JP2023165427A - turbine power generation structure - Google Patents

turbine power generation structure Download PDF

Info

Publication number
JP2023165427A
JP2023165427A JP2022076363A JP2022076363A JP2023165427A JP 2023165427 A JP2023165427 A JP 2023165427A JP 2022076363 A JP2022076363 A JP 2022076363A JP 2022076363 A JP2022076363 A JP 2022076363A JP 2023165427 A JP2023165427 A JP 2023165427A
Authority
JP
Japan
Prior art keywords
power generation
cylindrical chamber
fluid
turbine power
generation structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022076363A
Other languages
Japanese (ja)
Other versions
JP7473230B2 (en
Inventor
梅正新
Zhengxin Mei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2022076363A priority Critical patent/JP7473230B2/en
Publication of JP2023165427A publication Critical patent/JP2023165427A/en
Application granted granted Critical
Publication of JP7473230B2 publication Critical patent/JP7473230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Wind Motors (AREA)

Abstract

To provide a turbine power generation structure which utilizes a permeable blade group in a cylindrical chamber to collect kinetic energy of a tornado and thereby generate electric power.SOLUTION: A turbine power generation structure includes: a cylindrical chamber 1; a drive mechanism 2; and a power generation mechanism 3. A vertical wall surface of the cylindrical chamber 1 is provided with multiple fluid inlets 11. A fluid outlet 12 is provided at a center part of a top surface of the cylindrical chamber 1. External fluid enters the cylindrical chamber 1 from the fluid inlets in a tangential direction and then moves forward along an inner wall of the cylindrical chamber 1. Then, finally, the external fluid turns around on an axis line at a center in a flow direction in a spiral passage to be discharged to the fluid outlet 12 and form a wind field, such as a cyclone, in the cylindrical chamber 1. The drive mechanism 2 is provided within the cylindrical chamber 1 and includes a rotary shaft 21 and a blade group 22. The blade group 22 includes permeable blades 222 and a frame and is connected to the rotary shaft 21. The power generation mechanism 3 is connected to the drive mechanism 2.SELECTED DRAWING: Figure 1

Description

本発明は、タービン発電構造に関し、特に、円筒チャンバを利用して渦流を発生させ、それを加速させる機構を指すとともに、円筒チャンバ内で透過性羽根群を使用して渦流中の運動エネルギーを収集するタービン発電構造に関するものである。 The present invention relates to a turbine power generation structure, and in particular refers to a mechanism that uses a cylindrical chamber to generate a vortex flow and accelerate it, and also uses a group of transparent vanes within the cylindrical chamber to collect kinetic energy in the vortex flow. This relates to a turbine power generation structure.

従来の大型水平軸風力発電機は、羽根の強度が弱く、重心が高く、構造が複雑で、製造、搬送、建設及びメンテナンスが困難で、鳥類にとって危険であり、騒音が発生する上、交換、解体及び回収が困難であり、使用寿命が短くて高コストであるという欠点があった。 Traditional large horizontal axis wind turbines have weak blades, a high center of gravity, a complex structure, difficult manufacturing, transportation, construction and maintenance, are dangerous to birds, generate noise, and are difficult to replace and replace. Disassembly and recovery are difficult, the service life is short, and the cost is high.

従来の垂直軸風車は、強度が弱い垂直軸及び羽根が強風に耐えることができないため、大型化が困難であるという欠点があった。 Conventional vertical axis wind turbines have the disadvantage that it is difficult to increase their size because the vertical axis and blades are weak and cannot withstand strong winds.

従来のタービン発電構造には、例えば特許文献1があり、この特許文献1と本願との明白な差異は以下の通りである。 A conventional turbine power generation structure includes, for example, Patent Document 1, and the obvious differences between Patent Document 1 and the present application are as follows.

特許文献1の集風塔は内壁及び外壁を有し、内壁と外壁との間には空間が設けられ、集風塔の頂端が完全に開かれ、底部と下方の進風室とが連通し、方形状の進風室に進入した気流が渦流を形成しないため、気流は竜巻のように自動的に加速しない。 The wind collecting tower of Patent Document 1 has an inner wall and an outer wall, a space is provided between the inner wall and the outer wall, the top end of the wind collecting tower is completely opened, and the bottom part and the lower air advancing chamber are in communication. , the airflow entering the rectangular airflow chamber does not form a vortex, so the airflow does not automatically accelerate like a tornado.

一方、本願の円筒チャンバは、単層壁構造であり、その頂端は中心部以外が全て覆われ、その底端には開口及び進風室が設けられておらず、気流が円筒チャンバ側面の複数の流体入口から進入した後、頂端中心の流体出口から排出される。そのため、円筒チャンバ内には竜巻に似た完全な風場が形成される。特許文献1のタービン及び回転軸は集風塔と進風室との間に設けられ、タービンの羽根が透過性を有する構造でないため、気流が羽根を1回通るだけでは、羽根は、運動エネルギーをフィードバックさせて気流を加速させることはできなかった。 On the other hand, the cylindrical chamber of the present application has a single-layer wall structure, and its top end is covered entirely except for the center, and its bottom end is not provided with an opening or an air advancing chamber, so that the air flow After entering through the fluid inlet, it is discharged through the fluid outlet at the center of the apex. Therefore, a complete wind field similar to a tornado is formed inside the cylindrical chamber. The turbine and rotating shaft of Patent Document 1 are installed between the wind collecting tower and the wind advance chamber, and the blades of the turbine do not have a permeable structure, so when the airflow passes through the blades only once, the blades lose kinetic energy. It was not possible to accelerate the airflow by feedback.

