JP2023161905A - Earthquake influence evaluation device and earthquake influence evaluation method - Google Patents
Earthquake influence evaluation device and earthquake influence evaluation method Download PDFInfo
- Publication number
- JP2023161905A JP2023161905A JP2022072546A JP2022072546A JP2023161905A JP 2023161905 A JP2023161905 A JP 2023161905A JP 2022072546 A JP2022072546 A JP 2022072546A JP 2022072546 A JP2022072546 A JP 2022072546A JP 2023161905 A JP2023161905 A JP 2023161905A
- Authority
- JP
- Japan
- Prior art keywords
- earthquake
- plasticity
- beam member
- impact
- yield
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000011156 evaluation Methods 0.000 title claims abstract description 62
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 56
- 239000010959 steel Substances 0.000 claims abstract description 56
- 238000004364 calculation method Methods 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims description 10
- 238000010276 construction Methods 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 18
- 238000005452 bending Methods 0.000 description 16
- 238000012360 testing method Methods 0.000 description 12
- 238000003860 storage Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 230000002250 progressing effect Effects 0.000 description 2
- 241000237509 Patinopecten sp. Species 0.000 description 1
- 241000316887 Saissetia oleae Species 0.000 description 1
- 206010044565 Tremor Diseases 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 235000020637 scallop Nutrition 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Landscapes
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
Description
本発明は、地震影響評価装置及び地震影響評価方法に関する。 The present invention relates to an earthquake impact evaluation device and an earthquake impact evaluation method.
特許文献1には、建築物の固有振動数が地震前後においてどの程度変化したかによって建築物の状態を把握する装置が開示されている。 Patent Document 1 discloses a device that grasps the state of a building based on how much the natural frequency of the building has changed before and after an earthquake.
特許文献1に記載された装置では、建築物全体の健全性が評価されているが、建築物が地震で受けた影響をより正確に評価するには、建築物を構成する鋼製部材が地震時にどの程度変形していたかをそれぞれ把握する必要がある。しかしながら、地震時に各鋼製部材に生じた変形量を計測するには、例えば、各鋼製部材に計測センサ等を設置し、記録計で常時計測を行い、地震後に解析を行うことが考えられるが、計測コストが増大するとともに解析工数が増大するおそれがある。 The device described in Patent Document 1 evaluates the soundness of the entire building, but in order to more accurately evaluate the impact of an earthquake on the building, it is necessary to It is necessary to understand the extent to which each object was deformed at the time. However, in order to measure the amount of deformation that occurs in each steel member during an earthquake, it is conceivable to install measurement sensors, etc. on each steel member, constantly measure with a recorder, and perform analysis after the earthquake. However, there is a risk that the measurement cost and the number of analysis steps will increase.
本発明は、鉄骨造建築物を構成する鋼製部材が地震で受けた影響を容易に評価可能とすることを目的とする。 An object of the present invention is to enable easy evaluation of the effects of earthquakes on steel members constituting steel-framed buildings.
本発明は、鉄骨造建築物を構成する鋼製部材が地震で受けた影響を評価する地震影響評価装置であって、鋼製部材の塑性化領域の範囲を取得する取得部と、塑性化領域の範囲に基づいて地震時の鋼製部材の塑性率を演算する演算部と、塑性率に基づいて鋼製部材が地震で受けた影響を評価する評価部と、を備える。 The present invention is an earthquake impact evaluation device that evaluates the impact of an earthquake on steel members constituting a steel frame building, and includes an acquisition unit that acquires the range of a plasticized region of a steel member; The present invention includes a calculation unit that calculates the plasticity rate of the steel member during an earthquake based on the range of , and an evaluation unit that evaluates the impact of the earthquake on the steel member based on the plasticity rate.
また、本発明は、鉄骨造建築物を構成する鋼製部材が地震で受けた影響を評価する地震影響評価方法であって、鋼製部材の塑性化領域の範囲を取得するステップと、塑性化領域の範囲に基づいて地震時の鋼製部材の塑性率を演算するステップと、塑性率に基づいて鋼製部材が地震で受けた影響を評価するステップと、を含む。 The present invention also provides an earthquake impact evaluation method for evaluating the impact of an earthquake on steel members constituting a steel frame building, which includes the steps of acquiring the range of a plasticized region of a steel member; The method includes the steps of calculating the plasticity rate of the steel member during an earthquake based on the range of the area, and evaluating the influence of the steel member due to the earthquake based on the plasticity rate.
本発明によれば、鉄骨造建築物を構成する鋼製部材が地震で受けた影響を容易に評価することができる。 According to the present invention, it is possible to easily evaluate the influence of an earthquake on steel members constituting a steel-framed building.
以下、図面を参照して、本発明の実施形態に係る地震影響評価装置及び地震影響評価方法について説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS An earthquake impact evaluation device and an earthquake impact evaluation method according to embodiments of the present invention will be described below with reference to the drawings.
本発明の実施形態に係る地震影響評価装置10は、鉄骨造建築物を構成する梁や柱といった鋼製部材が地震で受けた影響を地震後に評価するための装置である。以下では、図1に示すように、鉛直方向に沿って立設された柱部材1に対して溶接接合され、水平方向に沿って配置された梁部材2が地震で受けた影響を地震後に評価する場合について説明する。なお、地震影響評価装置10の評価対象となる鋼製部材は、柱部材1に限定されず、鉄骨製の柱部材やブレース材であってもよい。 The earthquake impact evaluation device 10 according to the embodiment of the present invention is a device for evaluating the impact of an earthquake on steel members such as beams and columns constituting a steel-framed building after an earthquake. Below, as shown in Figure 1, we will evaluate the effects of an earthquake on a beam member 2, which is welded to a column member 1 erected along the vertical direction and placed along the horizontal direction, after the earthquake. Let's explain the case. Note that the steel member to be evaluated by the earthquake impact evaluation device 10 is not limited to the column member 1, and may be a steel column member or a brace material.
梁部材2は、一対のフランジ部3,4と、一対のフランジ部3,4に挟まれたウェブ部5と、を有するH形鋼材であって、一対のフランジ部3,4となる一対の鋼板がウェブ部5となる鋼板に溶接接合されることによって形成された、いわゆるビルドH形鋼である。なお、梁部材2は、圧延により形成されたロールH形鋼であってもよい。 The beam member 2 is an H-shaped steel material having a pair of flange portions 3 and 4 and a web portion 5 sandwiched between the pair of flange portions 3 and 4. This is a so-called built H-section steel formed by welding a steel plate to a steel plate that will become the web portion 5. Note that the beam member 2 may be a rolled H-shaped steel formed by rolling.
