JP2023164228A - Printing ink set, printed matter, and packaging material - Google Patents

Printing ink set, printed matter, and packaging material Download PDF

Info

Publication number
JP2023164228A
JP2023164228A JP2022095094A JP2022095094A JP2023164228A JP 2023164228 A JP2023164228 A JP 2023164228A JP 2022095094 A JP2022095094 A JP 2022095094A JP 2022095094 A JP2022095094 A JP 2022095094A JP 2023164228 A JP2023164228 A JP 2023164228A
Authority
JP
Japan
Prior art keywords
ink
parts
group
magenta
yellow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022095094A
Other languages
Japanese (ja)
Other versions
JP7260864B1 (en
Inventor
昌平 坂本
Shohei Sakamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to PCT/JP2023/013654 priority Critical patent/WO2023210260A1/en
Application granted granted Critical
Publication of JP7260864B1 publication Critical patent/JP7260864B1/en
Publication of JP2023164228A publication Critical patent/JP2023164228A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/04Isoindoline dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/006Preparation of organic pigments
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

To provide a printing ink set having excellent light resistance and excellent color reproducibility.SOLUTION: A printing ink set comprises: yellow ink containing an isoindoline compound represented by the formula (1) or C.I. Pigment Yellow 180 and a dispersion medium; cyan ink containing a phthalocyanine pigment and a dispersion medium; magenta ink A containing C.I. Pigment Red 122 and a dispersion medium; and magenta ink B containing C.I. Pigment Violet 19 and a dispersion medium. In the formula, R1 to R4 independently represent a hydrogen atom, an alkyl group, or an alkoxy group, R5 and R6 each independently represent a hydrogen atom or an alkyl group, and X1 represents -O- or -NH-, and R7 represents a hydrogen atom, an alkyl group, or an aryl group.SELECTED DRAWING: None

Description

本発明の実施形態は、少なくとも3原色の印刷インキを備えた印刷インキセット、印刷物、及び包装材料に関する。 Embodiments of the invention relate to printing ink sets, printed products, and packaging materials comprising printing inks of at least three primary colors.

印刷インキは、主材として顔料と分散媒体とを含み、各種プラスチック及び紙等の基材に印刷層を形成するために用いられる。印刷インキは、その印刷方式、又は用途の観点から大別される。例えば、印刷方法の観点からは、オフセット印刷用インキ、フレキソ印刷用インキ、グラビア印刷用インキ、及びシルクスクリーン印刷用インキが挙げられる。
また、印刷インキは、各種用途に合わせて構成され、分散媒体の形態に応じて大別することもできる。例えば、分散媒体として樹脂を含む無溶剤系(活性エネルギー線硬化性)印刷インキ、及び分散媒体として有機溶剤を含む溶剤系印刷インキが挙げられる。さらに、分散媒体として樹脂及び水を含む水性印刷インキが挙げられる。
Printing inks contain pigments as main ingredients and a dispersion medium, and are used to form printing layers on base materials such as various plastics and paper. Printing inks are broadly classified in terms of their printing methods or uses. For example, from the viewpoint of printing methods, examples include offset printing ink, flexo printing ink, gravure printing ink, and silk screen printing ink.
Furthermore, printing inks are configured to suit various uses and can be broadly classified according to the form of the dispersion medium. Examples include solvent-free (active energy ray-curable) printing inks containing a resin as a dispersion medium and solvent-based printing inks containing an organic solvent as a dispersion medium. Further examples include aqueous printing inks containing resin and water as a dispersion medium.

このように印刷インキは、様々な印刷方法で使用され、また様々な形態で構成される。印刷インキの用途としては、印刷物、及び印刷物を用いた包装材料が挙げられる。印刷物としては、例えば、ポスター、ラベル、及び薬箱など、基材上に印刷層を形成したものが挙げられる。また、包装材料としては、例えば、食料品、飲料品、生活用品、文化用品、及び電子部品等の物品を包装するための包装材料が挙げられる。
印刷物及び包装材料の用途で使用される印刷インキには、少なくとも色再現性が求められる。しかし、近年、印刷物及び包装材料の用途拡大は著しく、印刷物及び包装材料の使用形態は多岐にわたる。そのため、印刷物及び包装材料の用途に使用される印刷インキに対しても、様々な性能が要求されている。
Printing inks are thus used in various printing methods and configured in various forms. Applications of printing ink include printed matter and packaging materials using printed matter. Examples of printed materials include posters, labels, medicine boxes, and other materials in which a printed layer is formed on a base material. Furthermore, examples of packaging materials include packaging materials for packaging articles such as foodstuffs, beverages, daily necessities, cultural goods, and electronic parts.
Printing inks used for printed matter and packaging materials are required to have at least color reproducibility. However, in recent years, the uses of printed matter and packaging materials have expanded significantly, and the forms of use of printed matter and packaging materials have become diverse. Therefore, various performances are required of printing inks used for printed matter and packaging materials.

例えば、包装材料については、内容物の品質保持機能、及び輸送の効率化等に加えて、内容物の製品情報を適切に表示する機能が求められる。製品情報を適切に表示するために、包装材料には、装飾、美感の付与、内容物、賞味期限、製造者又は販売者の表示等を目的とした印刷層が形成されている。このような印刷層による表示は、物流関係者及び消費者にとって非常に重要な情報である。製品情報として、ブランドマーク又はブランドカラーが使用されることもあり、この場合、美感の付与も含めて、印刷物及び包装材料には高い意匠性が求められる。したがって、印刷物及び包装材料の用途で好適に使用できる色再現性を有する印刷インキが必要となる。 For example, packaging materials are required to have a function to maintain the quality of the contents, improve transportation efficiency, and the like, as well as a function to appropriately display product information about the contents. In order to display product information appropriately, a printing layer is formed on the packaging material for the purpose of decoration, imparting aesthetic appearance, displaying contents, expiration date, manufacturer or seller, etc. Display by such a printed layer is very important information for logistics personnel and consumers. Brand marks or brand colors are sometimes used as product information, and in this case, printed matter and packaging materials are required to have a high level of design, including the provision of aesthetic appeal. Therefore, there is a need for printing inks that have color reproducibility that can be suitably used in printed matter and packaging material applications.

また、例えば、印刷物又は包装材料が屋外で使用される場合、日光による変色又は退色が起こる問題が生じることがある。さらに、包装材料及び包装物は、長期にわたって光照射下で保存される場合がある。このような保存条件下においても、退色が起こり、企図された包装の外見から乖離してしまう問題が生じることがある。また、包装材料の用途では、保存時の光照射によって発生するラジカルの影響で、印刷層の凝集力低下又は密着力低下が発生し、ラミネート強度が低下する場合がある。その結果、光照射下で長期保存された包装物及び包装材料を開封する際に、積層体の相間剥離が発生する問題が生じることもある。 Also, for example, when printed materials or packaging materials are used outdoors, problems may arise in which discoloration or fading occurs due to sunlight. Additionally, packaging materials and packages may be stored under light irradiation for long periods of time. Even under such storage conditions, discoloration may occur, causing a problem in which the packaging deviates from the intended appearance. Furthermore, when used as a packaging material, the influence of radicals generated by light irradiation during storage may cause a decrease in the cohesive force or adhesion of the printed layer, resulting in a decrease in laminate strength. As a result, when unsealing packages and packaging materials that have been stored for a long period of time under light irradiation, a problem may arise in which interphase delamination of the laminate occurs.

このような観点から、印刷物又は包装材料の用途で使用する印刷インキは、優れた色再現性に加えて、耐候性、及び耐光性といった耐久性に優れることが望ましい。特に、保存時の光照射については、照射の光源として、従来は太陽光又は蛍光灯が一般的であったが、近年は屋内照射に白色LEDが使用されることが非常に増えている。そのため、印刷インキには、従来とは異なる耐光性などの耐久性が求められる場合もある。 From this point of view, it is desirable that printing inks used for printed matter or packaging materials have excellent durability such as weather resistance and light resistance in addition to excellent color reproducibility. In particular, for light irradiation during storage, sunlight or fluorescent lamps have conventionally been commonly used as the light source for irradiation, but in recent years white LEDs have been increasingly used for indoor irradiation. Therefore, printing inks may be required to have durability such as light resistance that is different from conventional printing inks.

上述のように、印刷インキの性能として、代表的に、優れた色再現性と、耐候性、及び耐光性などの耐久性が求められており、様々な検討が進められている。
例えば、包装材料に耐光性を付与する方法が検討されている。例えば、特許文献1では、特定の顔料とポリウレタン樹脂とを含む印刷インキを使用し、耐光性に優れた包装材料を提供できることを開示している。また、特許文献2では、紫外線吸収剤又は光安定化剤を一定量添加した印刷インキを使用し、光照射による塗膜の劣化が抑制され、耐光性に優れた包装材料を提供できることを開示している。
As mentioned above, printing inks are typically required to have excellent color reproducibility and durability such as weather resistance and light resistance, and various studies are underway.
For example, methods of imparting light resistance to packaging materials are being considered. For example, Patent Document 1 discloses that a printing ink containing a specific pigment and a polyurethane resin can be used to provide a packaging material with excellent light resistance. Furthermore, Patent Document 2 discloses that by using printing ink to which a certain amount of an ultraviolet absorber or a light stabilizer is added, deterioration of the coating film due to light irradiation is suppressed, and a packaging material with excellent light resistance can be provided. ing.

特開2012-136582号公報Japanese Patent Application Publication No. 2012-136582 特開2006-70190号公報Japanese Patent Application Publication No. 2006-70190

しかし、特許文献1に記載の方法のように、特定の顔料を含む印刷インキを使用した場合、包装材料に用いられる代表的な印刷インキと比較して再現可能な色域が低下し、所望とする意匠性を得ることは難しい傾向がある。また、特許文献2の方法では、使用する紫外線吸収剤又は光安定化剤が高価であるため、印刷インキの製造コストが高くなる。さらに、印刷インキ中に紫外線吸収剤又は光安定化剤を添加した場合、インキの経時安定性が低下してゲル化が生じる場合もある。
このように、色再現性に優れ、かつ耐候性、及び耐光性といった耐久性に優れる印刷インキの実現に向けて、さらなる検討が望まれている。また、包装材料のように高度な意匠性が求められる用途に向けて、より広い色域を再現でき、かつ経時による色変化が少ない、印刷インキセットに対するニーズもある。
However, when a printing ink containing a specific pigment is used, as in the method described in Patent Document 1, the reproducible color gamut is lower than that of typical printing inks used for packaging materials, resulting in a lower color range than desired. It tends to be difficult to obtain a good design quality. Further, in the method of Patent Document 2, the ultraviolet absorber or light stabilizer used is expensive, so the manufacturing cost of the printing ink increases. Furthermore, when an ultraviolet absorber or a light stabilizer is added to a printing ink, the stability of the ink over time may decrease and gelation may occur.
As described above, further studies are desired toward the realization of a printing ink that has excellent color reproducibility and excellent durability such as weather resistance and light resistance. There is also a need for printing ink sets that can reproduce a wider color gamut and have less color change over time for applications such as packaging materials that require a high degree of design.

そこで、上述の状況に鑑み、本発明は、耐光性に優れ、優れた色再現性を有する、印刷インキセットを提供する。また、本発明は、上記印刷インキセットを使用して、意匠性に優れ、かつ耐光性、及び印刷層の接着性に優れる印刷物、及び包装材料を提供する。 Therefore, in view of the above-mentioned situation, the present invention provides a printing ink set that has excellent light resistance and excellent color reproducibility. Furthermore, the present invention provides printed matter and packaging materials that use the above-mentioned printing ink set and have excellent design, light resistance, and adhesiveness of the printed layer.

本発明の実施形態は以下に関する。ただし、本発明の実施形態は以下に限定されず、様々な実施形態を含む。
[1]下記一般式(1)で表されるイソインドリン化合物又はC.I.ピグメントイエロー180と分散媒体とを含むイエローインキ、
フタロシアニン顔料と分散媒体とを含むシアンインキ、
C.I.ピグメントレッド122と分散媒体とを含むマゼンタインキA、及び
C.I.ピグメントバイオレット19と分散媒体とを含むマゼンタインキBを備えた、印刷インキセット。
Embodiments of the present invention relate to the following. However, the embodiments of the present invention are not limited to the following, and include various embodiments.
[1] Isoindoline compound represented by the following general formula (1) or C.I. I. Yellow ink containing Pigment Yellow 180 and a dispersion medium;
cyan ink comprising a phthalocyanine pigment and a dispersion medium;
C. I. magenta ink A containing pigment red 122 and a dispersion medium, and C. I. A printing ink set comprising magenta ink B containing pigment violet 19 and a dispersion medium.

Figure 2023164228000001
Figure 2023164228000001

一般式(1)中、R~Rは、それぞれ独立して、水素原子、アルキル基、又はアルコキシ基を表す。R及びRは、それぞれ独立して、水素原子、又はアルキル基を表す。Xは-O-又は-NH-を表し、Rは水素原子、アルキル基、又はアリール基を表す。 In general formula (1), R 1 to R 4 each independently represent a hydrogen atom, an alkyl group, or an alkoxy group. R 5 and R 6 each independently represent a hydrogen atom or an alkyl group. X 1 represents -O- or -NH-, and R 7 represents a hydrogen atom, an alkyl group, or an aryl group.

[2]上記一般式(1)で表されるイソインドリン化合物が、下記式(4)及び(5)からなる群より選ばれる少なくとも1種の化合物を含む、上記[1]に記載の印刷インキセット。 [2] The printing ink according to [1] above, wherein the isoindoline compound represented by the above general formula (1) contains at least one compound selected from the group consisting of the following formulas (4) and (5). set.

Figure 2023164228000002
Figure 2023164228000002

[3]グラビア印刷用に使用される、上記[1]又は[2]に記載の印刷インキセット。 [3] The printing ink set according to [1] or [2] above, which is used for gravure printing.

[4]フレキソ印刷用に使用される、上記[1]又は[2]に記載の印刷インキセット。 [4] The printing ink set according to [1] or [2] above, which is used for flexographic printing.

[5]基材と、上記[1]~[4]のいずれか1つに記載の印刷インキセットから形成された印刷層とを有する、印刷物。 [5] A printed matter comprising a base material and a printing layer formed from the printing ink set according to any one of [1] to [4] above.

[6]上記[5]に記載の印刷物を備えた包装材料。 [6] A packaging material comprising the printed matter according to [5] above.

本発明によれば、従来の印刷インキと同等又はそれ以上の色域を有し、耐光性に優れ、高い色再現性を有する印刷インキセットを提供することができる。また、上記印刷インキセットを使用して、意匠性に優れ、かつ耐光性に優れる印刷物、及び包装材料を提供することができる。 According to the present invention, it is possible to provide a printing ink set that has a color gamut equivalent to or greater than that of conventional printing inks, excellent light resistance, and high color reproducibility. Further, by using the above printing ink set, it is possible to provide printed matter and packaging materials that have excellent design and light resistance.

まず、本明細書で使用する用語を定義する。「(メタ)アクリロイル」、「(メタ)アクリル」と表記した場合、特に説明がない限り、それぞれ、「アクリロイル及び/又はメタクリロイル」、「アクリル及び/又はメタクリル」を意味する。同様に、「(メタ)アクリル酸」、「(メタ)アクリレート」、又は「(メタ)アクリルアミド」と標記した場合、それぞれ、「アクリル酸及び/又はメタクリル酸」、「アクリレート及び/又はメタクリレート」、又は「アクリルアミド及び/又はメタクリルアミド」を意味する。
また、「C.I.」は、カラーインデックス(C.I.)を意味する。
本明細書において「~」を用いて特定される数値範囲は、「~」の前後に記載される数値を下限値及び上限値の範囲として含むものとする。
本明細書中に記載する各種成分は、特に注釈しない限り、それぞれ独立に、1種を単独で、あるいは2種以上を組合せて用いてもよい。
First, the terms used in this specification will be defined. When expressed as "(meth)acryloyl" or "(meth)acrylic", unless otherwise specified, they mean "acryloyl and/or methacryloyl" and "acrylic and/or methacrylic", respectively. Similarly, when "(meth)acrylic acid", "(meth)acrylate", or "(meth)acrylamide" is written, "acrylic acid and/or methacrylic acid", "acrylate and/or methacrylate", or "acrylamide and/or methacrylamide".
Moreover, "C.I." means color index (C.I.).
In this specification, numerical ranges specified using "-" shall include the numerical values written before and after "-" as the lower limit and upper limit ranges.
Unless otherwise noted, the various components described herein may be used independently, one type alone, or two or more types may be used in combination.

なお、顔料の平均一次粒子径は、透過型(TEM)電子顕微鏡を使用して、電子顕微鏡写真から一次粒子の大きさを直接計測した値である。これは、後述する実施例の項に記載する方法にしたがって測定することができる。 The average primary particle diameter of the pigment is a value obtained by directly measuring the size of the primary particles from an electron micrograph using a transmission electron microscope (TEM). This can be measured according to the method described in the Examples section below.

以下、本発明の実施形態について説明する。但し、本発明は、以下の記載に限定されるものではなく、様々な実施形態を含む。
<印刷インキセット>
本発明の一実施形態は、少なくとも3原色の印刷インキを備えた印刷インキセットに関する。上記印刷インキセットは、一般式(1)で表されるイソインドリン化合物又はC.I.ピグメントイエロー180と分散媒体とを含むイエローインキ、フタロシアニン顔料と分散媒体とを含むシアンインキ、C.I.ピグメントレッド122と分散媒体とを含むマゼンタインキA、及びC.I.ピグメントバイオレット19と分散媒体とを含むマゼンタインキB、を備える。
Embodiments of the present invention will be described below. However, the present invention is not limited to the following description, and includes various embodiments.
<Printing ink set>
One embodiment of the invention relates to a printing ink set comprising printing inks of at least three primary colors. The above printing ink set contains an isoindoline compound represented by general formula (1) or C.I. I. Pigment Yellow 180 and a dispersion medium; a cyan ink containing a phthalocyanine pigment and a dispersion medium; I. Pigment Red 122 and a dispersion medium, magenta ink A, and C.I. I. A magenta ink B containing pigment violet 19 and a dispersion medium is provided.

一実施形態において、印刷インキセットは、上記4つの印刷インキに加えて、墨インキ(ブラックインキ)、白インキ(ホワイトインキ)、特色インキ等の、その他インキをさらに備えてもよい。 In one embodiment, the printing ink set may further include other inks, such as black ink, white ink, and special color ink, in addition to the above four printing inks.

本実施形態の印刷インキセットは、様々な印刷方法に適用することができる。印刷インキセットは、例えば、オフセット印刷用インキ、フレキソ印刷用インキ、グラビア印刷用インキ、スクリーン印刷用インキ等の印刷インキセットとして使用できる。なかでも、グラビア印刷用の印刷インキセット(以下、グラビア印刷インキセットともいう)、及びフレキソ印刷用の印刷インキセット(以下、フレキソ印刷インキセットともいう)が好ましく、これらは包装材料の用途に好適に使用することができる。 The printing ink set of this embodiment can be applied to various printing methods. The printing ink set can be used, for example, as a printing ink set such as offset printing ink, flexo printing ink, gravure printing ink, screen printing ink, etc. Among these, printing ink sets for gravure printing (hereinafter also referred to as gravure printing ink sets) and printing ink sets for flexographic printing (hereinafter also referred to as flexographic printing ink sets) are preferred, and these are suitable for use in packaging materials. It can be used for.

以下、本実施形態の印刷インキセットにおける各色のインキについて説明する。
<イエローインキ>
印刷インキセットにおけるイエローインキは、下記一般式(1)で表されるイソインドリン化合物、又はC.I.ピグメントイエロー180と、後述する分散媒体とを含む。
Each color of ink in the printing ink set of this embodiment will be explained below.
<Yellow ink>
The yellow ink in the printing ink set is an isoindoline compound represented by the following general formula (1) or C.I. I. Pigment Yellow 180 and a dispersion medium to be described later.

[イソインドリン化合物(1)]
以下、一般式(1)で表されるイソインドリン化合物を、イソインドリン化合物(1)という。
[Isoindoline compound (1)]
Hereinafter, the isoindoline compound represented by general formula (1) will be referred to as isoindoline compound (1).

Figure 2023164228000003
Figure 2023164228000003

一般式(1)中、R~Rは、それぞれ独立して、水素原子、アルキル基、又はアルコキシ基を表す。R及びRは、それぞれ独立して、水素原子、又はアルキル基を表す。Xは-O-又は-NH-を表し、Rは水素原子、アルキル基、又はアリール基を表す。 In general formula (1), R 1 to R 4 each independently represent a hydrogen atom, an alkyl group, or an alkoxy group. R 5 and R 6 each independently represent a hydrogen atom or an alkyl group. X 1 represents -O- or -NH-, and R 7 represents a hydrogen atom, an alkyl group, or an aryl group.

イソインドリン化合物(1)は、単独で、又は2種類以上を組合せて使用できる。 The isoindoline compound (1) can be used alone or in combination of two or more.

一般式(1)中、R~Rにおけるアルキル基(-R)の炭素数は、1~20が好ましく、1~10がより好ましく、1~4がさらに好ましく、1~3がさらに好ましい。炭素数1又は2のアルキル基が最も好ましい。
アルキル基は、直鎖構造、分岐構造、単環構造、又は縮合多環構造のいずれであってもよい。
アルキル基は、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、オクタデシル基、イソプロピル基、イソブチル基、イソペンチル基、2-エチルヘキシル基、2-ヘキシルドデシル基、sec-ブチル基、tert-ブチル基、sec-ペンチル基、tert-ペンチル基、tert-オクチル基、ネオペンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、アダマンチル基、ノルボルニル基、ボロニル基、又は4-デシルシクロヘキシル基等が挙げられる。
In general formula (1), the number of carbon atoms in the alkyl group (-R) in R 1 to R 4 is preferably 1 to 20, more preferably 1 to 10, even more preferably 1 to 4, and even more preferably 1 to 3. . Most preferred are alkyl groups having 1 or 2 carbon atoms.
The alkyl group may have a linear structure, a branched structure, a monocyclic structure, or a condensed polycyclic structure.
Examples of the alkyl group include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, octadecyl group, isopropyl group, isobutyl group, and isopentyl group. , 2-ethylhexyl group, 2-hexyldodecyl group, sec-butyl group, tert-butyl group, sec-pentyl group, tert-pentyl group, tert-octyl group, neopentyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, Examples include cyclohexyl group, adamantyl group, norbornyl group, boronyl group, and 4-decylcyclohexyl group.

上記アルキル基は、少なくとも1つの水素原子が、ハロゲン原子、ヒドロキシル基、アルコキシ基、カルボキシル基、エステル基、スルホ基、スルファニル基、スルファモイル基、アミノ基、アルキルアミノ基、アミド基などの他の置換基で置換されてもよい。また、置換基は複数存在していてもよい。なお、置換基は上記に限定されるものではない。 The alkyl group mentioned above has at least one hydrogen atom substituted with another group such as a halogen atom, hydroxyl group, alkoxy group, carboxyl group, ester group, sulfo group, sulfanyl group, sulfamoyl group, amino group, alkylamino group, or amide group. May be substituted with groups. Moreover, a plurality of substituents may exist. Note that the substituents are not limited to those mentioned above.

上記アルキル基は、2以上のアルキル基(但し、一方はアルキレン基となる)が連結基を介して互いに結合した構造を有してもよい。連結基の具体例として、エステル結合(-COO-)、エーテル結合(-O-)、スルフィド結合(-S-)が挙げられる。すなわち、本明細書において、アルキル基は、例えば、「-R’-O-R」で表される基が挙げられる(R’は上記アルキル基から水素原子を1つ除いた原子団を表す)。具体例として、-C-O-Cが挙げられる。 The above alkyl group may have a structure in which two or more alkyl groups (however, one becomes an alkylene group) are bonded to each other via a linking group. Specific examples of the linking group include an ester bond (-COO-), an ether bond (-O-), and a sulfide bond (-S-). That is, in this specification, the alkyl group includes, for example, a group represented by "-R'-O-R"(R' represents an atomic group obtained by removing one hydrogen atom from the above alkyl group). . A specific example is -C 2 H 4 -O-C 2 H 5 .

一般式(1)中、R~Rにおけるアルコキシ基は、上述のアルキル基(-R)に酸素原子が結合した基(-OR)である。 In the general formula (1), the alkoxy group in R 1 to R 4 is a group (-OR) in which an oxygen atom is bonded to the above-mentioned alkyl group (-R).

一般式(1)中、R~Rにおけるアルキル基(-R)は、R~Rにおけるアルキル基と同様である。 In general formula (1), the alkyl group (-R) in R 5 to R 7 is the same as the alkyl group in R 1 to R 4 .

一般式(1)中、Rにおけるアリール基(-Ar)は、芳香族炭化水素から水素原子を1つ除いた原子団である。炭素数は6~30が好ましく、6~20がより好ましい。
上記アリール基は、例えば、フェニル基、トリル基、ビフェニリル基、ターフェニリル基、クオーターフェニリル基、ペンタレニル基、インデニル基、ナフチル基、ビナフタレニル基、ターナフタレニル基、クオーターナフタレニル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、インダセニル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、フェナレニル基、フルオレニル基、アントリル基、ビアントラセニル基、ターアントラセニル基、クオーターアントラセニル基、アントラキノリル基、フェナントリル基、トリフェニレニル基、ピレニル基、クリセニル基、ナフタセニル基、プレイアデニル基、ピセニル基、ペリレニル基、ペンタフェニル基、ペンタセニル基、テトラフェニレニル基、ヘキサフェニル基、ヘキサセニル基、ルビセニル基、コロネニル基、トリナフチレニル基、ヘプタフェニル基、ヘプタセニル基、ピラントレニル基、又はオバレニル基等が挙げられる。これらのなかでも、フェニル基及びトリル基が好ましい。
In the general formula (1), the aryl group (-Ar) in R 7 is an atomic group obtained by removing one hydrogen atom from an aromatic hydrocarbon. The number of carbon atoms is preferably 6 to 30, more preferably 6 to 20.
The above aryl group is, for example, a phenyl group, tolyl group, biphenylyl group, terphenylyl group, quarterphenyl group, pentalenyl group, indenyl group, naphthyl group, binaphthalenyl group, ternaphthalenyl group, quarternaphthalenyl group, azulenyl group, hepthalenyl group. , biphenylenyl group, indacenyl group, fluoranthenyl group, acephenanthrylenyl group, aceantrylenyl group, phenalenyl group, fluorenyl group, anthryl group, bianthracenyl group, teranthracenyl group, quarteranthracenyl group, anthraquinolyl group , phenanthryl group, triphenylenyl group, pyrenyl group, chrysenyl group, naphthacenyl group, plaiadenyl group, picenyl group, perylenyl group, pentaphenyl group, pentacenyl group, tetraphenylenyl group, hexaphenyl group, hexacenyl group, rubicenyl group, coronenyl group group, trinaphthylenyl group, heptaphenyl group, heptacenyl group, pyranthrenyl group, or obalenyl group. Among these, phenyl group and tolyl group are preferred.

上記アリール基は、少なくとも1つの水素原子がハロゲン原子、ヒドロキシル基、アルコキシ基、カルボキシル基、エステル基、スルホ基、スルファニル基、スルファモイル基、アミノ基、アルキルアミノ基、アミド基などの他の置換基で置換されてもよい。また、置換基は複数有していてもよい。なお、置換基は上記に限定されるものではない。 The above aryl group has at least one hydrogen atom that is a halogen atom, a hydroxyl group, an alkoxy group, a carboxyl group, an ester group, a sulfo group, a sulfanyl group, a sulfamoyl group, an amino group, an alkylamino group, or another substituent such as an amide group. may be replaced with Moreover, you may have multiple substituents. Note that the substituents are not limited to those mentioned above.

一般式(1)中、Xは、-O-又は-NH-を表しており、好ましくは-NH-である。 In general formula (1), X 1 represents -O- or -NH-, preferably -NH-.

一般式(1)で表されるイソインドリン化合物は、下記式(4)及び(5)からなる群より選ばれる少なくとも1種の化合物を含むことが好ましい。 The isoindoline compound represented by the general formula (1) preferably contains at least one compound selected from the group consisting of the following formulas (4) and (5).

Figure 2023164228000004
Figure 2023164228000004

式(4)で表されるイソインドリン化合物(以下、イソインドリン化合物(4))、又は式(5)で表されるイソインドリン化合物(以下、イソインドリン化合物(5))を使用することで、より高い色再現性と耐光性とを両立できる。 By using the isoindoline compound represented by formula (4) (hereinafter referred to as isoindoline compound (4)) or the isoindoline compound represented by formula (5) (hereinafter referred to as isoindoline compound (5)), Achieves both higher color reproducibility and light resistance.

[イソインドリン化合物(1)の製造方法]
イソインドリン化合物(1)は、下記スキーム1に示すように、式(6)で表される1,3-ジイミノイソインドリン(以下、化合物(6)という)を出発原料として合成できる。
以下、イソインドリン化合物(1)の具体例に沿って、合成方法を説明する。以下の説明では、各式で記載した番号を化合物の番号として記載する。
[Method for producing isoindoline compound (1)]
Isoindoline compound (1) can be synthesized using 1,3-diiminoisoindoline represented by formula (6) (hereinafter referred to as compound (6)) as a starting material, as shown in Scheme 1 below.
Hereinafter, the synthesis method will be explained along with specific examples of isoindoline compound (1). In the following explanation, the numbers described in each formula are described as compound numbers.

Figure 2023164228000005
Figure 2023164228000005

スキーム1-1は、アンモニア水溶液の存在下で、化合物(6)と、化合物(7)とを反応させる第一工程(S1);次いで、酢酸の存在下で、化合物(8)と、化合物(9)と反応させる第二工程(S2)を含んでよい。
スキーム1-1の第一工程(S1)において、アンモニア水溶液の使用量は、28%アンモニア水溶液を用いる場合、化合物(6)の100質量部に対して、1~20倍の量が好ましく、1~5倍の量がより好ましい。
スキーム1-1における各工程での反応温度は、10~100℃程度が好ましい。
Scheme 1-1 shows the first step (S1) of reacting compound (6) and compound (7) in the presence of an aqueous ammonia solution; then, the reaction of compound (8) and compound ( A second step (S2) of reacting with 9) may be included.
In the first step (S1) of Scheme 1-1, when using a 28% ammonia aqueous solution, the amount of ammonia aqueous solution used is preferably 1 to 20 times the amount of 100 parts by mass of compound (6), and 1 An amount of ~5 times is more preferred.
The reaction temperature in each step in Scheme 1-1 is preferably about 10 to 100°C.

イソインドリン化合物(1)の置換基RとRの関係、置換基RとRの関係、又は置換基RとRの関係が非対称となる場合、最終生成物は、異性体を含む混合物として得られる。イソインドリン化合物(1)は、異性体を含む混合物、及びそれぞれ単一の化合物のいずれであってもよい。 When the relationship between substituents R 1 and R 4 , the relationship between substituents R 2 and R 3 , or the relationship between substituents R 5 and R 6 of the isoindoline compound (1) is asymmetric, the final product is an isomer. obtained as a mixture containing The isoindoline compound (1) may be a mixture containing isomers or a single compound.

イソインドリン化合物(1)は、公知の方法で整粒化処理や表面処理を行うことで、顔料を調製することが好ましい。例えば、アシッドペースティングに代表される溶解析出法やソルベントソルトミリング、ドライミリング等が挙げられる。 It is preferable to prepare a pigment from the isoindoline compound (1) by subjecting it to granulation treatment or surface treatment using a known method. Examples include dissolution precipitation methods typified by acid pasting, solvent salt milling, dry milling, and the like.

[C.I.ピグメントイエロー180]
C.I.ピグメントイエロー180は、下記式(10)で示される化合物からなる顔料であり、公知の方法により製造される。
[C. I. Pigment Yellow 180]
C. I. Pigment Yellow 180 is a pigment consisting of a compound represented by the following formula (10), and is produced by a known method.

Figure 2023164228000006
Figure 2023164228000006

C.I.ピグメントイエロー180の平均一次粒子径は、70~250nmが好ましく、100~200nmがより好ましい。平均一次粒子径が250nm以下であることで、透明性が向上し、高い色再現性を得ることができる。また、平均一次粒子径が70nm以上であることで、より耐光性が向上する。 C. I. The average primary particle diameter of Pigment Yellow 180 is preferably 70 to 250 nm, more preferably 100 to 200 nm. When the average primary particle diameter is 250 nm or less, transparency can be improved and high color reproducibility can be obtained. Furthermore, when the average primary particle diameter is 70 nm or more, light resistance is further improved.

イエローインキは、本発明の効果を損なわない範囲で、さらに、上記顔料以外の黄色顔料(以下、その他の黄色顔料という)、樹脂、有機溶剤、顔料分散剤、及びその他の添加剤等を含有してもよい。 The yellow ink may further contain yellow pigments other than the above pigments (hereinafter referred to as other yellow pigments), resins, organic solvents, pigment dispersants, and other additives, to the extent that the effects of the present invention are not impaired. It's okay.

その他の黄色顔料としては、例えば、C.I.ピグメントイエロー12、C.I.ピグメントイエロー13、C.I.ピグメントイエロー14、C.I.ピグメントイエロー17、C.I.ピグメントイエロー83、C.I.ピグメントイエロー93、C.I.ピグメントイエロー95、C.I.ピグメントイエロー109、C.I.ピグメントイエロー110、C.I.ピグメントイエロー120、C.I.ピグメントイエロー138、C.I.ピグメントイエロー151、C.I.ピグメントイエロー155、C.I.ピグメントイエロー174等が挙げられる。また、下記一般式(2-1)及び(2-2)で表されるイソインドリン化合物も挙げられる。ただし、耐光性又は再現色域が低下する恐れがあるため、これらその他の黄色顔料の使用は最小限にとどめた方がよい。 Other yellow pigments include, for example, C.I. I. Pigment Yellow 12, C. I. Pigment Yellow 13, C. I. Pigment Yellow 14, C. I. Pigment Yellow 17, C. I. Pigment Yellow 83, C. I. Pigment Yellow 93, C. I. Pigment Yellow 95, C. I. Pigment Yellow 109, C. I. Pigment Yellow 110, C. I. Pigment Yellow 120, C. I. Pigment Yellow 138, C. I. Pigment Yellow 151, C. I. Pigment Yellow 155, C. I. Pigment Yellow 174 and the like. Also included are isoindoline compounds represented by the following general formulas (2-1) and (2-2). However, the use of these other yellow pigments should be kept to a minimum because there is a risk that the light resistance or color reproduction gamut may be reduced.

イエローインキに含まれる顔料中、イソインドリン化合物(1)及びC.I.ピグメントイエロー180の含有率は、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらにより好ましく、95質量%以上であることが特に好ましい。イソインドリン化合物(1)及びC.I.ピグメントイエロー180を両方含む場合には、合計が、上記範囲であることが好ましい。 Among the pigments contained in the yellow ink, isoindoline compound (1) and C.I. I. The content of Pigment Yellow 180 is preferably 70% by mass or more, more preferably 80% by mass or more, even more preferably 90% by mass or more, particularly 95% by mass or more. preferable. Isoindoline compound (1) and C.I. I. When both Pigment Yellow 180 are included, the total is preferably within the above range.

Figure 2023164228000007
Figure 2023164228000007

一般式(2-1)中、R11~R14は、それぞれ独立して、水素原子、アルキル基、又はアルコキシ基を表す。R15~R18は、それぞれ独立して、水素原子、又はアルキル基を表す。
また、一般式(2-2)中、R19は、置換基を有してもよいアルキル基を表す。
In general formula (2-1), R 11 to R 14 each independently represent a hydrogen atom, an alkyl group, or an alkoxy group. R 15 to R 18 each independently represent a hydrogen atom or an alkyl group.
Furthermore, in the general formula (2-2), R 19 represents an alkyl group which may have a substituent.

上式(2-1)中、R11~R14におけるアルキル基(-R)、アルコキシ基は、式(1)中のR~Rにおけるアルキル基、アルコキシ基と同様である。また、上式(2-1)中、R15~R18におけるアルキル基(-R)は、式(1)中のR~Rにおけるアルキル基と同様である。
また、上式(2-2)中、R19におけるアルキル基(-R)は、式(1)中のR~Rにおけるアルキル基と同様であり、置換基についても同様である。
In the above formula (2-1), the alkyl group (-R) and alkoxy group in R 11 to R 14 are the same as the alkyl group and alkoxy group in R 1 to R 4 in formula (1). Furthermore, in the above formula (2-1), the alkyl group (-R) in R 15 to R 18 is the same as the alkyl group in R 5 to R 6 in formula (1).
Furthermore, in the above formula (2-2), the alkyl group (-R) in R 19 is the same as the alkyl group in R 1 to R 4 in formula (1), and the same applies to the substituents.

<シアンインキ>
印刷インキセットにおけるシアンインキは、フタロシアニン顔料と、後述する分散媒体とを含む。
<Cyan ink>
The cyan ink in the printing ink set contains a phthalocyanine pigment and a dispersion medium described below.

[フタロシアニン顔料]
フタロシアニン顔料は、下記一般式(3)で示される化合物からなる顔料であり、公知の方法により製造することができる。
[Phthalocyanine pigment]
The phthalocyanine pigment is a pigment made of a compound represented by the following general formula (3), and can be produced by a known method.

Figure 2023164228000008
Figure 2023164228000008

一般式(3)中、R101~R116は、それぞれ独立に、水素原子、ハロゲン原子、並びに、置換基を有してもよい、アルキル基、アリール基、アルコキシル基、及びアリールオキシ基を表す。Mは、2つの水素原子、2つの1価の金属原子、2価の金属原子、3価の置換金属原子、4価の置換金属原子、又は酸化金属原子を表す。一実施形態において、フタロシアニン顔料は、金属フタロシアニン顔料であることが好ましい。すなわち、Mは、2つの1価の金属原子、2価の金属原子、3価の置換金属原子、4価の置換金属原子、又は酸化金属原子であることが好ましい。Mは、2価の金属原子、3価の置換金属原子、4価の置換金属原子、又は酸化金属原子であることがより好ましく、2価の金属原子であることがさらに好ましい。 In general formula (3), R 101 to R 116 each independently represent a hydrogen atom, a halogen atom, and an alkyl group, an aryl group, an alkoxyl group, and an aryloxy group which may have a substituent. . M represents two hydrogen atoms, two monovalent metal atoms, a divalent metal atom, a trivalent substituted metal atom, a tetravalent substituted metal atom, or a metal oxide atom. In one embodiment, the phthalocyanine pigment is preferably a metal phthalocyanine pigment. That is, M is preferably two monovalent metal atoms, a divalent metal atom, a trivalent substituted metal atom, a tetravalent substituted metal atom, or a metal oxide atom. M is more preferably a divalent metal atom, a trivalent substituted metal atom, a tetravalent substituted metal atom, or an oxidized metal atom, and even more preferably a divalent metal atom.

アルキル基としては、直鎖状又は分岐鎖状のアルキル基が挙げられる。具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、オクタデシル基、イソプロピル基、イソブチル基、イソペンチル基、2-エチルヘキシル基、sec-ブチル基、tert-ブチル基、sec-ペンチル基、tert-ペンチル基、tert-オクチル基、ネオペンチル基等を挙げることができる。アルキル基の炭素数は1~30の範囲内であることが好ましい。 Examples of the alkyl group include linear or branched alkyl groups. Specific examples include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, octadecyl group, isopropyl group, isobutyl group, isopentyl group, Examples include 2-ethylhexyl group, sec-butyl group, tert-butyl group, sec-pentyl group, tert-pentyl group, tert-octyl group, and neopentyl group. The number of carbon atoms in the alkyl group is preferably within the range of 1 to 30.

上記アルキル基における置換基としては、フッ素、塩素、臭素等のハロゲン原子、水酸基、アミノ基、ニトロ基、ホルミル基、シアノ基、カルボキシル基等の他、後述するアリール基、シクロアルキル基、複素環基が挙げられる。また、構造の一部が、エステル結合(-COO-)又はエーテル結合(-O-)で置換されたものも置換基として含めるものとする。 Substituents for the above alkyl groups include halogen atoms such as fluorine, chlorine, and bromine, hydroxyl groups, amino groups, nitro groups, formyl groups, cyano groups, carboxyl groups, and the following aryl groups, cycloalkyl groups, and heterocycles. Examples include groups. In addition, those in which a part of the structure is substituted with an ester bond (-COO-) or an ether bond (-O-) are also included as substituents.

したがって、置換アルキル基としては、上記の置換基で置換されたアルキル基を意味する。一つ又は二つ以上の置換基で置換されたものであってもよい。例えば、ハロゲン原子で置換されたアルキル基の具体例としては、トリフルオロメチル基、2,2,2-トリフルオロエチル基、-(CFCF、-(CFCF、-(CFCF、-(CFCF、-(CFCF、トリクロロメチル基、2,2-ジブロモエチル基等を挙げることができる。 Therefore, the substituted alkyl group means an alkyl group substituted with the above-mentioned substituents. It may be substituted with one or more substituents. For example, specific examples of alkyl groups substituted with halogen atoms include trifluoromethyl group, 2,2,2-trifluoroethyl group, -(CF 2 ) 4 CF 3 , -(CF 2 ) 5 CF 3 , Examples include -(CF 2 ) 6 CF 3 , -(CF 2 ) 7 CF 3 , -(CF 2 ) 8 CF 3 , trichloromethyl group, 2,2-dibromoethyl group, and the like.

アリール基としては、単環又は縮合多環のアリール基が挙げられる。例えば、フェニル基、1-ナフチル基、2-ナフチル基、p-ビフェニル基、m-ビフェニル基、2-アントリル基、9-アントリル基、2-フェナントリル基、3-フェナントリル基、9-フェナントリル基、2-フルオレニル基、3-フルオレニル基、9-フルオレニル基、1-ピレニル基、2-ピレニル基、3-ペリレニル基、o-トリル基、m-トリル基、p-トリル基、4-メチルビフェニル基、ターフェニル基、4-メチル-1-ナフチル基、4-tert-ブチル-1-ナフチル基、4-ナフチル-1-ナフチル基、6-フェニル-2-ナフチル基、10-フェニル-9-アントリル基、スピロフルオレニル基、2-ベンゾシクロブテニル基等が挙げられる。アリール基の炭素数は6~18の範囲内であることが好ましい。置換アリール基の置換基としては、上述したアルキル基における置換基と同じ置換基が挙げられる。 Examples of the aryl group include monocyclic or condensed polycyclic aryl groups. For example, phenyl group, 1-naphthyl group, 2-naphthyl group, p-biphenyl group, m-biphenyl group, 2-anthryl group, 9-anthryl group, 2-phenanthryl group, 3-phenanthryl group, 9-phenanthryl group, 2-fluorenyl group, 3-fluorenyl group, 9-fluorenyl group, 1-pyrenyl group, 2-pyrenyl group, 3-perylenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 4-methylbiphenyl group , terphenyl group, 4-methyl-1-naphthyl group, 4-tert-butyl-1-naphthyl group, 4-naphthyl-1-naphthyl group, 6-phenyl-2-naphthyl group, 10-phenyl-9-anthryl group group, spirofluorenyl group, 2-benzocyclobutenyl group, and the like. The number of carbon atoms in the aryl group is preferably within the range of 6 to 18. Examples of the substituent for the substituted aryl group include the same substituents as those for the alkyl group described above.

アルコキシル基としては、直鎖状又は分岐鎖状のアルコキシル基が挙げられる。具体例としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、tert-ブトキシ基、ネオペンチルオキシ基、2,3-ジメチル-3-ペンチルオキシ基、n-へキシルオキシ基、n-オクチルオキシ基、ステアリルオキシ基、2-エチルへキシルオキシ基等が挙げられる。アルコキシル基の炭素数は1~6の範囲内であることが好ましい。置換アルコキシル基の置換基としては、上述したアルキル基における置換基と同じ置換基が挙げられる。 Examples of the alkoxyl group include linear or branched alkoxyl groups. Specific examples include methoxy group, ethoxy group, propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, tert-butoxy group, neopentyloxy group, 2,3-dimethyl-3-pentyloxy group, n- Examples include hexyloxy group, n-octyloxy group, stearyloxy group, and 2-ethylhexyloxy group. The number of carbon atoms in the alkoxyl group is preferably within the range of 1 to 6. Examples of the substituent for the substituted alkoxyl group include the same substituents as those for the alkyl group described above.

アリールオキシ基としては、単環又は縮合多環のアリールオキシ基が挙げられる。具体例としては、フェノキシ基、p-メチルフェノキシ基、ナフチルオキシ基、アンスリルオキシ基等が挙げられる。アリールオキシ基は、単環のアリールオキシ基が好ましい。また、炭素数6~12のアリールオキシ基が好ましい。 Examples of the aryloxy group include monocyclic or fused polycyclic aryloxy groups. Specific examples include phenoxy group, p-methylphenoxy group, naphthyloxy group, and anthryloxy group. The aryloxy group is preferably a monocyclic aryloxy group. Furthermore, an aryloxy group having 6 to 12 carbon atoms is preferred.

Mの1価の金属原子としては、例えば、Na、K、Li等が挙げられる。
Mの2価の金属原子、3価の置換金属原子、4価の置換金属原子、又は酸化金属原子に含まれる金属原子としては、例えば、周期律表第2族~第15族に属する金属原子が挙げられる。2価の金属原子としては、具体的には、Cu、Zn、Fe、Co、Ni、Ru、Pb、Rh、Pd、Pt、Mn、Sn、Pb、Ca、Mg等が挙げられる。
3価の置換金属原子としては、例えば、Al、Ga、In、Tl、Cr、Mn、Fe、Ru等の金属原子に、ハロゲン原子(-F、-Cl、-Br、-I)、水酸基、置換基を有してもよいアリール基、アリールオキシ基、シリルオキシ基、ホスフィニル基、ホスホニル基等の置換基が結合したものが挙げられる。
4価の置換金属原子としては、例えば、Cr、Si、Zr、Ge、Sn、Ti、Mn等の金属原子に、ハロゲン原子(-F、-Cl、-Br、-I)、水酸基、置換基を有してもよいアリール基、アリールオキシ基、シリルオキシ基、ホスフィニル基、ホスホニル基等の置換基2つが結合したものが挙げられる。
酸化金属原子としては、例えば、VO、MnO、TiO等が挙げられる。
Mは、好ましくはCu、Zn、Fe、Ca、Mg、Al-OH、又はTiOであり、より好ましくはCu、Al-OH、又はTiOであり、さらに好ましくはCuである。
Examples of the monovalent metal atom of M include Na, K, Li, and the like.
Examples of metal atoms included in the divalent metal atom, trivalent substituted metal atom, tetravalent substituted metal atom, or oxidized metal atom of M include metal atoms belonging to Groups 2 to 15 of the periodic table. can be mentioned. Specific examples of divalent metal atoms include Cu, Zn, Fe, Co, Ni, Ru, Pb, Rh, Pd, Pt, Mn, Sn, Pb, Ca, Mg, and the like.
Examples of trivalent substituted metal atoms include metal atoms such as Al, Ga, In, Tl, Cr, Mn, Fe, and Ru, halogen atoms (-F, -Cl, -Br, -I), hydroxyl groups, Examples include those to which substituents such as an aryl group, an aryloxy group, a silyloxy group, a phosphinyl group, and a phosphonyl group, which may have a substituent, are bonded.
Examples of tetravalent substituted metal atoms include halogen atoms (-F, -Cl, -Br, -I), hydroxyl groups, and substituents on metal atoms such as Cr, Si, Zr, Ge, Sn, Ti, and Mn. Examples include those in which two substituents such as an aryl group, an aryloxy group, a silyloxy group, a phosphinyl group, and a phosphonyl group, which may have a bond, are bonded.
Examples of the metal oxide atoms include VO, MnO, TiO, and the like.
M is preferably Cu, Zn, Fe, Ca, Mg, Al-OH, or TiO, more preferably Cu, Al-OH, or TiO, and even more preferably Cu.

