in breaking strength.

また、フィルム1は凹凸形状を繰り返す方向に引っ張った際にJISK7127:1999に従って測定される破断強度が5N/15mm以上、30N/15mm以下であることが必要である。5N/15mmよりも破断強度が小さい場合、フィルム1を使用した製品、例えばテープや貼付剤といった用途にて、使用中に破けてしまいやすく、取り扱いにくくなる。また、破断強度が30N/15mmを超えている場合には、フィルムは式(1)を満たすことが困難となり、伸縮性の効果が発揮されにくくなる。 Further, the film 1 needs to have a breaking strength of 5 N/15 mm or more and 30 N/15 mm or less when pulled in a direction in which the uneven shape is repeated, as measured in accordance with JIS K7127:1999. If the breaking strength is lower than 5 N/15 mm, products using the film 1, such as tapes and adhesive patches, tend to tear during use and become difficult to handle. Moreover, when the breaking strength exceeds 30 N/15 mm, it becomes difficult for the film to satisfy formula (1), and the stretching effect becomes difficult to be exhibited.

フィルム1の平均厚みtは10μm以上、50μm以下であることが好ましい。平均厚みtが10μmよりも薄い場合、引っ張り時のフィルム1の破断が発生しやすくなる。また、平均厚みtが50μmよりも厚い場合には、フィルムの伸縮性低下につながる。 The average thickness t of the film 1 is preferably 10 μm or more and 50 μm or less. If the average thickness t is less than 10 μm, the film 1 is likely to break when stretched. Moreover, when the average thickness t is thicker than 50 μm, it leads to a decrease in the elasticity of the film.

フィルム1内の凹凸形状は全て同じである必要はなく、例えば図1と図2が組み合わさったような形状であっても良い。また、凹凸のピッチや高低差hも全ての凹凸でそろえる必要はなく、変化していても本発明の効果を得ることは可能である。 It is not necessary that all the uneven shapes in the film 1 be the same, and the shapes may be a combination of FIGS. 1 and 2, for example. Furthermore, it is not necessary to make the pitch of the unevenness and the height difference h the same for all the unevenness, and it is possible to obtain the effects of the present invention even if the pitch and height difference h of the unevenness change.

また、凸部2および凹部3に存在する角部5の丸みrは全て同じである必要はなく、角部ごとに丸みrが異なっていても、式(1)を満たす範囲であれば本発明の効果を得ることは可能である。 Further, the roundness r of the corners 5 existing in the convex part 2 and the concave part 3 does not have to be all the same, and even if the roundness r differs from corner to corner, the present invention can be applied as long as it satisfies formula (1). It is possible to obtain the effect of

本発明のフィルム1は、図3のように、必ずしも単層構成である必要はなく複数の層から構成されていても良いし、本発明のフィルム1の一方の面に機能層を積層しても良い。機能層とは、例えば、伸縮補助層、導電層、バリア層などが挙げられる。さらに、後工程でフィルム1表面もしくは裏面に印刷層や粘着層などを積層しても良い。 The film 1 of the present invention does not necessarily have to have a single layer structure, as shown in FIG. Also good. Examples of the functional layer include a stretch auxiliary layer, a conductive layer, and a barrier layer. Furthermore, a printed layer, an adhesive layer, etc. may be laminated on the front or back surface of the film 1 in a subsequent step.

フィルム1を構成する材料としては、熱硬化性樹脂やUV硬化性樹脂、熱可塑性樹脂などが挙げられる。硬化性樹脂としては例えばアクリル樹脂、エポキシ樹脂、ウレタン樹脂等が挙げられ、熱可塑性樹脂としては例えばポリエチレン、ポリプロピレン、ポリスチレン、ポリメタクリル酸メチル、エチレン酢酸ビニル、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリ塩化ビニリデン、ポリアクリロニトリル、ポリ乳酸、環状ポリオレフィン、ポリアセタール、ポリカーボネート、ポリアミド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、及び、これらの誘導体等が挙げられる。ただし、これらの材料は特に限定されるものではなく、さらにこれらの材料は単独で用いられても良いし、これらのうちの複数の材料が組み合わされて用いられても良い。 Examples of materials constituting the film 1 include thermosetting resins, UV curable resins, and thermoplastic resins. Examples of curable resins include acrylic resins, epoxy resins, and urethane resins, and examples of thermoplastic resins include polyethylene, polypropylene, polystyrene, polymethyl methacrylate, ethylene vinyl acetate, polyvinyl alcohol, and ethylene-vinyl alcohol copolymers. , polyvinylidene chloride, polyacrylonitrile, polylactic acid, cyclic polyolefin, polyacetal, polycarbonate, polyamide, polyethylene terephthalate, polybutylene terephthalate, and derivatives thereof. However, these materials are not particularly limited, and these materials may be used alone, or a plurality of these materials may be used in combination.