梁部材2は、鋼管柱である柱部材1に設けられたガセットプレート6に、図示しない高力ボルトを介してウェブ部5が仮接合された状態で一対のフランジ部3,4を柱部材1に設けられた一対のダイアフラム7にそれぞれ溶接接合することによって柱部材1に接合される。なお、柱部材1に対するウェブ部5の接合は、高力ボルトによるボルト接合に限定されず、ウェブ部5の端面を柱部材1に直接溶接接合することにより行われてもよい。 The beam member 2 has a pair of flange portions 3 and 4 attached to the column member 1 with a web portion 5 temporarily joined to a gusset plate 6 provided on the column member 1, which is a steel pipe column, via high-strength bolts (not shown). It is joined to the column member 1 by welding and joining to a pair of diaphragms 7 provided in the column member 1, respectively. Note that the connection of the web portion 5 to the column member 1 is not limited to bolt connection using high-strength bolts, and may be performed by directly welding the end surface of the web portion 5 to the column member 1.
このように柱部材1に接合された梁部材2が、地震によって永久ひずみ(残留ひずみ)が残る程度の損傷を受けると、永久ひずみが生じた部分において、フランジ部3,4を覆う黒皮(ミルスケール)や耐火被覆に剥がれが生じる。このため、梁部材2の固定端である柱部材1との接合部からどの程度の範囲にわたって梁部材2が塑性化したかを目視によって判断することが可能である。 When the beam member 2 joined to the column member 1 is damaged by an earthquake to the extent that permanent strain (residual strain) remains, a black crust (black crust) covering the flanges 3 and 4 occurs in the part where the permanent strain has occurred. Mill scale) and fireproof coating may peel off. Therefore, it is possible to visually determine to what extent the beam member 2 has become plasticized from the joint with the column member 1, which is the fixed end of the beam member 2.
また、梁部材2が塑性化した領域を測定するには、梁部材2の材軸方向(長手方向)に沿って予め歪みゲージや光ファイバ等の計測センサを配置しておき、地震後に計測センサでひずみ(永久ひずみ)が検出された範囲を梁部材2が塑性化した範囲として把握することも可能である。 In addition, in order to measure the plasticized region of the beam member 2, a measurement sensor such as a strain gauge or an optical fiber is placed in advance along the material axis direction (longitudinal direction) of the beam member 2, and the measurement sensor is placed after the earthquake. It is also possible to grasp the range in which strain (permanent strain) is detected as the range in which the beam member 2 has become plastic.
また、フランジ部3,4を覆う耐火被覆を剥がして部材の硬さを計測し、永久ひずみの影響によって硬さが上昇した範囲を、梁部材2が塑性化した範囲として把握することも可能である。 It is also possible to measure the hardness of the member by peeling off the fireproof covering covering the flange parts 3 and 4, and to determine the range where the hardness has increased due to the influence of permanent strain as the range where the beam member 2 has become plastic. be.
このように梁部材2が塑性化している範囲を地震後に把握することは可能であるが、梁部材2が地震で受けた影響をより正確に評価するには、梁部材2が地震時にどの程度変形していたかを把握する必要がある。しかしながら、地震時に梁部材2に生じた変形量を計測するには、例えば、各梁部材2に計測センサを設置しておき、記録計で常時計測を行い、地震後に解析を行うことが考えられるが、計測に必要なコストが増大するとともに解析に要する工数も増大するおそれがある。 In this way, it is possible to understand the extent to which the beam member 2 has become plastic after an earthquake, but in order to more accurately evaluate the impact that the beam member 2 received during the earthquake, it is necessary to understand the extent to which the beam member 2 has become plastic during the earthquake. It is necessary to understand whether it has been deformed. However, in order to measure the amount of deformation that occurred in the beam members 2 during an earthquake, it is conceivable to install measurement sensors on each beam member 2, constantly measure with a recorder, and perform analysis after the earthquake. However, there is a risk that the cost required for measurement will increase and the number of man-hours required for analysis will also increase.
そこで本実施形態では、上述のような種々手法によって地震後に把握された梁部材2の塑性化した範囲の大きさを利用して、地震時に梁部材2がどの程度の損傷を受けたのかを推定している。 Therefore, in this embodiment, the extent of damage to the beam member 2 during the earthquake is estimated by using the size of the plasticized range of the beam member 2, which was determined after the earthquake using the various methods described above. are doing.
ここで、上述のようにして地震後に把握された梁部材2の塑性化範囲Lyは、図2に示される梁部材2の断面における回転角θと曲げモーメントMとの関係において、弾性勾配Kの線上から乖離したときのモーメントを降伏モーメントMyとした場合に、降伏モーメントMyを超えて変形した箇所であり、例えば、図3に示されるように、梁部材2の固定端である柱部材1との接合部から所定の範囲に渡って生じる。 Here, the plasticization range Ly of the beam member 2 ascertained after the earthquake as described above is determined by the elastic gradient K in the relationship between the rotation angle θ and the bending moment M in the cross section of the beam member 2 shown in FIG. If the moment when the beam deviates from the line is the yield moment My, then this is the location where the deformation exceeds the yield moment My. For example, as shown in FIG. occurs over a predetermined range from the joint of the
図2は、一定荷重あるいは一定変形毎に加力を止めて、梁部材2のひずみや変形度合いを測定する、いわゆる静的単調載荷試験により得られた結果を示すグラフであり、梁部材2の断面における回転角θと曲げモーメントMとの関係が示されている。図3は、モーメント図であり、梁部材2の所定の載荷点に荷重が作用した場合の梁部材2の材軸方向(長手方向)における曲げモーメントMが示されている。 FIG. 2 is a graph showing the results obtained from a so-called static monotonic loading test in which the strain and deformation degree of the beam member 2 is measured by stopping the application of a constant load or every constant deformation. The relationship between the rotation angle θ and the bending moment M in the cross section is shown. FIG. 3 is a moment diagram showing the bending moment M in the axial direction (longitudinal direction) of the beam member 2 when a load is applied to a predetermined loading point of the beam member 2.
図3に示されるように、梁部材2と柱部材1との接合部から所定の距離Lだけ離れた載荷点に下方への荷重Pが作用した場合、曲げモーメントMは、載荷点から接合部に向かって徐々に大きくなり、接合部において最大(M=P・L)となる。そして、曲げモーメントMが降伏モーメントMyを超えている部分は、塑性化し塑性化範囲Lyとなる。これは載荷点に上方への荷重(-P)が作用した場合も同様である。 As shown in FIG. 3, when a downward load P acts on a loading point that is a predetermined distance L from the joint between the beam member 2 and the column member 1, the bending moment M is applied from the loading point to the joint. It gradually increases in size toward the junction, and reaches its maximum (M=P·L) at the junction. Then, the portion where the bending moment M exceeds the yield moment My becomes plastic and becomes a plasticization range Ly. This also applies when an upward load (-P) is applied to the loading point.
図3に示される荷重Pの大きさと塑性化範囲Lyの大きさとの関係性、すなわち、曲げモーメントMの大きさと塑性化範囲Lyの大きさとの関係性を数式化すると下記数1のように表される。 The relationship between the magnitude of the load P and the magnitude of the plasticization range Ly shown in FIG. 3, that is, the relationship between the magnitude of the bending moment M and the magnitude of the plasticization range Ly, can be expressed as the following equation be done.