一般式(3)のなかでも、MがCuである銅フタロシアニン(化合物(11))、MがAl-OHであるアルミニウムフタロシアニン(化合物(12))、MがTiOであるチタニルフタロシアニン(化合物(13))が好ましい。 Among the general formula (3), copper phthalocyanine in which M is Cu (compound (11)), aluminum phthalocyanine in which M is Al-OH (compound (12)), titanyl phthalocyanine in which M is TiO (compound (13)), )) is preferred.

Figure 2023164228000009
Figure 2023164228000009

一実施形態において、フタロシアニン顔料として、C.I.ピグメントブルー15、C.I.ピグメントブルー15:1、C.I.ピグメントブルー15:2、C.I.ピグメントブルー15:3、C.I.ピグメントブルー15:4、C.I.ピグメントブルー15:6、C.I.ピグメントブルー16、などが挙げられる。なかでも、C.I.ピグメントブルー15:3、C.I.ピグメントブルー15:4、及びC.I.ピグメントブルー15:6からなる群から選択される少なくとも1種の銅フタロシアニン顔料を含むことが好ましく、C.I.ピグメントブルー15:3、又はC.I.ピグメントブルー15:4を含むことがより好ましい。 In one embodiment, the phthalocyanine pigment is C.I. I. Pigment Blue 15, C. I. Pigment Blue 15:1, C. I. Pigment Blue 15:2, C. I. Pigment Blue 15:3, C. I. Pigment Blue 15:4, C. I. Pigment Blue 15:6, C. I. Pigment Blue 16, etc. Among them, C. I. Pigment Blue 15:3, C. I. Pigment Blue 15:4, and C.I. I. Pigment Blue 15:6, preferably containing at least one copper phthalocyanine pigment selected from the group consisting of C. I. Pigment Blue 15:3, or C.I. I. More preferably, it contains Pigment Blue 15:4.

シアンインキは、本発明の効果を損なわない範囲で、さらに、上記顔料以外の青色顔料(以下、その他の青色顔料という)、樹脂、有機溶剤、顔料分散剤、及びその他の添加剤等を含有できる。 The cyan ink can further contain blue pigments other than the above-mentioned pigments (hereinafter referred to as other blue pigments), resins, organic solvents, pigment dispersants, and other additives, as long as the effects of the present invention are not impaired. .

その他の青色顔料としては、例えば、C.I.ピグメントブルー60等が挙げられる。 Other blue pigments include, for example, C.I. I. Pigment Blue 60 and the like.

シアンインキに含まれる顔料中、フタロシアニン顔料の含有率は、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらにより好ましく、95質量%以上であることが特に好ましい。 The content of the phthalocyanine pigment in the pigment contained in the cyan ink is preferably 70% by mass or more, more preferably 80% by mass or more, even more preferably 90% by mass or more, and 95% by mass or more. % or more is particularly preferable.

本実施形態の印刷インキセットは、マゼンタインキとして、後述するマゼンタインキAと、マゼンタインキBとの2種のマゼンタインキを備えることを特徴とする。
<マゼンタインキA>
本実施形態の印刷インキセットにおけるマゼンタインキAは、C.I.ピグメントレッド122と、後述する分散媒体とを含む。
The printing ink set of this embodiment is characterized in that it includes two types of magenta ink, magenta ink A and magenta ink B, which will be described later.
<Magenta ink A>
Magenta ink A in the printing ink set of this embodiment is C.I. I. Pigment Red 122 and a dispersion medium to be described later.

C.I.ピグメントレッド122は、C.I.ピグメントレッド202、C.I.ピグメントレッド209、C.I.ピグメントバイオレット19等、その他のキナクリドン化合物との混晶であっても構わない。ただし、本発明の効果を最大限に発揮するためには、顔料としてはC.I.ピグメントレッド122単独であることが好ましい。 C. I. Pigment Red 122 is C. I. Pigment Red 202, C. I. Pigment Red 209, C. I. It may be a mixed crystal with other quinacridone compounds such as Pigment Violet 19. However, in order to maximize the effects of the present invention, it is necessary to use C.I. I. Pigment Red 122 alone is preferred.

マゼンタインキAに含まれる顔料中、C.I.ピグメントレッド122の含有率は、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらにより好ましく、95質量%以上であることが特に好ましい。 Among the pigments contained in magenta ink A, C. I. The content of Pigment Red 122 is preferably 70% by mass or more, more preferably 80% by mass or more, even more preferably 90% by mass or more, particularly 95% by mass or more. preferable.

C.I.ピグメントレッド122の平均一次粒子径は、50~150nmが好ましく、60~130nmがより好ましい。平均一次粒子径が150nm以下であることで、透明性が向上し、高い色再現性を得ることができる。また、平均一次粒子径が50nm以上であることで、より耐光性が向上する。 C. I. The average primary particle diameter of Pigment Red 122 is preferably 50 to 150 nm, more preferably 60 to 130 nm. When the average primary particle diameter is 150 nm or less, transparency can be improved and high color reproducibility can be obtained. Furthermore, when the average primary particle diameter is 50 nm or more, light resistance is further improved.

<マゼンタインキB>
本実施形態の印刷インキセットにおけるマゼンタインキBは、C.I.ピグメントバイオレット19と、後述する分散媒体とを含む。
<Magenta ink B>
Magenta ink B in the printing ink set of this embodiment is C.I. I. Pigment Violet 19 and a dispersion medium to be described later.

C.I.ピグメントバイオレット19は結晶多型を有するが、結晶形はγ型であることが好ましい。 C. I. Pigment Violet 19 has crystal polymorphism, but the crystal form is preferably the γ type.

C.I.ピグメントバイオレット19は、C.I.ピグメントレッド122、C.I.ピグメントレッド202、C.I.ピグメントレッド209等、その他のキナクリドン化合物との混晶であっても構わない。ただし、本発明の効果を最大限に発揮するためには、顔料としてはC.I.ピグメントバイオレット19単独であることが好ましい。 C. I. Pigment Violet 19 is C. I. Pigment Red 122, C. I. Pigment Red 202, C. I. It may be a mixed crystal with other quinacridone compounds such as Pigment Red 209. However, in order to maximize the effects of the present invention, it is necessary to use C.I. I. Pigment Violet 19 alone is preferred.

マゼンタインキBに含まれる顔料中、C.I.ピグメントバイオレット19の含有率は、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらにより好ましく、95質量%以上であることが特に好ましい。 Among the pigments contained in magenta ink B, C. I. The content of Pigment Violet 19 is preferably 70% by mass or more, more preferably 80% by mass or more, even more preferably 90% by mass or more, particularly 95% by mass or more. preferable.

C.I.ピグメントバイオレット19の平均一次粒子径は、30~120nmが好ましく、40~100nmがより好ましい。平均一次粒子径が120nm以下であることで、透明性が向上し、高い色再現性を得ることができる。また、平均一次粒子径が30nm以上であることで、より耐光性が向上する。 C. I. The average primary particle diameter of Pigment Violet 19 is preferably 30 to 120 nm, more preferably 40 to 100 nm. When the average primary particle diameter is 120 nm or less, transparency can be improved and high color reproducibility can be obtained. Furthermore, when the average primary particle diameter is 30 nm or more, light resistance is further improved.

一実施形態において、マゼンタインキA及びマゼンタインキBは、下記式(A)に基づいて算出される色相角(H°)が、0°以上90°未満であるインキ、又は300°以上360°未満であるインキの組合せであってよい。式(A)において、a*及びb*は、CIE(国際照明委員会)により規定されたL*a*b*表色系におけるa*及びb*を測定して得られた値を表している。
a*及びb*の値は、例えば、分光光度計(商品名:Spectrolino;Gretag Macbeth製)を用いて測定することができる。勿論、a*及びb*の測定に使用する分光光度計は、上記に限られるものではない。
式(A)
a*≧0、b*≧0(第一象現)では、H°=tan-1(b*/a*)
a*≦0、b*≧0(第二象現)では、H°=180+tan-1(b*/a*)
a*≦0、b*≦0(第三象現)では、H°=180+tan-1(b*/a*)
a*≧0、b*≦0(第四象現)では、H°=360+tan-1(b*/a*)
In one embodiment, magenta ink A and magenta ink B are inks whose hue angle (H°) calculated based on the following formula (A) is 0° or more and less than 90°, or 300° or more and less than 360°. It may be a combination of inks. In formula (A), a* and b* represent values obtained by measuring a* and b* in the L*a*b* color system defined by CIE (Commission Internationale de Illumination). There is.
The values of a* and b* can be measured, for example, using a spectrophotometer (trade name: Spectrolino; manufactured by Gretag Macbeth). Of course, the spectrophotometer used to measure a* and b* is not limited to the above.
Formula (A)
If a*≧0, b*≧0 (first quadrant), H°=tan −1 (b*/a*)
When a*≦0, b*≧0 (second quadrant), H°=180+tan -1 (b*/a*)
When a*≦0, b*≦0 (third quadrant), H°=180+tan -1 (b*/a*)
When a*≧0, b*≦0 (fourth quadrant), H°=360+tan −1 (b*/a*)

また、一実施形態において、マゼンタインキAの色相角(H°)とマゼンタインキB(H°)の関係は、以下の基準を満たすことが好ましい。
(1)300≦H°<360、300≦H°<360の場合は、H°<H°
(2)300≦H°<360、0≦H°<90の場合は、H°>H°
(3)0≦H°<90、0≦H°<90の場合は、H°<H°
Further, in one embodiment, the relationship between the hue angle (H A °) of magenta ink A and magenta ink B (H B °) preferably satisfies the following criteria.
(1) If 300≦H A °<360, 300≦H B °<360, H A °<H B °
(2) If 300≦H A °<360, 0≦H B °<90, H A °>H B °
(3) If 0≦H A °<90, 0≦H B °<90, then H A °<H B °

マゼンタインキA及びマゼンタインキBは、それぞれ、本発明の効果を損なわない範囲で、さらに、上記顔料以外の赤色顔料(以下、他の赤色顔料という)、樹脂、有機溶剤、顔料分散剤、及びその他の添加剤等を含有してもよい。 Magenta ink A and magenta ink B each contain red pigments other than the above pigments (hereinafter referred to as "other red pigments"), resins, organic solvents, pigment dispersants, and others, within a range that does not impair the effects of the present invention. It may contain additives, etc.

その他の赤色顔料としては、例えば、C.I.ピグメントレッド2、C.I.ピグメントレッド32、C.I.ピグメントレッド48:1、C.I.ピグメントレッド48:2、C.I.ピグメントレッド48:3、C.I.ピグメントレッド53:1、C.I.ピグメントレッド57:1、C.I.ピグメントレッド63:1、C.I.ピグメントレッド81、C.I.ピグメントレッド122、C.I.ピグメントレッド144、C.I.ピグメントレッド146、C.I.ピグメントレッド149、C.I.ピグメントレッド150、C.I.ピグメントレッド166、C.I.ピグメントレッド170、C.I.ピグメントレッド174、C.I.ピグメントレッド178、C.I.ピグメントレッド179、C.I.ピグメントレッド184、C.I.ピグメントレッド185、C.I.ピグメントレッド188、C.I.ピグメントレッド190、C.I.ピグメントレッド202、C.I.ピグメントレッド207、C.I.ピグメントレッド208、C.I.ピグメントレッド209、C.I.ピグメントレッド214、C.I.ピグメントレッド220、C.I.ピグメントレッド221、C.I.ピグメントレッド224、C.I.ピグメントレッド238、C.I.ピグメントレッド242、C.I.ピグメントレッド254、C.I.ピグメントレッド255、C.I.ピグメントレッド260、C.I.ピグメントレッド264、C.I.ピグメントレッド269、C.I.ピグメントレッド272、C.I.ピグメントバイオレット19等が挙げられる。ただし、耐光性や再現色域が低下する恐れがあるため、使用は最小限にとどめた方がよい。 Other red pigments include, for example, C.I. I. Pigment Red 2, C. I. Pigment Red 32, C. I. Pigment Red 48:1, C.I. I. Pigment Red 48:2, C. I. Pigment Red 48:3, C.I. I. Pigment Red 53:1, C.I. I. Pigment Red 57:1, C.I. I. Pigment Red 63:1, C.I. I. Pigment Red 81, C. I. Pigment Red 122, C. I. Pigment Red 144, C. I. Pigment Red 146, C. I. Pigment Red 149, C. I. Pigment Red 150, C. I. Pigment Red 166, C. I. Pigment Red 170, C. I. Pigment Red 174, C. I. Pigment Red 178, C. I. Pigment Red 179, C. I. Pigment Red 184, C. I. Pigment Red 185, C. I. Pigment Red 188, C. I. Pigment Red 190, C. I. Pigment Red 202, C. I. Pigment Red 207, C. I. Pigment Red 208, C. I. Pigment Red 209, C. I. Pigment Red 214, C. I. Pigment Red 220, C. I. Pigment Red 221, C. I. Pigment Red 224, C. I. Pigment Red 238, C. I. Pigment Red 242, C. I. Pigment Red 254, C. I. Pigment Red 255, C. I. Pigment Red 260, C. I. Pigment Red 264, C. I. Pigment Red 269, C. I. Pigment Red 272, C. I. Pigment Violet 19 and the like. However, it is best to keep its use to a minimum as it may reduce light fastness and color reproduction.

以下、上記必須顔料以外の成分について説明する。後述する成分は、本実施形態の印刷インキに含まれるか、又は必要に応じて追加できる。
<顔料>
本実施形態の印刷インキセットは、上記顔料以外にも、下記に示す顔料をさらに含んでもよい。追加する顔料としては、上記顔料以外の有機顔料、無機顔料が挙げられる。
Components other than the above-mentioned essential pigments will be explained below. The components described below may be included in the printing ink of this embodiment, or may be added as necessary.
<Pigment>
The printing ink set of this embodiment may further contain pigments shown below in addition to the above pigments. Examples of the pigment to be added include organic pigments and inorganic pigments other than the above pigments.

[有機顔料]
追加する顔料は、有機顔料が好ましい。有機顔料は、例えば、溶性アゾ系、不溶性アゾ系、アゾ系、フタロシアニン系、ハロゲン化フタロシアニン系、アントラキノン系、アンサンスロン系、ジアンスラキノニル系、アンスラピリミジン系、ペリレン系、ペリノン系、キナクリドン系、チオインジゴ系、ジオキサジン系、イソインドリノン系、キノフタロン系、アゾメチンアゾ系、フラバンスロン系、ジケトピロロピロール系、イソインドリン系、インダンスロン系等が挙げられる。
[Organic pigment]
The pigment to be added is preferably an organic pigment. Examples of organic pigments include soluble azo, insoluble azo, azo, phthalocyanine, halogenated phthalocyanine, anthraquinone, anthanthrone, dianthraquinonyl, anthrapyrimidine, perylene, perinone, and quinacridone. , thioindigo type, dioxazine type, isoindolinone type, quinophthalone type, azomethine azo type, flavanthrone type, diketopyrrolopyrrole type, isoindoline type, indanthrone type and the like.

上述した顔料以外の例を、C.I.ピグメントナンバーで示す。 Examples other than the pigments mentioned above include C. I. Indicated by pigment number.

紫色顔料は、例えば、C.I.ピグメントバイオレット23、C.I.ピグメントバイオレット32、C.I.ピグメントバイオレット37等が挙げられる。 The purple pigment is, for example, C.I. I. Pigment Violet 23, C. I. Pigment Violet 32, C. I. Pigment Violet 37 and the like.

緑色顔料は、例えば、C.I.ピグメントグリーン7等が挙げられる。 The green pigment is, for example, C.I. I. Pigment Green 7 and the like.

橙色顔料は、例えば、C.I.ピグメントオレンジ13、C.I.ピグメントオレンジ34、C.I.ピグメントオレンジ38、C.I.ピグメントオレンジ43、C.I.ピグメントオレンジ64等が挙げられる。 The orange pigment is, for example, C.I. I. Pigment Orange 13, C. I. Pigment Orange 34, C. I. Pigment Orange 38, C. I. Pigment Orange 43, C. I. Pigment Orange 64 and the like.

特色インキとしては、シアン、マゼンタ、イエロー以外の、紫、草、及び朱などのインキが挙げられる。一実施形態において、特色インキは、上記の紫色顔料、緑色顔料、橙色顔料等を含むことが好ましい。 Examples of the special color ink include inks other than cyan, magenta, and yellow, such as purple, grass, and vermilion. In one embodiment, the special color ink preferably contains the above-mentioned purple pigment, green pigment, orange pigment, and the like.

[無機顔料]
無機顔料は、例えば、酸化チタン、酸化亜鉛、硫化亜鉛、硫酸バリウム、炭酸カルシウム、酸化クロム、シリカ、リトボン、アンチモンホワイト、石膏等の白色無機顔料、カーボンブラック、鉄黒、銅・クロム複合酸化物等の黒色無機顔料、アルミニウム粒子、マイカ(雲母)、ブロンズ粉、クロムバーミリオン、黄鉛、カドミウムイエロー、カドミウムレッド、群青、紺青、ベンガラ、黄色酸化鉄、ジルコン等が挙げられる。
[Inorganic pigment]
Inorganic pigments include, for example, white inorganic pigments such as titanium oxide, zinc oxide, zinc sulfide, barium sulfate, calcium carbonate, chromium oxide, silica, lithobon, antimony white, and gypsum, carbon black, iron black, and copper/chromium composite oxide. Examples include black inorganic pigments such as aluminum particles, mica, bronze powder, chrome vermilion, chrome yellow, cadmium red, ultramarine blue, deep blue, red iron oxide, yellow iron oxide, zircon, and the like.

墨インキ(ブラックインキ)には、着色力、隠ぺい力、耐薬品性、耐候性に優れる観点から、カーボンブラックを使用することが好ましく、例えば、C.I.ピグメントブラック7等が挙げられる。また、白インキ(ホワイトインキ)には、着色力、隠ぺい力、耐薬品性、耐候性に優れる観点から、酸化チタンを使用することが好ましい。酸化チタンは、印刷性能の観点から、シリカ及び/又はアルミナで表面処理されているものが好ましい。 It is preferable to use carbon black as the ink (black ink) from the viewpoint of excellent coloring power, hiding power, chemical resistance, and weather resistance. I. Pigment Black 7 and the like. Moreover, it is preferable to use titanium oxide for the white ink (white ink) from the viewpoint of excellent coloring power, hiding power, chemical resistance, and weather resistance. From the viewpoint of printing performance, titanium oxide is preferably surface-treated with silica and/or alumina.

各インキは、目的の色調を得るため、顔料を単独で又は2種類以上を組合せて使用できる。 Each ink can use a single pigment or a combination of two or more pigments in order to obtain a desired color tone.

顔料の平均一次粒子径は、好ましくは10~200nmの範囲であり、より好ましくは50~150nmの範囲である。
インキ中の顔料の含有率は、インキの濃度及び着色力を確保するために、インキの質量を基準として、好ましくは0.1~60質量%の範囲であり、インキの不揮発分質量を基準として、好ましくは10~90質量%の範囲である。
The average primary particle diameter of the pigment is preferably in the range of 10 to 200 nm, more preferably in the range of 50 to 150 nm.
The content of pigment in the ink is preferably in the range of 0.1 to 60% by mass based on the mass of the ink, and based on the mass of non-volatile matter of the ink, in order to ensure the concentration and coloring power of the ink. , preferably in the range of 10 to 90% by mass.

[色素誘導体]
本実施形態の印刷インキセットを構成する各インキは、色素誘導体を含有してもよい。
色素誘導体は、有機色素残基に酸性基、塩基性基、中性基などを有する公知の化合物である。色素誘導体は、例えば、スルホ基、カルボキシル基、リン酸基などの酸性置換基を有する化合物及びこれらのアミン塩、スルホンアミド基及び末端に3級アミノ基などの塩基性置換基を有する化合物、並びに、フェニル基及びフタルイミドアルキル基などの中性置換基を有する化合物が挙げられる。
有機色素は、例えば、ジケトピロロピロール系顔料、アントラキノン系顔料、キナクリドン系顔料、ジオキサジン系顔料、ペリノン系顔料、ペリレン系顔料、チアジンインジゴ系顔料、トリアジン系顔料、ベンズイミダゾロン系顔料、ベンゾイソインドール等のインドール系顔料、イソインドリン系顔料、イソインドリノン系顔料、キノフタロン系顔料、ナフトール系顔料、スレン系顔料、金属錯体系顔料、アゾ、ジスアゾ、ポリアゾ等のアゾ系顔料等が挙げられる。
色素誘導体は、公知の色素誘導体であってよく、具体的には、例えば、以下の文献に記載されている。
ジケトピロロピロール系色素誘導体:特開2001-220520号公報、WO2009/081930号パンフレット、WO2011/052617号パンフレット、WO2012/102399号パンフレット、及び特開2017-156397号公報
フタロシアニン系色素誘導体:特開2007-226161号公報、WO2016/163351号パンフレット、特開2017-165820号公報、及び特許第5753266号公報
アントラキノン系色素誘導体:特開昭63-264674号公報、特開平09-272812号公報、特開平10-245501号公報、特開平10-265697号公報、特開2007-079094号公報、及びWO2009/025325号パンフレット
キナクリドン系色素誘導体:特開昭48-54128号公報、特開平03-9961号公報、及び特開2000-273383号公報
ジオキサジン系色素誘導体:特開2011-162662号公報
チアジンインジゴ系色素誘導体:特開2007-314785号公報
トリアジン系色素誘導体:特開昭61-246261号公報、特開平11-199796号公報、特開2003-165922号公報、特開2003-168208号公報、特開2004-217842号公報、及び特開2007-314681号公報
ベンゾイソインドール系色素誘導体:特開2009-57478号公報
キノフタロン系色素誘導体:特開2003-167112号公報、特開2006-291194号公報、特開2008-31281号公報、及び特開2012-226110号公報
ナフトール系色素誘導体:特開2012-208329号公報、及び特開2014-5439号公報
アゾ系色素誘導体:特開2001-172520号公報、及び特開2012-172092号公報
酸性置換基については、特開2004-307854号公報に記載されている。また、塩基性置換基については、特開2002-201377号公報、特開2003-171594号公報、特開2005-181383号公報、及び特開2005-213404号公報、などに記載されている。
なお、上記文献では、色素誘導体を、誘導体、顔料誘導体、分散剤、顔料分散剤、又は単に化合物などと記載している場合がある。しかし、上記有機色素残基に酸性基、塩基性基、中性基などの置換基を有する化合物は、色素誘導体と同義である。
[Dye derivative]
Each ink constituting the printing ink set of this embodiment may contain a dye derivative.
A dye derivative is a known compound having an acidic group, a basic group, a neutral group, etc. in an organic dye residue. Pigment derivatives include, for example, compounds having acidic substituents such as sulfo groups, carboxyl groups, phosphoric acid groups, amine salts thereof, compounds having sulfonamide groups and basic substituents such as tertiary amino groups at the terminals, and , a compound having a neutral substituent such as a phenyl group and a phthalimide alkyl group.
Examples of organic pigments include diketopyrrolopyrrole pigments, anthraquinone pigments, quinacridone pigments, dioxazine pigments, perinone pigments, perylene pigments, thiazine indigo pigments, triazine pigments, benzimidazolone pigments, and benzene pigments. Examples include indole pigments such as isoindole, isoindoline pigments, isoindolinone pigments, quinophthalone pigments, naphthol pigments, threne pigments, metal complex pigments, and azo pigments such as azo, disazo, and polyazo. .
The dye derivative may be a known dye derivative, and is specifically described, for example, in the following documents.
Diketopyrrolopyrrole dye derivatives: JP2001-220520, WO2009/081930, WO2011/052617, WO2012/102399, and JP2017-156397 Phthalocyanine dye derivatives: JP2007-156397 -226161 publication, WO2016/163351 pamphlet, JP2017-165820A, and Patent No. 5753266 Anthraquinone dye derivative: JP63-264674A, JP09-272812A, JP1999-10A -245501, JP 10-265697, JP 2007-079094, and WO 2009/025325 pamphlet Quinacridone dye derivatives: JP 48-54128, JP 03-9961, and JP-A-2000-273383 Dioxazine dye derivatives: JP-A-2011-162662 Thiazine indigo-based dye derivatives: JP-A 2007-314785 Triazine-based dye derivatives: JP-A-61-246261, JP-A-11 -199796, JP 2003-165922, JP 2003-168208, JP 2004-217842, and JP 2007-314681 Benziisoindole dye derivatives: JP 2009-57478 Publication Quinophthalone dye derivatives: JP 2003-167112, JP 2006-291194, JP 2008-31281, and JP 2012-226110 Naphthol dye derivatives: JP 2012-208329 , and JP-A No. 2014-5439 Azo dye derivative: JP-A No. 2001-172520 and JP-A No. 2012-172092 Acidic substituents are described in JP-A No. 2004-307854. Furthermore, basic substituents are described in JP-A No. 2002-201377, JP-A No. 2003-171594, JP-A No. 2005-181383, and JP-A No. 2005-213404.
In addition, in the said literature, a pigment derivative may be described as a derivative, a pigment derivative, a dispersant, a pigment dispersant, or simply a compound. However, a compound having a substituent such as an acidic group, a basic group, or a neutral group on the organic dye residue has the same meaning as a dye derivative.

色素誘導体は、単独で又は2種類以上を混合して使用できる。 The dye derivatives can be used alone or in combination of two or more.

<分散媒体>
本実施形態の印刷インキセットを構成する各インキは、分散媒体を含む。分散媒体とは、顔料を適切に分散し、インキとしての性能を発揮したり、性状を安定化させたりするものである。分散媒体の具体例として、樹脂、溶剤、及び重合性化合物が挙げられる。樹脂は、樹脂型分散剤、及びバインダー樹脂等であってよい。溶剤は、水、及び有機溶剤であってよい。また、各インキは、分散媒体として、必要に応じて、界面活性剤等の低分子分散剤を含んでもよい。
分散媒体は、印刷インキの形態に応じて適宜選択することができる。
<Dispersion medium>
Each ink constituting the printing ink set of this embodiment includes a dispersion medium. A dispersion medium is a medium that appropriately disperses pigments, exhibits performance as an ink, and stabilizes properties. Specific examples of the dispersion medium include resins, solvents, and polymerizable compounds. The resin may be a resin-type dispersant, a binder resin, or the like. Solvents can be water and organic solvents. Moreover, each ink may contain a low-molecular dispersant such as a surfactant as a dispersion medium, if necessary.
The dispersion medium can be appropriately selected depending on the form of the printing ink.

以下、分散媒体について、より具体的に説明する。
[樹脂型分散剤]
樹脂型分散剤は、顔料に吸着する顔料親和性部位と、顔料以外の成分に対する親和性が高く、かつ分散粒子間を立体反発させる緩和部位とを有する。樹脂型分散剤は、酸性基又は塩基性基を有する。酸性基は、カルボキシル基、スルホ基、リン酸基等が挙げられる。塩基性基は、1級~3級のアミノ基、4級アンモニウム塩基等が挙げられる。
酸性樹脂型分散剤は、例えば、ポリウレタン等のウレタン系分散剤、ポリアクリレート等のポリカルボン酸エステル、不飽和ポリアミド、ポリカルボン酸、ポリカルボン酸(部分)アミン塩、ポリカルボン酸アンモニウム塩、ポリカルボン酸アルキルアミン塩、ポリシロキサン、長鎖ポリアミノアマイドリン酸塩、水酸基含有ポリカルボン酸エステルや、これらの変性物;ポリ(低級アルキレンイミン)と遊離のカルボキシル基を有するポリエステルとの反応により形成されたアミドやその塩;(メタ)アクリル酸-スチレン共重合体、(メタ)アクリル酸-(メタ)アクリル酸エステル共重合体、スチレン-マレイン酸共重合体、ポリビニルアルコ-ル、ポリビニルピロリドン等;ポリエステル、変性ポリアクリレート、エチレンオキサイド/プロピレンオキサイド付加化合物、リン酸エステル系等が挙げられる。
塩基性樹脂型分散剤は、アクリル樹脂、ポリエステル樹脂、ウレタン樹脂等の樹脂種に対して、窒素原子含有グラフト共重合体、側鎖に3級アミノ基、4級アンモニウム塩基、含窒素複素環などを含む官能基を有する、窒素原子含有アクリル系ブロック共重合体又はウレタン系高分子分散剤等が挙げられる。
The dispersion medium will be explained in more detail below.
[Resin type dispersant]
The resin type dispersant has a pigment affinity site that adsorbs to the pigment and a relaxing site that has a high affinity for components other than the pigment and causes steric repulsion between dispersed particles. The resin type dispersant has an acidic group or a basic group. Examples of acidic groups include carboxyl groups, sulfo groups, and phosphoric acid groups. Examples of the basic group include primary to tertiary amino groups, quaternary ammonium bases, and the like.
Examples of acidic resin type dispersants include urethane dispersants such as polyurethane, polycarboxylic acid esters such as polyacrylate, unsaturated polyamides, polycarboxylic acids, polycarboxylic acid (partial) amine salts, polycarboxylic acid ammonium salts, and polycarboxylic acid (partial) amine salts. Carboxylic acid alkylamine salts, polysiloxanes, long-chain polyaminoamide phosphates, hydroxyl group-containing polycarboxylic acid esters, and modified products of these; formed by the reaction of poly(lower alkylene imine) with polyesters having free carboxyl groups. (meth)acrylic acid-styrene copolymer, (meth)acrylic acid-(meth)acrylic acid ester copolymer, styrene-maleic acid copolymer, polyvinyl alcohol, polyvinylpyrrolidone, etc.; Examples include polyesters, modified polyacrylates, ethylene oxide/propylene oxide adducts, phosphate esters, and the like.
Basic resin type dispersants include nitrogen atom-containing graft copolymers, tertiary amino groups in side chains, quaternary ammonium bases, nitrogen-containing heterocycles, etc. for resin types such as acrylic resins, polyester resins, and urethane resins. A nitrogen atom-containing acrylic block copolymer or a urethane polymer dispersant, which has a functional group containing .

樹脂型分散剤は、市販品として入手することができる。例えば、以下が挙げられる。
BASFジャパン社製のJONCRYL67、JONCRYL678、JONCRYL586、JONCRYL611、JONCRYL683、JONCRYL690、JONCRYL57J、JONCRYL60J、JONCRYL61J、JONCRYL62J、JONCRYL63J、JONCRYLHPD-96J、JONCRYL501J、JONCRYLPDX-6102B、
ビックケミー社製のDISPERBYK180、DISPERBYK187、DISPERBYK190、DISPERBYK191、DISPERBYK194、DISPERBYK2010、DISPERBYK2015、DISPERBYK2090、DISPERBYK2091、DISPERBYK2095、DISPERBYK2155、
日本ルーブリゾール社製のSOLSPERSE24000、SOLSPERSE32000、SOLSPERSE39000、SOLSPERSE41000、
サートマー社製のSMA1000H、SMA1440H、SMA2000H、SMA3000H、SMA17352H等。
Resin type dispersants are available as commercial products. Examples include:
JONCRYL67, JONCRYL678, JONCRYL586, JONCRYL611, JONCRYL683, JONCRYL690, JONCRYL57J, JONCRYL60J, JONCRYL61J, JONCRYL62J, JON manufactured by BASF Japan. CRYL63J, JONCRYLHPD-96J, JONCRYL501J, JONCRYLPDX-6102B,
DISPERBYK180, DISPERBYK187, DISPERBYK190, DISPERBYK191, DISPERBYK194, DISPERBYK2010, DISPERBYK2015, DISPERBYK2090, DISPERBY manufactured by Big Chemie K2091, DISPERBYK2095, DISPERBYK2155,
SOLSPERSE24000, SOLSPERSE32000, SOLSPERSE39000, SOLSPERSE41000 manufactured by Japan Lubrizol,
SMA1000H, SMA1440H, SMA2000H, SMA3000H, SMA17352H, etc. manufactured by Sartomer.

[バインダー樹脂]
バインダー樹脂は、印刷で被膜が形成可能であればよい。例えば、ポリオレフィン樹脂、ポリエステル樹脂、スチレン共重合体、アクリル樹脂、及びこれらの変性樹脂であってよい。具体的には、高密度ポリエチレン(HDPE)、直鎖状低密度ポリエチレン(L-LDPE)、低密度ポリエチレン(LDPE)等のポリエチレン、ポリプロピレン等のポリオレフィン樹脂;ポリエチレンテレフタレート等のポリエステル樹脂;スチレン-p-クロルスチレン共重合体、スチレン-ビニルトルエン共重合体、スチレン-ビニルナフタレン共重合体、スチレン-アクリル酸エステル共重合体、スチレン-メタクリル酸エステル共重合体、スチレン-α-クロルメタクリル酸メチル共重合体、スチレン-アクリロニトリル共重合体、スチレン-ビニルメチルエーテル共重合体、スチレン-ビニルエチルエーテル共重合体、スチレン-ビニルメチルケトン共重合体、スチレン-ブタジエン共重合体、スチレン-イソプレン共重合体、スチレン-アクリロニトリル-インデン共重合体等のスチレン共重合体;アクリル樹脂、メタクリル樹脂等のアクリル樹脂;ポリ塩化ビニル、フェノール樹脂、天然変性フェノール樹脂、天然樹脂変性マレイン酸樹脂、シリコーン樹脂、ポリウレタン樹脂、エチレン-酢酸ビニル共重合体樹脂、酢酸ビニル樹脂、ニトロセルロース樹脂、ポリアミド樹脂、エポキシ樹脂、キシレン樹脂、ポリビニルブチラール樹脂、ポリビニルアセタール樹脂、セルロースエステル樹脂、アルキッド樹脂、ロジン系樹脂、ケトン樹脂、環化ゴム、塩素化ポリオレフィン樹脂、テルペン樹脂、クマロンインデン樹脂、アミノ樹脂、石油樹脂、及びこれらの変性樹脂等が挙げられる。
[Binder resin]
The binder resin may be used as long as it can form a film by printing. For example, it may be a polyolefin resin, a polyester resin, a styrene copolymer, an acrylic resin, or a modified resin thereof. Specifically, polyethylenes such as high-density polyethylene (HDPE), linear low-density polyethylene (L-LDPE), and low-density polyethylene (LDPE); polyolefin resins such as polypropylene; polyester resins such as polyethylene terephthalate; styrene-p -Chlorstyrene copolymer, styrene-vinyltoluene copolymer, styrene-vinylnaphthalene copolymer, styrene-acrylic acid ester copolymer, styrene-methacrylic acid ester copolymer, styrene-α-methyl chloromethacrylate copolymer Polymer, styrene-acrylonitrile copolymer, styrene-vinyl methyl ether copolymer, styrene-vinyl ethyl ether copolymer, styrene-vinyl methyl ketone copolymer, styrene-butadiene copolymer, styrene-isoprene copolymer , styrene copolymers such as styrene-acrylonitrile-indene copolymers; acrylic resins such as acrylic resins and methacrylic resins; polyvinyl chloride, phenolic resins, naturally modified phenolic resins, natural resin-modified maleic acid resins, silicone resins, polyurethane resins , ethylene-vinyl acetate copolymer resin, vinyl acetate resin, nitrocellulose resin, polyamide resin, epoxy resin, xylene resin, polyvinyl butyral resin, polyvinyl acetal resin, cellulose ester resin, alkyd resin, rosin resin, ketone resin, ring Examples include chlorinated rubber, chlorinated polyolefin resin, terpene resin, coumaron indene resin, amino resin, petroleum resin, and modified resins thereof.

[有機溶剤]
有機溶剤は、水溶性溶剤と、非水溶性溶剤とに分類できる。
水溶性溶剤は、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、イソブタノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、及びグリセリン等が挙げられる。
非水溶性溶剤は、例えば、トルエン、キシレン、酢酸エチル、酢酸n-プロピル、酢酸ブチル、メチルエチルケトン、メチルイソブチルケトン、ブチルアルコール、及び脂肪族炭化水素等が挙げられる。
[Organic solvent]
Organic solvents can be classified into water-soluble solvents and water-insoluble solvents.
Examples of water-soluble solvents include methanol, ethanol, n-propanol, isopropanol, isobutanol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, and glycerin.
Examples of the water-insoluble solvent include toluene, xylene, ethyl acetate, n-propyl acetate, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, butyl alcohol, and aliphatic hydrocarbons.

[水]
水は、金属イオン等を除去したイオン交換水、及び蒸留水が好ましい。
[water]
The water is preferably ion-exchanged water from which metal ions and the like have been removed, and distilled water.

[重合性化合物]
重合性化合物は、分子内にエチレン性不飽和結合を1つ以上有する化合物である。重合性化合物として、モノマー及びオリゴマーを含有する。
[Polymerizable compound]
A polymerizable compound is a compound having one or more ethylenically unsaturated bonds in its molecule. Contains monomers and oligomers as polymerizable compounds.

(モノマー)
モノマーは、分子内に(メタ)アクリロイル基、アリル基、ビニル基、ビニルエーテル基などの重合性基を有する。モノマーは、硬化性の点で、(メタ)アクリロイル基及びビニル基の何れかを有するモノマーを含むことが好ましく、分子内に3つ以上6つ以下の(メタ)アクリロイル基を有するモノマーを含むことがより好ましく、分子内に6つの(メタ)アクリロイル基を有するモノマーを含むことがさらにより好ましい。
(monomer)
The monomer has a polymerizable group such as a (meth)acryloyl group, allyl group, vinyl group, or vinyl ether group in the molecule. In terms of curability, the monomer preferably contains a monomer having either a (meth)acryloyl group or a vinyl group, and preferably contains a monomer having 3 or more and 6 or less (meth)acryloyl groups in the molecule. is more preferred, and it is even more preferred that the molecule contains a monomer having six (meth)acryloyl groups.

(メタ)アクリロイル基を有するモノマーの具体例としては、以下が挙げられる。但し、以下に限定されるものではない。
分子内に(メタ)アクリロイル基を1つ有する単官能(メタ)アクリレートモノマー:2-エチルヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、β-カルボキシルエチル(メタ)アクリレート、4-tert-ブチルシクロヘキシル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、アルコキシ化テトラヒドロフルフリルアクリレート、カプロラクトン(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソアミル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、イソデシル(メタ)アクリレート、3,3,5-トリメチルシクロヘキサノール(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ノルボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(オキシエチル)(メタ)アクリレート、1,4-シクロヘキサンジメタノール(メタ)アクリレート、環状トリメチロールプロパンフォルマル(メタ)アクリレート、ベンジル(メタ)アクリレート、EO変性(2)ノニルフェノールアクリレート、(2-メチル-2-エチル-1、3-ジオキソラン-4-イル)メチルアクリレート、アクリロイルモルフォリン等
分子内に(メタ)アクリロイル基を2つ有する2官能(メタ)アクリレートモノマー:1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、1,12-ドデカンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコール(200)ジ(メタ)アクリレート、ポリエチレングリコール(300)ジ(メタ)アクリレート、ポリエチレングリコール(400)ジ(メタ)アクリレート、ポリエチレングリコール(600)ジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、EO変性(2)1,6-ヘキサンジオールジ(メタ)アクリレート、PO変性(2)ネオペンチルグリコールジ(メタ)アクリレート、(ネオペンチルグリコール変性)トリメチロールプロパンジ(メタ)アクリレート、EO変性(4)ビスフェノールAジ(メタ)アクリレート、PO変性(4)ビスフェノールAジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、ジメチロール-トリシクロデカンジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート等
分子内に(メタ)アクリロイル基を3つ有する3官能(メタ)アクリレートモノマー:トリメチロールプロパントリ(メタ)アクリレート、EO変性(3)トリメチロールプロパントリ(メタ)アクリレート、EO変性(6)トリメチロールプロパントリ(メタ)アクリレート、PO変性(3)トリメチロールプロパントリ(メタ)アクリレート、ε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート、エトキシ化イソシアヌル酸トリ(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等
分子内にアクリロイル基を4つ有する4官能(メタ)アクリレートモノマー:ペンタエリスリトールテトラ(メタ)アクリレート、EO変性(4)ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート等
分子内に(メタ)アクリロイル基を5つ有する5官能(メタ)アクリレートモノマー:ジペンタエリスリトールペンタ(メタ)アクリレート等
分子内に(メタ)アクリロイル基を6つ有する6官能(メタ)アクリレートモノマー:ジペンタエリスリトールヘキサ(メタ)アクリレート等
Specific examples of monomers having a (meth)acryloyl group include the following. However, it is not limited to the following.
Monofunctional (meth)acrylate monomers having one (meth)acryloyl group in the molecule: 2-ethylhexyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, β-carboxylethyl (meth)acrylate, 4-tert-butylcyclohexyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, alkoxylated tetrahydrofurfuryl acrylate, caprolactone (meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate, isoamyl (meth)acrylate, 2-phenoxyethyl (meth)acrylate, isodecyl (meth)acrylate, 3,3,5-trimethylcyclohexanol (meth)acrylate, cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, norbornyl (meth)acrylate Acrylate, dicyclopentanyl (meth)acrylate, dicyclopentenyl (oxyethyl) (meth)acrylate, 1,4-cyclohexanedimethanol (meth)acrylate, cyclic trimethylolpropane formal (meth)acrylate, benzyl (meth)acrylate , EO-modified (2) nonylphenol acrylate, (2-methyl-2-ethyl-1,3-dioxolan-4-yl)methyl acrylate, acryloylmorpholine, etc. Difunctional (2) having two (meth)acryloyl groups in the molecule Meth)acrylate monomer: 1,3-butylene glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 3-methyl-1,5-pentanediol di(meth)acrylate, 1,6-hexane Diol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, 1,12-dodecanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate Acrylate, polyethylene glycol (200) di(meth)acrylate, polyethylene glycol (300) di(meth)acrylate, polyethylene glycol (400) di(meth)acrylate, polyethylene glycol (600) di(meth)acrylate, hydroxypivalic acid neo Pentyl glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, EO modified (2) 1,6-hexanediol di(meth)acrylate, PO modified (2) neopentyl Glycol di(meth)acrylate, (neopentyl glycol modified) trimethylolpropane di(meth)acrylate, EO modified (4) bisphenol A di(meth)acrylate, PO modified (4) bisphenol A di(meth)acrylate, cyclohexane di Methanol di(meth)acrylate, dimethylol-tricyclodecane di(meth)acrylate, dicyclopentanyl di(meth)acrylate, etc. Trifunctional (meth)acrylate monomer having three (meth)acryloyl groups in the molecule: trimethylol Propane tri(meth)acrylate, EO modified (3) trimethylolpropane tri(meth)acrylate, EO modified (6) trimethylolpropane tri(meth)acrylate, PO modified (3) trimethylolpropane tri(meth)acrylate, ε - Caprolactone modified tris-(2-acryloxyethyl) isocyanurate, ethoxylated isocyanuric acid tri(meth)acrylate, tris(2-hydroxyethyl)isocyanurate tri(meth)acrylate, pentaerythritol tri(meth)acrylate, etc. In the molecule Tetrafunctional (meth)acrylate monomers having four acryloyl groups in the molecule: pentaerythritol tetra(meth)acrylate, EO-modified (4) pentaerythritol tetra(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, etc. ) Pentafunctional (meth)acrylate monomers having five acryloyl groups: dipentaerythritol penta(meth)acrylate, etc. Hexafunctional (meth)acrylate monomers having six (meth)acryloyl groups in the molecule: dipentaerythritol hexa(meth)acrylate, etc. ) Acrylate etc.

ビニル基を有するモノマーの具体例としては、N-ビニル-2-ピロリドン、N-ビニルカプロラクタム等が挙げられる。 Specific examples of monomers having a vinyl group include N-vinyl-2-pyrrolidone, N-vinylcaprolactam, and the like.

(オリゴマー)
オリゴマーは、例えば、脂肪族ウレタン(メタ)アクリレートオリゴマー、芳香族ウレタン(メタ)アクリレートオリゴマー等のウレタン(メタ)アクリレートオリゴマー、(メタ)アクリルエステルオリゴマー、ポリエステル(メタ)アクリレートオリゴマー、エポキシ(メタ)アクリレートオリゴマー等が挙げられる。オリゴマーは、エチレン性不飽和結合を2~16個程度を含むことが好ましい。なかでも、ウレタン(メタ)アクリレートオリゴマーが好ましく、(メタ)アクリロイル基が6~12個であるウレタン(メタ)アクリレートオリゴマーがより好ましい。
(oligomer)
Examples of oligomers include urethane (meth)acrylate oligomers such as aliphatic urethane (meth)acrylate oligomers and aromatic urethane (meth)acrylate oligomers, (meth)acrylic ester oligomers, polyester (meth)acrylate oligomers, and epoxy (meth)acrylates. Examples include oligomers. The oligomer preferably contains about 2 to 16 ethylenically unsaturated bonds. Among these, urethane (meth)acrylate oligomers are preferred, and urethane (meth)acrylate oligomers having 6 to 12 (meth)acryloyl groups are more preferred.

オリゴマーの重量平均分子量(Mw)は、400~10,000が好ましく、500~5,000がより好ましく、800~4,000がより好ましく、1,000~2,000がより好ましい。ここで、「重量平均分子量(Mw)」は、一般的なゲルパーミエーションクロマトグラフィー(以下、GPC)によりポリスチレン換算分子量として求めることができる。 The weight average molecular weight (Mw) of the oligomer is preferably 400 to 10,000, more preferably 500 to 5,000, more preferably 800 to 4,000, and even more preferably 1,000 to 2,000. Here, the "weight average molecular weight (Mw)" can be determined as a polystyrene equivalent molecular weight by general gel permeation chromatography (hereinafter referred to as GPC).

