JP2023163764A - Producing method of anhydrous sodium hydrosulfide tangible product - Google Patents

Producing method of anhydrous sodium hydrosulfide tangible product Download PDF

Info

Publication number
JP2023163764A
JP2023163764A JP2022074886A JP2022074886A JP2023163764A JP 2023163764 A JP2023163764 A JP 2023163764A JP 2022074886 A JP2022074886 A JP 2022074886A JP 2022074886 A JP2022074886 A JP 2022074886A JP 2023163764 A JP2023163764 A JP 2023163764A
Authority
JP
Japan
Prior art keywords
anhydrous sodium
sulfide
aqueous solution
hydrogen sulfide
sodium hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022074886A
Other languages
Japanese (ja)
Inventor
宏明 田中
Hiroaki Tanaka
健太郎 山口
Kentaro Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagao KK
Original Assignee
Nagao KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagao KK filed Critical Nagao KK
Priority to JP2022074886A priority Critical patent/JP2023163764A/en
Publication of JP2023163764A publication Critical patent/JP2023163764A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

To provide a method of producing an anhydrous sodium hydrosulfide tangible product that is safe and highly efficient in production, capable of producing the anhydrous sodium hydrosulfide tangible product with few impurities continuously.SOLUTION: In the method of producing the anhydrous sodium hydrosulfide tangible product of the present invention, the anhydrous sodium hydrosulfide tangible product is obtained continuously by repeating such steps as in order, a thin film forming step of using a sodium hydrosulfide aqueous solution as a starting material and supplying the sodium hydrosulfide aqueous solution to a disk surface to obtain a thin film of the sodium hydrosulfide aqueous solution, a drying step of dehydrating the thin film of sodium hydrosulfide aqueous solution on the disk surface under reduced pressure inert gas atmosphere, and a separation step of removing from the disk surface the anhydrous sodium hydrosulfide tangible product obtained in the drying step.SELECTED DRAWING: Figure 1

Description

本発明は、不純物の少ない無水水硫化ソーダ有形物を連続的に製造する方法に関する。 The present invention relates to a method for continuously producing an anhydrous sodium sulfide material with few impurities.

水硫化ソーダ(NaSH)は、有機合成用原料やポリフェニレンサルファイド(PPS)樹脂等の原料として知られているが、市販されている水硫化ソーダには、通常水分が一定量含まれており、好ましくない副反応や逆反応が進行する場合があった。このため、原料として使用する前に水分を取り除く必要があり、かかる水分を取り除く方法として、フレーク状、チップ状、ペレット状等の水硫化ソーダ有形物を減圧下で加熱脱水する方法、当該水硫化ソーダ有形物を不活性ガス雰囲気下で脱水する方法、あるいはこれら両方法を併用すること等が知られている。 Sodium hydrogen sulfide (NaSH) is known as a raw material for organic synthesis and polyphenylene sulfide (PPS) resin, etc., but commercially available sodium hydrogen sulfide usually contains a certain amount of water, so it is preferable. In some cases, side reactions or reverse reactions may proceed. For this reason, it is necessary to remove moisture before using it as a raw material. Methods for removing such moisture include heating and dehydrating sodium bisulfide tangible materials such as flakes, chips, and pellets under reduced pressure; A method of dehydrating a soda material under an inert gas atmosphere, or a combination of both methods is known.

例えば、特許文献1には、全水硫化ソーダ分65重量%以上を含有する水硫化ソーダ有形物を脱水する方法において、水硫化ソーダ有形物に不活性ガスを流して有形物の表面を脱水した後、減圧下で加熱脱水することを特徴とする水硫化ソーダ有形物の脱水方法が記載されている。これによれば、水硫化ソーダを変質させることなく、短時間で高濃度の水硫化ソーダ有形物を高い収率で得ることができるとされている。 For example, Patent Document 1 describes a method for dehydrating a sodium hydrogen sulfide material containing a total sodium hydrogen sulfide content of 65% by weight or more, in which an inert gas is passed through the sodium hydrogen sulfide material to dehydrate the surface of the material. A method for dehydrating a sodium hydrogen sulfide tangible material is described, which is characterized in that the sodium hydrogen sulfide material is then heated and dehydrated under reduced pressure. According to this method, it is said that a highly concentrated sodium hydrogen sulfide tangible substance can be obtained in a high yield in a short period of time without changing the quality of the sodium hydrogen sulfide.

特開平6-298502号公報Japanese Patent Application Publication No. 6-298502

しかしながら、特許文献1に記載の脱水方法はバッチ式であり、脱水時間も長くなるため、生産効率が良好ではなくコスト高となる場合があった。また、水硫化ソーダの融点以上の温度で加熱した際に水硫化ソーダ有形物が溶融するおそれもあった。水硫化ソーダから水分を取り除く別の方法として、水硫化ソーダ有形物を再結晶する方法が挙げられるが、100℃以上の高温下で固液分離する必要があり、安全面での課題があった。また、水硫化ソーダ水溶液を濃縮脱水する方法も挙げられるが、濃縮脱水が進むにつれて粘度が急激に上昇して塊となり、それ以降の脱水操作が困難となる。 However, the dehydration method described in Patent Document 1 is a batch type, and the dehydration time is long, so the production efficiency may not be good and the cost may be high. In addition, there was a risk that the sodium hydrogen sulfide solids would melt when heated at a temperature higher than the melting point of the sodium hydrogen sulfide. Another method for removing water from sodium hydrogen sulfide is to recrystallize the solid sodium hydrogen sulfide, but this method requires solid-liquid separation at a high temperature of 100°C or higher, which poses safety issues. . Another method is to concentrate and dehydrate a sodium hydrogen sulfide aqueous solution, but as the concentration and dehydration progresses, the viscosity increases rapidly and forms lumps, making subsequent dehydration operations difficult.