上記数1中のMは梁部材2の端部における曲げモーメントであり、Lは梁部材2と柱部材1との接合部から載荷点までの距離であり、Myは梁部材2の降伏モーメントである。なお、載荷点は対象梁の長期荷重と地震荷重を考慮して得られた曲げモーメント図等から設定される。 In the above equation 1, M is the bending moment at the end of the beam member 2, L is the distance from the joint between the beam member 2 and the column member 1 to the loading point, and My is the yield moment of the beam member 2. be. The loading point is determined from the bending moment diagram, etc., obtained by considering the long-term load and seismic load of the target beam.
上記数1からも明らかであるように、梁部材2の端部における曲げモーメントMが大きくなるほど、塑性化範囲Lyは大きくなり、梁部材2の端部における曲げモーメントMが降伏モーメントMyよりも小さい場合、すなわち、荷重Pが比較的小さい場合には、梁部材2に塑性化範囲Lyは生じない。なお、塑性化範囲Lyとは、梁部材2のフランジ部3,4の表面が僅かに塑性化している部分を含む範囲であって、梁部材2の全断面が塑性化している範囲を意味するものではない。 As is clear from the above equation 1, the larger the bending moment M at the end of the beam member 2, the larger the plasticization range Ly, and the bending moment M at the end of the beam member 2 is smaller than the yield moment My. In other words, when the load P is relatively small, the plasticized range Ly does not occur in the beam member 2. Note that the plasticized range Ly is a range that includes a portion where the surfaces of the flange portions 3 and 4 of the beam member 2 are slightly plasticized, and means a range where the entire cross section of the beam member 2 is plasticized. It's not a thing.
以下では、このように接合部から所定の範囲に渡って梁部材2に生じた塑性化範囲Lyを梁部材2の梁せいHで除して無次元化したパラメータを塑性化領域(Ly/H)として説明する。 In the following, the plasticization range Ly generated in the beam member 2 over a predetermined range from the joint is divided by the beam length H of the beam member 2 to make it dimensionless, and the parameter is expressed as the plasticization area (Ly/H ).
また、以下では、図2に示される梁部材2の断面における回転角θと曲げモーメントMとの関係において、弾性勾配Kの線上から乖離したときの回転角θを降伏変形θyとし、降伏変形θyを分母として算出される塑性率を降伏塑性率μyとして説明する。 In addition, in the following, in the relationship between the rotation angle θ and the bending moment M in the cross section of the beam member 2 shown in FIG. The plasticity rate calculated using the denominator will be described as the yield plasticity rate μy.
なお、全塑性荷重を基準とした塑性率μでは、塑性率μが1となったとき、梁部材2のフランジ部3,4等が完全に降伏し、全断面が塑性化した状態となっていることを意味することから、塑性化が進行する状況、例えば、梁部材2のフランジ部3,4の表面から徐々に塑性化が進む状況を示す指標としては適切ではない。このため、上述のように定義される降伏塑性率μyを用いる。 In addition, when the plasticity ratio μ is based on the total plastic load, when the plasticity ratio μ becomes 1, the flange portions 3, 4, etc. of the beam member 2 completely yield, and the entire cross section becomes plastic. Therefore, it is not suitable as an indicator indicating a situation where plasticization is progressing, for example, a situation where plasticization is gradually progressing from the surfaces of the flange parts 3 and 4 of the beam member 2. For this reason, the yield plasticity modulus μy defined as described above is used.
次に、図3に示される梁部材2の載荷点を一定の振幅で変位させる一定振幅繰り返し載荷試験の結果から得られる塑性化領域(Ly/H)と降伏塑性率μyとの関係性について、図4~6を参照して説明する。 Next, regarding the relationship between the plasticization region (Ly/H) and the yield plasticity μy obtained from the results of a constant amplitude repeated loading test in which the loading point of the beam member 2 shown in FIG. 3 is displaced at a constant amplitude, This will be explained with reference to FIGS. 4 to 6.
図4は、一定振幅繰り返し載荷試験から得られる降伏塑性率μyと曲げモーメントMとの一般的な関係性を示すグラフであり、図5は、複数の降伏塑性率μyにおいて行われた一定振幅繰り返し載荷試験から得られる繰り返し数Nと塑性化領域(Ly/H)との一般的な関係性を示すグラフであり、図6は、図5のグラフから得られた塑性化領域(Ly/H)と一定振幅時の降伏塑性率μyとの関係性を示すグラフである。 FIG. 4 is a graph showing the general relationship between the yield plasticity modulus μy and bending moment M obtained from a constant amplitude repeated loading test, and FIG. 6 is a graph showing the general relationship between the number of repetitions N obtained from the loading test and the plasticization region (Ly/H), and FIG. 6 shows the plasticization region (Ly/H) obtained from the graph of FIG. 5. It is a graph showing the relationship between the yield plasticity ratio μy and the yield plasticity ratio μy at a constant amplitude.
一定振幅繰り返し載荷試験では、所定の降伏塑性率μyとなるように、梁部材2が破断に至るまで、繰り返し載荷され、梁部材2の材軸方向(長手方向)に沿って複数設けられた歪みゲージや材軸方向に沿って設けられた光ファイバ等のひずみ計測センサによって梁部材2に生じているひずみが随時計測される。 In the constant amplitude repeated loading test, the beam member 2 is repeatedly loaded until it breaks so that a predetermined yield plasticity modulus μy is achieved, and multiple strains are applied along the material axis direction (longitudinal direction) of the beam member 2. Strain occurring in the beam member 2 is measured at any time by a strain measurement sensor such as a gauge or an optical fiber provided along the direction of the material axis.
一般的に載荷点が一定の振幅で繰り返し変位されると、梁部材2の端部における曲げモーメントMは、図4に示されるように、繰り返し数Nの増加に伴って徐々に増加する。つまり、梁部材2の塑性化領域(Ly/H)は、繰り返し数Nの増加に伴って徐々に増加することになる。 Generally, when the loading point is repeatedly displaced with a constant amplitude, the bending moment M at the end of the beam member 2 gradually increases as the number of repetitions N increases, as shown in FIG. In other words, the plasticized region (Ly/H) of the beam member 2 gradually increases as the number of repetitions N increases.
ここで、一定振幅繰り返し載荷試験において、載荷点を1回振幅させる間に、ひずみ計測センサによってひずみが生じたことが検出された領域は、曲げモーメントMが降伏モーメントMyを超えることで塑性化が進行した領域、すなわち、上述の塑性化領域(Ly/H)と見做すことができる。このため、載荷点を1回振幅させる毎にひずみ計測センサの検出値に基づいて塑性化領域(Ly/H)の大きさを把握することによって、所定の降伏塑性率μyにおいて、繰り返し数Nに応じて、どの程度まで塑性化領域(Ly/H)が拡大するかを把握することが可能である。 Here, in the constant amplitude repeated loading test, the area where strain is detected by the strain measurement sensor while the loading point is oscillated once is plasticized when the bending moment M exceeds the yield moment My. It can be regarded as an advanced region, that is, the above-mentioned plasticized region (Ly/H). Therefore, by grasping the size of the plasticized region (Ly/H) based on the detected value of the strain measurement sensor each time the loading point is oscillated once, the number of repetitions N can be adjusted at a predetermined yield plasticity rate μy. Accordingly, it is possible to grasp to what extent the plasticized region (Ly/H) expands.