上記6~12官能のウレタン(メタ)アクリレートオリゴマーは、市販品として入手することもできる。具体例としては、例えば、ダイセル・オルネクス株式会社製のEBECRYL1290(6官能、Mw1,000)、EBECRYL5129(6官能、Mw800)、EBECRYL8254(6官能、1,200)、KRM8200(6官能、Mw1,000)、KRM8904(9官能、Mw1,800)、EBECRYL8602(9官能、2,000)、KRM8452(10官能、Mw1,200)、EBECRYL225(10官能、Mw1,200)、EBECRYL8415(10官能、Mw1,200)、が挙げられる。また、Miwon Speacialty Chemical Co.,Ltd.製のMiramerPU5000(6官能、Mw1,800)、MiramerPU610(6官能、Mw1,800)、MiramerPU6140(6官能、Mw1,500)、MiramerMU9800(9官能、3,500)、MiramerMU9500(10官能、Mw3,200)が挙げられる。 The above-mentioned 6- to 12-functional urethane (meth)acrylate oligomers can also be obtained as commercial products. Specific examples include EBECRYL1290 (6 functional, Mw 1,000), EBECRYL5129 (6 functional, Mw 800), EBECRYL8254 (6 functional, 1,200), and KRM8200 (6 functional, Mw 1,000) manufactured by Daicel Allnex Corporation. ), KRM8904 (9 functional, Mw 1,800), EBECRYL8602 (9 functional, 2,000), KRM8452 (10 functional, Mw 1,200), EBECRYL225 (10 functional, Mw 1,200), EBECRYL8415 (10 functional, Mw 1,200) ). In addition, Miwon Specialty Chemical Co. , Ltd. Miramer PU5000 (6 functional, Mw 1,800), Miramer PU610 (6 functional, Mw 1,800), Miramer PU6140 (6 functional, Mw 1,500), Miramer MU9800 (9 functional, 3,500), Miramer MU9500 (10 functional, Mw3,200 ).

[その他成分]
本実施形態の印刷インキセットを構成する各インキは、用途に応じて、本発明の効果が低下しない範囲で、上記成分に加えて各種添加剤などのその他成分をさらに含んでよい。その他成分として、例えば、体質顔料、ワックス、ブロッキング防止剤、界面活性剤、レベリング剤、消泡剤、防腐剤、pH調整剤、紫外線吸収剤、難燃剤、及び酸化防止剤等が挙げられる。必要に応じて、これら各種添加剤をインキにさらに加えることができる。
[Other ingredients]
Each ink constituting the printing ink set of the present embodiment may further contain other components such as various additives in addition to the above-mentioned components, depending on the intended use, as long as the effects of the present invention are not reduced. Examples of other components include extender pigments, waxes, antiblocking agents, surfactants, leveling agents, antifoaming agents, preservatives, pH adjusters, ultraviolet absorbers, flame retardants, and antioxidants. These various additives can be further added to the ink as needed.

体質顔料としては、例えば、炭酸カルシウム、炭酸マグネシウム、カオリン、硫酸バリウム、水酸化アルミニウム、シリカ、クレー、タルク、マイカ等が挙げられる。体質顔料を添加することで、ブロッキング防止性、ラミネート強度、乾燥性、塗膜隠蔽性等を向上させることができる。 Examples of extender pigments include calcium carbonate, magnesium carbonate, kaolin, barium sulfate, aluminum hydroxide, silica, clay, talc, mica, and the like. By adding extender pigments, anti-blocking properties, lamination strength, drying properties, coating hiding properties, etc. can be improved.

ワックスとしては、例えば、天然ワックス及び合成ワックスがある。天然ワックスは、例えば、カルナバワックス、木ろう、ラノリン、モンタンワックス、パラフィンワックス、マイクロクリスタリンワックス等が挙げられる。合成ワックスは、例えば、フィッシャー・トロプシュワックス、ポリエチレンワックス、ポリプロピレンワックス、ポリテトラフルオロエチレンワックス、ポリアミドワックスシリコーン化合物等が挙げられる。ワックスを添加することで、耐摩擦性、ブロッキング防止性、スベリ性、スリキズ防止性等を向上させることができる。 Waxes include, for example, natural waxes and synthetic waxes. Examples of natural waxes include carnauba wax, Japanese wax, lanolin, montan wax, paraffin wax, and microcrystalline wax. Examples of synthetic waxes include Fischer-Tropsch wax, polyethylene wax, polypropylene wax, polytetrafluoroethylene wax, polyamide wax, and silicone compounds. By adding wax, abrasion resistance, anti-blocking properties, slip properties, anti-scratch properties, etc. can be improved.

ブロッキング防止剤としては、例えば、シリカ粒子、ポリエチレンワックス、脂肪酸アミド、セルロースアセテートブチレート樹脂、セルロースアセテートプロピオネート樹脂、硝化綿等が挙げられる。 Examples of the antiblocking agent include silica particles, polyethylene wax, fatty acid amide, cellulose acetate butyrate resin, cellulose acetate propionate resin, and nitrified cotton.

界面活性剤としては、例えば、アニオン性界面活性剤、ノニオン性界面活性剤等が挙げられる。
アニオン性界面活性剤は、例えば、脂肪酸塩、アルキル硫酸エステル塩、アルキルアリールスルホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキルスルホン酸塩、ジアルキルスルホコハク酸塩、アルキルジアリールエーテルジスルホン酸塩、アルキルリン酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレンアルキルアリールエーテル硫酸塩、ナフタレンスルホン酸ホルマリン縮合物、及びポリオキシエチレンアルキルリン酸エステル塩等が挙げられる。
ノニオン性界面活性剤は、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレンオキシプロピレンブロックコポリマー、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステルポリオキシエチレンアルキルアミン、グリセロールボレイト脂肪酸エステル、及びポリオキシエチレングリセロール脂肪酸エステル等が挙げられる。
Examples of the surfactant include anionic surfactants, nonionic surfactants, and the like.
Anionic surfactants include, for example, fatty acid salts, alkyl sulfate ester salts, alkylaryl sulfonates, alkylnaphthalene sulfonates, dialkyl sulfonates, dialkyl sulfosuccinates, alkyl diarylether disulfonates, and alkyl phosphates. , polyoxyethylene alkyl ether sulfate, polyoxyethylene alkylaryl ether sulfate, naphthalene sulfonic acid formalin condensate, and polyoxyethylene alkyl phosphate ester salt.
Examples of nonionic surfactants include polyoxyethylene alkyl ether, polyoxyethylene alkylaryl ether, polyoxyethylene oxypropylene block copolymer, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester, and glycerin fatty acid. Examples include ester, polyoxyethylene fatty acid ester, polyoxyethylene alkylamine, glycerol borate fatty acid ester, and polyoxyethylene glycerol fatty acid ester.

レベリング剤としては、例えば、フッ素系レベリング剤、アクリルポリマー系レベリング剤、シリコーン系レベリング剤などが挙げられる。 Examples of the leveling agent include fluorine-based leveling agents, acrylic polymer-based leveling agents, and silicone-based leveling agents.

消泡剤としては、例えば、ミネラルオイル系消泡剤、シリコーン系消泡剤、非シリコーンポリマー系消泡剤、アセチレングリコール系消泡剤などが挙げられる。 Examples of antifoaming agents include mineral oil antifoaming agents, silicone antifoaming agents, non-silicone polymer antifoaming agents, and acetylene glycol antifoaming agents.

防腐剤としては、例えば、デヒドロ酢酸ナトリウム、安息香酸ナトリウム、ソジウムピリジンチオン-1-オキサイド、ジンクピリジンチオン-1-オキサイド、1,2-ベンズイソチアゾリン-3-オン、1-ベンズイソチアゾリン-3-オンのアミン塩等が挙げられる。 Examples of preservatives include sodium dehydroacetate, sodium benzoate, sodium pyridinethione-1-oxide, zinc pyridinethione-1-oxide, 1,2-benzisothiazolin-3-one, 1-benzisothiazolin-3- Examples include amine salts of ion and the like.

pH調整剤としては、例えば、各種アミン、無機塩基、アンモニア、各種緩衝液等が挙げられる。 Examples of the pH adjuster include various amines, inorganic bases, ammonia, and various buffer solutions.

紫外線吸収剤としては、例えば、エチレン性不飽和結合を有するベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、サリチル酸系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、ヒンダードフェノール系紫外線吸収剤、トリアジン系紫外線吸収剤等が挙げられる。 Examples of UV absorbers include benzotriazole UV absorbers having ethylenically unsaturated bonds, benzophenone UV absorbers, salicylic acid UV absorbers, cyanoacrylate UV absorbers, hindered phenol UV absorbers, and triazine. Examples include ultraviolet absorbers.

難燃剤としては、例えば、リン系難燃剤、リン酸エステル系難燃剤、ホウ素系難燃剤、臭素系難燃剤などが挙げられる。 Examples of the flame retardant include phosphorus flame retardants, phosphate ester flame retardants, boron flame retardants, and bromine flame retardants.

酸化防止剤としては、例えば、フェノール系酸化防止剤、アミン系酸化防止剤、ジチオカルバミン酸系酸化防止剤等が挙げられる。 Examples of the antioxidant include phenolic antioxidants, amine antioxidants, dithiocarbamic acid antioxidants, and the like.

特に限定するものではないが、一実施形態において、印刷インキセットにおける各色印刷インキの組合せは、式(1)で表されるイソインドリン化合物と分散媒体とを含むイエローインキ;先に説明した銅フタロシアニン、アルミニウムフタロシアニン、及びチタニルフタロシアニンからなる群から選択される少なくとも1種を含む金属フタロシアニン顔料と分散媒体とを含むシアンインキ;C.I.ピグメントレッド122と分散媒体とを含むマゼンタインキA;及びC.I.ピグメントバイオレット19と分散媒体とを含むマゼンタインキBであってよい。
他の実施形態において、各色印刷インキの組合せは、C.I.ピグメントイエロー180と分散媒体とを含むイエローインキ;先に説明した銅フタロシアニン、アルミニウムフタロシアニン、及びチタニルフタロシアニンからなる群から選択される少なくとも1種を含む金属フタロシアニン顔料と分散媒体とを含むシアンインキ;C.I.ピグメントレッド122と分散媒体とを含むマゼンタインキA;及びC.I.ピグメントバイオレット19と分散媒体とを含むマゼンタインキBであってよい。
これらの実施形態において、シアンインキ中の金属フタロシアニン顔料は、銅フタロシアニンであることがより好ましい。
これら各印刷インキにおける顔料(色材)の組合せによれば、優れた耐光性と優れた色再現性とを容易に両立することができる。また、特に、マゼンタインキAとマゼンタインキBとの組合せによる効果として、印刷層(インキ被膜)の接着性の向上も挙げられる。上記実施形態において、分散媒体として、ポリウレタン樹脂を使用した場合は、印刷層(インキ被膜)の接着性を高めることが容易となる。また、分散媒体として、ポリウレタン樹脂に加えてポリブチルビニラールを使用した場合は、上記接着性をさらに高めることが容易となる傾向がある。
Although not particularly limited, in one embodiment, the combination of printing inks of each color in the printing ink set includes yellow ink containing the isoindoline compound represented by formula (1) and a dispersion medium; copper phthalocyanine as described above; C. C., a metal phthalocyanine pigment containing at least one selected from the group consisting of aluminum phthalocyanine, and titanyl phthalocyanine, and a dispersion medium; I. Magenta ink A containing pigment red 122 and a dispersion medium; and C. I. The magenta ink B may include pigment violet 19 and a dispersion medium.
In other embodiments, the combination of printing inks of each color is C.I. I. Yellow ink containing Pigment Yellow 180 and a dispersion medium; Cyan ink containing a dispersion medium and a metal phthalocyanine pigment containing at least one selected from the group consisting of copper phthalocyanine, aluminum phthalocyanine, and titanyl phthalocyanine as described above; C .. I. Magenta ink A containing pigment red 122 and a dispersion medium; and C. I. The magenta ink B may include pigment violet 19 and a dispersion medium.
In these embodiments, the metal phthalocyanine pigment in the cyan ink is more preferably a copper phthalocyanine.
According to the combination of pigments (coloring materials) in each of these printing inks, it is possible to easily achieve both excellent light resistance and excellent color reproducibility. Further, in particular, as an effect of the combination of magenta ink A and magenta ink B, improvement in the adhesion of the printing layer (ink film) can be mentioned. In the above embodiment, when a polyurethane resin is used as the dispersion medium, it becomes easy to improve the adhesiveness of the printing layer (ink film). Further, when polybutylvinyral is used in addition to the polyurethane resin as the dispersion medium, it tends to be easier to further improve the adhesiveness.

<印刷インキの製造>
本実施形態の印刷インキセットを構成する印刷インキは、顔料を分散媒体中に分散することにより製造することができる。その後、得られた分散体に、必要に応じて、添加剤、水及び/又は有機溶剤等を配合することにより印刷インキを製造することができる。
<Manufacture of printing ink>
The printing ink constituting the printing ink set of this embodiment can be manufactured by dispersing pigment in a dispersion medium. Thereafter, a printing ink can be manufactured by blending additives, water, and/or an organic solvent, etc. with the obtained dispersion, if necessary.

分散機としては、一般に使用されるものを用いることができる。例えば、ローラーミル、ボールミル、ペブルミル、アトライター、サンドミル、及びその他のビーズミルが挙げられる。なかでも、ビーズミルの使用が好ましい。顔料分散体における顔料の粒度分布は、分散機のメディアビーズのサイズ、メディアビーズの充填率、分散時間、顔料分散体の流出速度、顔料分散体の粘度等を適宜調節することにより、調整することができる。 As the disperser, commonly used ones can be used. Examples include roller mills, ball mills, pebble mills, attritor mills, sand mills, and other bead mills. Among these, use of a bead mill is preferred. The particle size distribution of the pigment in the pigment dispersion can be adjusted by appropriately adjusting the size of the media beads of the dispersion machine, the filling rate of the media beads, the dispersion time, the flow rate of the pigment dispersion, the viscosity of the pigment dispersion, etc. I can do it.

本実施形態の印刷インキセットは、グラビア印刷インキセット及びフレキソ印刷インキセットの形態が好ましい。これら印刷インキセットを構成する印刷インキの形態としては、グラビアインキ、水性フレキソインキ、フレキソインキ、及び活性エネルギー線硬化性フレキソインキが好ましい。以下、これら各種インキについて具体的に説明する。 The printing ink set of this embodiment is preferably in the form of a gravure printing ink set or a flexographic printing ink set. Preferred forms of printing ink constituting these printing ink sets include gravure ink, water-based flexo ink, flexo ink, and active energy ray-curable flexo ink. Hereinafter, these various inks will be specifically explained.

<グラビアインキ>
グラビアインキは、顔料、及び分散媒体として、バインダー樹脂を含有し、さらに有機溶剤を含有することが好ましい。
<Gravure ink>
The gravure ink preferably contains a pigment and a binder resin as a dispersion medium, and further contains an organic solvent.

(顔料)
グラビアインキ中の顔料の含有率は、特に限定されないが、4~20質量%であることが好ましく、5~15質量%であることがより好ましい。
(pigment)
The content of pigment in the gravure ink is not particularly limited, but is preferably 4 to 20% by mass, more preferably 5 to 15% by mass.

(バインダー樹脂)
バインダー樹脂は、例えば、ポリウレタン樹脂、エチレン-酢酸ビニル共重合体樹脂、酢酸ビニル樹脂、ニトロセルロース樹脂、ポリアミド樹脂、ポリビニルアセタール樹脂、セルロースエステル樹脂、ポリスチレン樹脂、アクリル樹脂、ポリエステル樹脂、アルキッド樹脂、ロジン系樹脂、ロジン変性マレイン酸樹脂、ケトン樹脂、環化ゴム、ブチラール樹脂、石油樹脂、塩素化ポリオレフィン樹脂等が挙げられる。
(binder resin)
Examples of the binder resin include polyurethane resin, ethylene-vinyl acetate copolymer resin, vinyl acetate resin, nitrocellulose resin, polyamide resin, polyvinyl acetal resin, cellulose ester resin, polystyrene resin, acrylic resin, polyester resin, alkyd resin, and rosin. Examples include resins such as rosin-modified maleic acid resins, ketone resins, cyclized rubbers, butyral resins, petroleum resins, and chlorinated polyolefin resins.

バインダー樹脂の含有率は、グラビアインキ中、4~25質量%が好ましく、6~20質量%がより好ましい。 The content of the binder resin in the gravure ink is preferably 4 to 25% by mass, more preferably 6 to 20% by mass.

[ポリウレタン樹脂]
グラビアインキに使用するバインダー樹脂は、ポリウレタン樹脂が好ましい。なお、ポリウレタン樹脂は、ポリウレタンウレア樹脂を含む。
ポリウレタン樹脂の合成は、例えば、
(1)ポリオールとジイソシアネート化合物とをイソシアネート基が過剰となる割合で反応させて得られる末端にイソシアネート基を有するウレタンプレポリマーを合成する。次いで溶剤中でイソシアネート基を有するウレタンプレポリマーに前記アミノ基を有する鎖伸長剤及び/又は末端封鎖剤と反応させて合成する二段法、
(2)ポリプロピレングリコール、ポリオール、ジイソシアネート化合物、ならびにアミノ基を有する鎖伸長剤及び/又は末端封鎖剤を、適切な溶剤中で一度に反応させる一段法等が挙げられる。
合成に使用する溶剤は、例えば、酢酸エチル、酢酸プロピル、酢酸ブチルなどのエステル系溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶剤;メタノール、エタノール、イソプロパノール、n-ブタノールなどのアルコール系溶剤;メチルシクロヘキサン、エチルシクロヘキサンなどの炭化水素系溶剤;あるいはこれらの混合溶剤;が挙げられる。
これらの方法のなかでも、より均一なポリウレタン樹脂が得られるという観点から、二段法が好ましい。ポリウレタン樹脂を二段法で製造する場合、ウレタンプレポリマーのイソシアネート基と、鎖伸長剤及び末端封鎖剤のアミノ基との当量比(イソシアネート基のモル/アミノ基のモル)は、1/1.3~1/0.9が好ましい。イソシアネート基とアミノ基との当量比が1/1.3以上であると、未反応のまま残存する鎖伸長剤及び/又は末端封鎖剤が低減し、ポリウレタン樹脂の黄変、及び印刷後臭気を抑制することができる。イソシアネート基とアミノ基との当量比が1/0.9以下であると、得られるポリウレタン樹脂の分子量が適切となり、印刷後に好適な膜強度をもたらす樹脂を得ることができる。
[Polyurethane resin]
The binder resin used in the gravure ink is preferably a polyurethane resin. Note that the polyurethane resin includes polyurethane urea resin.
Synthesis of polyurethane resin is, for example,
(1) A urethane prepolymer having isocyanate groups at its terminals is synthesized by reacting a polyol and a diisocyanate compound in a proportion in which isocyanate groups are in excess. A two-step method in which a urethane prepolymer having an isocyanate group is then reacted with a chain extender and/or an end-capping agent having an amino group in a solvent to synthesize the urethane prepolymer;
(2) A one-step method in which polypropylene glycol, polyol, diisocyanate compound, and a chain extender and/or terminal blocking agent having an amino group are reacted all at once in an appropriate solvent.
Solvents used for synthesis include, for example, ester solvents such as ethyl acetate, propyl acetate, and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; alcohol solvents such as methanol, ethanol, isopropanol, and n-butanol. ; Hydrocarbon solvents such as methylcyclohexane and ethylcyclohexane; or mixed solvents thereof;
Among these methods, the two-stage method is preferred from the viewpoint of obtaining a more uniform polyurethane resin. When producing a polyurethane resin by a two-step process, the equivalent ratio of the isocyanate groups of the urethane prepolymer to the amino groups of the chain extender and end-blocking agent (moles of isocyanate groups/moles of amino groups) is 1/1. 3 to 1/0.9 is preferable. When the equivalent ratio of isocyanate groups to amino groups is 1/1.3 or more, the amount of chain extenders and/or terminal blocking agents remaining unreacted is reduced, and yellowing of the polyurethane resin and odor after printing are reduced. Can be suppressed. When the equivalent ratio of isocyanate groups to amino groups is 1/0.9 or less, the resulting polyurethane resin has an appropriate molecular weight, and a resin that provides suitable film strength after printing can be obtained.

上記ポリウレタン樹脂の重量平均分子量は、好ましくは、15,000~100,000の範囲である。ポリウレタン樹脂の重量平均分子量が15,000以上であると、インキの耐ブロッキング性、印刷被膜の強度、及び耐油性に優れ、100,000以下であると、得られるインキの粘度が適切な範囲となり、印刷被膜の光沢に優れる。 The weight average molecular weight of the polyurethane resin is preferably in the range of 15,000 to 100,000. When the weight average molecular weight of the polyurethane resin is 15,000 or more, the blocking resistance of the ink, the strength of the printed film, and the oil resistance are excellent, and when it is 100,000 or less, the viscosity of the obtained ink is within an appropriate range. , excellent gloss of printed film.

また、上記ポリウレタン樹脂は、印刷適性及びラミネート強度の観点から、アミン価を有するものが好ましい。アミン価は、0.5~20mgKOH/gが好ましく、1~15mgKOH/gがより好ましい。 Further, the polyurethane resin preferably has an amine value from the viewpoint of printability and lamination strength. The amine value is preferably 0.5 to 20 mgKOH/g, more preferably 1 to 15 mgKOH/g.

一実施形態において、本実施形態の印刷インキセットを包装材料の用途に使用する場合、ポリウレタン樹脂の含有率は、インキにおけるバインダー樹脂を基準として、80質量%以上であることが好ましい。ポリウレタン樹脂の含有率を上記範囲にすることによって、ボイルレトルト性及びポリエステルフィルムへの接着性を容易に向上させることができる。 In one embodiment, when the printing ink set of this embodiment is used as a packaging material, the content of the polyurethane resin is preferably 80% by mass or more based on the binder resin in the ink. By setting the content of the polyurethane resin within the above range, boil retortability and adhesion to polyester films can be easily improved.

[ポリビニルブチラール樹脂]
一実施形態において、グラビアインキに使用するバインダー樹脂は、さらにポリビニルブチラール樹脂を含むことが好ましい。このような実施形態によれば、基材に対するインキ被膜の接着性をより高めることが容易となる傾向がある。
ポリビニルブチラール樹脂は、ポリビニルアルコールをブチルアルデヒド又はホルムアルデヒドと反応させてアセタール化して得ることができる。
[Polyvinyl butyral resin]
In one embodiment, the binder resin used in the gravure ink preferably further contains polyvinyl butyral resin. According to such embodiments, it tends to be easier to increase the adhesion of the ink film to the substrate.
Polyvinyl butyral resin can be obtained by reacting polyvinyl alcohol with butyraldehyde or formaldehyde to acetalize it.

ポリビニルブチラール樹脂中のアセチル基含有率は、4質量%以下が好ましい。また、水酸基含有率は、1質量%~30質量%が好ましく、1質量%~25質量%がより好ましい。ポリビニルブチラール樹脂の重量平均分子量は、10,000~50,000が好ましい。 The acetyl group content in the polyvinyl butyral resin is preferably 4% by mass or less. Further, the hydroxyl group content is preferably 1% by mass to 30% by mass, more preferably 1% by mass to 25% by mass. The weight average molecular weight of the polyvinyl butyral resin is preferably 10,000 to 50,000.

ポリビニルブチラール樹脂の含有量は、インキにおけるバインダー樹脂を基準として、1.0~15.0質量%の範囲が好ましい。バインダー樹脂中のポリビニルブチラール樹脂の含有率を1.0質量%以上にすることで、得られる印刷インキの耐ブロッキング性やポリエステルフィルムへの接着性を容易に向上できる。また、上記含有率を15.0質量%以下にすることで、インキの貯蔵安定性を容易に向上できる。 The content of polyvinyl butyral resin is preferably in the range of 1.0 to 15.0% by mass based on the binder resin in the ink. By setting the content of polyvinyl butyral resin in the binder resin to 1.0% by mass or more, the blocking resistance of the resulting printing ink and the adhesion to the polyester film can be easily improved. Further, by controlling the content to 15.0% by mass or less, the storage stability of the ink can be easily improved.

[有機溶剤]
グラビアインキに使用する有機溶剤は、例えば、トルエン、キシレン等の芳香族有機溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系有機溶剤;酢酸エチル、酢酸n-プロピル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート等エステル系有機溶剤;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール等のアルコール系有機溶剤;エチレングリコールモノプロピルエーテル、プロピレングリコールモノメチルエーテル等のグリコールエーテル系溶剤;シクロメチルヘキサン等の脂肪族有機溶剤;等が挙げられる。これらの有機溶剤は、2種以上を混合して使用することが好ましい。
グラビアインキにおいては、エステル系有機溶剤とアルコール系有機溶剤との混合溶剤を使用することが好ましい。エステル系有機溶剤とアルコール系有機溶剤との質量比(エステル系有機溶剤の質量:アルコール系有機溶剤の質量)は、好ましくは95:5~40:60であり、より好ましくは90:10~50:50である。
インキにおける、有機溶剤の含有率は、インキの質量を基準として、好ましくは60~90質量%であり、より好ましくは70~85質量%の範囲である。
[Organic solvent]
Examples of organic solvents used in gravure ink include aromatic organic solvents such as toluene and xylene; ketone organic solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; ethyl acetate, n-propyl acetate, butyl acetate, and propylene glycol monomethyl ether. Ester organic solvents such as acetate; Alcohol organic solvents such as methanol, ethanol, n-propanol, isopropanol, n-butanol; Glycol ether solvents such as ethylene glycol monopropyl ether and propylene glycol monomethyl ether; Fats such as cyclomethylhexane group organic solvents; and the like. It is preferable to use a mixture of two or more of these organic solvents.
In gravure ink, it is preferable to use a mixed solvent of an ester organic solvent and an alcohol organic solvent. The mass ratio of the ester organic solvent to the alcohol organic solvent (mass of the ester organic solvent:mass of the alcohol organic solvent) is preferably 95:5 to 40:60, more preferably 90:10 to 50. :50.
The content of the organic solvent in the ink is preferably 60 to 90% by mass, more preferably 70 to 85% by mass, based on the mass of the ink.

グラビアインキの粘度は、顔料の沈降を防ぎ、顔料を適度に分散させる観点から、好ましくは10mPa・s以上であってよい。一方、インキ製造時又は印刷時の作業性効率の観点から、グラビアインキの粘度は、好ましくは1,000mPa・s以下であってよい。上記粘度は、トキメック社製のB型粘度計で25℃において測定された値である。 The viscosity of the gravure ink may preferably be 10 mPa·s or more from the viewpoint of preventing pigment sedimentation and appropriately dispersing the pigment. On the other hand, from the viewpoint of work efficiency during ink production or printing, the viscosity of the gravure ink may preferably be 1,000 mPa·s or less. The above viscosity is a value measured at 25° C. using a B-type viscometer manufactured by Tokimec.

[水]
一実施形態において、グラビアインキは、さらに、水を含むことができる。所定量の水を含むことで、ポリウレタン樹脂による顔料分散性が向上し、ハイライト転移性、版かぶり性、トラッピング性等の印刷適性が向上する。
水の含有率は、グラビアインキの質量を基準として、好ましくは0.1~10質量%であり、より好ましくは0.5~7質量%であり、さらに好ましくは0.5~5質量%であり、特に好ましくは0.5~4質量%である。
[water]
In one embodiment, the gravure ink can further include water. By including a predetermined amount of water, the pigment dispersibility by the polyurethane resin is improved, and printability such as highlight transfer property, plate fogging property, and trapping property is improved.
The content of water is preferably 0.1 to 10% by mass, more preferably 0.5 to 7% by mass, even more preferably 0.5 to 5% by mass, based on the mass of the gravure ink. The content is particularly preferably 0.5 to 4% by mass.

[シリカ粒子]
一実施形態において、グラビアインキは、さらに、シリカ粒子を含有できる。シリカ粒子を含むことで、重ね印刷時のインキの濡れ及び広がりが促進され、トラッピング性が向上し、ハイライト転移性も維持される。
シリカ粒子は、天然産及び合成品のいずれでもよい。また、結晶性、又は非結晶性、あるいは疎水性、又は親水性のいずれであってもよい。シリカ粒子の合成法は、乾式、及び湿式法がある。乾式法では、燃焼法、及びアーク法、並びに湿式法では、沈降法、及びゲル法が知られており、いずれの方法で合成されたものでもよい。また、シリカ粒子は、表面に親水性官能基を有する親水性シリカでもよい。あるいは、シリカ粒子は、親水性官能基をアルキルシラン等で変性して疎水化した疎水性シリカでもよい。好ましくは、親水性シリカである。
このようなシリカ粒子は、市販品として入手することもできる。例えば、東ソー・シリカ社製のニップジェルシリーズ、及びニップシルシリーズ、並びに、水澤化学社製のミズカシルシリーズが挙げられる。
[Silica particles]
In one embodiment, the gravure ink can further contain silica particles. Including silica particles promotes ink wetting and spreading during overprinting, improves trapping properties, and maintains highlight transfer properties.
Silica particles may be either naturally occurring or synthetic. Moreover, it may be crystalline, non-crystalline, hydrophobic, or hydrophilic. There are two methods for synthesizing silica particles: a dry method and a wet method. Combustion methods and arc methods are known as dry methods, and precipitation methods and gel methods are known as wet methods, and the composition may be synthesized by either method. Further, the silica particles may be hydrophilic silica having a hydrophilic functional group on the surface. Alternatively, the silica particles may be hydrophobic silica obtained by modifying a hydrophilic functional group with an alkylsilane or the like to make it hydrophobic. Hydrophilic silica is preferred.
Such silica particles can also be obtained as commercial products. Examples include the Nipgel series and Nipsil series manufactured by Tosoh Silica Co., Ltd., and the Mizukasil series manufactured by Mizusawa Chemical Co., Ltd.

シリカ粒子は、インキ層の表面に凹凸を作るため、平均粒子径が1~10μmであることが好ましい。より好ましくは1~8μmであり、さらに好ましくは1~6μmである。シリカ粒子の平均粒子径は、粒度分布における積算値50%(D50)での粒径を意味し、コールターカウンター法によって求めることができる。
シリカ粒子の比表面積は、BET法で50~600m/gであることが好ましい。より好ましくは100~450m/gである。グラビアインキで使用するシリカ粒子は、平均粒子径又はBET法比表面積の異なるものを2種以上組合せて使用できる。
The average particle diameter of the silica particles is preferably 1 to 10 μm in order to create irregularities on the surface of the ink layer. More preferably 1 to 8 μm, still more preferably 1 to 6 μm. The average particle diameter of silica particles means the particle diameter at 50% integrated value (D 50 ) in the particle size distribution, and can be determined by the Coulter counter method.
The specific surface area of the silica particles is preferably 50 to 600 m 2 /g by the BET method. More preferably, it is 100 to 450 m 2 /g. The silica particles used in the gravure ink can be a combination of two or more types having different average particle diameters or BET specific surface areas.

シリカ粒子の含有率は、グラビアインキ中、好ましくは0.1~3質量%であり、より好ましくは0.2~2.5質量%であり、さらに好ましくは0.2~2質量%であり、特に好ましくは0.2~1.5質量%である。 The content of silica particles in the gravure ink is preferably 0.1 to 3% by mass, more preferably 0.2 to 2.5% by mass, and even more preferably 0.2 to 2% by mass. , particularly preferably 0.2 to 1.5% by mass.

[その他成分]
グラビアインキは、必要に応じて、上記成分に加えて、各種添加剤等のその他成分をさらに含んでもよい。その他成分として、例えば、体質顔料、顔料分散剤、ワックス、ブロッキング防止剤、レベリング剤、消泡剤、可塑剤、帯電防止剤、赤外線吸収剤、及び紫外線吸収剤、芳香剤、及び難燃剤等の各種添加剤が挙げられる。必要に応じて、これら各種添加剤をインキにさらに加えてもよい。
[Other ingredients]
In addition to the above components, the gravure ink may further contain other components such as various additives, if necessary. Other ingredients include extender pigments, pigment dispersants, waxes, antiblocking agents, leveling agents, antifoaming agents, plasticizers, antistatic agents, infrared absorbers, ultraviolet absorbers, fragrances, and flame retardants. Various additives may be mentioned. If necessary, these various additives may be further added to the ink.

<グラビア印刷方法及び印刷物>
グラビア印刷は公知の方法から適宜選択できる。すなわち、輪転する凹版(グラビア版)及びそれに接触するドクターブレードを備えた複数色印刷可能なグラビア印刷機を用い、グラビアインキはインキ容器(インキパン)から供給される。粘度調整として専用の粘度コントローラーを用いてもよい。また、印刷用の基材は巻き取り方式で供給され、印刷物は印刷後に乾燥ユニットを通る。乾燥ユニットの温度としては30~100℃であることが好ましい。また、印刷速度は50~250m/分であることが好ましい。
<Gravure printing method and printed matter>
Gravure printing can be appropriately selected from known methods. That is, a gravure printing machine capable of printing in multiple colors is used, which is equipped with a rotating intaglio plate (gravure plate) and a doctor blade in contact therewith, and gravure ink is supplied from an ink container (ink pan). A dedicated viscosity controller may be used to adjust the viscosity. Further, the substrate for printing is supplied in a roll-up manner, and the printed matter passes through a drying unit after printing. The temperature of the drying unit is preferably 30 to 100°C. Further, the printing speed is preferably 50 to 250 m/min.

グラビア印刷の方式は、表刷り印刷と裏刷り印刷とに大別される。例えば、表刷り印刷において、基材が白色紙又は白色フィルムである場合、基材上に、イエローインキ、マゼンタインキ、シアンインキ、ブラックインキの順で印刷を行うことで、印刷物を得ることができる。
また、例えば、裏刷り印刷において、基材が透明フィルムである場合、基材上に、ブラックインキ、シアンインキ、マゼンタインキ、イエローインキ、白インキの順で印刷し、印刷物を作製することが好ましい。
印刷層の厚みは、用途、使用するインキの種類及び数、さらに重ね印刷の回数によって適宜選択できる。一実施形態において、印刷層の厚みは、通常、0.5~10μmの範囲であってよい。
Gravure printing methods are broadly divided into front printing and back printing. For example, in surface printing, if the base material is white paper or white film, printed matter can be obtained by printing yellow ink, magenta ink, cyan ink, and black ink on the base material in this order. .
For example, in back printing, when the base material is a transparent film, it is preferable to print black ink, cyan ink, magenta ink, yellow ink, and white ink on the base material in this order to produce printed matter. .
The thickness of the printing layer can be appropriately selected depending on the purpose, the type and number of inks used, and the number of times of overprinting. In one embodiment, the thickness of the printed layer may typically range from 0.5 to 10 μm.

[基材]
基材は、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン基材;ポリカーボネート基材;ポリエチレンテレフタレート、ポリ乳酸等のポリエステル基材;ポリスチレン基材;AS、ABS等のポリスチレン系樹脂基材;ナイロン等のポリアミド基材;ポリ塩化ビニル基材;ポリ塩化ビニリデン基材;セロハン基材;紙基材;アルミニウム箔基材;これらの複合材料からなる複合基材;が挙げられる。基材は、フィルム、シートのいずれの形状であってもよい。なかでも、ガラス転移温度が高い、ポリエステル基材及びポリアミド基材が好適に用いられる。
[Base material]
The base material is, for example, a polyolefin base material such as polyethylene or polypropylene; a polycarbonate base material; a polyester base material such as polyethylene terephthalate or polylactic acid; a polystyrene base material; a polystyrene resin base material such as AS or ABS; a polyamide base material such as nylon. material; polyvinyl chloride base material; polyvinylidene chloride base material; cellophane base material; paper base material; aluminum foil base material; and composite base material made of composite materials thereof. The base material may be in the form of a film or a sheet. Among these, polyester base materials and polyamide base materials, which have a high glass transition temperature, are preferably used.

上記基材の表面は、金属酸化物等が蒸着処理されていてもよく、ポリビニルアルコール等がコート処理されていてもよい。このような表面処理がされている基材としては、例えば、酸化アルミニウムを表面に蒸着させた凸版印刷社製GL-AE、大日本印刷社製IB-PET-PXBが挙げられる。基材は、必要に応じて、帯電防止剤、及び紫外線防止剤などの添加剤で処理されていてもよく、コロナ処理又は低温プラズマ処理されていてもよい。 The surface of the base material may be vapor-deposited with a metal oxide or the like, or coated with polyvinyl alcohol or the like. Examples of substrates that have undergone such surface treatment include GL-AE manufactured by Toppan Printing Co., Ltd. and IB-PET-PXB manufactured by Dainippon Printing Co., Ltd., which have aluminum oxide deposited on their surfaces. The base material may be treated with additives such as an antistatic agent and an ultraviolet inhibitor, and may be subjected to corona treatment or low-temperature plasma treatment, if necessary.

基材の厚みは、特に制限されず、通常、5~100μmの範囲であってよい。 The thickness of the base material is not particularly limited and may generally be in the range of 5 to 100 μm.

<水性フレキソインキ>
水性フレキソインキは、少なくとも、顔料と、分散媒体としてバインダー樹脂及び水性溶剤を含有する。
<Water-based flexo ink>
The water-based flexographic ink contains at least a pigment, a binder resin, and an aqueous solvent as a dispersion medium.

水性フレキソインキ中の顔料組成物の含有率は、特に限定されないが、10~30質量%であることが好ましく、15~25質量%であることがより好ましい。 The content of the pigment composition in the aqueous flexographic ink is not particularly limited, but is preferably 10 to 30% by mass, more preferably 15 to 25% by mass.

以下に、水性フレキソインキに含まれる各成分について説明する。 Each component contained in the water-based flexographic ink will be explained below.

[バインダー樹脂]
水性フレキソインキは、バインダー樹脂を含むことが好ましい。バインダー樹脂としては、例えば、水性ポリウレタン樹脂、水性アクリルウレタン樹脂、ポリエステル樹脂、アクリル樹脂、スチレン-アクリル樹脂、スチレン-無水マレイン酸樹脂、ロジン変性マレイン酸樹脂、セルロース系樹脂、及び塩素化ポリオレフィン等の水性樹脂が挙げられる。なかでも、少なくとも水性ポリウレタン樹脂を含むことが好ましい。バインダー樹脂は、単独で、又は2種類以上を組合せて使用できる。
[Binder resin]
Preferably, the water-based flexographic ink contains a binder resin. Examples of the binder resin include water-based polyurethane resin, water-based acrylic urethane resin, polyester resin, acrylic resin, styrene-acrylic resin, styrene-maleic anhydride resin, rosin-modified maleic resin, cellulose resin, and chlorinated polyolefin. Examples include water-based resins. Among these, it is preferable to contain at least an aqueous polyurethane resin. Binder resins can be used alone or in combination of two or more types.

(水性ポリウレタン樹脂)
ポリウレタン樹脂は、一般に、1分子中に2以上のイソシアネート基を有するポリイソシアネートと、1分子中に2以上のヒドロキシル基を有するヒドロキシル基含有化合物とを反応させることにより得られる樹脂である。一実施形態において、水性ポリウレタン樹脂は、以下に述べる構成を備えている。こうした構成は、ヒドロキシル基含有化合物の構造及び種類等を適宜選択することにより、好ましく導入することができる。
(Water-based polyurethane resin)
A polyurethane resin is generally a resin obtained by reacting a polyisocyanate having two or more isocyanate groups in one molecule with a hydroxyl group-containing compound having two or more hydroxyl groups in one molecule. In one embodiment, the water-based polyurethane resin has the configuration described below. Such a configuration can be preferably introduced by appropriately selecting the structure, type, etc. of the hydroxyl group-containing compound.

水性ポリウレタン樹脂のウレタン結合数(mmol/g)は、特に限定はされない。一実施形態において、水性ポリウレタン樹脂の分子量、及び塗膜の硬さの調整等の観点から、ウレタン結合数は2.2~3.0mmol/gが好ましく、2.3~2.9mmol/gがより好ましい。このウレタン結合数は、ヒドロキシル基含有化合物及びポリイソシアネートの量、並びに反応条件を適宜調整することにより、所望の範囲とすることができる。 The number of urethane bonds (mmol/g) in the aqueous polyurethane resin is not particularly limited. In one embodiment, from the viewpoint of adjusting the molecular weight of the water-based polyurethane resin and the hardness of the coating film, the number of urethane bonds is preferably 2.2 to 3.0 mmol/g, and 2.3 to 2.9 mmol/g. More preferred. The number of urethane bonds can be adjusted to a desired range by appropriately adjusting the amounts of the hydroxyl group-containing compound and polyisocyanate, and the reaction conditions.

水性ポリウレタン樹脂のガラス転移温度(Tg)は、特に限定はされないが、-70℃以下が好ましく、さらに好ましくは-70℃~-90℃である。水性ポリウレタン樹脂のTgが-70℃以下であることにより、インキの成膜性が向上し、塗膜の密着性が向上する。 The glass transition temperature (Tg) of the aqueous polyurethane resin is not particularly limited, but is preferably -70°C or lower, more preferably -70°C to -90°C. When the Tg of the aqueous polyurethane resin is −70° C. or less, the film forming properties of the ink are improved and the adhesion of the coating film is improved.

水性ポリウレタン樹脂の重量平均分子量(GPC測定、標準ポリスチレン換算)は、特に限定はされないが、10,000~100,000であることが好ましく、30,000~70,000であることがより好ましい。 The weight average molecular weight (GPC measurement, standard polystyrene equivalent) of the aqueous polyurethane resin is not particularly limited, but is preferably from 10,000 to 100,000, more preferably from 30,000 to 70,000.

水性ポリウレタン樹脂の水酸基価(mgKOH/g)は、特に限定はされないが、耐水性等の観点から、35mgKOH/g以下であることが好ましく、20mgKOH/g以下であることがより好ましい。一実施形態において、上記水酸基価(mgKOH/g)は、0mgKOH/gであってもよい。 The hydroxyl value (mgKOH/g) of the aqueous polyurethane resin is not particularly limited, but from the viewpoint of water resistance etc., it is preferably 35 mgKOH/g or less, and more preferably 20 mgKOH/g or less. In one embodiment, the hydroxyl value (mgKOH/g) may be 0 mgKOH/g.

水性ポリウレタン樹脂は、水溶性であっても、水性エマルジョンであってもよいが、水溶性であることが好ましい。ここで、水性エマルジョンとは、水へ難溶解性の樹脂が粒子状に乳濁安定化した状態の樹脂溶液をいう。
水性ポリウレタン樹脂の含有量は、水性フレキソインキの全質量を基準として、3質量%以上であることが好ましく、5質量%以上であることがより好ましく、7質量%以上がさらに好ましい。一方、水性ポリウレタン樹脂の含有量は、水性フレキソインキの全質量を基準として、25質量%以下であることが好ましく、20質量%以下であることがより好ましく、17質量%以下がさらに好ましい。
The water-based polyurethane resin may be water-soluble or may be a water-based emulsion, but is preferably water-soluble. Here, the aqueous emulsion refers to a resin solution in which a resin hardly soluble in water is stabilized in the form of emulsion in the form of particles.
The content of the aqueous polyurethane resin is preferably 3% by mass or more, more preferably 5% by mass or more, and even more preferably 7% by mass or more, based on the total mass of the aqueous flexographic ink. On the other hand, the content of the water-based polyurethane resin is preferably 25% by mass or less, more preferably 20% by mass or less, and even more preferably 17% by mass or less, based on the total mass of the water-based flexographic ink.

(ポリビニルブチラール樹脂)
一実施形態において、水性フレキソインキに使用するバインダー樹脂は、さらにポリビニルブチラール樹脂を含むことが好ましい。このような実施形態によれば、基材に対するインキ被膜の接着性をより高めることが容易となる傾向がある。ポリビニルブチラール樹脂としては、上記のグラビアインキの説明に記載したポリビニルブチラール樹脂が好ましい。
(Polyvinyl butyral resin)
In one embodiment, the binder resin used in the water-based flexographic ink preferably further includes a polyvinyl butyral resin. According to such embodiments, it tends to be easier to increase the adhesion of the ink film to the substrate. As the polyvinyl butyral resin, the polyvinyl butyral resin described in the description of the gravure ink above is preferable.

[水性溶剤]
水性フレキソインキは、水性溶剤を含有する。水性溶剤は、水;n-プロパノール、イソプロパノール等のアルコール溶剤;プロピレングリコール、ブチレングリコール、ジプロピレングリコール、トリプロピレングリコール等のグリコール溶剤;プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル等のグリコールモノアルキルエーテル溶剤;等が挙げられる。
[Aqueous solvent]
Water-based flexographic inks contain an aqueous solvent. Aqueous solvents include water; alcohol solvents such as n-propanol and isopropanol; glycol solvents such as propylene glycol, butylene glycol, dipropylene glycol, and tripropylene glycol; glycol monoalkyl such as propylene glycol monoethyl ether and propylene glycol monopropyl ether. Examples include ether solvent; etc.

水性溶剤の含有量は、水性フレキソインキの全質量を基準として、40~70質量%であることが好ましい。 The content of the aqueous solvent is preferably 40 to 70% by mass based on the total mass of the aqueous flexo ink.

[その他成分]
水性フレキソインキは、必要に応じて、上記成分に加えて各種添加剤等のその他成分をさらに含んでもよい。その他成分として、体質顔料、顔料分散剤、ワックス、レベリング剤、界面活性剤、消泡剤、防腐剤、増粘剤、pH調整剤、硬化剤、及び紫外線吸収剤等の公知の各種添加剤が挙げられる。必要に応じて、これら各種添加剤をインキにさらに加えてもよい。また、課題を解決できる範囲内であれば、アルコール溶剤以外の非水系溶剤(例えば、ケトン系溶剤、及びエステル系溶剤)を加えてもよい。非水系溶剤の含有量は、インキの全質量を基準として、20質量%以下が好ましく、10質量%以下がより好ましい。
[Other ingredients]
The water-based flexographic ink may further contain other components such as various additives in addition to the above components, as necessary. Other ingredients include extender pigments, pigment dispersants, waxes, leveling agents, surfactants, antifoaming agents, preservatives, thickeners, pH adjusters, curing agents, and various known additives such as ultraviolet absorbers. Can be mentioned. If necessary, these various additives may be further added to the ink. Furthermore, non-aqueous solvents other than alcohol solvents (for example, ketone solvents and ester solvents) may be added as long as the problem can be solved. The content of the non-aqueous solvent is preferably 20% by mass or less, more preferably 10% by mass or less, based on the total mass of the ink.

<フレキソ印刷方法及び印刷物>
フレキソ印刷の方式は特に制限されず、公知の方法から適宜選択できる。例えば、2ロール方式、ドクター方式、ドクターチャンバー方式等が挙げられる。ドクター方式、ドクターチャンバー方式では、表面にセルが形成されたアニロックスロールにフレキソインキを供給し、アニロックスロール表面の余分なフレキソインキをドクターブレードによって掻き落とす工程を経て、樹脂版を通して、最終的に基材にインキが印刷(塗布)される。
<Flexo printing method and printed matter>
The method of flexographic printing is not particularly limited, and can be appropriately selected from known methods. Examples include a two-roll system, a doctor system, a doctor chamber system, and the like. In the doctor method and doctor chamber method, flexo ink is supplied to an anilox roll with cells formed on its surface, the excess flexo ink on the surface of the anilox roll is scraped off with a doctor blade, and then passed through a resin plate and finally printed as a base. Ink is printed (applied) onto the material.

フレキソ印刷に使用されるアニロックスとしては、セル彫刻が施されたセラミックアニロックスロール、クロムメッキアニロックスロール等を使用することができる。セルの形状は、ハニカムパターン、ダイヤパターン、ヘリカルパターン等があり、いずれのパターンを使用することができる。 As the anilox used for flexographic printing, a ceramic anilox roll with cell engraving, a chrome-plated anilox roll, etc. can be used. Cell shapes include honeycomb patterns, diamond patterns, helical patterns, etc., and any of these patterns can be used.