フィルム1の製造方法については、例えば、熱プレスによる製造方法や、押出成形による製造方法等、各種の方法を適宜選択して用いることが可能である。 As for the manufacturing method of the film 1, various methods can be selected and used as appropriate, such as a manufacturing method using hot press and a manufacturing method using extrusion molding.

熱プレスによる製造方法では、元となる平坦に製膜したフィルムを、表面に凹凸形状を設けた一対の加熱ロール間、又は、一対の加熱した平板状のプレス機に通すことで、凹凸形状を設けたフィルム1を製造することが可能である。この際、一対の加熱ロール間、又は一対の平板が有する上下の凹形状と凸形状との精密な位置合わせを行い、熱プレス後のフィルム1の表面と裏面が、連続的な凹凸形状となっていることが重要となる。 In the production method using heat press, the original flat film is passed between a pair of heated rolls with an uneven surface or through a pair of heated flat presses to create an uneven shape. It is possible to produce a film 1 provided. At this time, precise alignment is performed between the pair of heating rolls or between the upper and lower concave and convex shapes of the pair of flat plates, so that the front and back surfaces of the film 1 after heat pressing have a continuous uneven shape. It is important that

さらに、熱プレスによる別の製造方法では、離形性を有する複数のフラットフィルムを重ね、又は、離形性を有する複数の層を保持するフラットフィルムを、凹凸形状を設けた加熱ロール間、又は、加熱した平板状のプレス機に通すことで、凹凸形状を付与することが可能である。この際、プレスの深さやプレス圧を調整することによって、フラットフィルムの表面及び層界面に所望の凹凸形状が付与され、冷却後に凹凸形状を付与した複数の層のフィルムを剥離することにより、フィルム1を製造することが可能である。 Furthermore, in another manufacturing method using heat press, a plurality of flat films having mold releasability are stacked together, or a flat film holding a plurality of layers having mold releasability is stacked between heated rolls having an uneven shape, or By passing it through a heated flat plate press, it is possible to give it an uneven shape. At this time, by adjusting the pressing depth and pressing pressure, the desired uneven shape is imparted to the surface and layer interface of the flat film, and after cooling, the multiple layers of the film with the uneven shape are peeled off. 1 can be manufactured.

押出成形による製造方法では、樹脂を加熱溶融してTダイから押し出し、フィルム化するための冷却工程において、凹凸形状が設けられた冷却ロール及びニップロールを用いて、ニップ圧力を付加しながら冷却することで、フィルムの表面と裏面に連続的な凹凸形状を設けることが可能である。押出成形による製造方法においても、冷却ロールとニップロールが有する凹凸形状との精密な位置合わせが必要になる。 In the extrusion manufacturing method, the resin is heated and melted, extruded through a T-die, and cooled while applying nip pressure using a cooling roll and a nip roll provided with an uneven shape in the cooling process to form a film. Therefore, it is possible to provide continuous uneven shapes on the front and back surfaces of the film. Even in the extrusion manufacturing method, precise alignment between the cooling roll and the uneven shape of the nip roll is required.

さらに、押出成形による別の製造方法では、複数の押出機を使用し、複数種類の樹脂を、フィードブロック法、又はマルチマニホールド法により共押出することで、フィルム1を片側表面に配置した、2層以上の多層構成のフィルムを得ることが可能である。この際、フィルム化するための冷却工程において、フィルムを配置した面に、凹凸形状に対応する凹凸が表面に設けられた冷却ロールを用いて、ニップ圧力を付加しながら冷却することで、凹凸形状を形成することが可能である。この時、冷却ロールと接するフィルムの厚さに対し、凹凸形状の高低差が大きいときには、フィルムの冷却ロールと反対面の界面にも同様に凹凸形状が付加されるため、冷却後に凹凸形状を付与したフィルムを多層フィルムから剥離することにより、断面がうねった凹凸形状を持つフィルム1を得ることが可能である。 Furthermore, in another manufacturing method by extrusion molding, a plurality of extruders are used and a plurality of types of resin are coextruded by a feed block method or a multi-manifold method, so that the film 1 is disposed on one surface. It is possible to obtain a film with a multilayer structure of more than one layer. At this time, in the cooling process to form a film, the surface on which the film is placed is cooled while applying nip pressure using a cooling roll whose surface has irregularities corresponding to the irregular shape. It is possible to form At this time, if the difference in height of the uneven shape is large relative to the thickness of the film in contact with the cooling roll, the uneven shape is similarly added to the interface on the opposite side of the film to the cooling roll, so the uneven shape is imparted after cooling. By peeling the resulting film from the multilayer film, it is possible to obtain a film 1 having an uneven cross-section with a undulating shape.