このように載荷点を1回振幅させる毎に把握された塑性化領域(Ly/H)は、図5に示されるように、何れの降伏塑性率μy1,μy2,μy3においても繰り返し数Nと共に増大し、やがて一定値に漸近する傾向がある。図5に示される第1降伏塑性率μy1は、降伏塑性率μyが1よりも大きい場合であり、第2降伏塑性率μy2は、第1降伏塑性率μy1よりも降伏塑性率μyが大きい場合、第3降伏塑性率μy3は、第2降伏塑性率μy2よりも降伏塑性率μyが大きい場合をそれぞれ示している。 As shown in Fig. 5, the plasticization region (Ly/H) grasped each time the loading point is oscillated once increases with the number of repetitions N at any yield plasticity ratio μy1, μy2, μy3. However, it tends to gradually approach a constant value. The first yield plasticity ratio μy1 shown in FIG. 5 is when the yield plasticity ratio μy is larger than 1, and the second yield plasticity ratio μy2 is when the yield plasticity ratio μy is larger than the first yield plasticity ratio μy1. The third yield plasticity ratio μy3 indicates a case where the yield plasticity ratio μy is larger than the second yield plasticity ratio μy2.
なお、図5における繰り返し数Nの限界数は、梁部材2が破断するまでの回数に限定されず、塑性化領域(Ly/H)の大きさに変化が認められなくなる回数であればよく、例えば、梁部材2の耐力が最大荷重の80~90%程度に低下するまでの回数であってもよい。 In addition, the limit number of the number of repetitions N in FIG. 5 is not limited to the number of times until the beam member 2 breaks, but may be any number of times at which no change is recognized in the size of the plasticized region (Ly/H). For example, it may be the number of times until the proof strength of the beam member 2 decreases to about 80 to 90% of the maximum load.
このようにして得られた各降伏塑性率μy1,μy2,μy3において漸近した塑性化領域(Ly/H)の大きさを、図6に示されるような、横軸を塑性化領域(Ly/H)の大きさとし、縦軸を一定振幅時の降伏塑性率μyとしたグラフにプロットし、プロットされた複数の点の近似直線を求めると、関係式Aで示される一次関数のグラフが取得される。 As shown in FIG. ), and the vertical axis is plotted on a graph with the yield plasticity rate μy at a constant amplitude, and an approximate straight line of the plotted points is obtained, a graph of the linear function shown by relational formula A is obtained. .
塑性化領域(Ly/H)の範囲と一定振幅時の降伏塑性率μyとの関係性を示す関係式Aからは、どの程度の降伏塑性率μyで一定振幅させると、塑性化領域(Ly/H)が最終的にどの程度の大きさになるかを推定することが可能である。 From the relational expression A that shows the relationship between the range of the plasticization region (Ly/H) and the yield plasticity rate μy at a constant amplitude, it can be seen that the plasticization region (Ly/H) is It is possible to estimate how large H) will ultimately be.
換言すれば、上述のような種々手法により地震後の梁部材2の塑性化範囲Lyが把握され、梁部材2の梁せいHの大きさが図面等から把握されれば、関係式Aに基づいて、梁部材2が地震時に最大でどの程度変形(振幅)していたのかを示す降伏塑性率μyを推定することができる。 In other words, if the plasticity range Ly of the beam member 2 after the earthquake is understood by the various methods described above, and the size of the beam heir H of the beam member 2 is understood from the drawing etc., based on the relational expression A, Accordingly, it is possible to estimate the yield plasticity modulus μy, which indicates the maximum degree of deformation (amplitude) of the beam member 2 during the earthquake.
また、一定振幅繰り返し載荷試験の結果から図7に示される性能曲線(S-N曲線)を作成することによって、この性能曲線と、上述の関係式Aから推定された地震時の降伏塑性率μyと、に基づいて、梁部材2の破断寿命Nfを推定することも可能である。具体的には、破断寿命Nfは、一般的に下記数2により推定される。 In addition, by creating a performance curve (SN curve) shown in Figure 7 from the results of the constant amplitude cyclic loading test, we can use this performance curve and the yield plasticity rate μy during an earthquake estimated from the above relational expression A. It is also possible to estimate the fracture life Nf of the beam member 2 based on . Specifically, the fracture life Nf is generally estimated by the following equation 2.
上記数2中のμは塑性率であり、Cは梁端部の接合形式等に応じて設定される係数であり、βは評価式の傾きであり1/3程度の値に実験的に設定される。 In the above equation 2, μ is the plasticity modulus, C is a coefficient set depending on the joint type of the beam end, etc., and β is the slope of the evaluation formula, which is experimentally set to a value of about 1/3. be done.
ここで、性能曲線における塑性率μは、全塑性荷重を基準としたものであって、上述の降伏塑性率μyとは基準が異なる。このため、性能曲線に基づいて破断寿命Nfを推定するには、降伏塑性率μyを塑性率μに換算する必要がある。 Here, the plasticity modulus μ in the performance curve is based on the total plastic load, and the standard is different from the above-mentioned yield plasticity modulus μy. Therefore, in order to estimate the rupture life Nf based on the performance curve, it is necessary to convert the yield plasticity ratio μy to a plasticity ratio μ.
降伏塑性率μyを塑性率μに換算する換算係数は、梁部材2の断面形状や梁部材2と柱部材1との接合部の具体的形状、例えば、ウェブ部5に形成されるスカラップの形状等によって異なり、実験的またはFEM(Finite Element Method)解析によって求められる。換算係数の具体的な大きさは、0.7前後である。 The conversion factor for converting the yield plasticity modulus μy to the plasticity modulus μ depends on the cross-sectional shape of the beam member 2 and the specific shape of the joint between the beam member 2 and the column member 1, such as the shape of the scallop formed in the web portion 5. etc., and is obtained experimentally or by FEM (Finite Element Method) analysis. The specific size of the conversion coefficient is around 0.7.
また、関係式Aから得られる降伏塑性率μyは、地震時に梁部材2が変形していたと推定される最大の変形度合であることから、性能曲線に基づいて推定される破断寿命Nfは、実際の破断寿命よりも小さい値となる可能性がある。 Furthermore, since the yield plasticity modulus μy obtained from the relational expression A is the maximum degree of deformation that is estimated to have occurred in the beam member 2 at the time of the earthquake, the rupture life Nf estimated based on the performance curve is actually The value may be smaller than the rupture life of .