フレキソ印刷に使用される版としては、UV光源による紫外線硬化を利用する感光性樹脂版、及びダイレクトレーザー彫刻方式を使用するエラストマー素材版が挙げられる。版を貼るスリーブ及びクッションテープについては、任意のものを使用することができる。 Plates used for flexographic printing include photosensitive resin plates that utilize ultraviolet curing by a UV light source and elastomer material plates that use a direct laser engraving method. Any sleeve and cushion tape can be used to attach the plate.

フレキソ印刷機としては、CI型多色フレキソ印刷機、及びユニット型多色フレキソ印刷機等がある。インキ供給方式については、チャンバー方式、及び2ロール方式が挙げられる。これらを適宜組合せた印刷機を使用することができる。 Examples of flexo printing machines include CI type multicolor flexo printing machines and unit type multicolor flexo printing machines. Examples of ink supply methods include a chamber method and a two-roll method. A printing machine combining these as appropriate can be used.

[基材]
基材は、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ナイロン等のプラスチックフィルム、セロハン、紙、アルミニウム箔等、もしくはこれらの複合材料からなるフィルム、シート等が挙げられる。紙基材としては、ノンコート紙、基材の片側が処理されている片艶クラフト紙、晒しクラフト紙、未晒しクラフト紙等から選ばれる紙基材であることが好ましい。その他のプラスチックフィルム等の基材は、グラビアインキの印刷物と同様のものを使用することができる。
[Base material]
Examples of the base material include plastic films such as polyethylene, polypropylene, polyethylene terephthalate, and nylon, cellophane, paper, aluminum foil, and films and sheets made of composite materials thereof. The paper base material is preferably a paper base material selected from uncoated paper, single-gloss kraft paper treated on one side of the base material, bleached kraft paper, unbleached kraft paper, and the like. Other base materials such as plastic films can be the same as those used for gravure ink prints.

<フレキソインキ>
フレキソインキは、顔料、及び分散媒体としてバインダー樹脂を含有し、さらに有機溶剤を含有することが好ましい。
<Flexo ink>
The flexo ink preferably contains a pigment and a binder resin as a dispersion medium, and further contains an organic solvent.

(顔料)
フレキソインキ中の顔料の含有率は、特に限定されないが、4~25質量%であることが好ましく、5~20質量%であることがより好ましい。
(pigment)
The content of pigment in the flexographic ink is not particularly limited, but is preferably 4 to 25% by mass, more preferably 5 to 20% by mass.

(バインダー樹脂)
バインダー樹脂は、例えば、ポリウレタン樹脂、ポリビニルアセタール樹脂、セルロースエステル樹脂、ポリアミド樹脂、エチレン-酢酸ビニル共重合体樹脂、酢酸ビニル樹脂、ポリスチレン樹脂、アクリル樹脂、ポリエステル樹脂、アルキッド樹脂、ロジン系樹脂、ロジン変性マレイン酸樹脂、ケトン樹脂、環化ゴム、ブチラール樹脂、石油樹脂、塩素化ポリオレフィン樹脂等が挙げられる。
なかでも、バインダー樹脂としては、ポリウレタン樹脂、ポリビニルアセタール樹脂、セルロースエステル樹脂を含むことが好ましい。
(binder resin)
Examples of the binder resin include polyurethane resin, polyvinyl acetal resin, cellulose ester resin, polyamide resin, ethylene-vinyl acetate copolymer resin, vinyl acetate resin, polystyrene resin, acrylic resin, polyester resin, alkyd resin, rosin resin, and rosin resin. Examples include modified maleic acid resins, ketone resins, cyclized rubbers, butyral resins, petroleum resins, and chlorinated polyolefin resins.
Among these, the binder resin preferably includes polyurethane resin, polyvinyl acetal resin, and cellulose ester resin.

ポリウレタン樹脂及びポリビニルアセタール樹脂としては、上記のグラビアインキの説明に記載したポリウレタン樹脂及びポリビニルアセタール樹脂が好ましい。 As the polyurethane resin and polyvinyl acetal resin, the polyurethane resin and polyvinyl acetal resin described in the description of the gravure ink above are preferable.

セルロースエステル樹脂としては、ニトロセルロース樹脂、セルロースアセテートプロピオネート樹脂、又はセルロースアセテートブチレート樹脂が好ましい。 As the cellulose ester resin, nitrocellulose resin, cellulose acetate propionate resin, or cellulose acetate butyrate resin is preferable.

ニトロセルロース樹脂は、セルロースの水酸基を一部又は大部分を硫酸と硝酸の混酸により硝酸エステル化(硝化)することにより得られる。硝化度によってニトロセルロース樹脂の溶剤に対する溶解性は変化する。通常、硝化度の高いものは炭化水素系溶剤又はエステル系溶剤に使用される。また、硝化度の低いものは、アルコール系溶剤に使用される。 Nitrocellulose resin is obtained by nitrifying some or most of the hydroxyl groups of cellulose with a mixed acid of sulfuric acid and nitric acid. The solubility of nitrocellulose resin in solvents changes depending on the degree of nitrification. Usually, those with a high degree of nitrification are used for hydrocarbon solvents or ester solvents. Also, those with a low degree of nitrification are used as alcohol-based solvents.

セルロースアセテートプロピオネート樹脂は、セルロースを酢酸及びプロピオン酸でトリエステル化した後、加水分解することによって得られる。一般的には、アセチル化が0.6~2.5質量%、プロピオネート化が42~46質量%、水酸基が1.8~5質量%の樹脂が市販されている。本発明の一実施形態では、ポリウレタン樹脂との相溶性の観点から、プロピオニル基含有率が40~50質量%(中心値45%)、アセチル基含有率が0.5~3質量%(中心値2.5%)、水酸基含有率が2~6質量%(中心値2.5%)、粘度が0.05~0.2Pa・sのセルロースアセテートプロピオネート樹脂を使用することが好ましい。 Cellulose acetate propionate resin is obtained by triesterifying cellulose with acetic acid and propionic acid and then hydrolyzing it. Generally, resins containing 0.6 to 2.5 mass % of acetylation, 42 to 46 mass % of propionation, and 1.8 to 5 mass % of hydroxyl groups are commercially available. In one embodiment of the present invention, from the viewpoint of compatibility with polyurethane resin, the propionyl group content is 40 to 50% by mass (center value 45%), and the acetyl group content is 0.5 to 3% by mass (center value 2.5%), a hydroxyl group content of 2 to 6% by mass (median value 2.5%), and a viscosity of 0.05 to 0.2 Pa·s.

セルロースアセテートブチレート樹脂は、セルロースを酢酸及び酪酸でトリエステル化した後、加水分解することによって得られる。一般的には、アセチル化が2~30質量%、ブチリル化が17~53質量%、水酸基が1~5質量%の樹脂が市販されている。 Cellulose acetate butyrate resin is obtained by triesterifying cellulose with acetic acid and butyric acid and then hydrolyzing it. Generally, resins containing 2 to 30% by weight of acetylation, 17 to 53% by weight of butyrylation, and 1 to 5% by weight of hydroxyl groups are commercially available.

[有機溶剤]
フレキソインキに使用する有機溶剤は、例えば、酢酸エチル、酢酸n-プロピル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート等エステル系有機溶剤;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール等のアルコール系有機溶剤;エチレングリコールモノプロピルエーテル、プロピレングリコールモノメチルエーテル等のグリコールエーテル系溶剤;シクロメチルヘキサン等の脂肪族有機溶剤;等が挙げられる。これらの有機溶剤は、2種以上を混合して使用することが好ましい。
[Organic solvent]
Organic solvents used for flexo ink include, for example, ester-based organic solvents such as ethyl acetate, n-propyl acetate, butyl acetate, and propylene glycol monomethyl ether acetate; alcohol-based solvents such as methanol, ethanol, n-propanol, isopropanol, and n-butanol. Organic solvents; glycol ether solvents such as ethylene glycol monopropyl ether and propylene glycol monomethyl ether; aliphatic organic solvents such as cyclomethylhexane; and the like. It is preferable to use a mixture of two or more of these organic solvents.

[その他成分]
フレキソインキは、必要に応じて、上記成分に加えて各種添加剤などのその他成分を含んでもよい。その他成分として、例えば、体質顔料、顔料分散剤、ワックス、ブロッキング防止剤、レベリング剤、消泡剤、可塑剤、帯電防止剤、赤外線吸収剤、紫外線吸収剤、芳香剤、難燃剤等の各種添加剤が挙げられる。必要に応じて、これら各種添加剤をインキにさらに加えてもよい。
[Other ingredients]
The flexo ink may contain other components such as various additives in addition to the above components, as necessary. Other ingredients include various additives such as extender pigments, pigment dispersants, waxes, antiblocking agents, leveling agents, antifoaming agents, plasticizers, antistatic agents, infrared absorbers, ultraviolet absorbers, fragrances, and flame retardants. Examples include agents. If necessary, these various additives may be further added to the ink.

<活性エネルギー線硬化性フレキソインキ>
活性エネルギー線硬化性フレキソインキは、顔料と、分散媒体として重合性化合物と、光重合開始剤とを含有する。
<Active energy ray curable flexo ink>
The active energy ray-curable flexo ink contains a pigment, a polymerizable compound as a dispersion medium, and a photopolymerization initiator.

活性エネルギー線硬化性フレキソインキ中の顔料組成物の含有率は、特に限定されないが、5~30質量%であることが好ましく、10~25質量%であることがより好ましい。 The content of the pigment composition in the active energy ray-curable flexographic ink is not particularly limited, but is preferably from 5 to 30% by mass, more preferably from 10 to 25% by mass.

以下に記載する成分は、本実施形態の活性エネルギー線硬化性フレキソインキに含まれるか、又は必要に応じてインキに加えられる。 The components described below are included in the active energy ray-curable flexo ink of this embodiment, or added to the ink as necessary.

[重合性化合物]
重合性化合物は、上述の通りである。
[Polymerizable compound]
The polymerizable compound is as described above.

重合性化合物は、単独で、又は2種類以上を組合せて使用できる。 The polymerizable compounds can be used alone or in combination of two or more.

重合性化合物の含有量は、活性エネルギー線硬化性フレキソインキの全質量に対して、25~90質量%が好ましく、35~80質量%がより好ましい。 The content of the polymerizable compound is preferably 25 to 90% by mass, more preferably 35 to 80% by mass, based on the total mass of the active energy ray-curable flexographic ink.

[重合開始剤]
活性エネルギー線硬化性フレキソインキは、重合開始剤を含有する。上記重合開始剤としては、ラジカル重合の重合開始剤を含有することが好ましく、光重合開始剤を含有することがより好ましい。重合開始剤は、光の作用、又は増感色素の電子励起状態との相互作用を経て、化学変化を生じ、ラジカルを生成する化合物である。なかでも、露光という手段で重合開始させることができることから、光ラジカル重合開始剤が好ましい。
[Polymerization initiator]
The active energy ray-curable flexo ink contains a polymerization initiator. The polymerization initiator preferably includes a radical polymerization initiator, and more preferably a photopolymerization initiator. A polymerization initiator is a compound that undergoes a chemical change and generates radicals through the action of light or interaction with the electronically excited state of a sensitizing dye. Among these, photoradical polymerization initiators are preferred because polymerization can be initiated by exposure.

上記光ラジカル重合開始剤は、特に制限はなく、公知のものを用いることができる。具体例としては、ベンゾフェノン系化合物、ジアルコキシアセトフェノン系化合物、α-ヒドロキシアルキルフェノン系化合物、α-アミノアルキルフェノン系化合物、アシルフォスフィンオキサイド系化合物、チオキサントン系化合物等が挙げられる。 The photoradical polymerization initiator is not particularly limited, and any known one can be used. Specific examples include benzophenone compounds, dialkoxyacetophenone compounds, α-hydroxyalkylphenone compounds, α-aminoalkylphenone compounds, acylphosphine oxide compounds, and thioxanthone compounds.

上記ベンゾフェノン系化合物としては、ベンゾフェノン、4-メチルベンゾフェノン、4-フェニルベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、[4-(メチルフェニルチオ)フェニル]-フェニルメタノン等が挙げられる。 Examples of the benzophenone compounds include benzophenone, 4-methylbenzophenone, 4-phenylbenzophenone, 4,4'-bis(diethylamino)benzophenone, 4,4'-bis(dimethylamino)benzophenone, [4-(methylphenylthio) phenyl]-phenylmethanone and the like.

上記ジアルコキシアセトフェノン系化合物としては、2,2-ジメトキシ-2-フェニルアセトフェノン、ジメトキシアセトフェノン、ジエトキシアセトフェノン等が挙げられる。 Examples of the dialkoxyacetophenone compounds include 2,2-dimethoxy-2-phenylacetophenone, dimethoxyacetophenone, and diethoxyacetophenone.

上記α-ヒドロキシアルキルフェノン系化合物としては、1-ヒドロキシ-シクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシメトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン等が挙げられる。 The above α-hydroxyalkylphenone compounds include 1-hydroxy-cyclohexylphenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 1-[4-(2-hydroxymethoxy)-phenyl ]-2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1-{4-[4-(2-hydroxy-2-methyl-propionyl)-benzyl]phenyl}-2-methyl -propan-1-one and the like.

上記α-アミノアルキルフェノン系化合物としては、2-メチル-1-[4-(メトキシチオ)-フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-(ジメチルアミノ)-1-(4-モルフォリノフェニル)-1-ブタノン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルフォリニル)フェニル]-1-ブタノン等が挙げられる。 The above α-aminoalkylphenone compounds include 2-methyl-1-[4-(methoxythio)-phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-(dimethylamino)-1- (4-morpholinophenyl)-1-butanone, 2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-[4-(4-morpholinyl)phenyl]-1-butanone, etc. It will be done.

上記アシルフォスフィンオキサイド系化合物としては、ジフェニルアシルフェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等が挙げられる。 Examples of the above acylphosphine oxide compounds include diphenylacyl phenylphosphine oxide, 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, etc. It will be done.

上記チオキサントン系化合物としては、2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン等が挙げられる。 Examples of the thioxanthone compounds include 2-isopropylthioxanthone, 2,4-dimethylthioxanthone, and 2,4-diethylthioxanthone.

上記重合開始剤は、単独で、又は2種以上を組合せて使用できる。 The above polymerization initiators can be used alone or in combination of two or more.

重合開始剤の含有率は、活性エネルギー線硬化性フレキソインキの全質量に対して、0.5~20質量%が好ましく、5~15質量%がより好ましい。 The content of the polymerization initiator is preferably 0.5 to 20% by mass, more preferably 5 to 15% by mass, based on the total mass of the active energy ray-curable flexographic ink.

[分散剤]
活性エネルギー線硬化性フレキソインキは、顔料分散性をより向上させるために、分散剤をさらに含むことが好ましい。分散剤としては、特に制限はなく、公知のものを用いることができる。
具体例として、ポリオキシアルキレンポリアルキレンポリアミン、ビニル系ポリマー及びコポリマー、アクリル系ポリマー及びコポリマー、ポリエステル、ポリアミド、ポリイミド、ポリウレタン、アミン系ポリマーなどを主成分とする高分子分散剤が挙げられる。なかでも、顔料の分散安定性の観点から、ブロック構造又はくし型構造の塩基性官能基含有の顔料分散剤が好ましい。
このような顔料分散剤は市販品として入手することもできる。例えば、味の素ファインテクノ株式会社製のアジスパーシリーズ(アジスパーPB821、PB822、PB824等)、日本ルーブリゾール社製のソルスパーズシリーズ(SOLSPERSE24000、SOLSPERSE32000、SOLSPERSE38500、SOLSPERSE39000等)、ビックケミー社製のディスパービックシリーズ(BYK-162、BYK-168、BYK-183等)等が挙げられる。
[Dispersant]
The active energy ray-curable flexographic ink preferably further contains a dispersant in order to further improve pigment dispersibility. There are no particular limitations on the dispersant, and any known dispersant can be used.
Specific examples include polymeric dispersants containing polyoxyalkylene polyalkylene polyamines, vinyl polymers and copolymers, acrylic polymers and copolymers, polyesters, polyamides, polyimides, polyurethanes, amine polymers, and the like as main components. Among these, from the viewpoint of pigment dispersion stability, pigment dispersants containing basic functional groups having a block structure or a comb structure are preferred.
Such pigment dispersants can also be obtained as commercial products. For example, the Ajisper series (Ajisper PB821, PB822, PB824, etc.) manufactured by Ajinomoto Fine-Techno Co., Ltd., the Solspers series (SOLSPERSE24000, SOLSPERSE32000, SOLSPERSE38500, SOLSPERSE39000, etc.) manufactured by Japan Lubrizol, Inc., and the Disperbic manufactured by Bic Chemie, Inc. Series ( BYK-162, BYK-168, BYK-183, etc.).

上記分散剤の含有量は、活性エネルギー線硬化性フレキソインキの全質量に対して、0.1~10質量%であることが好ましい。 The content of the dispersant is preferably 0.1 to 10% by mass based on the total mass of the active energy ray-curable flexographic ink.

[重合開始助剤]
活性エネルギー線硬化性フレキソインキは、重合開始助剤を含有することもできる。重合開始助剤を含有することで、硬化性をさらに高めることができる。重合開始助剤としては、トリエタノールアミン、メチルジエタノールアミン、トリイソプロパノールアミン、脂肪族アミン、2-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、ジブチルエタノールアミン等が挙げられる。
[Polymerization initiation aid]
The active energy ray-curable flexo ink can also contain a polymerization initiation aid. By containing a polymerization initiation aid, curability can be further improved. Examples of polymerization initiation aids include triethanolamine, methyldiethanolamine, triisopropanolamine, aliphatic amines, ethyl 2-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, dibutylethanolamine, etc. can be mentioned.

上記重合開始助剤の含有量は、活性エネルギー線硬化性フレキソインキの全質量に対して、0.1~5質量%であることが好ましく、より好ましくは0.5~3質量%である。 The content of the polymerization initiation aid is preferably 0.1 to 5% by mass, more preferably 0.5 to 3% by mass, based on the total mass of the active energy ray-curable flexo ink.

[ワックス]
活性エネルギー線硬化性フレキソインキは、耐摩擦性、ブロッキング防止性、スベリ性、及びスリキズ防止性をより高めるために、ワックスを含むことが好ましい。ワックスとしては、特に制限はなく、公知のものを用いることができる。例えば、天然ワックス及び合成ワックスがある。天然ワックスは、例えば、カルナバワックス、木ろう、ラノリン、モンタンワックス、パラフィンワックス、マイクロクリスタリンワックス等が挙げられる。合成ワックスは、例えば、フィッシャー・トロプシュワックス、ポリエチレンワックス、ポリプロピレンワックス、ポリテトラフルオロエチレンワックス、ポリアミドワックスシリコーン化合物等が挙げられる。
[wax]
The active energy ray-curable flexographic ink preferably contains wax in order to further improve friction resistance, anti-blocking properties, slip properties, and anti-scratch properties. There are no particular restrictions on the wax, and any known wax can be used. For example, natural waxes and synthetic waxes. Examples of natural waxes include carnauba wax, Japanese wax, lanolin, montan wax, paraffin wax, and microcrystalline wax. Examples of synthetic waxes include Fischer-Tropsch wax, polyethylene wax, polypropylene wax, polytetrafluoroethylene wax, polyamide wax, and silicone compounds.

上記ワックスの含有量は、耐摩擦性、光沢、パイリングのバランスの観点から、活性エネルギー線硬化性フレキソインキの全質量に対して、0.1~5質量%であることが好ましく、0.5~4質量%であることがより好ましい。 The content of the above-mentioned wax is preferably 0.1 to 5% by mass, and 0.5% by mass based on the total mass of the active energy ray-curable flexo ink, from the viewpoint of the balance of abrasion resistance, gloss, and piling. More preferably, it is 4% by mass.

[バインダー樹脂]
活性エネルギー線硬化性フレキソインキは、バインダー樹脂を含んでもよい。バインダー樹脂を含むことで、硬化時に生じる塗膜の硬化収縮を緩和し、基材のカールを抑制し、さらに、基材への密着性が向上する。
[Binder resin]
The active energy ray-curable flexo ink may contain a binder resin. By including the binder resin, curing shrinkage of the coating film that occurs during curing is alleviated, curling of the substrate is suppressed, and adhesion to the substrate is improved.

バインダー樹脂としては、ポリ塩化ビニル、ポリ(メタ)アクリル酸エステル、エポキシ樹脂、ポリエステル樹脂、ポリウレタン樹脂、セルロース誘導体(例えば、エチルセルロース、酢酸セルロース、ニトロセルロース)、塩化ビニル-酢酸ビニル共重合体、ポリアミド樹脂、ポリビニルアセタール樹脂、ジアリルフタレート樹脂、アルキッド樹脂、ロジン変性アルキッド樹脂、ロジン変性アルキッド樹脂、石油樹脂、尿素樹脂、ブタジエン-アクリルニトリル共重合体のような合成ゴム等が挙げられる。なかでも、ジアリルフタレート樹脂、ポリエステル樹脂が好ましい。より好ましくは、ジアリルフタレート樹脂である。 Binder resins include polyvinyl chloride, poly(meth)acrylic acid ester, epoxy resin, polyester resin, polyurethane resin, cellulose derivatives (for example, ethyl cellulose, cellulose acetate, nitrocellulose), vinyl chloride-vinyl acetate copolymer, polyamide Examples include resins, polyvinyl acetal resins, diallyl phthalate resins, alkyd resins, rosin-modified alkyd resins, rosin-modified alkyd resins, petroleum resins, urea resins, and synthetic rubbers such as butadiene-acrylonitrile copolymers. Among these, diallyl phthalate resin and polyester resin are preferred. More preferred is diallyl phthalate resin.

バインダー樹脂の重量平均分子量は、1,000~100,000であることが好ましい。より好ましくは、2,000~70,000である。 The weight average molecular weight of the binder resin is preferably 1,000 to 100,000. More preferably, it is 2,000 to 70,000.

上記バインダー樹脂は、単独又は2種類以上を併用できる。また、硬化性の観点から、バインダー樹脂の含有量は、活性エネルギー線硬化性フレキソインキの全質量に対して、1~15質量%であることが好ましい。より好ましくは、1~5質量%である。 The above binder resins can be used alone or in combination of two or more kinds. Further, from the viewpoint of curability, the content of the binder resin is preferably 1 to 15% by mass based on the total mass of the active energy ray-curable flexographic ink. More preferably, it is 1 to 5% by mass.

[重合禁止剤]
活性エネルギー線硬化性フレキソインキは、重合禁止剤を含んでもよい。重合禁止剤は、例えば、4-メトキシフェノール、ハイドロキノン、メチルハイドロキノン、t-ブチルハイドロキノン、2,6-ジ-t-ブチル-4-メチルフェノール、フェノチアジン、N-ニトロソフェニルヒドロキシルアミンのアルミニウム塩等が挙げられる。
[Polymerization inhibitor]
The active energy ray-curable flexographic ink may contain a polymerization inhibitor. Examples of the polymerization inhibitor include 4-methoxyphenol, hydroquinone, methylhydroquinone, t-butylhydroquinone, 2,6-di-t-butyl-4-methylphenol, phenothiazine, and aluminum salt of N-nitrosophenylhydroxylamine. Can be mentioned.

重合禁止剤の含有量は、硬化性を維持する一方で、活性エネルギー線硬化性フレキソインキの保存安定性を高める観点から、活性エネルギー線硬化性フレキソインキの全質量に対して、0.01~2質量%が好ましい。 The content of the polymerization inhibitor is 0.01 to 0.01 to the total mass of the active energy ray curable flexographic ink, from the viewpoint of maintaining curability and increasing the storage stability of the active energy ray curable flexographic ink. 2% by mass is preferred.

[その他の成分]
活性エネルギー線硬化性フレキソインキは、本発明の効果が低下しない範囲で、必要に応じて、上記成分に加えて各種添加剤などを含んでもよい。各種添加剤として、体質顔料、レベリング剤、界面活性剤、消泡剤、紫外線吸収剤、帯電防止剤、及び酸化防止剤などを、必要に応じてインキに添加することができる。
[Other ingredients]
The active energy ray-curable flexographic ink may contain various additives in addition to the above-mentioned components, as necessary, within a range that does not reduce the effects of the present invention. Various additives such as extender pigments, leveling agents, surfactants, antifoaming agents, ultraviolet absorbers, antistatic agents, and antioxidants can be added to the ink as necessary.

なお、活性エネルギー線硬化性フレキソインキは、水を実質的に含有しないことが好ましい。実質的に含有せずとは、インキ組成物の全質量に対して、1質量%以下である。 In addition, it is preferable that the active energy ray-curable flexo ink does not substantially contain water. "Substantially free" means 1% by mass or less based on the total mass of the ink composition.

<活性エネルギー線硬化性フレキソインキの印刷方法及び印刷物>
活性エネルギー線硬化性フレキソインキは、フレキソ印刷方式によって、被記録媒体上に印刷し、活性エネルギー線で硬化させることにより、印刷物を形成することができる。上記被記録媒体としては、特に制限はなく、公知のものを用いることができる。具体的には、アート紙、コート紙、キャスト紙などの塗工紙や上質紙、中質紙、新聞用紙などの非塗工紙、ユポ紙などの合成紙、PET(ポリエチレンテレフタレート)、PP(ポリプロピレン)、OPP(2軸延伸ポリプロピレン)のようなプラスチックフィルムなどが挙げられる。
<Printing method and printed matter of active energy ray-curable flexographic ink>
The active energy ray-curable flexographic ink can be printed on a recording medium using a flexographic printing method and then cured with active energy rays to form a printed matter. The recording medium is not particularly limited, and any known medium can be used. Specifically, coated paper such as art paper, coated paper, and cast paper, uncoated paper such as high-quality paper, medium-quality paper, and newsprint, synthetic paper such as Yupo paper, PET (polyethylene terephthalate), PP ( Examples include plastic films such as polypropylene) and OPP (biaxially oriented polypropylene).

活性エネルギー線硬化性フレキソインキを硬化させる方法には、特に制限はなく、公知の方法を用いることができる。例えば、α線、γ線、電子線、X線、紫外線、可視光又は赤外光等を照射することで、インキを硬化させることができる。なかでも、紫外線、電子線が好ましく、より好ましくは紫外線である。活性エネルギー線のピーク波長は、200~600nmであることが好ましく、より好ましくは350~420nmである。 There are no particular limitations on the method for curing the active energy ray-curable flexographic ink, and any known method can be used. For example, the ink can be cured by irradiating with alpha rays, gamma rays, electron beams, X-rays, ultraviolet rays, visible light, infrared light, or the like. Among these, ultraviolet rays and electron beams are preferable, and ultraviolet rays are more preferable. The peak wavelength of the active energy ray is preferably 200 to 600 nm, more preferably 350 to 420 nm.

活性エネルギー線源としては、特に制限はなく、公知のものを用いることができる。具体的には、水銀ランプ、キセノンランプ、メタルハイドライドランプ、紫外線発光ダイオード(UV-LED)、紫外線レーザーダイオード(UV-LD)等のLED(発光ダイオード)やガス・固体レーザー等が挙げられる。なかでも、紫外線発光ダイオード(UV-LED)が、小型、長寿命、高効率、低コストである点で好ましい。 There are no particular restrictions on the active energy ray source, and known sources can be used. Specific examples include LEDs (light emitting diodes) such as mercury lamps, xenon lamps, metal hydride lamps, ultraviolet light emitting diodes (UV-LEDs), and ultraviolet laser diodes (UV-LD), gas and solid-state lasers, and the like. Among these, ultraviolet light emitting diodes (UV-LEDs) are preferred because they are small, long-life, highly efficient, and low-cost.

<包装材料>
本発明の一実施形態は、包装材料に関する。包装材料は、少なくともその一部に印刷物を含む。包装材料における印刷物は、先に説明したように、様々な印刷方法にしたがって、上記実施形態の印刷インキセットを用いて形成される。
一実施形態において、包装材料は、基材に印刷層を形成した印刷物そのものの形態で使用することができる。このような包装材料として、例えば、シール、ラベル等が挙げられる。他の実施形態において、包装材料は、例えば、少なくとも、印刷物、接着剤層、及びシーラント基材を順次積層した積層構造を有してもよい。このような積層構造を有する包装材料を加工することによって、包装体を得ることができる。
包装体として、例えば、四方シール包装体、三方シール包装体、ピロー包装体、スティック袋、ガセット袋、角底袋、スタンディングパウチ、深絞り容器、真空包装体、スキンパック、チャック袋、スパウトパウチ、ひねり包装、包み包装、シュリンク包装、ラベル、液体紙パック、及び紙トレー等が挙げられる。一実施形態において包装材料は、様々な形状を有する包装体に好適に用いることができる。
<Packaging materials>
One embodiment of the present invention relates to packaging materials. The packaging material includes printed matter on at least a portion thereof. Prints on packaging materials are formed using the printing ink set of the above embodiments according to various printing methods, as explained above.
In one embodiment, the packaging material can be used in the form of a printed product itself, with a printed layer formed on a substrate. Examples of such packaging materials include stickers, labels, and the like. In other embodiments, the packaging material may have a laminated structure in which, for example, at least a printed matter, an adhesive layer, and a sealant substrate are sequentially laminated. A package can be obtained by processing a packaging material having such a laminated structure.
Examples of the package include a four-side seal package, a three-side seal package, a pillow package, a stick bag, a gusset bag, a square bottom bag, a standing pouch, a deep-drawn container, a vacuum package, a skin pack, a zipper bag, a spout pouch, Examples include twist packaging, wrap packaging, shrink packaging, labels, liquid paper packs, and paper trays. In one embodiment, the packaging material can be suitably used for packages having various shapes.

包装材料の被包装物は、例えば、食料品(例えば、米穀、菓子、調味料、食用油脂、調理食品等)、飲料(例えば、アルコール飲料、清涼飲料水、ミネラルウオーター等)、生活用品及び文化用品(例えば、医薬品、化粧品、文具等)、並びに電子部品等が挙げられる。 Items to be packaged with packaging materials include, for example, foodstuffs (e.g., rice, confectionery, seasonings, edible oils and fats, cooked foods, etc.), beverages (e.g., alcoholic beverages, soft drinks, mineral water, etc.), daily necessities, and culture. Examples include supplies (for example, pharmaceuticals, cosmetics, stationery, etc.), electronic parts, and the like.

以下、上記積層構造を有する包装材料について、より具体的に説明する。[接着剤層]
上記積層構造を有する包装材料において、接着剤層の形成に使用できる接着成分としては、ラミネート接着剤、ホットメルト接着剤、及び熱可塑性樹脂が挙げられる。上記接着成分のうち、ラミネート接着剤、及びホットメルト接着剤として、例えば、ポリエーテル系接着剤;ポリウレタン系接着剤;エポキシ系接着剤;ポリ酢酸ビニル系接着剤;セルロース系接着剤;(メタ)アクリル系接着剤;が挙げられる。これらの接着成分のなかでも、ポリウレタン系接着剤が好ましく用いられる。
Hereinafter, the packaging material having the above laminated structure will be explained in more detail. [Adhesive layer]
In the above packaging material having a laminated structure, adhesive components that can be used to form the adhesive layer include laminating adhesives, hot melt adhesives, and thermoplastic resins. Among the above adhesive components, laminating adhesives and hot melt adhesives include, for example, polyether adhesives; polyurethane adhesives; epoxy adhesives; polyvinyl acetate adhesives; cellulose adhesives; (meth) Examples include acrylic adhesives. Among these adhesive components, polyurethane adhesives are preferably used.

接着成分は、単独で、又は2種類以上を組合せて使用できる。 The adhesive components can be used alone or in combination of two or more.

上記ポリウレタン系接着剤は、ポリオールとポリイソシアネートとを含む反応性接着剤であり、脱離性を有するものであってもよい。脱離性を有するポリウレタン接着剤は、例えば、特開2020-084130号公報に記載のラミネート接着剤が挙げられる。
このような脱離性を有するポリウレタン接着剤は、酸価が、5~45mgKOH/gであることが好ましい。また、ポリウレタン系接着剤を構成するポリオールがポリエステルポリオールを含み、ポリイソシアネートが脂肪族ポリイソシアネート及び芳香脂肪族ポリイソシアネートからなる群より選ばれる1種を含むことが好ましい。
接着剤層の厚みは、通常1~6μmの範囲であってよい。
The polyurethane adhesive is a reactive adhesive containing polyol and polyisocyanate, and may have removability. Examples of the polyurethane adhesive having removability include the laminate adhesive described in JP-A-2020-084130.
The polyurethane adhesive having such releasability preferably has an acid value of 5 to 45 mgKOH/g. Further, it is preferable that the polyol constituting the polyurethane adhesive contains a polyester polyol, and the polyisocyanate contains one selected from the group consisting of aliphatic polyisocyanates and araliphatic polyisocyanates.
The thickness of the adhesive layer may typically range from 1 to 6 μm.

[シーラント基材]
上記積層構造を有する包装材料において、シーラント基材は、ラミネートフィルムの最内層を構成する基材である。シーラント基材としては、熱によって相互に融着し得る(ヒートシール性を有する)樹脂材料が使用される。上記シーラント基材としては、例えば、無延伸ポリプロピレン(CPP)、蒸着無延伸ポリプロピレンフィルム(VMCPP)、低密度ポリエチレン(LDPE)、リニアー低密度ポリエチレン(LLDPE)、エチレン酢酸ビニル共重合体(EVA)等が挙げられる。
シーラント基材の厚みは特に限定されない。包装材料への加工性、及びヒートシール性等を考慮して、上記厚みは、10~200μmの範囲が好ましく、15~150μmの範囲がより好ましい。また、シーラント基材に対して、高低差5~20μmの凸凹を設けることで、シーラント基材に滑り性及び包装材料の引き裂き性などの特性を付与することが可能である。
また、シーラント基材を積層する方法は、特に限定されない。例えば、接着剤層とシーラント基材フィルムとを熱によってラミネートする方法(熱ラミネート、ドライラミネート)、又はシーラント基材樹脂を溶融させて接着剤層の上に押出し、冷却固化させて積層する方法(押出ラミネーション法)等が挙げられる。
[Sealant base material]
In the packaging material having the laminated structure described above, the sealant base material is a base material that constitutes the innermost layer of the laminate film. As the sealant base material, a resin material that can be mutually fused by heat (has heat-sealing properties) is used. Examples of the sealant base material include unstretched polypropylene (CPP), vapor-deposited unstretched polypropylene film (VMCPP), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), ethylene vinyl acetate copolymer (EVA), etc. can be mentioned.
The thickness of the sealant base material is not particularly limited. Considering processability into packaging materials, heat sealability, etc., the above thickness is preferably in the range of 10 to 200 μm, more preferably in the range of 15 to 150 μm. Further, by providing the sealant base material with unevenness having a height difference of 5 to 20 μm, it is possible to impart properties such as slipperiness and tearability of the packaging material to the sealant base material.
Moreover, the method of laminating the sealant base materials is not particularly limited. For example, a method in which an adhesive layer and a sealant base film are laminated by heat (thermal lamination, dry lamination), or a method in which a sealant base resin is melted, extruded onto the adhesive layer, cooled and solidified, and then laminated ( extrusion lamination method), etc.

包装材料に用いられる従来の印刷インキは、様々な光源に対する耐光性が十分でない場合がある。そのため、退色といった意匠性の低下が生じる場合がある。また、保存時の光照射によって発生するラジカルの影響で、印刷層の凝集力低下又は密着力低下が起こり、ラミネート強度が低下する場合がある。その結果、光照射下で長期保存された包装物及び包装材料を開封する際に、積層体の相間剥離が発生する問題が生じることもある。これに対し、本実施形態の包装材料は、印刷インキセットが優れた色再現性を有することにより、高い意匠性を維持することができる。また、印刷インキセットを用いて形成される印刷層が優れた耐光性を有し、かつ優れた接着性を有することにより、従来の包装材料で見られるような層間剥離といった不具合の発生を抑制することができる。このような観点から、一実施形態において、上記実施形態の印刷インキセットは、積層構造を有する包装材料の用途に好適に使用することができる。このような実施形態によれば、ラミネート強度が高い包装材料を容易に提供することができる。
Conventional printing inks used in packaging materials may not have sufficient lightfastness to various light sources. Therefore, deterioration in design quality such as fading may occur. Further, under the influence of radicals generated by light irradiation during storage, the cohesive force or adhesion of the printed layer may decrease, and the laminate strength may decrease. As a result, when unsealing packages and packaging materials that have been stored for a long period of time under light irradiation, a problem may arise in which interphase delamination of the laminate occurs. In contrast, the packaging material of this embodiment can maintain high design quality because the printing ink set has excellent color reproducibility. In addition, the printing layer formed using the printing ink set has excellent light resistance and adhesion, which prevents problems such as delamination that occur with conventional packaging materials. be able to. From this point of view, in one embodiment, the printing ink set of the above embodiment can be suitably used for packaging materials having a laminated structure. According to such an embodiment, a packaging material with high lamination strength can be easily provided.

以下、本発明の実施形態を実施例で詳細に説明するが、本発明の実施形態は、以下の実施例に限定されない。なお、「部」は「質量部」、「%」は「質量%」を意味する。
また、表中の配合量は、質量部であり、溶剤以外は、不揮発分換算値である。なお、表中の空欄は配合していないことを表す。
Hereinafter, embodiments of the present invention will be described in detail using Examples, but the embodiments of the present invention are not limited to the following Examples. Note that "part" means "part by mass" and "%" means "% by mass."
Further, the blending amounts in the table are parts by mass, and values other than the solvent are nonvolatile content equivalent values. In addition, a blank column in the table indicates that it is not blended.

(顔料の平均一次粒子径)
顔料の平均一次粒子径は、透過型(TEM)電子顕微鏡を使用して、電子顕微鏡写真から一次粒子の大きさを直接計測する方法で測定した。具体的には、個々の顔料の一次粒子の短軸径と長軸径を計測し、平均をその顔料一次粒子の粒径とした。次に、100個以上の顔料粒子について、それぞれ求めた粒径の立方体と近似して体積を求め、体積平均粒子径を平均一次粒子径とした。
(Average primary particle size of pigment)
The average primary particle diameter of the pigment was measured by directly measuring the size of the primary particles from an electron micrograph using a transmission electron microscope (TEM). Specifically, the minor axis diameter and major axis diameter of each primary pigment particle were measured, and the average was taken as the particle diameter of the primary pigment particle. Next, the volumes of 100 or more pigment particles were determined by approximating the respective determined particle diameters to a cube, and the volume average particle diameter was defined as the average primary particle diameter.

<イソインドリン化合物の製造>
(製造例1-1)
(工程1)
還流冷却管、滴下漏斗、及び撹拌機を具備した4口フラスコに、水800部、1,3-ジイミノイソインドリン60部、28%アンモニア水120部の順に加え、撹拌した。そこへ2-シアノ-N-メチルアセトアミド42.58部を水160部に溶解させた溶液を、滴下漏斗を使用して30分間で滴下した。30℃にて原料の1,3-ジイミノイソインドリンが消失するまで加熱撹拌した。この反応スラリーを、ブフナー漏斗を用いて濾別した。さらに、濾過物を水1600部に加え、40℃にて30分撹拌し、未反応の2-シアノ-N-メチルアセトアミドを取り除いた。そのスラリーを濾別し不揮発分を得た。なお、1,3-ジイミノイソインドリンの消失はUPLC(超高速高分離液体クロマトグラフィ Waters社製)にて確認した。
(工程2)
還流冷却管、滴下漏斗及び、撹拌機を具備した4口フラスコに、上記不揮発分60部相当、水480部を加え、撹拌した。一方で、ガラス製フラスコに、水461部、80%酢酸194部、バルビツール酸35.67部を加え、65℃にて撹拌した。この混合物の加熱溶液を上記不揮発分の撹拌液の中に投入し、さらに反応を完結させるために85℃まで昇温し撹拌を行った。加熱撹拌は、原料として使用した上記不揮発分が消失するまで行った。原料の消失はUPLCにて確認した。
その後、スラリーを濾別し、水2400部で3回洗浄を行い、不揮発分を得た。この不揮発分を80℃の熱風乾燥機にて乾燥させ、イソインドリン化合物(1-1)を89.45部得た。
<Production of isoindoline compound>
(Manufacturing example 1-1)
(Step 1)
800 parts of water, 60 parts of 1,3-diiminoisoindoline, and 120 parts of 28% aqueous ammonia were added in this order to a four-neck flask equipped with a reflux condenser, a dropping funnel, and a stirrer, and the mixture was stirred. A solution of 42.58 parts of 2-cyano-N-methylacetamide dissolved in 160 parts of water was added dropwise thereto over 30 minutes using a dropping funnel. The mixture was heated and stirred at 30° C. until the raw material 1,3-diiminoisoindoline disappeared. The reaction slurry was filtered using a Buchner funnel. Further, the filtrate was added to 1,600 parts of water and stirred at 40°C for 30 minutes to remove unreacted 2-cyano-N-methylacetamide. The slurry was filtered to obtain non-volatile components. The disappearance of 1,3-diiminoisoindoline was confirmed by UPLC (ultra high performance high separation liquid chromatography manufactured by Waters).
(Step 2)
Into a four-necked flask equipped with a reflux condenser, a dropping funnel, and a stirrer, 60 parts of the above nonvolatile matter and 480 parts of water were added and stirred. On the other hand, 461 parts of water, 194 parts of 80% acetic acid, and 35.67 parts of barbituric acid were added to a glass flask, and the mixture was stirred at 65°C. The heated solution of this mixture was poured into the above-mentioned stirring liquid of non-volatile components, and the temperature was raised to 85° C. and stirring was performed to further complete the reaction. The heating and stirring were continued until the nonvolatile components used as raw materials disappeared. Disappearance of the raw material was confirmed by UPLC.
Thereafter, the slurry was filtered and washed three times with 2400 parts of water to obtain non-volatile components. This nonvolatile content was dried in a hot air dryer at 80° C. to obtain 89.45 parts of isoindoline compound (1-1).

(製造例1-2)
製造例1-1の工程2において、バルビツール酸35.67部を、1,3-ジメチルバルビツール酸43.48部に変更した以外は製造例1-1と同様に反応操作を行い、イソインドリン化合物(1-2)を92.05部得た。
(Production example 1-2)
The reaction operation was carried out in the same manner as in Production Example 1-1, except that in Step 2 of Production Example 1-1, 35.67 parts of barbituric acid was changed to 43.48 parts of 1,3-dimethylbarbituric acid. 92.05 parts of indoline compound (1-2) were obtained.

(製造例1-3)
製造例1-1の工程2において、バルビツール酸35.67部を、バルビツール酸33.89部及び1,3-ジメチルバルビツール酸2.17部に変更した以外は製造例1-1と同様に反応操作を行い、イソインドリン化合物(1-3)を85.34部得た。
(Manufacturing example 1-3)
Production Example 1-1 except that in Step 2 of Production Example 1-1, 35.67 parts of barbituric acid was changed to 33.89 parts of barbituric acid and 2.17 parts of 1,3-dimethylbarbituric acid. A similar reaction operation was performed to obtain 85.34 parts of isoindoline compound (1-3).

(製造例1-4)
(工程1)
還流冷却管、滴下漏斗、及び撹拌機を具備した4口フラスコに、水800部、1,3-ジイミノイソインドリン60部、28%アンモニア水120部の順に加え、撹拌した。そこへ2-シアノ-N-メチルアセトアミド42.58部を水160部に溶解させた溶液を、滴下漏斗を使用して30分間で滴下した。30℃にて原料の1,3-ジイミノイソインドリンが消失するまで加熱撹拌した。この反応スラリーを、ブフナー漏斗を用いて濾別した。さらに、濾過物を水1600部に加え、40℃にて30分撹拌し、未反応の2-シアノ-N-メチルアセトアミドを取り除いた。そのスラリーを濾別し不揮発分を得た。なお、1,3-ジイミノイソインドリンの消失はUPLCにて確認した。
(工程2)
還流冷却管、滴下漏斗及び、撹拌機を具備した4口フラスコに、原料として先の調製で得た不揮発分60部相当、水480部、80%酢酸162部を加え、撹拌した。一方で、ガラス製フラスコに、水480部、80%酢酸162部を加え、そこへバルビツール酸33.89部を加え、65℃にて撹拌した。この混合物の加熱溶液を上記不揮発分の撹拌液の中に投入し、30℃にて3時間撹拌を行った。さらに別で用意したガラス製フラスコに、水48部、80%酢酸16部を加え、そこへ1,3-ジメチルバルビツール酸2.17部を加え、65℃にて撹拌した。この混合物の加熱溶液を先の反応撹拌液の中に投入し、さらに反応を完結させるために85℃まで昇温し撹拌を行った。加熱撹拌は、原料として使用した上記不揮発分が消失するまで行った。なお、原料の消失はUPLCにて確認した。
その後、スラリーを濾別し、水2400部にて3回洗浄を行い、不揮発分を得た。この不揮発分を80℃の熱風乾燥機にて乾燥させ、イソインドリン化合物(1-4)を85.45部得た。
(Production example 1-4)
(Step 1)
800 parts of water, 60 parts of 1,3-diiminoisoindoline, and 120 parts of 28% aqueous ammonia were added in this order to a four-neck flask equipped with a reflux condenser, a dropping funnel, and a stirrer, and the mixture was stirred. A solution of 42.58 parts of 2-cyano-N-methylacetamide dissolved in 160 parts of water was added dropwise thereto over 30 minutes using a dropping funnel. The mixture was heated and stirred at 30° C. until the raw material 1,3-diiminoisoindoline disappeared. The reaction slurry was filtered using a Buchner funnel. Further, the filtrate was added to 1,600 parts of water and stirred at 40°C for 30 minutes to remove unreacted 2-cyano-N-methylacetamide. The slurry was filtered to obtain non-volatile components. The disappearance of 1,3-diiminoisoindoline was confirmed by UPLC.
(Step 2)
Into a four-necked flask equipped with a reflux condenser, a dropping funnel, and a stirrer, 60 parts of the nonvolatile matter obtained in the previous preparation as raw materials, 480 parts of water, and 162 parts of 80% acetic acid were added and stirred. On the other hand, 480 parts of water and 162 parts of 80% acetic acid were added to a glass flask, and 33.89 parts of barbituric acid was added thereto, followed by stirring at 65°C. The heated solution of this mixture was poured into the above-mentioned stirring liquid of non-volatile components, and stirred at 30° C. for 3 hours. Furthermore, 48 parts of water and 16 parts of 80% acetic acid were added to a glass flask prepared separately, and 2.17 parts of 1,3-dimethylbarbituric acid was added thereto, followed by stirring at 65°C. The heated solution of this mixture was poured into the reaction stirring solution, and the temperature was raised to 85° C. and stirring was performed to further complete the reaction. The heating and stirring were continued until the nonvolatile components used as raw materials disappeared. In addition, disappearance of the raw material was confirmed by UPLC.
Thereafter, the slurry was filtered and washed three times with 2,400 parts of water to obtain nonvolatile components. This nonvolatile content was dried in a hot air dryer at 80°C to obtain 85.45 parts of isoindoline compound (1-4).