以上で示したフィルム1の作製方法は、いずれも元々平坦なフィルムまたは、平坦に押し出した溶融樹脂を型に嵌めて凹凸形状を付与するものとなっている。このようにして凹凸形状を設ける場合、フィルム1の斜面部4で元々平坦であったフィルムが引き延ばされることから、フィルム1内で厚み差が生じてしまうことは避けられない。 In all of the above-described methods for producing the film 1, an originally flat film or a flat extruded molten resin is fitted into a mold to give it an uneven shape. When providing an uneven shape in this manner, the originally flat film is stretched by the slope portion 4 of the film 1, so it is inevitable that a difference in thickness will occur within the film 1.

この時、厚み差をなるべく少なくする方法としては、斜面部4の傾斜角度をなるべく緩くしたり、高低差hを大きくしすぎないといったことが挙げられ、これらをバランスよく制御することによって、式(1)を達成するような凹凸形状を得ることが可能となる。 At this time, methods for reducing the thickness difference as much as possible include making the inclination angle of the slope part 4 as gentle as possible and not making the height difference h too large.By controlling these in a well-balanced manner, the formula ( It becomes possible to obtain an uneven shape that achieves 1).

作製したフィルム1は、後工程で、表面に印刷層や蒸着層、アンカーコート層等、機能層を積層することも可能である。さらに、フィルム1は、別の樹脂と積層することも可能である。 It is also possible to laminate functional layers such as a printed layer, a vapor deposition layer, an anchor coat layer, etc. on the surface of the produced film 1 in a post-process. Furthermore, the film 1 can also be laminated with another resin.

作製したフィルム1は、伸びやすく破断しにくい特性を生かして、テープ基材(粘着剤層を積層してテープを形成する基材)、貼付剤基材(粘着剤層を積層して貼付剤を形成する基材)、導通層を設けた伸びる回路基材、エレクトロニクス部材、ガスバリア層を設けた伸びるガスバリアフィルムなどの用途に使用することができる。 The produced film 1 takes advantage of its easy-to-stretch, hard-to-break properties and can be used as a tape base material (a base material for laminating an adhesive layer to form a tape) and a patch base material (a base material for forming a patch by laminating an adhesive layer). It can be used for applications such as a stretchable circuit base material provided with a conductive layer, an electronics member, and a stretchable gas barrier film provided with a gas barrier layer.

以上、本発明の実施形態を例示したが、本発明は上記実施形態に限定されるものではない。 Although the embodiments of the present invention have been illustrated above, the present invention is not limited to the above embodiments.

以下に、本発明に基づく実施例を説明するが、本発明はこれらの実施例に限定されるものではない。 Examples based on the present invention will be described below, but the present invention is not limited to these examples.

(実施例1)
フィルム1の材料として、株式会社ベルポリエステルプロダクツ製のポリエチレンテレフタレート(PET)である、製品名EFG70を選択した。また、フィルム1と共押出する樹脂の材料として、日本ポリエチレン株式会社製の低密度ポリエチレン(LDPE)である、製品名ノバテックLD LC600Aを選択した。
そして、選択した二種類の樹脂を用いて、押出成形により共押出を行い、その後、フィルム化するための冷却工程において、凹凸形状が設けられた冷却ロールを用いてニップ圧力を付加しながら冷却した。その後、共押出した低密度ポリエチレン層を剥離することで、フィルムの表面と裏面に連続的な台形の凹凸形状を設けたフィルム1を作製した。
作製したフィルム1の平均厚みtは16μm、最薄部の厚みは13μm、丸みrは20μm、高低差hは60μm、JISKK7127:1999に従って測定される破断強度は7.4N/15mmであった。
(Example 1)
As the material for the film 1, polyethylene terephthalate (PET) manufactured by Bell Polyester Products Co., Ltd. with the product name EFG70 was selected. Furthermore, as the resin material to be coextruded with the film 1, the product name Novatec LD LC600A, which is low density polyethylene (LDPE) manufactured by Japan Polyethylene Co., Ltd., was selected.
Then, the two selected resins were co-extruded by extrusion molding, and then, in the cooling process to form a film, they were cooled while applying nip pressure using a cooling roll with an uneven shape. . Thereafter, the coextruded low-density polyethylene layer was peeled off to produce a film 1 having continuous trapezoidal uneven shapes on the front and back surfaces of the film.
The average thickness t of the produced film 1 was 16 μm, the thickness of the thinnest part was 13 μm, the roundness r was 20 μm, the height difference h was 60 μm, and the breaking strength measured according to JISKK7127:1999 was 7.4 N/15 mm.