本発明は上記課題を解決するためになされたものであり、不純物の少ない無水水硫化ソーダ有形物を連続的に得ることのできる、安全かつ生産効率が良好な無水水硫化ソーダ有形物の製造方法を提供することを目的とするものである。 The present invention has been made to solve the above problems, and is a method for producing an anhydrous sodium sulfide tangible product that is safe and has good production efficiency, which can continuously obtain an anhydrous sodium sulfide tangible product with few impurities. The purpose is to provide the following.

上記課題は、水硫化ソーダ水溶液を出発原料とし、前記水硫化ソーダ水溶液をディスク表面に供給して薄膜化された水硫化ソーダ水溶液を得る薄膜形成工程と、前記薄膜化された水硫化ソーダ水溶液を減圧下、不活性ガス雰囲気下で当該ディスク表面において脱水する乾燥工程と、前記乾燥工程で得られる無水水硫化ソーダ有形物を当該ディスク表面から取り出す分離工程とを、この順番で繰り返すことにより連続的に無水水硫化ソーダ有形物を得ることを特徴とする無水水硫化ソーダ有形物の製造方法を提供することによって解決される。 The above-mentioned problems include a thin film forming process using an aqueous sodium bisulfide solution as a starting material and supplying the aqueous sodium bisulfide solution to the disk surface to obtain a thin aqueous sodium bisulfide solution; A drying process in which water is dehydrated on the disk surface under reduced pressure and an inert gas atmosphere, and a separation process in which the anhydrous sodium sulfide solids obtained in the drying process are taken out from the disk surface are continuously repeated in this order. The problem is solved by providing a method for producing an anhydrous sodium sulfide material, which is characterized by obtaining an anhydrous sodium sulfide material.

このとき、前記乾燥工程における脱水時間が6~300秒であることが好適であり、前記水硫化ソーダ水溶液の濃度が10~70重量%であることが好適である。また、前記無水水硫化ソーダ有形物における無水水硫化ソーダ成分の含有量が95重量%以上であることが好適であり、前記無水水硫化ソーダ有形物における硫化ソーダ成分の含有量が1.5重量%以下であることが好適である。前記無水水硫化ソーダ有形物における水分の含有量が3重量%以下であることも好適である。 At this time, it is preferable that the dehydration time in the drying step is 6 to 300 seconds, and it is preferable that the concentration of the sodium hydrogen sulfide aqueous solution is 10 to 70% by weight. Further, it is preferable that the content of the anhydrous sodium sulfide component in the anhydrous sodium sulfide material is 95% by weight or more, and the content of the sodium sulfide component in the anhydrous sodium sulfide material is 1.5% by weight. % or less. It is also preferable that the water content in the anhydrous sodium hydrogen sulfide material is 3% by weight or less.

本発明により、不純物の少ない無水水硫化ソーダ有形物を連続的に得ることのできる、安全かつ生産効率が良好な無水水硫化ソーダ有形物の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for producing an anhydrous sodium sulfide tangible product that is safe and has good production efficiency and can continuously obtain an anhydrous sodium sulfide tangible product with few impurities.

実施例1で使用した真空薄膜乾燥機の一例を示した模式図である。1 is a schematic diagram showing an example of a vacuum thin film dryer used in Example 1. FIG.

以下、図面を参照しながら本発明を具体的に説明する。図1は、本発明で用いられる真空薄膜乾燥機の一例を示した模式図であり、容器内部に、水硫化ソーダ水溶液を供給するための供給槽、供給ポンプ、循環槽、循環ポンプ及び供給ノズルを備えている。更に、真空薄膜乾燥機には、回転軸を有するディスク、当該ディスク表面から無水水硫化ソーダ有形物を取り出すスクレーパー、無水水硫化ソーダ有形物が収集される収集槽等を備えており、図1に示されていないが、ディスク加熱手段、不活性ガス供給手段、減圧手段を備えたものである。 Hereinafter, the present invention will be specifically explained with reference to the drawings. FIG. 1 is a schematic diagram showing an example of a vacuum thin film dryer used in the present invention. Inside the container, a supply tank for supplying a sodium hydrogen sulfide aqueous solution, a supply pump, a circulation tank, a circulation pump, and a supply nozzle are shown. It is equipped with Furthermore, the vacuum thin film dryer is equipped with a disk having a rotating shaft, a scraper for taking out the anhydrous sodium sulfide material from the surface of the disk, a collection tank for collecting the anhydrous sodium sulfide material, etc., as shown in Figure 1. Although not shown, it is equipped with a disk heating means, an inert gas supply means, and a pressure reduction means.

本発明の無水水硫化ソーダ有形物の製造方法は、水硫化ソーダ水溶液を出発原料とし、前記水硫化ソーダ水溶液をディスク表面に供給して薄膜化された水硫化ソーダ水溶液を得る薄膜形成工程(以下、「薄膜形成工程」と略記することがある)と、前記薄膜化された水硫化ソーダ水溶液を減圧下、不活性ガス雰囲気下で当該ディスク表面において脱水する乾燥工程(以下、「乾燥工程」と略記することがある)と、前記乾燥工程で得られる無水水硫化ソーダ有形物を当該ディスク表面から取り出す分離工程(以下、「分離工程」と略記することがある)とを、この順番で繰り返すことにより連続的に無水水硫化ソーダ有形物を得ることを特徴とするものである。 The method for producing an anhydrous sodium hydrogen sulfide tangible product of the present invention includes a thin film forming step (hereinafter referred to as "thin film forming process") in which a sodium hydrogen sulfide aqueous solution is used as a starting material, and the sodium hydrogen sulfide aqueous solution is supplied to the disk surface to obtain a thin film of the sodium hydrogen sulfide aqueous solution. , sometimes abbreviated as "thin film forming step"), and a drying step (hereinafter referred to as "drying step") in which the thin film-formed sodium hydrogen sulfide aqueous solution is dehydrated on the disk surface under reduced pressure and an inert gas atmosphere. ) and a separation step (hereinafter sometimes abbreviated as "separation step") in which the anhydrous sodium sulfide tangible material obtained in the drying step is removed from the surface of the disk, are repeated in this order. The method is characterized in that an anhydrous sodium sulfide solid material is continuously obtained.