(製造例1-5)
製造例1-1の工程1において、2-シアノ-N-メチルアセトアミド42.58部を、2-シアノ-N-メチルアセトアミド40.45部及び2-シアノ-アセトアミド1.82部に、工程2において不揮発分60部相当を59.81部相当に変更した以外は製造例1-1と同様に反応操作を行い、イソインドリン化合物(1-5)を84.81部得た。
(Production example 1-5)
In Step 1 of Production Example 1-1, 42.58 parts of 2-cyano-N-methylacetamide was added to 40.45 parts of 2-cyano-N-methylacetamide and 1.82 parts of 2-cyano-acetamide, and in Step 2 The reaction operation was carried out in the same manner as in Production Example 1-1, except that the non-volatile content was changed from 60 parts equivalent to 59.81 parts equivalent, to obtain 84.81 parts of isoindoline compound (1-5).

(製造例1-6)
製造例1-1の工程1において、2-シアノ-N-メチルアセトアミド42.58部を、2-シアノ-N-メチルアセトアミド40.45部及び2-シアノ-N-フェニルアセトアミド3.48部に、工程2において不揮発分60部相当を60.82部相当に変更した以外は製造例1-1と同様に反応操作を行い、イソインドリン化合物(1-6)を85.76部得た。
(Manufacturing example 1-6)
In Step 1 of Production Example 1-1, 42.58 parts of 2-cyano-N-methylacetamide was added to 40.45 parts of 2-cyano-N-methylacetamide and 3.48 parts of 2-cyano-N-phenylacetamide. The reaction operation was carried out in the same manner as in Production Example 1-1, except that in Step 2, the nonvolatile content was changed from 60 parts equivalent to 60.82 parts, and 85.76 parts of isoindoline compound (1-6) was obtained.

(製造例1-7)
製造例1-1の工程1において、2-シアノ-N-メチルアセトアミド42.58部を、2-シアノ-N-メチルアセトアミド40.45部及びシアノ酢酸フェニル3.50部に、工程2において不揮発分60部相当を60.84部相当に変更した以外は製造例1-1と同様に反応操作を行い、イソインドリン化合物(1-7)を85.78部得た。
(Production example 1-7)
In Step 1 of Production Example 1-1, 42.58 parts of 2-cyano-N-methylacetamide was added to 40.45 parts of 2-cyano-N-methylacetamide and 3.50 parts of phenyl cyanoacetate, and in Step 2, non-volatile The reaction operation was carried out in the same manner as in Production Example 1-1 except that the equivalent of 60 parts was changed to the equivalent of 60.84 parts, and 85.78 parts of isoindoline compound (1-7) was obtained.

(製造例1-8)
製造例1-1の工程1において、1,3-ジイミノイソインドリン60部を、1,3-ジイミノイソインドリン57部及び5-メチル-1,3-ジイミノイソインドリン3.29部に、工程2において不揮発分60部相当を60.19部相当に変更した以外は製造例1-1と同様に反応操作を行い、イソインドリン化合物(1-8)を85.16部得た。
(Production example 1-8)
In Step 1 of Production Example 1-1, 60 parts of 1,3-diiminoisoindoline was added to 57 parts of 1,3-diiminoisoindoline and 3.29 parts of 5-methyl-1,3-diiminoisoindoline. The reaction operation was carried out in the same manner as in Production Example 1-1, except that in Step 2, the nonvolatile content was changed from 60 parts equivalent to 60.19 parts, to obtain 85.16 parts of isoindoline compound (1-8).

(製造例1-9)
製造例1-1の工程1において、1,3-ジイミノイソインドリン60部を、1,3-ジイミノイソインドリン57部及び5-メトキシ-1,3-ジイミノイソインドリン3.62部に、工程2において不揮発分60部相当を60.40部相当に変更した以外は製造例1-1と同様に反応操作を行い、イソインドリン化合物(1-9)を85.36部得た。
(Production example 1-9)
In Step 1 of Production Example 1-1, 60 parts of 1,3-diiminoisoindoline was changed to 57 parts of 1,3-diiminoisoindoline and 3.62 parts of 5-methoxy-1,3-diiminoisoindoline. The reaction operation was carried out in the same manner as in Production Example 1-1, except that in Step 2, the non-volatile content was changed from 60 parts equivalent to 60.40 parts equivalent, to obtain 85.36 parts of isoindoline compound (1-9).

(製造例1-10)
製造例1-1の工程1において、1,3-ジイミノイソインドリン60部を、1,3-ジイミノイソインドリン57部及び4-メトキシ-1,3-ジイミノイソインドリン3.62部に、工程2において不揮発分60部相当を60.40部相当に変更した以外は製造例1-1と同様に反応操作を行い、イソインドリン化合物(1-10)を85.36部得た。
(Production example 1-10)
In Step 1 of Production Example 1-1, 60 parts of 1,3-diiminoisoindoline was replaced with 57 parts of 1,3-diiminoisoindoline and 3.62 parts of 4-methoxy-1,3-diiminoisoindoline. The reaction operation was carried out in the same manner as in Production Example 1-1, except that in Step 2, the nonvolatile content was changed from 60 parts equivalent to 60.40 parts, and 85.36 parts of isoindoline compound (1-10) was obtained.

(製造例1-11)
製造例1-1の工程2において、バルビツール酸35.67部を、バルビツール酸33.89部及び1-メチルバルビツール酸1.98部に変更した以外は製造例1-1と同様に反応操作を行い、イソインドリン化合物(1-11)を85.16部得た。
(Production example 1-11)
Same as Production Example 1-1 except that in Step 2 of Production Example 1-1, 35.67 parts of barbituric acid was changed to 33.89 parts of barbituric acid and 1.98 parts of 1-methylbarbituric acid. The reaction operation was performed to obtain 85.16 parts of isoindoline compound (1-11).

(製造例1-12)
製造例1-1の工程2において、バルビツール酸35.67部を、バルビツール酸33.89部及び1,3-ジエチルバルビツール酸2.56部に変更した以外は製造例1-1と同様に反応操作を行い、イソインドリン化合物(1-24)を85.34部得た。
(Production example 1-12)
Production Example 1-1 except that in Step 2 of Production Example 1-1, 35.67 parts of barbituric acid was changed to 33.89 parts of barbituric acid and 2.56 parts of 1,3-diethylbarbituric acid. A similar reaction operation was performed to obtain 85.34 parts of isoindoline compound (1-24).

製造例1-1~1-12で得られたイソインドリン化合物に含まれる構造を表1に示す。なお、表において、Hは水素、Meはメチル基、Etはエチル基、Phはフェニル基、OMeはメトキシ基を表す。 Table 1 shows the structures contained in the isoindoline compounds obtained in Production Examples 1-1 to 1-12. In the table, H represents hydrogen, Me represents a methyl group, Et represents an ethyl group, Ph represents a phenyl group, and OMe represents a methoxy group.

Figure 2023164228000010
Figure 2023164228000010

得られたイソインドリン化合物の同定は、マススペクトラムの分子イオンピークと、計算によって得られる質量数(理論値)とを比較することによって実施した。マススペクトラムの分子イオンピークの測定は、Waters社のACQUITY UPLS H-Class(使用カラム:ACQUITY UPLC BEH C18 Column 130Å、1.7μm、2.1mm×50mm)/Ms TAP XEVO TQDを用いて実施した。イソインドリン化合物(製造例1-1~1-12)について、理論分子量と、それぞれ質量分析を行った測定値を表1に示す。測定値は測定の性質上、化合物のH(プロトン)が脱離するため、理論分子量の質量数-(マイナス)1の値であれば、化合物が一致することになる。 The obtained isoindoline compound was identified by comparing the molecular ion peak of the mass spectrum with the mass number (theoretical value) obtained by calculation. The molecular ion peak of the mass spectrum was measured using Waters' ACQUITY UPLC BEH C18 Column 130 Å, 1.7 μm, 2.1 mm x 50 mm)/Ms TAP XEVO TQD. For the isoindoline compounds (Production Examples 1-1 to 1-12), the theoretical molecular weights and the respective measured values obtained by mass spectrometry are shown in Table 1. Due to the nature of the measurement, H (protons) from the compound are eliminated, so if the measured value is the mass number of the theoretical molecular weight - (minus) 1, the compounds match.

(製造例1-13)
イソインドリン化合物(1-1)95部、イソインドリン化合物(1-2)5部、塩化ナトリウム1000部、及びジエチレングリコール150部を、ステンレス製1ガロンニーダー(井上製作所社製)中に仕込み、60℃で8時間混練した。次に、混練した混合物を約70℃の温水に投入し、1時間撹拌してスラリー状として、濾過及び水洗を繰り返して塩化ナトリウム及びジエチレングリコールを除いた後、80℃で一昼夜乾燥させ、粉砕することによりイソインドリン化合物(1-13)95部を得た。
(Production example 1-13)
95 parts of isoindoline compound (1-1), 5 parts of isoindoline compound (1-2), 1000 parts of sodium chloride, and 150 parts of diethylene glycol were charged into a stainless steel 1-gallon kneader (manufactured by Inoue Seisakusho Co., Ltd.) and heated at 60°C. The mixture was kneaded for 8 hours. Next, the kneaded mixture is poured into warm water at about 70°C, stirred for 1 hour to form a slurry, repeatedly filtered and washed with water to remove sodium chloride and diethylene glycol, dried at 80°C overnight, and pulverized. 95 parts of isoindoline compound (1-13) were obtained.

(製造例2-1)
還流冷却管、滴下漏斗及び、撹拌機を具備した4口フラスコに、水800部、80%酢酸800部を加え、撹拌した。そこへバルビツール酸111.18部を加え、65℃にて撹拌し、バルビツール酸を溶解させた。一方で、ガラス製フラスコに、水800部、1,3-ジイミノイソインドリン60.00部を加え、30℃にて撹拌した。この撹拌液を上記加熱溶解液の中に投入し、さらに反応を完結させるために85℃まで昇温し撹拌を行った。加熱撹拌は、原料として使用した上記不揮発分が消失するまで行った。原料の消失はUPLCにて確認した。
その後、水2000部にて3回洗浄を行い、不揮発分を得た。この不揮発分を80℃の熱風乾燥機にて乾燥させ、イソインドリン化合物(2-1)を133.59部得た。
(Manufacturing example 2-1)
800 parts of water and 800 parts of 80% acetic acid were added to a 4-necked flask equipped with a reflux condenser, a dropping funnel, and a stirrer, and the mixture was stirred. 111.18 parts of barbituric acid was added thereto, and the mixture was stirred at 65°C to dissolve the barbituric acid. Meanwhile, 800 parts of water and 60.00 parts of 1,3-diiminoisoindoline were added to a glass flask and stirred at 30°C. This stirred solution was poured into the heated solution, and the temperature was raised to 85° C. and stirred to complete the reaction. The heating and stirring were continued until the nonvolatile components used as raw materials disappeared. Disappearance of the raw material was confirmed by UPLC.
Thereafter, washing was performed three times with 2000 parts of water to obtain nonvolatile components. This nonvolatile content was dried in a hot air dryer at 80°C to obtain 133.59 parts of isoindoline compound (2-1).

(製造例2-2)
製造例2-1のバルビツール酸111.18部を1,3-ジメチルバルビツール酸135.53部に変更した以外は製造例2-1と同様に反応操作を行い、イソインドリン化合物(2-2)を154.00部得た。
(Manufacturing example 2-2)
The reaction operation was carried out in the same manner as in Production Example 2-1, except that 111.18 parts of barbituric acid in Production Example 2-1 was changed to 135.53 parts of 1,3-dimethylbarbituric acid, and the isoindoline compound (2- 154.00 parts of 2) were obtained.

製造例2-1、2-2で得られたイソインドリン化合物に含まれる構造を表2に示す。なお、表において、Hは水素、Meはメチル基を表す。 Table 2 shows the structures contained in the isoindoline compounds obtained in Production Examples 2-1 and 2-2. In addition, in the table, H represents hydrogen and Me represents a methyl group.

Figure 2023164228000011
Figure 2023164228000011

得られたイソインドリン化合物の同定は、上記同様にマススペクトラムの分子イオンピークと、計算によって得られる質量数(理論値)とを比較することによって実施した。 The obtained isoindoline compound was identified by comparing the molecular ion peak of the mass spectrum with the mass number (theoretical value) obtained by calculation in the same manner as described above.

(製造例2-3)
(工程1)
還流冷却管、滴下漏斗、及び撹拌機を具備した4口フラスコに、水800部、1,3-ジイミノイソインドリン60部、28%アンモニア水120部の順に加え、撹拌した。そこへ2-シアノ-N-メチルアセトアミド42.58部を水160部に溶解させた溶液を、滴下漏斗を使用して30分間で滴下した。30℃にて原料の1,3-ジイミノイソインドリンが消失するまで加熱撹拌した。この反応スラリーを、ブフナー漏斗を用いて濾別し、不揮発分を得た。なお、1,3-ジイミノイソインドリンの消失はUPLC(超高速高分離液体クロマトグラフィ Waters社製)にて確認した。
(工程2)
還流冷却管、滴下漏斗及び、撹拌機を具備した4口フラスコに、上記不揮発分60部相当、水480部を加え、撹拌した。そこへ40%メチルアミン水溶液53.54部を加え、40℃にて攪拌した。撹拌は、原料として使用した上記不揮発分が消失するまで行った。原料の消失はUPLCにて確認した。
その後、水2400部で3回洗浄を行い、不揮発分を得た。この不揮発分を80℃の熱風乾燥機にて乾燥させ、イソインドリン化合物(2-3)を58.62部得た。
(Production example 2-3)
(Step 1)
800 parts of water, 60 parts of 1,3-diiminoisoindoline, and 120 parts of 28% aqueous ammonia were added in this order to a four-neck flask equipped with a reflux condenser, a dropping funnel, and a stirrer, and the mixture was stirred. A solution of 42.58 parts of 2-cyano-N-methylacetamide dissolved in 160 parts of water was added dropwise thereto over 30 minutes using a dropping funnel. The mixture was heated and stirred at 30° C. until the raw material 1,3-diiminoisoindoline disappeared. The reaction slurry was filtered using a Buchner funnel to obtain non-volatile components. The disappearance of 1,3-diiminoisoindoline was confirmed by UPLC (ultra high performance high separation liquid chromatography manufactured by Waters).
(Step 2)
Into a four-necked flask equipped with a reflux condenser, a dropping funnel, and a stirrer, 60 parts of the above nonvolatile matter and 480 parts of water were added and stirred. 53.54 parts of a 40% methylamine aqueous solution was added thereto, and the mixture was stirred at 40°C. Stirring was continued until the nonvolatile components used as raw materials disappeared. Disappearance of the raw material was confirmed by UPLC.
Thereafter, washing was performed three times with 2,400 parts of water to obtain nonvolatile components. This nonvolatile content was dried in a hot air dryer at 80° C. to obtain 58.62 parts of isoindoline compound (2-3).

<C.I.ピグメントイエロー180の製造>
(製造例3-1)PY180-2
水1300部を撹拌しながら1,2-ビス(2-アミノフェノキシ)-エタン 100部を加えて分散し、1時間後に35%塩酸223.9部を加えた。さらに1時間撹拌後、氷を加えて温度を0~5℃に調整し、38%亜硝酸ソーダ水溶液148.7部を加えてジアゾ化反応を行った。過剰な亜硝酸塩を除去するためにスルファミン酸を加えて30分以上撹拌し、ジアゾ成分を得た。
一方、5-アセトアセチルアミノ-ベンズイミダゾロン 190.9部をメタノール1500部に分散後、25%水酸化ナトリウム水溶液393.0部を加えて溶解させ、さらにジアルキルスルホコハク酸ナトリウム(ペレックスOT-P、花王社製)4.4部を加えて、カップラー成分を得た。
別途、80%酢酸水溶液813.5部に、氷500を加え、さらに撹拌しながら25%水酸化ナトリウム水溶液223.9部を加えて、酢酸-酢酸ナトリウム緩衝液を調製した。20℃に保持した緩衝液を撹拌している中に、ジアゾ成分及びカップラー成分を同時に滴下してカップリング反応を行った。滴下速度は、ジアゾ成分及びカップラー成分それぞれが2時間で滴下終了する速度に調整した。カップリング反応終了後、未反応のジアゾ成分が反応溶液中に含まれていないことを確認し、90℃に加熱し30分保持した。次いで、濾過、水洗を行い、含水ウェットケーキを得た。
攪拌装置付きの加圧可能な反応容器に、上記の含水状態のウェットケーキを全量仕込んだ。水を加えて容器内の質量を3500部にして撹拌し、さらにオルト-キシレン200部とヤシ油脂肪酸ジエタノールアミド(トーホールN-220、東邦化学工業社製)20部を加えた後、150℃2時間、オートクレーブ中、自己圧力下で加熱した。水蒸気蒸留によりオルト-キシレンを除去した後、濾過、水洗し、80℃で乾燥させ、粉砕してPY180-2を257.9部得た。平均一次粒子径は、260nmであった。
<C. I. Production of Pigment Yellow 180>
(Production example 3-1) PY180-2
While stirring 1,300 parts of water, 100 parts of 1,2-bis(2-aminophenoxy)-ethane was added and dispersed, and 1 hour later, 223.9 parts of 35% hydrochloric acid was added. After further stirring for 1 hour, ice was added to adjust the temperature to 0 to 5°C, and 148.7 parts of a 38% sodium nitrite aqueous solution was added to carry out a diazotization reaction. In order to remove excess nitrite, sulfamic acid was added and stirred for 30 minutes or more to obtain a diazo component.
Separately, 190.9 parts of 5-acetoacetylamino-benzimidazolone was dispersed in 1500 parts of methanol, 393.0 parts of a 25% aqueous sodium hydroxide solution was added to dissolve it, and further sodium dialkylsulfosuccinate (Perex OT-P, 4.4 parts (manufactured by Kao Corporation) were added to obtain a coupler component.
Separately, 500 parts of ice was added to 813.5 parts of an 80% aqueous acetic acid solution, and 223.9 parts of a 25% aqueous sodium hydroxide solution was further added with stirring to prepare an acetic acid-sodium acetate buffer. While stirring the buffer solution maintained at 20° C., the diazo component and the coupler component were simultaneously added dropwise to perform a coupling reaction. The dropping rate was adjusted to such a rate that the dropping of each of the diazo component and the coupler component was completed in 2 hours. After the coupling reaction was completed, it was confirmed that no unreacted diazo component was contained in the reaction solution, and the solution was heated to 90° C. and held for 30 minutes. Next, filtration and water washing were performed to obtain a water-containing wet cake.
The entire amount of the wet cake in a water-containing state was charged into a pressurizable reaction vessel equipped with a stirring device. Add water to bring the mass inside the container to 3,500 parts, stir, and then add 200 parts of ortho-xylene and 20 parts of coconut oil fatty acid diethanolamide (Tohol N-220, manufactured by Toho Chemical Industry Co., Ltd.). Heated under autogenous pressure in an autoclave for an hour. After removing ortho-xylene by steam distillation, it was filtered, washed with water, dried at 80°C, and pulverized to obtain 257.9 parts of PY180-2. The average primary particle diameter was 260 nm.

(製造例3-2)PY180-3
攪拌装置付きの加圧可能な反応容器に、製造例3-1で得られた含水状態のウェットケーキを全量仕込んだ。水を加えて容器内の質量を3500部にして撹拌し、さらにイソブタノールを1800部加えた後、110℃2時間、オートクレーブ中、自己圧力下で加熱した。水蒸気蒸留によりイソブタノールを除去した後、濾過、水洗し、80℃で乾燥させ、粉砕してPY180-3を258.2部得た。平均一次粒子径は、208nmであった。
(Production example 3-2) PY180-3
The entire amount of the wet cake in a water-containing state obtained in Production Example 3-1 was charged into a pressurizable reaction vessel equipped with a stirring device. Water was added to bring the mass inside the container to 3,500 parts with stirring, and 1,800 parts of isobutanol was further added, followed by heating at 110° C. for 2 hours under autoclave under autoclave. After removing isobutanol by steam distillation, it was filtered, washed with water, dried at 80° C., and pulverized to obtain 258.2 parts of PY180-3. The average primary particle diameter was 208 nm.

(製造例3-3)PY180-4
PY180-2を100部、塩化ナトリウム1000部、及びジエチレングリコール150部を、ステンレス製1ガロンニーダー(井上製作所社製)中に仕込み、80℃で8時間混練した。次に、混練した混合物を約70℃の温水に投入し、1時間撹拌してスラリー状として、濾過及び水洗を繰り返して塩化ナトリウム及びジエチレングリコールを除いた後、80℃で一昼夜乾燥させ、粉砕することによりPY180-4 95部を得た。平均一次粒子径は、93nmであった。
(Production Example 3-3) PY180-4
100 parts of PY180-2, 1000 parts of sodium chloride, and 150 parts of diethylene glycol were charged into a stainless steel 1-gallon kneader (manufactured by Inoue Seisakusho Co., Ltd.) and kneaded at 80° C. for 8 hours. Next, the kneaded mixture is poured into warm water at about 70°C, stirred for 1 hour to form a slurry, repeatedly filtered and washed with water to remove sodium chloride and diethylene glycol, dried at 80°C overnight, and pulverized. 95 parts of PY180-4 were obtained. The average primary particle diameter was 93 nm.

(製造例3-4)PY180-5
PY180-3を100部、塩化ナトリウム1000部、及びジエチレングリコール150部を、ステンレス製1ガロンニーダー(井上製作所社製)中に仕込み、60℃で8時間混練した。次に、混練した混合物を約70℃の温水に投入し、1時間撹拌してスラリー状として、濾過及び水洗を繰り返して塩化ナトリウム及びジエチレングリコールを除いた後、80℃で一昼夜乾燥させ、粉砕することによりPY180-5 95部を得た。平均一次粒子径は、65nmであった。
(Production example 3-4) PY180-5
100 parts of PY180-3, 1000 parts of sodium chloride, and 150 parts of diethylene glycol were charged into a stainless steel 1-gallon kneader (manufactured by Inoue Seisakusho Co., Ltd.) and kneaded at 60° C. for 8 hours. Next, the kneaded mixture is poured into warm water at about 70°C, stirred for 1 hour to form a slurry, repeatedly filtered and washed with water to remove sodium chloride and diethylene glycol, dried at 80°C overnight, and pulverized. 95 parts of PY180-5 were obtained. The average primary particle diameter was 65 nm.

<フタロシアニン顔料の製造>
(製造例4-1)アルミニウムフタロシアニン
反応容器に、n-アミルアルコール1250部、フタロジニトリル225部、及び塩化アルミニウム無水物78部を加えて混合撹拌した。これに、DBU(1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン)266部を加え、昇温し、136℃で5時間還流した。撹拌したまま30℃まで冷却した反応溶液を、メタノール5000部、水10000部からなる混合溶剤中へ撹拌しながら注入し、青色のスラリーを得た。このスラリーを濾過し、メタノール2000部、水4000部からなる混合溶剤で洗浄し、乾燥して、135部の下記化学式(14)で示されるクロロアルミニウムフタロシアニンを得た。
<Production of phthalocyanine pigment>
(Production Example 4-1) Aluminum Phthalocyanine 1250 parts of n-amyl alcohol, 225 parts of phthalodinitrile, and 78 parts of aluminum chloride anhydride were added to a reaction vessel and mixed and stirred. To this was added 266 parts of DBU (1,8-diazabicyclo[5.4.0]undec-7-ene), the temperature was raised, and the mixture was refluxed at 136°C for 5 hours. The reaction solution, which had been cooled to 30° C. while being stirred, was poured into a mixed solvent consisting of 5,000 parts of methanol and 10,000 parts of water with stirring to obtain a blue slurry. This slurry was filtered, washed with a mixed solvent consisting of 2000 parts of methanol and 4000 parts of water, and dried to obtain 135 parts of chloroaluminum phthalocyanine represented by the following chemical formula (14).

Figure 2023164228000012
Figure 2023164228000012

次いで、反応容器中に、濃硫酸1500部を加え、次いで上記クロロアルミニウムフタロシアニン100部を氷浴下にて加え、25℃で4時間撹拌を行った。続けて、この硫酸溶液を3℃の冷水9000部に注入し、生成した析出物を濾過、水洗、1%水酸化ナトリウム水溶液洗浄、水洗の順で処理を行い、乾燥して、98部の下記化学式(12)で示されるアルミニウムフタロシアニンを得た。 Next, 1500 parts of concentrated sulfuric acid was added into the reaction vessel, and then 100 parts of the above chloroaluminum phthalocyanine was added in an ice bath, followed by stirring at 25°C for 4 hours. Subsequently, this sulfuric acid solution was poured into 9000 parts of cold water at 3°C, and the formed precipitate was treated in the following order: filtration, washing with water, washing with a 1% sodium hydroxide aqueous solution, washing with water, and drying. An aluminum phthalocyanine represented by the chemical formula (12) was obtained.

Figure 2023164228000013
Figure 2023164228000013

(製造例4-2)チタニルフタロシアニン
反応容器に、1-ヘキサノール1280部、キノリン320部、1,3-ジイミノイソインドリン320部、及びオルトチタン酸テトラブチル206.3部を加えて混合撹拌した。155℃まで昇温し、8時間還流した。なお、系内から発生したn-ブタノールは系内に戻らないように回収した。撹拌したまま60℃まで冷却した反応溶液に、メタノール1000部を加え、スラリーを濾過し、メタノール1000部、N-メチルピロリドン500部、メタノール1000部の順で洗浄し、乾燥して、250部の下記化学式(13)で示されるチタニルフタロシアニンクルードを得た。
(Production Example 4-2) Titanyl Phthalocyanine 1280 parts of 1-hexanol, 320 parts of quinoline, 320 parts of 1,3-diiminoisoindoline, and 206.3 parts of tetrabutyl orthotitanate were added to a reaction vessel and mixed and stirred. The temperature was raised to 155°C and refluxed for 8 hours. Note that n-butanol generated within the system was recovered so as not to return to the system. Add 1000 parts of methanol to the reaction solution cooled to 60°C while stirring, filter the slurry, wash with 1000 parts of methanol, 500 parts of N-methylpyrrolidone, and 1000 parts of methanol in that order, dry, and add 250 parts of methanol. A titanyl phthalocyanine crude represented by the following chemical formula (13) was obtained.

Figure 2023164228000014
Figure 2023164228000014

次いで、反応容器中に、濃硫酸1500部を加え、次いで上記チタニルフタロシアニンクルード100部を氷浴下にて加え、25℃で4時間撹拌を行った。続けて、この硫酸溶液を3℃の冷水9000部に注入し、生成した析出物を濾過、水洗、1%水酸化ナトリウム水溶液洗浄、水洗の順で処理を行い、ケーキを得た。次いで、反応容器中にジエチレングリコール1000部及び得られたケーキを加えて撹拌しスラリーとし、120℃で3時間撹拌を行った。60℃まで冷却したスラリーを濾過し、水5000部で洗浄して乾燥し、87部のチタニルフタロシアニンを得た。 Next, 1,500 parts of concentrated sulfuric acid was added into the reaction vessel, and then 100 parts of the above titanyl phthalocyanine crude was added in an ice bath, followed by stirring at 25°C for 4 hours. Subsequently, this sulfuric acid solution was poured into 9000 parts of cold water at 3° C., and the resulting precipitate was treated in the following order: filtration, washing with water, washing with a 1% aqueous sodium hydroxide solution, and washing with water to obtain a cake. Next, 1000 parts of diethylene glycol and the obtained cake were added to the reaction vessel and stirred to form a slurry, and the mixture was stirred at 120° C. for 3 hours. The slurry cooled to 60° C. was filtered, washed with 5000 parts of water, and dried to obtain 87 parts of titanyl phthalocyanine.

<C.I.ピグメントレッド122の製造>
(製造例5-1)PR122-3
よく乾燥した1,4-シクロヘキサンジオン-2,5-ジ(カルボン酸メチルエステル)45.60部(0.2モル)とp-トルイジン53.5部(0.5モル)、メタノール500部、35%塩酸4.65部(0.045モル)を1リットルの耐圧ガラスオートクレーブに計り入れ、密封した後、窒素ガスで十分に反応容器内の酸素を置換してからゲージ圧で0kg/cmに設定し、強力に撹拌しながら室温から100℃まで15分で昇温した後、3時間反応を行った。反応中の反応容器の圧力は最高で3.8kg/cmであった。反応後、30℃以下に冷却してから大気圧に開放して、10%水酸化ナトリウム水溶液18部を投入して10分間撹拌後、生成物を濾過した。濾過したケーキは60℃に加熱したメタノールで十分に洗浄した。生成した2,5-ジ-p-トルイジノ-3,6-ジヒドロテレフタル酸ジメチルエステルの収量は75.07部で理論収量の99.3%であった。また純度は99.5%であった。
次いで、上記で得られた2,5-ジ-p-トルイジノ-3,6-ジヒドロテレフタル酸ジメチルエステル30部、ジメチルナフタレン異性体混合物150部を、200ミリリットルの底部に出口バルブを有するフラスコ中、窒素ガス雰囲気下で撹拌しながら、120~170℃に加熱した。一方、ジメチルナフタレン異性体混合物150部を、500ミリリットルフラスコ中、窒素ガス雰囲気下で撹拌しながら280℃以上に加熱した。そこに、上記の熱混合液を20~40分掛けて導入した後、混合物を280~283℃(還流)で30分保持した。沸騰したジメチルナフタレン異性体混合物に、120~170℃の2,5-ジアニリノ-3,6-ジヒドロテレフタル酸ジメチルエステルとジメチルナフタレン異性体混合物を導入した瞬間から、メタノールの発生を伴いながら2,9-ジメチル-6,13-ジヒドロキナクリドンの生成反応が開始し、メタノールの発生は283℃での還流開始直後には殆どなくなった。100℃に冷却後、窒素ガス雰囲気を解除し、内容物を濾過し、熱メタノール500部で洗浄し、乾燥して2,9-ジメチル-6,13-ジヒドロキナクリドン24.44部(理論量の96.71%)を得た。
上記で得られた2,9-ジメチル-6,13-ジヒドロキナクリドン10部とメタノール80部を還流器付200ミリリットルフラスコに仕込み撹拌した。50%水酸化ナトリウム水溶液12部を加え40℃で30分撹拌し、次いで10%硫酸26部を滴下、加水分解した後、速やかにm-ニトロベンゼンスルホン酸ソーダ10部を加え、すぐに50%水酸化ナトリウム水溶液3部を加えたのち4時間還流した。混合物を濾過、水洗、乾燥、及び粉砕を経て、粗製2,9-ジメチル-キナクリドン9.60部を得た。
次いで、氷浴で10℃以下に冷やし、フラスコ中で撹拌された98%硫酸90部に上記で得られた粗製2,9-ジメチル-キナクリドン9部を、温度が30℃以上にならないよう注意しながら添加した。これらを全量加えた後、30℃以下で1時間撹拌した。撹拌された10℃の水1000部に対して、上記硫酸溶液を突沸に注意しながら滴下した。滴下終了後、濾過し、中性になるまで水洗を行い、プレスケーキを得た。得られたプレスケーキに水を添加し、水酸化ナトリウムによってpHを9.0に調整した。次いで、ステアリン酸クロリドとタウリンとの縮合生成物を0.09部、35%イソブタノール水混合溶液中の顔料固形分が4%懸濁液になるように水とイソブタノールを加えた。この懸濁液を4時間還流させ、その後、液温が99℃になるまでイソブタノールを留去した。70℃まで冷却後、濾過、60℃温水洗、乾燥、及び粉砕を経て、PR122-3 8.9部を得た。平均一次粒子径は、163nmであった。
<C. I. Production of Pigment Red 122>
(Production Example 5-1) PR122-3
45.60 parts (0.2 mol) of well-dried 1,4-cyclohexanedione-2,5-di(carboxylic acid methyl ester), 53.5 parts (0.5 mol) of p-toluidine, 500 parts of methanol, Weigh 4.65 parts (0.045 mol) of 35% hydrochloric acid into a 1 liter pressure-resistant glass autoclave, seal it, and replace oxygen in the reaction vessel sufficiently with nitrogen gas, then 0 kg/cm 2 at gauge pressure. The temperature was raised from room temperature to 100° C. in 15 minutes with strong stirring, and then the reaction was carried out for 3 hours. The maximum pressure in the reaction vessel during the reaction was 3.8 kg/cm 2 . After the reaction, the reaction mixture was cooled to 30° C. or below and then opened to atmospheric pressure, 18 parts of a 10% aqueous sodium hydroxide solution was added thereto, and after stirring for 10 minutes, the product was filtered. The filtered cake was thoroughly washed with methanol heated to 60°C. The yield of the produced 2,5-di-p-toluidino-3,6-dihydroterephthalic acid dimethyl ester was 75.07 parts, which was 99.3% of the theoretical yield. Moreover, the purity was 99.5%.
Then, 30 parts of 2,5-di-p-toluidino-3,6-dihydroterephthalic acid dimethyl ester obtained above and 150 parts of the dimethylnaphthalene isomer mixture were placed in a 200 ml flask with an outlet valve at the bottom. The mixture was heated to 120 to 170°C while stirring under a nitrogen gas atmosphere. On the other hand, 150 parts of a dimethylnaphthalene isomer mixture was heated to 280° C. or higher while stirring under a nitrogen gas atmosphere in a 500 ml flask. After introducing the hot liquid mixture described above over 20 to 40 minutes, the mixture was held at 280 to 283°C (reflux) for 30 minutes. From the moment 2,5-dianilino-3,6-dihydroterephthalic acid dimethyl ester and the dimethylnaphthalene isomer mixture at 120-170°C are introduced into the boiling dimethylnaphthalene isomer mixture, 2,9 -Dimethyl-6,13-dihydroquinacridone production reaction started, and the generation of methanol almost stopped immediately after the start of reflux at 283°C. After cooling to 100°C, the nitrogen atmosphere was removed, the contents were filtered, washed with 500 parts of hot methanol, and dried to give 24.44 parts of 2,9-dimethyl-6,13-dihydroquinacridone (theoretical amount). 96.71%).
10 parts of 2,9-dimethyl-6,13-dihydroquinacridone obtained above and 80 parts of methanol were placed in a 200 ml flask equipped with a refluxer and stirred. Add 12 parts of 50% sodium hydroxide aqueous solution, stir at 40°C for 30 minutes, then dropwise add 26 parts of 10% sulfuric acid for hydrolysis. Immediately add 10 parts of sodium m-nitrobenzenesulfonate, and immediately add 50% water. After adding 3 parts of an aqueous sodium oxide solution, the mixture was refluxed for 4 hours. The mixture was filtered, washed with water, dried, and pulverized to obtain 9.60 parts of crude 2,9-dimethyl-quinacridone.
Next, cool to below 10°C in an ice bath, and add 9 parts of the crude 2,9-dimethyl-quinacridone obtained above to 90 parts of 98% sulfuric acid stirred in a flask, taking care not to let the temperature rise above 30°C. I added it while doing so. After adding all of these, the mixture was stirred at 30° C. or lower for 1 hour. The above sulfuric acid solution was added dropwise to 1000 parts of stirred water at 10° C. while being careful not to bump. After the addition was completed, the mixture was filtered and washed with water until it became neutral to obtain a press cake. Water was added to the resulting press cake and the pH was adjusted to 9.0 with sodium hydroxide. Next, 0.09 parts of a condensation product of stearic acid chloride and taurine, water and isobutanol were added so that the pigment solid content in the 35% isobutanol/water mixed solution became a suspension of 4%. This suspension was refluxed for 4 hours, and then the isobutanol was distilled off until the liquid temperature reached 99°C. After cooling to 70°C, filtration, washing with hot water at 60°C, drying, and pulverization yielded 8.9 parts of PR122-3. The average primary particle diameter was 163 nm.

(製造例5-2)PR122-4
PR122-3を100部、塩化ナトリウム1000部、及びジエチレングリコール150部を、ステンレス製1ガロンニーダー(井上製作所社製)中に仕込み、140℃で4時間混練した。次に、混練した混合物を約70℃の温水に投入し、1時間撹拌してスラリー状として、濾過及び水洗を繰り返して塩化ナトリウム及びジエチレングリコールを除いた後、80℃で一昼夜乾燥させ、粉砕することによりPR122-4 95部を得た。平均一次粒子径は、140nmであった。
(Production Example 5-2) PR122-4
100 parts of PR122-3, 1000 parts of sodium chloride, and 150 parts of diethylene glycol were placed in a stainless steel 1-gallon kneader (manufactured by Inoue Seisakusho Co., Ltd.) and kneaded at 140° C. for 4 hours. Next, the kneaded mixture is poured into warm water at about 70°C, stirred for 1 hour to form a slurry, repeatedly filtered and washed with water to remove sodium chloride and diethylene glycol, dried at 80°C overnight, and pulverized. 95 parts of PR122-4 were obtained. The average primary particle diameter was 140 nm.

(製造例5-3)PR122-5
PR122-3を100部、塩化ナトリウム1000部、及びジエチレングリコール150部を、ステンレス製1ガロンニーダー(井上製作所社製)中に仕込み、90℃で8時間混練した。次に、混練した混合物を約70℃の温水に投入し、1時間撹拌してスラリー状として、濾過及び水洗を繰り返して塩化ナトリウム及びジエチレングリコールを除いた後、80℃で一昼夜乾燥させ、粉砕することによりPR122-4 95部を得た。平均一次粒子径は、55nmであった。
(Production Example 5-3) PR122-5
100 parts of PR122-3, 1000 parts of sodium chloride, and 150 parts of diethylene glycol were placed in a stainless steel 1-gallon kneader (manufactured by Inoue Seisakusho Co., Ltd.) and kneaded at 90° C. for 8 hours. Next, the kneaded mixture is poured into warm water at about 70°C, stirred for 1 hour to form a slurry, repeatedly filtered and washed with water to remove sodium chloride and diethylene glycol, dried at 80°C overnight, and pulverized. 95 parts of PR122-4 were obtained. The average primary particle diameter was 55 nm.

(製造例5-4)PR122-6
氷浴で10℃以下に冷やし、フラスコ中で撹拌された98%硫酸90部に、製造例5-1で得られた粗製2,9-ジメチル-キナクリドン9.5部、及び後述する製造例6-1で得られたPV19-3 0.5部を、温度が30℃以上にならないよう注意しながら添加した。これらを全量加えた後、30℃以下にて1時間撹拌した。撹拌された10℃の水1000部に対して、上記硫酸溶液を突沸に注意しながら滴下した。滴下終了後、濾過し、中性になるまで水洗を行い、プレスケーキを得た。得られたプレスケーキに水を添加し水酸化ナトリウムによってpHを9.0に調整した。次いで、ステアリン酸クロリドとタウリンとの縮合生成物を0.09部、35%イソブタノール水混合溶液中の顔料固形分が4%懸濁液になるように水とイソブタノールを加えた。この懸濁液を2時間還流させ、その後、液温が99℃になるまでイソブタノールを留去した。70℃まで冷却後、濾過、60℃温水洗、乾燥、及び粉砕を経て、PR122-6 8.9部を得た。平均一次粒子径は、44nmであった。
(Production Example 5-4) PR122-6
To 90 parts of 98% sulfuric acid cooled to below 10°C in an ice bath and stirred in a flask, 9.5 parts of the crude 2,9-dimethyl-quinacridone obtained in Production Example 5-1 and Production Example 6 described below were added. 0.5 part of PV19-3 obtained in step-1 was added while being careful not to let the temperature rise above 30°C. After adding all of these, the mixture was stirred at 30° C. or lower for 1 hour. The above sulfuric acid solution was added dropwise to 1000 parts of stirred water at 10° C. while being careful not to bump. After the addition was completed, the mixture was filtered and washed with water until it became neutral to obtain a press cake. Water was added to the obtained press cake and the pH was adjusted to 9.0 with sodium hydroxide. Next, 0.09 parts of a condensation product of stearic acid chloride and taurine, water and isobutanol were added so that the pigment solid content in the 35% isobutanol/water mixed solution became a suspension of 4%. This suspension was refluxed for 2 hours, and then the isobutanol was distilled off until the liquid temperature reached 99°C. After cooling to 70°C, filtration, washing with hot water at 60°C, drying, and pulverization yielded 8.9 parts of PR122-6. The average primary particle diameter was 44 nm.

<C.I.ピグメントバイオレット19の製造>
(製造例6-1)PV19-3
よく乾燥した1,4-シクロヘキサンジオン-2,5-ジ(カルボン酸メチルエステル)45.6部(0.2モル)、アニリン46.57部(0.5モル)、メタノール500部、35%塩酸4.65部(0.045モル)を1リットルの耐圧ガラスオートクレーブに計り入れ、密封した後、窒素ガスで十分に反応容器内の酸素を置換してからゲージ圧で0kg/cmに設定し、強力に撹拌しながら室温から100℃まで15分で昇温した後、3時間反応を行った。反応中の反応容器の圧力は最高で3.8kg/cmであった。反応後30℃以下に冷却してから大気圧に開放して、10%水酸化ナトリウム水溶液18部を投入して10分間撹拌後、生成物を濾過した。濾過したケーキは60℃に加熱したメタノールで十分に洗浄した。生成した2,5-ジアニリノ-3,6-ジヒドロテレフタル酸ジメチルエステルの収量は75.07部で理論収量の99.3%であった。また純度は99.5%であった。
次いで、上記で得られた2,5-ジアニリノ-3,6-ジヒドロテレフタル酸ジメチルエステル30部、ジメチルナフタレン異性体混合物150部を、200ミリリットルの底部に出口バルブを有するフラスコ中、窒素ガス雰囲気下で撹拌しながら、120~170℃に加熱した。一方、ジメチルナフタレン異性体混合物150部を、500ミリリットルフラスコ中、窒素ガス雰囲気下で撹拌しながら280℃以上に加熱した。そこに、上記の熱混合液を20~40分掛けて導入した後、混合物を280~283℃(還流)で30分保持した。沸騰したジメチルナフタレン異性体混合物に、120~170℃の2,5-ジアニリノ-3,6-ジヒドロテレフタル酸ジメチルエステルとジメチルナフタレン異性体混合物を導入した瞬間から、メタノールの発生を伴いながら6,13-ジヒドロキナクリドンの生成反応が開始し、メタノールの発生は283℃での還流開始直後には殆どなくなった。100℃に冷却後、窒素ガス雰囲気を解除し、内容物を濾過し、熱メタノール500部で洗浄し、乾燥して6,13-ジヒドロキナクリドン24.47部(理論量の98.2%)を得た。IR及び吸光度により純度は99%以上であった。
上記で得られた6,13-ジヒドロキナクリドン10部とメタノール80部を還流器付200ミリリットルフラスコに仕込み撹拌した。50%水酸化ナトリウム水溶液12部を加え40℃で30分撹拌し、次いで10%硫酸26部を滴下、加水分解した後、速やかにm-ニトロベンゼンスルホン酸ソーダ10部を加え、すぐに50%水酸化ナトリウム水溶液3部を加えたのち4時間還流した。混合物を濾過、水洗、乾燥、及び粉砕を経て、PV19-3 9.82部を得た。平均一次粒子径は、130nmであった。
<C. I. Production of Pigment Violet 19>
(Production Example 6-1) PV19-3
45.6 parts (0.2 mol) of well-dried 1,4-cyclohexanedione-2,5-di(carboxylic acid methyl ester), 46.57 parts (0.5 mol) of aniline, 500 parts of methanol, 35% Weigh 4.65 parts (0.045 mol) of hydrochloric acid into a 1-liter pressure-resistant glass autoclave, seal it, and then sufficiently replace the oxygen in the reaction vessel with nitrogen gas, then set the gauge pressure to 0 kg/ cm2. Then, the temperature was raised from room temperature to 100°C in 15 minutes while stirring vigorously, and the reaction was carried out for 3 hours. The maximum pressure in the reaction vessel during the reaction was 3.8 kg/cm 2 . After the reaction, the reaction mixture was cooled to 30° C. or lower, then opened to atmospheric pressure, 18 parts of a 10% aqueous sodium hydroxide solution was added, and after stirring for 10 minutes, the product was filtered. The filtered cake was thoroughly washed with methanol heated to 60°C. The yield of 2,5-dianilino-3,6-dihydroterephthalic acid dimethyl ester produced was 75.07 parts, which was 99.3% of the theoretical yield. Moreover, the purity was 99.5%.
Next, 30 parts of 2,5-dianilino-3,6-dihydroterephthalic acid dimethyl ester obtained above and 150 parts of the dimethylnaphthalene isomer mixture were placed in a 200 ml flask with an outlet valve at the bottom under a nitrogen gas atmosphere. The mixture was heated to 120 to 170°C while stirring. On the other hand, 150 parts of a dimethylnaphthalene isomer mixture was heated to 280° C. or higher while stirring under a nitrogen gas atmosphere in a 500 ml flask. After introducing the hot liquid mixture described above over 20 to 40 minutes, the mixture was held at 280 to 283°C (reflux) for 30 minutes. From the moment 2,5-dianilino-3,6-dihydroterephthalic acid dimethyl ester and the dimethylnaphthalene isomer mixture at 120-170°C are introduced into the boiling dimethylnaphthalene isomer mixture, 6,13 - The production reaction of dihydroquinacridone started, and the generation of methanol almost disappeared immediately after the start of reflux at 283°C. After cooling to 100°C, the nitrogen atmosphere was removed, the contents were filtered, washed with 500 parts of hot methanol, and dried to give 24.47 parts (98.2% of theory) of 6,13-dihydroquinacridone. Obtained. The purity was 99% or more by IR and absorbance.
10 parts of 6,13-dihydroquinacridone obtained above and 80 parts of methanol were charged into a 200 ml flask equipped with a reflux device and stirred. Add 12 parts of 50% sodium hydroxide aqueous solution, stir at 40°C for 30 minutes, then dropwise add 26 parts of 10% sulfuric acid for hydrolysis. Immediately add 10 parts of sodium m-nitrobenzenesulfonate, and immediately add 50% water. After adding 3 parts of an aqueous sodium oxide solution, the mixture was refluxed for 4 hours. The mixture was filtered, washed with water, dried, and pulverized to obtain 9.82 parts of PV19-3. The average primary particle diameter was 130 nm.

(製造例6-2)PV19-4
PV19-3を100部、塩化ナトリウム1000部、及びジエチレングリコール150部を、ステンレス製1ガロンニーダー(井上製作所社製)中に仕込み、120℃で4時間混練した。次に、混練した混合物を約70℃の温水に投入し、1時間撹拌してスラリー状として、濾過及び水洗を繰り返して塩化ナトリウム及びジエチレングリコールを除いた後、80℃で一昼夜乾燥させ、粉砕することによりPV19-4 95部を得た。平均一次粒子径は、108nmであった。
(Production Example 6-2) PV19-4
100 parts of PV19-3, 1000 parts of sodium chloride, and 150 parts of diethylene glycol were charged into a stainless steel 1-gallon kneader (manufactured by Inoue Seisakusho Co., Ltd.) and kneaded at 120° C. for 4 hours. Next, the kneaded mixture is poured into warm water at about 70°C, stirred for 1 hour to form a slurry, repeatedly filtered and washed with water to remove sodium chloride and diethylene glycol, dried at 80°C overnight, and pulverized. 95 parts of PV19-4 were obtained. The average primary particle diameter was 108 nm.