一方、本願は複数の透過性羽根及び駆動軸が円筒チャンバ内部に設けられ、進風室が設けられていないため、流入流体が複数の透過性羽根に当たった後でも、螺旋形経路を保持しながら加速し、竜巻のように渦流を増強させることができる。 On the other hand, in the present application, a plurality of permeable vanes and a drive shaft are provided inside the cylindrical chamber, and no air advance chamber is provided, so that even after the inflow fluid hits the plurality of permeable vanes, the helical path is maintained. It is possible to accelerate while moving, and increase the vortex like a tornado.

本発明者は、本発明中の円筒チャンバ内の流体をCFD(Computational Fluid Dynamics)シミュレーションした結果、円筒チャンバ内に渦流が発生し、渦流の流速は外周が遅くて中心が速いため、外周が高圧となって中心が低圧となり、渦流の中心は出口に向かった。上述した6つの特徴は、サイクロン及び竜巻と同じである。そのため上述した原理に基づき、新しい装置を研究開発し、従来技術の風力発電の問題を解決した。 As a result of CFD (Computational Fluid Dynamics) simulation of the fluid in the cylindrical chamber of the present invention, the inventor found that a vortex is generated in the cylindrical chamber, and the flow velocity of the vortex is slow at the outer periphery and fast at the center, so that the outer periphery is under high pressure. As a result, the center became low pressure, and the center of the vortex headed toward the exit. The six characteristics mentioned above are the same as for cyclones and tornadoes. Therefore, based on the above-mentioned principle, we researched and developed a new device to solve the problems of conventional wind power generation.

米国特許出願公開第4452562A号明細書U.S. Patent Application Publication No. 4,452,562A

本発明の目的は、竜巻が大きな運動エネルギーを有することを利用し、簡素な構造からなる円筒チャンバ内に小さな竜巻を発生させ、円筒チャンバ内の透過性羽根群を利用して竜巻の運動エネルギーを収集して発電を行うタービン発電構造を提供することにある。 The purpose of the present invention is to take advantage of the fact that tornadoes have large kinetic energy, generate small tornadoes in a cylindrical chamber with a simple structure, and utilize a group of transparent blades in the cylindrical chamber to absorb the kinetic energy of the tornado. An object of the present invention is to provide a turbine power generation structure that collects and generates power.

上記課題を解決するために、本発明の第1の形態によれば、円筒チャンバ、駆動機構及び発電機構を備えた、タービン発電構造であって、前記円筒チャンバの垂直壁面には、複数の流体入口が設けられ、前記円筒チャンバの頂面中央部には、流体出口が設けられ、外部流体が接線方向で流体入口から前記円筒チャンバ内に進入した後、前記円筒チャンバの内壁に沿って前進してから、螺旋形経路で流向中心の軸線で、最終的に方向転換して流体出口に向かって排出され、前記円筒チャンバ内にサイクロンのような風場が形成され、前記駆動機構は、前記円筒チャンバ内に設けられるとともに、回転軸及び羽根群を含み、前記回転軸は、前記円筒チャンバの軸線位置に設けられ、前記羽根群は、複数の透過性羽根及びフレームを含むとともに、前記回転軸に接続され、流入流体が前記羽根群を押動すると前記回転軸が回転し、流入流体が複数の前記透過性羽根に当たった後でも、前記螺旋形経路を保持しながら加速し、前記羽根は、回転の運動エネルギーをフィードバックして渦流を加速させ、前記発電機構は、前記駆動機構に接続されるとともに、前記駆動機構により駆動され、前記発電機構で発電することを特徴とする、タービン発電構造を提供する。 In order to solve the above problems, a first aspect of the present invention provides a turbine power generation structure including a cylindrical chamber, a drive mechanism, and a power generation mechanism, wherein a plurality of fluids are arranged on a vertical wall surface of the cylindrical chamber. An inlet is provided, and a fluid outlet is provided in the center of the top surface of the cylindrical chamber, the external fluid tangentially entering the cylindrical chamber from the fluid inlet and then advancing along the inner wall of the cylindrical chamber. Then, in a helical path with the axis of the flow direction, it finally turns and discharges towards the fluid outlet, forming a cyclone-like wind field in the cylindrical chamber, and the driving mechanism The rotary shaft is provided in a chamber and includes a rotating shaft and a blade group, the rotary shaft is provided at an axial position of the cylindrical chamber, and the blade group includes a plurality of transparent blades and a frame, and the rotary shaft includes a plurality of transparent blades and a frame. connected, and when the inflowing fluid pushes the vanes, the rotation axis rotates and the inflowing fluid accelerates while maintaining the helical path even after hitting the plurality of the permeable vanes, and the vanes A turbine power generation structure is provided, wherein kinetic energy of rotation is fed back to accelerate a vortex flow, the power generation mechanism is connected to the drive mechanism, is driven by the drive mechanism, and generates power with the power generation mechanism. provide.