後述する実施例と比較例との対比から分かるように、水硫化ソーダ有形物を減圧下で加熱脱水した比較例1では、水硫化ソーダ有形物が溶融して塊になるのを防ぐために昇温操作を過度に微調整しなければならず、脱水時間が長くなり、不純物である硫化ソーダ(NaS)の成分が増える結果となった。水硫化ソーダ水溶液を濃縮脱水した比較例2では、濃縮脱水が進むにつれて粘度が急激に上昇して塊となり、撹拌不能となるため脱水操作を中止せざるを得なかった。また、真空噴霧乾燥装置を用いて水硫化ソーダ水溶液を霧状に噴出して脱水した比較例3では、配管閉塞などが起きることで送液ポンプ圧力が高くなり、送液ポンプ圧力が高くなると、高温となった強アルカリの水硫化ソーダ水溶液が配管から噴き出すおそれがあるため、安全面に問題がある。また、噴霧圧力が安定せず、得られる水硫化ソーダの品質にばらつきがあった。これに対し、上記薄膜形成工程、乾燥工程及び分離工程をこの順番で繰り返し行った実施例1では、不純物の少ない無水水硫化ソーダ有形物を連続的に安全かつ効率良く得ることができる。したがって、このような方法を採用する本発明の意義が大きいことが分かる。 As can be seen from the comparison between the Examples and Comparative Examples described later, in Comparative Example 1, in which sodium bisulfide solids were heated and dehydrated under reduced pressure, the temperature was raised to prevent the sodium bisulfide solids from melting and becoming lumps. This resulted in excessive fine-tuning of the operation, increased dehydration time, and increased content of impurity sodium sulfide (Na 2 S). In Comparative Example 2, in which an aqueous sodium hydrogen sulfide solution was concentrated and dehydrated, as the concentration and dehydration progressed, the viscosity rapidly increased and the mixture became agglomerated, making it impossible to stir, so the dehydration operation had to be stopped. In addition, in Comparative Example 3, in which a vacuum spray dryer was used to spray an aqueous sodium bisulfide solution in the form of a mist for dehydration, the liquid pump pressure increased due to piping blockage, etc.; This poses a safety problem because there is a risk that a high-temperature strongly alkaline sodium hydrogen sulfide aqueous solution may spew out from the piping. In addition, the spray pressure was not stable, and the quality of the obtained sodium hydrogen sulfide varied. On the other hand, in Example 1, in which the above-mentioned thin film forming step, drying step, and separation step were repeated in this order, an anhydrous sodium sulfide tangible product containing few impurities could be obtained continuously, safely and efficiently. Therefore, it can be seen that the present invention employing such a method has great significance.

本発明における薄膜形成工程では、水硫化ソーダ水溶液をディスク表面に供給して薄膜化された水硫化ソーダ水溶液を得る工程が行われる。図1に示されるように、供給槽から水硫化ソーダ水溶液が供給ポンプで循環槽に送液されることが好ましく、循環槽から水硫化ソーダ水溶液が循環ポンプで供給ノズルに送液されることが好ましい。次いで、供給ノズルから水硫化ソーダ水溶液が回転するディスク表面に供給されることにより薄膜化された水硫化ソーダ水溶液を得る工程が好適に行われる。当該ディスク表面に付着されなかった余剰分の水硫化ソーダ水溶液を循環槽で回収し、再度、循環ポンプで供給ノズルに送液する方法が好適に採用される。このとき、ディスク加熱手段により当該ディスク表面が50~170℃に保たれていることが好ましく、80~150℃に保たれていることがより好ましい。ディスク加熱手段としては、特に限定されず、加熱装置を別途設けていてもよいし、後述する乾燥工程で取り除かれる蒸気を加熱手段として利用してもよい。なお、後述する乾燥工程と同様に、薄膜形成工程においても容器内を減圧下、不活性雰囲気下とする方法が好適に採用される。 In the thin film forming step of the present invention, a step of supplying an aqueous sodium hydrogen sulfide solution to the disk surface to obtain a thin film of the aqueous sodium hydrogen sulfide solution is performed. As shown in FIG. 1, it is preferable that the sodium bisulfide aqueous solution is sent from the supply tank to the circulation tank using a supply pump, and it is preferable that the sodium bisulfide aqueous solution is sent from the circulation tank to the supply nozzle using the circulation pump. preferable. Next, a step of obtaining a thin film of the sodium hydrogen sulfide aqueous solution by supplying the sodium hydrogen sulfide aqueous solution from the supply nozzle to the surface of the rotating disk is suitably performed. A preferred method is to collect the excess sodium bisulfide aqueous solution that has not adhered to the disk surface in a circulation tank and send it again to the supply nozzle using a circulation pump. At this time, the surface of the disk is preferably kept at 50 to 170° C., more preferably 80 to 150° C., by the disk heating means. The disk heating means is not particularly limited, and a heating device may be provided separately, or steam removed in the drying process described later may be used as the heating means. Note that, similarly to the drying step described later, a method in which the inside of the container is kept under reduced pressure and an inert atmosphere is preferably employed in the thin film forming step.