(製造例6-3)PV19-5
PV19-3を95部、PR122-5を5部、塩化ナトリウム1000部、及びジエチレングリコール150部を、ステンレス製1ガロンニーダー(井上製作所社製)中に仕込み、60℃で4時間混練した。次に、混練した混合物を約70℃の温水に投入し、1時間撹拌してスラリー状として、濾過及び水洗を繰り返して塩化ナトリウム及びジエチレングリコールを除いた後、80℃で一昼夜乾燥させ、粉砕することによりPV19-5 95部を得た。平均一次粒子径は、31nmであった。
(Production Example 6-3) PV19-5
95 parts of PV19-3, 5 parts of PR122-5, 1000 parts of sodium chloride, and 150 parts of diethylene glycol were placed in a 1-gallon stainless steel kneader (manufactured by Inoue Seisakusho Co., Ltd.) and kneaded at 60° C. for 4 hours. Next, the kneaded mixture is poured into warm water at about 70°C, stirred for 1 hour to form a slurry, repeatedly filtered and washed with water to remove sodium chloride and diethylene glycol, dried at 80°C overnight, and pulverized. 95 parts of PV19-5 were obtained. The average primary particle diameter was 31 nm.

<1>グラビア印刷インキセットの評価
まず、樹脂の測定法を以下説明する。
(水酸基価)
JIS K0070に従って求めた。
(酸価)
JIS K0070に従って求めた。
(アミン価)
アミン価は、樹脂1g中に含有するアミノ基を中和するのに必要とする塩酸の当量と同量の水酸化カリウムのmg数でJIS K0070に準じて以下の方法に従って求めた。
試料を0.5~2g精秤した(試料不揮発分:Sg)。精秤した試料にメタノール/メチルエチルケトン=60/40(質量比)の混合溶液50mLを加え溶解させた。得られた溶液に指示薬としてブロモフェノールブルーを加え、得られた溶液を0.2mol/Lエタノール性塩酸溶液(力価:f)で滴定を行なった。溶液の色が緑から黄に変化した点を終点とし、この時の滴定量(AmL)を用い、下記式によりアミン価を求めた。
アミン価=(A×f×0.2×56.108)/S [mgKOH/g]
<1> Evaluation of gravure printing ink set First, the method for measuring resin will be explained below.
(Hydroxyl value)
It was determined according to JIS K0070.
(Acid value)
It was determined according to JIS K0070.
(amine value)
The amine value was determined according to the following method according to JIS K0070 using the equivalent amount of hydrochloric acid in mg of potassium hydroxide required to neutralize the amino groups contained in 1 g of the resin.
0.5 to 2 g of the sample was accurately weighed (sample nonvolatile content: Sg). 50 mL of a mixed solution of methanol/methyl ethyl ketone = 60/40 (mass ratio) was added to the accurately weighed sample and dissolved. Bromophenol blue was added to the obtained solution as an indicator, and the obtained solution was titrated with a 0.2 mol/L ethanolic hydrochloric acid solution (potency: f). The end point was the point at which the color of the solution changed from green to yellow, and the amine value was determined by the following formula using the titration amount (AmL) at this time.
Amine value = (A x f x 0.2 x 56.108)/S [mgKOH/g]

(重量平均分子量)
重量平均分子量はGPC(ゲルパーミエーションクロマトグラフィー)装置(東ソー社製HLC-8220)を用いて分子量分布を測定し、ポリスチレンを標準物質に用いた換算分子量として求めた。下記に測定条件を示す。
カラム:下記カラムを直列に連結して使用した。
東ソー社製ガードカラムHXL-H
東ソー社製TSKgelG5000HXL
東ソー社製TSKgelG4000HXL
東ソー社製TSKgelG3000HXL
東ソー社製TSKgelG2000HXL
検出器:RI(示差屈折計)
測定条件:カラム温度40℃
溶離液:テトラヒドロフラン
流速:1.0mL/分
(Weight average molecular weight)
The weight average molecular weight was determined by measuring the molecular weight distribution using a GPC (gel permeation chromatography) device (HLC-8220, manufactured by Tosoh Corporation), and as a converted molecular weight using polystyrene as a standard substance. The measurement conditions are shown below.
Column: The following columns were connected in series and used.
Tosoh Guard Column HXL-H
Tosoh Corporation TSKgelG5000HXL
Tosoh Corporation TSKgelG4000HXL
Tosoh Corporation TSKgelG3000HXL
Tosoh Corporation TSKgelG2000HXL
Detector: RI (differential refractometer)
Measurement conditions: Column temperature 40℃
Eluent: Tetrahydrofuran Flow rate: 1.0 mL/min

(ガラス転移温度)
ガラス転移温度(Tg)は、DSC(示差走査熱量測定測定)により求めた。なお、測定機はリガク社製DSC8231を使用し、測定温度範囲-70~250℃、昇温速度10℃/分、DSC曲線におけるガラス転移に基づく吸熱開始温度と終了温度との中点をガラス転移温度とした。
(Glass-transition temperature)
The glass transition temperature (Tg) was determined by DSC (differential scanning calorimetry). The measuring device used was Rigaku DSC8231, the measurement temperature range was -70 to 250°C, the heating rate was 10°C/min, and the midpoint between the endothermic start temperature and end temperature based on the glass transition in the DSC curve was determined as the glass transition. Temperature.

(合成例1)ポリウレタン樹脂溶液[PU1]
アジピン酸と3-メチル-1,5-ペンタンジオールから得られる数平均分子量2,000のポリエステルジオール54.719部、イソホロンジイソシアネート(以下「IPDI」)3.989部、酢酸n-プロピル(以下「nPAc」)10.0部を窒素気流下に85℃で3時間反応させ、nPAc10.0部を加え冷却し、末端イソシアネートプレポリマーの溶剤溶液78.708部を得た。次いでイソホロンジアミン(以下「IPDA」)1.031部、ジ-n-ブチルアミン0.261部、nPAc72.96部及びイソプロパノール(以下「IPA」)47.04部を混合したものに、得られた末端イソシアネートプレポリマーの溶剤溶液78.708部を室温で徐々に添加し、次に50℃で1時間反応させ、不揮発分30%、重量平均分子量60,000、アミン価3.0mgKOH/gのポリウレタン樹脂溶液[PU1]を得た。
(Synthesis Example 1) Polyurethane resin solution [PU1]
54.719 parts of polyester diol with a number average molecular weight of 2,000 obtained from adipic acid and 3-methyl-1,5-pentanediol, 3.989 parts of isophorone diisocyanate (hereinafter referred to as "IPDI"), n-propyl acetate (hereinafter referred to as " 10.0 parts of nPAc'') were reacted at 85° C. for 3 hours under a nitrogen stream, and 10.0 parts of nPAc was added and cooled to obtain 78.708 parts of a solvent solution of terminal isocyanate prepolymer. Next, the obtained terminal was mixed with 1.031 parts of isophoronediamine (hereinafter referred to as "IPDA"), 0.261 parts of di-n-butylamine, 72.96 parts of nPAc, and 47.04 parts of isopropanol (hereinafter referred to as "IPA"). 78.708 parts of a solvent solution of isocyanate prepolymer was gradually added at room temperature, and then reacted at 50°C for 1 hour to obtain a polyurethane resin with a nonvolatile content of 30%, a weight average molecular weight of 60,000, and an amine value of 3.0 mgKOH/g. A solution [PU1] was obtained.

(合成例2)ポリウレタン樹脂溶液[PU2]
数平均分子量700のポリプロピレングリコール(以下「PPG700」)200部、IPDI127部、及び酢酸エチル81.8部を窒素気流下にて80℃で4時間反応させ、末端イソシアネートウレタンプレポリマーの樹脂溶液を得た。次いでIPDA49.5部、2-エタノールアミン3部、酢酸エチル/イソプロパノール(以下「IPA」)=50/50(質量比)の混合溶剤803.9部を混合したものに、得られた末端イソシアネートウレタンプレポリマーの樹脂溶液を40℃で徐々に添加し、次に80℃で1時間反応させ、不揮発分30%、アミン価3.5mgKOH/g、水酸基価7.3mgKOH/g、重量平均分子量40,000のポリウレタン樹脂溶液[PU2]を得た。ガラス転移温度は-32℃であった。
(Synthesis Example 2) Polyurethane resin solution [PU2]
200 parts of polypropylene glycol (hereinafter referred to as "PPG700") having a number average molecular weight of 700, 127 parts of IPDI, and 81.8 parts of ethyl acetate were reacted at 80°C for 4 hours under a nitrogen stream to obtain a resin solution of a terminal isocyanate urethane prepolymer. Ta. Next, 49.5 parts of IPDA, 3 parts of 2-ethanolamine, and 803.9 parts of a mixed solvent of ethyl acetate/isopropanol (hereinafter referred to as "IPA") = 50/50 (mass ratio) were mixed, and the obtained terminal isocyanate urethane was added. A prepolymer resin solution was gradually added at 40°C, and then reacted at 80°C for 1 hour, resulting in a non-volatile content of 30%, an amine value of 3.5mgKOH/g, a hydroxyl value of 7.3mgKOH/g, and a weight average molecular weight of 40. 000 polyurethane resin solution [PU2] was obtained. The glass transition temperature was -32°C.

(ポリビニルブチラール樹脂溶液[PVB1]の調製)
ビニルアルコール単位、酢酸ビニル単位及びビニルブチラール単位を有し、ブチラール環基を73質量%、水酸基を26質量%含むポリビニルブチラール樹脂(重量平均分子量19,000)を、酢酸エチル/IPA=1/1(質量比)混合溶剤に溶解し、固形分30%のポリビニルブチラール樹脂溶液[PVB1]を調製した。
(Preparation of polyvinyl butyral resin solution [PVB1])
A polyvinyl butyral resin (weight average molecular weight 19,000) having vinyl alcohol units, vinyl acetate units and vinyl butyral units and containing 73% by mass of butyral ring groups and 26% by mass of hydroxyl groups was prepared using ethyl acetate/IPA=1/1. (Mass ratio) A polyvinyl butyral resin solution [PVB1] having a solid content of 30% was prepared by dissolving it in a mixed solvent.

(ポリビニルブチラール樹脂溶液[PVB2]の調製)
ビニルアルコール単位、酢酸ビニル単位及びビニルブチラール単位を有し、ブチラール環基を77質量%、水酸基を21質量%含むポリビニルブチラール樹脂(重量平均分子量33,000)を、酢酸エチル/IPA=1/1(質量比)混合溶剤に溶解し、固形分30%のポリビニルブチラール樹脂溶液[PVB2]を調製した。
(Preparation of polyvinyl butyral resin solution [PVB2])
A polyvinyl butyral resin (weight average molecular weight 33,000) having vinyl alcohol units, vinyl acetate units and vinyl butyral units and containing 77% by mass of butyral ring groups and 21% by mass of hydroxyl groups was prepared using ethyl acetate/IPA=1/1. (Mass ratio) A polyvinyl butyral resin solution [PVB2] having a solid content of 30% was prepared by dissolving it in a mixed solvent.

(ポリビニルブチラール樹脂溶液[PVB3]の調製)
ビニルアルコール単位、酢酸ビニル単位及びビニルブチラール単位を有し、ブチラール環基を84質量%、水酸基を14質量%含むポリビニルブチラール樹脂(重量平均分子量33,000)を、酢酸エチル/IPA=1/1(質量比)混合溶剤に溶解し、固形分30%のポリビニルブチラール樹脂溶液[PVB3]を調製した。
(Preparation of polyvinyl butyral resin solution [PVB3])
A polyvinyl butyral resin (weight average molecular weight 33,000) having vinyl alcohol units, vinyl acetate units, and vinyl butyral units and containing 84% by mass of butyral ring groups and 14% by mass of hydroxyl groups was prepared using ethyl acetate/IPA=1/1. (Mass ratio) A polyvinyl butyral resin solution [PVB3] having a solid content of 30% was prepared by dissolving it in a mixed solvent.

〔グラビアインキの製造〕
(製造例Y1-1)[イエローインキ[Y1-1]の調製]
イソインドリン化合物(1-1)7.0部、ポリウレタン樹脂溶液[PU1]29.5部、ポリウレタン樹脂溶液[PU2]5.0部、nPAc20部、及びIPA5部を撹拌混合し、サンドミルで練肉した。次いで、さらに、ポリウレタン樹脂溶液[PU2]20部、nPAc11部、及びIPA3部を添加し、混合撹拌することによって、イエローインキ[Y1-1]を得た。
[Manufacture of gravure ink]
(Production Example Y1-1) [Preparation of yellow ink [Y1-1]]
7.0 parts of isoindoline compound (1-1), 29.5 parts of polyurethane resin solution [PU1], 5.0 parts of polyurethane resin solution [PU2], 20 parts of nPAc, and 5 parts of IPA were stirred and mixed, and ground in a sand mill. did. Next, 20 parts of polyurethane resin solution [PU2], 11 parts of nPAc, and 3 parts of IPA were further added and mixed and stirred to obtain yellow ink [Y1-1].

(製造例Y1-2~Y1-28、C1-1~C1-5、M1-1~M1-13)[イエローインキ[Y1-2]~[Y1-28]、シアンインキ[C1-1]~[C1-5]、マゼンタインキ[M1-1]~[M1-13]の調製]
製造例Y1-1に記載したイエローインキ[Y1-1]の調製方法において、イソインドリン化合物(1-1)7.0部を、表3に示した化合物及び表3に記載した量に変更した以外は、製造例Y1-1と同様にして、表3に記載したインキを得た。
(Production examples Y1-2 to Y1-28, C1-1 to C1-5, M1-1 to M1-13) [Yellow ink [Y1-2] to [Y1-28], cyan ink [C1-1] to [C1-5], preparation of magenta ink [M1-1] to [M1-13]]
In the method for preparing yellow ink [Y1-1] described in Production Example Y1-1, 7.0 parts of isoindoline compound (1-1) was changed to the compound shown in Table 3 and the amount described in Table 3. The ink shown in Table 3 was obtained in the same manner as in Production Example Y1-1 except for the following.

Figure 2023164228000015
Figure 2023164228000015

(製造例Y2-1)[イエローインキ[Y2-1]の調製]
イソインドリン化合物(1-3)7.0部、ポリウレタン樹脂溶液[PU1]29.5部、ポリビニルブチラール樹脂溶液[PVB1]5.0部、nPAc20部、及びIPA5部を撹拌混合し、サンドミルで練肉した。次いで、ポリウレタン樹脂溶液[PU2]20部、nPAc11部、及びIPA3部をさらに添加し、混合撹拌することによって、イエローインキ[Y2-1]を得た。
(Production Example Y2-1) [Preparation of yellow ink [Y2-1]]
7.0 parts of isoindoline compound (1-3), 29.5 parts of polyurethane resin solution [PU1], 5.0 parts of polyvinyl butyral resin solution [PVB1], 20 parts of nPAc, and 5 parts of IPA were stirred and mixed, and kneaded with a sand mill. It was meat. Next, 20 parts of polyurethane resin solution [PU2], 11 parts of nPAc, and 3 parts of IPA were further added and mixed and stirred to obtain yellow ink [Y2-1].

(製造例Y2-2~Y2-5、C2-1~C2-3、M2-1~M2-9)[イエローインキ[Y2-2]~[Y2-5]、シアンインキ[C2-1]~[C2-3]、マゼンタインキ[M2-1]~[M2-9]の調製]
製造例Y2-1に記載したイエローインキ[Y2-1]の調製方法において、イソインドリン化合物(1-3)7.0部及びポリビニルブチラール樹脂溶液[PVB1]5.0部を、表4に示した化合物、表4記載の量、及び表4に示したポリビニルブチラール樹脂に変更した以外は、全て製造例Y2-1と同様にして、表4に記載のインキを得た。
(Production examples Y2-2 to Y2-5, C2-1 to C2-3, M2-1 to M2-9) [Yellow ink [Y2-2] to [Y2-5], cyan ink [C2-1] to [C2-3], Preparation of magenta ink [M2-1] to [M2-9]]
In the method for preparing yellow ink [Y2-1] described in Production Example Y2-1, 7.0 parts of isoindoline compound (1-3) and 5.0 parts of polyvinyl butyral resin solution [PVB1] were added as shown in Table 4. The ink shown in Table 4 was obtained in the same manner as in Production Example Y2-1 except that the compound, the amount shown in Table 4, and the polyvinyl butyral resin shown in Table 4 were changed.

Figure 2023164228000016
Figure 2023164228000016

インキの製造に使用した顔料を表5に示す。 Table 5 shows the pigments used in the production of the ink.

Figure 2023164228000017
Figure 2023164228000017

<インキセットの評価>
(実施例AS-1~AS-49、比較例AS-1~AS-11)
得られた各インキを表6記載の通りに組合せて、インキセットA1~A60とした。得られたインキセットについて、以下の方法に従い、ガマット、耐光性、及び接着性を評価した。結果を表7、表8、及び表9に示す。
<Evaluation of ink set>
(Examples AS-1 to AS-49, Comparative Examples AS-1 to AS-11)
The obtained inks were combined as shown in Table 6 to form ink sets A1 to A60. The obtained ink set was evaluated for gamut, light resistance, and adhesion according to the following methods. The results are shown in Tables 7, 8, and 9.

Figure 2023164228000018
Figure 2023164228000018

[初期ガマット評価]
イエローインキ、シアンインキ、マゼンタインキを、各々、混合溶剤1(メチルエチルケトン:nPCc:IPA=40:40:20)により、粘度が16秒(25℃、ザーンカップNo.3)となるように希釈した。希釈した各インキを用いて、シアン、マゼンタA、マゼンタB、イエローの刷り順で印刷し、単色ベタ部(シアン、マゼンタA、マゼンタB、イエロー)、単色ベタ刷り重ね部(イエロー×シアン、シアン×マゼンタA、イエロー×マゼンタB又はイエロー×マゼンタA)を有する印刷物を得た。印刷条件を以下に示す。
[Initial gamut evaluation]
Yellow ink, cyan ink, and magenta ink were each diluted with mixed solvent 1 (methyl ethyl ketone: nPCc: IPA = 40:40:20) so that the viscosity was 16 seconds (25 ° C., Zahn Cup No. 3). . Using each diluted ink, print in the printing order of cyan, magenta A, magenta B, and yellow. A printed matter having x magenta A, yellow x magenta B, or yellow x magenta A) was obtained. The printing conditions are shown below.

(印刷条件)
印刷機:富士機械5色機
シアン版:ヘリオ175L/inch、スタイラス角度120°、エロンゲート
マゼンタ版:ヘリオ175L/inch、スタイラス角度120°、コンプレスト
イエロー版:ヘリオ175L/inch、スタイラス角度120°、コンプレスト
印刷速度:150m/分
基材:コロナ処理二軸延伸ポリプロピレン(OPP)フィルム(東洋紡社製パイレンP-2161、20μm)
乾燥温度:50℃
(Printing conditions)
Printing machine: Fuji Kikai 5-color machine Cyan version: Helio 175L/inch, stylus angle 120°, Elongate Magenta version: Helio 175L/inch, stylus angle 120°, Compressed Yellow version: Helio 175L/inch, stylus angle 120°, Compressed Printing speed: 150 m/min Base material: Corona-treated biaxially oriented polypropylene (OPP) film (Pylene P-2161 manufactured by Toyobo Co., Ltd., 20 μm)
Drying temperature: 50℃

得られた印刷物について、グレタグマクベスD196を用いて印刷物の単色ベタ部(イエロー、マゼンタA、マゼンタB、シアン)の濃度値を測定した。また、測定機としてgretagmacbeth製のSpectroEyeを使用し、D50光源、2度観測視野、ホワイトバック(標準白色板使用)、フィルター類未使用の条件で、単色ベタ部及び重ね刷り部を測色した。
a*を横軸、b*縦軸とした2次元空間に、単色ベタ部(イエロー、マゼンタA、マゼンタB、シアン)、及び、単色ベタ刷り重ね部(イエロー×シアン、シアン×マゼンタA、イエロー×マゼンタB又はイエロー×マゼンタA)計6色又は7色のa*対b*の値を、プロットし面積を求めた。基準となる比較例AS-1の面積を100%とした場合の面積比を求め、その面積比から、以下の基準で評価した。結果を表7に示す。実用レベルは3以上である。
Regarding the obtained printed matter, the density values of the monochrome solid portions (yellow, magenta A, magenta B, cyan) of the printed matter were measured using Gretag Macbeth D196. In addition, using SpectroEye manufactured by Gretagmacbeth as a measuring device, the color of the monochrome solid area and the overprinted area was measured under the conditions of a D50 light source, a 2-degree observation field, a white background (using a standard white plate), and no filters.
In a two-dimensional space with a* as the horizontal axis and b* as the vertical axis, there are monochrome solid areas (yellow, magenta A, magenta B, cyan), and monochrome overlapping areas (yellow x cyan, cyan x magenta A, yellow). x Magenta B or Yellow x Magenta A) The values of a* versus b* for a total of 6 or 7 colors were plotted to determine the area. The area ratio was determined when the area of Comparative Example AS-1 as a standard was taken as 100%, and the area ratio was evaluated based on the following criteria. The results are shown in Table 7. The practical level is 3 or higher.

(評価基準)
6:面積比が115%以上である
5:面積比が110%以上、115%未満である
4:面積比が105%以上、110%未満である
3:面積比が100%以上、105%未満である
2:面積比が98%以上、100%未満である
1:面積比が98%未満である
(Evaluation criteria)
6: Area ratio is 115% or more 5: Area ratio is 110% or more but less than 115% 4: Area ratio is 105% or more but less than 110% 3: Area ratio is 100% or more but less than 105% 2: Area ratio is 98% or more and less than 100% 1: Area ratio is less than 98%

[耐光性評価1]
(フェドメーターによる紫外線照射試験)
上記で得られた印刷物について、フェドメーター(紫外線カーボンアーク灯式耐光性試験機)により紫外線を48時間照射し、試験後に上記と同様に測色した。紫外線照射の条件は、JIS L0842:2004、JIS B7751:2007に従った。
[Lightfastness evaluation 1]
(Ultraviolet irradiation test using a fedometer)
The printed matter obtained above was irradiated with ultraviolet rays for 48 hours using a fedometer (ultraviolet carbon arc lamp type light resistance tester), and after the test, the color was measured in the same manner as above. The conditions for ultraviolet irradiation were in accordance with JIS L0842:2004 and JIS B7751:2007.

(ガマット)
初期ガマット評価の方法と同様にして、紫外線照射試験後の印刷物を用いて単色ベタ部及び重ね刷り部を測色し、a*対b*の値をプロットし面積を求めた。各実施例及び比較例の紫外線照射試験後における面積を、初期評価の面積で除した面積比を求め、その面積比から、以下の基準で評価した。結果を表7に示す。実用レベルは3以上である。
(gamut)
In the same manner as the initial gamut evaluation method, the printed matter after the ultraviolet irradiation test was used to measure the color of the monochromatic solid area and the overprinted area, and the values of a* versus b* were plotted to determine the area. The area ratio of each Example and Comparative Example after the ultraviolet irradiation test was divided by the area of the initial evaluation was determined, and the area ratio was evaluated based on the following criteria. The results are shown in Table 7. The practical level is 3 or higher.

(評価基準)
6:面積比が98%以上である
5:面積比が97.5%以上、98%未満である
4:面積比が97%以上、97.5%未満である
3:面積比が96.5%以上、97%未満である
2:面積比が96%以上、96.5%未満である
1:面積比が96%未満である
(Evaluation criteria)
6: Area ratio is 98% or more 5: Area ratio is 97.5% or more and less than 98% 4: Area ratio is 97% or more and less than 97.5% 3: Area ratio is 96.5 % or more and less than 97% 2: Area ratio is 96% or more and less than 96.5% 1: Area ratio is less than 96%

(色差ΔE*)
単色ベタ部(イエロー、マゼンタA、マゼンタB、シアン)の測色結果から、紫外線照射試験前後の色差ΔE*を求め、以下の基準で評価した。結果を表7に示す。実用レベルは3以上である。
(color difference ΔE*)
From the colorimetric results of the monochromatic solid areas (yellow, magenta A, magenta B, cyan), the color difference ΔE* before and after the ultraviolet irradiation test was determined and evaluated based on the following criteria. The results are shown in Table 7. The practical level is 3 or higher.

(評価基準)
6:ΔE*が1.0未満である
5:ΔE*が1.0以上、1.5未満である
4:ΔE*が1.5以上、2.0未満である
3:ΔE*が2.0以上、3.0未満である
2:ΔE*が3.0以上、5.0未満である
1:ΔE*が5.0以上である
(Evaluation criteria)
6: ΔE* is less than 1.0 5: ΔE* is 1.0 or more and less than 1.5 4: ΔE* is 1.5 or more and less than 2.0 3: ΔE* is 2. 0 or more and less than 3.0 2: ΔE* is 3.0 or more and less than 5.0 1: ΔE* is 5.0 or more

(色相差ΔH*)
単色ベタ刷り重ね部(イエロー×シアン、シアン×マゼンタA、イエロー×マゼンタB又はイエロー×マゼンタA)の測色結果から、紫外線照射試験前後の色相差ΔH*を求め、以下の基準で評価した。結果を表7に示す。実用レベルは3以上である。また、試験後の色相角(H°)が試験前のH°よりも大きい場合は「+」を、試験後の色相角(H°)が試験前のH°よりも小さい場合は「-」を付記した。
(Hue difference ΔH*)
The hue difference ΔH* before and after the ultraviolet irradiation test was determined from the color measurement results of the monochromatic solid printed overlapping area (yellow x cyan, cyan x magenta A, yellow x magenta B, or yellow x magenta A), and evaluated based on the following criteria. The results are shown in Table 7. The practical level is 3 or higher. Also, if the hue angle (H°) after the test is larger than the H° before the test, mark it as “+”, and if the hue angle (H°) after the test is smaller than the H° before the test, mark it as “-”. Added.

(評価基準)
6:ΔH*が0.5未満である
5:ΔH*が0.5以上、0.75未満である
4:ΔH*が0.75以上、1.0未満である
3:ΔH*が1.0以上、1.5未満である
2:ΔH*が1.5以上、3.0未満である
1:ΔH*が3.0以上である
(Evaluation criteria)
6: ΔH* is less than 0.5 5: ΔH* is 0.5 or more and less than 0.75 4: ΔH* is 0.75 or more and less than 1.0 3: ΔH* is 1. 0 or more and less than 1.5 2: ΔH* is 1.5 or more and less than 3.0 1: ΔH* is 3.0 or more

[耐光性評価2]
(白色LED照射試験)
上記で得られた印刷物について、下記の試験方法により白色LED照射試験を行った。試験後に上記と同様に測色し、白色LED照射下における色相の安定性を評価した。
(試験方法)
試験機:照明付インキュベーター FLI-2010H-LED(東京理化器械製)
光源:白色LED
照度:15000Lux
照射温度:10℃
照射湿度:70%RH
照射日数:96時間
[Lightfastness evaluation 2]
(White LED irradiation test)
The printed matter obtained above was subjected to a white LED irradiation test using the following test method. After the test, the color was measured in the same manner as above to evaluate the stability of hue under white LED irradiation.
(Test method)
Testing machine: Incubator with lighting FLI-2010H-LED (manufactured by Tokyo Rikakikai)
Light source: white LED
Illuminance: 15000Lux
Irradiation temperature: 10℃
Irradiation humidity: 70%RH
Irradiation days: 96 hours

(ガマット)
初期ガマット評価の方法と同様にして、白色LED照射試験後の印刷物を用いて単色ベタ部及び重ね刷り部を測色し、a*対b*の値をプロットし面積を求めた。各実施例及び比較例の白色LED照射試験後における面積を、初期評価の面積で除した面積比を求め、その面積比から、以下の基準で評価した。結果を表8に示す。実用レベルは3以上である。
(gamut)
In the same manner as the initial gamut evaluation method, the printed matter after the white LED irradiation test was used to measure the color of the monochrome solid area and the overprinted area, and the values of a* versus b* were plotted to determine the area. The area after the white LED irradiation test of each Example and Comparative Example was divided by the area of the initial evaluation to determine the area ratio, and the area ratio was evaluated based on the following criteria. The results are shown in Table 8. The practical level is 3 or higher.

(評価基準)
6:面積比が98%以上である
5:面積比が97.5%以上、98%未満である
4:面積比が97%以上、97.5%未満である
3:面積比が96.5%以上、97%未満である
2:面積比が96%以上、96.5%未満である
1:面積比が96%未満である
(Evaluation criteria)
6: Area ratio is 98% or more 5: Area ratio is 97.5% or more and less than 98% 4: Area ratio is 97% or more and less than 97.5% 3: Area ratio is 96.5 % or more and less than 97% 2: Area ratio is 96% or more and less than 96.5% 1: Area ratio is less than 96%

(色差ΔE*)
単色ベタ部(イエロー、マゼンタA、マゼンタB、シアン)の測色結果から、白色LED照射試験前後の色差ΔE*を求め、以下の基準で評価した。結果を表8に示す。実用レベルは3以上である。
(color difference ΔE*)
From the colorimetric results of the monochrome solid areas (yellow, magenta A, magenta B, cyan), the color difference ΔE* before and after the white LED irradiation test was determined and evaluated based on the following criteria. The results are shown in Table 8. The practical level is 3 or higher.

(評価基準)
6:ΔE*が1.0未満である
5:ΔE*が1.0以上、1.5未満である
4:ΔE*が1.5以上、2.0未満である
3:ΔE*が2.0以上、3.0未満である
2:ΔE*が3.0以上、5.0未満である
1:ΔE*が5.0以上である
(Evaluation criteria)
6: ΔE* is less than 1.0 5: ΔE* is 1.0 or more and less than 1.5 4: ΔE* is 1.5 or more and less than 2.0 3: ΔE* is 2. 0 or more and less than 3.0 2: ΔE* is 3.0 or more and less than 5.0 1: ΔE* is 5.0 or more

(色相差ΔH*)
単色ベタ刷り重ね部(イエロー×シアン、シアン×マゼンタA、イエロー×マゼンタB又はイエロー×マゼンタA)の測色結果から、白色LED照射試験前後の色相差ΔH*を求め、以下の基準で評価した。結果を表8に示す。実用レベルは3以上である。また、試験後の色相角(H°)が試験前のH°よりも大きい場合は「+」を、試験後の色相角(H°)が試験前のH°よりも小さい場合は「-」を付記した。
(Hue difference ΔH*)
The hue difference ΔH* before and after the white LED irradiation test was determined from the colorimetric results of the monochrome solid printed overlapping area (yellow x cyan, cyan x magenta A, yellow x magenta B or yellow x magenta A), and evaluated based on the following criteria. . The results are shown in Table 8. The practical level is 3 or higher. Also, if the hue angle (H°) after the test is larger than the H° before the test, mark it as “+”, and if the hue angle (H°) after the test is smaller than the H° before the test, mark it as “-”. Added.

(評価基準)
6:ΔH*が0.5未満である
5:ΔH*が0.5以上、0.75未満である
4:ΔH*が0.75以上、1.0未満である
3:ΔH*が1.0以上、1.5未満である
2:ΔH*が1.5以上、3.0未満である
1:ΔH*が3.0以上である
(Evaluation criteria)
6: ΔH* is less than 0.5 5: ΔH* is 0.5 or more and less than 0.75 4: ΔH* is 0.75 or more and less than 1.0 3: ΔH* is 1. 0 or more and less than 1.5 2: ΔH* is 1.5 or more and less than 3.0 1: ΔH* is 3.0 or more

Figure 2023164228000019
Figure 2023164228000019

Figure 2023164228000020
Figure 2023164228000020

表7及び表8中、Yはイエロー、Cはシアン、MAはマゼンタA、MBはマゼンタBの、それぞれ単色ベタ部を表す。また、Y×Cはイエロー×シアン、C×MAはシアン×マゼンタA、Y×MBはイエロー×マゼンタB、Y×MAはイエロー×マゼンタAの、それぞれ単色ベタ刷り重ね部のことを表す。 In Tables 7 and 8, Y represents yellow, C represents cyan, MA represents magenta A, and MB represents magenta B, each representing a monochrome solid area. Furthermore, Y×C represents yellow×cyan, C×MA represents cyan×magenta A, Y×MB represents yellow×magenta B, and Y×MA represents yellow×magenta A, which are monochrome solid overlapping areas.

表7及び表8の結果から、本発明の一実施形態であるグラビア印刷インキセットは、色再現性が高く、かつ耐光性が良好であることが確認できた。特に、イソインドリン化合物(4)又はイソインドリン化合物(5)を含むイエローインキを使用した場合、より色再現性が高く、かつ耐光性が良好であった。また、最適な粒径のC.I.ピグメントイエロー180を含むイエローインキを使用した場合、より色再現性が高く、かつ耐光性が良好であった。
また、C.I.ピグメントブルー15:3又はC.I.ピグメントブルー15:4を含むシアンインキを使用した場合、より色再現性が高く、かつ耐光性が良好であった。
また、最適な粒径のC.I.ピグメントレッド122を含むマゼンタインキA、及び最適な粒径のC.I.ピグメントバイオレット19を含むマゼンタインキBを使用した場合、より色再現性が高く、かつ耐光性が良好であった。
特に、イエロー×マゼンタの領域において、比較例の印刷インキセットでは、紫外線照射による耐光性試験では色相が青味に大きく変化する(色相角が小さくなる)一方で、白色LED照射による耐光性試験では色相が黄味に大きく変化した(色相角が大きくなった)。すなわち、比較例の印刷インキセットは、光源によって色相の経時変化が異なり、十分な耐光性を得ることが困難であることがわかる。これに対し、本発明の実施形態の印刷インキセットでは、光源によらず、良好な耐光性が得られることがわかる。
From the results in Tables 7 and 8, it was confirmed that the gravure printing ink set according to an embodiment of the present invention had high color reproducibility and good light resistance. In particular, when the yellow ink containing the isoindoline compound (4) or the isoindoline compound (5) was used, the color reproducibility was higher and the light resistance was better. In addition, the optimum particle size of C.I. I. When a yellow ink containing Pigment Yellow 180 was used, color reproducibility was higher and light resistance was better.
Also, C. I. Pigment Blue 15:3 or C.I. I. When cyan ink containing Pigment Blue 15:4 was used, color reproducibility was higher and light resistance was better.
In addition, the optimum particle size of C.I. I. Magenta ink A containing Pigment Red 122 and C. I. When magenta ink B containing Pigment Violet 19 was used, color reproducibility was higher and light resistance was better.
In particular, in the yellow x magenta region, with the printing ink set of the comparative example, the hue changes significantly to a bluish tinge (the hue angle becomes smaller) in the light fastness test using UV irradiation, but in the light fastness test using white LED irradiation, the hue changes significantly (the hue angle becomes smaller). The hue changed significantly to yellowishness (the hue angle became larger). That is, it can be seen that in the printing ink set of the comparative example, the hue changes over time depending on the light source, and it is difficult to obtain sufficient light resistance. On the other hand, it can be seen that the printing ink set of the embodiment of the present invention can obtain good light resistance regardless of the light source.

[接着性]
インキセットA3、A20、A40~A49、及びA60を用いて上記のように得られた印刷物について、それぞれ印刷3時間後に、印刷面に幅12mmの粘着テープ(ニチバン社製 セロハンテープ)を貼り付け、テープを急激に引き剥がした時のインキ被膜の剥離の程度を目視で判定した。なお、判定基準は以下の通りとした。結果を表9に示す。実用レベルは2以上である。
[Adhesiveness]
For the printed matter obtained as above using ink sets A3, A20, A40 to A49, and A60, 3 hours after printing, a 12 mm wide adhesive tape (cellophane tape manufactured by Nichiban Co., Ltd.) was pasted on the printed surface, The degree of peeling of the ink film when the tape was suddenly peeled off was visually determined. The criteria for judgment were as follows. The results are shown in Table 9. The practical level is 2 or higher.

(評価基準)
5:印刷面のインキ被膜が全く剥離しないもの
4:インキ被膜の剥離面積が1%以上2%未満であるもの
3:インキ被膜の剥離面積が2%以上3%未満であるもの
2:インキ被膜の剥離面積が3%以上5%未満であるもの
1:インキ被膜の剥離面積が5%以上のもの
(Evaluation criteria)
5: The ink film on the printed surface does not peel off at all 4: The peeled area of the ink film is 1% or more and less than 2% 3: The peeled area of the ink film is 2% or more and less than 3% 2: Ink film 1: The peeled area of the ink film is 5% or more.

Figure 2023164228000021
Figure 2023164228000021

表9の結果からわかるように、ポリビニルブチラール樹脂を含む印刷インキセットは、接着性がより良好であった。特に、水酸基含有率が25%以下のポリビニルブチラール樹脂を含むインキセットは接着性がさらに良好であった。比較例の印刷インキセットでは、ポリビニルブチラール樹脂を含んでいても良好な接着性は得られなかった。 As can be seen from the results in Table 9, the printing ink set containing polyvinyl butyral resin had better adhesion. In particular, the ink set containing a polyvinyl butyral resin with a hydroxyl group content of 25% or less had even better adhesion. In the printing ink set of the comparative example, good adhesion was not obtained even though it contained polyvinyl butyral resin.

<包装材料の製造>
(実施例BP-1)[包装材料B1の作製]
シアンインキ[C1-1]、マゼンタインキ[M1-1]、マゼンタインキ[M1-7]、イエローインキ[Y1-1]を、上記混合溶剤1により、粘度が16秒(25℃、ザーンカップNo.3)となるように希釈した。
希釈した各インキを用いて、版深20μmのグラビア版を備えたグラビア校正6色機と、ブラックインキ(リオアルファ R92墨(東洋インキ社製))、シアンインキ[C1-1]、マゼンタインキ[M1-1]、マゼンタインキ[M1-7]、イエローインキ[Y1-1]、ホワイトインキ(リオアルファ R631白(東洋インキ社製))を含むインキセットB1とを用いて、厚み20μmのコロナ処理延伸ポリプロピレンフィルム(OPP基材)に対し、ブラックインキ、シアンインキ[C1-1]、マゼンタインキ[M1-1]、マゼンタインキ[M1-7]、イエローインキ[Y1-1]、ホワイトインキの順で重ね印刷し、各ユニットにおいてはそれぞれ50℃にて乾燥し、「OPP基材/ブラック、シアン、マゼンタA、マゼンタB、イエロー又はホワイトの印刷層」の構成である印刷物を得た。
次いで、得られた印刷物の印刷層上に、ウレタン系ラミネート接着剤(東洋モートン社製TM320/CAT13B、不揮発分30%酢酸エチル溶液)を、乾燥後の塗布量が2.0g/mとなるように塗工して乾燥した。次いで、接着剤層上に、厚み50μmの未延伸ポリエチレン(PE)フィルムを貼り合わせ、「OPP基材/5色重ね印刷層/接着剤層/PE基材」の構成である包装材料B1を得た。
<Manufacture of packaging materials>
(Example BP-1) [Preparation of packaging material B1]
Cyan ink [C1-1], magenta ink [M1-1], magenta ink [M1-7], and yellow ink [Y1-1] were mixed with the above mixed solvent 1 until the viscosity was 16 seconds (25°C, Zahn cup No. .3).
Using each diluted ink, a 6-color gravure proofing machine equipped with a gravure plate with a plate depth of 20 μm, black ink (Rio Alpha R92 ink (manufactured by Toyo Ink Co., Ltd.)), cyan ink [C1-1], magenta ink [ M1-1], magenta ink [M1-7], yellow ink [Y1-1], and white ink (Rio Alpha R631 White (manufactured by Toyo Ink Co., Ltd.)). Black ink, cyan ink [C1-1], magenta ink [M1-1], magenta ink [M1-7], yellow ink [Y1-1], white ink in the order of stretched polypropylene film (OPP base material) Each unit was dried at 50° C. to obtain a printed matter having a configuration of “OPP base material/black, cyan, magenta A, magenta B, yellow or white printing layer”.
Next, a urethane laminating adhesive (TM320/CAT13B manufactured by Toyo Morton Co., Ltd., ethyl acetate solution with a non-volatile content of 30%) was applied onto the printed layer of the obtained printed matter to a coating amount of 2.0 g/m 2 after drying. It was coated and dried. Next, an unstretched polyethylene (PE) film with a thickness of 50 μm was laminated onto the adhesive layer to obtain packaging material B1 having the configuration of “OPP base material/5-color overlapping printing layer/adhesive layer/PE base material”. Ta.

(実施例BP-2~BP-49、比較例BP-1~BP-2)[包装材料B2~B51の作製]
実施例BP-1で使用した印刷インキセットB1を、表10に示す印刷インキセットに変更した以外は実施例BP-1と同様にして、包装材料B2~B51を得た。
(Examples BP-2 to BP-49, Comparative Examples BP-1 to BP-2) [Preparation of packaging materials B2 to B51]
Packaging materials B2 to B51 were obtained in the same manner as in Example BP-1, except that the printing ink set B1 used in Example BP-1 was changed to the printing ink set shown in Table 10.

Figure 2023164228000022
Figure 2023164228000022

上述のように、本実施形態及び比較のグラビア印刷インキセットを使用した包装材料を作製した。 As described above, packaging materials were produced using the gravure printing ink sets of this embodiment and comparison.

これらの包装材料のうち、包装材料B3、B20、及びB40~B51について、以下の方法に従いラミネート強度を評価した。結果を表11に示す。 Among these packaging materials, the lamination strength of packaging materials B3, B20, and B40 to B51 was evaluated according to the following method. The results are shown in Table 11.

[初期ラミネート強度評価]
各包装材料を、巾15mmで裁断し、印刷層と接着剤層の層間で剥離させた後、剥離強度をインテスコ製201万能引張試験機にて剥離強度の測定を行った。なお、判定基準は以下の通りとした。結果を表11に示す。実用レベルは2以上である。
[Initial laminate strength evaluation]
Each packaging material was cut to a width of 15 mm, and after peeling between the printed layer and the adhesive layer, the peel strength was measured using a 201 universal tensile tester manufactured by Intesco. The criteria for judgment were as follows. The results are shown in Table 11. The practical level is 2 or higher.

(評価基準)
5:2.0N/15mm以上
4:1.5N/15mm以上、2.0N/15mm未満
3:1.0N/15mm以上、1.5N/15mm未満
2:0.5N/15mm以上、1.0N/15mm未満
1:0.5N/15mm未満
(Evaluation criteria)
5: 2.0N/15mm or more 4: 1.5N/15mm or more, less than 2.0N/15mm 3: 1.0N/15mm or more, less than 1.5N/15mm 2: 0.5N/15mm or more, 1.0N /less than 15mm 1:0.5N/less than 15mm

[耐光性試験後ラミネート強度評価1]
(フェドメーターによる紫外線照射試験)
各包装材料を、フェドメーター(紫外線カーボンアーク灯式耐光性試験機)により紫外線を48時間照射し、試験後に上記と同様に剥離強度を測定した。紫外線照射の条件は、JIS L0842:2004、JIS B7751:2007に従った。
[Lamination strength evaluation 1 after light resistance test]
(Ultraviolet irradiation test using a fedometer)
Each packaging material was irradiated with ultraviolet rays for 48 hours using a fedometer (ultraviolet carbon arc lamp type light resistance tester), and after the test, the peel strength was measured in the same manner as above. The conditions for ultraviolet irradiation were in accordance with JIS L0842:2004 and JIS B7751:2007.

[耐光性試験後ラミネート強度評価2]
(白色LED照射試験)
各包装材料を、下記の試験方法により白色LED照射試験を行った。試験後に上記と同様に剥離強度を測定した。
(試験方法)
試験機:照明付インキュベーター FLI-2010H-LED(東京理化器械製)
光源:白色LED
照度:15000Lux
照射温度:10℃
照射湿度:70%RH
照射日数:96時間
[Lamination strength evaluation 2 after light resistance test]
(White LED irradiation test)
Each packaging material was subjected to a white LED irradiation test using the following test method. After the test, peel strength was measured in the same manner as above.
(Test method)
Testing machine: Incubator with lighting FLI-2010H-LED (manufactured by Tokyo Rikakikai)
Light source: white LED
Illuminance: 15000Lux
Irradiation temperature: 10℃
Irradiation humidity: 70%RH
Irradiation days: 96 hours

Figure 2023164228000023
Figure 2023164228000023

表11に示した結果からわかるように、本実施形態の印刷インキセットを用いた包装材料は、耐光性試験後でも良好なラミネート強度を有していた。ポリビニルブチラール樹脂を含むインキセットを用いた包装材料は、耐光性試験後のラミネート強度がより良好であった。特に、水酸基含有率が25%以下のポリビニルブチラール樹脂を含む印刷インキセットを用いた包装材料は、耐光性試験後のラミネート強度がさらに良好であった。一方、比較例の印刷インキセットを用いた包装材料では、耐光性試験後のラミネート強度が実用レベルに達しておらず、またポリビニルブチラール樹脂を含んでいても良好なラミネート強度は得られなかった。 As can be seen from the results shown in Table 11, the packaging material using the printing ink set of this embodiment had good lamination strength even after the light resistance test. The packaging material using the ink set containing polyvinyl butyral resin had better lamination strength after the light fastness test. In particular, packaging materials using a printing ink set containing a polyvinyl butyral resin with a hydroxyl group content of 25% or less had even better lamination strength after the light resistance test. On the other hand, in the packaging material using the printing ink set of the comparative example, the lamination strength after the light resistance test did not reach a practical level, and good lamination strength could not be obtained even if it contained polyvinyl butyral resin.

<2>水性フレキソ印刷インキセットの評価 <2> Evaluation of water-based flexo printing ink set

(合成例3)(水性ポリウレタン樹脂[PU3]の合成)
還流冷却管、滴下漏斗、ガス導入管、撹拌装置、及び温度計を備えた4ツ口の2000mlフラスコに、数平均分子量2,000のポリテトラメチレンエーテルグリコール82.3部、数平均分子量2,000のポリエチレングリコール3部、ジメチロールブタン酸13部、及び1,4-シクロヘキサンジメタノール1.7部を仕込み、乾燥窒素で置換し、100℃まで昇温した。撹拌下、IPDI33.3部を20分間で滴下し、温度を徐々に140℃まで昇温した(NCO/OH=0.98)。さらに30分間反応させ、ウレタン樹脂を得た。次に、冷却しながら28%アンモニア水5.3部を含む蒸留水399.8部を加え水性ポリウレタン樹脂[PU3]を得た(重量平均分子量は約40,000、不揮発分25%、酸価36.9(mgKOH/g)、水酸基価11.1(mgKOH/g))。
(Synthesis Example 3) (Synthesis of water-based polyurethane resin [PU3])
In a 4-necked 2000 ml flask equipped with a reflux condenser, a dropping funnel, a gas introduction tube, a stirrer, and a thermometer, 82.3 parts of polytetramethylene ether glycol with a number average molecular weight of 2,000, a number average molecular weight of 2, 000 polyethylene glycol, 13 parts of dimethylolbutanoic acid, and 1.7 parts of 1,4-cyclohexanedimethanol were charged, the atmosphere was replaced with dry nitrogen, and the temperature was raised to 100°C. While stirring, 33.3 parts of IPDI was added dropwise over 20 minutes, and the temperature was gradually raised to 140°C (NCO/OH=0.98). The reaction was further performed for 30 minutes to obtain a urethane resin. Next, while cooling, 399.8 parts of distilled water containing 5.3 parts of 28% ammonia water was added to obtain a water-based polyurethane resin [PU3] (weight average molecular weight was approximately 40,000, non-volatile content was 25%, acid value 36.9 (mgKOH/g), hydroxyl value 11.1 (mgKOH/g)).