前記流入流体は、接線方向で前記円筒チャンバに流入された後、前記螺旋形経路に沿って加速され、軸線に進んだ後、出口に向かって方向転換して排出され、流体を自動的に加速させることが好ましい。 The incoming fluid is tangentially entered into the cylindrical chamber and then accelerated along the helical path, progressing along the axis, and then being redirected toward the outlet and discharged, automatically accelerating the fluid. It is preferable to let

前記流体入口には、流量調節部が設けられ、前記流量調節部は、前記流体入口を調節し、外部流体が前記円筒チャンバに進入する流量を制御することが好ましい。 Preferably, the fluid inlet is provided with a flow rate adjustment part, and the flow rate adjustment part adjusts the fluid inlet and controls the flow rate of external fluid entering the cylindrical chamber.

前記発電機構は、前記円筒チャンバの何れか一端に設置され、前記発電機構は、前記円筒チャンバの内部又は外部に位置することが好ましい。 The power generation mechanism is preferably installed at either end of the cylindrical chamber, and the power generation mechanism is preferably located inside or outside the cylindrical chamber.

前記円筒チャンバ内には、ヒーターが設けられることが好ましい。 Preferably, a heater is provided within the cylindrical chamber.

前記羽根群は、放射線状に配設されたフレーム及び複数の透過性羽根を有し、前記フレームは、前記回転軸に接続され、前記羽根は、前記フレーム上に設けられるか、前記回転軸上に直接固定されることが好ましい。 The group of blades includes a radially arranged frame and a plurality of transparent blades, the frame is connected to the rotating shaft, and the blades are provided on the frame or on the rotating shaft. Preferably, it is fixed directly to the

前記透過性羽根は、網状、格子状、棒状又は分離した板状を呈することが好ましい。 Preferably, the permeable vanes have a net shape, a lattice shape, a rod shape, or a separate plate shape.

前記駆動機構の前記回転軸の少なくとも一端には、接続部が設けられ、積層された円筒チャンバに使用するとき、その中の前記駆動機構に接続され、各前記円筒チャンバ間の頂面中央部には、流体を自由に通過させる開口部が形成されることが好ましい。 At least one end of the rotation shaft of the drive mechanism is provided with a connection part, and when used in stacked cylindrical chambers, the connection part is connected to the drive mechanism therein, and a connection part is provided at the center of the top surface between each of the cylindrical chambers. Preferably, the opening is formed to allow fluid to freely pass through.

前記流体入口の外側には、流入流体の流量及び流速を増やす導流体が取り付けられることが好ましい。 Preferably, a guide fluid is attached to the outside of the fluid inlet to increase the flow rate and velocity of the incoming fluid.

前記発電機構は、複数の発電機の組み合わせにより各等級の風力に対応することが可能な複数の発電機を含むことが好ましい。 It is preferable that the power generation mechanism includes a plurality of generators capable of responding to each class of wind power by combining a plurality of generators.

本発明の第1実施形態に係るタービン発電構造を示す斜視図である。FIG. 1 is a perspective view showing a turbine power generation structure according to a first embodiment of the present invention. 本発明の第1実施形態に係る円筒チャンバを示す上面図である。It is a top view showing the cylindrical chamber concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る円筒チャンバを示す側面図である。FIG. 1 is a side view showing a cylindrical chamber according to a first embodiment of the present invention. 本発明の第1実施形態に係る駆動機構及び各種羽根を示す説明図である。It is an explanatory view showing a drive mechanism and various blades concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る駆動機構及び各種羽根を示す説明図である。It is an explanatory view showing a drive mechanism and various blades concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る駆動機構及び各種羽根を示す説明図である。It is an explanatory view showing a drive mechanism and various blades concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る駆動機構及び各種羽根を示す説明図である。It is an explanatory view showing a drive mechanism and various blades concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る駆動機構及び各種羽根を示す説明図である。It is an explanatory view showing a drive mechanism and various blades concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る発電機構を示す上面図である。FIG. 1 is a top view showing a power generation mechanism according to a first embodiment of the present invention. 本発明の第1実施形態に係る発電機構を示す側面図である。FIG. 1 is a side view showing a power generation mechanism according to a first embodiment of the present invention. 本発明の第1実施形態に係る円筒チャンバ内の流体経路を示す上面図である。FIG. 3 is a top view showing a fluid path inside the cylindrical chamber according to the first embodiment of the present invention. 本発明の第1実施形態に係る円筒チャンバ内の流体経路を示す側面図である。FIG. 3 is a side view showing a fluid path inside the cylindrical chamber according to the first embodiment of the present invention. 図4aのA部分の作用力の分析図である。FIG. 4A is an analysis diagram of the acting force in part A of FIG. 4A. 本発明の第2実施形態に係る円筒チャンバ内の流体経路を示す上面図である。FIG. 7 is a top view showing a fluid path within a cylindrical chamber according to a second embodiment of the present invention. 本発明の第2実施形態に係る円筒チャンバ内の流体経路を示す側面図である。FIG. 7 is a side view showing a fluid path inside a cylindrical chamber according to a second embodiment of the present invention. 本発明の第3実施形態に係る多数の円筒チャンバ及び駆動機構を積層して組み合わせたタービン発電構造を示す説明図である。FIG. 7 is an explanatory diagram showing a turbine power generation structure in which a large number of cylindrical chambers and drive mechanisms are stacked and combined according to a third embodiment of the present invention. 本発明の第1実施形態に係るタービン発電構造の外側に導流板を増設し、流入流体の流量及び流速を増やす説明図である。FIG. 2 is an explanatory diagram in which a flow guide plate is added to the outside of the turbine power generation structure according to the first embodiment of the present invention to increase the flow rate and flow velocity of inflow fluid.