本発明で用いられる水硫化ソーダ水溶液の濃度としては特に限定されないが、10~70重量%であることが好ましい。水硫化ソーダ水溶液の濃度が10重量%未満の場合、著しく生産の効率が悪くなるおそれがあり、30重量%以上であることがより好ましく、40重量%以上であることが更に好ましい。一方、水硫化ソーダ水溶液の濃度が70重量%を超える場合、水溶液が送液途中の配管内で固結するおそれがあり、65重量%以下であることがより好ましく、55重量%以下であることが更に好ましい。 The concentration of the aqueous sodium hydrogen sulfide solution used in the present invention is not particularly limited, but is preferably 10 to 70% by weight. If the concentration of the sodium hydrogen sulfide aqueous solution is less than 10% by weight, production efficiency may deteriorate significantly, so it is more preferably 30% by weight or more, and even more preferably 40% by weight or more. On the other hand, if the concentration of the sodium hydrogen sulfide aqueous solution exceeds 70% by weight, there is a risk that the aqueous solution will solidify in the pipes during liquid delivery, so it is more preferably 65% by weight or less, and 55% by weight or less. is even more preferable.

本発明における乾燥工程では、前記薄膜化された水硫化ソーダ水溶液を減圧下、不活性ガス雰囲気下で当該ディスク表面において脱水する工程が行われる。ディスクの回転とともに、当該ディスク表面において薄膜化された水硫化ソーダ水溶液から水分が取り除かれることになる。このとき、薄膜形成工程と同様に、ディスク加熱手段により当該ディスク表面が50~170℃に保たれていることが好ましく、80~150℃に保たれていることがより好ましい。乾燥工程において、減圧下にする方法としては特に限定されず、真空ポンプ等の減圧手段で容器内を減圧下にする方法が好適に採用され、これにより、均一かつ効率良く水分が気化し、蒸気として取り除かれる。容器内に存在する蒸気を取り除く観点から、容器の任意の位置に蒸気を取り除く排出口を設けておくことが好適な実施態様である。 In the drying step in the present invention, the thin film-formed aqueous sodium hydrogen sulfide solution is dehydrated on the disk surface under reduced pressure and in an inert gas atmosphere. As the disk rotates, water is removed from the aqueous sodium hydrogen sulfide solution formed into a thin film on the surface of the disk. At this time, as in the thin film forming step, the disk surface is preferably kept at 50 to 170° C., more preferably 80 to 150° C., by a disk heating means. In the drying process, there are no particular restrictions on the method of reducing pressure, but a method of reducing the pressure inside the container using a vacuum pump or other pressure reducing means is preferably adopted.This allows the moisture to evaporate uniformly and efficiently, creating steam. removed as . From the viewpoint of removing the vapor present in the container, it is a preferred embodiment to provide an outlet for removing the vapor at an arbitrary position of the container.

また、乾燥工程において、不活性ガス雰囲気下にする方法としては特に限定されず、不活性ガス供給手段で不活性ガスを容器内に供給する方法が好適に採用される。不活性ガスとしては、窒素、ヘリウム、アルゴンが挙げられ、中でも窒素が好適に使用される。また、容器内に供給された不活性ガスを回収する回収手段を有することが好ましい。回収手段としては、特に限定されないが、上述した蒸気を取り除く排出口から蒸気とともに不活性ガスを回収してもよく、回収された不活性ガスと蒸気とを分離した後に、当該不活性ガスを不活性ガス供給手段で再度容器内に供給することも好適な実施態様である。 Further, in the drying step, the method of creating an inert gas atmosphere is not particularly limited, and a method of supplying an inert gas into the container using an inert gas supply means is suitably adopted. Examples of the inert gas include nitrogen, helium, and argon, of which nitrogen is preferably used. Moreover, it is preferable to have a recovery means for recovering the inert gas supplied into the container. The recovery means is not particularly limited, but the inert gas may be recovered along with the steam from the above-mentioned exhaust port for removing the steam, and after separating the recovered inert gas and steam, the inert gas is inert. It is also a preferred embodiment to supply the active gas into the container again using the active gas supply means.

本発明者らの検討により、乾燥工程における脱水時間が長くなると、硫化ソーダ(NaS)等の不純物の含有量が増加する傾向にあることが明らかとなった。かかる観点から、前記脱水時間は6~300秒であることが好ましく、10~240秒であることがより好ましく、20~180秒であることが更に好ましい。前記脱水時間がこのような範囲にあることにより不純物の少ない無水水硫化ソーダ有形物を得ることができる。本発明における脱水時間とは、乾燥工程に要する時間のことであり、薄膜形成工程において薄膜化された水硫化ソーダ水溶液を得た直後から、分離工程で無水水硫化ソーダ有形物をディスク表面から取り出す直前までの時間のことをいう。 Studies by the present inventors have revealed that as the dehydration time in the drying process becomes longer, the content of impurities such as sodium sulfide (Na 2 S) tends to increase. From this viewpoint, the dehydration time is preferably 6 to 300 seconds, more preferably 10 to 240 seconds, and even more preferably 20 to 180 seconds. By setting the dehydration time within such a range, it is possible to obtain an anhydrous sodium sulfide material with few impurities. The dehydration time in the present invention refers to the time required for the drying process, and immediately after obtaining the thin film-formed sodium hydrogen sulfide aqueous solution in the thin film forming process, the anhydrous sodium hydrogen sulfide tangible material is taken out from the disk surface in the separation process. Refers to the time just before.