(実施例2)
実施例1と同様の素材及び製法で、表面と裏面に連続的な台形の凹凸形状を設けたフィルム1を作製した。
作製したフィルム1の平均厚みtは16μm、最薄部の厚みは14μm、丸みrは40μm、高低差hは50μm、JISKK7127:1999に従って測定される破断強度は8.6N/15mmであった。
(Example 2)
Using the same materials and manufacturing method as in Example 1, a film 1 having continuous trapezoidal uneven shapes on the front and back surfaces was produced.
The average thickness t of the produced film 1 was 16 μm, the thickness of the thinnest part was 14 μm, the roundness r was 40 μm, the height difference h was 50 μm, and the breaking strength measured according to JISKK7127:1999 was 8.6 N/15 mm.

(実施例3)
実施例1と同様の素材及び製法で、表面と裏面に連続的な台形の凹凸形状を設けたフィルム1を作製した。
作製したフィルム1の平均厚みtは11μm、最薄部の厚みは9μm、丸みrは30μm、高低差hは60μm、JISKK7127:1999に従って測定される破断強度は5.3N/15mmであった。
(Example 3)
Using the same materials and manufacturing method as in Example 1, a film 1 having continuous trapezoidal uneven shapes on the front and back surfaces was produced.
The produced film 1 had an average thickness t of 11 μm, a thickness of the thinnest part of 9 μm, a roundness r of 30 μm, a height difference h of 60 μm, and a breaking strength measured according to JISKK7127:1999 of 5.3 N/15 mm.

(実施例4)
実施例1と同様の素材及び製法で、表面と裏面に連続的な台形の凹凸形状を設けたフィルム1を作製した。
作製したフィルム1の平均厚みtは27μm、最薄部の厚みは23μm、丸みrは50μm、高低差hは60μm、JISKK7127:1999に従って測定される破断強度は26.7N/15mmであった。
(Example 4)
Using the same materials and manufacturing method as in Example 1, a film 1 having continuous trapezoidal uneven shapes on the front and back surfaces was produced.
The average thickness t of the produced film 1 was 27 μm, the thickness of the thinnest part was 23 μm, the roundness r was 50 μm, the height difference h was 60 μm, and the breaking strength measured according to JISKK7127:1999 was 26.7 N/15 mm.

(実施例5)
実施例1と同様の素材及び製法で、表面と裏面に連続的な円弧の凹凸形状を設けたフィルム1を作製した。
作製したフィルム1の平均厚みtは14μm、最薄部の厚みは12μm、丸みrは50μm、高低差hは60μm、JISKK7127:1999に従って測定される破断強度は7.8N/15mmであった。
(Example 5)
Using the same material and manufacturing method as in Example 1, a film 1 having continuous arcuate concavo-convex shapes on the front and back surfaces was produced.
The average thickness t of the produced film 1 was 14 μm, the thickness of the thinnest part was 12 μm, the roundness r was 50 μm, the height difference h was 60 μm, and the breaking strength measured according to JISKK7127:1999 was 7.8 N/15 mm.

(実施例6)
実施例1と同様の素材及び製法で、表面と裏面に連続的な円弧の凹凸形状を設けたフィルム1を作製した。
作製したフィルム1の平均厚みtは20μm、最薄部の厚みは17μm、丸みrは75μm、高低差hは80μm、JISKK7127:1999に従って測定される破断強度は14.2N/15mmであった。
(Example 6)
Using the same material and manufacturing method as in Example 1, a film 1 having continuous arcuate concavo-convex shapes on the front and back surfaces was produced.
The produced film 1 had an average thickness t of 20 μm, a thickness at the thinnest part of 17 μm, a roundness r of 75 μm, a height difference h of 80 μm, and a breaking strength measured according to JISKK7127:1999 of 14.2 N/15 mm.

(実施例7)
実施例1と同様の素材及び製法で、表面と裏面に連続的な台形の凹凸形状を設けたフィルム1を作製した。
作製したフィルム1の平均厚みtは35μm、最薄部の厚みは30μm、丸みrは45μm、高低差hは80μm、JISKK7127:1999に従って測定される破断強度は25.4N/15mmであった。
(Example 7)
Using the same materials and manufacturing method as in Example 1, a film 1 having continuous trapezoidal uneven shapes on the front and back surfaces was produced.
The average thickness t of the produced film 1 was 35 μm, the thickness of the thinnest part was 30 μm, the roundness r was 45 μm, the height difference h was 80 μm, and the breaking strength measured according to JISKK7127:1999 was 25.4 N/15 mm.