このため、近隣の観測点で計測された実際の地震波形等に基づいて、関係式Aから得られた降伏塑性率μyは最大値であったと仮定し、これよりも小さい複数の降伏塑性率μyで梁部材2が振幅していたと推定することにより、線形累積損傷則(マイナー則)で評価された破断寿命Nfを算出してもよい。 Therefore, based on actual seismic waveforms measured at nearby observation points, it is assumed that the yield plasticity rate μy obtained from relational formula A is the maximum value, and multiple yield plasticity rates μy smaller than this are assumed to be the maximum value. By estimating that the beam member 2 was vibrating at , the fracture life Nf evaluated by the linear cumulative damage law (Miner's law) may be calculated.
また、梁部材2が設けられる鉄骨造建築物の階層の揺れ回数n(振動回数)を取得しておくことによって、揺れ回数nを破断寿命Nfによって除することによって、梁部材2の損傷度Dを求めたり、さらに損傷度Dを用いて残存性能(1-D)や余裕度(1-D)/Dを求めたりすることも可能である。 In addition, by obtaining the number of shaking n (number of vibrations) of the floor of the steel frame building in which the beam member 2 is installed, the degree of damage D of the beam member 2 can be calculated by dividing the number of shaking n by the fracture life Nf. It is also possible to obtain the remaining performance (1-D) and margin (1-D)/D using the damage degree D.
以上のような特性に基づいて地震時に梁部材2(鋼製部材)がどの程度の損傷を受けたのかを推定するために、本実施形態に係る地震影響評価装置10は、図8に示すように、梁部材2(鋼製部材)の塑性化した領域の範囲である塑性化範囲Lyを取得する取得部11と、取得された塑性化範囲Lyに基づいて地震時の梁部材2の降伏塑性率μy(塑性率)を演算する演算部12と、降伏塑性率μyに基づいて梁部材2が地震で受けた影響を評価する評価部13と、演算部12及び評価部13で用いられる関係式や係数等が記憶されるとともに演算結果や評価結果が記憶される記憶部14と、を備える。 In order to estimate the extent of damage to the beam member 2 (steel member) during an earthquake based on the above characteristics, the earthquake impact evaluation device 10 according to the present embodiment uses a method as shown in FIG. , an acquisition unit 11 that acquires a plasticization range Ly that is the range of the plasticized region of the beam member 2 (steel member), and a yield plasticity of the beam member 2 at the time of an earthquake based on the acquired plasticization range Ly. A calculation unit 12 that calculates the plasticity rate μy (plasticity rate), an evaluation unit 13 that evaluates the influence of the earthquake on the beam member 2 based on the yield plasticity rate μy, and a relational expression used by the calculation unit 12 and the evaluation unit 13. and a storage unit 14 in which calculation results and evaluation results are stored as well as coefficients and the like.
地震影響評価装置10は、具体的には、CPU(中央演算処理装置)、ROM(リードオンリメモリ)、RAM(ランダムアクセスメモリ)、及びI/Oインターフェース(入出力インターフェース)を備えたマイクロコンピュータで構成される。RAMはCPUの処理におけるデータを記憶し、ROMはCPUの制御プログラム等を予め記憶し、I/Oインターフェースは地震影響評価装置10に接続された入力部20や表示部30、計測部40との情報の入出力に使用される。RAM及びROMは記憶部14に相当する。なお、取得部11、演算部12及び評価部13は、地震影響評価装置10の各機能を、仮想的なユニットとして示したものであり、物理的に存在することを意味するものではない。 Specifically, the earthquake impact evaluation device 10 is a microcomputer equipped with a CPU (central processing unit), ROM (read only memory), RAM (random access memory), and I/O interface (input/output interface). configured. The RAM stores data for CPU processing, the ROM stores CPU control programs, etc., and the I/O interface connects with the input section 20, display section 30, and measurement section 40 connected to the earthquake impact evaluation device 10. Used for inputting and outputting information. RAM and ROM correspond to the storage section 14. Note that the acquisition unit 11, the calculation unit 12, and the evaluation unit 13 represent each function of the earthquake impact evaluation device 10 as a virtual unit, and do not mean that they physically exist.
地震影響評価装置10に接続される入力部20は、キーボードやタッチパネルであり、作業者が塑性化範囲Lyに関連する寸法等を入力するために用いられる。地震影響評価装置10に接続される表示部30は、演算結果や評価結果が表示されるモニタ画面であり、入力部20を介して入力された値も表示される。 The input unit 20 connected to the earthquake impact evaluation device 10 is a keyboard or a touch panel, and is used by an operator to input dimensions and the like related to the plasticization range Ly. The display unit 30 connected to the earthquake impact evaluation device 10 is a monitor screen on which calculation results and evaluation results are displayed, and values input via the input unit 20 are also displayed.
また、地震影響評価装置10には、塑性化範囲Lyを計測可能な計測部40が接続されていてもよい。計測部40は、例えば、梁部材2の材軸方向に沿って設置された歪みゲージや光ファイバ等のひずみ計測センサの検出値を計測可能な装置である。また、計測部40には、梁部材2が設けられる階層の揺れ回数nを記録する振動記録計が含まれていてもよい。 Furthermore, a measurement unit 40 capable of measuring the plasticization range Ly may be connected to the earthquake impact evaluation device 10. The measurement unit 40 is, for example, a device that can measure the detected value of a strain measurement sensor such as a strain gauge or an optical fiber installed along the material axis direction of the beam member 2. Furthermore, the measurement unit 40 may include a vibration recorder that records the number of times n of shaking of the floor where the beam member 2 is provided.
このように地震影響評価装置10と、地震影響評価装置10に接続される機器により地震影響評価システム100が構築される。 In this way, the earthquake impact evaluation system 100 is constructed by the earthquake impact evaluation device 10 and the equipment connected to the earthquake impact evaluation device 10.
続いて地震影響評価装置10により行われる地震影響評価方法について、図9のフローチャートを参酌して説明する。 Next, the earthquake impact evaluation method performed by the earthquake impact evaluation device 10 will be described with reference to the flowchart of FIG.
まず、ステップS11において、取得部11により、梁部材2(鋼製部材)の塑性化した領域の範囲である塑性化範囲Lyが取得される。具体的には、入力部20を介して作業員により黒皮(ミルスケール)が剥がれている部分の長さや計測部40によって残留ひずみが検知された部分の長さが入力される。これらの入力値は、塑性化範囲Lyとして取得部11により取得される。なお、残留ひずみが検知された部分の長さは、地震影響評価装置10に計測部40を接続することによって、計測部40から取得部11へと直接送られてもよい。 First, in step S11, the acquisition unit 11 acquires the plasticization range Ly, which is the range of the plasticized region of the beam member 2 (steel member). Specifically, the length of the part where the black scale (mill scale) is peeled off and the length of the part where the residual strain is detected by the measurement part 40 are inputted by the operator via the input unit 20 . These input values are acquired by the acquisition unit 11 as the plasticization range Ly. Note that the length of the portion where the residual strain was detected may be directly sent from the measurement unit 40 to the acquisition unit 11 by connecting the measurement unit 40 to the earthquake impact evaluation device 10.