乾燥工程における容器内の減圧度(絶対圧)としては、1~40kPaであることが好ましく、5~30kPaであることがより好ましい。当該減圧度を制御するとともに、当該ディスク表面の温度を制御することで、当該ディスク表面において薄膜化された水硫化ソーダ水溶液から効率良く水分を取り除き、無水水硫化ソーダ有形物を得ることができる。 The degree of reduced pressure (absolute pressure) inside the container in the drying step is preferably 1 to 40 kPa, more preferably 5 to 30 kPa. By controlling the degree of pressure reduction and the temperature of the disk surface, water can be efficiently removed from the aqueous sodium hydrogen sulfide solution formed into a thin film on the disk surface, and an anhydrous sodium hydrogen sulfide tangible product can be obtained.

次いで、本発明における分離工程では、乾燥工程で得られる無水水硫化ソーダ有形物を当該ディスク表面から取り出す工程が行われる。取り出す方法としては特に限定されないが、図1に示されるように、容器内にスクレーパーを備えていることが好ましく、ディスクの回転とともに乾燥工程で得られる無水水硫化ソーダ有形物を当該ディスク表面からスクレーパーでかき落し、当該かき落された無水水硫化ソーダ有形物が収集される収集槽を備えていることが好ましい。無水水硫化ソーダ有形物は潮解性を示すため、乾燥工程と同様に、分離工程においても容器内を減圧下、不活性雰囲気下とする方法が好適に採用される。 Next, in the separation step of the present invention, a step is performed to take out the anhydrous sodium sulfide tangible material obtained in the drying step from the surface of the disk. The method for taking out is not particularly limited, but as shown in FIG. 1, it is preferable to have a scraper in the container, and as the disk rotates, the anhydrous sodium sulfide material obtained in the drying process is removed from the surface of the disk using the scraper. It is preferable to provide a collection tank in which the scraped off anhydrous sodium sulfide material is collected. Since the anhydrous sodium sulfide material exhibits deliquescent properties, it is preferable to use a method in which the inside of the container is kept under reduced pressure and an inert atmosphere in the separation step as well as in the drying step.

本発明の無水水硫化ソーダ有形物の製造方法は、上記薄膜形成工程、乾燥工程及び分離工程をこの順番で繰り返すことを特徴としており、これにより、不純物の少ない無水水硫化ソーダ有形物を連続的に安全かつ効率良く得ることができる。本発明で得られる無水水硫化ソーダ有形物において、無水水硫化ソーダ成分の含有量が95重量%以上であることが好ましく、96重量%以上であることがより好ましく、97重量%以上であることが更に好ましい。なお、無水水硫化ソーダ成分の含有量は、通常、99.5重量%以下であり、99重量%以下であることが好ましい。 The method for producing an anhydrous sodium sulfide material of the present invention is characterized by repeating the above-mentioned thin film forming step, drying step, and separation step in this order, thereby continuously producing an anhydrous sodium sulfide material with few impurities. can be obtained safely and efficiently. In the anhydrous sodium sulfide tangible product obtained by the present invention, the content of the anhydrous sodium sulfide component is preferably 95% by weight or more, more preferably 96% by weight or more, and 97% by weight or more. is even more preferable. The content of the anhydrous sodium sulfide component is usually 99.5% by weight or less, preferably 99% by weight or less.

本発明で得られる無水水硫化ソーダ有形物において、水分の含有量は、3重量%以下であることが好ましく、2重量%以下であることがより好ましく、1重量%以下であることが更に好ましく、0.6重量%以下であることが特に好ましく、水分は実質的に含まれないことが最も好ましい。 In the anhydrous sodium sulfide tangible product obtained by the present invention, the water content is preferably 3% by weight or less, more preferably 2% by weight or less, and even more preferably 1% by weight or less. , 0.6% by weight or less, and most preferably substantially no water.

本発明で得られる無水水硫化ソーダ有形物において、硫化ソーダ(NaS)、炭酸ナトリウム(NaCO)、亜硫酸ナトリウム(NaSO)、チオ硫酸ナトリウム(Na)等の不純物が含まれ得るが、硫化ソーダ(NaS)、炭酸ナトリウム(NaCO)、亜硫酸ナトリウム(NaSO)及びチオ硫酸ナトリウム(Na)成分の合計含有量が5重量%以下であることが好ましく、4重量%以下であることがより好ましく、3重量%以下であることが更に好ましく、2重量%以下であることが特に好ましい。なお、前記合計含有量は、通常、0.5重量%以上である。 In the anhydrous sodium sulfide tangible product obtained in the present invention, sodium sulfide (Na 2 S), sodium carbonate (Na 2 CO 3 ), sodium sulfite (Na 2 SO 3 ), sodium thiosulfate (Na 2 S 2 O 3 ) Although the total content of sodium sulfide (Na 2 S), sodium carbonate (Na 2 CO 3 ), sodium sulfite (Na 2 SO 3 ), and sodium thiosulfate (Na 2 S 2 O 3 ) components may include impurities such as The amount is preferably 5% by weight or less, more preferably 4% by weight or less, even more preferably 3% by weight or less, and particularly preferably 2% by weight or less. Note that the total content is usually 0.5% by weight or more.

中でも、本発明で得られる無水水硫化ソーダ有形物において、硫化ソーダ成分の含有量が1.5重量%以下であることが好ましい。不純物をできるだけ少なくする観点から、硫化ソーダ成分の含有量は、1.2重量%以下であることがより好ましく、1.0重量%以下であることが更に好ましい。なお、硫化ソーダ成分の含有量は、通常、0.1重量%以上である。 Among these, in the anhydrous sodium hydrogen sulfide tangible product obtained in the present invention, it is preferable that the content of the sodium sulfide component is 1.5% by weight or less. From the viewpoint of minimizing impurities, the content of the sodium sulfide component is more preferably 1.2% by weight or less, and even more preferably 1.0% by weight or less. Note that the content of the sodium sulfide component is usually 0.1% by weight or more.