(比較例1)
実施例1と同様の素材及び製法で、表面と裏面に連続的な台形の凹凸形状を設けたフィルム1を作製した。
作製したフィルム1の平均厚みtは16μm、最薄部の厚みは11μm、丸みrは20μm、高低差hは60μm、JISKK7127:1999に従って測定される破断強度は3.6N/15mmであった。
(Comparative example 1)
Using the same materials and manufacturing method as in Example 1, a film 1 having continuous trapezoidal uneven shapes on the front and back surfaces was produced.
The average thickness t of the produced film 1 was 16 μm, the thickness of the thinnest part was 11 μm, the roundness r was 20 μm, the height difference h was 60 μm, and the breaking strength measured according to JISKK7127:1999 was 3.6 N/15 mm.

(比較例2)
実施例1と同様の素材及び製法で、表面と裏面に連続的な台形の凹凸形状を設けたフィルム1を作製した。
作製したフィルム1の平均厚みtは16μm、最薄部の厚みは13μm、丸みrは40μm、高低差hは30μm、JISKK7127:1999に従って測定される破断強度は17N/15mmであった。
(Comparative example 2)
Using the same materials and manufacturing method as in Example 1, a film 1 having continuous trapezoidal uneven shapes on the front and back surfaces was produced.
The average thickness t of the produced film 1 was 16 μm, the thickness of the thinnest part was 13 μm, the roundness r was 40 μm, the height difference h was 30 μm, and the breaking strength measured according to JISKK7127:1999 was 17 N/15 mm.

(比較例3)
実施例1と同様の素材及び製法で、表面と裏面に連続的な台形の凹凸形状を設けたフィルム1を作製した。
作製したフィルム1の平均厚みtは16μm、最薄部の厚みは13μm、丸みrは10μm、高低差hは60μm、JISKK7127:1999に従って測定される破断強度は3.2N/15mmであった。
(Comparative example 3)
Using the same materials and manufacturing method as in Example 1, a film 1 having continuous trapezoidal uneven shapes on the front and back surfaces was produced.
The average thickness t of the produced film 1 was 16 μm, the thickness of the thinnest part was 13 μm, the roundness r was 10 μm, the height difference h was 60 μm, and the breaking strength measured according to JISKK7127:1999 was 3.2 N/15 mm.

(比較例4)
実施例1と同様の素材及び製法で、表面と裏面に連続的な円弧の凹凸形状を設けたフィルム1を作製した。
作製したフィルム1の平均厚みtは16μm、最薄部の厚みは13μm、丸みrは70μm、高低差hは60μm、JISKK7127:1999に従って測定される破断強度は8.7N/15mmであった。
(Comparative example 4)
Using the same material and manufacturing method as in Example 1, a film 1 having continuous arcuate concavo-convex shapes on the front and back surfaces was produced.
The average thickness t of the produced film 1 was 16 μm, the thickness of the thinnest part was 13 μm, the roundness r was 70 μm, the height difference h was 60 μm, and the breaking strength measured according to JISKK7127:1999 was 8.7 N/15 mm.

(比較例5)
実施例1と同様の素材及び製法で、表面と裏面に連続的な円弧の凹凸形状を設けたフィルム1を作製した。
作製したフィルム1の平均厚みtは20μm、最薄部の厚みは14μm、丸みrは75μm、高低差hは80μm、JISKK7127:1999に従って測定される破断強度は4.2N/15mmであった。
(Comparative example 5)
Using the same material and manufacturing method as in Example 1, a film 1 having continuous arcuate concavo-convex shapes on the front and back surfaces was produced.
The produced film 1 had an average thickness t of 20 μm, a thickness at the thinnest part of 14 μm, a roundness r of 75 μm, a height difference h of 80 μm, and a breaking strength measured according to JISKK7127:1999 of 4.2 N/15 mm.

(比較例6)
実施例1と同様の素材及び製法で、表面と裏面に連続的な円弧の凹凸形状を設けたフィルム1を作製した。
作製したフィルム1の平均厚みtは8μm、最薄部の厚みは7μm、丸みrは50μm、高低差hは60μm、JISKK7127:1999に従って測定される破断強度は3.2N/15mmであった。
(Comparative example 6)
Using the same material and manufacturing method as in Example 1, a film 1 having continuous arcuate concavo-convex shapes on the front and back surfaces was produced.
The produced film 1 had an average thickness t of 8 μm, a thickness at the thinnest part of 7 μm, a roundness r of 50 μm, a height difference h of 60 μm, and a breaking strength measured according to JISKK7127:1999 of 3.2 N/15 mm.