続くステップS12では、演算部12により、取得部11で取得された塑性化範囲Ly及び記憶部14に予め記憶された梁せいHに基づいて地震時の梁部材2の降伏塑性率μyが演算される。 In the subsequent step S12, the calculation unit 12 calculates the yield plasticity ratio μy of the beam member 2 during an earthquake based on the plasticization range Ly acquired by the acquisition unit 11 and the beam stress H stored in advance in the storage unit 14. Ru.
具体的には、上述のように図5に示される繰り返し数Nに対する塑性化領域(Ly/H)の範囲の変化に基づいて予め立式された図6に示される関係式Aを用いて、塑性化領域(Ly/H)から梁部材2が地震時に最大でどの程度変形していたのかを示す地震時の降伏塑性率μyが演算される。なお、関係式Aは、予め記憶部14に記憶される。 Specifically, using the relational expression A shown in FIG. 6, which was formulated in advance based on the change in the range of the plasticization region (Ly/H) with respect to the number of repetitions N shown in FIG. 5, as described above, From the plasticized region (Ly/H), the yield plasticity ratio μy at the time of the earthquake, which indicates the maximum degree of deformation of the beam member 2 at the time of the earthquake, is calculated. Note that the relational expression A is stored in advance in the storage unit 14.
次にステップS13において、演算部12により、梁部材2(鋼製部材)が破断に至るまでの破断寿命Nf(破断繰り返し数)が演算される。具体的には、記憶部14に予め記憶された上記数2により、梁部材2の破断寿命Nfが演算される。 Next, in step S13, the calculation unit 12 calculates the fracture life Nf (number of repetitions of fracture) until the beam member 2 (steel member) breaks. Specifically, the fracture life Nf of the beam member 2 is calculated using the above equation 2 stored in advance in the storage unit 14.
なお、上述のようにステップS13で用いられる性能曲線の塑性率μは、全塑性荷重を基準としたものであって、ステップS12で演算された降伏塑性率μyとは基準が異なる。このため、ステップS12で演算された降伏塑性率μyは、記憶部14に予め記憶された換算係数によって予め変換される。 Note that, as described above, the plasticity ratio μ of the performance curve used in step S13 is based on the total plastic load, and is different from the yield plasticity ratio μy calculated in step S12. Therefore, the yield plasticity ratio μy calculated in step S12 is converted in advance using a conversion coefficient stored in the storage unit 14 in advance.
続くステップS14では、評価部13により、梁部材2(鋼製部材)が地震で受けた影響が、演算部12により演算された破断寿命Nf(破断繰り返し数)と梁部材2が設けられる階層の揺れ回数nとに基づいて評価される。 In the subsequent step S14, the evaluation unit 13 determines the effect of the earthquake on the beam member 2 (steel member) based on the fracture life Nf (number of repetitions of fracture) calculated by the calculation unit 12 and the floor on which the beam member 2 is installed. The evaluation is based on the number of oscillations n.
具体的には、揺れ回数nを破断寿命Nfによって除することによって梁部材2の損傷度Dが求められ、損傷度Dが1を超えていない場合、梁部材2は健全であると判定し、損傷度Dが1以上である場合、梁部材2は健全ではないと判定する。 Specifically, the degree of damage D of the beam member 2 is determined by dividing the number of shakes n by the fracture life Nf, and if the degree of damage D does not exceed 1, the beam member 2 is determined to be sound, When the damage degree D is 1 or more, it is determined that the beam member 2 is not healthy.
このように評価部13で評価された結果は、表示部30に表示されるとともに記憶部14に記憶される。なお、損傷度Dに基づく評価は、健全か否かというだけではなく、損傷度Dの値の大きさに応じて、その損傷レベルを示すようにしてもよい。 The results evaluated by the evaluation unit 13 in this manner are displayed on the display unit 30 and stored in the storage unit 14. Note that the evaluation based on the degree of damage D may indicate not only whether the product is healthy or not, but also the level of damage depending on the magnitude of the value of the degree of damage D.
ステップS14において評価部13により損傷度Dを評価するにあたっては、梁部材2が設けられる鉄骨造建築物の階層における地震時の揺れ回数nが、取得部11を介して、入力部20または計測部40から予め取得される。なお、ステップS14において評価部13により行われる評価は、損傷度Dに基づくものに限定されず、残存性能(1-D)や余裕度(1-D)/Dに基づくものであってもよい。 In order to evaluate the degree of damage D by the evaluation unit 13 in step S14, the number n of tremors during an earthquake in the floor of the steel frame building in which the beam member 2 is installed is transmitted to the input unit 20 or the measurement unit via the acquisition unit 11. 40 is obtained in advance. Note that the evaluation performed by the evaluation unit 13 in step S14 is not limited to one based on the degree of damage D, but may be based on remaining performance (1-D) or margin (1-D)/D. .
続くステップS15では、評価部13により、梁部材2(鋼製部材)が地震で受けた影響が、ステップS12で演算された降伏塑性率μyと、梁部材2毎に予め設定されている許容塑性率μaと、に基づいて評価される。 In subsequent step S15, the evaluation unit 13 evaluates the influence of the earthquake on the beam member 2 (steel member) based on the yield plasticity rate μy calculated in step S12 and the allowable plasticity preset for each beam member 2. It is evaluated based on the rate μa.
具体的には、降伏塑性率μyと許容塑性率μaとを比較し、降伏塑性率μyが許容塑性率μaを超えていない場合、梁部材2は健全であると判定し、降伏塑性率μyが許容塑性率μa以上である場合、梁部材2は健全ではないと判定する。 Specifically, the yield plasticity rate μy is compared with the allowable plasticity rate μa, and if the yield plasticity rate μy does not exceed the allowable plasticity rate μa, the beam member 2 is determined to be sound, and the yield plasticity rate μy is If the plasticity rate is greater than or equal to the allowable plasticity μa, it is determined that the beam member 2 is not sound.
このように評価部13で評価された結果は、表示部30に表示されるとともに記憶部14に記憶される。なお、降伏塑性率μy及び許容塑性率μaに基づく評価は、健全か否かというだけではなく、許容塑性率μaに対する降伏塑性率μyの比率に応じて、その損傷レベルを示すようにしてもよい。 The results evaluated by the evaluation unit 13 in this manner are displayed on the display unit 30 and stored in the storage unit 14. Note that the evaluation based on the yield plasticity rate μy and the allowable plasticity rate μa may indicate not only whether the product is sound or not, but also the damage level according to the ratio of the yield plasticity rate μy to the allowable plasticity rate μa. .