(ポリビニルブチラール樹脂溶液[PVB4]の調製)
ビニルアルコール単位、酢酸ビニル単位及びビニルブチラール単位を有し、ブチラール環基を73質量%、水酸基を26質量%含むポリビニルブチラール樹脂(重量平均分子量19,000)を、IPAに溶解し、固形分30%のポリビニルブチラール樹脂溶液[PVB4]を調製した。
(Preparation of polyvinyl butyral resin solution [PVB4])
A polyvinyl butyral resin (weight average molecular weight 19,000) having vinyl alcohol units, vinyl acetate units, and vinyl butyral units and containing 73% by mass of butyral ring groups and 26% by mass of hydroxyl groups was dissolved in IPA, and the solid content was 30% by mass. % polyvinyl butyral resin solution [PVB4] was prepared.

(ポリビニルブチラール樹脂溶液[PVB5]の調製)
ビニルアルコール単位、酢酸ビニル単位及びビニルブチラール単位を有し、ブチラール環基を77質量%、水酸基を21質量%含むポリビニルブチラール樹脂(重量平均分子量33,000)を、IPAに溶解し、固形分30%のポリビニルブチラール樹脂溶液[PVB5]を調製した。
(Preparation of polyvinyl butyral resin solution [PVB5])
A polyvinyl butyral resin (weight average molecular weight 33,000) having vinyl alcohol units, vinyl acetate units, and vinyl butyral units and containing 77% by mass of butyral ring groups and 21% by mass of hydroxyl groups was dissolved in IPA, and the solid content was 30% by mass. % polyvinyl butyral resin solution [PVB5] was prepared.

(ポリビニルブチラール樹脂溶液[PVB6]の調製)
ビニルアルコール単位、酢酸ビニル単位及びビニルブチラール単位を有し、ブチラール環基を84質量%、水酸基を14質量%含むポリビニルブチラール樹脂(重量平均分子量33,000)を、IPAに溶解し、固形分30%のポリビニルブチラール樹脂溶液[PVB6]を調製した。
(Preparation of polyvinyl butyral resin solution [PVB6])
A polyvinyl butyral resin (weight average molecular weight 33,000) having vinyl alcohol units, vinyl acetate units, and vinyl butyral units and containing 84% by mass of butyral ring groups and 14% by mass of hydroxyl groups was dissolved in IPA, and the solid content was 30%. % polyvinyl butyral resin solution [PVB6] was prepared.

〔水性フレキソインキの製造〕
(製造例Y3-1)[イエローインキ[Y3-1]の調製]
水性ポリウレタン樹脂[PU3]45部、イソインドリン化合物(1-1)15部、ポリエチレンワックス(W310 三井化学社製、粒子径9.5μm、軟化点132℃、針入度法硬度 0.8)2部、アジピン酸ジヒドラジド0.2部、アンモニア水(28%)0.2部、水18.8部、イソプロパノール18.8部を、グラインドゲージで粒度が10μm以下になるまでアイガーミルで分散し、イエローインキ[Y3-1]を製造した。
[Manufacture of water-based flexo ink]
(Production Example Y3-1) [Preparation of yellow ink [Y3-1]]
45 parts of water-based polyurethane resin [PU3], 15 parts of isoindoline compound (1-1), polyethylene wax (W310 manufactured by Mitsui Chemicals, particle size 9.5 μm, softening point 132°C, penetration method hardness 0.8) 2 0.2 parts of adipic dihydrazide, 0.2 parts of aqueous ammonia (28%), 18.8 parts of water, and 18.8 parts of isopropanol were dispersed in an Eiger mill until the particle size became 10 μm or less using a grind gauge. Ink [Y3-1] was produced.

(製造例Y3-2~Y3-28、C3-1~C3-5、M3-1~M3-13)[イエローインキ[Y3-2]~[Y3-28]、シアンインキ[C3-1]~[C3-5]、マゼンタインキ[M3-1]~[M3-13]の調製]
製造例Y3-1に記載したイエローインキ[Y3-1]の製造方法において、イソインドリン化合物(1-1)15部を、表12に示した化合物及び表12に記載した量に変更した以外は製造例Y3-1と同様にして、表12に記載したインキを得た。
(Production examples Y3-2 to Y3-28, C3-1 to C3-5, M3-1 to M3-13) [Yellow ink [Y3-2] to [Y3-28], cyan ink [C3-1] to [C3-5], preparation of magenta ink [M3-1] to [M3-13]]
In the method for producing yellow ink [Y3-1] described in Production Example Y3-1, except that 15 parts of isoindoline compound (1-1) was changed to the compound shown in Table 12 and the amount shown in Table 12. The inks shown in Table 12 were obtained in the same manner as Production Example Y3-1.

Figure 2023164228000024
Figure 2023164228000024

(製造例Y4-1)[イエローインキ[Y4-1]の調製]
水性ポリウレタン樹脂[PU3]45部、イソインドリン化合物(1-3)15部、ポリビニルブチラール樹脂溶液[PVB4]5部、ポリエチレンワックス(W310 三井化学社製、粒子径9.5μm、軟化点132℃、針入度法硬度 0.8)2部、アジピン酸ジヒドラジド0.2部、アンモニア水(28%)0.2部、水18.8部、イソプロパノール18.8部を、グラインドゲージで粒度が10μm以下になるまでアイガーミルで分散し、イエローインキ[Y4-1]を製造した。
(Production Example Y4-1) [Preparation of yellow ink [Y4-1]]
45 parts of water-based polyurethane resin [PU3], 15 parts of isoindoline compound (1-3), 5 parts of polyvinyl butyral resin solution [PVB4], polyethylene wax (W310 manufactured by Mitsui Chemicals, particle size 9.5 μm, softening point 132°C, Penetration method hardness 0.8) 2 parts, adipic acid dihydrazide 0.2 parts, aqueous ammonia (28%) 0.2 parts, water 18.8 parts, isopropanol 18.8 parts, and the particle size was 10 μm using a grind gauge. Yellow ink [Y4-1] was produced by dispersing with an Eiger mill until the following amount was obtained.

(製造例Y4-2~Y4-5、C4-1~C4-3、M4-1~M4-9)[イエローインキ[Y4-2]~[Y4-5]、シアンインキ[C4-1]~[C4-3]、マゼンタインキ[M4-1]~[M4-9]の調製]
製造例Y4-1に記載したイエローインキ[Y4-1]の調製方法において、イソインドリン化合物(1-3)15部及びポリビニルブチラール樹脂溶液[PVB4]5部を、表13に示した化合物、表13に記載した量、及び表13に示したポリビニルブチラール樹脂に変更した以外は製造例Y4-1と同様にして、表13に記載したインキを得た。
(Production examples Y4-2 to Y4-5, C4-1 to C4-3, M4-1 to M4-9) [Yellow ink [Y4-2] to [Y4-5], cyan ink [C4-1] to [C4-3], Preparation of magenta ink [M4-1] to [M4-9]]
In the method for preparing yellow ink [Y4-1] described in Production Example Y4-1, 15 parts of isoindoline compound (1-3) and 5 parts of polyvinyl butyral resin solution [PVB4] were mixed with the compounds shown in Table 13, The ink shown in Table 13 was obtained in the same manner as Production Example Y4-1 except that the amount shown in Table 13 was changed and the polyvinyl butyral resin shown in Table 13 was changed.

Figure 2023164228000025
Figure 2023164228000025

インキの製造に使用した顔料は、グラビアインキの製造で示した表5の通りである。 The pigments used in the production of the ink are as shown in Table 5 shown in the production of gravure ink.

<インキセットの評価>
(実施例CS-1~CS-49、比較例CS-1~CS-11)
得られた各インキを表14に記載した通りに組合せて、インキセットC1~C60とした。得られたインキセットについて、以下の方法でガマット、耐光性、及び接着性を評価した。結果を表15、表16、及び表17に示す。
<Evaluation of ink set>
(Examples CS-1 to CS-49, Comparative Examples CS-1 to CS-11)
The obtained inks were combined as shown in Table 14 to form ink sets C1 to C60. The resulting ink set was evaluated for gamut, light resistance, and adhesion using the following methods. The results are shown in Tables 15, 16, and 17.

Figure 2023164228000026
Figure 2023164228000026

[初期ガマット評価]
得られた印刷インキセットを用いて、以下の印刷条件で、シアン、マゼンタA、マゼンタB、イエローの刷り順で印刷し、単色ベタ部(シアン、マゼンタA、マゼンタB、イエロー)と、単色ベタ刷り重ね部(イエロー×シアン、シアン×マゼンタA、イエロー×マゼンタB又はイエロー×マゼンタA)とを有する印刷物を得た。
[Initial gamut evaluation]
Using the obtained printing ink set, printing was performed in the printing order of cyan, magenta A, magenta B, and yellow under the following printing conditions, and a single color solid area (cyan, magenta A, magenta B, yellow) and a single color solid area were printed. A printed matter having an overprinted area (yellow x cyan, cyan x magenta A, yellow x magenta B or yellow x magenta A) was obtained.

(印刷条件)
印刷機:ウインドミュラー&ヘルシャー社製 MIRAFLEX CM
フレキソ版:感光性樹脂版 KODAK社製 FLEXCEL NXHデジタルフレキソプレート 版厚1.14mm 版線数150lpi
アニロックスロール:900lpi 3cc/m
基材:コロナ処理ポリエステル(PET)フィルム(東洋紡績社製 E5100、厚さ12μm)
速度:300m/分
乾燥温度:色間ドライヤー100℃、トンネルドライヤー100℃
(Printing conditions)
Printing machine: MIRAFLEX CM manufactured by Windmuller & Hoelscher
Flexo plate: Photosensitive resin plate, FLEXCEL NXH digital flexo plate manufactured by KODAK, plate thickness 1.14 mm, number of plate lines 150 lpi
Anilox roll: 900lpi 3cc/ m2
Base material: Corona-treated polyester (PET) film (manufactured by Toyobo Co., Ltd. E5100, thickness 12 μm)
Speed: 300m/min Drying temperature: Intercolor dryer 100℃, tunnel dryer 100℃

得られた印刷物について、グレタグマクベスD196を用いて印刷物の単色ベタ部(イエロー、マゼンタA、マゼンタB、シアン)の濃度値を測定した。また、測定機としてgretagmacbeth製のSpectroEyeを使用し、D50光源、2度観測視野、ホワイトバック(標準白色板使用)、フィルター類未使用の条件で、単色ベタ部及び重ね刷り部を測色した。
a*を横軸、b*縦軸とした2次元空間に、単色ベタ部(イエロー、マゼンタA、マゼンタB、シアン)、及び、単色ベタ刷り重ね部(イエロー×シアン、シアン×マゼンタA、イエロー×マゼンタB又はイエロー×マゼンタA)計6色又は7色のa*対b*の値を、プロットし面積を求めた。基準となる比較例CS-1の面積を100%とした場合の面積比を求め、その面積比から、以下の基準で評価した。結果を表15に示す。実用レベルは3以上である。
Regarding the obtained printed matter, the density values of the monochrome solid portions (yellow, magenta A, magenta B, cyan) of the printed matter were measured using Gretag Macbeth D196. In addition, using SpectroEye manufactured by Gretagmacbeth as a measuring device, the color of the monochrome solid area and the overprinted area was measured under the conditions of a D50 light source, a 2-degree observation field, a white background (using a standard white plate), and no filters.
In a two-dimensional space with a* as the horizontal axis and b* as the vertical axis, there are monochrome solid areas (yellow, magenta A, magenta B, cyan), and monochrome overlapping areas (yellow x cyan, cyan x magenta A, yellow). x Magenta B or Yellow x Magenta A) The values of a* versus b* for a total of 6 or 7 colors were plotted to determine the area. The area ratio was determined when the area of Comparative Example CS-1 as a standard was taken as 100%, and the area ratio was evaluated based on the following criteria. The results are shown in Table 15. The practical level is 3 or higher.

(評価基準)
6:面積比が115%以上である
5:面積比が110%以上、115%未満である
4:面積比が105%以上、110%未満である
3:面積比が100%以上、105%未満である
2:面積比が98%以上、100%未満である
1:面積比が98%未満である
(Evaluation criteria)
6: Area ratio is 115% or more 5: Area ratio is 110% or more but less than 115% 4: Area ratio is 105% or more but less than 110% 3: Area ratio is 100% or more but less than 105% 2: Area ratio is 98% or more and less than 100% 1: Area ratio is less than 98%

[耐光性評価1]
(フェドメーターによる紫外線照射試験)
上記で得られた印刷物について、フェドメーター(紫外線カーボンアーク灯式耐光性試験機)により紫外線を48時間照射し、試験後に上記と同様にして測色した。紫外線照射の条件は、JIS L0842:2004、JIS B7751:2007に従った。
[Lightfastness evaluation 1]
(Ultraviolet irradiation test using a fedometer)
The printed matter obtained above was irradiated with ultraviolet rays for 48 hours using a fedometer (ultraviolet carbon arc lamp type light resistance tester), and after the test, the color was measured in the same manner as above. The conditions for ultraviolet irradiation were in accordance with JIS L0842:2004 and JIS B7751:2007.

(ガマット)
初期ガマット評価の方法と同様にして、紫外線照射試験後の印刷物を用いて単色ベタ部及び重ね刷り部を測色し、a*対b*の値をプロットし面積を求めた。各実施例及び比較例の紫外線照射試験後における面積を、初期評価の面積で除した面積比を求め、その面積比から、以下の基準で評価した。結果を表15に示す。実用レベルは3以上である。
(gamut)
In the same manner as the initial gamut evaluation method, the printed matter after the ultraviolet irradiation test was used to measure the color of the monochromatic solid area and the overprinted area, and the values of a* versus b* were plotted to determine the area. The area ratio of each Example and Comparative Example after the ultraviolet irradiation test was divided by the area of the initial evaluation was determined, and the area ratio was evaluated based on the following criteria. The results are shown in Table 15. The practical level is 3 or higher.

(評価基準)
6:面積比が98%以上である
5:面積比が97.5%以上、98%未満である
4:面積比が97%以上、97.5%未満である
3:面積比が96.5%以上、97%未満である
2:面積比が96%以上、96.5%未満である
1:面積比が96%未満である
(Evaluation criteria)
6: Area ratio is 98% or more 5: Area ratio is 97.5% or more and less than 98% 4: Area ratio is 97% or more and less than 97.5% 3: Area ratio is 96.5 % or more and less than 97% 2: Area ratio is 96% or more and less than 96.5% 1: Area ratio is less than 96%

(色差ΔE*)
単色ベタ部(イエロー、マゼンタA、マゼンタB、シアン)の測色結果から、紫外線照射試験前後の色差ΔE*を求め、以下の基準で評価した。結果を表15に示す。実用レベルは3以上である。
(color difference ΔE*)
From the colorimetric results of the monochromatic solid areas (yellow, magenta A, magenta B, cyan), the color difference ΔE* before and after the ultraviolet irradiation test was determined and evaluated based on the following criteria. The results are shown in Table 15. The practical level is 3 or higher.

(評価基準)
6:ΔE*が1.0未満である
5:ΔE*が1.0以上、1.5未満である
4:ΔE*が1.5以上、2.0未満である
3:ΔE*が2.0以上、3.0未満である
2:ΔE*が3.0以上、5.0未満である
1:ΔE*が5.0以上である
(Evaluation criteria)
6: ΔE* is less than 1.0 5: ΔE* is 1.0 or more and less than 1.5 4: ΔE* is 1.5 or more and less than 2.0 3: ΔE* is 2. 0 or more and less than 3.0 2: ΔE* is 3.0 or more and less than 5.0 1: ΔE* is 5.0 or more

(色相差ΔH*)
単色ベタ刷り重ね部(イエロー×シアン、シアン×マゼンタA、イエロー×マゼンタB又はイエロー×マゼンタA)の測色結果から、紫外線照射試験前後の色相差ΔH*を求め、以下の基準で評価した。結果を表15に示す。実用レベルは3以上である。また、試験後の色相角(H°)が試験前のH°よりも大きい場合は「+」を、試験後の色相角(H°)が試験前のH°よりも小さい場合は「-」を付記した。
(Hue difference ΔH*)
The hue difference ΔH* before and after the ultraviolet irradiation test was determined from the color measurement results of the monochromatic solid printed overlapping area (yellow x cyan, cyan x magenta A, yellow x magenta B, or yellow x magenta A), and evaluated based on the following criteria. The results are shown in Table 15. The practical level is 3 or higher. Also, if the hue angle (H°) after the test is larger than the H° before the test, mark it as “+”, and if the hue angle (H°) after the test is smaller than the H° before the test, mark it as “-”. Added.

(評価基準)
6:ΔH*が0.5未満である
5:ΔH*が0.5以上、0.75未満である
4:ΔH*が0.75以上、1.0未満である
3:ΔH*が1.0以上、1.5未満である
2:ΔH*が1.5以上、3.0未満である
1:ΔH*が3.0以上である
(Evaluation criteria)
6: ΔH* is less than 0.5 5: ΔH* is 0.5 or more and less than 0.75 4: ΔH* is 0.75 or more and less than 1.0 3: ΔH* is 1. 0 or more and less than 1.5 2: ΔH* is 1.5 or more and less than 3.0 1: ΔH* is 3.0 or more

[耐光性評価2]
(白色LED照射試験)
上記で得られた印刷物について、下記の試験方法により白色LED照射試験を行った。試験後に上記と同様に測色し、白色LED照射下における色相の安定性を評価した。
(試験方法)
試験機:照明付インキュベーター FLI-2010H-LED(東京理化器械製)
光源:白色LED
照度:15000Lux
照射温度:10℃
照射湿度:70%RH
照射日数:96時間
[Lightfastness evaluation 2]
(White LED irradiation test)
The printed matter obtained above was subjected to a white LED irradiation test using the following test method. After the test, the color was measured in the same manner as above to evaluate the stability of hue under white LED irradiation.
(Test method)
Testing machine: Incubator with lighting FLI-2010H-LED (manufactured by Tokyo Rikakikai)
Light source: white LED
Illuminance: 15000Lux
Irradiation temperature: 10℃
Irradiation humidity: 70%RH
Irradiation days: 96 hours

(ガマット)
初期ガマット評価の方法と同様にして、白色LED照射試験後の印刷物を用いて単色ベタ部及び重ね刷り部を測色し、a*対b*の値をプロットし面積を求めた。各実施例及び比較例の白色LED照射試験後における面積を、初期評価の面積で除した面積比を求め、その面積比から、以下の基準で評価した。結果を表16に示す。実用レベルは3以上である。
(gamut)
In the same manner as the initial gamut evaluation method, the printed matter after the white LED irradiation test was used to measure the color of the monochrome solid area and the overprinted area, and the values of a* versus b* were plotted to determine the area. The area after the white LED irradiation test of each Example and Comparative Example was divided by the area of the initial evaluation to determine the area ratio, and the area ratio was evaluated based on the following criteria. The results are shown in Table 16. The practical level is 3 or higher.

(評価基準)
6:面積比が98%以上である
5:面積比が97.5%以上、98%未満である
4:面積比が97%以上、97.5%未満である
3:面積比が96.5%以上、97%未満である
2:面積比が96%以上、96.5%未満である
1:面積比が96%未満である
(Evaluation criteria)
6: Area ratio is 98% or more 5: Area ratio is 97.5% or more and less than 98% 4: Area ratio is 97% or more and less than 97.5% 3: Area ratio is 96.5 % or more and less than 97% 2: Area ratio is 96% or more and less than 96.5% 1: Area ratio is less than 96%

(色差ΔE*)
単色ベタ部(イエロー、マゼンタA、マゼンタB、シアン)の測色結果から、白色LED照射試験前後の色差ΔE*を求め、以下の基準で評価した。結果を表16に示す。実用レベルは3以上である。
(color difference ΔE*)
From the colorimetric results of the monochrome solid areas (yellow, magenta A, magenta B, cyan), the color difference ΔE* before and after the white LED irradiation test was determined and evaluated based on the following criteria. The results are shown in Table 16. The practical level is 3 or higher.

(評価基準)
6:ΔE*が1.0未満である
5:ΔE*が1.0以上、1.5未満である
4:ΔE*が1.5以上、2.0未満である
3:ΔE*が2.0以上、3.0未満である
2:ΔE*が3.0以上、5.0未満である
1:ΔE*が5.0以上である
(Evaluation criteria)
6: ΔE* is less than 1.0 5: ΔE* is 1.0 or more and less than 1.5 4: ΔE* is 1.5 or more and less than 2.0 3: ΔE* is 2. 0 or more and less than 3.0 2: ΔE* is 3.0 or more and less than 5.0 1: ΔE* is 5.0 or more

(色相差ΔH*)
単色ベタ刷り重ね部(イエロー×シアン、シアン×マゼンタA、イエロー×マゼンタB又はイエロー×マゼンタA)の測色結果から、白色LED照射試験前後の色相差ΔH*を求め、以下の基準で評価した。結果を表16に示す。実用レベルは3以上である。また、試験後の色相角(H°)が試験前のH°よりも大きい場合は「+」を、試験後の色相角(H°)が試験前のH°よりも小さい場合は「-」を付記した。
(Hue difference ΔH*)
The hue difference ΔH* before and after the white LED irradiation test was determined from the colorimetric results of the monochrome solid printed overlapping area (yellow x cyan, cyan x magenta A, yellow x magenta B or yellow x magenta A), and evaluated based on the following criteria. . The results are shown in Table 16. The practical level is 3 or higher. Also, if the hue angle (H°) after the test is larger than the H° before the test, mark it as “+”, and if the hue angle (H°) after the test is smaller than the H° before the test, mark it as “-”. Added.

(評価基準)
6:ΔH*が0.5未満である
5:ΔH*が0.5以上、0.75未満である
4:ΔH*が0.75以上、1.0未満である
3:ΔH*が1.0以上、1.5未満である
2:ΔH*が1.5以上、3.0未満である
1:ΔH*が3.0以上である
(Evaluation criteria)
6: ΔH* is less than 0.5 5: ΔH* is 0.5 or more and less than 0.75 4: ΔH* is 0.75 or more and less than 1.0 3: ΔH* is 1. 0 or more and less than 1.5 2: ΔH* is 1.5 or more and less than 3.0 1: ΔH* is 3.0 or more

Figure 2023164228000027
Figure 2023164228000027

Figure 2023164228000028
Figure 2023164228000028

表15及び表16において、Yはイエロー、Cはシアン、MAはマゼンタA、MBはマゼンタBの、それぞれ単色ベタ部を表す。また、Y×Cはイエロー×シアン、C×MAはシアン×マゼンタA、Y×MBはイエロー×マゼンタB、Y×MAはイエロー×マゼンタAの、それぞれ単色ベタ刷り重ね部のことを表す。 In Tables 15 and 16, Y represents yellow, C represents cyan, MA represents magenta A, and MB represents magenta B, each representing a monochrome solid area. Furthermore, Y×C represents yellow×cyan, C×MA represents cyan×magenta A, Y×MB represents yellow×magenta B, and Y×MA represents yellow×magenta A, which are monochrome solid overlapping areas.

表15及び表16の結果から、本発明の一実施形態である水性フレキソ印刷インキセットは、色再現性が高く、かつ耐光性が良好であることが確認できた。特に、イソインドリン化合物(4)又はイソインドリン化合物(5)を含むイエローインキを使用した場合、より色再現性が高く、かつ耐光性が良好であった。また、最適な粒径のC.I.ピグメントイエロー180を含むイエローインキを使用した場合、より色再現性が高く、かつ耐光性が良好であった。
また、C.I.ピグメントブルー15:3又はC.I.ピグメントブルー15:4を含むシアンインキを使用した場合、より色再現性が高く、かつ耐光性が良好であった。
また、最適な粒径のC.I.ピグメントレッド122を含むマゼンタインキA、及び最適な粒径のC.I.ピグメントバイオレット19を含むマゼンタインキBを使用した場合、より色再現性が高く、かつ耐光性が良好であった。
特に、イエロー×マゼンタの領域において、比較例のインキセットでは、紫外線照射による耐光性試験では色相が青味に大きく変化する(色相角が小さくなる)一方で、白色LED照射による耐光性試験では色相が黄味に大きく変化した(色相角が大きくなった)。すなわち、比較例の印刷インキセットは、光源によって色相の経時変化が異なり、十分な耐光性を得ることが困難であることがわかる。これに対し、本発明の実施形態の印刷インキセットでは、光源によらず、良好な耐光性が得られることがわかる。
From the results in Tables 15 and 16, it was confirmed that the water-based flexographic printing ink set according to an embodiment of the present invention had high color reproducibility and good light resistance. In particular, when the yellow ink containing the isoindoline compound (4) or the isoindoline compound (5) was used, the color reproducibility was higher and the light resistance was better. In addition, the optimum particle size of C.I. I. When a yellow ink containing Pigment Yellow 180 was used, color reproducibility was higher and light resistance was better.
Also, C. I. Pigment Blue 15:3 or C.I. I. When cyan ink containing Pigment Blue 15:4 was used, color reproducibility was higher and light resistance was better.
In addition, the optimum particle size of C.I. I. Magenta ink A containing pigment red 122 and C. I. When magenta ink B containing Pigment Violet 19 was used, color reproducibility was higher and light resistance was better.
In particular, in the yellow x magenta region, in the ink set of the comparative example, the hue changes significantly to a bluish tinge (the hue angle becomes smaller) in the light fastness test using UV irradiation, but the hue changes significantly in the light fastness test using white LED irradiation. changed significantly to yellow (the hue angle became larger). That is, it can be seen that in the printing ink set of the comparative example, the hue changes over time depending on the light source, and it is difficult to obtain sufficient light resistance. On the other hand, it can be seen that the printing ink set of the embodiment of the present invention can obtain good light resistance regardless of the light source.

[接着性]
インキセットC3、C20、C40~C49、及びC60を用いて上記のように得られた印刷物について、それぞれ印刷3時間後に、印刷面に幅12mmの粘着テープ(ニチバン社製 セロハンテープ)を貼り付け、テープを急激に引き剥がした時のインキ被膜の剥離の程度を目視で判定した。なお、判定基準は以下の通りとした。結果を表17に示す。実用レベルは2以上である。
[Adhesiveness]
For the printed matter obtained as above using ink sets C3, C20, C40 to C49, and C60, 3 hours after printing, a 12 mm wide adhesive tape (cellophane tape manufactured by Nichiban Co., Ltd.) was pasted on the printed surface, The degree of peeling of the ink film when the tape was suddenly peeled off was visually determined. The criteria for judgment were as follows. The results are shown in Table 17. The practical level is 2 or higher.

(評価基準)
5:印刷面のインキ被膜が全く剥離しないもの
4:インキ被膜の剥離面積が1%以上2%未満であるもの
3:インキ被膜の剥離面積が2%以上3%未満であるもの
2:インキ被膜の剥離面積が3%以上5%未満であるもの
1:インキ被膜の剥離面積が5%以上のもの
(Evaluation criteria)
5: The ink film on the printed surface does not peel off at all 4: The peeled area of the ink film is 1% or more and less than 2% 3: The peeled area of the ink film is 2% or more and less than 3% 2: Ink film 1: The peeled area of the ink film is 5% or more.

Figure 2023164228000029
Figure 2023164228000029

表17の結果からわかるように、ポリビニルブチラール樹脂を含む印刷インキセットは、接着性がより良好であった。特に、水酸基含有率が25%以下のポリビニルブチラール樹脂を含む印刷インキセットは、接着性がさらに良好であった。比較例の印刷インキセットでは、ポリビニルブチラール樹脂を含んでいても良好な接着性は得られなかった。 As can be seen from the results in Table 17, the printing ink set containing polyvinyl butyral resin had better adhesion. In particular, the printing ink set containing a polyvinyl butyral resin with a hydroxyl group content of 25% or less had even better adhesion. In the printing ink set of the comparative example, good adhesion was not obtained even though it contained polyvinyl butyral resin.

<包装材料の製造>
(実施例DP-1)[包装材料D1の作製]
フレキソ印刷機と、ブラックインキ(アクワリオナ R92F墨(東洋インキ社製))、シアンインキ[C3-1]、マゼンタインキ[M3-1]、マゼンタインキ[M3-7]、イエローインキ[Y3-1]、ホワイトインキ(アクワリオナ R63白(東洋インキ社製))を含むインキセットD1とを用いて、厚み20μmのコロナ処理延伸ポリプロピレンフィルム(OPP基材)に対し、ブラックインキ、シアンインキ[C3-1]、マゼンタインキ[M3-1]、マゼンタインキ[M3-7]、イエローインキ[Y3-1]、ホワイトインキの順で重ね印刷し、各ユニットにおいてはそれぞれ100℃にて乾燥し、「OPP基材/ブラック、シアン、マゼンタA、マゼンタB、イエロー又はホワイトの印刷層」の構成である印刷物を得た。
次いで、得られた印刷物の印刷層上に、ウレタン系ラミネート接着剤(東洋モートン社製TM320/CAT13B、不揮発分30%酢酸エチル溶液)を、乾燥後の塗布量が2.0g/m2となるように塗工して乾燥した。次いで、接着剤層上に、厚み50μmの未延伸ポリエチレン(PE)フィルムを貼り合わせ、「OPP基材/色重ね印刷層/接着剤層/PE基材」の構成である包装材料D1を得た。
<Manufacture of packaging materials>
(Example DP-1) [Preparation of packaging material D1]
Flexo printing machine, black ink (Aquariona R92F ink (manufactured by Toyo Ink Co., Ltd.)), cyan ink [C3-1], magenta ink [M3-1], magenta ink [M3-7], yellow ink [Y3-1] , black ink and cyan ink [C3-1] were applied to a 20 μm thick corona-treated stretched polypropylene film (OPP base material) using ink set D1 containing white ink (Aquariona R63 White (manufactured by Toyo Ink Co., Ltd.)). , magenta ink [M3-1], magenta ink [M3-7], yellow ink [Y3-1], and white ink were printed in this order, and each unit was dried at 100°C. /black, cyan, magenta A, magenta B, yellow or white printing layer" was obtained.
Next, a urethane laminating adhesive (TM320/CAT13B manufactured by Toyo Morton Co., Ltd., 30% non-volatile content ethyl acetate solution) was applied onto the printed layer of the obtained printed matter so that the coating amount after drying was 2.0 g/m2. It was coated and dried. Next, an unstretched polyethylene (PE) film with a thickness of 50 μm was laminated onto the adhesive layer to obtain packaging material D1 having the configuration of “OPP base material/color overlapping printing layer/adhesive layer/PE base material”. .

(実施例DP-2~DP-49、比較例DP-1~DP-2)[包装材料D2~D51の作製]
実施例DP-1で使用した印刷インキセットD1を、表18に示す印刷インキセットに変更した以外は実施例DP-1と同様にして、包装材料D2~D51を得た。
(Examples DP-2 to DP-49, Comparative Examples DP-1 to DP-2) [Preparation of packaging materials D2 to D51]
Packaging materials D2 to D51 were obtained in the same manner as in Example DP-1, except that the printing ink set D1 used in Example DP-1 was changed to the printing ink set shown in Table 18.

Figure 2023164228000030
Figure 2023164228000030

上述のように、本実施形態及び比較の水性フレキソ印刷インキセットを使用することで、包装材料を作製した。 As described above, packaging materials were produced using the present embodiment and comparative aqueous flexographic printing ink sets.

これらの包装材料のうち、包装材料D3、D20、及びD40~D51について、以下の方法に従いラミネート強度を評価した。結果を表19に示す。 Among these packaging materials, the lamination strength of packaging materials D3, D20, and D40 to D51 was evaluated according to the following method. The results are shown in Table 19.

[初期ラミネート強度評価]
各包装材料を、巾15mmで裁断し、印刷層と接着剤層との層間で剥離させた後、剥離強度をインテスコ製201万能引張試験機にて剥離強度の測定を行った。なお、判定基準は以下の通りとした。結果を表19に示す。実用レベルは2以上である。
[Initial laminate strength evaluation]
Each packaging material was cut to a width of 15 mm, and after peeling between the printed layer and the adhesive layer, the peel strength was measured using a 201 universal tensile tester manufactured by Intesco. The criteria for judgment were as follows. The results are shown in Table 19. The practical level is 2 or higher.

(評価基準)
5:2.0N/15mm以上
4:1.5N/15mm以上、2.0N/15mm未満
3:1.0N/15mm以上、1.5N/15mm未満
2:0.5N/15mm以上、1.0N/15mm未満
1:0.5N/15mm未満
(Evaluation criteria)
5: 2.0N/15mm or more 4: 1.5N/15mm or more, less than 2.0N/15mm 3: 1.0N/15mm or more, less than 1.5N/15mm 2: 0.5N/15mm or more, 1.0N /less than 15mm 1:0.5N/less than 15mm

[耐光性試験後ラミネート強度評価1]
(フェドメーターによる紫外線照射試験)
各包装材料を、フェドメーター(紫外線カーボンアーク灯式耐光性試験機)により紫外線を48時間照射し、試験後に上記と同様に剥離強度を測定した。紫外線照射の条件は、JIS L0842:2004、JIS B7751:2007に従った。
[Lamination strength evaluation 1 after light resistance test]
(Ultraviolet irradiation test using a fedometer)
Each packaging material was irradiated with ultraviolet rays for 48 hours using a fedometer (ultraviolet carbon arc lamp type light resistance tester), and after the test, the peel strength was measured in the same manner as above. The conditions for ultraviolet irradiation were in accordance with JIS L0842:2004 and JIS B7751:2007.

[耐光性試験後ラミネート強度評価2]
(白色LED照射試験)
各包装材料を、下記の試験方法により白色LED照射試験を行った。試験後に上記と同様に剥離強度を測定した。
(試験方法)
試験機:照明付インキュベーター FLI-2010H-LED(東京理化器械製)
光源:白色LED
照度:15000Lux
照射温度:10℃
照射湿度:70%RH
照射日数:96時間
[Lamination strength evaluation 2 after light resistance test]
(White LED irradiation test)
Each packaging material was subjected to a white LED irradiation test using the following test method. After the test, peel strength was measured in the same manner as above.
(Test method)
Testing machine: Incubator with lighting FLI-2010H-LED (manufactured by Tokyo Rikakikai)
Light source: white LED
Illuminance: 15000Lux
Irradiation temperature: 10℃
Irradiation humidity: 70%RH
Irradiation days: 96 hours

Figure 2023164228000031
Figure 2023164228000031

表19に示した結果からわかるように、本発明の実施形態の印刷インキセットを用いた包装材料は、耐光性試験後でも良好なラミネート強度を有していた。ポリビニルブチラール樹脂を含む印刷インキセットを用いた包装材料は、耐光性試験後のラミネート強度がより良好であった。特に、水酸基含有率が25%以下のポリビニルブチラール樹脂を含む印刷インキセットを用いた包装材料は、耐光性試験後のラミネート強度がさらに良好であった。比較例の印刷インキセットを用いた包装材料では、耐光性試験後のラミネート強度が実用レベルに達しておらず、またポリビニルブチラール樹脂を含んでいても良好なラミネート強度は得られなかった。 As can be seen from the results shown in Table 19, the packaging material using the printing ink set of the embodiment of the present invention had good lamination strength even after the light resistance test. Packaging materials using a printing ink set containing polyvinyl butyral resin had better laminate strength after a lightfastness test. In particular, packaging materials using a printing ink set containing a polyvinyl butyral resin with a hydroxyl group content of 25% or less had even better lamination strength after the light resistance test. In the packaging material using the printing ink set of the comparative example, the laminate strength after the light resistance test did not reach a practical level, and good laminate strength could not be obtained even if it contained polyvinyl butyral resin.

<3>フレキソ印刷インキセットの評価
(合成例4)(ポリウレタン樹脂[PU4]の合成)
還流冷却管、滴下漏斗、ガス導入管、撹拌装置、及び温度計を備えた四つ口フラスコに、数平均分子量2,000のポリテトラメチレンエーテルグリコール219.6部、IPDI56.6部を仕込み、窒素ガスを導入しながら、90℃まで徐々に昇温し、NCO%が4.4%になるまで反応を行った。次に、得られた反応生成物にジエチルアミノエタノール11.6部を加え、更に90℃で3時間にわたって反応を行い、プレポリマーを得た。酢酸エチル115部を使用して、上記プレポリマーを、滴下槽に移した。
次に、反応槽にIPDA12.2部、ジブチルアミン0.002部、IPA345.0部、酢酸エチル240.0部を仕込み、上記プレポリマーを滴下槽から反応槽に30分間にわたって滴下した。滴下終了後、40℃で1時間にわたって反応を行うことによって、不揮発分30%、重量平均分子量51,000、アミン価9.5mgKOH/gのポリウレタン樹脂[PU4]を得た。
<3> Evaluation of flexographic printing ink set (synthesis example 4) (synthesis of polyurethane resin [PU4])
A four-neck flask equipped with a reflux condenser, a dropping funnel, a gas introduction tube, a stirrer, and a thermometer was charged with 219.6 parts of polytetramethylene ether glycol having a number average molecular weight of 2,000 and 56.6 parts of IPDI. While introducing nitrogen gas, the temperature was gradually raised to 90°C, and the reaction was carried out until NCO% reached 4.4%. Next, 11.6 parts of diethylaminoethanol was added to the obtained reaction product, and the reaction was further carried out at 90°C for 3 hours to obtain a prepolymer. The prepolymer was transferred to a dropping tank using 115 parts of ethyl acetate.
Next, 12.2 parts of IPDA, 0.002 parts of dibutylamine, 345.0 parts of IPA, and 240.0 parts of ethyl acetate were charged into the reaction tank, and the above prepolymer was dropped into the reaction tank from the dropping tank over 30 minutes. After the dropwise addition was completed, the reaction was carried out at 40° C. for 1 hour to obtain a polyurethane resin [PU4] having a nonvolatile content of 30%, a weight average molecular weight of 51,000, and an amine value of 9.5 mgKOH/g.

(CAPワニスの調製)
以下に示す配合割合で、セルロースアセテートプロピオネート樹脂(以下、CAP樹脂と記す)を各溶剤と混合し溶解させることによって、CAPワニスを調製した。CAP樹脂としては、イーストマンケミカル社製の商品名「CAP-504-0.2」を使用した。このCAP樹脂のアセチル基含有率は2.5質量%、プロピオニル基含有率は45質量%、水酸基含有率は2.6質量%、ガラス転移温度は142℃であった。
(配合割合)
CAP樹脂:20%
nPAc:40%
IPA:40%
(Preparation of CAP varnish)
A CAP varnish was prepared by mixing and dissolving cellulose acetate propionate resin (hereinafter referred to as CAP resin) with each solvent at the blending ratio shown below. As the CAP resin, the product name "CAP-504-0.2" manufactured by Eastman Chemical Company was used. This CAP resin had an acetyl group content of 2.5% by mass, a propionyl group content of 45% by mass, a hydroxyl group content of 2.6% by mass, and a glass transition temperature of 142°C.
(Blending ratio)
CAP resin: 20%
nPAc: 40%
IPA: 40%

(ポリビニルブチラール樹脂溶液[PVB7]の調製)
ビニルアルコール単位、酢酸ビニル単位及びビニルブチラール単位を有し、ブチラール環基を77質量%、水酸基を21質量%含むポリビニルブチラール樹脂(重量平均分子量33,000)を、酢酸エチル/IPA=1/1(質量比)混合溶剤に溶解し、固形分20%のポリビニルブチラール樹脂溶液[PVB7]を調製した。
(Preparation of polyvinyl butyral resin solution [PVB7])
A polyvinyl butyral resin (weight average molecular weight 33,000) having vinyl alcohol units, vinyl acetate units and vinyl butyral units and containing 77% by mass of butyral ring groups and 21% by mass of hydroxyl groups was prepared using ethyl acetate/IPA=1/1. (Mass ratio) A polyvinyl butyral resin solution [PVB7] having a solid content of 20% was prepared by dissolving it in a mixed solvent.

<フレキソインキの製造>
(製造例Y5-1)[イエローインキ[Y5-1]の調製]
下記の材料を、高速ミキサーを用いて均一な状態が得られるまで予め撹拌及び混合した後、得られた混合物を、2mm径のガラスビーズを充填した卓上サンドミルを用いて分散処理し、イエローインキ[Y5-1]を得た。
・イソインドリン化合物(1-1):13.0部
・ポリウレタン樹脂[PU4]:37.6部
・CAPワニス:1.2部
・ポリビニルブチラール樹脂溶液[PVB7]:2.4部
・ポリエチレンワックス(W310 三井化学社製):0.5部
・nPAc:13.8部
・IPA:31.5部
<Manufacture of flexographic ink>
(Production Example Y5-1) [Preparation of yellow ink [Y5-1]]
The following materials were pre-stirred and mixed using a high-speed mixer until a homogeneous state was obtained, and the resulting mixture was dispersed using a tabletop sand mill filled with 2 mm diameter glass beads to create yellow ink [ Y5-1] was obtained.
・Isoindoline compound (1-1): 13.0 parts ・Polyurethane resin [PU4]: 37.6 parts ・CAP varnish: 1.2 parts ・Polyvinyl butyral resin solution [PVB7]: 2.4 parts ・Polyethylene wax ( W310 manufactured by Mitsui Chemicals): 0.5 parts ・nPAc: 13.8 parts ・IPA: 31.5 parts

(製造例Y5-2~Y5-28、C5-1~C5-5、M5-1~M5-13)[イエローインキ[Y5-2]~[Y5-28]、シアンインキ[C5-1]~[C5-5]、マゼンタインキ[M5-1]~[M5-13]の調製]
製造例Y5-1に記載したイエローインキ[Y5-1]の調製方法において、イソインドリン化合物(1-1)13.0部を、表20に示した化合物及び表20に記載した量に変更した以外は製造例Y5-1と同様にして、表20に記載したインキを得た。
(Production examples Y5-2 to Y5-28, C5-1 to C5-5, M5-1 to M5-13) [Yellow ink [Y5-2] to [Y5-28], cyan ink [C5-1] to [C5-5], preparation of magenta ink [M5-1] to [M5-13]]
In the method for preparing yellow ink [Y5-1] described in Production Example Y5-1, 13.0 parts of isoindoline compound (1-1) was changed to the compound shown in Table 20 and the amount shown in Table 20. The ink shown in Table 20 was obtained in the same manner as in Production Example Y5-1 except for the above.

Figure 2023164228000032
Figure 2023164228000032

インキの製造に使用した顔料は、グラビアインキの製造で示した表5の通りである。 The pigments used in the production of the ink are as shown in Table 5 shown in the production of gravure ink.

<印刷インキセットの評価>
(実施例ES-1~ES-42、比較例ES-1~ES-10)
得られた各インキを表21記載の通りに組合せて、印刷インキセットE1~E52とした。得られた印刷インキセットについて、以下の方法でガマット及び耐光性を評価した。結果を表22及び表23に示す。
<Evaluation of printing ink set>
(Examples ES-1 to ES-42, Comparative Examples ES-1 to ES-10)
The obtained inks were combined as shown in Table 21 to form printing ink sets E1 to E52. The resulting printing ink set was evaluated for gamut and light resistance using the following methods. The results are shown in Tables 22 and 23.

Figure 2023164228000033
Figure 2023164228000033

[初期ガマット評価]
得られたインキセットを用いて、以下の印刷条件で、シアン、マゼンタA、マゼンタB、イエローの刷り順で印刷し、単色ベタ部(シアン、マゼンタA、マゼンタB、イエロー)と、単色ベタ刷り重ね部(イエロー×シアン、シアン×マゼンタA、イエロー×マゼンタB又はイエロー×マゼンタA)とを有する印刷物を得た。
[Initial gamut evaluation]
Using the obtained ink set, print in the printing order of cyan, magenta A, magenta B, and yellow under the following printing conditions, and print a single color solid area (cyan, magenta A, magenta B, yellow) and a single color solid area. A printed matter having an overlapping portion (yellow x cyan, cyan x magenta A, yellow x magenta B or yellow x magenta A) was obtained.

(印刷条件)
印刷機:ウインドミュラー&ヘルシャー社製 MIRAFLEX CM
フレキソ版:感光性樹脂版 KODAK社製 FLEXCEL NXHデジタルフレキソプレート 版厚1.14mm 版線数150lpi
アニロックスロール:900lpi 3cc/m
基材:コロナ処理延伸ポリプロピレン(OPP)フィルム(東洋紡株式会社製 パイレンP2161、厚さ40μm)
速度:300m/分
乾燥温度:色間ドライヤー100℃、トンネルドライヤー100℃
(Printing conditions)
Printing machine: MIRAFLEX CM manufactured by Windmuller & Hoelscher
Flexo plate: Photosensitive resin plate, FLEXCEL NXH digital flexo plate manufactured by KODAK, plate thickness 1.14 mm, number of plate lines 150 lpi
Anilox roll: 900lpi 3cc/ m2
Base material: Corona-treated stretched polypropylene (OPP) film (Pylene P2161 manufactured by Toyobo Co., Ltd., thickness 40 μm)
Speed: 300m/min Drying temperature: Intercolor dryer 100℃, tunnel dryer 100℃

得られた印刷物について、グレタグマクベスD196を用いて印刷物の単色ベタ部(イエロー、マゼンタA、マゼンタB、シアン)の濃度値を測定した。また、測定機としてgretagmacbeth製のSpectroEyeを使用し、D50光源、2度観測視野、ホワイトバック(標準白色板使用)、フィルター類未使用の条件で、単色ベタ部及び重ね刷り部を測色した。
a*を横軸、b*縦軸とした2次元空間に、単色ベタ部(イエロー、マゼンタA、マゼンタB、シアン)、及び、単色ベタ刷り重ね部(イエロー×シアン、シアン×マゼンタA、イエロー×マゼンタB又はイエロー×マゼンタA)計6色又は7色のa*対b*の値を、プロットし面積を求めた。基準となる比較例ES-1の面積を100%とした場合の面積比を求め、その面積比から、以下の基準で評価した。結果を表22に示す。実用レベルは3以上である。
Regarding the obtained printed matter, the density values of the monochrome solid portions (yellow, magenta A, magenta B, cyan) of the printed matter were measured using Gretag Macbeth D196. In addition, using SpectroEye manufactured by Gretagmacbeth as a measuring device, the color of the monochrome solid area and the overprinted area was measured under the conditions of a D50 light source, a 2-degree observation field, a white background (using a standard white plate), and no filters.
In a two-dimensional space with a* as the horizontal axis and b* as the vertical axis, there are monochrome solid areas (yellow, magenta A, magenta B, cyan), and monochrome overlapping areas (yellow x cyan, cyan x magenta A, yellow). x Magenta B or Yellow x Magenta A) The values of a* versus b* for a total of 6 or 7 colors were plotted to determine the area. The area ratio was determined when the area of Comparative Example ES-1 as a standard was taken as 100%, and the area ratio was evaluated based on the following criteria. The results are shown in Table 22. The practical level is 3 or higher.