図1~図6を参照する。図1~図6に示すように、本発明の一実施形態に係るタービン発電構造は、少なくとも円筒チャンバ1、駆動機構2及び発電機構3から構成されてなる。 Please refer to FIGS. 1 to 6. As shown in FIGS. 1 to 6, a turbine power generation structure according to an embodiment of the present invention includes at least a cylindrical chamber 1, a drive mechanism 2, and a power generation mechanism 3.

図1を参照する。図1に示すように、円筒チャンバ1の側壁には、複数の流体入口11が設けられる。円筒チャンバ1の頂面中央部には、流体出口12が設けられ、外部流体が接線方向で流体入口11から進入した後、流体出口12から流出する。図1a及び図1bに示すように、流体入口11には、流量調節部13が設けられる。流量調節部13は、流体入口11の開閉を制御し、流入流体の流量、圧力及び流速を調節することができる。 Please refer to FIG. As shown in FIG. 1, the side wall of the cylindrical chamber 1 is provided with a plurality of fluid inlets 11. A fluid outlet 12 is provided in the center of the top surface of the cylindrical chamber 1, through which the external fluid tangentially enters through the fluid inlet 11 and then exits through the fluid outlet 12. As shown in FIGS. 1a and 1b, the fluid inlet 11 is provided with a flow rate regulator 13. As shown in FIGS. The flow rate adjustment unit 13 can control opening and closing of the fluid inlet 11 and adjust the flow rate, pressure, and flow rate of the inflow fluid.

図1を参照する。図1に示すように、駆動機構2は、円筒チャンバ1内に設けられる。 Please refer to FIG. As shown in FIG. 1, the drive mechanism 2 is provided within the cylindrical chamber 1.

(第1実施形態)
図2aを参照する。図2aに示すように、本発明の第1実施形態に係る駆動機構2は、回転軸21及び羽根群22を含む。回転軸21は、円筒チャンバ1の軸線位置に設けられる。羽根群22は、回転軸21上に固定され、羽根群22を押動すると回転軸21が駆動され、駆動機構2に運動エネルギーが生じる。
(First embodiment)
See Figure 2a. As shown in FIG. 2a, the drive mechanism 2 according to the first embodiment of the present invention includes a rotating shaft 21 and a blade group 22. The rotating shaft 21 is provided at an axial position of the cylindrical chamber 1 . The blade group 22 is fixed on the rotating shaft 21, and when the blade group 22 is pushed, the rotating shaft 21 is driven, and kinetic energy is generated in the drive mechanism 2.

図2bを参照する。図2bに示すように、羽根群22は、放射線状に配設されたフレーム221及び複数の透過性羽根222を有する。フレーム221は、回転軸21に接続される。複数の羽根222は、フレーム221上に取付けられるか、回転軸21上に直接取付けられ(図2dに示す)、透過性羽根222は網状(図2bに示す)、格子状(図2cに示す)、棒状(図2dに示す)又は分離した板状(図2eに示す)を呈してもよい。羽根222は、透過性を有するため、流入流体41が通過可能であり、その螺旋形経路51を保持しながら加速させることができる。羽根222は、運動エネルギーをフィードバックして渦流を加速させることができる。 See Figure 2b. As shown in FIG. 2b, the blade group 22 includes a radially arranged frame 221 and a plurality of transparent blades 222. Frame 221 is connected to rotating shaft 21 . A plurality of vanes 222 are mounted on the frame 221 or directly on the rotating shaft 21 (as shown in Figure 2d), and the transparent vanes 222 can be in the form of a net (as shown in Figure 2b), a grid (as shown in Figure 2c) , may take the form of a rod (as shown in Figure 2d) or a separate plate (as shown in Figure 2e). Since the vanes 222 are permeable, the inflow fluid 41 can pass therethrough and can be accelerated while maintaining its helical path 51. The vanes 222 can feed back kinetic energy to accelerate the vortex.