(伸縮性評価)
各実施例及び比較例の性能評価として、伸縮性の評価を実施した。
伸縮性の評価は、被験者の手感触にて十分な伸び感を感じたものを「○」、十分ではないと判断したものを「×」とした。なお、この評価は被験者5名にて各自評価を行い、最も多かった回答を最終評価結果として採用している。
(破断耐性評価)
各実施例及び比較例の性能評価として、破断耐性の評価を実施した。
破断耐性の評価は、破断耐がフィルムを手で引っ張った際に破断しない、または破断させるのに強い力を要するものを「○」、弱い力でも容易に破断したものを「×」とした。なお、この評価は被験者5名にて各自評価を行い、最も多かった回答を最終評価結果として採用している。
(Stretchability evaluation)
As a performance evaluation of each Example and Comparative Example, elasticity was evaluated.
The elasticity was evaluated as "○" if the test subject felt a sufficient stretch feeling with his or her hand, and "x" if the test subject felt that the stretch was insufficient. It should be noted that this evaluation was conducted by each of the five test subjects, and the answer that received the most responses was adopted as the final evaluation result.
(Rupture resistance evaluation)
As a performance evaluation of each Example and Comparative Example, evaluation of breakage resistance was performed.
For the evaluation of break resistance, films that did not break when the film was pulled by hand or required a strong force to break were rated "○", and films that easily broke even with a weak force were rated "x". It should be noted that this evaluation was conducted by each of the five test subjects, and the answer that received the most responses was adopted as the final evaluation result.

各実施例、比較例における条件、及び評価結果の一覧表を表1に示す。 Table 1 shows a list of conditions and evaluation results for each example and comparative example.

Figure 2023170081000002
Figure 2023170081000002

(評価結果)
表1の実施例の評価結果から、作製したフィルム1の平均厚みt、丸みr、高低差hが式(1)を充足し、かつ最薄部の厚みの平均厚みに対する厚みが-20%以上の場合に、破断強度が5N/15mmよりも大きくなり、結果として良好な伸縮性と破断耐性を示すことがわかる。また、この結果は断面形状が台形であっても円弧であっても同様であった。
一方で、平均厚みt<丸みr<高低差hの関係(式(1))を満たさない場合、もしくは最薄部の厚みが平均厚みtの20%より小さくなる場合には、伸縮性と破断耐性の双方を満たすことができなかった。特に、丸みrが平均厚みt以下となる場合と最薄部の厚みが薄い場合と平均厚みtが薄すぎる場合にて、破断耐性評価が「×」となり、丸みrが高低差以上である場合、平均厚みtが厚すぎる場合には伸縮性評価が「×」となることがわかった。
(Evaluation results)
From the evaluation results of the examples in Table 1, the average thickness t, roundness r, and height difference h of the produced film 1 satisfy formula (1), and the thickness of the thinnest part is -20% or more with respect to the average thickness. It can be seen that in the case of , the breaking strength is greater than 5 N/15 mm, resulting in good stretchability and breaking resistance. Moreover, this result was the same whether the cross-sectional shape was trapezoidal or circular.
On the other hand, if the relationship of average thickness t<roundness r<height difference h (formula (1)) is not satisfied, or if the thickness of the thinnest part is less than 20% of the average thickness t, the elasticity and rupture It was not possible to satisfy both tolerance requirements. In particular, when the roundness r is less than the average thickness t, when the thickness of the thinnest part is thin, and when the average thickness t is too thin, the fracture resistance evaluation is "x", and when the roundness r is more than the height difference It was found that when the average thickness t is too thick, the elasticity evaluation becomes "x".