ステップS15において評価に用いられる許容塑性率μaは、入力部20を介して入力されるものであってもよいし、予め記憶部14に記憶されたものであってもよい。なお、許容塑性率μaが全塑性荷重を基準としたものである場合、ステップS12で演算された降伏塑性率μyは、記憶部14に予め記憶された換算係数によって予め変換される。 The allowable plasticity ratio μa used for evaluation in step S15 may be input via the input unit 20 or may be stored in the storage unit 14 in advance. Note that when the allowable plasticity ratio μa is based on the total plastic load, the yield plasticity ratio μy calculated in step S12 is converted in advance using a conversion coefficient stored in the storage unit 14 in advance.
これらの工程を経て、地震影響評価装置10により行われる地震影響評価方法が完了し、梁部材2が地震で受けた影響が評価される。 Through these steps, the earthquake impact evaluation method performed by the earthquake impact evaluation device 10 is completed, and the impact of the earthquake on the beam member 2 is evaluated.
以上の実施形態によれば、以下に示す効果を奏する。 According to the above embodiment, the following effects are achieved.
地震影響評価装置10では、取得部11で取得された塑性化範囲Lyに基づいて梁部材2(鋼製部材)の地震時の降伏塑性率μyが演算部12により演算され、演算された降伏塑性率μyに基づいて梁部材2が地震で受けた影響を示す損傷度Dや許容塑性率μaに対する降伏塑性率μyの比率が評価部13において評価される。 In the earthquake impact evaluation device 10, the yield plasticity rate μy of the beam member 2 (steel member) during an earthquake is calculated by the calculation unit 12 based on the plasticization range Ly acquired by the acquisition unit 11, and the calculated yield plasticity μy is calculated by the calculation unit 12. Based on the rate μy, the evaluation unit 13 evaluates the damage degree D indicating the effect of the earthquake on the beam member 2 and the ratio of the yield plasticity rate μy to the allowable plasticity rate μa.
このように、地震時に生じた梁部材2(鋼製部材)の変形等の計測がリアルタイムで行われていなくとも、地震後に取得された塑性化範囲Lyに基づいて梁部材2が地震時にどの程度変形していたのかを演算で求めることによって、梁部材2が地震で受けた影響を地震後に容易に評価することができる。 In this way, even if the deformation of the beam member 2 (steel member) that occurred during the earthquake is not measured in real time, the extent to which the beam member 2 was affected during the earthquake can be determined based on the plasticization range Ly obtained after the earthquake. By calculating whether or not the beam member 2 has been deformed, it is possible to easily evaluate the influence of the earthquake on the beam member 2 after the earthquake.
なお、上記実施形態は、地震により梁部材2(鋼製部材)に繰り返し荷重が作用する場合、例えば、地震が海溝型地震である場合を想定している。これに対して、直下型地震のように梁部材2(鋼製部材)が一度の振動で大きく変位する場合には、以下のような方法により梁部材2が地震で受けた影響を地震後に評価することが可能である。 Note that the above embodiment assumes a case where a repeated load acts on the beam member 2 (steel member) due to an earthquake, for example, a case where the earthquake is a subduction zone earthquake. On the other hand, in cases where the beam member 2 (steel member) is greatly displaced by a single vibration, as in the case of a direct earthquake, the influence of the earthquake on the beam member 2 can be evaluated after the earthquake using the following method. It is possible to do so.
一般的に直下型地震では、海溝型地震とは異なり、梁部材2(鋼製部材)には一度の振動によって大きな変位が生じる。このため、単調載荷試験の結果に基づいて、地震時に梁部材2がどの程度の損傷を受けたのかを推定することが可能である。 Generally, in a direct earthquake, unlike a subduction zone earthquake, a single vibration causes a large displacement in the beam member 2 (steel member). Therefore, it is possible to estimate the extent of damage to the beam member 2 during the earthquake based on the results of the monotonic loading test.
ここで、曲げモーメントMと降伏モーメントMyと塑性化範囲Lyの大きさとは、上記数1の関係にあることから、単調載荷試験の結果を示す図2のグラフの縦軸を、上記数1と梁部材2の梁せいHとを用いて変換すると図10に示すグラフが得られる。なお、図10において、横軸は、降伏変形θyを分母として算出される降伏塑性率μyに変換されている。 Here, since the bending moment M, the yield moment My, and the magnitude of the plasticization range Ly have the relationship shown in the above equation 1, the vertical axis of the graph of FIG. When converted using the beam height H of the beam member 2, the graph shown in FIG. 10 is obtained. Note that in FIG. 10, the horizontal axis is converted to the yield plasticity ratio μy calculated using the yield deformation θy as the denominator.
図10に示されるグラフからは、どの程度の降伏塑性率μyで梁部材2を一度に変位させると、塑性化領域(Ly/H)の大きさがどの程度になるかを推定することが可能である。 From the graph shown in FIG. 10, it is possible to estimate the size of the plastic region (Ly/H) when the beam member 2 is displaced at once with what yield plasticity rate μy. It is.
換言すれば、上述のような種々手法により直下型地震後の梁部材2の塑性化範囲Lyが把握され、梁部材2の梁せいHの大きさが図面等から把握されれば、図10のグラフの縦軸と横軸とを入れ替えることによって得られる図11に示される関係式Bから、梁部材2が地震時に最大でどの程度変形していたのかを示す地震時の降伏塑性率μyを推定することができる。なお、関係式Bは、図10のグラフの縦軸と横軸とを入れ替えることによって得られるグラフから得られた近似曲線である。 In other words, if the plasticity range Ly of the beam member 2 after a direct earthquake can be ascertained by the various methods described above, and the size of the beam heir H of the beam member 2 can be ascertained from drawings, etc., then the From the relational expression B shown in FIG. 11 obtained by swapping the vertical and horizontal axes of the graph, estimate the yield plasticity rate μy during the earthquake, which indicates the maximum degree of deformation of the beam member 2 during the earthquake. can do. Note that the relational expression B is an approximate curve obtained from a graph obtained by interchanging the vertical and horizontal axes of the graph in FIG.
このようにして演算された降伏塑性率μyと、梁部材2毎に予め設定されている許容塑性率μaと、を比較することにより、直下型地震で梁部材2(鋼製部材)が受けた影響を評価することができる。 By comparing the yield plasticity ratio μy calculated in this way with the allowable plasticity ratio μa preset for each beam member 2, it is possible to determine the impact can be assessed.
なお、図11に示されるグラフは、図6に示されるグラフと縦軸及び横軸が同じであり、図6に示されるグラフが一定振幅時の降伏塑性率μy、すなわち、海溝型地震で生じる揺れに近い状態での降伏塑性率μyを示しているのに対して、図11に示されるグラフには、単調載荷時の降伏塑性率μy、すなわち、直下型地震で生じる揺れに近い状態での降伏塑性率μyが示されている。 The graph shown in FIG. 11 has the same vertical and horizontal axes as the graph shown in FIG. 6, and the graph shown in FIG. In contrast to the graph shown in Figure 11, which shows the yield plasticity rate μy in a state close to shaking, the graph shown in Figure 11 shows the yield plasticity rate μy under monotonous loading, that is, in a state close to shaking caused by a direct earthquake. The yield plasticity modulus μy is shown.