本発明で得られる無水水硫化ソーダ有形物の形状としては特に限定されず、フレーク状、チップ状、ペレット状等、その他任意の形状であってよい。本発明で得られる無水水硫化ソーダ有形物は、水分が少なく不純物も少ないため、有機合成用原料や工業製品用原料として好適に用いることができる。 The shape of the anhydrous sodium sulfide tangible product obtained in the present invention is not particularly limited, and may be in any other shape such as flakes, chips, pellets, etc. The anhydrous sodium sulfide tangible product obtained in the present invention has low water content and little impurities, so it can be suitably used as a raw material for organic synthesis or a raw material for industrial products.

以下、実施例を用いて本発明を更に具体的に説明する。 Hereinafter, the present invention will be explained in more detail using Examples.

実施例1
真空薄膜乾燥機(株式会社西村鐵工所製)の供給槽から45重量%水硫化ソーダ水溶液を供給ポンプにより循環槽に2L供給した。循環槽から45重量%水硫化ソーダ水溶液を循環ポンプにより供給ノズルに送液し、供給ノズルの先端から45重量%水硫化ソーダ水溶液を回転する伝熱面積0.4mのディスク表面に連続的に供給し、当該ディスク表面に水硫化ソーダ水溶液からなる薄膜が形成された。ディスクに付着しなかった余剰の水硫化ソーダ水溶液は循環槽に戻り、再度、循環槽から供給ノズルに送液される。このとき、装置内の減圧度(絶対圧)は20kPaabs、ディスク蒸気圧力(ゲージ圧)は0.3MpaG、窒素量は50L/min(99.9%以上)、ディスク表面の温度は140℃であった。ディスクの回転とともに当該薄膜中の水分が30秒で脱水されて有形物となり、当該有形物をディスク表面からスクレーパーで掻き出して収集槽にて回収し、無水水硫化ソーダ有形物を得た。得られた無水水硫化ソーダ有形物の成分を中和滴定法と酸化還元滴定法を組み合わせて分析した。水分値は全体からその他の成分を差し引くことで算出した。表1に結果をまとめて示す。
Example 1
From the supply tank of a vacuum thin film dryer (manufactured by Nishimura Iron Works Co., Ltd.), 2 L of a 45% by weight sodium hydrogen sulfide aqueous solution was supplied to the circulation tank using a supply pump. A 45% by weight sodium hydrogen sulfide aqueous solution is sent from the circulation tank to the supply nozzle using a circulation pump, and from the tip of the supply nozzle, the 45% by weight sodium hydrogensulfide aqueous solution is continuously applied to the surface of a rotating disk with a heat transfer area of 0.4 m2 . A thin film made of an aqueous sodium hydrogen sulfide solution was formed on the surface of the disk. The excess sodium hydrogen sulfide aqueous solution that did not adhere to the disk returns to the circulation tank, and is sent from the circulation tank to the supply nozzle again. At this time, the degree of vacuum (absolute pressure) inside the device was 20 kPaabs, the disk steam pressure (gauge pressure) was 0.3 MpaG, the nitrogen amount was 50 L/min (99.9% or more), and the disk surface temperature was 140°C. Ta. As the disk rotated, the water in the thin film was dehydrated in 30 seconds to become a tangible material, which was scraped off from the disk surface with a scraper and collected in a collection tank to obtain a tangible material of anhydrous sodium sulfide. The components of the obtained anhydrous sodium sulfide material were analyzed using a combination of neutralization titration and redox titration. The moisture value was calculated by subtracting other components from the total. Table 1 summarizes the results.

比較例1
フレーク状の水硫化ソーダ300kgをコニカルドライヤーに仕込み、真空度を0.8~1.3kpaとした。コニカルドライヤーのジャケット温度を上げるための温水を100分かけて45℃まで昇温した。以下、ドレンが出始めるとそのまま温度をキープし、その後徐々に昇温する操作を行った。1℃/hで47℃まで昇温したところ、ドレンが出てきたため47℃で3時間キープした。48℃に昇温後夜間はそのまま815分キープした。その後1℃/hで50℃まで昇温したところドレンが多く出始めた。0.5℃/hで51℃まで昇温するとドレンがさらに多量に出始めたため、昇温を停止した。そのまま6時間キープした。52℃まで昇温し夜間はそのまま800分キープした。その後0.5℃/hで昇温し、そのままの状態で1410分キープした。55℃まで0.5℃/3hで昇温し、そのまま55℃で630分キープした。55.5℃で1時間キープした後、56℃に昇温した。その結果ドレン量が増えたため、4時間キープし、0.5℃/2hで60℃まで昇温した。70℃まで1℃/hで昇温し、79.5℃まで0.5~1℃/30minで昇温し、脱水を終了した。得られた水硫化ソーダ有形物の成分を実施例1記載の手法を用いて分析した。表1に結果をまとめて示す。
Comparative example 1
300 kg of flaky sodium hydrogen sulfide was charged into a conical dryer, and the degree of vacuum was adjusted to 0.8 to 1.3 kpa. Hot water was heated to 45°C over 100 minutes to raise the jacket temperature of the conical dryer. Hereafter, once condensate started to come out, the temperature was kept as it was, and then the temperature was gradually raised. When the temperature was raised to 47°C at a rate of 1°C/h, condensate came out, so the temperature was kept at 47°C for 3 hours. After raising the temperature to 48°C, it was kept at that temperature for 815 minutes overnight. Thereafter, when the temperature was raised to 50°C at a rate of 1°C/h, a large amount of condensate began to come out. When the temperature was raised to 51°C at a rate of 0.5°C/h, a large amount of condensate began to come out, so the temperature increase was stopped. I kept it like that for 6 hours. The temperature was raised to 52°C and kept at that temperature for 800 minutes at night. Thereafter, the temperature was raised at a rate of 0.5° C./h and kept at that state for 1410 minutes. The temperature was raised to 55°C at a rate of 0.5°C/3h, and kept at 55°C for 630 minutes. After keeping the temperature at 55.5°C for 1 hour, the temperature was raised to 56°C. As a result, the amount of drain increased, so the temperature was kept for 4 hours and the temperature was raised to 60°C at a rate of 0.5°C/2h. The temperature was raised to 70°C at a rate of 1°C/h, and the temperature was raised to 79.5°C at a rate of 0.5 to 1°C/30 min to complete the dehydration. The components of the obtained sodium bisulfide material were analyzed using the method described in Example 1. Table 1 summarizes the results.