本明細書は、以下の発明の開示を含む。
(発明A)
表面および裏面ともに凹凸形状を有したフィルムであって、前記凹凸形状は凸部と凹部が繰り返し配列され、隣接する前記凸部と前記凹部とは、その間に配置された斜面部を共有しており、前記裏面は前記表面の凹凸形状に追従した凹凸形状を有しており、
凹部表面と凸部表面の高低差hが前記フィルムの平均厚みtよりも大きいフィルムであって、
フィルム断面において、前記凸部の頂部または前記凹部の底部と前記斜面部とを繋ぐ接続部の丸みr、あるいは、前記凸部の頂部または前記凹部の底部の断面中心線が円の一部で近似できる場合には、前記円の半径である丸みrが、前記フィルムの平均厚みtよりも大きく、かつ前記高低差hよりも小さく、
前記フィルムの最薄部の厚みが、前記フィルムの平均厚みtに対して-20%以上、0%以下の厚みであり、
前記凸部と前記凹部が繰り返し配列された方向に引っ張ったときに、JISK7127:1999に従って測定される破断強度が5N/15mm以上、30N/15mmである、
ことを特徴とするフィルム。
This specification includes disclosures of the following inventions.
(Invention A)
The film has an uneven shape on both the front and back surfaces, the uneven shape is a repeating array of protrusions and depressions, and the adjacent protrusions and depressions share a sloped part arranged between them. , the back surface has an uneven shape that follows the uneven shape of the front surface,
A film in which the height difference h between the surface of the concave portion and the surface of the convex portion is greater than the average thickness t of the film,
In the cross section of the film, the roundness r of the connecting part connecting the top of the convex part or the bottom of the concave part and the slope part, or the cross-sectional center line of the top of the convex part or the bottom of the concave part is approximated by a part of a circle. If possible, the radius r of the circle is larger than the average thickness t of the film and smaller than the height difference h,
The thickness of the thinnest part of the film is -20% or more and 0% or less of the average thickness t of the film,
When pulled in the direction in which the convex portions and the concave portions are repeatedly arranged, the breaking strength measured according to JIS K7127:1999 is 5 N/15 mm or more and 30 N/15 mm.
A film characterized by

(発明B)
前記フィルムの断面の凹凸形状が、前記凸部および前記凹部に平坦部を有する台形形状、または前記凸部および前記凹部に平坦部を有さない円弧形状である、
ことを特徴とする発明Aのフィルム。
(Invention B)
The uneven shape of the cross section of the film is a trapezoidal shape having a flat part in the convex part and the concave part, or an arc shape without a flat part in the convex part and the concave part.
The film of invention A characterized by the following.

(発明C)
前記フィルムの平均厚みtが10μm以上、50μm以下である、
ことを特徴とする発明Aまたは発明Bのフィルム。
(Invention C)
The average thickness t of the film is 10 μm or more and 50 μm or less,
A film according to invention A or invention B, characterized in that:

(発明D)
発明Aから発明Cのいずれかのフィルムを基材として、粘着剤層と積層させてなるテープ。
(Invention D)
A tape formed by using the film of any one of Inventions A to C as a base material and laminating it with an adhesive layer.

(発明E)
発明Aから発明Cのいずれかのフィルムを基材として、粘着剤層と積層させてなる貼付剤。
(Invention E)
A patch comprising the film of any one of inventions A to C as a base material and laminated with an adhesive layer.

本発明のフィルム1は良好な伸縮性と破断耐性を有することから、引っ張り時に大きな負荷がかかる用途、例えばテープや貼付剤の基材といった用途において、伸縮しつつも破れにくいフィルムとしての活用が期待される。 Since the film 1 of the present invention has good stretchability and breakage resistance, it is expected to be used as a film that is stretchable yet resistant to tearing in applications where large loads are applied during tension, such as base materials for tapes and adhesive patches. be done.

1 …フィルム
2 …凸部
2a…頂部
3 …凹部
3a…底部
4 …斜面部
5 …断面台形形状における角部
1...Film 2...Protrusion 2a...Top 3...Concave 3a...Bottom 4...Slope 5...Corner in trapezoidal cross-section

Claims (5)