図3a及び図3bを参照する。図3a及び図3bに示すように、円筒チャンバ1の内部には、流体を加速させるヒーター23が設けられる。ヒーター23は、各種熱源又は廃熱を使用してもよい。 See Figures 3a and 3b. As shown in FIGS. 3a and 3b, a heater 23 is provided inside the cylindrical chamber 1 to accelerate the fluid. The heater 23 may use various heat sources or waste heat.

図3bを参照する。図3bに示すように、発電機構3は、駆動機構2に接続されるとともに、駆動機構2により駆動され、発電機構3内の発電機で発電することができる。 See Figure 3b. As shown in FIG. 3b, the power generation mechanism 3 is connected to and driven by the drive mechanism 2, so that the generator within the power generation mechanism 3 can generate electricity.

図4a及び図4cを参照する。図4a及び図4cに示すように、本発明は外部流体(例えば風)を接線方向で円筒チャンバ1に導入し、流入流体41が後方の継続的な圧力が円筒チャンバ内壁15に沿って前進した後、螺旋形経路51で軸線16の近くに進んだ後、流体出口12に向かって方向転換し、流体入口11から流体出口12に至る流場が円筒チャンバ1内に形成される。流体入口11及びチャンバ内壁15の気圧が最高であり、流出流体42の方向が、大気の風向きに対して必ず垂直であるため、流体出口12の圧力は最低である(ベルヌーイの定理)。圧力はチャンバ内壁15から軸線16に近づくに伴って徐々に減り、流速はチャンバ内壁15から軸線16に近づくに伴って徐々に増え、円筒チャンバ1の内部には、渦巻のような加速した流場が形成される。 See Figures 4a and 4c. As shown in FIGS. 4a and 4c, the present invention introduces an external fluid (e.g. wind) into the cylindrical chamber 1 in a tangential direction such that the incoming fluid 41 is caused by continuous pressure behind it to advance along the cylindrical chamber inner wall 15. Then, after proceeding in a helical path 51 close to the axis 16 , it turns towards the fluid outlet 12 and a flow field is created in the cylindrical chamber 1 from the fluid inlet 11 to the fluid outlet 12 . The pressure at the fluid inlet 11 and the chamber inner wall 15 is the highest, and the direction of the outflow fluid 42 is always perpendicular to the atmospheric wind direction, so the pressure at the fluid outlet 12 is the lowest (Bernoulli's theorem). The pressure gradually decreases as it approaches the axis 16 from the chamber inner wall 15, and the flow velocity gradually increases as it approaches the axis 16 from the chamber inner wall 15. Inside the cylindrical chamber 1, an accelerated flow field such as a swirl is created. is formed.

図4a及び図4cを参照する。図4a及び図4cに示すように、チャンバ内壁15と軸線16との間の気圧が下がり、螺旋形経路51上の流体分子43が軸線16指向の気圧傾度力52を受けるとともに、螺旋形経路51に対して垂直なコリオリの力53を受ける。コリオリの力53及び気圧傾度力52の両者に発生するベクトル合成54は、流体分子43の速度νを高め、流体分子43の回転半径は螺旋形経路51に沿って縮小し、角速度ωを増大させ、コリオリの力F=-2m(ων)の式に基づき、F、ω、νの三者が互いにフィードバックし合って同期で増加し、円筒チャンバ1の特殊な構造により、流入流体41を自動的に加速させる。 See Figures 4a and 4c. As shown in FIGS. 4a and 4c, the air pressure between the chamber inner wall 15 and the axis 16 decreases, and the fluid molecules 43 on the helical path 51 are subjected to a pressure gradient force 52 directed to the axis 16, and the helical path 51 is subjected to a Coriolis force 53 perpendicular to . The vector combination 54 generated by both the Coriolis force 53 and the pressure gradient force 52 increases the velocity ν of the fluid molecule 43, and the radius of rotation of the fluid molecule 43 decreases along the helical path 51, increasing the angular velocity ω. , based on the Coriolis force F = -2m (ων), the three factors F, ω, and ν feed back to each other and increase synchronously, and the special structure of the cylindrical chamber 1 automatically controls the inflow fluid 41. accelerate to

(第2実施形態)
図5a及び図5bを参照する。図5a及び図5bに示すように、本発明の第2実施形態では、円筒チャンバ1内の流入流体41を自動的に加速する構造の流体入口11が漏斗状に形成され、流量を増やすことができる。
(Second embodiment)
See Figures 5a and 5b. As shown in FIGS. 5a and 5b, in the second embodiment of the present invention, the fluid inlet 11, which is structured to automatically accelerate the inflow fluid 41 in the cylindrical chamber 1, is formed in a funnel shape to increase the flow rate. can.

図4aを参照する。図4aに示すように、流入流体41が螺旋形経路51に沿って加速すると、羽根群22が回転するが(図2aに示す)、羽根群22の内側が外側より大きな押圧力を受けるため、羽根群22が流入流体41をさらに加速させ、流入流体41と羽根群22との間で交互にフィードバックし合う。 See Figure 4a. As shown in FIG. 4a, when the inflowing fluid 41 accelerates along the helical path 51, the blade group 22 rotates (as shown in FIG. 2a), but since the inside of the blade group 22 is subjected to a larger pushing force than the outside, The vane group 22 further accelerates the inflow fluid 41, and feeds back alternately between the inflow fluid 41 and the vane group 22.