したがって、海溝型と直下型との複合型地震であった場合、関係式Aから推定される地震時の降伏塑性率μyと、関係式Bから推定される地震時の降伏塑性率μyと、を任意の比率で足し合わせることによって算出された降伏塑性率μyに基づいて、梁部材2(鋼製部材)が地震で受けた影響を評価してもよい。 Therefore, in the case of a combined trench-type and subduction-type earthquake, the yield plasticity rate μy at the time of the earthquake estimated from the relational expression A, and the yield plasticity rate μy at the time of the earthquake estimated from the relational formula B. The influence of the earthquake on the beam member 2 (steel member) may be evaluated based on the yield plasticity ratio μy calculated by adding the ratios together at an arbitrary ratio.
以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 Although the embodiments of the present invention have been described above, the above embodiments merely show a part of the application examples of the present invention, and are not intended to limit the technical scope of the present invention to the specific configurations of the above embodiments. do not have.
10・・・地震影響評価装置
2・・・梁部材(鋼製部材)
11・・・取得部
12・・・演算部
13・・・評価部
10...Earthquake impact evaluation device 2...Beam member (steel member)
11... Acquisition unit 12... Calculation unit 13... Evaluation unit
Claims (5)
前記鋼製部材の塑性化領域の範囲を取得する取得部と、
前記塑性化領域の範囲に基づいて地震時の前記鋼製部材の塑性率を演算する演算部と、
前記塑性率に基づいて前記鋼製部材が地震で受けた影響を評価する評価部と、を備える、
地震影響評価装置。 An earthquake impact evaluation device that evaluates the impact of an earthquake on steel members constituting a steel frame building,
an acquisition unit that acquires the range of the plasticized region of the steel member;
a calculation unit that calculates the plasticity rate of the steel member during an earthquake based on the range of the plasticization region;
an evaluation unit that evaluates the impact of an earthquake on the steel member based on the plasticity ratio;
Earthquake impact evaluation device.
請求項1に記載の地震影響評価装置。 The calculation unit calculates the plasticity rate using a relational expression between the range of the plasticity area and the plasticity rate at a constant amplitude, which is established in advance based on a change in the range of the plasticity area with respect to the number of repetitions.
The earthquake impact evaluation device according to claim 1.
前記演算部は、前記塑性率に基づいて前記鋼製部材が破断に至るまでの破断繰り返し数を演算し、
前記評価部は、前記破断繰り返し数と前記振動回数とに基づいて前記鋼製部材が地震で受けた影響を評価する、
請求項1または2に記載の地震影響評価装置。 The acquisition unit further acquires the number of vibrations of the steel frame building during an earthquake,
The calculation unit calculates the number of ruptures until the steel member breaks based on the plasticity rate,
The evaluation unit evaluates the impact of the earthquake on the steel member based on the number of repeated fractures and the number of vibrations.
The earthquake impact evaluation device according to claim 1 or 2.
前記評価部は、前記塑性率と前記許容塑性率とに基づいて前記鋼製部材が地震で受けた影響を評価する、
請求項1または2に記載の地震影響評価装置。 The acquisition unit further acquires an allowable plasticity modulus of the steel member,
The evaluation unit evaluates the impact of the earthquake on the steel member based on the plasticity rate and the allowable plasticity rate.
The earthquake impact evaluation device according to claim 1 or 2.
前記鋼製部材の塑性化領域の範囲を取得するステップと、
前記塑性化領域の範囲に基づいて地震時の前記鋼製部材の塑性率を演算するステップと、
前記塑性率に基づいて前記鋼製部材が地震で受けた影響を評価するステップと、を含む、
地震影響評価方法。 An earthquake impact evaluation method for evaluating the impact of an earthquake on steel members constituting a steel frame building, the method comprising:
obtaining the range of the plasticized region of the steel member;
calculating the plasticity rate of the steel member during an earthquake based on the range of the plasticization region;
evaluating the impact of the earthquake on the steel member based on the plasticity ratio;
Earthquake impact assessment method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022072546A JP2023161905A (en) | 2022-04-26 | 2022-04-26 | Earthquake influence evaluation device and earthquake influence evaluation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022072546A JP2023161905A (en) | 2022-04-26 | 2022-04-26 | Earthquake influence evaluation device and earthquake influence evaluation method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2023161905A true JP2023161905A (en) | 2023-11-08 |
Family
ID=88650559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022072546A Pending JP2023161905A (en) | 2022-04-26 | 2022-04-26 | Earthquake influence evaluation device and earthquake influence evaluation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2023161905A (en) |
-
2022
- 2022-04-26 JP JP2022072546A patent/JP2023161905A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4992084B2 (en) | Structure damage diagnostic system and method | |
WO2013158933A1 (en) | Integration of digital image correlation with acoustic emissions | |
Yahiaoui et al. | Response and cyclic strain accumulation of pressurized piping elbows under dynamic in-plane bending | |
JP7373616B2 (en) | Diagnostic evaluation method for structures based on constant microtremors of structures | |
Pan et al. | Seismic fragility analysis of transmission towers considering effects of soil-structure interaction and depth-varying ground motion inputs | |
JP2019144031A (en) | Building evaluation system and building evaluation method | |
RU2542589C2 (en) | Method of reconstruction of three-dimensional image of physical state of monitored object in measurement point | |
JP3876247B2 (en) | Diagnosis method and diagnosis system of structure by microtremor observation | |
Piana et al. | Compressive buckling for symmetric TWB with non-zero warping stiffness | |
Movaghati et al. | Experimental study on the nonlinear behavior of bearing-type semi-rigid connections | |
JP4655805B2 (en) | Evaluation method and evaluation apparatus | |
Wu et al. | Experimental and numerical analyses on aluminium alloy H-section members under eccentric cyclic loading | |
Zapico-Valle et al. | Modelling and calibration of a beam-column joint based on modal data | |
Feinstein et al. | Seismic response of floor‐anchored nonstructural components fastened with yielding elements | |
Milani et al. | Incremental collapse of KT-joints under variable repeated loading | |
JP4205051B2 (en) | Stress measuring method and apparatus | |
JP2023161905A (en) | Earthquake influence evaluation device and earthquake influence evaluation method | |
JP6681776B2 (en) | Ground anchor soundness evaluation method and soundness evaluation system | |
Saranik et al. | Shaking table test and numerical damage behaviour analysis of a steel portal frame with bolted connections | |
Hu et al. | Mechanistically-informed damage detection using dynamic measurements: Extended constitutive relation error | |
JP5033739B2 (en) | Stress measuring method and apparatus | |
Hosseini et al. | SHELTER–Structural Hyper-resisting element for life Threatening Earthquake Risk. Static tests on the shelter structure | |
Bassam et al. | A strain monitoring approach for estimating lateral displacements of concrete columns under seismic excitations | |
JP7236945B2 (en) | Ground anchor tension evaluation method and tension evaluation system | |
JP3510616B2 (en) | Method and system for diagnosing structures by microtremor observation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20240920 |