表面および裏面ともに凹凸形状を有したフィルムであって、前記凹凸形状は凸部と凹部が繰り返し配列され、隣接する前記凸部と前記凹部とは、その間に配置された斜面部を共有しており、前記裏面は前記表面の凹凸形状に追従した凹凸形状を有しており、
凹部表面と凸部表面の高低差hが前記フィルムの平均厚みtよりも大きいフィルムであって、
フィルム断面において、前記凸部の頂部または前記凹部の底部と前記斜面部とを繋ぐ接続部の丸みr、あるいは、前記凸部の頂部または前記凹部の底部の断面中心線が円の一部で近似できる場合には、前記円の半径である丸みrが、前記フィルムの平均厚みtよりも大きく、かつ前記高低差hよりも小さく、
前記フィルムの最薄部の厚みが、前記フィルムの平均厚みtに対して-20%以上、0%以下の厚みであり、
前記凸部と前記凹部が繰り返し配列された方向に引っ張ったときに、JISK7127:1999に従って測定される破断強度が5N/15mm以上、30N/15mmである、
ことを特徴とするフィルム。
The film has an uneven shape on both the front and back surfaces, the uneven shape is a repeating array of protrusions and depressions, and the adjacent protrusions and depressions share a sloped part arranged between them. , the back surface has an uneven shape that follows the uneven shape of the front surface,
A film in which the height difference h between the surface of the concave portion and the surface of the convex portion is greater than the average thickness t of the film,
In the cross section of the film, the roundness r of the connecting part connecting the top of the convex part or the bottom of the concave part and the slope part, or the cross-sectional center line of the top of the convex part or the bottom of the concave part is approximated by a part of a circle. If possible, the radius r of the circle is larger than the average thickness t of the film and smaller than the height difference h,
The thickness of the thinnest part of the film is -20% or more and 0% or less of the average thickness t of the film,
When pulled in the direction in which the convex portions and the concave portions are repeatedly arranged, the breaking strength measured according to JIS K7127:1999 is 5 N/15 mm or more and 30 N/15 mm.
A film characterized by
前記フィルムの断面の凹凸形状が、前記凸部および前記凹部に平坦部を有する台形形状、または前記凸部および前記凹部に平坦部を有さない円弧形状である、
ことを特徴とする請求項1に記載のフィルム。
The uneven shape of the cross section of the film is a trapezoidal shape having a flat part in the convex part and the concave part, or an arc shape without a flat part in the convex part and the concave part.
The film according to claim 1, characterized in that:
前記フィルムの平均厚みtが10μm以上、50μm以下である、
ことを特徴とする請求項1に記載のフィルム。
The average thickness t of the film is 10 μm or more and 50 μm or less,
The film according to claim 1, characterized in that:
請求項1から3のいずれか一項に記載のフィルムを基材として、粘着剤層と積層させてなるテープ。 A tape formed by using the film according to any one of claims 1 to 3 as a base material and laminating it with an adhesive layer. 請求項1から3のいずれか一項に記載のフィルムを基材として、粘着剤層と積層させてなる貼付剤。 A patch comprising the film according to any one of claims 1 to 3 as a base material and laminated with an adhesive layer.
JP2022081551A 2022-05-18 2022-05-18 Film, tape and adhesive patch using the same Pending JP2023170081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022081551A JP2023170081A (en) 2022-05-18 2022-05-18 Film, tape and adhesive patch using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022081551A JP2023170081A (en) 2022-05-18 2022-05-18 Film, tape and adhesive patch using the same

Publications (1)

Publication Number Publication Date
JP2023170081A true JP2023170081A (en) 2023-12-01

Family

ID=88928374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022081551A Pending JP2023170081A (en) 2022-05-18 2022-05-18 Film, tape and adhesive patch using the same

Country Status (1)

Country Link
JP (1) JP2023170081A (en)

Similar Documents

Publication Publication Date Title
JP7180280B2 (en) Films, laminates, and methods of making films
KR20040057969A (en) Apparatus and method for producing a thermoplastic resin continuous laminated sheet
US20140087147A1 (en) Self-corrugating laminates and methods of making them
JP2023170081A (en) Film, tape and adhesive patch using the same
JP2001269995A (en) Device and method for producing hollow sheet composed of synthetic resin
JP7268324B2 (en) Adhesive backing film, laminate and adhesive
JP7326817B2 (en) Adhesive backing film, laminate and adhesive
JP7275527B2 (en) Adhesive backing film, laminate and adhesive
JP4335073B2 (en) LAMINATED SHEET MANUFACTURING METHOD, LAMINATED SHEET, AND MOLDED ARTICLE
JP7322496B2 (en) Adhesive backing film and laminate
JP7447434B2 (en) Patch support films, laminates, and patches
JP7326825B2 (en) Adhesive backing film, laminate, and adhesive
JP7459487B2 (en) Film for patch support, laminate, and patch
JP7322495B2 (en) Adhesive backing film, laminate and adhesive
JP7516810B2 (en) Film for patch support, laminate, and patch
JP7383218B2 (en) Patch support films, laminates, and patches
JP7567393B2 (en) Film, laminate and shape transfer member
JP2024006750A (en) Film and laminate
JP7271906B2 (en) Adhesive backing film, laminate, adhesive patch, and method for producing laminate
JP7447438B2 (en) Patch support films, laminates and patches
JP2023033801A (en) Film
JP2024014336A (en) Film, film body, and method for manufacturing the same
JP6118200B2 (en) Manufacturing method of bubble sheet
JP2022083209A (en) Film, tape using the same, and patch
JP2022098961A (en) Patch support medium film, and patch comprising patch support medium film