(第3実施形態)
図6を参照する。図6に示すように、本発明の第3実施形態において、駆動機構2の回転軸21の少なくとも一端には、接続部(図示せず)が設けられ、積層された複数の円筒チャンバ1をタービン発電構造として用いる際、接続部を利用して積層された複数の円筒チャンバ1中の複数の駆動機構2を接続し、終端部の接続部が発電機構3に接続され、複数の円筒チャンバ1の端面中央部には、流体を通過させる開口部が形成される。発電機構は、複数の発電機の組み合わせにより、それぞれの等級の風力に対応することが可能である。
(Third embodiment)
See FIG. 6. As shown in FIG. 6, in the third embodiment of the present invention, at least one end of the rotating shaft 21 of the drive mechanism 2 is provided with a connecting portion (not shown), and a plurality of stacked cylindrical chambers 1 are connected to the turbine. When used as a power generation structure, a plurality of drive mechanisms 2 in a plurality of stacked cylindrical chambers 1 are connected using the connection portion, and the connection portion at the end is connected to the power generation mechanism 3, and the connection portion of the plurality of cylindrical chambers 1 is connected to the power generation mechanism 3. An opening through which fluid passes is formed in the center of the end surface. The power generation mechanism can handle each grade of wind power by combining a plurality of generators.

(第1実施形態)
図7を参照する。図7に示すように、本発明の第1実施形態において、流体入口11の外側には、流入流体41の流量及び流速を増やす導流体19が取り付けられてもよい。
(First embodiment)
See FIG. 7. As shown in FIG. 7, in the first embodiment of the present invention, a guiding fluid 19 may be installed outside the fluid inlet 11 to increase the flow rate and flow velocity of the inflow fluid 41.

本発明の第1実施形態において、水を流入流体41として用いる場合、円筒チャンバ1を河川流又は海流に設置可能であり、発電機構3は円筒チャンバ1の頂端に設置可能であり、流体出口12が底端中央に位置するとともに、導管により下流に案内する。チャンバ内壁15は、低めの流速と高めの圧力を有し、流入流体41のコリオリの力53と気圧傾度力(又は水圧傾度力)52のベクトル合成54とにより、流入流体41を加速させて軸線16に案内した後、下向きに流体出口12に至り、流入流体41が羽根群22及び回転軸21を押動し、発電機構3の回転軸21を駆動させて発電する。 In the first embodiment of the present invention, when water is used as the inflow fluid 41, the cylindrical chamber 1 can be installed in a river flow or an ocean current, the power generation mechanism 3 can be installed at the top end of the cylindrical chamber 1, and the fluid outlet 12 is located at the center of the bottom end and is guided downstream by a conduit. The chamber inner wall 15 has a lower flow velocity and a higher pressure, and accelerates the inflowing fluid 41 by a vector combination 54 of the Coriolis force 53 of the inflowing fluid 41 and the pressure gradient force (or hydraulic gradient force) 52, and 16, the inflow fluid 41 reaches the fluid outlet 12 downward, and the inflow fluid 41 pushes the blade group 22 and the rotating shaft 21, drives the rotating shaft 21 of the power generation mechanism 3, and generates electricity.

上述したことから分かるように、本発明のタービン発電構造は、円筒チャンバの垂直壁面には、複数の流体入口が設けられ、円筒チャンバの頂面中央部には、流体出口が設けられ、外部流体が接線方向で流体入口から円筒チャンバ内に進入した後、頂端の流体出口から排出され、円筒チャンバ内に設けられた駆動機構は、回転軸及び透過性の羽根群を含み、流入流体が透過性羽根に当たると回転軸を回転させ、複数の透過性羽根を使用しているため、螺旋形経路を保持するとともに加速させ、発電機により効率良く発電することができる。 As can be seen from the above, in the turbine power generation structure of the present invention, a plurality of fluid inlets are provided on the vertical wall surface of the cylindrical chamber, a fluid outlet is provided at the center of the top surface of the cylindrical chamber, and an external fluid enters the cylindrical chamber tangentially from the fluid inlet and then exits from the fluid outlet at the top end, and the drive mechanism provided within the cylindrical chamber includes a rotating shaft and a group of permeable vanes, and the incoming fluid is permeable to the cylindrical chamber. When it hits a blade, it rotates the rotating shaft, and since multiple transparent blades are used, the spiral path is maintained and accelerated, allowing the generator to efficiently generate electricity.