比較例2
45重量%水硫化ソーダ水溶液1820gを撹拌機能の付いた減圧濃縮装置「PVミキサー」(株式会社神鋼環境ソリューション製)に仕込み、撹拌速度70RPM、ジャケット温度を60℃まで昇温し、減圧度を30Torrとし、水硫化ソーダがスラリー状になるまでそのままの状態を保った。その後スラリー状態になってから徐々にジャケット温度を80℃まで昇温し、減圧度を20Torrとした。その結果、撹拌が不能となったため中止した。ここまでの操作で得られた水硫化ソーダ有形物の成分を実施例1記載の手法を用いて分析した。表1に結果をまとめて示す。
Comparative example 2
1,820 g of a 45% by weight sodium hydrogen sulfide aqueous solution was charged into a vacuum concentration device "PV Mixer" (manufactured by Kobelco Eco-Solutions Co., Ltd.) equipped with a stirring function, the stirring speed was 70 RPM, the jacket temperature was raised to 60°C, and the degree of vacuum was 30 Torr. This state was maintained until the sodium hydrogen sulfide became a slurry. Thereafter, after the mixture became a slurry, the jacket temperature was gradually raised to 80° C., and the degree of vacuum was set to 20 Torr. As a result, stirring became impossible, so it was discontinued. The components of the sodium hydrogen sulfide material obtained through the operations up to this point were analyzed using the method described in Example 1. Table 1 summarizes the results.

比較例3
45重量%水硫化ソーダ水溶液を6L/hにて連続的に真空噴霧乾燥装置の熱交換配管に供給した。その際、装置全体を30Torrに減圧した。熱交換配管は150℃まで昇温されており、霧状に噴出された45重量%水硫化ソーダ水溶液が一気に脱水され、捕集缶に固形物として吹き出された。捕集缶ジャケットは吸湿や結露を防ぐため120℃に昇温していた。捕集缶で集められた水硫化ソーダの粉末を粉体受器にて採取した。得られた水硫化ソーダの粉末の成分を実施例1記載の手法を用いて分析した。表1に結果をまとめて示す。熱交換配管に水硫化ソーダ水溶液を供給する際に、配管閉塞などが起きることで送液ポンプ圧力が高くなることが分かった。このように、送液ポンプ圧力が高くなると、高温となった強アルカリの水硫化ソーダ水溶液が配管から噴き出すおそれがあるため、安全面に問題がある。また、捕集缶で集められた水硫化ソーダの粉末の品質にばらつきがあった。
Comparative example 3
A 45% by weight sodium hydrogen sulfide aqueous solution was continuously supplied to the heat exchange piping of the vacuum spray dryer at 6 L/h. At that time, the pressure of the entire apparatus was reduced to 30 Torr. The temperature of the heat exchange piping was raised to 150° C., and the 45% by weight aqueous sodium hydrogen sulfide solution that was sprayed out in the form of a mist was dehydrated at once and was blown out as a solid substance into the collecting can. The temperature of the collection can jacket was raised to 120°C to prevent moisture absorption and condensation. The sodium hydrogen sulfide powder collected in the collection can was collected in a powder receiver. The components of the obtained sodium bisulfide powder were analyzed using the method described in Example 1. Table 1 summarizes the results. It was found that when supplying an aqueous sodium bisulfide solution to heat exchange piping, the pressure of the liquid pump increases due to piping blockage. As described above, when the pressure of the liquid pump increases, there is a risk that the hot strongly alkaline sodium hydrogen sulfide aqueous solution may spout out from the piping, which poses a safety problem. Additionally, there were variations in the quality of the sodium bisulfide powder collected in the collection cans.

Figure 2023163764000002
Figure 2023163764000002

1 真空薄膜乾燥機
2 容器
3 水硫化ソーダ水溶液
4 供給槽
5 供給ポンプ
6 循環槽
7 循環ポンプ
8 供給ノズル
9 回転軸
10 ディスク
11 スクレーパー
12 無水水硫化ソーダ有形物
13 収集槽
1 Vacuum thin film dryer 2 Container 3 Sodium hydrogen sulfide aqueous solution 4 Supply tank 5 Supply pump 6 Circulation tank 7 Circulation pump 8 Supply nozzle 9 Rotating shaft 10 Disk 11 Scraper 12 Anhydrous sodium hydrogen sulfide tangible material 13 Collection tank

Claims (6)