(評価基準)
6:面積比が115%以上である
5:面積比が110%以上、115%未満である
4:面積比が105%以上、110%未満である
3:面積比が100%以上、105%未満である
2:面積比が98%以上、100%未満である
1:面積比が98%未満である
(Evaluation criteria)
6: Area ratio is 115% or more 5: Area ratio is 110% or more but less than 115% 4: Area ratio is 105% or more but less than 110% 3: Area ratio is 100% or more but less than 105% 2: Area ratio is 98% or more and less than 100% 1: Area ratio is less than 98%

[耐光性評価1]
(フェドメーターによる紫外線照射試験)
上記で得られた印刷物について、フェドメーター(紫外線カーボンアーク灯式耐光性試験機)により紫外線を48時間照射し、試験後に上記と同様に測色した。紫外線照射の条件は、JIS L0842:2004、JIS B7751:2007に従った。
[Lightfastness evaluation 1]
(Ultraviolet irradiation test using a fedometer)
The printed matter obtained above was irradiated with ultraviolet rays for 48 hours using a fedometer (ultraviolet carbon arc lamp type light resistance tester), and after the test, the color was measured in the same manner as above. The conditions for ultraviolet irradiation were in accordance with JIS L0842:2004 and JIS B7751:2007.

(ガマット)
初期ガマット評価の方法と同様にして、紫外線照射試験後の印刷物を用いて単色ベタ部及び重ね刷り部を測色し、a*対b*の値をプロットし面積を求めた。各実施例及び比較例の紫外線照射試験後における面積を、初期評価の面積で除した面積比を求め、その面積比から、以下の基準で評価した。結果を表22に示す。実用レベルは3以上である。
(gamut)
In the same manner as the initial gamut evaluation method, the printed matter after the ultraviolet irradiation test was used to measure the color of the monochromatic solid area and the overprinted area, and the values of a* versus b* were plotted to determine the area. The area ratio of each Example and Comparative Example after the ultraviolet irradiation test was divided by the area of the initial evaluation was determined, and the area ratio was evaluated based on the following criteria. The results are shown in Table 22. The practical level is 3 or higher.

(評価基準)
6:面積比が98%以上である
5:面積比が97.5%以上、98%未満である
4:面積比が97%以上、97.5%未満である
3:面積比が96.5%以上、97%未満である
2:面積比が96%以上、96.5%未満である
1:面積比が96%未満である
(Evaluation criteria)
6: Area ratio is 98% or more 5: Area ratio is 97.5% or more and less than 98% 4: Area ratio is 97% or more and less than 97.5% 3: Area ratio is 96.5 % or more and less than 97% 2: Area ratio is 96% or more and less than 96.5% 1: Area ratio is less than 96%

(色差ΔE*)
単色ベタ部(イエロー、マゼンタA、マゼンタB、シアン)の測色結果から、紫外線照射試験前後の色差ΔE*を求め、以下の基準で評価した。結果を表22に示す。実用レベルは3以上である。
(color difference ΔE*)
From the colorimetric results of the monochromatic solid areas (yellow, magenta A, magenta B, cyan), the color difference ΔE* before and after the ultraviolet irradiation test was determined and evaluated based on the following criteria. The results are shown in Table 22. The practical level is 3 or higher.

(評価基準)
6:ΔE*が1.0未満である
5:ΔE*が1.0以上、1.5未満である
4:ΔE*が1.5以上、2.0未満である
3:ΔE*が2.0以上、3.0未満である
2:ΔE*が3.0以上、5.0未満である
1:ΔE*が5.0以上である
(Evaluation criteria)
6: ΔE* is less than 1.0 5: ΔE* is 1.0 or more and less than 1.5 4: ΔE* is 1.5 or more and less than 2.0 3: ΔE* is 2. 0 or more and less than 3.0 2: ΔE* is 3.0 or more and less than 5.0 1: ΔE* is 5.0 or more

(色相差ΔH*)
単色ベタ刷り重ね部(イエロー×シアン、シアン×マゼンタA、イエロー×マゼンタB又はイエロー×マゼンタA)の測色結果から、紫外線照射試験前後の色相差ΔH*を求め、以下の基準で評価した。結果を表22に示す。実用レベルは3以上である。また、試験後の色相角(H°)が試験前のH°よりも大きい場合は「+」を、試験後の色相角(H°)が試験前のH°よりも小さい場合は「-」を付記した。
(Hue difference ΔH*)
The hue difference ΔH* before and after the ultraviolet irradiation test was determined from the color measurement results of the monochromatic solid printed overlapping area (yellow x cyan, cyan x magenta A, yellow x magenta B, or yellow x magenta A), and evaluated based on the following criteria. The results are shown in Table 22. The practical level is 3 or higher. Also, if the hue angle (H°) after the test is larger than the H° before the test, mark it as “+”, and if the hue angle (H°) after the test is smaller than the H° before the test, mark it as “-”. Added.

(評価基準)
6:ΔH*が0.5未満である
5:ΔH*が0.5以上、0.75未満である
4:ΔH*が0.75以上、1.0未満である
3:ΔH*が1.0以上、1.5未満である
2:ΔH*が1.5以上、3.0未満である
1:ΔH*が3.0以上である
(Evaluation criteria)
6: ΔH* is less than 0.5 5: ΔH* is 0.5 or more and less than 0.75 4: ΔH* is 0.75 or more and less than 1.0 3: ΔH* is 1. 0 or more and less than 1.5 2: ΔH* is 1.5 or more and less than 3.0 1: ΔH* is 3.0 or more

[耐光性評価2]
(白色LED照射試験)
上記で得られた印刷物について、下記の試験方法により白色LED照射試験を行った。試験後に上記と同様に測色し、白色LED照射下における色相の安定性を評価した。
(試験方法)
試験機:照明付インキュベーター FLI-2010H-LED(東京理化器械製)
光源:白色LED
照度:15000Lux
照射温度:10℃
照射湿度:70%RH
照射日数:96時間
[Lightfastness evaluation 2]
(White LED irradiation test)
The printed matter obtained above was subjected to a white LED irradiation test using the following test method. After the test, the color was measured in the same manner as above to evaluate the stability of hue under white LED irradiation.
(Test method)
Testing machine: Incubator with lighting FLI-2010H-LED (manufactured by Tokyo Rikakikai)
Light source: white LED
Illuminance: 15000Lux
Irradiation temperature: 10℃
Irradiation humidity: 70%RH
Irradiation days: 96 hours

(ガマット)
初期ガマット評価の方法と同様にして、白色LED照射試験後の印刷物を用いて単色ベタ部及び重ね刷り部を測色し、a*対b*の値をプロットし面積を求めた。各実施例及び比較例の白色LED照射試験後における面積を、初期評価の面積で除した面積比を求め、その面積比から、以下の基準で評価した。結果を表23に示す。実用レベルは3以上である。
(gamut)
In the same manner as the initial gamut evaluation method, the printed matter after the white LED irradiation test was used to measure the color of the monochrome solid area and the overprinted area, and the values of a* versus b* were plotted to determine the area. The area after the white LED irradiation test of each Example and Comparative Example was divided by the area of the initial evaluation to determine the area ratio, and the area ratio was evaluated based on the following criteria. The results are shown in Table 23. The practical level is 3 or higher.

(評価基準)
6:面積比が98%以上である
5:面積比が97.5%以上、98%未満である
4:面積比が97%以上、97.5%未満である
3:面積比が96.5%以上、97%未満である
2:面積比が96%以上、96.5%未満である
1:面積比が96%未満である
(Evaluation criteria)
6: Area ratio is 98% or more 5: Area ratio is 97.5% or more and less than 98% 4: Area ratio is 97% or more and less than 97.5% 3: Area ratio is 96.5 % or more and less than 97% 2: Area ratio is 96% or more and less than 96.5% 1: Area ratio is less than 96%

(色差ΔE*)
単色ベタ部(イエロー、マゼンタA、マゼンタB、シアン)の測色結果から、白色LED照射試験前後の色差ΔE*を求め、以下の基準で評価した。結果を表23に示す。実用レベルは3以上である。
(color difference ΔE*)
From the colorimetric results of the monochrome solid areas (yellow, magenta A, magenta B, cyan), the color difference ΔE* before and after the white LED irradiation test was determined and evaluated based on the following criteria. The results are shown in Table 23. The practical level is 3 or higher.

(評価基準)
6:ΔE*が1.0未満である
5:ΔE*が1.0以上、1.5未満である
4:ΔE*が1.5以上、2.0未満である
3:ΔE*が2.0以上、3.0未満である
2:ΔE*が3.0以上、5.0未満である
1:ΔE*が5.0以上である
(Evaluation criteria)
6: ΔE* is less than 1.0 5: ΔE* is 1.0 or more and less than 1.5 4: ΔE* is 1.5 or more and less than 2.0 3: ΔE* is 2. 0 or more and less than 3.0 2: ΔE* is 3.0 or more and less than 5.0 1: ΔE* is 5.0 or more

(色相差ΔH*)
単色ベタ刷り重ね部(イエロー×シアン、シアン×マゼンタA、イエロー×マゼンタB又はイエロー×マゼンタA)の測色結果から、白色LED照射試験前後の色相差ΔH*を求め、以下の基準で評価した。結果を表23に示す。実用レベルは3以上である。また、試験後の色相角(H°)が試験前のH°よりも大きい場合は「+」を、試験後の色相角(H°)が試験前のH°よりも小さい場合は「-」を付記した。
(Hue difference ΔH*)
The hue difference ΔH* before and after the white LED irradiation test was determined from the colorimetric results of the monochrome solid printed overlapping area (yellow x cyan, cyan x magenta A, yellow x magenta B or yellow x magenta A), and evaluated based on the following criteria. . The results are shown in Table 23. The practical level is 3 or higher. Also, if the hue angle (H°) after the test is larger than the H° before the test, mark it as “+”, and if the hue angle (H°) after the test is smaller than the H° before the test, mark it as “-”. Added.

(評価基準)
6:ΔH*が0.5未満である
5:ΔH*が0.5以上、0.75未満である
4:ΔH*が0.75以上、1.0未満である
3:ΔH*が1.0以上、1.5未満である
2:ΔH*が1.5以上、3.0未満である
1:ΔH*が3.0以上である
(Evaluation criteria)
6: ΔH* is less than 0.5 5: ΔH* is 0.5 or more and less than 0.75 4: ΔH* is 0.75 or more and less than 1.0 3: ΔH* is 1. 0 or more and less than 1.5 2: ΔH* is 1.5 or more and less than 3.0 1: ΔH* is 3.0 or more

Figure 2023164228000034
Figure 2023164228000034

Figure 2023164228000035
Figure 2023164228000035

表22及び表23において、Yはイエロー、Cはシアン、MAはマゼンタA、MBはマゼンタBの、それぞれ単色ベタ部を表す。また、Y×Cはイエロー×シアン、C×MAはシアン×マゼンタA、Y×MBはイエロー×マゼンタB、Y×MAはイエロー×マゼンタAの、それぞれ単色ベタ刷り重ね部のことを表す。 In Tables 22 and 23, Y represents yellow, C represents cyan, MA represents magenta A, and MB represents magenta B, each representing a monochrome solid area. Furthermore, Y×C represents yellow×cyan, C×MA represents cyan×magenta A, Y×MB represents yellow×magenta B, and Y×MA represents yellow×magenta A, which are monochrome solid overlapping areas.

表22及び表23の結果から、本発明のフレキソ印刷インキセットは、色再現性が高く、かつ耐光性が良好であることが確認できた。特に、イソインドリン化合物(4)又はイソインドリン化合物(5)を含むイエローインキを使用した場合、より色再現性が高く、かつ耐光性が良好であった。また、最適な粒径のC.I.ピグメントイエロー180を含むイエローインキを使用した場合、より色再現性が高く、かつ耐光性が良好であった。
また、C.I.ピグメントブルー15:3又はC.I.ピグメントブルー15:4を含むシアンインキを使用した場合、より色再現性が高く、かつ耐光性が良好であった。
また、最適な粒径のC.I.ピグメントレッド122を含むマゼンタインキA、及び最適な粒径のC.I.ピグメントバイオレット19を含むマゼンタインキBを使用した場合、より色再現性が高く、かつ耐光性が良好であった。
特に、イエロー×マゼンタの領域において、比較例のインキセットでは、紫外線照射による耐光性試験では色相が青味に大きく変化する(色相角が小さくなる)一方で、白色LED照射による耐光性試験では色相が黄味に大きく変化した(色相角が大きくなった)。すなわち、比較例の印刷インキセットは、光源によって色相の経時変化が異なり、十分な耐光性を得ることが困難であることがわかる。これに対し、本発明の実施形態の印刷インキセットでは、光源によらず、良好な耐光性が得られることがわかる。
From the results in Tables 22 and 23, it was confirmed that the flexographic printing ink set of the present invention had high color reproducibility and good light resistance. In particular, when the yellow ink containing the isoindoline compound (4) or the isoindoline compound (5) was used, the color reproducibility was higher and the light resistance was better. In addition, the optimum particle size of C.I. I. When a yellow ink containing Pigment Yellow 180 was used, color reproducibility was higher and light resistance was better.
Also, C. I. Pigment Blue 15:3 or C.I. I. When cyan ink containing Pigment Blue 15:4 was used, color reproducibility was higher and light resistance was better.
In addition, the optimum particle size of C.I. I. Magenta ink A containing Pigment Red 122 and C. I. When magenta ink B containing Pigment Violet 19 was used, color reproducibility was higher and light resistance was better.
In particular, in the yellow x magenta region, in the ink set of the comparative example, the hue changes significantly to a bluish tinge (the hue angle becomes smaller) in the light fastness test using UV irradiation, but the hue changes significantly in the light fastness test using white LED irradiation. changed significantly to yellow (the hue angle became larger). That is, it can be seen that in the printing ink set of the comparative example, the hue changes over time depending on the light source, and it is difficult to obtain sufficient light resistance. On the other hand, it can be seen that the printing ink set of the embodiment of the present invention can obtain good light resistance regardless of the light source.

<4>活性エネルギー線硬化性フレキソ印刷インキセットの評価
<活性エネルギー線硬化性フレキソインキの製造>
(製造例Y6-1)[イエローインキ[Y6-1]の調製]
下記の材料を、バタフライミキサーを用いて撹拌混合し、3本ロールにて最大粒径が15μm以下になるように分散して、イエローインキ[Y6-1]を得た。
・イソインドリン化合物(1-1):18.0部
・EBECRYL225:8.4部(有効成分で5.0部)
(10官能のウレタンアクリレートオリゴマー)
・4-アクリロイルモルフォリン:15.0部 (単官能モノマー)
・EO変性トリメチロールプロパントリアクリレート:20.0部
・ジペンタエリスリトールペンタアクリレート:5.0部
・ジペンタエリスリトールヘキサアクリレート:16.6部
・イルガキュア369:3.0部 (光重合開始剤)
・Chemrk DEABP:3.0部 (光重合開始剤)
・SB-PI718:4.0部 (光重合開始剤)
・アジスパーPB821:3.0部 (分散剤)
・Tワックスコンパウンド:4.0部 (ワックス)
<4> Evaluation of active energy ray curable flexo printing ink set <Manufacture of active energy ray curable flexo ink>
(Production Example Y6-1) [Preparation of yellow ink [Y6-1]]
The following materials were stirred and mixed using a butterfly mixer and dispersed using three rolls so that the maximum particle size was 15 μm or less to obtain yellow ink [Y6-1].
・Isoindoline compound (1-1): 18.0 parts ・EBECRYL225: 8.4 parts (5.0 parts as active ingredient)
(10-functional urethane acrylate oligomer)
・4-acryloylmorpholine: 15.0 parts (monofunctional monomer)
・EO-modified trimethylolpropane triacrylate: 20.0 parts ・Dipentaerythritol pentaacrylate: 5.0 parts ・Dipentaerythritol hexaacrylate: 16.6 parts ・Irgacure 369: 3.0 parts (photopolymerization initiator)
・Chemrk DEABP: 3.0 parts (photopolymerization initiator)
・SB-PI718: 4.0 parts (photopolymerization initiator)
・Ajisper PB821: 3.0 parts (dispersant)
・T wax compound: 4.0 parts (wax)

使用した材料の詳細は以下のとおりである。 Details of the materials used are as follows.

[アクリレートオリゴマー]
・EBECRYL225:ダイセル・オルネクス株式会社製、10官能の脂肪族ウレタンアクリレートオリゴマー、Mw1,200、有効成分60質量%[重合開始剤]
・イルガキュア369:BASF社製、2-ベンジル-2-(ジメチルアミノ)-1-(4-モルフォリノフェニル)-1-ブタノン
・Chemrk DEABP:ソート社製、4,4’-ビス(ジエチルアミノ)ベンゾフェノン
・SB-PI718:ソート社製、2,4,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド
[分散剤]
・アジスパーPB821:味の素ファインテクノ株式会社製、塩基性官能基含有の櫛形分散剤
[ワックス]
・Tワックスコンパウンド:東新油脂株式会社製、ポリエチレンワックス
[Acrylate oligomer]
・EBECRYL225: Daicel Allnex Corporation, 10-functional aliphatic urethane acrylate oligomer, Mw 1,200, active ingredient 60% by mass [polymerization initiator]
・Irgacure 369: manufactured by BASF, 2-benzyl-2-(dimethylamino)-1-(4-morpholinophenyl)-1-butanone ・Chemrk DEABP: manufactured by Sort, 4,4'-bis(diethylamino)benzophenone・SB-PI718: Manufactured by Sort, 2,4,6-trimethylbenzoyl-diphenylphosphine oxide [dispersant]
・Ajisper PB821: Manufactured by Ajinomoto Fine Techno Co., Ltd., comb-shaped dispersant containing basic functional groups [wax]
・T wax compound: Polyethylene wax manufactured by Toshin Yushi Co., Ltd.

(製造例Y6-2~Y6-28、C6-1~C6-5、M6-1~M6-13)[イエローインキ[Y6-2]~[Y6-28]、シアンインキ[C6-1]~[C6-5]、マゼンタインキ[M6-1]~[M6-13]の調製]
製造例Y6-1に記載したイエローインキ[Y6-1]の調製方法において、イソインドリン化合物(1-1)18.0部を、表24に示した化合物及び表24に記載した量に変更した以外は製造例Y6-1と同様にして、表24に記載したインキを得た。
(Production examples Y6-2 to Y6-28, C6-1 to C6-5, M6-1 to M6-13) [Yellow ink [Y6-2] to [Y6-28], cyan ink [C6-1] to [C6-5], preparation of magenta ink [M6-1] to [M6-13]]
In the method for preparing yellow ink [Y6-1] described in Production Example Y6-1, 18.0 parts of isoindoline compound (1-1) was changed to the compound shown in Table 24 and the amount shown in Table 24. The inks listed in Table 24 were obtained in the same manner as in Production Example Y6-1 except for the following.

Figure 2023164228000036
Figure 2023164228000036

インキの製造に使用した顔料は、グラビアインキの製造で示した表5の通りである。 The pigments used in the production of the ink are as shown in Table 5 shown in the production of gravure ink.

<インキセットの評価>
(実施例FS-1~FS-42、比較例FS-1~FS-10)
得られた各インキを表25に記載の通りに組合せて、インキセットF1~F52とした。得られたインキセットについて、以下の方法でガマット及び耐光性を評価した。結果を表26及び表27に示す。
<Evaluation of ink set>
(Examples FS-1 to FS-42, Comparative Examples FS-1 to FS-10)
The obtained inks were combined as shown in Table 25 to form ink sets F1 to F52. The resulting ink set was evaluated for gamut and light resistance using the following methods. The results are shown in Tables 26 and 27.

Figure 2023164228000037
Figure 2023164228000037

[初期ガマット評価]
上記で得られたインキセットにおいて、コート紙に線数800lpi、セル容積3.72cm/mのアニロックスローラーとフレキシプルーフ機を用いて、シアンインキを印刷後、コンベア速度 50m/min、空冷水銀ランプ(出力160w/cmの条件)で硬化させた。その後、シアンインキ層の上にマゼンタインキを、マゼンタインキ層の上にイエローインキを、シアンインキと同様の条件で印刷し、基材、シアンインキ層、マゼンタインキ層、イエローインキ層の順で積層された評価用印刷物を得た。
得られたインキセットを用いて、以下の印刷条件で、単色ベタ部(シアン、マゼンタA、マゼンタB、イエロー)と、単色ベタ刷り重ね部(イエロー×シアン、シアン×マゼンタA、イエロー×マゼンタB又はイエロー×マゼンタA)とを有する印刷物を得た。
[Initial gamut evaluation]
In the ink set obtained above, after printing cyan ink on coated paper using an anilox roller with a line count of 800 lpi and a cell volume of 3.72 cm 3 /m 2 and a flexi-proof machine, the cyan ink was printed at a conveyor speed of 50 m/min, with air-cooled mercury. It was cured using a lamp (output: 160 W/cm 2 ). Then, print magenta ink on the cyan ink layer and yellow ink on the magenta ink layer under the same conditions as cyan ink, and stack the base material, cyan ink layer, magenta ink layer, and yellow ink layer in this order. A printed matter for evaluation was obtained.
Using the obtained ink set, under the following printing conditions, monochrome solid areas (cyan, magenta A, magenta B, yellow) and monochrome solid overlapping areas (yellow x cyan, cyan x magenta A, yellow x magenta B) were printed. Or yellow x magenta A) was obtained.

(単色ベタ部)
コート紙に線数800lpi、セル容積3.72cm/mのアニロックスローラーとフレキシプルーフ機を用いて、インキを印刷後、コンベア速度 50m/min、空冷水銀ランプ(出力160w/cmの条件)で硬化させ、評価用印刷物を得た。
(Single color solid area)
After printing ink on coated paper using an anilox roller with a line count of 800 lpi and a cell volume of 3.72 cm 3 /m 2 and a flexi-proof machine, a conveyor speed of 50 m/min and an air-cooled mercury lamp (output 160 w/cm 2 conditions) were applied. was cured to obtain a printed matter for evaluation.

(単色ベタ刷り重ね部)
コート紙に線数800lpi、セル容積3.72cm/mのアニロックスローラーとフレキシプルーフ機を用いて、シアンインキを印刷後、コンベア速度 50m/min、空冷水銀ランプ(出力160w/cmの条件)で硬化させた。その後、シアンインキ層の上にマゼンタインキを、シアンインキと同様の条件で印刷し、基材、シアンインキ層、マゼンタインキ層の順で積層された評価用印刷物を得た。
また、マゼンタインキの代わりにイエローインキを用いて同様の条件で印刷し、基材、シアンインキ層、イエローインキ層の順で積層された評価用印刷物を得た。
また、シアンインキの代わりにマゼンタインキを、マゼンタインキの代わりにイエローインキを用いて同様の条件で印刷し、基材、マゼンタインキ層、イエローインキ層の順で積層された評価用印刷物を得た。
(Single color solid printing overlapping area)
After printing cyan ink on coated paper using an anilox roller with a line count of 800 lpi and a cell volume of 3.72 cm 3 /m 2 and a flexi-proof machine, the conditions were as follows: conveyor speed 50 m/min, air-cooled mercury lamp (output 160 w/cm 2 ) ) was cured. Thereafter, magenta ink was printed on the cyan ink layer under the same conditions as the cyan ink, to obtain a printed matter for evaluation in which the base material, the cyan ink layer, and the magenta ink layer were laminated in this order.
Furthermore, printing was performed under the same conditions using yellow ink instead of magenta ink to obtain an evaluation printed matter in which the base material, cyan ink layer, and yellow ink layer were laminated in this order.
In addition, printing was performed under the same conditions using magenta ink instead of cyan ink and yellow ink instead of magenta ink to obtain evaluation printed matter in which the base material, magenta ink layer, and yellow ink layer were laminated in this order. .

得られた印刷物について、グレタグマクベスD196を用いて印刷物の単色ベタ部(イエロー、マゼンタA、マゼンタB、シアン)の濃度値を測定した。また、測定機としてgretagmacbeth製のSpectroEyeを使用し、D50光源、2度観測視野、ホワイトバック(標準白色板使用)、フィルター類未使用の条件で、単色ベタ部及び重ね刷り部を測色した。
a*を横軸、b*縦軸とした2次元空間に、単色ベタ部(イエロー、マゼンタA、マゼンタB、シアン)、及び、単色ベタ刷り重ね部(イエロー×シアン、シアン×マゼンタA、イエロー×マゼンタB又はイエロー×マゼンタA)計6色又は7色のa*対b*の値を、プロットし面積を求めた。基準となる比較例FS-1の面積を100%とした場合の面積比を求め、その面積比から、以下の基準で評価した。結果を表26に示す。実用レベルは3以上である。
Regarding the obtained printed matter, the density values of the monochrome solid portions (yellow, magenta A, magenta B, cyan) of the printed matter were measured using Gretag Macbeth D196. In addition, using SpectroEye manufactured by Gretagmacbeth as a measuring device, the color of the monochrome solid area and the overprinted area was measured under the conditions of a D50 light source, a 2-degree observation field, a white background (using a standard white plate), and no filters.
In a two-dimensional space with a* as the horizontal axis and b* as the vertical axis, there are monochrome solid areas (yellow, magenta A, magenta B, cyan), and monochrome overlapping areas (yellow x cyan, cyan x magenta A, yellow). x Magenta B or Yellow x Magenta A) The values of a* versus b* for a total of 6 or 7 colors were plotted to determine the area. The area ratio was determined when the area of Comparative Example FS-1 as a standard was taken as 100%, and the area ratio was evaluated based on the following criteria. The results are shown in Table 26. The practical level is 3 or higher.

(評価基準)
6:面積比が115%以上である
5:面積比が110%以上、115%未満である
4:面積比が105%以上、110%未満である
3:面積比が100%以上、105%未満である
2:面積比が98%以上、100%未満である
1:面積比が98%未満である
(Evaluation criteria)
6: Area ratio is 115% or more 5: Area ratio is 110% or more but less than 115% 4: Area ratio is 105% or more but less than 110% 3: Area ratio is 100% or more but less than 105% 2: Area ratio is 98% or more and less than 100% 1: Area ratio is less than 98%

[耐光性評価1]
(フェドメーターによる紫外線照射試験)
上記で得られた印刷物について、フェドメーター(紫外線カーボンアーク灯式耐光性試験機)により紫外線を48時間照射し、試験後に上記と同様に測色した。紫外線照射の条件は、JIS L0842:2004、JIS B7751:2007に従った。
[Lightfastness evaluation 1]
(Ultraviolet irradiation test using a fedometer)
The printed matter obtained above was irradiated with ultraviolet rays for 48 hours using a fedometer (ultraviolet carbon arc lamp type light resistance tester), and after the test, the color was measured in the same manner as above. The conditions for ultraviolet irradiation were in accordance with JIS L0842:2004 and JIS B7751:2007.

(ガマット)
初期ガマット評価の方法と同様にして、紫外線照射試験後の印刷物を用いて単色ベタ部及び重ね刷り部を測色し、a*対b*の値をプロットし面積を求めた。各実施例及び比較例の紫外線照射試験後における面積を、初期評価の面積で除した面積比を求め、その面積比から、以下の基準で評価した。結果を表26に示す。実用レベルは3以上である。
(gamut)
In the same manner as the initial gamut evaluation method, the printed matter after the ultraviolet irradiation test was used to measure the color of the monochromatic solid area and the overprinted area, and the values of a* versus b* were plotted to determine the area. The area ratio of each Example and Comparative Example after the ultraviolet irradiation test was divided by the area of the initial evaluation was determined, and the area ratio was evaluated based on the following criteria. The results are shown in Table 26. The practical level is 3 or higher.

(評価基準)
6:面積比が98%以上である
5:面積比が97.5%以上、98%未満である
4:面積比が97%以上、97.5%未満である
3:面積比が96.5%以上、97%未満である
2:面積比が96%以上、96.5%未満である
1:面積比が96%未満である
(Evaluation criteria)
6: Area ratio is 98% or more 5: Area ratio is 97.5% or more and less than 98% 4: Area ratio is 97% or more and less than 97.5% 3: Area ratio is 96.5 % or more and less than 97% 2: Area ratio is 96% or more and less than 96.5% 1: Area ratio is less than 96%

(色差ΔE*)
単色ベタ部(イエロー、マゼンタA、マゼンタB、シアン)の測色結果から、紫外線照射試験前後の色差ΔE*を求め、以下の基準で評価した。結果を表26に示す。実用レベルは3以上である。
(color difference ΔE*)
From the colorimetric results of the monochromatic solid areas (yellow, magenta A, magenta B, cyan), the color difference ΔE* before and after the ultraviolet irradiation test was determined and evaluated based on the following criteria. The results are shown in Table 26. The practical level is 3 or higher.

(評価基準)
6:ΔE*が1.0未満である
5:ΔE*が1.0以上、1.5未満である
4:ΔE*が1.5以上、2.0未満である
3:ΔE*が2.0以上、3.0未満である
2:ΔE*が3.0以上、5.0未満である
1:ΔE*が5.0以上である
(Evaluation criteria)
6: ΔE* is less than 1.0 5: ΔE* is 1.0 or more and less than 1.5 4: ΔE* is 1.5 or more and less than 2.0 3: ΔE* is 2. 0 or more and less than 3.0 2: ΔE* is 3.0 or more and less than 5.0 1: ΔE* is 5.0 or more

(色相差ΔH*)
単色ベタ刷り重ね部(イエロー×シアン、シアン×マゼンタA、イエロー×マゼンタB又はイエロー×マゼンタA)の測色結果から、紫外線照射試験前後の色相差ΔH*を求め、以下の基準で評価した。結果を表26に示す。実用レベルは3以上である。また、試験後の色相角(H°)が試験前のH°よりも大きい場合は「+」を、試験後の色相角(H°)が試験前のH°よりも小さい場合は「-」を付記した。
(Hue difference ΔH*)
The hue difference ΔH* before and after the ultraviolet irradiation test was determined from the color measurement results of the monochromatic solid printed overlapping area (yellow x cyan, cyan x magenta A, yellow x magenta B, or yellow x magenta A), and evaluated based on the following criteria. The results are shown in Table 26. The practical level is 3 or higher. Also, if the hue angle (H°) after the test is larger than the H° before the test, mark it as “+”, and if the hue angle (H°) after the test is smaller than the H° before the test, mark it as “-”. Added.

(評価基準)
6:ΔH*が0.5未満である
5:ΔH*が0.5以上、0.75未満である
4:ΔH*が0.75以上、1.0未満である
3:ΔH*が1.0以上、1.5未満である
2:ΔH*が1.5以上、3.0未満である
1:ΔH*が3.0以上である
(Evaluation criteria)
6: ΔH* is less than 0.5 5: ΔH* is 0.5 or more and less than 0.75 4: ΔH* is 0.75 or more and less than 1.0 3: ΔH* is 1. 0 or more and less than 1.5 2: ΔH* is 1.5 or more and less than 3.0 1: ΔH* is 3.0 or more

[耐光性評価2]
(白色LED照射試験)
上記で得られた印刷物について、下記の試験方法により白色LED照射試験を行った。試験後に上記と同様に測色し、白色LED照射下における色相の安定性を評価した。
(試験方法)
試験機:照明付インキュベーター FLI-2010H-LED(東京理化器械製)
光源:白色LED
照度:15000Lux
照射温度:10℃
照射湿度:70%RH
照射日数:96時間
[Lightfastness evaluation 2]
(White LED irradiation test)
The printed matter obtained above was subjected to a white LED irradiation test using the following test method. After the test, the color was measured in the same manner as above to evaluate the stability of hue under white LED irradiation.
(Test method)
Testing machine: Incubator with lighting FLI-2010H-LED (manufactured by Tokyo Rikakikai)
Light source: white LED
Illuminance: 15000Lux
Irradiation temperature: 10℃
Irradiation humidity: 70%RH
Irradiation days: 96 hours

(ガマット)
初期ガマット評価の方法と同様にして、白色LED照射試験後の印刷物を用いて単色ベタ部及び重ね刷り部を測色し、a*対b*の値をプロットし面積を求めた。各実施例及び比較例の白色LED照射試験後における面積を、初期評価の面積で除した面積比を求め、その面積比から、以下の基準で評価した。結果を表27に示す。実用レベルは3以上である。
(gamut)
In the same manner as the initial gamut evaluation method, the printed matter after the white LED irradiation test was used to measure the color of the monochrome solid area and the overprinted area, and the values of a* versus b* were plotted to determine the area. The area after the white LED irradiation test of each Example and Comparative Example was divided by the area of the initial evaluation to determine the area ratio, and the area ratio was evaluated based on the following criteria. The results are shown in Table 27. The practical level is 3 or higher.

(評価基準)
6:面積比が98%以上である
5:面積比が97.5%以上、98%未満である
4:面積比が97%以上、97.5%未満である
3:面積比が96.5%以上、97%未満である
2:面積比が96%以上、96.5%未満である
1:面積比が96%未満である
(Evaluation criteria)
6: Area ratio is 98% or more 5: Area ratio is 97.5% or more and less than 98% 4: Area ratio is 97% or more and less than 97.5% 3: Area ratio is 96.5 % or more and less than 97% 2: Area ratio is 96% or more and less than 96.5% 1: Area ratio is less than 96%

(色差ΔE*)
単色ベタ部(イエロー、マゼンタA、マゼンタB、シアン)の測色結果から、白色LED照射試験前後の色差ΔE*を求め、以下の基準で評価した。結果を表27に示す。実用レベルは3以上である。
(color difference ΔE*)
From the colorimetric results of the monochrome solid areas (yellow, magenta A, magenta B, cyan), the color difference ΔE* before and after the white LED irradiation test was determined and evaluated based on the following criteria. The results are shown in Table 27. The practical level is 3 or higher.

(評価基準)
6:ΔE*が1.0未満である
5:ΔE*が1.0以上、1.5未満である
4:ΔE*が1.5以上、2.0未満である
3:ΔE*が2.0以上、3.0未満である
2:ΔE*が3.0以上、5.0未満である
1:ΔE*が5.0以上である
(Evaluation criteria)
6: ΔE* is less than 1.0 5: ΔE* is 1.0 or more and less than 1.5 4: ΔE* is 1.5 or more and less than 2.0 3: ΔE* is 2. 0 or more and less than 3.0 2: ΔE* is 3.0 or more and less than 5.0 1: ΔE* is 5.0 or more

(色相差ΔH*)
単色ベタ刷り重ね部(イエロー×シアン、シアン×マゼンタA、イエロー×マゼンタB又はイエロー×マゼンタA)の測色結果から、白色LED照射試験前後の色相差ΔH*を求め、以下の基準で評価した。結果を表27に示す。実用レベルは3以上である。また、試験後の色相角(H°)が試験前のH°よりも大きい場合は「+」を、試験後の色相角(H°)が試験前のH°よりも小さい場合は「-」を付記した。
(Hue difference ΔH*)
The hue difference ΔH* before and after the white LED irradiation test was determined from the colorimetric results of the monochrome solid printed overlapping area (yellow x cyan, cyan x magenta A, yellow x magenta B or yellow x magenta A), and evaluated based on the following criteria. . The results are shown in Table 27. The practical level is 3 or higher. Also, if the hue angle (H°) after the test is larger than the H° before the test, mark it as “+”, and if the hue angle (H°) after the test is smaller than the H° before the test, mark it as “-”. Added.

(評価基準)
6:ΔH*が0.5未満である
5:ΔH*が0.5以上、0.75未満である
4:ΔH*が0.75以上、1.0未満である
3:ΔH*が1.0以上、1.5未満である
2:ΔH*が1.5以上、3.0未満である
1:ΔH*が3.0以上である
(Evaluation criteria)
6: ΔH* is less than 0.5 5: ΔH* is 0.5 or more and less than 0.75 4: ΔH* is 0.75 or more and less than 1.0 3: ΔH* is 1. 0 or more and less than 1.5 2: ΔH* is 1.5 or more and less than 3.0 1: ΔH* is 3.0 or more

Figure 2023164228000038
Figure 2023164228000038

Figure 2023164228000039
Figure 2023164228000039

表26及び表27において、Yはイエロー、Cはシアン、MAはマゼンタA、MBはマゼンタBの、それぞれ単色ベタ部を表す。また、Y×Cはイエロー×シアン、C×MAはシアン×マゼンタA、Y×MBはイエロー×マゼンタB、Y×MAはイエロー×マゼンタAの、それぞれ単色ベタ刷り重ね部のことを表す。 In Tables 26 and 27, Y represents yellow, C represents cyan, MA represents magenta A, and MB represents magenta B, each representing a monochrome solid area. Furthermore, Y×C represents yellow×cyan, C×MA represents cyan×magenta A, Y×MB represents yellow×magenta B, and Y×MA represents yellow×magenta A, which are monochrome solid overlapping areas.

表26及び表27の結果から、本発明の一実施形態である活性エネルギー線硬化性フレキソ印刷インキセットは、色再現性が高く、かつ耐光性が良好であることが確認できた。特に、イソインドリン化合物(4)又はイソインドリン化合物(5)を含むイエローインキを使用した場合、より色再現性が高く、かつ耐光性が良好であった。また、最適な粒径のC.I.ピグメントイエロー180を含むイエローインキを使用した場合、より色再現性が高く、かつ耐光性が良好であった。
また、C.I.ピグメントブルー15:3又はC.I.ピグメントブルー15:4を含むシアンインキを使用した場合、より色再現性が高く、かつ耐光性が良好であった。
また、最適な粒径のC.I.ピグメントレッド122を含むマゼンタインキA、及び最適な粒径のC.I.ピグメントバイオレット19を含むマゼンタインキBを使用した場合、より色再現性が高く、かつ耐光性が良好であった。
特に、イエロー×マゼンタの領域において、比較例の印刷インキセットでは、紫外線照射による耐光性試験では色相が青味に大きく変化する(色相角が小さくなる)一方で、白色LED照射による耐光性試験では色相が黄味に大きく変化した(色相角が大きくなった)。すなわち、比較例の印刷インキセットは、光源によって色相の経時変化が異なり、十分な耐光性を得ることが困難であることがわかる。これに対し、本発明の実施形態の印刷インキセットでは、光源によらず、良好な耐光性が得られることがわかる。
From the results in Tables 26 and 27, it was confirmed that the active energy ray-curable flexographic printing ink set according to an embodiment of the present invention had high color reproducibility and good light resistance. In particular, when the yellow ink containing the isoindoline compound (4) or the isoindoline compound (5) was used, the color reproducibility was higher and the light resistance was better. In addition, the optimum particle size of C.I. I. When a yellow ink containing Pigment Yellow 180 was used, color reproducibility was higher and light resistance was better.
Also, C. I. Pigment Blue 15:3 or C.I. I. When cyan ink containing Pigment Blue 15:4 was used, color reproducibility was higher and light resistance was better.
In addition, the optimum particle size of C.I. I. Magenta ink A containing Pigment Red 122 and C. I. When magenta ink B containing Pigment Violet 19 was used, color reproducibility was higher and light resistance was better.
In particular, in the yellow x magenta region, with the printing ink set of the comparative example, the hue changes significantly to a bluish tinge (the hue angle becomes smaller) in the light fastness test using UV irradiation, but in the light fastness test using white LED irradiation, the hue changes significantly (the hue angle becomes smaller). The hue changed significantly to yellowishness (the hue angle became larger). That is, it can be seen that in the printing ink set of the comparative example, the hue changes over time depending on the light source, and it is difficult to obtain sufficient light resistance. On the other hand, it can be seen that the printing ink set of the embodiment of the present invention can obtain good light resistance regardless of the light source.

Claims (6)

下記一般式(1)で表されるイソインドリン化合物又はC.I.ピグメントイエロー180と分散媒体とを含むイエローインキ、
フタロシアニン顔料と分散媒体とを含むシアンインキ、
C.I.ピグメントレッド122と分散媒体とを含むマゼンタインキA、及び
C.I.ピグメントバイオレット19と分散媒体とを含むマゼンタインキBを備えた、印刷インキセット。
Figure 2023164228000040
[一般式(1)中、R~Rは、それぞれ独立して、水素原子、アルキル基、又はアルコキシ基を表す。R及びRは、それぞれ独立して、水素原子、又はアルキル基を表す。Xは-O-又は-NH-を表し、Rは水素原子、アルキル基、又はアリール基を表す。]
An isoindoline compound represented by the following general formula (1) or C.I. I. Yellow ink containing Pigment Yellow 180 and a dispersion medium;
cyan ink comprising a phthalocyanine pigment and a dispersion medium;
C. I. magenta ink A containing pigment red 122 and a dispersion medium, and C. I. A printing ink set comprising magenta ink B containing pigment violet 19 and a dispersion medium.
Figure 2023164228000040
[In general formula (1), R 1 to R 4 each independently represent a hydrogen atom, an alkyl group, or an alkoxy group. R 5 and R 6 each independently represent a hydrogen atom or an alkyl group. X 1 represents -O- or -NH-, and R 7 represents a hydrogen atom, an alkyl group, or an aryl group. ]
前記一般式(1)で表されるイソインドリン化合物が、下記式(4)及び(5)からなる群より選ばれる少なくとも1種の化合物を含む、請求項1に記載の印刷インキセット。
Figure 2023164228000041
The printing ink set according to claim 1, wherein the isoindoline compound represented by the general formula (1) contains at least one compound selected from the group consisting of the following formulas (4) and (5).
Figure 2023164228000041
グラビア印刷用に使用される、請求項1に記載の印刷インキセット。 The printing ink set according to claim 1, which is used for gravure printing. フレキソ印刷用に使用される、請求項1に記載の印刷インキセット。 The printing ink set according to claim 1, which is used for flexographic printing. 基材と、請求項1~4のいずれか1項に記載の印刷インキセットから形成された印刷層とを有する、印刷物。 A printed matter comprising a base material and a printing layer formed from the printing ink set according to any one of claims 1 to 4. 請求項5に記載の印刷物を備えた包装材料。

A packaging material comprising the printed matter according to claim 5.

JP2022095094A 2022-04-28 2022-06-13 Printing ink sets, printed matter, and packaging materials Active JP7260864B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/013654 WO2023210260A1 (en) 2022-04-28 2023-03-31 Printing ink set, printed matter, and packaging material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022075272 2022-04-28
JP2022075272 2022-04-28

Publications (2)

Publication Number Publication Date
JP7260864B1 JP7260864B1 (en) 2023-04-19
JP2023164228A true JP2023164228A (en) 2023-11-10

Family

ID=86006872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022095094A Active JP7260864B1 (en) 2022-04-28 2022-06-13 Printing ink sets, printed matter, and packaging materials

Country Status (2)

Country Link
JP (1) JP7260864B1 (en)
WO (1) WO2023210260A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998047973A1 (en) * 1997-04-23 1998-10-29 Cubic Co., Ltd. Liquid pressure transfer ink, liquid pressure transfer film, liquid pressure transfer article and liquid pressure transfer method
JP2000351928A (en) * 1999-04-27 2000-12-19 Eastman Kodak Co Color ink jet ink set for color print
JP2002220557A (en) * 2001-01-29 2002-08-09 Toyo Ink Mfg Co Ltd Process printing ink set
WO2005111159A1 (en) * 2004-05-14 2005-11-24 Seiko Epson Corporation Ink set and inkjet recording method using the same and recorded article
JP2011116876A (en) * 2009-12-04 2011-06-16 Seiko Epson Corp Ink set, recording device, and recording method
JP6981562B1 (en) * 2021-03-11 2021-12-15 東洋インキScホールディングス株式会社 Gravure printing ink sets, printed matter, and packaging materials
WO2022014635A1 (en) * 2020-07-15 2022-01-20 東洋インキScホールディングス株式会社 Pigment composition, coloring composition, paint, ink, ink set, printed article, and packaging material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998047973A1 (en) * 1997-04-23 1998-10-29 Cubic Co., Ltd. Liquid pressure transfer ink, liquid pressure transfer film, liquid pressure transfer article and liquid pressure transfer method
JP2000351928A (en) * 1999-04-27 2000-12-19 Eastman Kodak Co Color ink jet ink set for color print
JP2002220557A (en) * 2001-01-29 2002-08-09 Toyo Ink Mfg Co Ltd Process printing ink set
WO2005111159A1 (en) * 2004-05-14 2005-11-24 Seiko Epson Corporation Ink set and inkjet recording method using the same and recorded article
JP2011116876A (en) * 2009-12-04 2011-06-16 Seiko Epson Corp Ink set, recording device, and recording method
WO2022014635A1 (en) * 2020-07-15 2022-01-20 東洋インキScホールディングス株式会社 Pigment composition, coloring composition, paint, ink, ink set, printed article, and packaging material
JP6981562B1 (en) * 2021-03-11 2021-12-15 東洋インキScホールディングス株式会社 Gravure printing ink sets, printed matter, and packaging materials

Also Published As

Publication number Publication date
JP7260864B1 (en) 2023-04-19
WO2023210260A1 (en) 2023-11-02

Similar Documents

Publication Publication Date Title
CN101627089B (en) Blue phthalocyanine pigment composition and preparation thereof
WO2022014635A1 (en) Pigment composition, coloring composition, paint, ink, ink set, printed article, and packaging material
EP3110564A1 (en) Radiation curable inks and coatings containing diacetone acrylamide
JP2011084727A (en) Ink composition and inkjet recording method
WO2015191440A1 (en) Energy curable printing inks and coating compositions containing methl phenyl glycoxylate
JP2020105307A (en) Active energy ray-curable overcoat varnish, printed matter, and laminate
JP7392216B1 (en) Printing ink sets, printed materials, and packaging materials
JP6981562B1 (en) Gravure printing ink sets, printed matter, and packaging materials
JP7260864B1 (en) Printing ink sets, printed matter, and packaging materials
JP6182890B2 (en) Active energy ray curable composition and ink composition for ink jet recording using the same
CA3047456C (en) Led curable offset printing ink composition
JP2024140643A (en) Printing ink sets, printed matter, and packaging materials
JP6514835B2 (en) Liquid ink composition, printed matter and laminate laminate
JP7105024B1 (en) Pigment compositions, coloring compositions, paints, inks, ink sets, printed matter, and packaging materials
JP2023084180A (en) Pigment composition, coloring composition, ink, ink set, printed matter, and packaging material
JP2023049334A (en) Active energy-ray curable ink composition and printed material
JP7017006B1 (en) Pigment compositions, coloring compositions, paints, inks, ink sets, printed matter, and packaging materials
JP2020147745A (en) Gravure printing ink composition for styrene film for heat lamination
JP2007314682A (en) Ink composition having high luminance feeling and degradation-preventing capability for retort product
JP2022098438A (en) Pigment composition, and use thereof
WO2024204597A1 (en) Coloring agent, coloring composition, and method for producing coloring agent
JP2022188961A (en) Ink set, printed material, and packaging material
JP2021014492A (en) Cationic polymerizable color ink composition for flexographic printing, ink set, and laminate
JP2006282773A (en) Printing ink composition containing silane coupling agent, coated plastic sheet using the same and laminated material
JP7298109B1 (en) Active energy ray-curable composition and printed matter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220803

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230124

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230202

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230327

R150 Certificate of patent or registration of utility model

Ref document number: 7260864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150