1 円筒チャンバ
2 駆動機構
3 発電機構
11 流体入口
12 流体出口
13 流量調節部
14 回転軸フレーム
15 チャンバ内壁
16 軸線
17 径方向線
18 同心円
19 導流体
21 回転軸
22 羽根群
23 ヒーター
41 流入流体
42 流出流体
43 流体分子
51 螺旋形経路
52 気圧傾度力
53 コリオリの力
54 ベクトル合成
221 フレーム
222 羽根
1 Cylindrical chamber 2 Drive mechanism 3 Power generation mechanism 11 Fluid inlet 12 Fluid outlet 13 Flow rate adjustment unit 14 Rotating shaft frame 15 Chamber inner wall 16 Axis 17 Radial line 18 Concentric circle 19 Fluid guide 21 Rotating shaft 22 Vane group 23 Heater 41 Inflow fluid 42 Outflow Fluid 43 Fluid molecules 51 Helical path 52 Pressure gradient force 53 Coriolis force 54 Vector synthesis 221 Frame 222 Vane

Claims (10)

円筒チャンバ、駆動機構及び発電機構を備えた、タービン発電構造であって、
前記円筒チャンバの垂直壁面には、複数の流体入口が設けられ、前記円筒チャンバの頂面中央部には、流体出口が設けられ、外部流体が接線方向で流体入口から前記円筒チャンバ内に進入した後、前記円筒チャンバの内壁に沿って前進してから、螺旋形経路で流向中心の軸線で、最終的に方向転換して流体出口に向かって排出され、前記円筒チャンバ内にサイクロンのような風場が形成され、
前記駆動機構は、前記円筒チャンバ内に設けられるとともに、回転軸及び羽根群を含み、前記回転軸は、前記円筒チャンバの軸線位置に設けられ、前記羽根群は、複数の透過性羽根及びフレームを含むとともに、前記回転軸に接続され、流入流体が前記羽根群を押動すると前記回転軸が回転し、流入流体が複数の前記透過性羽根に当たった後でも、前記螺旋形経路を保持しながら加速し、前記羽根は、回転の運動エネルギーをフィードバックして渦流を加速させ、
前記発電機構は、前記駆動機構に接続されるとともに、前記駆動機構により駆動され、前記発電機構で発電することを特徴とする、タービン発電構造。
A turbine power generation structure comprising a cylindrical chamber, a drive mechanism, and a power generation mechanism,
A plurality of fluid inlets are provided in the vertical wall of the cylindrical chamber, and a fluid outlet is provided in the center of the top surface of the cylindrical chamber, and an external fluid enters the cylindrical chamber from the fluid inlet in a tangential direction. After that, it advances along the inner wall of the cylindrical chamber, and then in a spiral path with the axis of the flow direction, finally turns and discharges towards the fluid outlet, creating a cyclone-like wind inside the cylindrical chamber. A field is formed,
The drive mechanism is provided within the cylindrical chamber and includes a rotating shaft and a group of blades, the rotating shaft is provided at an axial position of the cylindrical chamber, and the group of blades includes a plurality of transparent blades and a frame. and connected to the rotating shaft such that the rotating shaft rotates when the inflowing fluid pushes the vanes, while maintaining the helical path even after the inflowing fluid hits the plurality of permeable vanes. the vanes feed back the kinetic energy of rotation to accelerate the vortex;
A turbine power generation structure, wherein the power generation mechanism is connected to the drive mechanism, is driven by the drive mechanism, and generates power with the power generation mechanism.
前記流入流体は、接線方向で前記円筒チャンバに流入された後、前記螺旋形経路に沿って加速され、軸線に進んだ後、出口に向かって方向転換して排出され、流体を自動的に加速させることを特徴とする請求項1に記載のタービン発電構造。 The incoming fluid is tangentially entered into the cylindrical chamber and then accelerated along the helical path, progressing along the axis, and then being redirected toward the outlet and discharged, automatically accelerating the fluid. The turbine power generation structure according to claim 1, characterized in that: 前記流体入口には、流量調節部が設けられ、
前記流量調節部は、前記流体入口を調節し、外部流体が前記円筒チャンバに進入する流量を制御することを特徴とする請求項1に記載のタービン発電構造。
The fluid inlet is provided with a flow rate adjustment section,
The turbine power generation structure according to claim 1, wherein the flow rate adjustment unit adjusts the fluid inlet to control the flow rate of external fluid entering the cylindrical chamber.
前記発電機構は、前記円筒チャンバの何れか一端に設置され、
前記発電機構は、前記円筒チャンバの内部又は外部に位置することを特徴とする請求項1に記載のタービン発電構造。
The power generation mechanism is installed at one end of the cylindrical chamber,
The turbine power generation structure according to claim 1, wherein the power generation mechanism is located inside or outside the cylindrical chamber.
前記円筒チャンバ内には、ヒーターが設けられることを特徴とする請求項1に記載のタービン発電構造。 The turbine power generation structure according to claim 1, wherein a heater is provided in the cylindrical chamber. 前記羽根群は、放射線状に配設されたフレーム及び複数の透過性羽根を有し、
前記フレームは、前記回転軸に接続され、
前記羽根は、前記フレーム上に設けられるか、前記回転軸上に直接固定されることを特徴とする請求項1に記載のタービン発電構造。
The blade group has a frame arranged radially and a plurality of transparent blades,
the frame is connected to the rotating shaft,
The turbine power generation structure according to claim 1, wherein the blade is provided on the frame or directly fixed on the rotating shaft.
前記透過性羽根は、網状、格子状、棒状又は分離した板状を呈することを特徴とする請求項1に記載のタービン発電構造。 The turbine power generation structure according to claim 1, wherein the permeable blade has a net shape, a lattice shape, a rod shape, or a separate plate shape. 前記駆動機構の前記回転軸の少なくとも一端には、接続部が設けられ、積層された円筒チャンバに使用するとき、その中の前記駆動機構に接続され、各前記円筒チャンバ間の頂面中央部には、流体を自由に通過させる開口部が形成されることを特徴とする請求項1に記載のタービン発電構造。 At least one end of the rotation shaft of the drive mechanism is provided with a connection part, and when used in stacked cylindrical chambers, the connection part is connected to the drive mechanism therein, and a connection part is provided at the center of the top surface between each of the cylindrical chambers. The turbine power generation structure according to claim 1, wherein the turbine power generation structure is formed with an opening through which fluid freely passes. 前記流体入口の外側には、流入流体の流量及び流速を増やす導流体が取り付けられることを特徴とする請求項1に記載のタービン発電構造。 The turbine power generation structure according to claim 1, wherein a guide fluid is installed outside the fluid inlet to increase the flow rate and flow velocity of the inflow fluid. 前記発電機構は、複数の発電機の組み合わせにより各等級の風力に対応することが可能な複数の発電機を含むことを特徴とする請求項1に記載のタービン発電構造。 2. The turbine power generation structure according to claim 1, wherein the power generation mechanism includes a plurality of generators capable of responding to each class of wind power by combining a plurality of generators.
JP2022076363A 2022-05-04 2022-05-04 Turbine power generation structure Active JP7473230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022076363A JP7473230B2 (en) 2022-05-04 2022-05-04 Turbine power generation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022076363A JP7473230B2 (en) 2022-05-04 2022-05-04 Turbine power generation structure