水硫化ソーダ水溶液を出発原料とし、
前記水硫化ソーダ水溶液をディスク表面に供給して薄膜化された水硫化ソーダ水溶液を得る薄膜形成工程と、
前記薄膜化された水硫化ソーダ水溶液を減圧下、不活性ガス雰囲気下で当該ディスク表面において脱水する乾燥工程と、
前記乾燥工程で得られる無水水硫化ソーダ有形物を当該ディスク表面から取り出す分離工程とを、
この順番で繰り返すことにより連続的に無水水硫化ソーダ有形物を得ることを特徴とする無水水硫化ソーダ有形物の製造方法。
Using an aqueous solution of sodium hydrogen sulfide as a starting material,
a thin film forming step of supplying the sodium hydrogen sulfide aqueous solution to the disk surface to obtain a thin film of the sodium hydrogen sulfide aqueous solution;
a drying step of dehydrating the thinned sodium hydrogen sulfide aqueous solution on the surface of the disk under reduced pressure and an inert gas atmosphere;
a separation step of removing the anhydrous sodium sulfide solids obtained in the drying step from the surface of the disk;
A method for producing an anhydrous soda sulfide tangible product, which comprises continuously obtaining an anhydrous sodium sulfide tangible product by repeating this order.
前記乾燥工程における脱水時間が6~300秒である請求項1に記載の無水水硫化ソーダ有形物の製造方法。 The method for producing an anhydrous sodium sulfide tangible product according to claim 1, wherein the dehydration time in the drying step is 6 to 300 seconds. 前記水硫化ソーダ水溶液の濃度が10~70重量%である請求項1又は2に記載の無水水硫化ソーダ有形物の製造方法。 The method for producing an anhydrous sodium hydrogen sulfide tangible product according to claim 1 or 2, wherein the concentration of the sodium hydrogen sulfide aqueous solution is 10 to 70% by weight. 前記無水水硫化ソーダ有形物における無水水硫化ソーダ成分の含有量が95重量%以上である請求項1又は2に記載の無水水硫化ソーダ有形物の製造方法。 The method for producing an anhydrous sodium sulfide material according to claim 1 or 2, wherein the content of the anhydrous sodium sulfide component in the anhydrous sodium sulfide material is 95% by weight or more. 前記無水水硫化ソーダ有形物における硫化ソーダ成分の含有量が1.5重量%以下である請求項1又は2に記載の無水水硫化ソーダ有形物の製造方法。 The method for producing an anhydrous sodium sulfide material according to claim 1 or 2, wherein the content of the sodium sulfide component in the anhydrous sodium sulfide material is 1.5% by weight or less. 前記無水水硫化ソーダ有形物における水分の含有量が3重量%以下である請求項1又は2に記載の無水水硫化ソーダ有形物の製造方法。 The method for producing an anhydrous soda sulfide tangible product according to claim 1 or 2, wherein the water content in the anhydrous sodium sulfide tangible product is 3% by weight or less.
JP2022074886A 2022-04-28 2022-04-28 Producing method of anhydrous sodium hydrosulfide tangible product Pending JP2023163764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022074886A JP2023163764A (en) 2022-04-28 2022-04-28 Producing method of anhydrous sodium hydrosulfide tangible product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022074886A JP2023163764A (en) 2022-04-28 2022-04-28 Producing method of anhydrous sodium hydrosulfide tangible product

Publications (1)

Publication Number Publication Date
JP2023163764A true JP2023163764A (en) 2023-11-10

Family

ID=88652175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022074886A Pending JP2023163764A (en) 2022-04-28 2022-04-28 Producing method of anhydrous sodium hydrosulfide tangible product

Country Status (1)

Country Link
JP (1) JP2023163764A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7466259B1 (en) 2023-10-25 2024-04-12 ナガオ株式会社 Method for producing anhydrous sodium sulfide shaped product or anhydrous sodium polysulfide shaped product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7466259B1 (en) 2023-10-25 2024-04-12 ナガオ株式会社 Method for producing anhydrous sodium sulfide shaped product or anhydrous sodium polysulfide shaped product

Similar Documents

Publication Publication Date Title
JP3808672B2 (en) Industrial recovery method of terephthalic acid from recovered pulverized polyethylene terephthalate
RU2705063C2 (en) Method of producing aluminium chloride derivatives
JP2023163764A (en) Producing method of anhydrous sodium hydrosulfide tangible product
TWI699333B (en) Process for manufacturing highly porous slaked lime and product thereby obtained
CN102352054A (en) Recovery process of solvent in polyphenylene sulfide resin production process
CN103408023A (en) Method and equipment for treatment of chlorosilane-containing waste liquid
CN105417510A (en) Method for achieving ammonium chloride cooperative production through ADC foaming agent wastewater by means of total-hydrochloric acid pure hydrazine hydrate condensation
CN111186852B (en) Process for purifying quartz material and preparing aluminum fluoride and high-purity white carbon black by using byproduct fluosilicic acid
JP4054622B2 (en) Gas hydrate dehydrator
WO2018199296A1 (en) Methionine production method and production equipment
JPH06199734A (en) Improved method for recovery of alkali or alkali earth metal terephthalate and alkylene glycol from polyalkylene terephthalate
CN104211018A (en) Method and device for recovering high-purity sulfur from sulfur foam
CN102285653A (en) Method for removing carbon impurities in silicon carbide micropowder
JP7466259B1 (en) Method for producing anhydrous sodium sulfide shaped product or anhydrous sodium polysulfide shaped product
IL111438A (en) Anhydrous magnesium chloride
CN203373161U (en) Equipment for treating liquid waste containing chlorosilane
JP4953586B2 (en) Fluorine recovery method
CN110697731A (en) Method for preparing ammonium sulfate and calcium carbonate from desulfurized gypsum
CN108821244A (en) The recovery process of alkali and catalyst in a kind of desulfurization waste liquor
JPS61136523A (en) Production of polyarylene sulfide
CN112299455A (en) Method for directly preparing industrial grade or battery grade lithium carbonate by using crude lithium carbonate
JPH0542460B2 (en)
CN103274433B (en) The recovery method and device of double salt method dewatering bischofite auxiliary agent
CN104817478A (en) Method for recovering biurea and preparing azodicarbonamide
CN108823433B (en) Post-treatment method for extracting titanium powder crude product from SCR catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240117