Publications (2)

Publication Number Publication Date
JP2023165427A true JP2023165427A (en) 2023-11-16
JP7473230B2 JP7473230B2 (en) 2024-04-23

Family

ID=88748836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022076363A Active JP7473230B2 (en) 2022-05-04 2022-05-04 Turbine power generation structure

Country Status (1)

Country Link
JP (1) JP7473230B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165034A (en) 1999-12-10 2001-06-19 Polus Ceramics Kogyo:Kk Movable blade windmill with safety valve
JP2001193629A (en) 2000-01-13 2001-07-17 Tootasu:Kk Wind-power control device
JP2003214318A (en) 2002-01-25 2003-07-30 Ko Yamaguchi Vertical shaft type wind power generator
JP2003227454A (en) 2002-01-31 2003-08-15 Yasuhisa Choshoin Dome-type wind power generation device
JP2009257238A (en) 2008-04-18 2009-11-05 Yasushi Iniwa Trinity type generating set
JP4748747B1 (en) 2010-12-01 2011-08-17 株式会社 マルヨシ商会 Drag type wind vane for wind power generator and wind power generator using this wind vane
KR101637907B1 (en) 2015-06-19 2016-07-08 피경문 Wind power system

Also Published As

Publication number Publication date
JP7473230B2 (en) 2024-04-23

Similar Documents

Publication Publication Date Title
JP5289770B2 (en) Omnidirectional wind turbine
US8310072B2 (en) Wind power installation, generator for generation of electrical power from ambient air, and method for generation of electrical power from ambient air in motiion
EP2395234A2 (en) Tunnel Power Turbine System to generate potential energy from waste kinetic energy
US8128337B2 (en) Omnidirectional vertical-axis wind turbine
US8998562B2 (en) Hollow rotor core for generating a vortex in a wind turbine
US9322385B1 (en) Hydro vortex enabled turbine generator
US20090087300A1 (en) Vertical axis dual vortex downwind inward flow impulse wind turbine
EP2538070B1 (en) Turbine with radial inlet and outlet rotor for use in bidirectional flows
JP2015520329A (en) Device for converting energy from fluid flow
KR101368611B1 (en) Boundary layer wind turbine with tangential rotor blades
US20170201157A1 (en) Device for converting kinetic energy of a flowing medium to electrical energy
KR101073897B1 (en) Multistage aerogenerator
RU144302U1 (en) WIND ENGINE
WO2009154604A1 (en) Vertical axis dual vortex downwind inward flow impulse wind turbine
RU2462612C1 (en) Orthogonal power generating unit to convert energy of water or air flows
RU2093702C1 (en) Vortex wind-power plant
JP2023165427A (en) turbine power generation structure
JP5738273B2 (en) Power generator
CN116950844A (en) Vortex power generation structure
GB2494873A (en) Axial turbine with inlet and outlet volutes for bi-directional air flow
KR102655634B1 (en) Vortex dynamic power generation structure
US20110164966A1 (en) Method and apparatus to improve wake flow and power production of wind and water turbines
TWI772994B (en) Vortex dynamic power generation structure
US20230340939A1 (en) Vortex dynamic power generation structure
AU2022202619B2 (en) Vortex dynamic power generation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220504

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240404

R150 Certificate of patent or registration of utility model

Ref document number: 7473230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150